

ST
A

N
D

A
R

D
S

IEEE Standard for Information
Technology—Portable Operating
System Interface (POSIX™)

Base Specifications, Issue 8

IEEE Computer Society

and

The Open Group

Developed by the
Microprocessor Standards Committee

IEEE Std 1003.1™-2024
(Revision of IEEE Std 1003.1-2017)

The Open Group Standard Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1™-2024
(Revision of IEEE Std 1003.1-2017)

The Open Group Standard, Base Specifications, Issue 8

IEEE Standard for Information
Technology—Portable Operating
System Interface (POSIX™)

Base Specifications, Issue 8

Developed by the

Microprocessor Committee
of the
IEEE Computer Society

and

The Open Group

Approved 20 May 2024

IEEE SA Standards Board

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

ii Copyright © 2024 IEEE and The Open Group. All rights reserved.

Abstract: POSIX.1-2024 is simultaneously IEEE Std 1003.1™-2024 and The Open Group
Standard Base Specifications, Issue 8.

POSIX.1-2024 defines a standard operating system interface and environment, including a
command interpreter (or “shell”), and common utility programs to support applications portability at
the source code level. POSIX.1-2024 is intended to be used by both application developers and
system implementors and comprises four major components (each in an associated volume):

• General terms, concepts, and interfaces common to all volumes of this standard, including
utility conventions and C-language header definitions, are included in the Base Definitions
volume.

• Definitions for system service functions and subroutines, language-specific system
services for the C programming language, function issues, including portability, error
handling, and error recovery, are included in the System Interfaces volume.

• Definitions for a standard source code-level interface to command interpretation services
(a “shell”) and common utility programs for application programs are included in the Shell
and Utilities volume.

• Extended rationale that did not fit well into the rest of the document structure, which
contains historical information concerning the contents of POSIX.1-2024 and why features
were included or discarded by the standard developers, is included in the Rationale
(Informative) volume.

•

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

The Open Group
Apex Plaza, Forbury Road, Reading, Berkshire RG1 1AX, UK

Copyright © 2024 by The Institute of Electrical and Electronics Engineers, Inc. and The Open Group
All rights reserved.

Published 14 June 2024 by IEEE in the United States of America.
PDF: ISBN 979-8-8557-0793-9 STD26978
Print: ISBN 979-8-8557-0794-6 STDPD26978

Published 14 June 2024 by The Open Group in the United Kingdom
Doc. Number: C243
ISBN: 1-957866-40-6

IEEE is a registered trademark in the U.S. Patent & Trademark Office and POSIX is a trademark owned by The Institute of Electrical and
Electronics Engineers, Incorporated.

This release of this standard is dedicated to the memory of Jörg Schilling and Donn Terry.

This standard has been prepared by the Austin Group. Feedback relating to the material contained within this standard may be submitted
by using the Austin Group web site at www.opengroup.org/austin/defectform.html.

IEEE prohibits discrimination, harassment, and bullying.
For more information, visit https://www.ieee.org/about/corporate/governance/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher. Permission to reproduce all or any part of this standard must be with the consent of both copyright holders and may be
subject to a license fee. Both copyright holders will need to be satisfied that the other has granted permission. Requests should be sent by
email to austin-group-permissions@opengroup.org.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

http://www.opengroup.org/austin/defectform.html
https://www.ieee.org/about/corporate/governance/p9-26.html

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

 Copyright © 2024 IEEE and The Open Group. All rights reserved. iii

The following areas are outside the scope of POSIX.1-2024:

 Graphics interfaces
 Database management system interfaces
 Record I/O considerations
 Object or binary code portability
 System configuration and resource availability

POSIX.1-2024 describes the external characteristics and facilities that are of importance to
application developers, rather than the internal construction techniques employed to achieve these
capabilities. Special emphasis is placed on those functions and facilities that are needed in a wide
variety of commercial applications.

Keywords: application program interface (API), argument, asynchronous, basic regular expression
(BRE), built-in utility, byte, child, command language interpreter, CPU, extended regular expression
(ERE), FIFO, file access control mechanism, IEEE 1003.1™, input/output (I/O), job control,
network, parent, portable operating system interface (POSIX™), shell, stream, string, synchronous,
system, thread, X/Open System Interface (XSI)

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives through
technology standards and open standards by fostering a culture of collaboration, inclusivity, and mutual
respect among our diverse membership of more than 900 organizations. Our membership includes customers,
systems and solutions suppliers, tools vendors, integrators, academics, and consultants across multiple
industries.

The mission of The Open Group is to drive the creation of Boundaryless Information Flow™ achieved by:

 Working with customers to capture, understand, and address current and emerging requirements,
establish policies, and share best practices

 Working with suppliers, consortia, and standards bodies to develop consensus and facilitate
interoperability, to evolve and integrate specifications and open source technologies

 Offering a comprehensive set of services to enhance the operational efficiency of consortia

 Developing and operating the industry’s premier certification service and encouraging procurement
of certified products

Further information on The Open Group is available at https://www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused on
development of Standards and Guides, but which also includes white papers, technical studies, certification
and testing documentation, and business titles. Full details and a catalog are available at
https://www.opengroup.org/library.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

https://www.opengroup.org/library
https://www.opengroup.org/library

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

iv Copyright © 2024 IEEE and The Open Group. All rights reserved.

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE Standards documents are made available for use subject to important notices and legal disclaimers.
These notices and disclaimers, or a reference to this page (https://standards.ieee.org/ipr/disclaimers.html),
appear in all IEEE standards and may be found under the heading “Important Notices and Disclaimers
Concerning IEEE Standards Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents are developed within IEEE Societies and subcommittees of IEEE Standards
Association (IEEE SA) Board of Governors. IEEE develops its standards through an accredited consensus
development process, which brings together volunteers representing varied viewpoints and interests to
achieve the final product. IEEE standards are documents developed by volunteers with scientific, academic,
and industry-based expertise in technical working groups. Volunteers involved in technical working groups
are not necessarily members of IEEE or IEEE SA and participate without compensation from IEEE. While
IEEE administers the process and establishes rules to promote fairness in the consensus development process,
IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness
of any judgments contained in its standards.

IEEE makes no warranties or representations concerning its standards, and expressly disclaims all warranties,
express or implied, concerning all standards, including but not limited to the warranties of merchantability,
fitness for a particular purpose and non-infringement IEEE Standards documents do not guarantee safety,
security, health, or environmental protection, or compliance with law, or guarantee against interference with
or from other devices or networks. In addition, IEEE does not warrant or represent that the use of the material
contained in its standards is free from patent infringement. IEEE Standards documents are supplied “AS IS”
and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments received
from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity, nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document should rely upon their
own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate,
seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: THE
NEED TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON
ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

https://standards.ieee.org/ipr/disclaimers.html

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

 Copyright © 2024 IEEE and The Open Group. All rights reserved. v

Translations

The IEEE consensus balloting process involves the review of documents in English only. In the event that an
IEEE standard is translated, only the English language version published by IEEE is the approved IEEE
standard.

Use by artificial intelligence systems

In no event shall material in this document be used for the purpose of creating, training, enhancing,
developing, maintaining, or contributing to any artificial intelligence systems without the express, written
consent of IEEE SA and The Open Group in advance. “Artificial intelligence” refers to any software,
application, or other system that uses artificial intelligence, machine learning, or similar technologies, to
analyze, train, process, or generate content. Requests for consent can be submitted by email to austin-group-
permissions@opengroup.org.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE SA Standards Board
Operations Manual is not, and shall not be considered or inferred to be, the official position of IEEE or any
of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE or IEEE
SA. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE
standards shall make it clear that the presenter’s views should be considered the personal views of that
individual rather than the formal position of IEEE, IEEE SA, the Standards Committee, or the Working
Group. Statements made by volunteers may not represent the formal position of their employer(s) or
affiliation(s). News releases about IEEE standards issued by entities other than IEEE SA should be
considered the view of the entity issuing the release rather than the formal position of IEEE or IEEE SA.

Comments on standards

Feedback relating to the material contained within this standard may be submitted by using the Austin Group
web site at http://www.opengroup.org/austin/defectform.html.

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the
provisions of any IEEE Standards document does not constitute compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not
in compliance with applicable laws, and these documents may not be construed as doing so.

Data privacy

Users of IEEE Standards documents should evaluate the standards for considerations of data privacy and data
ownership in the context of assessing and using the standards in compliance with applicable laws and
regulations.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

http://www.opengroup.org/austin/defectform.html

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

vi Copyright © 2024 IEEE and The Open Group. All rights reserved.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.
They are made available by IEEE and are adopted for a wide variety of both public and private uses. These
include both use by reference, in laws and regulations, and use in private self-regulation, standardization, and
the promotion of engineering practices and methods. By making these documents available for use and
adoption by public authorities and private users, neither IEEE nor its licensors waive any rights in copyright
to the documents.

Photocopies

Subject to payment of the appropriate licensing fees, IEEE will grant users a limited, non-exclusive license
to photocopy portions of any individual standard for company or organizational internal use or individual,
non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance
Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400;
https://www.copyright.com/. Permission to photocopy portions of any individual standard for educational
classroom use can also be obtained through the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every 10 years. When a document is more than 10 years
old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of
some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that
they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit IEEE Xplore or contact IEEE.1 For more
information about the IEEE SA or IEEE’s standards development process, visit the IEEE SA Website.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE SA Website.2 Search for standard number
and year of approval to access the web page of the published standard. Errata links are located under the
Additional Resources Details section. Errata are also available in IEEE Xplore. Users are encouraged to
periodically check for errata.

1 Available at: https://ieeexplore.ieee.org/browse/standards/collection/ieee.
2 Available at: https://standards.ieee.org/standard/index.html.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

https://ieeexplore.ieee.org/browse/standards/collection/ieee/
https://standards.ieee.org/about/contact/
https://standards.ieee.org/standard/index.html
https://ieeexplore.ieee.org/browse/standards/collection/ieee/
https://ieeexplore.ieee.org/browse/standards/collection/ieee
https://standards.ieee.org/standard/index.html

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

 Copyright © 2024 IEEE and The Open Group. All rights reserved. vii

Patents

IEEE standards are developed in compliance with the IEEE SA Patent Policy.3

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the
existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has
filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE
SA Website at https://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate
whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or
under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not
responsible for identifying Essential Patent Claims for which a license may be required, for conducting
inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their
own responsibility. Further information may be obtained from the IEEE Standards Association.

IMPORTANT NOTICE

Technologies, application of technologies, and recommended procedures in various industries evolve over
time. The IEEE standards development process allows participants to review developments in industries,
technologies, and practices, and to determine what, if any, updates should be made to the IEEE standard.
During this evolution, the technologies and recommendations in IEEE standards may be implemented in
ways not foreseen during the standard’s development. IEEE standards development activities consider
research and information presented to the standards development group in developing any safety
recommendations. Other information about safety practices, changes in technology or technology
implementation, or impact by peripheral systems also may be pertinent to safety considerations during
implementation of the standard. Implementers and users of IEEE Standards documents are responsible for
determining and complying with all appropriate safety, security, environmental, health, data privacy, and
interference protection practices and all applicable laws and regulations.

3 Available at: https://standards.ieee.org/about/sasb/patcom/materials.html.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

https://standards.ieee.org/about/sasb/patcom/materials.html
https://standards.ieee.org/about/sasb/patcom/patents.html
https://standards.ieee.org/about/sasb/patcom/materials.html

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

viii Copyright © 2024 IEEE and The Open Group. All rights reserved.

Participants

IEEE Std 1003.1™-2024 was prepared by the Austin Group, sponsored by the Microprocessor Standards
Committee of the IEEE Computer Society, The Open Group, and ISO/IEC JTC 1/SC22.

The Austin Group

At the time this IEEE standard was completed, the Austin Group had the following membership:

Andrew Josey, Chair
Donald W. Cragun, Organizational Representative, IEEE MSC

Nicholas M. Stoughton, Organizational Representative, ISO/IEC JTC 1/SC22
Eric Blake, Organizational Representative, The Open Group

Cathy Fox, Geoff Clare, Technical Editors

Austin Group Technical Reviewers
William Ahern
Mohamed Akram
Joe Auricchio
Ori Avtalion
Bogdan Barbu
Steve Bartolomei
Petr Baudis
Fabrice Bauzac
Eric Blake
Mark S. Brown
Erik Cederstrand
Stéphane Chazelas
Scott Cheloha
Alexander Cherepanov
Geoff Clare
Robert Clausecker
Daniel Colascione
Garrett Cooper
Alan Coopersmith
Ralph Corderoy
Ciprian Dorin Craciun
Donald W. Cragun
Mike Crowe
Martijn Dekker
Andrés Delfino
D.J. Delorie
Matthew Dempsky
Antonio Diaz
Ulrich Drepper
Paul Eggert
Robert Elz
Steve Emmerson
Laszlo Ersek
Andras Farkas
Richard Felker
Dirk Fieldhouse
Mike Frysinger
Mark Galeck
Enrique Garcia
Thorsten Glaser

Dmitry Goncharov
Christopher M. Graff
Quinn Grier
Philip Guenther
Bruno Haible
Richard Hansen
Guy Harris
Mark Harris
Gavin Howard
Elliott Hughes
Roland Illig
Jarmo Jaakkola
Andrew Josey
Nickolas Raymond Kaczynski
Nate Karstens
Michael Kerrisk
Alexey Khoroshilov
Elad Lahav
Jeff Layton
Vincent Lefèvre
Mark Lundblad
Roger Marquis
Nikos Mavrogiannopoulos
Davin McCall
Mihail Mihaylov
Todd C. Miller
Christoph Anton Mitterer
Mihai Moldovan
Ed Morton
Joseph S. Myers
Szabolcs Nagy
Jonathan Nieder
Danny Niu
Steffen Nurpmeso
Richard Palethorpe
Daniele Palumbo
Isabella Parakiss
Ben Pfaff
J. William Piggott
Wayne Pollock

Quentin Rameau
Martin Řehák
Torvald Riegel
G. Branden Robinson
Xavier Roche
Bastien Roucaries
Daniel Sabogal
Askar Safin
Jörg Schilling
Ed Schouten
Konrad Schwarz
Ingo Schwarze
Martin Sebor
Olaf 'Rhialto' Seibert
Joel Sherrill
Curtis Smith
Paul Smith
Job Snijders
Oliver Soong
Dimitri Staessens
Nicholas M. Stoughton
Sören Tempel
Jilles Tjoelker
William Toth
Fred J. Tydeman
Stijn van Dronrgelen
Lawrence Velázquez
Evgeny Vereshchagin
Rasmus Villemoes
Dennis Wölfing
Jonathan Wakely
Colin Watson
Nathan Weeks
Florian Weimer
Zack Weinberg
David A. Wheeler
Nicolas Williams
Yousong Zhou
Mark Ziegast
Roman Žilka

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

 Copyright © 2024 IEEE and The Open Group. All rights reserved. ix

Austin Group Working Group Members
Hans Aberg
Eric Ackermann
Godmar Back
Eric Blake
Volodymyr Boyko
Andries E. Brouwer
Mark S. Brown
Jefferson Carpenter
Olivier Certner
Stéphane Chazelas
Tom Cherry
Earl Chew
Geoff Clare
Joshua M. Clulow
Alan Coopersmith
Donald W. Cragun
Mike Crowe
Martijn Dekker
Matthew Dempsky
Drew DeVault
Casper Dik
Deepa Dinamani
Dan Douglas
Niall Douglas
Ulrich Drepper
Lawrence D.K.B. Dwyer
Paul Eggert
Daniel Eischen
Julian Elischer
Robert Elz
Bruce Evans
Richard Felker
Jeffrey K. Fellin
Dirk Fieldhouse
Hal Finkel
Michael Forney
Mike Frysinger
Mark Galeck
Thorsten Glaser
Andreas Grapentin
Michael Greenberg
Philip Guenther
Joseph M. Gwinn

Jan Hafer
Bruno Haible
Richard Hansen
Mark Harris
David Holland
Gavin Howard
Elliott Hughes
Roland Illig
Lennart Jablonka
Chris F.A. Johns
Darrin Johnson
Andrew Josey
Nate Karstens
Dan Kegel
Michael Kerrisk
Anton Khikhlukha
Ukko Koknevics
Bruce Korb
David Korn
Rob Landley
Vincent Lefèvre
Wojtek Lerch
Charlie Lin
Scott Lurndal
Roger Marquis
Davin McCall
Stephen Michell
Per Mildner
Christoph Anton Mitterer
Thomas Mueller
Wilhelm Mueller
Koichi Murase
Joseph S. Myers
Danny Niu
Gian Ntzik
Steffen Nurpmeso
Carlos O'Donell
Andrew Pennebaker
Steven Penny
Colin Percival
J. William Piggott
Wayne Pollock
Quentin Rameau

Chet Ramey
Gabriel Ravier
G. Branden Robinson
Eric Sanchis
Daniel Santos
Jörg Schilling
Ed Schouten
Konrad Schwarz
Ingo Schwarze
John Scott
Simon Ser
Joel Sherrill
Thor Lancelot Simon
Keld Simonsen
Paul Smith
Job Snijders
Gabriel Soldani
Oliver Soong
Dimitri Staessens
Marc J. Stephenson
Nicholas M. Stoughton
Oskar Sveinsen
Alfred M. Szmidt
Tapani Tarvainen
Alexander Terekhov
Donn Terry
Jilles Tjoelker
Fred J. Tydeman
Oğuz Uysal
Harald van Dijk
Lawrence Velázquez
Oleksii Vilchansk
Corinna Vinschen
Jonathan Wakely
L.A. Walsh
David A. Wheeler
Jakub Wilk
Dennis Wölfing
Garrett Wollman
Jörg Wunsch
Ryan Zezeski
Mark Ziegast
Jason Zions

The Open Group
When The Open Group approved the Base Specifications, Issue 8, (technically identical to this standard) on
21 March 2024, the membership of The Open Group Base Working Group was as follows:

Andrew Josey, Chair
Eric Blake, Austin Group Liaison

Cathy Fox, Geoff Clare, Technical Editor

Base Working Group Members
Joe Auricchio
Eric Blake

Geoff Clare
Donald W. Cragun

Andrew Josey
Mark Ziegast

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

x Copyright © 2024 IEEE and The Open Group. All rights reserved.

IEEE

At the time this standard was completed, the Microprocessor Committee had the following membership:

Ralph Baker Kearfott, Chair
Leonard Tsai, Vice Chair and P754 Chair

Andrew Josey, P1003.1 Chair
Donald W. Cragun, Austin Group Liaison

Joseph M. Gwinn, Ex-officio Emeritus
Richard Bugg, P1722.1 Chair
Kiran Gunnam, P3109 Chair

David Hough, Outgoing P754 Chair
Dave Olsen, P1722 Chair

Nathalie Revol, P1788 Chair
Blaise Vignon, P3109 Chair

The following members of the individual Standards Association balloting group voted on this standard.
Balloters may have voted for approval, disapproval, or abstention.

Boon Chong Ang
Steven Bezner
Diego Chiozzi
Donald W. Cragun
Andrew Fieldsend
David Fuschi

Jie Guan
Joseph M. Gwinn
Werner Hoelzl
Andrew Josey
Piotr Karocki
Kenneth Lang

Rajesh Murthy
Venkatesha Prasad
Stephen Schwarm
Walter Struppler
Oren Yuen
Janusz Zalewski

When the IEEE SA Standards Board approved this standard on 20 May 2024, it had the following
membership:

David J. Law, Chair
Jon Walter Rosdahl, Vice Chair

Gary Hoffman, Past Chair
Alpesh Shah, Secretary

Sara R. Biyabani
Ted Burse
Stephen Dukes
Doug Edwards
J. Travis Griffith
Guido R. Hiertz
Ronald W Hotchkiss

Hao Hu
Yousef Kimiagar
Joseph L. Koepfinger*
Howard Li
Xiaohui Liu
John Haiying Lu
Kevin W. Lu
Hiroshi Mano

Paul Nikolich
Robby Robson
Lei Wang
F. Keith Waters
Sha Wei
Philip B. Winston
Don Wright

*Member Emeritus

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

 Copyright © 2024 IEEE and The Open Group. All rights reserved. xi

Introduction

This introduction is not part of IEEE Std 1003.1™-2024, IEEE Standard for Information Technology—Portable
Operating System Interface (POSIX™)—Base Specifications, Issue 8.

This draft standard was developed, and is maintained, by a joint working group of members of the IEEE
Microprocessor Standards Committee, members of The Open Group, and members of ISO/IEC Joint
Technical Committee 1. This joint working group is known as the Austin Group.4

The Austin Group arose out of discussions amongst the parties which started in early 1998, leading to an
initial meeting and formation of the group in September 1998. The purpose of the Austin Group is to develop
and maintain the core open systems interfaces that are the POSIX 1003.1 (and former 1003.2) standards,
ISO/IEC 9945, and the core of the Single UNIX® Specification.

The approach to specification development has been one of “write once, adopt everywhere”, with the
deliverables being a set of specifications that carry the IEEE POSIX designation, The Open Group Standard
designation, and an ISO/IEC designation.

This unique development has combined both the industry-led efforts and the formal standardization activities
into a single initiative, and included a wide spectrum of participants. The Austin Group continues as the
maintenance body for this document.

Anyone wishing to participate in the Austin Group should contact the chair with their request. There are no
fees for participation or membership. You may participate as an observer or as a contributor. You do not have
to attend face-to-face meetings to participate; electronic participation is most welcome. For more information
on the Austin Group and how to participate, see www.opengroup.org/austin.

Background
The developers of POSIX.1-2024 represent a cross-section of hardware manufacturers, vendors of operating
systems and other software development tools, software designers, consultants, academics, authors,
applications programmers, and others.

Conceptually, POSIX.1-2024 describes a set of fundamental services needed for the efficient construction of
application programs. Access to these services has been provided by defining an interface, using the C
programming language, a command interpreter, and common utility programs that establish standard
semantics and syntax. Since this interface enables application developers to write portable applications – it
was developed with that goal in mind – it has been designated POSIX,5 an acronym for Portable Operating
System Interface.

Although originated to refer to the original IEEE Std 1003.1-1988, the name POSIX more correctly refers to
a family of related standards: IEEE Std 1003.n and the parts of ISO/IEC 9945. In earlier editions of the IEEE
Standard, the term POSIX was used as a synonym for IEEE Std 1003.1-1988. A preferred term, POSIX.1,
emerged. This maintained the advantages of readability of the symbol “POSIX” without being ambiguous
with the POSIX family of standards.

4 The Austin Group is named after the location of the inaugural meeting held at the IBM facility in Austin, Texas in September 1998.
5 The name POSIX was suggested by Richard Stallman. It is expected to be pronounced with the first two syllables as in positive, not
poh-six, or other variations. The pronunciation has been published in an attempt to promulgate a standardized way of referring to
a standard operating system interface.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

http://www.opengroup.org/austin

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

xii Copyright © 2024 IEEE and The Open Group. All rights reserved.

Audience
The intended audience for POSIX.1-2024 is all persons concerned with an industry-wide standard operating
system based on the UNIX system. This includes at least four groups of people:

 Persons buying hardware and software systems

 Persons managing companies that are deciding on future corporate computing directions

 Persons implementing operating systems, and especially

 Persons developing applications where portability is an objective

Purpose
Several principles guided the development of POSIX.1-2024:

 Application-Oriented – The basic goal was to promote portability of application programs across
UNIX system environments by developing a clear, consistent, and unambiguous standard for the
interface specification of a portable operating system based on the UNIX system documentation.
POSIX.1-2024 codifies the common, existing definition of the UNIX system.

 Interface, Not Implementation – POSIX.1-2024 defines an interface, not an implementation. No
distinction is made between library functions and system calls; both are referred to as functions. No
details of the implementation of any function are given (although historical practice is sometimes
indicated in the RATIONALE section). Symbolic names are given for constants (such as signals and
error numbers) rather than numbers.

 Source, Not Object, Portability – POSIX.1-2024 has been written so that a program written and
translated for execution on one conforming implementation may also be translated for execution on
another conforming implementation. POSIX.1-2024 does not guarantee that executable (object or
binary) code will execute under a different conforming implementation than that for which it was
translated, even if the underlying hardware is identical.

 The C Language – The system interfaces and header definitions are written in terms of the standard
C language as specified in the ISO C standard.

 No Superuser, No System Administration – There was no intention to specify all aspects of an
operating system. System administration facilities and functions are excluded from this standard,
and functions usable only by the superuser have not been included. Still, an implementation of the
standard interface may also implement features not in POSIX.1-2024. POSIX.1-2024 is also not
concerned with hardware constraints or system maintenance.

 Minimal Interface, Minimally Defined – In keeping with the historical design principles of the
UNIX system, the mandatory core facilities of POSIX.1-2024 have been kept as minimal as
possible. Additional capabilities have been added as optional extensions.

 Broadly Implementable – The developers of POSIX.1-2024 endeavored to make all specified
functions implementable across a wide range of existing and potential systems, including:

— All of the current major systems that are ultimately derived from the original UNIX
system code (Version 7 or later)

— Compatible systems that are not derived from the original UNIX system code

— Emulations hosted on entirely different operating systems

— Networked systems

— Distributed systems

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

 Copyright © 2024 IEEE and The Open Group. All rights reserved. xiii

— Systems running on a broad range of hardware

No direct references to this goal appear in POSIX.1-2024, but some results of it are mentioned in the
Rationale (Informative) volume.

 Minimal Changes to Historical Implementations – When the original version – IEEE Std 1003.1-
1988 – was published, there were no known historical implementations that did not have to change.
However, there was a broad consensus on a set of functions, types, definitions, and concepts that
formed an interface that was common to most historical implementations.

 The adoption of the 1988 and 1990 IEEE system interface standards, the 1992 IEEE shell and
utilities standard, the various The Open Group (formerly X/Open) specifications, and IEEE Std
1003.1-2001 and its technical corrigenda have consolidated this consensus, and this version reflects
the significantly increased level of consensus arrived at since the original versions. The authors of
the original versions tried, as much as possible, to follow the principles below when creating new
specifications:

— By standardizing an interface like one in an historical implementation; for example,
directories

— By specifying an interface that is readily implementable in terms of, and backwards-
compatible with, historical implementations, such as the extended tar format defined in the pax
utility

— By specifying an interface that, when added to an historical implementation, will not
conflict with it; for example, the sigaction() function

POSIX.1-2024 is specifically not a codification of a particular vendor’s product.

It should be noted that implementations will have different kinds of extensions. Some will reflect
“historical usage” and will be preserved for execution of pre-existing applications. These functions
should be considered “obsolescent” and the standard functions used for new applications. Some
extensions will represent functions beyond the scope of POSIX.1-2024. These need to be used with
careful management to be able to adapt to future extensions of POSIX.1-2024 and/or port to
implementations that provide these services in a different manner.

 Minimal Changes to Existing Application Code—A goal of POSIX.1-2024 was to minimize
additional work for application developers. However, because every known historical
implementation will have to change at least slightly to conform, some applications will have to
change.

POSIX.1-2024
POSIX.1-2024 defines the Portable Operating System Interface (POSIX) requirements and consists of the
following topics arranged as a series of volumes within the standard:

 Base Definitions

 System Interfaces

 Shell and Utilities

 Rationale (Informative)

Base Definitions
The Base Definitions volume provides common definitions for this standard, therefore readers should be
familiar with it before using the other volumes.

This volume is structured as follows:

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

xiv Copyright © 2024 IEEE and The Open Group. All rights reserved.

 Chapter 1 is an introduction.

 Chapter 2 defines the conformance requirements.

 Chapter 3 defines general terms used.

 Chapter 4 describes general concepts used.

 Chapter 5 describes the notation used to specify file input and output formats in this volume and the
Shell and Utilities volume.

 Chapter 6 describes the portable character set and the process of character set definition.

 Chapter 7 describes the syntax for defining internationalization locales as well as the POSIX locale
provided on all systems.

 Chapter 8 describes the use of environment variables for internationalization and other purposes.

 Chapter 9 describes the syntax of pattern matching using regular expressions employed by many
utilities and matched by the regcomp() and regexec() functions.

 Chapter 10 describes files and devices found on all systems.

 Chapter 11 describes the asynchronous terminal interface for many of the functions in the System
Interfaces volume and the stty utility in the Shell and Utilities volume.

 Chapter 12 describes the policies for command line argument construction and parsing.

 Chapter 13 describes namespace reservation.

 Chapter 14 defines the contents of headers which declare the functions and global variables, and
define types, constants, macros, and data structures that are needed by programs using the services
provided by the System Interfaces volume.

Comprehensive references are available in the Index.

System Interfaces
The System Interfaces volume describes the interfaces offered to application programs by POSIX-
conformant systems. Readers are expected to be experienced C language programmers, and to be familiar
with the Base Definitions volume.

This volume is structured as follows:

 Chapter 1 explains the status of this volume and its relationship to other formal standards.

 Chapter 2 contains important concepts, terms, and caveats relating to the rest of this volume.

 Chapter 3 defines the functional interfaces to the POSIX-conformant system.

Comprehensive references are available in the Index.

Shell and Utilities
The Shell and Utilities volume describes the commands and utilities offered to application programs on
POSIX-conformant systems. Readers are expected to be familiar with the Base Definitions volume.

This volume is structured as follows:

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

 Copyright © 2024 IEEE and The Open Group. All rights reserved. xv

 Chapter 1 explains the status of this volume and its relationship to other formal standards. It also
describes the defaults used by the utility descriptions.

 Chapter 2 describes the command language used in POSIX-conformant systems, and special built-in
utilities.

 Chapter 3 consists of reference pages for all utilities, other than the special built-in utilities
described in Chapter 2, available on POSIX-conformant systems.

Comprehensive references are available in the Index.

Rationale (Informative)
The Rationale volume is published to assist in the process of review. It contains historical information
concerning the contents of this standard and why features were included or discarded by the standard
developers. It also contains notes of interest to application programmers on recommended programming
practices, emphasizing the consequences of some aspects of POSIX.1-2024 that may not be immediately
apparent.

This volume is organized in parallel to the normative volumes of this standard, with a separate part for each
of the three normative volumes.

Within this volume, the following terms are used:

 Base standard—The portions of POSIX.1-2024 that are not optional, equivalent to the definitions of
classic POSIX.1 and POSIX.2.

 POSIX.0—Although this term is not used in the normative text of POSIX.1-2024, it is used in this
volume to refer to IEEE Std 1003.0-1995.

 POSIX.1b—Although this term is not used in the normative text of POSIX.1-2024, it is used in this
volume to refer to the elements of the POSIX Realtime Extension amendment. (This was earlier
referred to as POSIX.4 during the standard development process.)

 POSIX.1c—Although this term is not used in the normative text of POSIX.1-2024, it is used in this
volume to refer to the POSIX Threads Extension amendment. (This was earlier referred to as
POSIX.4a during the standard development process.)

 Standard developers—The individuals and companies in the development organizations responsible
for POSIX.1-2024: the IEEE P1003.1 working groups, The Open Group Base working group,
advised by the hundreds of individual technical experts who balloted the draft standards within the
Austin Group, and the member bodies and technical experts of ISO/IEC JTC 1/SC 22.

 XSI option—The portions of POSIX.1-2024 addressing the extension added for support of the
Single UNIX Specification.

Typographical Conventions
The following typographical conventions are used throughout this standard. In the text, this standard is
referred to as POSIX.1-2024, which is technically identical to The Open Group Base Specifications, Issue 8.

The typographical conventions listed here are for ease of reading only. Editorial inconsistencies in the use of
typography are unintentional and have no normative meaning in POSIX.1-2024.

Reference Example Notes

C-Language Data Structure aiocb

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

xvi Copyright © 2024 IEEE and The Open Group. All rights reserved.

Reference Example Notes

C-Language Data Structure Member aio_lio_opcode

C-Language Data Type long

C-Language External Variable errno

C-Language Function system()

C-Language Function Argument arg

C-Language Function Family exec

C-Language Header <sys/stat.h>

C-Language Keyword return

C-Language Macro with Argument assert()

C-Language Macro with No Argument NET_ADDRSTRLEN

C-Language Preprocessing Directive #define

Commands within a Utility a, c

Conversion Specifier, Specifier/Modifier Character %A, g, E 1

Environment Variable PATH

Error Number [EINTR]

Example Output Hello, World

Filename /tmp

Literal Character 'c', '\r' 2

Literal String "abcde" 2

Optional Items in Utility Syntax []

Parameter <directory pathname>

Special Character <newline> 3

Symbolic Constant _POSIX_VDISABLE

Symbolic Limit, Configuration Value {LINE_MAX} 4

Syntax #include <sys/stat.h>

User Input and Example Code echo Hello, World 5

Utility Name awk

Utility Operand file_name

Utility Option -c

Utility Option with Option-Argument -w width

Note that:

1. Conversion specifications, specifier characters, and modifier characters are used primarily in date-
related functions and utilities and the fprintf() and fscanf() formatting functions.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1003.1TM-2024 (Revision of IEEE Std 1003.1-2017)
IEEE Standard for Information Technology—Portable Operating System Interface (POSIX®)

The Open Group Standard, Base Specifications, Issue 8

 Copyright © 2024 IEEE and The Open Group. All rights reserved. xvii

2. Unless otherwise noted, the quotes shall not be used as input or output. When used in a list item, the
quotes are omitted. The literal characters <apostrophe> (also known as single-quote) and <backslash>
are either shown as the C constants '\'' and '\\', respectively, or as the special characters
<apostrophe>, single-quote, and <backslash> depending on context.

3. The style selected for some of the special characters, such as <newline>, matches the form of the input
given to the localedef utility. Generally, the characters selected for this special treatment are those that
are not visually distinct, such as the control characters <tab> or <newline>.

4. Names surrounded by braces represent symbolic limits or configuration values which may be declared
in appropriate headers by means of the C #define construct, or obtained at runtime from functions or
utilities that return limit or configuration values.

5. Brackets shown in this font, "[]", are part of the syntax and do not indicate optional items. In
syntax the '|' symbol is used to separate alternatives, and ellipses ("...") are used to show that
additional arguments are optional.

Shading is used to identify extensions and options.

Footnotes and notes within the body of the normative text are for information only (informative).

Informative sections (such as Rationale, Change History, Application Usage, and so on) are denoted by
continuous shading bars in the margins.

Ranges of values are indicated with parentheses or brackets as follows:

1. (a,b) means the range of all values from a to b, including neither a nor b.

2. [a,b] means the range of all values from a to b, including a and b.

3. [a,b) means the range of all values from a to b, including a, but not b.

4. (a,b] means the range of all values from a to b, including b, but not a.

NOTE— A symbolic limit beginning with POSIX is treated differently, depending on context. In a C-language header,
the symbol POSIXstring (where string may contain underscores) is represented by the C identifier _POSIXstring, with a
leading underscore required to prevent ISO C standard name space pollution. However, in other contexts, such as
languages other than C, the leading underscore is not used because this requirement does not exist.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

Volume 1 Base Definitions, Issue 8... 1

Chapter 1 Introduction... 3
1.1 Scope ... 3
1.2 Word Usage .. 4
1.3 Conformance.. 4
1.4 Normative References .. 5
1.5 Change History ... 5
1.6 Terminology ... 5
1.7 Definitions and Concepts... 6
1.8 Portability... 7
1.8.1 Codes ... 7
1.8.2 Margin Code Notation .. 12

Chapter 2 Conformance... 15
2.1 Implementation Conformance .. 15
2.1.1 Requirements .. 15
2.1.2 Documentation ... 16
2.1.3 POSIX Conformance .. 17
2.1.4 XSI Conformance ... 19
2.1.5 Option Groups .. 20
2.1.6 Options .. 25
2.2 Application Conformance .. 27
2.2.1 Strictly Conforming POSIX Application... 27
2.2.2 Conforming POSIX Application .. 28
2.2.3 Conforming POSIX Application Using Extensions......................... 28
2.2.4 Strictly Conforming XSI Application .. 29
2.2.5 Conforming XSI Application Using Extensions 29
2.3 Language-Dependent Services for the C Programming

Language .. 29
2.4 Other Language-Related Specifications... 29

Chapter 3 Definitions.. 31
3.1 Abortive Release .. 31
3.2 Absolute Pathname ... 31
3.3 Access Mode .. 31
3.4 Additional File Access Control Mechanism.. 31
3.5 Address Space.. 31
3.6 Advisory Information ... 31
3.7 Affirmative Response ... 32
3.8 Alert .. 32
3.9 Alert Character (<alert>).. 32
3.10 Alias Name ... 32
3.11 Alignment .. 32

xviii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.12 Alternate File Access Control Mechanism .. 32
3.13 Alternate Signal Stack... 33
3.14 Ancillary Data .. 33
3.15 Angle Brackets ... 33
3.16 Anonymous Memory Object ... 33
3.17 Apostrophe Character (<apostrophe>) .. 33
3.18 Application... 33
3.19 Application Address ... 33
3.20 Application Program Interface (API) ... 33
3.21 Appropriate Privileges ... 34
3.22 Argument ... 34
3.23 Arm (a Timer) .. 34
3.24 Asterisk Character (<asterisk>) .. 34
3.25 Async-Cancel-Safe Function .. 34
3.26 Asynchronous Events... 34
3.27 Asynchronous Input and Output ... 34
3.28 Async-Signal-Safe Function ... 35
3.29 Asynchronously-Generated Signal... 35
3.30 Asynchronous I/O Completion.. 35
3.31 Asynchronous I/O Operation... 35
3.32 Atomic Operation ... 35
3.33 Authentication... 35
3.34 Authorization .. 36
3.35 Background Job ... 36
3.36 Background Process .. 36
3.37 Background Process Group ... 36
3.38 Backquote Character ... 36
3.39 Backslash Character (<backslash>) .. 36
3.40 Backspace Character (<backspace>) .. 37
3.41 Barrier ... 37
3.42 Basename.. 37
3.43 Basic Regular Expression (BRE).. 37
3.44 Bind ... 37
3.45 Blank Character (<blank>)... 37
3.46 Blank Line ... 37
3.47 Blocked Process (or Thread) .. 37
3.48 Blocking .. 38
3.49 Block-Mode Terminal ... 38
3.50 Block Special File... 38
3.51 Braces .. 38
3.52 Brackets... 38
3.53 Broadcast .. 38
3.54 Built-In Utility (or Built-In).. 39
3.55 Byte.. 39
3.56 Byte Input/Output Functions ... 39
3.57 Carriage-Return Character (<carriage-return>) 39
3.58 Character .. 39
3.59 Character Array ... 40
3.60 Character Class .. 40
3.61 Character Set .. 40
3.62 Character Special File ... 40
3.63 Character String ... 40

xix

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.64 Child Process ... 40
3.65 Circumflex Character (<circumflex>) ... 40
3.66 Clock ... 41
3.67 Clock Jump ... 41
3.68 Clock Tick ... 41
3.69 Code Block ... 41
3.70 Coded Character Set ... 41
3.71 Codeset ... 41
3.72 Collating Element .. 41
3.73 Collation ... 42
3.74 Collation Sequence .. 42
3.75 Column Position .. 42
3.76 Command... 42
3.77 Command Language Interpreter .. 42
3.78 Composite Graphic Symbol... 43
3.79 Condition Variable .. 43
3.80 Connected Socket .. 43
3.81 Connection ... 43
3.82 Connection Mode .. 43
3.83 Connectionless Mode ... 43
3.84 Control Character.. 43
3.85 Control Operator ... 44
3.86 Controlling Process ... 44
3.87 Controlling Terminal .. 44
3.88 Conversion Descriptor ... 44
3.89 Core Image ... 44
3.90 CPU Time (Execution Time) .. 44
3.91 CPU-Time Clock.. 44
3.92 CPU-Time Timer .. 45
3.93 Current Job... 45
3.94 Current Working Directory .. 45
3.95 Cursor Position .. 45
3.96 Datagram.. 45
3.97 Data Race .. 45
3.98 Data Segment ... 45
3.99 Decimal-Point Character .. 45
3.100 Declaration Utility ... 45
3.101 Device ... 46
3.102 Device ID .. 46
3.103 Directory ... 46
3.104 Directory Entry (or Hard Link) ... 46
3.105 Directory Stream ... 46
3.106 Disarm (a Timer) ... 46
3.107 Display.. 46
3.108 Display Line ... 46
3.109 Dollar-Sign Character (<dollar-sign>) ... 46
3.110 Dot ... 47
3.111 Dot-Dot ... 47
3.112 Dot-Po File .. 47
3.113 Double-Quote Character .. 47
3.114 Downshifting ... 47
3.115 Driver .. 47

xx

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.116 Effective Group ID .. 47
3.117 Effective User ID ... 47
3.118 Eight-Bit Transparency ... 48
3.119 Empty Directory .. 48
3.120 Empty Line ... 48
3.121 Empty String (or Null String).. 48
3.122 Empty Wide-Character String ... 48
3.123 Encoding Rule ... 48
3.124 Entire Regular Expression .. 48
3.125 Epoch .. 48
3.126 Equivalence Class .. 49
3.127 Era.. 49
3.128 Event Management ... 49
3.129 Executable File ... 49
3.130 Execute.. 49
3.131 Execution Time .. 49
3.132 Execution Time Monitoring... 49
3.133 Expand.. 50
3.134 Extended Regular Expression (ERE) .. 50
3.135 Extended Security Controls ... 50
3.136 Feature Test Macro .. 50
3.137 Field... 50
3.138 FIFO Special File (or FIFO) .. 51
3.139 File ... 51
3.140 File Description ... 51
3.141 File Descriptor ... 51
3.142 File Group Class .. 51
3.143 File Lock ... 51
3.144 File Mode .. 52
3.145 File Mode Bits .. 52
3.146 Filename ... 52
3.147 Filename String .. 52
3.148 File Offset ... 52
3.149 File Other Class ... 52
3.150 File Owner Class ... 52
3.151 File Permission Bits... 53
3.152 File Serial Number .. 53
3.153 File System ... 53
3.154 File Type ... 53
3.155 Filter .. 53
3.156 First Open (of a File) ... 53
3.157 Flow Control .. 53
3.158 Foreground Job.. 54
3.159 Foreground Process .. 54
3.160 Foreground Process Group .. 54
3.161 Foreground Process Group ID .. 54
3.162 Form-Feed Character (<form-feed>).. 54
3.163 Graphic Character ... 54
3.164 Group Database... 55
3.165 Group ID... 55
3.166 Group Name .. 55
3.167 Hard Limit .. 55

xxi

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.168 Hard Link ... 55
3.169 Hole ... 55
3.170 Home Directory ... 56
3.171 Host Byte Order ... 56
3.172 Incomplete Line ... 56
3.173 Inf... 56
3.174 Interactive Device .. 56
3.175 Interactive Shell ... 56
3.176 Internationalization .. 56
3.177 Interprocess Communication .. 56
3.178 Intrinsic Utility .. 57
3.179 Invoke ... 57
3.180 Job.. 57
3.181 Job Control ... 57
3.182 Job ID .. 57
3.183 Joinable Thread .. 58
3.184 Last Close (of a File).. 58
3.185 Line.. 58
3.186 Linger.. 58
3.187 Link ... 58
3.188 Link Count ... 58
3.189 Live Process .. 59
3.190 Live Thread .. 59
3.191 Local Customs ... 59
3.192 Local Interprocess Communication (Local IPC)................................. 59
3.193 Locale .. 59
3.194 Localization.. 59
3.195 Lock-Free Operation ... 59
3.196 Login ... 60
3.197 Login Name ... 60
3.198 Map ... 60
3.199 Matched .. 60
3.200 Memory Mapped Files ... 60
3.201 Memory Object .. 60
3.202 Memory-Resident.. 60
3.203 Message .. 61
3.204 Message Catalog .. 61
3.205 Message Catalog Descriptor.. 61
3.206 Message Queue .. 61
3.207 Messages Object .. 61
3.208 Mode ... 61
3.209 Monotonic Clock ... 61
3.210 Mount Point ... 62
3.211 Multi-Character Collating Element .. 62
3.212 Multi-Threaded Library ... 62
3.213 Multi-Threaded Process ... 62
3.214 Multi-Threaded Program ... 62
3.215 Mutex .. 62
3.216 Name... 63
3.217 NaN (Not a Number) ... 63
3.218 Native Language ... 63
3.219 Negative ... 63

xxii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.220 Negative Response .. 63
3.221 Network.. 63
3.222 Network Address .. 63
3.223 Network Byte Order ... 64
3.224 Newline Character (<newline>) ... 64
3.225 Nice Value .. 64
3.226 Non-Blocking... 64
3.227 Non-Spacing Characters .. 64
3.228 NUL... 64
3.229 Null Byte ... 65
3.230 Null Pointer .. 65
3.231 Null String .. 65
3.232 Null Terminator ... 65
3.233 Null Wide-Character Code .. 65
3.234 Number-Sign Character (<number-sign>) .. 65
3.235 Object File ... 65
3.236 Octet .. 65
3.237 OFD-Owned File Lock ... 66
3.238 Offset Maximum ... 66
3.239 Opaque Address .. 66
3.240 Open File .. 66
3.241 Open File Description... 66
3.242 Operand.. 66
3.243 Operator ... 66
3.244 Option ... 67
3.245 Option-Argument ... 67
3.246 Orientation ... 67
3.247 Orphaned Process Group ... 67
3.248 Page ... 67
3.249 Page Size ... 67
3.250 Parameter ... 68
3.251 Parent Directory .. 68
3.252 Parent Process .. 68
3.253 Parent Process ID .. 68
3.254 Pathname.. 68
3.255 Pathname Component .. 69
3.256 Path Prefix .. 69
3.257 Pattern... 69
3.258 Period Character (<period>) ... 69
3.259 Permissions .. 69
3.260 Persistence.. 69
3.261 Pipe.. 70
3.262 Polling... 70
3.263 Portable Character Set .. 70
3.264 Portable Filename .. 70
3.265 Portable Filename Character Set ... 70
3.266 Portable Messages Object Source File (or Dot-Po

File) .. 70
3.267 Positional Parameter ... 71
3.268 Positive ... 71
3.269 Preallocation .. 71
3.270 Preempted Process (or Thread) ... 71

xxiii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.271 Previous Job ... 71
3.272 Printable Character ... 71
3.273 Printable File .. 71
3.274 Priority .. 72
3.275 Priority Inversion .. 72
3.276 Priority Scheduling ... 72
3.277 Priority-Based Scheduling ... 72
3.278 Privilege.. 72
3.279 Process .. 72
3.280 Process Group .. 72
3.281 Process Group ID .. 72
3.282 Process Group Leader... 72
3.283 Process Group Lifetime .. 73
3.284 Process ID... 73
3.285 Process Lifetime... 73
3.286 Process Memory Locking... 73
3.287 Process Termination .. 73
3.288 Process Virtual Time ... 74
3.289 Process-Owned File Lock... 74
3.290 Process-To-Process Communication .. 74
3.291 Program .. 74
3.292 Protocol ... 74
3.293 Pseudo-Terminal ... 74
3.294 Radix Character (or Decimal-Point Character)................................... 74
3.295 Read-Only File System ... 75
3.296 Read-Write Lock.. 75
3.297 Real Group ID.. 75
3.298 Real Time .. 75
3.299 Realtime Signal Extension ... 75
3.300 Real User ID ... 75
3.301 Record ... 75
3.302 Record Lock ... 76
3.303 Redirection ... 76
3.304 Redirection Operator .. 76
3.305 Referenced Shared Memory Object .. 76
3.306 Refresh .. 76
3.307 Regular Built-In Utility (or Regular Built-In)...................................... 76
3.308 Regular Expression ... 76
3.309 Region ... 76
3.310 Regular File .. 77
3.311 Relative Pathname .. 77
3.312 Relocatable File .. 77
3.313 Relocation... 77
3.314 (Time) Resolution .. 77
3.315 Robust Mutex ... 77
3.316 Root Directory ... 77
3.317 Runnable Process (or Thread) ... 77
3.318 Running Process (or Thread) ... 77
3.319 Saved Resource Limits ... 78
3.320 Saved Set-Group-ID .. 78
3.321 Saved Set-User-ID ... 78
3.322 Scheduling.. 78

xxiv

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.323 Scheduling Allocation Domain ... 78
3.324 Scheduling Contention Scope ... 78
3.325 Scheduling Policy .. 79
3.326 Screen .. 79
3.327 Scroll .. 79
3.328 Semaphore.. 79
3.329 Session .. 79
3.330 Session Leader ... 79
3.331 Session Lifetime ... 79
3.332 Shared Memory Object... 80
3.333 Shell ... 80
3.334 Shell, the ... 80
3.335 Shell Script .. 80
3.336 Signal... 80
3.337 Signal Stack .. 80
3.338 Single-Quote Character .. 80
3.339 Single-Threaded Process .. 80
3.340 Single-Threaded Program .. 81
3.341 Slash Character (<slash>)... 81
3.342 Socket .. 81
3.343 Socket Address .. 81
3.344 Soft Limit .. 81
3.345 Source Code ... 81
3.346 Space Character (<space>)... 82
3.347 Sparse File .. 82
3.348 Spawn ... 82
3.349 Special Built-In Utility (or Special Built-In)... 82
3.350 Special Parameter .. 82
3.351 Spin Lock .. 82
3.352 Sporadic Server .. 82
3.353 Standard Error ... 82
3.354 Standard Input ... 83
3.355 Standard Output ... 83
3.356 Standard Utilities .. 83
3.357 Stream ... 83
3.358 String... 83
3.359 Subshell... 84
3.360 Successfully Transferred .. 84
3.361 Supplementary Group ID .. 84
3.362 Suspended Job ... 84
3.363 Symbolic Constant .. 84
3.364 Symbolic Link .. 85
3.365 Synchronization Operation.. 85
3.366 Synchronized Input and Output... 85
3.367 Synchronized I/O Completion ... 85
3.368 Synchronized I/O Data Integrity Completion.................................... 85
3.369 Synchronized I/O File Integrity Completion 85
3.370 Synchronized I/O Operation .. 86
3.371 Synchronous I/O Operation.. 86
3.372 Synchronously-Generated Signal ... 86
3.373 System... 86
3.374 System Boot .. 86

xxv

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.375 System Clock .. 86
3.376 System Console ... 86
3.377 System Crash ... 86
3.378 System Databases .. 87
3.379 System Documentation .. 87
3.380 System Process ... 87
3.381 System Reboot ... 87
3.382 System-Wide .. 87
3.383 Tab Character (<tab>)... 87
3.384 Terminal (or Terminal Device) .. 87
3.385 Text Column... 87
3.386 Text Domain... 88
3.387 Text File... 88
3.388 Thread ... 88
3.389 Thread ID ... 88
3.390 Thread Lifetime ... 89
3.391 Thread List ... 89
3.392 Thread Termination .. 89
3.393 Thread-Safe .. 89
3.394 Thread-Specific Data Key... 89
3.395 Tilde Character (<tilde>).. 90
3.396 Timeouts ... 90
3.397 Timer ... 90
3.398 Timer Overrun ... 90
3.399 Token ... 90
3.400 Typed Memory Name Space ... 90
3.401 Typed Memory Object .. 90
3.402 Typed Memory Pool ... 90
3.403 Typed Memory Port.. 91
3.404 Unbind.. 91
3.405 Unit Data .. 91
3.406 Upshifting .. 91
3.407 User Database .. 91
3.408 User ID .. 91
3.409 User Name ... 91
3.410 Utility .. 92
3.411 Variable ... 92
3.412 Vertical-Tab Character (<vertical-tab>).. 92
3.413 White Space .. 92
3.414 White-Space Byte .. 92
3.415 White-Space Character ... 92
3.416 White-Space Wide Character... 92
3.417 Wide-Character Code (C Language) .. 93
3.418 Wide-Character Input/Output Functions ... 93
3.419 Wide-Character String.. 93
3.420 Word.. 93
3.421 Working Directory (or Current Working Directory) 93
3.422 Worldwide Portability Interface ... 93
3.423 Write .. 93
3.424 XSI ... 93
3.425 XSI-Conformant .. 94
3.426 Zombie Process .. 94

xxvi

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3.427 Zombie Thread .. 94
3.428 ±0 ... 94

Chapter 4 General Concepts ... 95
4.1 Case Insensitive Comparisons .. 95
4.2 Concurrent Execution... 95
4.3 Default Initialization ... 95
4.4 Directory Operations .. 96
4.5 Directory Protection .. 96
4.6 Extended Security Controls ... 96
4.7 File Access Permissions.. 97
4.8 File Hierarchy .. 97
4.9 Filenames.. 97
4.10 Filename Portability .. 98
4.11 File System Cache ... 98
4.12 File Times Update ... 98
4.13 Host and Network Byte Orders .. 99
4.14 Measurement of Execution Time .. 99
4.15 Memory Ordering and Synchronization ... 100
4.15.1 Memory Ordering .. 100
4.15.2 Memory Synchronization ... 104
4.16 Pathname Resolution .. 105
4.17 Process ID Reuse ... 106
4.18 Scheduling Policy .. 107
4.19 Seconds Since the Epoch .. 107
4.20 Semaphore.. 108
4.21 Special Device Drivers.. 108
4.22 Thread-Safety ... 108
4.23 Treatment of Error Conditions for Mathematical

Functions .. 109
4.23.1 Domain Error .. 109
4.23.2 Pole Error ... 109
4.23.3 Range Error ... 110
4.24 Treatment of NaN Arguments for the Mathematical

Functions .. 110
4.25 Utility .. 111
4.26 Variable Assignment... 111

Chapter 5 File Format Notation... 113

Chapter 6 Character Set ... 117
6.1 Portable Character Set .. 117
6.2 Character Encoding .. 120
6.3 C Language Wide-Character Codes ... 120
6.4 Character Set Description File... 121
6.4.1 State-Dependent Character Encodings ... 125

Chapter 7 Locale .. 127
7.1 General.. 127
7.2 POSIX Locale ... 128
7.3 Locale Definition ... 128
7.3.1 LC_CTYPE .. 131

xxvii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

7.3.2 LC_COLLATE ... 139
7.3.3 LC_MONETARY .. 147
7.3.4 LC_NUMERIC.. 151
7.3.5 LC_TIME ... 152
7.3.6 LC_MESSAGES .. 159
7.4 Locale Definition Grammar... 160
7.4.1 Locale Lexical Conventions .. 160
7.4.2 Locale Grammar ... 161

Chapter 8 Environment Variables .. 167
8.1 Environment Variable Definition.. 167
8.2 Internationalization Variables ... 169
8.3 Other Environment Variables .. 174

Chapter 9 Regular Expressions.. 179
9.1 Regular Expression Definitions... 179
9.2 Regular Expression General Requirements ... 180
9.3 Basic Regular Expressions ... 181
9.3.1 BREs Matching a Single Character or Collating

Element .. 181
9.3.2 BRE Ordinary Characters.. 181
9.3.3 BRE Special Characters ... 182
9.3.4 Periods in BREs .. 182
9.3.5 RE Bracket Expression ... 182
9.3.6 BREs Matching Multiple Characters ... 185
9.3.7 BRE Precedence .. 186
9.3.8 BRE Expression Anchoring... 186
9.4 Extended Regular Expressions .. 187
9.4.1 EREs Matching a Single Character or Collating

Element .. 187
9.4.2 ERE Ordinary Characters.. 187
9.4.3 ERE Special Characters ... 188
9.4.4 Periods in EREs .. 188
9.4.5 ERE Bracket Expression .. 188
9.4.6 EREs Matching Multiple Characters ... 189
9.4.7 ERE Alternation .. 190
9.4.8 ERE Precedence .. 190
9.4.9 ERE Expression Anchoring... 190
9.5 Regular Expression Grammar... 191
9.5.1 BRE/ERE Grammar Lexical Conventions.. 191
9.5.2 RE and Bracket Expression Grammar... 192
9.5.3 ERE Grammar ... 194

Chapter 10 Directory Structure and Devices .. 197
10.1 Directory Structure and Files... 197
10.2 Output Devices and Terminal Types .. 197

Chapter 11 General Terminal Interface ... 199
11.1 Interface Characteristics ... 199
11.1.1 Opening a Terminal Device File... 199
11.1.2 Process Groups ... 199
11.1.3 The Controlling Terminal .. 200

xxviii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

11.1.4 Terminal Access Control ... 200
11.1.5 Input Processing and Reading Data .. 201
11.1.6 Canonical Mode Input Processing ... 202
11.1.7 Non-Canonical Mode Input Processing .. 202
11.1.8 Writing Data and Output Processing .. 203
11.1.9 Special Characters .. 203
11.1.10 Modem Disconnect .. 205
11.1.11 Closing a Terminal Device File... 205
11.2 Parameters that Can be Set .. 205
11.2.1 The termios Structure .. 205
11.2.2 Input Modes .. 206
11.2.3 Output Modes ... 207
11.2.4 Control Modes .. 209
11.2.5 Local Modes .. 210
11.2.6 Special Control Characters.. 212

Chapter 12 Utility Conventions... 213
12.1 Utility Argument Syntax.. 213
12.2 Utility Syntax Guidelines... 215

Chapter 13 Namespace and Future Directions .. 219

Chapter 14 Headers .. 221

Volume 2 System Interfaces, Issue 8.. 491

Chapter 1 Introduction... 493
1.1 Relationship to Other Formal Standards ... 493
1.2 Format of Entries... 493

Chapter 2 General Information ... 495
2.1 Use and Implementation of Interfaces ... 495
2.1.1 Use and Implementation of Functions.. 495
2.1.2 Use and Implementation of Macros .. 496
2.2 The Compilation Environment ... 496
2.2.1 POSIX.1 Symbols .. 496
2.2.2 The Name Space... 498
2.3 Error Numbers... 507
2.3.1 Additional Error Numbers ... 513
2.4 Signal Concepts ... 513
2.4.1 Signal Generation and Delivery... 513
2.4.2 Realtime Signal Generation and Delivery .. 515
2.4.3 Signal Actions ... 516
2.4.4 Signal Effects on Other Functions.. 520
2.5 Standard I/O Streams .. 521
2.5.1 Interaction of File Descriptors and Standard I/O

Streams .. 522
2.5.2 Stream Orientation and Encoding Rules .. 524
2.6 File Descriptor Allocation .. 525
2.7 XSI Interprocess Communication ... 526
2.7.1 IPC General Description ... 526

xxix

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

2.8 Realtime.. 527
2.8.1 Realtime Signals ... 528
2.8.2 Asynchronous I/O... 528
2.8.3 Memory Management ... 529
2.8.4 Process Scheduling... 531
2.8.5 Clocks and Timers .. 535
2.9 Threads ... 537
2.9.1 Thread-Safety .. 537
2.9.2 Thread IDs... 538
2.9.3 Thread Mutexes.. 539
2.9.4 Thread Scheduling ... 540
2.9.5 Thread Cancellation... 542
2.9.6 Thread Read-Write Locks.. 547
2.9.7 Thread Interactions with File Operations... 547
2.9.8 Use of Application-Managed Thread Stacks.................................... 548
2.9.9 Synchronization Object Copies and Alternative

Mappings ... 548
2.10 Sockets .. 549
2.10.1 Address Families.. 549
2.10.2 Addressing .. 549
2.10.3 Protocols .. 549
2.10.4 Routing .. 550
2.10.5 Interfaces ... 550
2.10.6 Socket Types .. 550
2.10.7 Socket I/O Mode.. 551
2.10.8 Socket Owner .. 551
2.10.9 Socket Queue Limits .. 551
2.10.10 Pending Error ... 551
2.10.11 Socket Receive Queue.. 552
2.10.12 Socket Out-of-Band Data State... 552
2.10.13 Connection Indication Queue .. 553
2.10.14 Signals.. 553
2.10.15 Asynchronous Errors ... 553
2.10.16 Use of Options .. 554
2.10.17 Use of Sockets for Local UNIX Connections 557
2.10.18 Use of Sockets over Internet Protocols .. 558
2.10.19 Use of Sockets over Internet Protocols Based on

IPv4 ... 558
2.10.20 Use of Sockets over Internet Protocols Based on

IPv6 ... 558
2.11 Data Types .. 561
2.11.1 Defined Types ... 562
2.11.2 The char Type .. 563
2.12 Status Information .. 563

Chapter 3 System Interfaces.. 565

Volume 3 Shell and Utilities, Issue 8 .. 2451

Chapter 1 Introduction... 2453
1.1 Relationship to Other Documents .. 2453

xxx

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

1.1.1 System Interfaces .. 2453
1.1.2 Concepts Derived from the ISO C Standard 2457
1.2 Utility Limits .. 2459
1.3 Grammar Conventions ... 2461
1.4 Utility Description Defaults... 2462
1.5 Considerations for Utilities in Support of Files of

Arbitrary Size... 2469
1.6 Built-In Utilities ... 2470
1.7 Intrinsic Utilities .. 2470

Chapter 2 Shell Command Language .. 2472
2.1 Shell Introduction .. 2472
2.2 Quoting... 2472
2.2.1 Escape Character (Backslash) ... 2473
2.2.2 Single-Quotes.. 2473
2.2.3 Double-Quotes.. 2473
2.2.4 Dollar-Single-Quotes ... 2474
2.3 Token Recognition... 2475
2.3.1 Alias Substitution ... 2477
2.4 Reserved Words... 2478
2.5 Parameters and Variables ... 2478
2.5.1 Positional Parameters .. 2479
2.5.2 Special Parameters ... 2479
2.5.3 Shell Variables ... 2481
2.6 Word Expansions .. 2483
2.6.1 Tilde Expansion .. 2485
2.6.2 Parameter Expansion ... 2485
2.6.3 Command Substitution ... 2489
2.6.4 Arithmetic Expansion .. 2490
2.6.5 Field Splitting ... 2491
2.6.6 Pathname Expansion ... 2493
2.6.7 Quote Removal ... 2493
2.7 Redirection ... 2493
2.7.1 Redirecting Input ... 2494
2.7.2 Redirecting Output .. 2494
2.7.3 Appending Redirected Output .. 2495
2.7.4 Here-Document .. 2495
2.7.5 Duplicating an Input File Descriptor .. 2497
2.7.6 Duplicating an Output File Descriptor ... 2497
2.7.7 Open File Descriptors for Reading and Writing 2497
2.8 Exit Status and Errors ... 2497
2.8.1 Consequences of Shell Errors ... 2497
2.8.2 Exit Status for Commands .. 2499
2.9 Shell Commands ... 2499
2.9.1 Simple Commands ... 2500
2.9.2 Pipelines .. 2504
2.9.3 Lists .. 2505
2.9.4 Compound Commands ... 2508
2.9.5 Function Definition Command .. 2511
2.10 Shell Grammar ... 2512
2.10.1 Shell Grammar Lexical Conventions... 2512
2.10.2 Shell Grammar Rules... 2513

xxxi

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

2.11 Job Control ... 2518
2.12 Signals and Error Handling... 2521
2.13 Shell Execution Environment .. 2522
2.14 Pattern Matching Notation .. 2523
2.14.1 Patterns Matching a Single Character... 2523
2.14.2 Patterns Matching Multiple Characters.. 2524
2.14.3 Patterns Used for Filename Expansion... 2525
2.15 Special Built-In Utilities.. 2526

Chapter 3 Utilities... 2573

Volume 4 Rationale (Informative), Issue 8.. 3633

Part A Base Definitions ... 3635

Appendix A Rationale for Base Definitions... 3637
A.1 Introduction ... 3637
A.1.1 Scope .. 3637
A.1.2 Word Usage ... 3639
A.1.3 Conformance... 3639
A.1.4 Normative References ... 3639
A.1.5 Change History .. 3639
A.1.6 Terminology .. 3639
A.1.7 Definitions and Concepts.. 3642
A.1.8 Portability.. 3642
A.2 Conformance.. 3643
A.2.1 Implementation Conformance ... 3643
A.2.2 Application Conformance ... 3647
A.2.3 Language-Dependent Services for the C Programming

Language ... 3648
A.2.4 Other Language-Related Specifications.. 3648
A.3 Definitions .. 3648
A.4 General Concepts .. 3676
A.4.1 Case Insensitive Comparisons ... 3676
A.4.2 Concurrent Execution.. 3676
A.4.3 Default Initialization .. 3677
A.4.4 Directory Operations ... 3677
A.4.5 Directory Protection ... 3677
A.4.6 Extended Security Controls .. 3677
A.4.7 File Access Permissions... 3677
A.4.8 File Hierarchy ... 3678
A.4.9 Filenames... 3678
A.4.10 Filename Portability ... 3679
A.4.11 File System Cache .. 3680
A.4.12 File Times Update .. 3680
A.4.13 Host and Network Byte Order ... 3681
A.4.14 Measurement of Execution Time ... 3681
A.4.15 Memory Ordering and Synchronization .. 3681
A.4.16 Pathname Resolution ... 3683
A.4.17 Process ID Reuse .. 3685
A.4.18 Scheduling Policy ... 3685

xxxii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

A.4.19 Seconds Since the Epoch ... 3685
A.4.20 Semaphore... 3686
A.4.21 Special Device Drivers... 3686
A.4.22 Thread-Safety .. 3687
A.4.23 Treatment of Error Conditions for Mathematical

Functions ... 3687
A.4.24 Treatment of NaN Arguments for Mathematical

Functions ... 3687
A.4.25 Utility ... 3687
A.4.26 Variable Assignment.. 3687
A.5 File Format Notation .. 3688
A.6 Character Set .. 3688
A.6.1 Portable Character Set ... 3688
A.6.2 Character Encoding ... 3689
A.6.3 C Language Wide-Character Codes .. 3689
A.6.4 Character Set Description File.. 3690
A.7 Locale .. 3692
A.7.1 General... 3692
A.7.2 POSIX Locale .. 3693
A.7.3 Locale Definition .. 3693
A.7.4 Locale Definition Grammar.. 3701
A.7.5 Locale Definition Example.. 3701
A.8 Environment Variables ... 3704
A.8.1 Environment Variable Definition... 3704
A.8.2 Internationalization Variables .. 3705
A.8.3 Other Environment Variables ... 3706
A.9 Regular Expressions ... 3709
A.9.1 Regular Expression Definitions.. 3709
A.9.2 Regular Expression General Requirements 3710
A.9.3 Basic Regular Expressions .. 3711
A.9.4 Extended Regular Expressions ... 3715
A.9.5 Regular Expression Grammar.. 3716
A.10 Directory Structure and Devices ... 3717
A.10.1 Directory Structure and Files.. 3717
A.10.2 Output Devices and Terminal Types ... 3717
A.11 General Terminal Interface .. 3718
A.11.1 Interface Characteristics .. 3719
A.11.2 Parameters that Can be Set ... 3723
A.12 Utility Conventions ... 3724
A.12.1 Utility Argument Syntax... 3724
A.12.2 Utility Syntax Guidelines.. 3725
A.13 Namespace and Future Directions ... 3728
A.14 Headers... 3728
A.14.1 Format of Entries.. 3728
A.14.2 Removed Headers in Issue 8 .. 3728

Part B System Interfaces... 3729

Appendix B Rationale for System Interfaces.. 3731
B.1 Introduction ... 3731
B.1.1 Change History .. 3731

xxxiii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

B.1.2 Relationship to Other Formal Standards .. 3735
B.1.3 Format of Entries.. 3735
B.2 General Information ... 3735
B.2.1 Use and Implementation of Interfaces .. 3735
B.2.2 The Compilation Environment .. 3737
B.2.3 Error Numbers.. 3742
B.2.4 Signal Concepts .. 3746
B.2.5 Standard I/O Streams ... 3757
B.2.6 File Descriptor Allocation ... 3758
B.2.7 XSI Interprocess Communication .. 3758
B.2.8 Realtime... 3759
B.2.9 Threads .. 3806
B.2.10 Sockets ... 3835
B.2.11 Data Types ... 3837
B.2.12 Status Information ... 3840
B.3 System Interfaces ... 3840
B.3.1 System Interfaces Removed in this Version 3840
B.3.2 System Interfaces Removed in the Previous Version 3842
B.3.3 Examples for Spawn .. 3842

Part C Shell and Utilities ... 3853

Appendix C Rationale for Shell and Utilities... 3855
C.1 Introduction ... 3855
C.1.1 Change History .. 3855
C.1.2 Relationship to Other Documents ... 3856
C.1.3 Utility Limits ... 3857
C.1.4 Grammar Conventions .. 3860
C.1.5 Utility Description Defaults.. 3860
C.1.6 Considerations for Utilities in Support of Files

of Arbitrary Size ... 3864
C.1.7 Built-In Utilities .. 3864
C.1.8 Intrinsic Utilities ... 3865
C.2 Shell Command Language .. 3866
C.2.1 Shell Introduction ... 3866
C.2.2 Quoting.. 3866
C.2.3 Token Recognition.. 3871
C.2.4 Reserved Words.. 3873
C.2.5 Parameters and Variables .. 3874
C.2.6 Word Expansions ... 3880
C.2.7 Redirection .. 3890
C.2.8 Exit Status and Errors .. 3894
C.2.9 Shell Commands .. 3895
C.2.10 Shell Grammar .. 3905
C.2.11 Job Control .. 3906
C.2.12 Signals and Error Handling.. 3907
C.2.13 Shell Execution Environment ... 3907
C.2.14 Pattern Matching Notation ... 3908
C.2.15 Special Built-In Utilities... 3912
C.3 Utilities.. 3912
C.3.1 Utilities Removed in this Version .. 3912

xxxiv

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

C.3.2 Utilities Removed in the Previous Version 3912
C.3.3 Exclusion of Utilities.. 3913

Part D Portability Considerations.. 3917

Appendix D Portability Considerations (Informative) 3919
D.1 User Requirements .. 3919
D.1.1 Configuration Interrogation ... 3920
D.1.2 Process Management ... 3920
D.1.3 Access to Data... 3920
D.1.4 Access to the Environment ... 3920
D.1.5 Access to Determinism and Performance

Enhancements ... 3920
D.1.6 Operating System-Dependent Profile ... 3921
D.1.7 I/O Interaction ... 3921
D.1.8 Internationalization Interaction ... 3921
D.1.9 C-Language Extensions ... 3921
D.1.10 Command Language ... 3921
D.1.11 Interactive Facilities ... 3921
D.1.12 Accomplish Multiple Tasks Simultaneously.................................... 3921
D.1.13 Complex Data Manipulation.. 3922
D.1.14 File Hierarchy Manipulation .. 3922
D.1.15 Locale Configuration ... 3922
D.1.16 Inter-User Communication... 3922
D.1.17 System Environment ... 3922
D.1.18 Printing .. 3922
D.1.19 Software Development .. 3922
D.2 Portability Capabilities ... 3923
D.2.1 Configuration Interrogation ... 3923
D.2.2 Process Management ... 3924
D.2.3 Access to Data... 3924
D.2.4 Access to the Environment ... 3925
D.2.5 Bounded (Realtime) Response ... 3926
D.2.6 Operating System-Dependent Profile ... 3926
D.2.7 I/O Interaction ... 3926
D.2.8 Internationalization Interaction ... 3927
D.2.9 C-Language Extensions ... 3927
D.2.10 Command Language ... 3927
D.2.11 Interactive Facilities ... 3928
D.2.12 Accomplish Multiple Tasks Simultaneously.................................... 3928
D.2.13 Complex Data Manipulation.. 3928
D.2.14 File Hierarchy Manipulation .. 3929
D.2.15 Locale Configuration ... 3929
D.2.16 Inter-User Communication... 3929
D.2.17 System Environment ... 3930
D.2.18 Printing .. 3930
D.2.19 Software Development .. 3930
D.2.20 Future Growth .. 3930
D.3 Profiling Considerations .. 3931
D.3.1 Configuration Options .. 3931
D.3.2 Configuration Options (Shell and Utilities) 3931

xxxv

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

D.3.3 Configurable Limits ... 3932
D.3.4 Configuration Options (System Interfaces)...................................... 3933
D.3.5 Configurable Limits ... 3937
D.3.6 Optional Behavior .. 3940

Part E Subprofiling Considerations... 3941

Appendix E Subprofiling Considerations (Informative) 3943
E.1 Subprofiling Option Groups .. 3943

Index .. 3951

List of Figures

3-1 pax Format Archive Example... 3263
B-1 Example of a System with Typed Memory .. 3777

List of Tables

3-1 Job ID Formats.. 58
5-1 Escape Sequences and Associated Actions .. 113
6-1 Portable Character Set ... 117
6-2 Non-Portable Control Characters .. 122
7-1 Valid Character Class Combinations... 135
10-1 Control Character Names ... 198
2-1 Value of Level for Socket Options.. 554
2-2 Socket-Level Options ... 555
1-1 Actions when Creating a File that Already Exists................................. 2455
1-2 Selected ISO C Standard Operators and Control Flow

Keywords .. 2458
1-3 Utility Limit Minimum Values ... 2459
1-4 Symbolic Utility Limits ... 2460
1-5 Intrinsic Utilities ... 2470
3-1 Expressions in Decreasing Precedence in awk 2608
3-2 Escape Sequences in awk ... 2616
3-3 Operators in bc.. 2656
3-4 Programming Environments: Type Sizes ... 2675
3-5 Programming Environments: c17 Arguments 2676
3-6 Threaded Programming Environment: c17 Arguments 2677
3-7 Compression algorithms, −m option-argument

values, and suffixes .. 2737
3-8 ASCII to EBCDIC Conversion.. 2780
3-9 ASCII to IBM EBCDIC Conversion ... 2781
3-10 File Utility Output Strings .. 2933
3-11 Table Size Declarations in lex.. 3040
3-12 Escape Sequences in lex ... 3042
3-13 ERE Precedence in lex .. 3042
3-14 Named Characters in od .. 3229
3-15 ustar Header Block... 3268
3-16 ustar mode Field .. 3269
3-17 Octet-Oriented cpio Archive Entry.. 3272

xxxvi

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Contents

3-18 Values for cpio c_mode Field ... 3273
3-19 Variable Names and Default Headers in ps.. 3314
3-20 Control Character Names in stty.. 3409
3-21 Circumflex Control Characters in stty... 3410
3-22 uuencode Base64 Values ... 3512
3-23 Internal Limits in yacc.. 3626
A-1 Historical Practice for Symbolic Links .. 3672

xxxvii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Trademarks

The following information is given for the convenience of users of POSIX.1-2024 and does not
constitute an endorsement by the IEEE or The Open Group of these products. Equivalent
products may be used if they can be shown to lead to the same results.

There may be other products mentioned in the text that might be covered by trademark
protection and readers are advised to verify them independently.

AIX® and IBM® are registered trademarks of International Business Machines Corporation.

ArchiMate®, FACE®, FACE® logo, Future Airborne Capability Environment®, Making
Standards Work®, Open Footprint®, Open O® logo, Open O and Check® certification logo,
OSDU®, Platform 3.0®, The Open Group®, TOGAF®, UNIX®, UNIXWARE®, and X® logo are
registered trademarks and Boundaryless Information Flow™, Build with Integrity Buy with
Confidence™, Commercial Aviation Reference Architecture™, Dependability Through
Assuredness™, Digital Practitioner Body of Knowledge™, DPBoK™, EMMM™, FHIM Profile
Builder™, FHIM logo, FPB™, IT4IT™, IT4IT™ logo, O-AA™, O-DA™, O-DEF™, O-HERA™, O-
PAS™, O-TTPS™, Open Agile Architecture™, Open FAIR™, Open Process Automation™, Open
Subsurface Data Universe™, Open Trusted Technology Provider™, Sensor Integration
Simplified™, Sensor Open Systems Architecture™, SOSA™, and SOSA™ logo are trademarks of
The Open Group.

AT&T® is a registered trademark of AT&T in the USA and other countries.

BSD™ is a trademark of the University of California, Berkeley, USA.

Hewlett Packard®, HP®, and HP-UX® are registered trademarks of HP Hewlett Packard Group
LLC.

IEEE® is a registered trademark, and POSIX™, 754™, 854™, 1003.0™, 1003.1™, 1003.1d™,
1003.1g™, 1003.1j™, 1003.1q™, 1003.2™, 1003.2a™, 1003.2d™, 1003.9™, and 1003.13™ are
trademarks of The Institute of Electrical and Electronic Engineers, Inc.

Linux® is a registered trademark of Linus Torvalds.

Sun® and Sun Microsystems® are registered trademarks of Oracle America, Inc.

/usr/group® is a registered trademark of UniForum, the International Network of UNIX System
Users.

xxxviii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Acknowledgements

The contributions of the following organizations to the development of POSIX.1-2024 are
gratefully acknowledged:

• AT&T for permission to reproduce portions of its copyrighted System V Interface
Definition (SVID) and material from the UNIX System V Release 2.0 documentation

• Hewlett-Packard Company, International Business Machines Corporation, Novell Inc., The
Open Software Foundation, and Sun Microsystems Inc. for permission to reproduce
portions of their copyrighted documentation

• ISO/IEC JTC 1/SC 22/WG 14 C Language Committee

• Red Hat Inc. for permission to reproduce portions of its copyrighted documentation

POSIX.1-2024 was prepared by the Austin Group, a joint working group of the IEEE, The Open
Group, and ISO/IEC JTC 1/SC 22.

xxxix

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Referenced Documents

Normative References

Normative references for POSIX.1-2024 are defined in Section 1.4 (on page 5).

Informative References

The following documents are referenced in POSIX.1-2024:

1984 /usr/group Standard
/usr/group Standards Committee, Santa Clara, CA, UniForum 1984.

Almasi and Gottlieb
George S. Almasi and Allan Gottlieb, Highly Parallel Computing, The Benjamin/Cummings
Publishing Company, Inc., 1989, ISBN: 0-8053-0177-1.

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI X3.226-1994
American National Standard for Information Systems: Standard X3.226-1994, Programming
Language Common LISP.

Brawer
Steven Brawer, Introduction to Parallel Programming, Academic Press, 1989,
ISBN: 0-12-128470-0.

DeRemer and Pennello Article
DeRemer, Frank and Pennello, Thomas J., Efficient Computation of LALR(1) Look-Ahead Sets,
SigPlan Notices, Volume 15, No. 8, August 1979.

Draft ANSI X3J11.1
IEEE Floating Point draft report of ANSI X3J11.1 (NCEG).

FIPS 151-1
Federal Information Procurement Standard (FIPS) 151-1. Portable Operating System
Interface (POSIX)—Part 1: System Application Program Interface (API) [C Language].

FIPS 151-2
Federal Information Procurement Standards (FIPS) 151-2, Portable Operating System
Interface (POSIX)— Part 1: System Application Program Interface (API) [C Language].

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

IEC 60559: 1989
IEC 60559: 1989, Binary Floating-Point Arithmetic for Microprocessor Systems (previously
designated IEC 559: 1989).

IEEE Standards Terms
IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.

xl

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Referenced Documents

IEEE Std 754™-1985
IEEE Std 754-1985 (Reaff 1990), IEEE Standard for Binary Floating-Point Arithmetic.

IEEE Std 854™-1987
IEEE Std 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic.

IEEE Std 1003.9™-1992
IEEE Std 1003.9-1992, IEEE Standard for Information Technology — POSIX FORTRAN 77
Language Interfaces — Part 1: Binding for System Application Program Interface API.

IETF RFC 791
Internet Protocol, Version 4 (IPv4), September 1981 (available at:
www.ietf.org/rfc/rfc0791.txt).

IETF RFC 819
The Domain Naming Convention for Internet User Applications, Z. Su, J. Postel, August
1982 (available at: www.ietf.org/rfc/rfc0819.txt).

IETF RFC 919
Broadcasting Internet Datagrams, J. Mogul, October 1984 (available at:
www.ietf.org/rfc/rfc0919.txt).

IETF RFC 920
Domain Requirements, J. Postel, J. Reynolds, October 1984 (available at:
www.ietf.org/rfc/rfc0920.txt).

IETF RFC 921
Domain Name System Implementation Schedule, J. Postel, October 1984 (available at:
www.ietf.org/rfc/rfc0921.txt).

IETF RFC 922
Broadcasting Internet Datagrams in the Presence of Subnets, J. Mogul, October 1984
(available at: www.ietf.org/rfc/rfc0922.txt).

IETF RFC 1034
Domain Names — Concepts and Facilities, P. Mockapetris, November 1987 (available at:
www.ietf.org/rfc/rfc1034.txt).

IETF RFC 1035
Domain Names — Implementation and Specification, P. Mockapetris, November 1987
(available at: www.ietf.org/rfc/rfc1035.txt).

IETF RFC 1123
Requirements for Internet Hosts — Application and Support, R. Braden, October 1989
(available at: www.ietf.org/rfc/rfc1123.txt).

IETF RFC 1951
DEFLATE Compressed Data Format Specification version 1.3, P. Deutsch, May 1996
(available at: www.ietf.org/rfc/rfc1951.txt).

IETF RFC 1952
GZIP file format specification version 4.3, P. Deutsch, May 1996 (available at:
www.ietf.org/rfc/rfc1952.txt).

IETF RFC 2045
Multipurpose Internet Mail Extensions (MIME), Part 1: Format of Internet Message Bodies,
N. Freed, N. Borenstein, November 1996 (available at: www.ietf.org/rfc/rfc2045.txt).

xli

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Referenced Documents

IETF RFC 2181
Clarifications to the DNS Specification, R. Elz, R. Bush, July 1997 (available at:
www.ietf.org/rfc/rfc2181.txt).

IETF RFC 3596
DNS Extensions to Support IP Version 6, S. Thomson, C. Huitema, V. Ksinant, M. Souissi,
October 2003 (available at: www.ietf.org/rfc/rfc3596.txt).

IETF RFC 4291
IP Version 6 Addressing Architecture, R. Hinden, S. Deering, February 2006 (available at:
www.ietf.org/rfc/rfc4291.txt).

IETF RFC 5322
Internet Message Format, P. Resnick, October 2008 (available at:
www.ietf.org/rfc/rfc5322.txt).

IETF RFC 6557
Procedures for Maintaining the Time Zone Database, E. Lear, P. Eggert, February 2012
(available at: www.ietf.org/rfc/rfc6557.txt).

IETF RFC 8200
Internet Protocol, Version 6 (IPv6) Specification, S. Deering, R. Hinden, July 2017 (available
at: www.ietf.org/rfc/rfc8200.txt).

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304),
published by The Open Group.

ISO 2375: 1985
ISO 2375: 1985, Data Processing — Procedure for Registration of Escape Sequences.

ISO 8652: 1987
ISO 8652: 1987, Programming Languages — Ada (technically identical to ANSI standard
1815A-1983).

ISO/IEC 1539: 1991
ISO/IEC 1539: 1991, Information Technology — Programming Languages — Fortran
(technically identical to the ANSI X3.9-1978 standard [FORTRAN 77]).

ISO/IEC 4873: 1991
ISO/IEC 4873: 1991, Information Technology — ISO 8-bit Code for Information Interchange
— Structure and Rules for Implementation.

ISO/IEC 6429: 1992
ISO/IEC 6429: 1992, Information Technology — Control Functions for Coded Character
Sets.

ISO/IEC 6937: 1994
ISO/IEC 6937: 1994, Information Technology — Coded Graphic Character Set for Text
Communication — Latin Alphabet.

ISO/IEC 8802-3: 1996
ISO/IEC 8802-3: 1996, Information Technology — Telecommunications and Information
Exchange Between Systems — Local and Metropolitan Area Networks — Specific
Requirements — Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications.

ISO/IEC 8859
ISO/IEC 8859, Information Technology — 8-Bit Single-Byte Coded Graphic Character Sets:

xlii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Referenced Documents

Part 1: Latin Alphabet No. 1
Part 2: Latin Alphabet No. 2
Part 3: Latin Alphabet No. 3
Part 4: Latin Alphabet No. 4
Part 5: Latin/Cyrillic Alphabet
Part 6: Latin/Arabic Alphabet
Part 7: Latin/Greek Alphabet
Part 8: Latin/Hebrew Alphabet
Part 9: Latin Alphabet No. 5
Part 10: Latin Alphabet No. 6
Part 11: Latin/Thai Alphabet
Part 13: Latin Alphabet No. 7
Part 14: Latin Alphabet No. 8 (Celtic)
Part 15: Latin Alphabet No. 9
Part 16: Latin Alphabet No. 10

ISO/IEC 9899: 1990
ISO/IEC 9899: 1990, Programming Languages — C, including Amendment 1: 1995 (E), C
Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO POSIX-1: 1996
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995, and 1003.1i-1995.

ISO POSIX-2: 1993
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to ANSI/IEEE Std 1003.2™-1992, as amended
by ANSI/IEEE Std 1003.2a™-1992).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 2
X/Open Portability Guide, January 1987:

• Volume 1: XVS Commands and Utilities (ISBN: 0-444-70174-5)

• Volume 2: XVS System Calls and Libraries (ISBN: 0-444-70175-3)

Issue 3
X/Open Specification, 1988, 1989, February 1992:

• Commands and Utilities, Issue 3 (ISBN: 1-872630-36-7, C211); this specification was
formerly X/Open Portability Guide, Issue 3, Volume 1, January 1989, XSI Commands
and Utilities (ISBN: 0-13-685835-X, XO/XPG/89/002)

• System Interfaces and Headers, Issue 3 (ISBN: 1-872630-37-5, C212); this specification
was formerly X/Open Portability Guide, Issue 3, Volume 2, January 1989, XSI System
Interface and Headers (ISBN: 0-13-685843-0, XO/XPG/89/003)

• Curses Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive; this specification was formerly
X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

xliii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Referenced Documents

• Headers Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI
Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

Issue 4
CAE Specification, July 1992, published by The Open Group:

• System Interface Definitions (XBD), Issue 4 (ISBN: 1-872630-46-4, C204)

• Commands and Utilities (XCU), Issue 4 (ISBN: 1-872630-48-0, C203)

• System Interfaces and Headers (XSH), Issue 4 (ISBN: 1-872630-47-2, C202)

Issue 4, Version 2
CAE Specification, August 1994, published by The Open Group:

• System Interface Definitions (XBD), Issue 4, Version 2 (ISBN: 1-85912-036-9, C434)

• Commands and Utilities (XCU), Issue 4, Version 2 (ISBN: 1-85912-034-2, C436)

• System Interfaces and Headers (XSH), Issue 4, Version 2 (ISBN: 1-85912-037-7, C435)

Issue 5
Technical Standard, February 1997, published by The Open Group:

• System Interface Definitions (XBD), Issue 5 (ISBN: 1-85912-186-1, C605)

• Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)

• System Interfaces and Headers (XSH), Issue 5 (ISBN: 1-85912-181-0, C606)

Issue 6
Technical Standard, April 2004, published by The Open Group:

• Base Definitions (XBD), Issue 6 (ISBN: 1-931624-43-7, C046)

• System Interfaces (XSH), Issue 6 (ISBN: 1-931624-44-5, C047)

• Shell and Utilities (XCU), Issue 6 (ISBN: 1-931624-45-3, C048)

Knuth Article
Knuth, Donald E., On the Translation of Languages from Left to Right, Information and Control,
Volume 8, No. 6, October 1965.

KornShell
Bolsky, Morris I. and Korn, David G., The New KornShell Command and Programming
Language, March 1995, Prentice Hall.

MSE Working Draft
Working draft of ISO/IEC 9899: 1990/Add3: Draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

POSIX.0: 1995
IEEE Std 1003.0™-1995, IEEE Guide to the POSIX Open System Environment (OSE)
(identical to ISO/IEC TR 14252).

POSIX.1: 1988
IEEE Std 1003.1™-1988, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

xliv

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Referenced Documents

POSIX.1: 1990
IEEE Std 1003.1™-1990, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1a
P1003.1a, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) — (C Language)
Amendment.

POSIX.1d: 1999
IEEE Std 1003.1d™-1999, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 4: Additional Realtime Extensions [C Language].

POSIX.1g: 2000
IEEE Std 1003.1g™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 6: Protocol-Independent Interfaces (PII).

POSIX.1j: 2000
IEEE Std 1003.1j™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 5: Advanced Realtime Extensions [C Language].

POSIX.1q: 2000
IEEE Std 1003.1q™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 7: Tracing [C Language].

POSIX.2: 1992
IEEE Std 1003.2™-1992, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 2: Shell and Utilities.

POSIX.2b
P1003.2b, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities — Amendment.

POSIX.2d: 1994
IEEE Std 1003.2d™-1994, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 2: Shell and Utilities — Amendment 1: Batch Environment.

POSIX.13: 1998
IEEE Std 1003.13™-1998, IEEE Standard for Information Technology — Standardized
Application Environment Profile (AEP) — POSIX Realtime Application Support.

POSIX.26: 2003
IEEE Std 1003.26™-2003, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 26: Device Control Application Program Interface (API) [C
Language].

Sarwate Article
Sarwate, Dilip V., Computation of Cyclic Redundancy Checks via Table Lookup, Communications
of the ACM, Volume 30, No. 8, August 1988.

Sprunt, Sha, and Lehoczky
Sprunt, B., Sha, L., and Lehoczky, J.P., Aperiodic Task Scheduling for Hard Real-Time Systems,
The Journal of Real-Time Systems, Volume 1, 1989, Pages 27-60.

xlv

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Referenced Documents

SVID, Issue 1
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
1; Morristown, NJ, UNIX Press, 1985.

SVID, Issue 2
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
2; Morristown, NJ, UNIX Press, 1986.

SVID, Issue 3
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
3; Morristown, NJ, UNIX Press, 1989.

The AWK Programming Language
Aho, Alfred V., Kernighan, Brian W., and Weinberger, Peter J., The AWK Programming
Language, Reading, MA, Addison-Wesley 1988.

The C Programming Language
Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Englewood
Cliffs, NJ, Prentice Hall, 1st Edition (February 1978) ISBN 0-13-110163-3; 2nd Edition (March
1988) ISBN 0-13-110362-8.

UNIX Programmer ’s Manual
American Telephone and Telegraph Company, UNIX Time-Sharing System: UNIX
Programmer ’s Manual, 7th Edition, Murray Hill, NJ, Bell Telephone Laboratories, January
1979.

XNS, Issue 4
CAE Specification, August 1994, Networking Services, Issue 4 (ISBN: 1-85912-049-0, C438),
published by The Open Group.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523),
published by The Open Group.

XNS, Issue 5.2
Technical Standard, January 2000, Networking Services (XNS), Issue 5.2
(ISBN: 1-85912-241-8, C808), published by The Open Group.

X/Open Curses, Issue 4, Version 2
CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3,
C610), published by The Open Group.

Yacc
Yacc: Yet Another Compiler Compiler, Stephen C. Johnson, 1978.

Source Documents

Parts of the following documents were used to create the base documents for POSIX.1-2001:

AIX 3.2 Manual
AIX Version 3.2 For RISC System/6000, Technical Reference: Base Operating System and
Extensions, 1990, 1992 (Part No. SC23-2382-00).

OSF/1
OSF/1 Programmer ’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

xlvi

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Referenced Documents

System V Release 2.0

— UNIX System V Release 2.0 Programmer ’s Reference Manual (April 1984 - Issue 2).

— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX® SVR4.2 (1992) (ISBN: 0-13-017658-3).

xlvii

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Open Group Standard

Vol. 1:

Base Definitions, Issue 8

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1

1

2

3

4

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

2 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 1

Introduction

1.1 Scope
POSIX.1-2024 defines a standard operating system interface and environment, including a
command interpreter (or ``shell’’), and common utility programs to support applications
portability at the source code level. It is intended to be used by both application developers and
system implementors.

POSIX.1-2024 comprises four major components (each in an associated volume):

1. General terms, concepts, and interfaces common to all volumes of POSIX.1-2024,
including utility conventions and C-language header definitions, are included in the Base
Definitions volume of POSIX.1-2024.

2. Definitions for system service functions and subroutines, language-specific system
services for the C programming language, function issues, including portability, error
handling, and error recovery, are included in the System Interfaces volume of
POSIX.1-2024.

3. Definitions for a standard source code-level interface to command interpretation services
(a ``shell’’) and common utility programs for application programs are included in the
Shell and Utilities volume of POSIX.1-2024.

4. Extended rationale that did not fit well into the rest of the document structure, containing
historical information concerning the contents of POSIX.1-2024 and why features were
included or discarded by the standard developers, is included in the Rationale
(Informative) volume of POSIX.1-2024.

The following areas are outside of the scope of POSIX.1-2024:

• Graphics interfaces

• Database management system interfaces

• Record I/O considerations

• Object or binary code portability

• System configuration and resource availability

POSIX.1-2024 describes the external characteristics and facilities that are of importance to
application developers, rather than the internal construction techniques employed to achieve
these capabilities. Special emphasis is placed on those functions and facilities that are needed in
a wide variety of commercial applications.

The facilities provided in POSIX.1-2024 are drawn from the following base documents:

• IEEE Std 1003.1-2017 (POSIX.1-2017)

• IEEE Std 1003.26-2003 (POSIX.26-2003)

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Scope Introduction

• ISO/IEC 9899: 2018, Programming Languages — C (C17)

• ISO/IEC TR 24731-2: 2010, Programming languages, their environments and system
software interfaces — Extensions to the C library — Part 2: Dynamic Allocation Functions

• The Open Group Standard, 2021, Additional APIs for the Base Specifications Issue 8, Part 1

• The Open Group Standard, 2022, Additional APIs for the Base Specifications Issue 8, Part 2

Emphasis has been placed on standardizing existing practice for existing users, with changes
and additions limited to correcting deficiencies in the following areas:

• Issues raised by Austin Group defect reports and IEEE Interpretations against IEEE Std
1003.1.

• Issues raised in corrigenda for The Open Group Standards and working group resolutions
from The Open Group

• Changes to make the text self-consistent with the additional material merged

• Features, marked obsolescent in the base documents, have been considered for removal in
this version

• Alignment with the ISO/IEC 9899: 2018 standard

1.2 Word Usage
The word shall indicates mandatory requirements strictly to be followed in order to conform to
the standard and from which no deviation is permitted (shall equals is required to).1, 2

The word should indicates that among several possibilities one is recommended as particularly
suitable, without mentioning or excluding others; or that a certain course of action is preferred
but not necessarily required (should equals is recommended that).

The word may is used to indicate a course of action permissible within the limits of the standard
(may equals is permitted to).

The word can is used for statements of possibility and capability, whether material, physical, or
causal (can equals is able to).

1.3 Conformance
Conformance requirements for POSIX.1-2024 are defined in Chapter 2 (on page 15).

1. The use of the word must is deprecated and cannot be used when stating mandatory requirements; must is used only to describe
unavoidable situations.

2. The use of will is deprecated and cannot be used when stating mandatory requirements; will is only used in statements of fact.

4 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Normative References

1.4 Normative References
The following standards contain provisions which, through references in POSIX.1-2024,
constitute provisions of POSIX.1-2024. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on POSIX.1-2024 are
encouraged to investigate the possibility of applying the most recent editions of the standards
listed below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ISO/IEC 646: 1991
ISO/IEC 646: 1991, Information Processing — ISO 7-Bit Coded Character Set for
Information Interchange.3

ISO 4217: 2015
ISO 4217: 2015, Codes for the representation of currencies.

ISO 8601-1: 2019
ISO 8601-1: 2019, Date and time — Representations for information interchange — Part 1:
Basic rules.

ISO C (C17)
ISO/IEC 9899: 2018, Programming Languages — C.

ISO/IEC 10646: 2020
ISO/IEC 10646: 2020, Information Technology — Universal coded character set (UCS).

1.5 Change History
Change history is described in the Rationale (Informative) volume of POSIX.1-2024, and in the
CHANGE HISTORY section of reference pages.

1.6 Terminology
For the purposes of POSIX.1-2024, the following terminology definitions apply:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to POSIX.1-2024. An
application can rely on the existence of the feature or behavior.

implementation-defined
Describes a value or behavior that is not defined by POSIX.1-2024 but is selected by an
implementor. The value or behavior may vary among implementations that conform to
POSIX.1-2024. An application should not rely on the existence of the value or behavior. An
application that relies on such a value or behavior cannot be assured to be portable across
conforming implementations.

The implementor shall document such a value or behavior so that it can be used correctly
by an application.

legacy
Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable

3. ISO/IEC documents can be obtained from https://www.iso.org/store.html.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 5

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

https://www.iso.org/store.html

Terminology Introduction

applications. New applications should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to
POSIX.1-2024. An application should not rely on the existence of the feature or behavior. An
application that relies on such a feature or behavior cannot be assured to be portable across
conforming implementations.

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

shall
For an implementation that conforms to POSIX.1-2024, describes a feature or behavior that
is mandatory. An application can rely on the existence of the feature or behavior.

For an application or user, describes a behavior that is mandatory.

should
For an implementation that conforms to POSIX.1-2024, describes a feature or behavior that
is recommended but not mandatory. An application should not rely on the existence of the
feature or behavior. An application that relies on such a feature or behavior cannot be
assured to be portable across conforming implementations.

For an application, describes a feature or behavior that is recommended programming
practice for optimum portability.

undefined
Describes the nature of a value or behavior not defined by POSIX.1-2024 which results from
use of an invalid program construct or invalid data input.

The value or behavior may vary among implementations that conform to POSIX.1-2024. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

unspecified
Describes the nature of a value or behavior not specified by POSIX.1-2024 which results
from use of a valid program construct or valid data input.

The value or behavior may vary among implementations that conform to POSIX.1-2024. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

1.7 Definitions and Concepts
Definitions and concepts are defined in Chapter 3 (on page 31) and Chapter 4 (on page 95).

6 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Portability

1.8 Portability
Some of the utilities in the Shell and Utilities volume of POSIX.1-2024 and functions in the
System Interfaces volume of POSIX.1-2024 describe functionality that might not be fully portable
to systems meeting the requirements for POSIX conformance (see Chapter 2, on page 15).

Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
the margin identifies the nature of the option, extension, or warning (see Section 1.8.1). For
maximum portability, an application should avoid such functionality.

Unless the primary task of a utility is to produce textual material on its standard output,
application developers should not rely on the format or content of any such material that may be
produced. Where the primary task is to provide such material, but the output format is
incompletely specified, the description is marked with the OF margin code and shading.
Application developers are warned not to expect that the output of such an interface on one
system is any guide to its behavior on another system.

1.8.1 Codes

The codes and their meanings are as follows. See also Section 1.8.2 (on page 12).

ADV Advisory Information
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ADV
margin legend.

CD C-Language Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the CD margin
legend.

CPT Process CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the CPT
margin legend.

CX Extension to the ISO C standard
The functionality described is an extension to the ISO C standard or a deviation from it.
Application developers can make use of the functionality as it is supported on all
POSIX.1-2024-conforming systems.

With each function or header from the ISO C standard, a statement is included to the effect that
``any conflict is unintentional’’, or ``any other conflict is unintentional’’ if there is an intentional
conflict (deviation). That is intended to refer to a direct conflict. POSIX.1-2024 acts in part as a
profile of the ISO C standard, and it may choose to further constrain behaviors allowed to vary
by the ISO C standard. Such limitations and other compatible differences are not considered
conflicts, even if a CX mark is missing. The markings are for information only.

Where additional semantics apply to a function or header, the material is identified by use of the
CX margin legend.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 7

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Introduction

DC Device Control
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the DC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the DC
margin legend.

FR FORTRAN Runtime Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FR margin
legend.

FSC File Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the FSC
margin legend.

IP6 IPV6
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the IP6
margin legend.

MC1 Non-Robust Mutex Priority Protection or Non-Robust Mutex Priority Inheritance or Robust
Mutex Priority Protection or Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

This is a shorthand notation for combinations of multiple option codes.

Where applicable, functions are marked with the MC1 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MC1
margin legend.

Refer to Section 1.8.2 (on page 12).

ML Process Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ML
margin legend.

MLR Range Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MLR
margin legend.

8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Portability

MSG Message Passing
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MSG
margin legend.

MX IEC 60559 Floating-Point
The functionality described is optional. The functionality described is mandated by the ISO C
standard only for implementations that define __STDC_IEC_559__.

MXC IEC 60559 Complex Floating-Point
The functionality described is optional. The functionality described is mandated by the ISO C
standard only for implementations that define __STDC_IEC_559_COMPLEX__.

MXX IEC 60559 Floating-Point Extension
The functionality described is optional. The functionality described is part of the IEC 60559
Floating-Point option, but is an extension to the ISO C standard.

OB Obsolescent
The functionality described may be removed in a future version of this volume of POSIX.1-2024.
Strictly Conforming POSIX Applications and Strictly Conforming XSI Applications shall not use
obsolescent features.

Where applicable, the material is identified by use of the OB margin legend.

OF Output Format Incompletely Specified
The functionality described is an XSI extension. The format of the output produced by the
utility is not fully specified. It is therefore not possible to post-process this output in a consistent
fashion. Typical problems include unknown length of strings and unspecified field delimiters.

Where applicable, the material is identified by use of the OF margin legend.

OH Optional Header
In the SYNOPSIS section of some interfaces in the System Interfaces volume of POSIX.1-2024 an
included header is marked as in the following example:

OH #include <sys/types.h>
#include <fcntl.h>
int open(const char *path, int oflag, ...);

The OH margin legend indicates that the optional header defines constants that will be needed if
the function is called with certain flag arguments; thus it may be required for some of the
functionality described, but is not needed otherwise.

PIO Prioritized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PIO
margin legend.

PS Process Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PS

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 9

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Introduction

margin legend.

RPI Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPI
margin legend.

RPP Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPP
margin legend.

RS Raw Sockets
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RS
margin legend.

SD Software Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the SD margin
legend.

SHM Shared Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SHM
margin legend.

SIO Synchronized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SIO
margin legend.

SPN Spawn
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SPN
margin legend.

SS Process Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

10 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Portability

Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SS
margin legend.

TCT Thread CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TCT
margin legend.

TPI Non-Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPI
margin legend.

TPP Non-Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPP
margin legend.

TPS Thread Execution Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPS
margin legend.

TSA Thread Stack Address Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSA margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSA
margin legend.

TSH Thread Process-Shared Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSH
margin legend.

TSP Thread Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSP
margin legend.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 11

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Introduction

TSS Thread Stack Size Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSS
margin legend.

TYM Typed Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TYM
margin legend.

UP User Portability Utilities
The functionality described is optional.

Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the UP margin
legend.

UU UUCP Utilities
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the UU margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the UU
margin legend.

XSI X/Open System Interfaces
The functionality described is part of the X/Open Systems Interfaces option. Functionality
marked XSI is an extension to the ISO C standard. Application developers may confidently
make use of such extensions on all systems supporting the X/Open System Interfaces option.

If an entire SYNOPSIS section is shaded and marked XSI, all the functionality described in that
reference page is an extension. See Section 2.1.4 (on page 19).

1.8.2 Margin Code Notation

Some of the functionality described in POSIX.1-2024 depends on support of more than one
option, or independently may depend on several options. The following notation for margin
codes is used to denote the following cases.

A Feature Dependent on One or Two Options

In this case, margin codes have a <space> separator; for example:

SHM This feature requires support for only the Shared Memory Objects option.

SHM TYM This feature requires support for both the Shared Memory Objects option and the Typed
Memory Objects option; that is, an application which uses this feature is portable only between
implementations that provide both options.

12 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Portability

A Feature Dependent on Either of the Options Denoted

In this case, margin codes have a '|' separator to denote the logical OR; for example:

SHM|TYM This feature is dependent on support for either the Shared Memory Objects option or the Typed
Memory Objects option; that is, an application which uses this feature is portable between
implementations that provide any (or all) of the options.

A Feature Dependent on More than Two Options

The following shorthand notations are used:

MC1 The MC1 margin code is shorthand for TPP|TPI|RPP|RPI. Features which are shaded with this
margin code require support of either the Non-Robust Mutex Priority Protection option or the
Non-Robust Mutex Priority Inheritance option or the Robust Mutex Priority Protection option or
the Robust Mutex Priority Inheritance option.

Large Sections Dependent on an Option

Where large sections of text are dependent on support for an option, a lead-in text block is
provided and shaded accordingly; for example:

XSI This section describes extensions to support interprocess communication. The functionality
described in this section shall be provided on implementations that support the XSI option (and
the rest of this section is not further shaded).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 13

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction

14 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 2

Conformance

2.1 Implementation Conformance
For the purposes of POSIX.1-2024, the implementation conformance requirements given in this
section apply.

2.1.1 Requirements

A conforming implementation shall meet all of the following criteria:

1. The system shall support all utilities, functions, and facilities defined within
POSIX.1-2024 that are required for POSIX conformance (see Section 2.1.3, on page 17).
These interfaces shall support the functional behavior described herein.

2. The system may support the X/Open System Interfaces (XSI) option as described in
Section 2.1.4 (on page 19).

3. The system may support one or more options as described under Section 2.1.5 (on page
20). When an implementation claims that an option is supported, all of its constituent
parts shall be provided.

4. The system may provide non-standard extensions. These are features not required by
POSIX.1-2024 and may include, but are not limited to:

— Additional functions

— Additional headers

— Additional symbols in standard headers

— Additional utilities

— Additional options for standard utilities

— Additional environment variables

— Additional file types

— Non-conforming file systems (for example, legacy file systems for which
_POSIX_NO_TRUNC is false, case-insensitive file systems, or network file systems)

— Dynamically populated file systems (for example, /proc)

— Additional character special files with special properties (for example, /dev/stdin,
/dev/stdout, and /dev/stderr)

Non-standard extensions of the utilities, functions, or facilities specified in POSIX.1-2024
should be identified as such in the system documentation. Non-standard extensions,
when used, may change the behavior of utilities, functions, or facilities defined by
POSIX.1-2024. The conformance document shall define an environment in which an
application can be run with the behavior specified by POSIX.1-2024. In no case shall such
an environment require modification of a Strictly Conforming POSIX Application (see

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 15

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Implementation Conformance Conformance

Section 2.2.1, on page 27).

Note: If the documented method of setting up a conforming environment includes the need to set one
or more environment variables, then the values of those environment variables cannot include
any <space> characters, since the confstr() function has to be able to return them in a
<space>-separated list of variable=value pairs. See XSH confstr() (on page 763).

2.1.2 Documentation

A conformance document with the following information shall be available for an
implementation claiming conformance to POSIX.1-2024. The conformance document shall have
the same structure as POSIX.1-2024, with the information presented in the appropriate sections
and subsections. Sections and subsections that consist solely of subordinate section titles, with
no other information, are not required. The conformance document shall not contain
information about extended facilities or capabilities outside the scope of POSIX.1-2024.

The conformance document shall contain a statement that indicates the full name, number, and
date of the standard that applies. The conformance document may also list international
software standards that are available for use by a Conforming POSIX Application. Applicable
characteristics where documentation is required by one of these standards, or by standards of
government bodies, may also be included.

The conformance document shall describe the limit values found in the headers <limits.h> (on
page 282) and <unistd.h> (on page 458), stating values, the conditions under which those values
may change, and the limits of such variations, if any.

The conformance document shall describe the behavior of the implementation for all
implementation-defined features defined in POSIX.1-2024. This requirement shall be met by
listing these features and providing either a specific reference to the system documentation or
providing full syntax and semantics of these features. When the value or behavior in the
implementation is designed to be variable or customized on each instantiation of the system, the
implementation provider shall document the nature and permissible ranges of this variation.

The conformance document may specify the behavior of the implementation for those features
where POSIX.1-2024 states that implementations may vary or where features are identified as
undefined or unspecified.

The conformance document shall not contain documentation other than that specified in the
preceding paragraphs except where such documentation is specifically allowed or required by
other provisions of POSIX.1-2024.

The phrases ``shall document’’ or ``shall be documented’’ in POSIX.1-2024 mean that
documentation of the feature shall appear in the conformance document, as described
previously, unless there is an explicit reference in the conformance document to show where the
information can be found in the system documentation.

The system documentation should also contain the information found in the conformance
document.

16 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Implementation Conformance

2.1.3 POSIX Conformance

A conforming implementation shall meet the following criteria for POSIX conformance.

2.1.3.1 POSIX System Interfaces

The following requirements apply to the system interfaces (functions and headers):

• The system shall support all the mandatory functions and headers defined in
POSIX.1-2024, and shall set the symbolic constant _POSIX_VERSION to the value 202405L.

• Although all implementations conforming to POSIX.1-2024 support all the features
described below, there may be system-dependent or file system-dependent configuration
procedures that can remove or modify any or all of these features. Such configurations
should not be made if strict compliance is required.

The following symbolic constants shall be defined with a value other than −1. If a constant
is defined with the value zero, applications should use the sysconf(), pathconf(), or
fpathconf() functions, or the getconf utility, to determine which features are present on the
system at that time or for the particular pathname in question.

— _POSIX_CHOWN_RESTRICTED

The use of chown() is restricted to a process with appropriate privileges, and to
changing the group ID of a file only to the effective group ID of the process or to one
of its supplementary group IDs.

— _POSIX_NO_TRUNC

Pathname components longer than {NAME_MAX} generate an error.

• The following symbolic constants shall be defined by the implementation as follows:

— Symbolic constants defined with the value 202405L:

_POSIX_ASYNCHRONOUS_IO
_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION
_POSIX_MONOTONIC_CLOCK
_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SPIN_LOCKS
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS
_POSIX_TIMEOUTS
_POSIX_TIMERS
_POSIX2_C_BIND

— Symbolic constants defined with a value greater than zero:

_POSIX_JOB_CONTROL
_POSIX_REGEXP
_POSIX_SAVED_IDS
_POSIX_SHELL

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 17

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Implementation Conformance Conformance

— Symbolic constants defined with a value other than −1.

_POSIX_VDISABLE

Note: The symbols above represent historical options that are no longer allowed as options, but
are retained here for backwards-compatibility of applications.

• The system may support one or more options (see Section 2.1.6, on page 25) denoted by the
following symbolic constants:

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_DEVICE_CONTROL
_POSIX_FSYNC
_POSIX_IPV6
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TYPED_MEMORY_OBJECTS
_XOPEN_CRYPT
_XOPEN_REALTIME
_XOPEN_REALTIME_THREADS
_XOPEN_UNIX

If the Advisory Information option is supported, there shall be at least one file system that
supports the functionality.

2.1.3.2 POSIX Shell and Utilities

The following requirements apply to the shell and utilities:

• The system shall provide all the mandatory utilities in the Shell and Utilities volume of
POSIX.1-2024 with all the functional behavior described therein.

• The system shall support the Large File capabilities described in the Shell and Utilities
volume of POSIX.1-2024.

• The system may support one or more options (see Section 2.1.6, on page 25) denoted by the
following symbolic constants. (The literal names below apply to the getconf utility.)

18 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Implementation Conformance

POSIX2_C_DEV
POSIX2_CHAR_TERM
POSIX2_FORT_RUN
POSIX2_LOCALEDEF
POSIX2_SW_DEV
POSIX2_UPE
XOPEN_UNIX
XOPEN_UUCP

Additional language bindings and development utility options may be provided in other related
standards or in a future version of this standard. In the former case, additional symbolic
constants of the same general form as shown in this subsection should be defined by the related
standard document and made available to the application without requiring POSIX.1-2024 to be
updated.

2.1.4 XSI Conformance

XSI This section describes the criteria for implementations providing conformance to the X/Open
System Interfaces (XSI) option (see Section 3.424, on page 93). The functionality described in this
section shall be provided on implementations that support the XSI option (and the rest of this
section is not further shaded).

POSIX.1-2024 describes utilities, functions, and facilities offered to application programs by the
X/Open System Interfaces (XSI) option. An XSI-conforming implementation shall meet the
criteria for POSIX conformance and the following requirements listed in this section.

XSI-conforming implementations shall set the symbolic constant _XOPEN_UNIX to a value
other than −1 and shall set the symbolic constant _XOPEN_VERSION to the value 800.

2.1.4.1 XSI System Interfaces

The following requirements apply to the system interfaces when the XSI option is supported:

• The system shall support all the functions and headers defined in POSIX.1-2024 as part of
the XSI option denoted by the XSI marking in the SYNOPSIS section, and any extensions
marked with the XSI option marking (see Section 1.8.1, on page 7) within the text.

• The system shall support the following options defined within POSIX.1-2024 (see Section
2.1.6, on page 25):

_POSIX_FSYNC
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PROCESS_SHARED

• The system may support the following XSI Option Groups (see Section 2.1.5.2, on page 22)
defined within POSIX.1-2024:

— Encryption

— Realtime

— Advanced Realtime

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 19

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Implementation Conformance Conformance

— Realtime Threads

— Advanced Realtime Threads

2.1.4.2 XSI Shell and Utilities Conformance

The following requirements apply to the shell and utilities when the XSI option is supported:

• The system shall support all the utilities defined in the Shell and Utilities volume of
POSIX.1-2024 as part of the XSI option denoted by the XSI marking in the SYNOPSIS
section, and any extensions marked with the XSI option marking (see Section 1.8.1, on
page 7) within the text.

• The system shall support the User Portability Utilities option and the Terminal
Characteristics option.

• The system shall support creation of locales (see Chapter 7, on page 127).

• The C-language Development utility c17 shall be supported.

• The XSI Development Utilities option may be supported. It consists of the following
software development utilities:

admin
cflow
ctags
cxref

delta
get
nm
prs

rmdel
sact
sccs
unget

val
what

2.1.5 Option Groups

An Option Group is a group of related functions or options defined within the System Interfaces
volume of POSIX.1-2024.

If an implementation supports an Option Group, then the system shall support the functional
behavior described herein.

If an implementation does not support an Option Group, then the system need not support the
functional behavior described herein.

2.1.5.1 Subprofiling Considerations

Profiling standards supporting functional requirements less than that required in POSIX.1-2024
may subset both mandatory and optional functionality required for POSIX Conformance (see
Section 2.1.3, on page 17) or XSI Conformance (see Section 2.1.4, on page 19). Such profiles shall
organize the subsets into Subprofiling Option Groups.

XRAT Appendix E (on page 3943) describes a representative set of such Subprofiling Option
Groups for use by profiles applicable to specialized realtime systems. POSIX.1-2024 does not
require that the presence of Subprofiling Option Groups be testable at compile-time (as symbols
defined in any header) or at runtime (via sysconf() or getconf).

A Subprofiling Option Group may provide basic system functionality that other Subprofiling
Option Groups and other options depend upon.4 If a profile of POSIX.1-2024 does not require an
implementation to provide a Subprofiling Option Group that provides features utilized by a
required Subprofiling Option Group (or option),5 the profile shall specify6 all of the following:

20 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Implementation Conformance

• Restricted or altered behavior of interfaces defined in POSIX.1-2024 that may differ on an
implementation of the profile

• Additional behaviors that may produce undefined or unspecified results

• Additional implementation-defined behavior that implementations shall be required to
document in the profile’s conformance document

if any of the above is a result of the profile not requiring an interface required by POSIX.1-2024.

The following additional rules shall apply to all profiles of POSIX.1-2024:

• Any application that conforms to that profile shall also conform to POSIX.1-2024, unless
the application depends on the definition of a profile support indicator macro in
<unistd.h> (that is, a profile shall not require restricted, altered, or extended behaviors of
an implementation of POSIX.1-2024).

• Profiles are permitted to require the definition of a profile support indicator macro with a
name beginning _POSIX_AEP_ in <unistd.h>.

• Profiles shall require the definition of the macro _POSIX_SUBPROFILE in <unistd.h> on
implementations that do not meet all of the requirements of a POSIX.1-conforming
implementation.

• Profiles are permitted to add additional requirements to the limits defined in <limits.h>
and <stdint.h>, subject to the following:

For the limits in <limits.h> and <stdint.h>:

— If the limit is specified as having a fixed value, it shall not be changed by a profile.

— If a limit is specified as having a minimum or maximum acceptable value, it may be
changed by a profile as follows:

— A profile may increase a minimum acceptable value, but shall not make a
minimum acceptable value smaller.

— A profile may reduce a maximum acceptable value, but shall not make a
maximum acceptable value larger.

• A profile shall not change a limit specified as having a minimum or maximum value into a
limit specified as having a fixed value.

• A profile shall not create new limits.

• Any implementation that conforms to POSIX.1-2024 (including all options and extended
limits required by the profile) shall also conform to that profile, except for the possible
omission from <unistd.h> of a profile support indicator macro required by the profile.

4. As an example, the File System profiling option group provides underlying support for pathname resolution and file creation which are
needed by any interface in POSIX.1-2024 that parses a path argument. If a profile requires support for the Device Input and Output
profiling option group but does not require support for the File System profiling option group, the profile needs to specify how pathname
resolution is to behave in that profile, how the O_CREAT flag to open() is to be handled (and the use of the character 'a' in the mode
argument of fopen() when a pathname argument names a file that does not exist), and specify lots of other details.

5. As an example, POSIX.1-2024 requires that implementations claiming to support the Range Memory Locking option also support the
Process Memory Locking option. A profile could require that the Range Memory Locking option had to be supplied without requiring that
the Process Memory Locking option be supplied as long as the profile specifies everything an application developer or system implementor
would have to know to build an application or implementation conforming to the profile.

6. Note that the profile could just specify that any use of the features not specified by the profile would produce undefined or unspecified
results.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 21

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Implementation Conformance Conformance

2.1.5.2 XSI Option Groups

XSI This section describes Option Groups to support the definition of XSI conformance within the
System Interfaces volume of POSIX.1-2024. The functionality described in this section shall be
provided on implementations that support the XSI option and the appropriate Option Group
(and the rest of this section is not further shaded).

The following Option Groups are defined.

Encryption

The Encryption Option Group is denoted by the symbolic constant _XOPEN_CRYPT. It includes
the following functions:

OB crypt(), encrypt(), setkey()

These functions are marked CRYPT.

Due to export restrictions on the cryptographic algorithm in some countries, implementations
may be restricted in making these functions available. All the functions in the Encryption
Option Group may therefore return [ENOSYS] or, alternatively, encrypt() shall return [ENOSYS]
for the decryption operation.

An implementation that claims conformance to this Option Group shall set _XOPEN_CRYPT to
a value other than −1.

Realtime

The Realtime Option Group is denoted by the symbolic constant _XOPEN_REALTIME.

This Option Group includes a set of realtime functions drawn from options within POSIX.1-2024
(see Section 2.1.6, on page 25).

Where entire functions are included in the Option Group, the NAME section is marked with
REALTIME. Where additional semantics have been added to existing pages, the new material is
identified by use of the appropriate margin legend for the underlying option defined within
POSIX.1-2024.

An implementation that claims conformance to this Option Group shall set
_XOPEN_REALTIME to a value other than −1.

This Option Group consists of the set of the following options from within POSIX.1-2024 (see
Section 2.1.6, on page 25):

_POSIX_FSYNC
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO

If the symbolic constant _XOPEN_REALTIME is defined to have a value other than −1, then the
following symbolic constants shall be defined by the implementation to have the value 202405L:

22 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Implementation Conformance

_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_PRIORITY_SCHEDULING
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO

The functionality associated with _POSIX_FSYNC shall always be supported on XSI-conformant
systems.

Support of _POSIX_PRIORITIZED_IO on XSI-conformant systems is optional. If
_POSIX_PRIORITIZED_IO is supported, then asynchronous I/O operations performed by
aio_read(), aio_write(), and lio_listio() shall be submitted at a priority equal to the scheduling
priority equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution
Scheduling is not supported, then the base scheduling priority is that of the calling process;
otherwise, the base scheduling priority is that of the calling thread. The implementation shall
also document for which files I/O prioritization is supported.

Advanced Realtime

An implementation that claims conformance to this Option Group shall also support the
Realtime Option Group.

Where entire functions are included in the Option Group, the NAME section is marked with
ADVANCED REALTIME. Where additional semantics have been added to existing pages, the
new material is identified by use of the appropriate margin legend for the underlying option
defined within POSIX.1-2024.

This Option Group consists of the set of the following options from within POSIX.1-2024 (see
Section 2.1.6, on page 25):

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_TYPED_MEMORY_OBJECTS

If the implementation supports the Advanced Realtime Option Group, then the following
symbolic constants shall be defined by the implementation to have the value 202405L:

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_TYPED_MEMORY_OBJECTS

If the symbolic constant _POSIX_SPORADIC_SERVER is defined, then the symbolic constant
_POSIX_PRIORITY_SCHEDULING shall also be defined by the implementation to have the
value 202405L.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 23

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Implementation Conformance Conformance

Realtime Threads

The Realtime Threads Option Group is denoted by the symbolic constant
_XOPEN_REALTIME_THREADS.

This Option Group consists of the set of the following options from within POSIX.1-2024 (see
Section 2.1.6, on page 25):

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT

Where applicable, whole pages are marked REALTIME THREADS, together with the
appropriate option margin legend for the SYNOPSIS section (see Section 1.8.1, on page 7).

An implementation that claims conformance to this Option Group shall set
_XOPEN_REALTIME_THREADS to a value other than −1.

If the symbol _XOPEN_REALTIME_THREADS is defined to have a value other than −1, then the
following options shall also be defined by the implementation to have the value 202405L:

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT

Advanced Realtime Threads

An implementation that claims conformance to this Option Group shall also support the
Realtime Threads Option Group.

Where entire functions are included in the Option Group, the NAME section is marked with
ADVANCED REALTIME THREADS. Where additional semantics have been added to existing
pages, the new material is identified by use of the appropriate margin legend for the underlying
option defined within POSIX.1-2024.

This Option Group consists of the set of the following options from within POSIX.1-2024 (see
Section 2.1.6, on page 25):

_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

If the symbolic constant _POSIX_THREAD_SPORADIC_SERVER is defined to have the value
202405L, then the symbolic constant _POSIX_THREAD_PRIORITY_SCHEDULING shall also be
defined by the implementation to have the value 202405L.

If the implementation supports the Advanced Realtime Threads Option Group, then the
following symbolic constants shall be defined by the implementation to have the value 202405L:

_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

24 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Implementation Conformance

2.1.6 Options
The symbolic constants defined in <unistd.h>, Constants for Options and Option Groups (on
page 458) reflect implementation options for POSIX.1-2024. These symbols can be used by the
application to determine which of three categories of support for optional facilities are provided
by the implementation.

1. Option not supported for compilation.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value −1, or by leaving it undefined) that the option is not supported for compilation
and, at the time of compilation, is not supported for runtime use. In this case, the headers,
data types, function interfaces, and utilities required only for the option need not be
present. A later runtime check using the fpathconf(), pathconf(), or sysconf functions
defined in the System Interfaces volume of POSIX.1-2024 or the getconf utility defined in
the Shell and Utilities volume of POSIX.1-2024 can in some circumstances indicate that
the option is supported at runtime. (For example, an old application binary might be run
on a newer implementation to which support for the option has been added.)

2. Option always supported.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with a value greater than zero) that the option is supported both for compilation and for
use at runtime. In this case, all headers, data types, function interfaces, and utilities
required only for the option shall be available and shall operate as specified. Runtime
checks with fpathconf(), pathconf(), or sysconf shall indicate that the option is supported.

3. Option might or might not be supported at runtime.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value zero) that the option is supported for compilation and might or might not be
supported at runtime. In this case, the fpathconf(), pathconf(), or sysconf() functions
defined in the System Interfaces volume of POSIX.1-2024 or the getconf utility defined in
the Shell and Utilities volume of POSIX.1-2024 can be used to retrieve the value of each
symbol on each specific implementation to determine whether the option is supported at
runtime. All headers, data types, and function interfaces required to compile and execute
applications which use the option at runtime (after checking at runtime that the option is
supported) shall be provided, but if the option is not supported at runtime they need not
operate as specified. Utilities or other facilities required only for the option, but not
needed to compile and execute such applications, need not be present.

If an option is not supported for compilation, an application that attempts to use anything
associated only with the option is considered to be requiring an extension. Unless explicitly
specified otherwise, the behavior of functions associated with an option that is not supported at
runtime is unspecified, and an application that uses such functions without first checking
fpathconf(), pathconf(), or sysconf is considered to be requiring an extension.

Margin codes are defined for each option (see Section 1.8.1, on page 7).

2.1.6.1 System Interfaces

Refer to <unistd.h>, Constants for Options and Option Groups (on page 458) for the list of
options.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 25

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Implementation Conformance Conformance

2.1.6.2 Shell and Utilities

Each of these symbols shall be considered valid names by the implementation. Refer to
<unistd.h>, Constants for Options and Option Groups (on page 458).

The literal names shown below apply only to the getconf utility.

CD POSIX2_C_DEV
The system supports the C-Language Development Utilities option.

The utilities in the C-Language Development Utilities option are used for the development
of C-language applications, including compilation or translation of C source code and
complex program generators for simple lexical tasks and processing of context-free
grammars.

The utilities listed below may be provided by a conforming system; however, any system
claiming conformance to the C-Language Development Utilities option shall provide all of
the utilities listed.

c17
lex
yacc

POSIX2_CHAR_TERM
The system supports the Terminal Characteristics option. This value need not be present on
a system not supporting the User Portability Utilities option.

Where applicable, the dependency is noted within the description of the utility.

This option applies only to systems supporting the User Portability Utilities option. If
supported, then the system supports at least one terminal type capable of all operations
described in POSIX.1-2024; see Section 10.2 (on page 197).

FR POSIX2_FORT_RUN
The system supports the FORTRAN Runtime Utilities option.

The asa utility is the only utility in the FORTRAN Runtime Utilities option.

The asa utility may be provided by a conforming system; however, any system claiming
conformance to the FORTRAN Runtime Utilities option shall provide the asa utility.

POSIX2_LOCALEDEF
The system supports the Locale Creation Utilities option.

If supported, the system supports the creation of locales as described in the localedef utility.

The localedef utility may be provided by a conforming system; however, any system
claiming conformance to the Locale Creation Utilities option shall provide the localedef
utility.

SD POSIX2_SW_DEV
The system supports the Software Development Utilities option.

The utilities in the Software Development Utilities option are used for the development of
applications, including compilation or translation of source code, the creation and
maintenance of library archives, and the maintenance of groups of inter-dependent
programs.

The utilities listed below may be provided by the conforming system; however, any system
claiming conformance to the Software Development Utilities option shall provide all of the
utilities listed here.

26 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Implementation Conformance

ar
make
nm
strip

UP POSIX2_UPE
The system supports the User Portability Utilities option.

The utilities in the User Portability Utilities option shall be implemented on all systems that
claim conformance to this option, except for the vi utility which is noted as having features
that cannot be implemented on all terminal types; if the POSIX2_CHAR_TERM option is
supported, the system shall support all such features on at least one terminal type; see
Section 10.2 (on page 197).

The list of utilities in the User Portability Utilities option is as follows:

bg
ex

fc
fg

jobs
man

more
talk

vi

XSI XOPEN_UNIX
The system supports the X/Open System Interfaces (XSI) option (see Section 2.1.4, on page
19).

UU XOPEN_UUCP
The system supports the UUCP Utilities option.

The list of utilities in the UUCP Utilities option is as follows:

uucp
uustat
uux

2.2 Application Conformance
For the purposes of POSIX.1-2024, the application conformance requirements given in this
section apply.

All applications claiming conformance to POSIX.1-2024 shall use only language-dependent
services for the C programming language described in Section 2.3 (on page 29), shall use only
the utilities and facilities defined in the Shell and Utilities volume of POSIX.1-2024, and shall fall
within one of the following categories.

2.2.1 Strictly Conforming POSIX Application

A Strictly Conforming POSIX Application is an application that requires only the facilities
described in POSIX.1-2024. Such an application:

1. Shall accept any implementation behavior that results from actions it takes in areas
described in POSIX.1-2024 as implementation-defined or unspecified, or where POSIX.1-2024
indicates that implementations may vary

2. Shall not perform any actions that are described as producing undefined results

3. For symbolic constants, shall accept any value in the range permitted by POSIX.1-2024,
but shall not rely on any value in the range being greater than the minimums listed or
being less than the maximums listed in POSIX.1-2024

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 27

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Application Conformance Conformance

4. Shall not use facilities designated as obsolescent

5. Is required to tolerate and permitted to adapt to the presence or absence of optional
facilities whose availability is indicated by Section 2.1.3 (on page 17)

6. For the C programming language, shall not produce any output dependent on any
behavior described in the ISO C standard as unspecified, undefined, or implementation-
defined, unless the System Interfaces volume of POSIX.1-2024 specifies the behavior

7. For the C programming language, shall not exceed any minimum implementation limit
defined in the ISO C standard, unless the System Interfaces volume of POSIX.1-2024
specifies a higher minimum implementation limit

8. For the C programming language, shall define _POSIX_C_SOURCE to be 202405L before
any header is included

Within POSIX.1-2024, any restrictions placed upon a Conforming POSIX Application shall
restrict a Strictly Conforming POSIX Application.

2.2.2 Conforming POSIX Application

2.2.2.1 ISO/IEC Conforming POSIX Application

An ISO/IEC Conforming POSIX Application is an application that uses only the facilities
described in POSIX.1-2024 and approved Conforming Language bindings for any ISO or IEC
standard. Such an application shall include a statement of conformance that documents all
options and limit dependencies, and all other ISO or IEC standards used.

2.2.2.2 <National Body> Conforming POSIX Application

A <National Body> Conforming POSIX Application differs from an ISO/IEC Conforming
POSIX Application in that it also may use specific standards of a single ISO/IEC member body
referred to here as <National Body>. Such an application shall include a statement of
conformance that documents all options and limit dependencies, and all other <National Body>
standards used.

2.2.3 Conforming POSIX Application Using Extensions

A Conforming POSIX Application Using Extensions is an application that differs from a
Conforming POSIX Application only in that it uses non-standard facilities that are consistent
with POSIX.1-2024. Such an application shall fully document its requirements for these extended
facilities, in addition to the documentation required of a Conforming POSIX Application. A
Conforming POSIX Application Using Extensions shall be either an ISO/IEC Conforming
POSIX Application Using Extensions or a <National Body> Conforming POSIX Application
Using Extensions (see Section 2.2.2.1 and Section 2.2.2.2).

28 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Application Conformance

2.2.4 Strictly Conforming XSI Application

A Strictly Conforming XSI Application is an application that requires only the facilities
described in POSIX.1-2024. Such an application:

1. Shall accept any implementation behavior that results from actions it takes in areas
described in POSIX.1-2024 as implementation-defined or unspecified, or where POSIX.1-2024
indicates that implementations may vary

2. Shall not perform any actions that are described as producing undefined results

3. For symbolic constants, shall accept any value in the range permitted by POSIX.1-2024,
but shall not rely on any value in the range being greater than the minimums listed or
being less than the maximums listed in POSIX.1-2024

4. Shall not use facilities designated as obsolescent

5. Is required to tolerate and permitted to adapt to the presence or absence of optional
facilities whose availability is indicated by Section 2.1.4 (on page 19)

6. For the C programming language, shall not produce any output dependent on any
behavior described in the ISO C standard as unspecified, undefined, or implementation-
defined, unless the System Interfaces volume of POSIX.1-2024 specifies the behavior

7. For the C programming language, shall not exceed any minimum implementation limit
defined in the ISO C standard, unless the System Interfaces volume of POSIX.1-2024
specifies a higher minimum implementation limit

8. For the C programming language, shall define _XOPEN_SOURCE to be 800 before any
header is included

Within POSIX.1-2024, any restrictions placed upon a Conforming POSIX Application shall
restrict a Strictly Conforming XSI Application.

2.2.5 Conforming XSI Application Using Extensions

A Conforming XSI Application Using Extensions is an application that differs from a Strictly
Conforming XSI Application only in that it uses non-standard facilities that are consistent with
POSIX.1-2024. Such an application shall fully document its requirements for these extended
facilities, in addition to the documentation required of a Strictly Conforming XSI Application.

2.3 Language-Dependent Services for the C Programming Language
Implementors seeking to claim conformance using the ISO C standard shall claim POSIX
conformance as described in Section 2.1.3 (on page 17).

2.4 Other Language-Related Specifications
POSIX.1-2024 is currently specified in terms of the shell command language and ISO C. Bindings
to other programming languages are being developed.

If conformance to POSIX.1-2024 is claimed for implementation of any programming language,
the implementation of that language shall support the use of external symbols distinct to at least
31 bytes in length in the source program text. (That is, identifiers that differ at or before the
thirty-first byte shall be distinct.) If a national or international standard governing a language
defines a maximum length that is less than this value, the language-defined maximum shall be

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 29

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Other Language-Related Specifications Conformance

supported. External symbols that differ only by case shall be distinct when the character set in
use distinguishes uppercase and lowercase characters and the language permits (or requires)
uppercase and lowercase characters to be distinct in external symbols.

30 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1017

1018

1019

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 3

Definitions

For the purposes of POSIX.1-2024, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms, Seventh Edition should be referenced for terms not defined
in this section.

Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
definitions given in this chapter are used elsewhere in text related to extensions and options,
they are shaded as appropriate.

3.1 Abortive Release
An abrupt termination of a network connection that may result in the loss of data.

3.2 Absolute Pathname
A pathname beginning with a single or more than two <slash> characters; see also Section 3.254
(on page 68).

Note: Pathname Resolution is defined in detail in Section 4.16 (on page 105).

3.3 Access Mode
A particular form of access permitted to a file.

3.4 Additional File Access Control Mechanism
An implementation-defined mechanism that is layered upon the access control mechanisms
defined here, but which do not grant permissions beyond those defined herein, although they
may further restrict them.

Note: File Access Permissions are defined in detail in Section 4.7 (on page 97).

3.5 Address Space
The memory locations that can be referenced by a process or the threads of a process.

3.6 Advisory Information
An interface that advises the implementation on (portable) application behavior so that it can
optimize the system.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 31

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Affirmative Response Definitions

3.7 Affirmative Response
An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword yesexpr, matching an extended regular expression in the current locale.

Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 159).

3.8 Alert
To cause the user’s terminal to give some audible or visual indication that an error or some other
event has occurred. When the standard output is directed to a terminal device, the method for
alerting the terminal user is unspecified. When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert to standard output (unless the utility
description indicates that the use of standard output produces undefined results in this case).

3.9 Alert Character (<alert>)
A character that in the output stream should cause a terminal to alert its user via a visual or
audible notification. It is the character designated by '\a' in the C language. It is unspecified
whether this character is the exact sequence transmitted to an output device by the system to
accomplish the alert function.

3.10 Alias Name
In the shell command language, a word consisting solely of alphabetics and digits from the
portable character set and any of the following characters: '!', '%', ',', '-', '@', '_'.

Implementations may allow other characters within alias names as an extension.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 117).

3.11 Alignment
A requirement that objects of a particular type be located on storage boundaries with addresses
that are particular multiples of a byte address.

Note: See also the ISO C standard, Section 6.2.8.

3.12 Alternate File Access Control Mechanism
An implementation-defined mechanism that is independent of the access control mechanisms
defined herein, and which if enabled on a file may either restrict or extend the permissions of a
given user. POSIX.1-2024 defines when such mechanisms can be enabled and when they are
disabled.

Note: File Access Permissions are defined in detail in Section 4.7 (on page 97).

32 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Alternate Signal Stack

3.13 Alternate Signal Stack
Memory associated with a thread, established upon request by the implementation for a thread,
separate from the thread signal stack, in which signal handlers responding to signals sent to that
thread may be executed.

3.14 Ancillary Data
Protocol-specific, local system-specific, or optional information. The information can be both
local or end-to-end significant, header information, part of a data portion, protocol-specific, and
implementation or system-specific.

3.15 Angle Brackets
The characters '<' (left-angle-bracket) and '>' (right-angle-bracket). When used in the phrase
``enclosed in angle brackets’’, the symbol '<' immediately precedes the object to be enclosed,
and '>' immediately follows it. When describing these characters in the portable character set,
the names <less-than-sign> and <greater-than-sign> are used.

3.16 Anonymous Memory Object
An object that represents memory not associated with any other memory objects.

3.17 Apostrophe Character (<apostrophe>)
The character designated by '\'' in the C language, also known as the single-quote character.

3.18 Application
A computer program that performs some desired function.

When the User Portability Utilities option is supported, requirements placed on applications
relating to the use of standard utilities shall also apply to the actions of a user who is entering
shell command language statements into an interactive shell.

3.19 Application Address
Endpoint address of a specific application.

3.20 Application Program Interface (API)
The definition of syntax and semantics for providing computer system services.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 33

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Appropriate Privileges Definitions

3.21 Appropriate Privileges
An implementation-defined means of associating privileges with a process with regard to the
function calls, function call options, and the commands that need special privileges. There may
be zero or more such means. These means (or lack thereof) are described in the conformance
document.

Note: Function calls are defined in the System Interfaces volume of POSIX.1-2024, and commands are
defined in the Shell and Utilities volume of POSIX.1-2024.

3.22 Argument
In the shell command language, a parameter passed to a utility as the equivalent of a single
string in the argv array created by one of the exec functions. An argument is one of the options,
option-arguments, or operands following the command name.

Note: The Utility Argument Syntax is defined in detail in Section 12.1 (on page 213) and XCU Section
2.9.1.4 (on page 2502).

In the C language, an expression in a function call expression or a sequence of preprocessing
tokens in a function-like macro invocation.

3.23 Arm (a Timer)
To start a timer measuring the passage of time, enabling notifying a process when the specified
time or time interval has passed.

3.24 Asterisk Character (<asterisk>)
The character '*'.

3.25 Async-Cancel-Safe Function
A function that may be safely invoked by an application while the asynchronous form of
cancellation is enabled. No function is async-cancel-safe unless explicitly described as such.

3.26 Asynchronous Events
Events that occur independently of the execution of the application.

3.27 Asynchronous Input and Output
A functionality enhancement to allow an application process to queue data input and output
commands with asynchronous notification of completion.

34 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Async-Signal-Safe Function

3.28 Async-Signal-Safe Function
A function that can be called, without restriction, from signal-catching functions. Note that,
although there is no restriction on the calls themselves, for certain functions there are restrictions
on subsequent behavior after the function is called from a signal-catching function. No function
is async-signal-safe unless explicitly described as such.

Note: Async-signal-safety is defined in detail in XSH Section 2.4.3 (on page 516).

3.29 Asynchronously-Generated Signal
A signal that is not attributable to a specific thread. Examples are signals sent via kill(), signals
sent from the keyboard, and signals delivered to process groups. Being asynchronous is a
property of how the signal was generated and not a property of the signal number. All signals
may be generated asynchronously.

Note: The kill() function is defined in detail in the System Interfaces volume of POSIX.1-2024.

3.30 Asynchronous I/O Completion
For an asynchronous read or write operation, when a corresponding synchronous read or write
would have completed and when any associated status fields have been updated.

3.31 Asynchronous I/O Operation
An I/O operation that does not of itself cause the thread requesting the I/O to be blocked from
further use of the processor.

This implies that the process and the I/O operation may be running concurrently.

3.32 Atomic Operation
An operation that cannot be broken up into smaller parts that could be performed separately. An
atomic operation is guaranteed to complete either fully or not at all. In the context of the
functionality provided by the <stdatomic.h> header, there are different types of atomic
operation that are defined in detail in Section 4.15.1 (on page 100).

3.33 Authentication
The process of validating a user or process to verify that the user or process is not a counterfeit.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 35

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Authorization Definitions

3.34 Authorization
The process of verifying that a user or process has permission to use a resource in the manner
requested.

To assure security, the user or process would also need to be authenticated before granting
access.

3.35 Background Job
In the context of the System Interfaces volume of POSIX.1-2024, a background process group
(see Section 3.37).

In the context of the shell, a job that the shell is not waiting for before it executes further
commands or, if interactive, prompts for further commands. A background job can be a job-
control background job or a non-job-control background job. A job-control background job is a
job that started execution (either in the background or the foreground) while job control was
enabled and is currently in the background. A non-job-control background job is an
asynchronous AND-OR list that started execution while job control was disabled and was
assigned a job number. An implementation need not support non-job-control background jobs;
that is, the shell may, but need not, assign job numbers to asynchronous AND-OR lists that start
execution while job control is disabled.

Note: Asynchronous AND-OR lists are defined in detail in XCU Section 2.9.3.1 (on page 2506).

Note: See also Section 3.158 (on page 54), Section 3.180 (on page 57), Section 3.181 (on page 57), and
Section 3.362 (on page 84).

3.36 Background Process
A process that is a member of a background process group.

3.37 Background Process Group
Any process group, other than a foreground process group, that is a member of a session that
has established a connection with a controlling terminal.

Note: See also Section 3.35.

3.38 Backquote Character
The character '`', also known as <grave-accent>.

3.39 Backslash Character (<backslash>)
The character designated by '\\' in the C language, also known as reverse solidus.

36 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Backspace Character (<backspace>)

3.40 Backspace Character (<backspace>)
A character that, in the output stream, should cause printing (or displaying) to occur one
column position previous to the position about to be printed. If the position about to be printed
is at the beginning of the current line, the behavior is unspecified. It is the character designated
by '\b' in the C language. It is unspecified whether this character is the exact sequence
transmitted to an output device by the system to accomplish the backspace function. The
backspace defined here is not necessarily the ERASE special character.

Note: Special Characters are defined in detail in Section 11.1.9 (on page 203).

3.41 Barrier
A synchronization object that allows multiple threads to synchronize at a particular point in
their execution.

3.42 Basename
For pathnames containing at least one filename: the final, or only, filename in the pathname. For
pathnames consisting only of <slash> characters: either '/' or "//" if the pathname consists of
exactly two <slash> characters, and '/' otherwise.

3.43 Basic Regular Expression (BRE)
A regular expression (see Section 3.308, on page 76) used by the majority of utilities that select
strings from a set of character strings.

Note: Basic Regular Expressions are described in detail in Section 9.3 (on page 181).

3.44 Bind
The process of assigning a network address to an endpoint.

3.45 Blank Character (<blank>)
One of the characters that belong to the blank character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale, a <blank> character is either a <tab> or a
<space>.

3.46 Blank Line
A line consisting solely of zero or more <blank> characters terminated by a <newline>; see also
Section 3.120 (on page 48).

3.47 Blocked Process (or Thread)
A process (or thread) that is waiting for some condition (other than the availability of a

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 37

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Blocked Process (or Thread) Definitions

processor) to be satisfied before it can continue execution.

3.48 Blocking
A property of an open file description that causes function calls associated with it to wait for the
requested action to be performed before returning.

3.49 Block-Mode Terminal
A terminal device operating in a mode incapable of the character-at-a-time input and output
operations described by some of the standard utilities.

Note: Output Devices and Terminal Types are defined in detail in Section 10.2 (on page 197).

3.50 Block Special File
A file that refers to a device. A block special file is normally distinguished from a character
special file by providing access to the device in a manner such that the hardware characteristics
of the device are not visible.

3.51 Braces
The characters '{' (left-curly-bracket) and '}' (right-curly-bracket). When used in the phrase
``enclosed in (curly) braces’’ the symbol '{' immediately precedes the object to be enclosed, and
'}' immediately follows it. When describing these characters in the portable character set, the
names <left-curly-bracket> and <left-brace> are used for '{', and <right-curly-bracket> and
<right-brace> are used for '}'.

3.52 Brackets
The characters '[' (left-square-bracket) and ']' (right-square-bracket). When used in the
phrase ``enclosed in (square) brackets’’ the symbol '[' immediately precedes the object to be
enclosed, and ']' immediately follows it. When describing these characters in the portable
character set, the names <left-square-bracket> and <right-square-bracket> are used.

3.53 Broadcast
The transfer of data from one endpoint to several endpoints, as described in RFC 919 and
RFC 922.

38 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Built-In Utility (or Built-In)

3.54 Built-In Utility (or Built-In)
A utility implemented within a shell. There are two main types of built-in utilities: special built-
ins and regular built-ins. Unless qualified, the term ``built-in’’ includes both types. The utilities
referred to as special built-ins have special qualities. Regular built-ins are not required to be
actually built into the shell on the implementation, but they usually have special command-
search qualities, or affect the current execution environment.

Note: Special Built-In Utilities are defined in detail in XCU Section 2.15 (on page 2526).

Regular Built-In Utilities are defined in detail in XCU Section 1.6 (on page 2470).

3.55 Byte
An individually addressable unit of data storage that is exactly an octet, used to store a character
or a portion of a character; see also Section 3.58. A byte is composed of a contiguous sequence of
8 bits. The least significant bit is called the ``low-order ’’ bit; the most significant is called the
``high-order ’’ bit.

Note: The definition of byte from the ISO C standard is broader than the above and might
accommodate hardware architectures with different sized addressable units than octets.

3.56 Byte Input/Output Functions
The functions that perform byte-oriented input from streams or byte-oriented output to streams:
fgetc(), fgets(), fprintf(), fputc(), fputs(), fread(), fscanf(), fwrite(), getc(), getchar(), getdelim(),
getline(), printf(), putc(), putchar(), puts(), scanf(), ungetc(), vfprintf(), and vprintf().

Note: Functions are defined in detail in the System Interfaces volume of POSIX.1-2024.

3.57 Carriage-Return Character (<carriage-return>)
A character that in the output stream indicates that printing should start at the beginning of the
same physical line in which the carriage-return occurred. It is the character designated by '\r'
in the C language. It is unspecified whether this character is the exact sequence transmitted to an
output device by the system to accomplish the movement to the beginning of the line.

3.58 Character
A sequence of one or more bytes representing a member of a character set.

Note: This term corresponds to the ISO C standard term multi-byte character, where a single-byte
character is a special case of a multi-byte character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with storage space, and byte is used when storage
space is discussed.

See the definition of the portable character set in Section 6.1 (on page 117) for a further
explanation of the graphical representations of (abstract) characters, as opposed to character
encodings.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 39

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Array Definitions

3.59 Character Array
An array of elements of type char.

3.60 Character Class
A named set of characters sharing an attribute associated with the name of the class. The classes
and the characters that they contain are dependent on the value of the LC_CTYPE category in
the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 131).

3.61 Character Set
A finite set of different characters used for the representation, organization, or control of data.

3.62 Character Special File
A file that refers to a device (such as a terminal device file) or that has special properties (such as
/dev/null).

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

3.63 Character String
A contiguous sequence of characters terminated by and including the first null byte.

3.64 Child Process
A new process created (by fork(), posix_spawn(), or posix_spawnp()) by a given process. A child
process remains the child of the creating process as long as both processes continue to exist.

Note: The fork(), posix_spawn(), and posix_spawnp() functions are defined in detail in the System
Interfaces volume of POSIX.1-2024.

3.65 Circumflex Character (<circumflex>)
The character '^'.

40 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Clock

3.66 Clock
A software or hardware object that can be used to measure the apparent or actual passage of
time.

The current value of the time measured by a clock can be queried and, possibly, set to a value
within the legal range of the clock.

3.67 Clock Jump
The difference between two successive distinct values of a clock, as observed from the
application via one of the ``get time’’ operations.

3.68 Clock Tick
An interval of time; an implementation-defined number of these occur each second. Clock ticks
are one of the units that may be used to express a value found in type clock_t.

3.69 Code Block
In the context of the System Interfaces volume of POSIX.1-2024, a block as defined in the ISO C
standard.

3.70 Coded Character Set
A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

3.71 Codeset
The result of applying rules that map a numeric code value to each element of a character set.
An element of a character set may be related to more than one numeric code value but the
reverse is not true. However, for state-dependent encodings the relationship between numeric
code values and elements of a character set may be further controlled by state information. The
character set may contain fewer elements than the total number of possible numeric code values;
that is, some code values may be unassigned.

Note: Character Encoding is defined in detail in Section 6.2 (on page 120).

3.72 Collating Element
The smallest entity used to determine the logical ordering of character or wide-character strings;
see also Section 3.74 (on page 42). A collating element consists of either a single character, or
two or more characters collating as a single entity. The value of the LC_COLLATE category in the
current locale determines the current set of collating elements.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 41

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Collation Definitions

3.73 Collation
The logical ordering of character or wide-character strings according to defined precedence
rules. These rules identify a collation sequence between the collating elements, and such
additional rules that can be used to order strings consisting of multiple collating elements.

3.74 Collation Sequence
The relative order of collating elements as determined by the setting of the LC_COLLATE
category in the current locale. The collation sequence is used for sorting and is determined from
the collating weights assigned to each collating element. In the absence of weights, the collation
sequence is the order in which collating elements are specified between order_start and
order_end keywords in the LC_COLLATE category.

Multi-level sorting is accomplished by assigning elements one or more collation weights, up to
the limit {COLL_WEIGHTS_MAX}. On each level, elements may be given the same weight (at
the primary level, called an equivalence class; see also Section 3.126, on page 49) or be omitted
from the sequence. Strings that collate equally using the first assigned weight (primary ordering)
are then compared using the next assigned weight (secondary ordering), and so on.

Note: {COLL_WEIGHTS_MAX} is defined in detail in <limits.h>.

3.75 Column Position
A unit of horizontal measure related to characters in a line.

It is assumed that each character in a character set has an intrinsic column width independent of
any output device. Each printable character in the portable character set has a column width of
one. The standard utilities, when used as described in POSIX.1-2024, assume that all characters
have integral column widths. The column width of a character is not necessarily related to the
internal representation of the character (numbers of bits or bytes).

The column position of a character in a line is defined as one plus the sum of the column widths
of the preceding characters in the line. Column positions are numbered starting from 1.

3.76 Command
A directive to the shell to perform a particular task.

Note: Shell Commands are defined in detail in XCU Section 2.9 (on page 2499).

3.77 Command Language Interpreter
An interface that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal. It is possible for
applications to invoke utilities through a number of interfaces, which are collectively considered
to act as command interpreters. The most obvious of these are the sh utility and the system()
function, although popen() and the various forms of exec may also be considered to behave as
interpreters.

42 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Command Language Interpreter

Note: The sh utility is defined in detail in the Shell and Utilities volume of POSIX.1-2024.

The system(), popen(), and exec functions are defined in detail in the System Interfaces volume
of POSIX.1-2024.

3.78 Composite Graphic Symbol
A graphic symbol consisting of a combination of two or more other graphic symbols in a single
character position, such as a diacritical mark and a base character.

3.79 Condition Variable
A synchronization object which allows a thread to suspend execution, repeatedly, until some
associated predicate becomes true. A thread whose execution is suspended on a condition
variable is said to be blocked on the condition variable.

There are two types of condition variable: those of type pthread_cond_t which are initialized
using pthread_cond_init() and those of type cnd_t which are initialized using cnd_init(). If an
application attempts to use the two types interchangeably (that is, pass a condition variable of
type pthread_cond_t to a function that takes a cnd_t, or vice versa), the behavior is undefined.

Note: The pthread_cond_init() and cnd_init() functions are defined in detail in the System Interfaces
volume of POSIX.1-2024.

3.80 Connected Socket
A connection-mode socket for which a connection has been established, or a connectionless-
mode socket for which a peer address has been set. See also Section 3.81, Section 3.82, Section
3.83, and Section 3.342 (on page 81).

3.81 Connection
An association established between two or more endpoints for the transfer of data

3.82 Connection Mode
The transfer of data in the context of a connection; see also Section 3.83.

3.83 Connectionless Mode
The transfer of data other than in the context of a connection; see also Section 3.82 and Section
3.96 (on page 45).

3.84 Control Character
A character, other than a graphic character, that affects the recording, processing, transmission,
or interpretation of text.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 43

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Control Operator Definitions

3.85 Control Operator
In the shell command language, a token that performs a control function. It is one of the
following symbols:

& && () ; ;; ;& newline | ||

The end-of-input indicator used internally by the shell is also considered a control operator.

Note: Token Recognition is defined in detail in XCU Section 2.3 (on page 2475).

3.86 Controlling Process
The session leader that established the connection to the controlling terminal. If the terminal
subsequently ceases to be a controlling terminal for this session, the session leader ceases to be
the controlling process.

3.87 Controlling Terminal
A terminal that is associated with a session. Each session may have at most one controlling
terminal associated with it, and a controlling terminal is associated with exactly one session.
Certain input sequences from the controlling terminal cause signals to be sent to all processes in
the foreground process group associated with the controlling terminal.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

3.88 Conversion Descriptor
A per-process unique value used to identify an open codeset conversion.

3.89 Core Image
An unspecified object of unspecified format that may be generated when a process terminates
abnormally.

3.90 CPU Time (Execution Time)
The time spent executing a process or thread, including the time spent executing system services
on behalf of that process or thread. The value of the CPU-time clock for a process is
implementation-defined. With this definition the sum of all the execution times of all the threads
in a process might not equal the process execution time, even in a single-threaded process,
because implementations may differ in how they account for time during context switches or for
other reasons.

3.91 CPU-Time Clock
A clock that measures the execution time of a particular process or thread.

44 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions CPU-Time Timer

3.92 CPU-Time Timer
A timer attached to a CPU-time clock.

3.93 Current Job
In the context of job control, the job that will be used as the default for the fg or bg utilities. There
is at most one current job; see also Section 3.182 (on page 57).

3.94 Current Working Directory
See Working Directory in Section 3.421 (on page 93).

3.95 Cursor Position
The line and column position on the screen denoted by the terminal’s cursor.

3.96 Datagram
A unit of data transferred from one endpoint to another in connectionless mode service.

3.97 Data Race
A situation in which there are two conflicting actions in different threads, at least one of which is
not atomic, and neither ``happens before’’ the other, where the ``happens before’’ relation is
defined formally in Section 4.15.1 (on page 100).

3.98 Data Segment
Memory associated with a process, that can contain dynamically allocated data.

3.99 Decimal-Point Character
See Radix Character in Section 3.294 (on page 74).

3.100 Declaration Utility
A utility which can take arguments that cause variable assignments (of the form varname=value)
which will persist in the current shell environment. When the shell recognizes a declaration
utility as the command name, subsequent arguments that would be a valid variable assignment
in isolation are subject to different expansion rules (field splitting and pathname expansion are
suppressed, and tilde expansion occurs after the <equals-sign> and any unquoted <colon>).
Arguments which are not a valid variable assignment in isolation are processed according to
normal argument expansion rules.

The following standard utilities are declaration utilities: export, readonly, and, under certain

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 45

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Declaration Utility Definitions

conditions, command. An implementation may provide other declaration utilities.

3.101 Device
A computer peripheral or an object that appears to the application as such.

3.102 Device ID
A non-negative integer used to identify a device.

3.103 Directory
A file that contains directory entries. No two directory entries in the same directory have the
same name.

3.104 Directory Entry (or Hard Link)
An object that associates a filename with a file. Several directory entries can associate names
with the same file.

3.105 Directory Stream
A sequence of all the directory entries in a particular directory. An open directory stream may be
implemented using a file descriptor.

3.106 Disarm (a Timer)
To stop a timer from measuring the passage of time, disabling any future process notifications
(until the timer is armed again).

3.107 Display
To output to the user’s terminal. If the output is not directed to a terminal, the results are
undefined.

3.108 Display Line
A line of text on a physical device or an emulation thereof. Such a line has a maximum number
of characters which can be presented.

Note: This may also be written as ``line on the display’’.

3.109 Dollar-Sign Character (<dollar-sign>)
The character '$'.

46 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Dot

3.110 Dot
In the context of naming files, the filename consisting of a single <period> character ('.').

Note: In the context of shell special built-in utilities, see dot in XCU Section 2.15 (on page 2526).

Pathname Resolution is defined in detail in Section 4.16 (on page 105).

3.111 Dot-Dot
The filename consisting solely of two <period> characters ("..").

Note: Pathname Resolution is defined in detail in Section 4.16 (on page 105).

3.112 Dot-Po File
See Portable Messages Object Source File in Section 3.266 (on page 70).

3.113 Double-Quote Character
The character '"', also known as <quotation-mark>.

Note: The ``double’’ adjective in this term refers to the two strokes in the character glyph.
POSIX.1-2024 never uses the term ``double-quote’’ to refer to two apostrophes or quotation-
marks.

3.114 Downshifting
The conversion of an uppercase character that has a single-character lowercase representation
into this lowercase representation.

3.115 Driver
A module that controls data transferred to and received from devices.

Note: Drivers are traditionally written to be a part of the system implementation, although they are
frequently written separately from the writing of the implementation. A driver may contain
processor-specific code, and therefore be non-portable.

3.116 Effective Group ID
An attribute of a process that is used in determining various permissions, including file access
permissions; see also Section 3.165 (on page 55).

3.117 Effective User ID
An attribute of a process that is used in determining various permissions, including file access
permissions; see also Section 3.408 (on page 91).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 47

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Eight-Bit Transparency Definitions

3.118 Eight-Bit Transparency
The ability of a software component to process 8-bit characters without modifying or utilizing
any part of the character in a way that is inconsistent with the rules of the current coded
character set.

3.119 Empty Directory
A directory that contains, at most, directory entries for dot and dot-dot, and has exactly one hard
link to it other than its own dot entry (if one exists), in dot-dot. No other hard links to the
directory can exist. It is unspecified whether an implementation can ever consider the root
directory to be empty.

3.120 Empty Line
A line consisting of only a <newline>; see also Section 3.46 (on page 37).

3.121 Empty String (or Null String)
A string whose first byte is a null byte.

3.122 Empty Wide-Character String
A wide-character string whose first element is a null wide-character code.

3.123 Encoding Rule
The rules used to convert between wide-character codes and multi-byte character codes.

Note: Stream Orientation and Encoding Rules are defined in detail in XSH Section 2.5.2 (on page 524).

3.124 Entire Regular Expression
The concatenated set of one or more basic regular expressions or extended regular expressions
that make up the pattern specified for string selection.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 179).

3.125 Epoch
The time zero hours, zero minutes, zero seconds, on January 1, 1970 Coordinated Universal Time
(UTC).

Note: See also Seconds Since the Epoch defined in Section 4.19 (on page 107).

48 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Equivalence Class

3.126 Equivalence Class
A set of collating elements with the same primary collation weight.

Elements in an equivalence class are typically elements that naturally group together, such as all
accented letters based on the same base letter.

The collation order of elements within an equivalence class is determined by the weights
assigned on any subsequent levels after the primary weight.

3.127 Era
A locale-specific method for counting and displaying years.

Note: The LC_TIME category is defined in detail in Section 7.3.5 (on page 152).

3.128 Event Management
The mechanism that enables applications to register for and be made aware of external events
such as data becoming available for reading.

3.129 Executable File
A regular file acceptable as a new process image file by the equivalent of the exec family of
functions, and thus usable as one form of a utility. The standard utilities described as compilers
can produce executable files, but other unspecified methods of producing executable files may
also be provided. The internal format of an executable file is unspecified, but a conforming
application cannot assume an executable file is a text file.

3.130 Execute
To perform command search and execution actions, as defined in the Shell and Utilities volume
of POSIX.1-2024; see also Section 3.179 (on page 57).

Note: Command Search and Execution is defined in detail in XCU Section 2.9.1.4 (on page 2502).

3.131 Execution Time
See CPU Time in Section 3.90 (on page 44).

3.132 Execution Time Monitoring
A set of execution time monitoring primitives that allow online measuring of thread and process
execution times.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 49

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Expand Definitions

3.133 Expand
In the shell command language, when not qualified, the act of applying word expansions.

Note: Word Expansions are defined in detail in XCU Section 2.6 (on page 2483).

3.134 Extended Regular Expression (ERE)
A regular expression (see also Section 3.308, on page 76) that is an alternative to the Basic
Regular Expression using a more extensive syntax, occasionally used by some utilities.

Note: Extended Regular Expressions are described in detail in Section 9.4 (on page 187).

3.135 Extended Security Controls
Implementation-defined security controls allowed by the file access permission and appropriate
privileges (see also Section 3.21, on page 34) mechanisms, through which an implementation can
support different security policies from those described in POSIX.1-2024.

Note: See also Extended Security Controls defined in Section 4.6 (on page 96).

File Access Permissions are defined in detail in Section 4.7 (on page 97).

3.136 Feature Test Macro
A macro used to determine whether a particular set of features is included from a header.

Note: See also XSH Section 2.2 (on page 496).

3.137 Field
In the shell command language, a unit of text that is the result of parameter expansion,
arithmetic expansion, command substitution, or field splitting. During command processing, the
resulting fields are used as the command name and its arguments.

Note: Parameter Expansion is defined in detail in XCU Section 2.6.2 (on page 2485).

Arithmetic Expansion is defined in detail in XCU Section 2.6.4 (on page 2490).

Command Substitution is defined in detail in XCU Section 2.6.3 (on page 2489).

Field Splitting is defined in detail in XCU Section 2.6.5 (on page 2491).

For further information on command processing, see XCU Section 2.9.1 (on page 2500).

50 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions FIFO Special File (or FIFO)

3.138 FIFO Special File (or FIFO)
A type of file with the property that data written to such a file is read on a first-in-first-out basis.

Note: Other characteristics of FIFOs are described in the System Interfaces volume of POSIX.1-2024,
lseek(), open(), read(), and write().

3.139 File
An object that can be written to, or read from, or both. A file has certain attributes, including
access permissions and type. File types include regular file, character special file, block special
file, FIFO special file, symbolic link, socket, and directory. Other types of files may be supported
by the implementation.

3.140 File Description
See Open File Description in Section 3.241 (on page 66).

3.141 File Descriptor
A per-process unique, non-negative integer used to identify an open file for the purpose of file
access. The values 0, 1, and 2 have special meaning and conventional uses, and are referred to as
standard input, standard output, and standard error, respectively. Programs usually take their input
from standard input, and write output on standard output. Diagnostic messages are usually
written on standard error. The value of a newly-created file descriptor is from zero to
{OPEN_MAX}−1. A file descriptor can have a value greater than or equal to {OPEN_MAX} if the
value of {OPEN_MAX} has decreased (see sysconf()) since the file descriptor was opened. File
descriptors may also be used to implement message catalog descriptors and directory streams;
see also Section 3.241 (on page 66).

Note: {OPEN_MAX} is defined in detail in <limits.h>.

3.142 File Group Class
The property of a file indicating access permissions for a process related to the group
identification of a process. A process is in the file group class of a file if the process is not in the
file owner class and if the effective group ID or one of the supplementary group IDs of the
process matches the group ID associated with the file. Other members of the class may be
implementation-defined.

3.143 File Lock
Any advisory lock, including a record lock (see Section 3.302, on page 76), obtained on a file for
the purpose of coordinating transactions among cooperating processes accessing the same file
with the same lock type. See also Section 3.237 (on page 66) and Section 3.289 (on page 74).

Note: All file locks created by interfaces defined in this standard are record locks; however,
implementations commonly also support a file lock extension interface named flock(), which
creates non-record locks (that is, a file lock that can only be held on the whole file).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 51

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

File Lock Definitions

Note: Advisory locks do not prevent a process with sufficient access permissions from modifying the
file without taking locks.

3.144 File Mode
An object containing the file mode bits and some information about the file type of a file.

Note: File mode bits and file types are defined in detail in <sys/stat.h>.

3.145 File Mode Bits
A file’s file permission bits, set-user-ID-on-execution bit (S_ISUID), set-group-ID-on-execution
bit (S_ISGID), and, on directories, the restricted deletion flag bit (S_ISVTX).

Note: File Mode Bits are defined in detail in <sys/stat.h>.

3.146 Filename
A sequence of bytes consisting of 1 to {NAME_MAX} bytes used to name a file. The bytes
composing the name shall not contain the <NUL> or <slash> characters. In the context of a
pathname, each filename shall be followed by a <slash> or a <NUL> character; elsewhere, a
filename followed by a <NUL> character forms a string (but not necessarily a character string).
The filenames dot and dot-dot have special meaning. A filename is sometimes referred to as a
``pathname component’’. See also Section 3.254 (on page 68).

Note: Pathname Resolution is defined in detail in Section 4.16 (on page 105).

3.147 Filename String
A string consisting of a filename followed by a <NUL> character.

3.148 File Offset
The byte position in the file where the next I/O operation begins. Each open file description
associated with a regular file, block special file, or directory has a file offset. A character special
file that does not refer to a terminal device may have a file offset. There is no file offset specified
for a pipe or FIFO.

3.149 File Other Class
The property of a file indicating access permissions for a process related to the user and group
identification of a process. A process is in the file other class of a file if the process is not in the
file owner class or file group class.

3.150 File Owner Class
The property of a file indicating access permissions for a process related to the user

52 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions File Owner Class

identification of a process. A process is in the file owner class of a file if the effective user ID of
the process matches the user ID of the file.

3.151 File Permission Bits
Information about a file that is used, along with other information, to determine whether a
process has read, write, or execute/search permission to a file. The bits are divided into three
parts: owner, group, and other. Each part is used with the corresponding file class of processes.
These bits are contained in the file mode.

Note: File modes are defined in detail in <sys/stat.h>.

File Access Permissions are defined in detail in Section 4.7 (on page 97).

3.152 File Serial Number
A per-file system unique identifier for a file.

3.153 File System
A collection of files and certain of their attributes. It provides a name space for file serial
numbers referring to those files.

3.154 File Type
See File in Section 3.139 (on page 51).

3.155 Filter
A command whose operation consists of reading data from standard input or a list of input files
and writing data to standard output. Typically, its function is to perform some transformation
on the data stream.

3.156 First Open (of a File)
When a process opens a file that is not currently an open file within any process.

3.157 Flow Control
The mechanism employed by a communications provider that constrains a sending entity to
wait until the receiving entities can safely receive additional data without loss.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 53

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Foreground Job Definitions

3.158 Foreground Job
In the context of the System Interfaces volume of POSIX.1-2024, a foreground process group (see
Section 3.160).

In the context of the shell, a job that the shell is waiting for before it executes further commands
or, if interactive, prompts for further commands.

Note: See also Section 3.35 (on page 36), Section 3.180 (on page 57), and Section 3.362 (on page 84).

3.159 Foreground Process
A process that is a member of a foreground process group.

3.160 Foreground Process Group
A process group whose member processes have certain privileges, denied to processes in
background process groups, when accessing their controlling terminal. Each session that has
established a connection with a controlling terminal has at most one process group of the session
as the foreground process group of that controlling terminal.

Note: The General Terminal Interface is defined in detail in Chapter 11.

Note: See also Section 3.158.

3.161 Foreground Process Group ID
The process group ID of the foreground process group.

3.162 Form-Feed Character (<form-feed>)
A character that in the output stream indicates that printing should start on the next page of an
output device. It is the character designated by '\f' in the C language. If the form-feed is not
the first character of an output line, the result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an output device by the system to accomplish the
movement to the next page.

3.163 Graphic Character
A member of the graph character class of the current locale.

Note: The graph character class is defined in detail in Section 7.3.1 (on page 131).

54 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Group Database

3.164 Group Database
A system database that contains at least the following information for each group ID:

• Group name

• Numerical group ID

• List of users allowed in the group

The list of users allowed in the group is used by the newgrp utility.

Note: The newgrp utility is defined in detail in the Shell and Utilities volume of POSIX.1-2024.

3.165 Group ID
A non-negative integer, which can be contained in an object of type gid_t, that is used to identify
a group of system users. Each system user is a member of at least one group. When the identity
of a group is associated with a process, a group ID value is referred to as a real group ID, an
effective group ID, one of the supplementary group IDs, or a saved set-group-ID. The value
(gid_t)−1 shall not be a valid group ID, but does have a defined use in some interfaces defined in
this standard.

3.166 Group Name
A string that is used to identify a group; see also Section 3.164. To be portable across conforming
systems, the value is composed of characters from the portable filename character set. The
<hyphen-minus> should not be used as the first character of a portable group name.

3.167 Hard Limit
A system resource limitation that may be reset to a lesser or greater limit by a privileged process.
A non-privileged process is restricted to only lowering its hard limit.

3.168 Hard Link
See Directory Entry in Section 3.104 (on page 46). A file can have multiple hard links as a result
of an execution of the ln utility (without the −s option) or the link() function. This term is
contrasted against symbolic link; see also Section 3.364 (on page 85).

3.169 Hole
A contiguous region of bytes within a file, all having the value of zero. Not all bytes with the
value zero need belong to a hole; however, all seekable files shall have a virtual hole starting at
the current size of the file. A hole is typically created via truncate(), or if an lseek() call has been
made to position beyond the end of a file and data subsequently written at that point, although
it is up to the implementation to define when sparse files can be created and with what
granularity for the size of holes.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 55

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Home Directory Definitions

3.170 Home Directory
The directory specified by the HOME environment variable.

3.171 Host Byte Order
The arrangement of bytes in any integer type when using a specific machine architecture.

Note: Two common methods of byte ordering are big-endian and little-endian. Big-endian is a format
for storage of binary data in which the most significant byte is placed first, with the rest in
descending order. Little-endian is a format for storage or transmission of binary data in which
the least significant byte is placed first, with the rest in ascending order. See also Section 4.13 (on
page 99).

3.172 Incomplete Line
A sequence of one or more non-<newline> characters at the end of the file.

3.173 Inf
A value representing +infinity or a value representing −infinity that can be stored in a floating
type. Not all systems support the Inf values.

3.174 Interactive Device
A terminal device.

Note: This definition is intended to align with the ISO C standard’s use of ``interactive device’’.

3.175 Interactive Shell
A processing mode of the shell that is suitable for direct user interaction.

3.176 Internationalization
The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs, and coded character sets.

3.177 Interprocess Communication
A functionality enhancement to add a high-performance, deterministic interprocess
communication facility for local communication.

56 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Intrinsic Utility

3.178 Intrinsic Utility
A utility that is not subject to a PA TH search during command search, usually implemented as a
regular built-in utility.

Note: Intrinsic Utilities are defined in detail in XCU Section 1.7 (on page 2470).

3.179 Invoke
To perform command search and execution actions, except that searching for shell functions and
special built-in utilities is suppressed; see also Section 3.130 (on page 49).

Note: Command Search and Execution is defined in detail in XCU Section 2.9.1.4 (on page 2502).

3.180 Job
A background job, a foreground job, or a suspended job.

In the context of the shell, jobs are created when a list (see XCU Section 2.9.3, on page 2505) is
executed while job control is enabled, and may be created when an asynchronous AND-OR list
is executed while job control is disabled.

Note: Job control in the shell is defined in detail in XCU Section 2.11 (on page 2518).

Note: See also Section 3.35 (on page 36), Section 3.158 (on page 54), and Section 3.362 (on page 84).

3.181 Job Control
A facility that allows users selectively to stop (suspend) the execution of processes and continue
(resume) their execution at a later point. The user typically employs this facility via the
interactive interface jointly supplied by the terminal I/O driver and a command interpreter.

The term is also used in connection with system interfaces that can be used by a command
interpreter to implement job control (see for example setpgid()).

Note: Job control in the shell is defined in detail in XCU Section 2.11 (on page 2518).

3.182 Job ID
A handle that is used to refer to a job. The job ID can be any of the forms shown in the following
table:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 57

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Job ID Definitions

Table 3-1 Job ID Formats

Job ID Meaning
%% Current job.

%+ Current job.
%− Previous job.
%n Job number n.
%string Job whose command begins with string.
%?string Job whose command contains string.

3.183 Joinable Thread
A thread that was created either using pthread_create() with the detachstate attribute not set to
PTHREAD_CREATE_DETACHED or using thrd_create(), and for which neither pthread_detach()
nor pthread_join() has been called and returned zero, and neither thrd_detach() nor thrd_join()
has been called and returned thrd_success.

Note: The pthread_attr_setdetachstate(), pthread_create(), pthread_detach(), pthread_join(), thrd_create(),
thrd_detach(), and thrd_join() functions are defined in detail in the System Interfaces volume of
POSIX.1-2024.

3.184 Last Close (of a File)
When a process closes a file, resulting in the file not being an open file within any process.

3.185 Line
A sequence of zero or more non-<newline> characters plus a terminating <newline> character.

3.186 Linger
The period of time before terminating a connection, to allow outstanding data to be transferred.

3.187 Link
In the context of the file hierarchy, either a hard link or a symbolic link.

In the context of the c17 utility, the action performed by the link editor (or linker).

Note: The c17 utility is defined in detail in the Shell and Utilities volume of POSIX.1-2024.

3.188 Link Count
The number of directory entries that refer to a particular file.

58 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Live Process

3.189 Live Process
An address space with one or more threads executing within that address space, and the
required system resources for those threads.

Note: Many of the system resources defined by POSIX.1-2024 are shared among all of the threads
within a process. These include the process ID, the parent process ID, process group ID, session
membership, real, effective, and saved set-user-ID, real, effective, and saved set-group-ID,
supplementary group IDs, current working directory, root directory, file mode creation mask,
and file descriptors.

3.190 Live Thread
A single flow of control within a process. Each thread has its own thread ID, scheduling priority
and policy, errno value, floating point environment, thread-specific key/value bindings, and the
required system resources to support a flow of control. Anything whose address can be
determined by a thread, including but not limited to static variables, storage obtained via
malloc(), directly addressable storage obtained through implementation-defined functions, and
automatic variables, are accessible to all live threads in the same process.

Note: The malloc() function is defined in detail in the System Interfaces volume of POSIX.1-2024.

3.191 Local Customs
The conventions of a geographical area or territory for such things as date, time, and currency
formats.

3.192 Local Interprocess Communication (Local IPC)
The transfer of data between processes in the same system.

3.193 Locale
The definition of the subset of a user’s environment that depends on language and cultural
conventions.

Note: Locales are defined in detail in Chapter 7 (on page 127).

3.194 Localization
The process of establishing information within a computer system specific to the operation of
particular native languages, local customs, and coded character sets.

3.195 Lock-Free Operation
An operation that does not require the use of a lock such as a mutex in order to avoid data races.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 59

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Login Definitions

3.196 Login
The unspecified activity by which a user gains access to the system. Each login is associated
with exactly one login name.

3.197 Login Name
A user name that is associated with a login.

3.198 Map
To create an association between a page-aligned range of the address space of a process and
some memory object, such that a reference to an address in that range of the address space
results in a reference to the associated memory object. The mapped memory object is not
necessarily memory-resident.

3.199 Matched
A state applying to a sequence of zero or more characters when the characters in the sequence
correspond to a sequence of characters defined by a basic regular expression or extended regular
expression pattern.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 179).

3.200 Memory Mapped Files
A facility to allow applications to access files as part of the address space.

3.201 Memory Object
One of:

• A file (see Section 3.139, on page 51)

• An anonymous memory object (see Section 3.16, on page 33)

• A shared memory object (see Section 3.332, on page 80)

• A typed memory object (see Section 3.401, on page 90)

When used in conjunction with mmap(), a memory object appears in the address space of the
calling process.

Note: The mmap() function is defined in detail in the System Interfaces volume of POSIX.1-2024.

3.202 Memory-Resident
The process of managing the implementation in such a way as to provide an upper bound on
memory access times.

60 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Message

3.203 Message
In the context of programmatic message passing, information that can be transferred between
processes or threads by being added to and removed from a message queue. A message consists
of a fixed-size message buffer.

3.204 Message Catalog
In the context of providing natural language messages to the user, a file or storage area
containing program messages, command prompts, and responses to prompts for a particular
native language, territory, and codeset.

3.205 Message Catalog Descriptor
In the context of providing natural language messages to the user, a per-process unique value
used to identify an open message catalog. A message catalog descriptor may be implemented
using a file descriptor.

3.206 Message Queue
In the context of programmatic message passing, an object to which messages can be added and
removed. Messages may be removed in the order in which they were added or in priority order.

3.207 Messages Object
A file containing message identifiers and translations in an unspecified format. Used by the
gettext family of functions and the gettext and ngettext utilities for internationalization and
localization of programs and scripts. Messages objects have the filename suffix .mo, and can be
created by the msgfmt utility.

See also Section 3.386 (on page 88).

3.208 Mode
A collection of attributes that specifies a file’s type and its access permissions.

Note: File Access Permissions are defined in detail in Section 4.7 (on page 97).

3.209 Monotonic Clock
A clock measuring real time, whose value cannot be set via clock_settime() and which cannot
have negative clock jumps.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 61

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Mount Point Definitions

3.210 Mount Point
Either the system root directory or a directory for which the st_dev field of structure stat differs
from that of its parent directory.

Note: The stat structure is defined in detail in <sys/stat.h>.

3.211 Multi-Character Collating Element
A sequence of two or more characters that collate as an entity. For example, in some coded
character sets, an accented character is represented by a non-spacing accent, followed by the
letter. Other examples are the Spanish elements ch and ll.

3.212 Multi-Threaded Library
A library containing object files that were produced by compiling with c17 using the flags
output by getconf POSIX_V8_THREADS_CFLAGS, or by compiling using a non-standard utility
with equivalent flags, and which makes use of interfaces that are only made available by c17
when the −l pthread option is used or makes use of SIGEV_THREAD notifications.

3.213 Multi-Threaded Process
A process that contains more than one thread.

3.214 Multi-Threaded Program
A program whose executable file was produced by compiling with c17 using the flags output by
getconf POSIX_V8_THREADS_CFLAGS, and linking with c17 using the flags output by getconf
POSIX_V8_THREADS_LDFLAGS and the −l pthread option, or by compiling and linking using
a non-standard utility with equivalent flags. Execution of a multi-threaded program initially
creates a single-threaded process; the process can create additional threads using
pthread_create(), thrd_create(), or SIGEV_THREAD notifications.

3.215 Mutex
A synchronization object used to allow multiple threads to serialize their access to shared data.
The name derives from the capability it provides; namely, mutual-exclusion. The thread that has
locked a mutex becomes its owner and remains the owner until that same thread unlocks the
mutex.

There are two types of mutex: those of type pthread_mutex_t which are initialized using
pthread_mutex_init() and those of type mtx_t which are initialized using mtx_init(). If an
application attempts to use the two types interchangeably (that is, pass a mutex of type
pthread_mutex_t to a function that takes a mtx_t, or vice versa), the behavior is undefined.

Note: The pthread_mutex_init() and mtx_init() functions are defined in detail in the System Interfaces
volume of POSIX.1-2024.

62 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Name

3.216 Name
In the shell command language, a word consisting solely of underscores, digits, and alphabetics
from the portable character set. The first character of a name is not a digit.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 117).

3.217 NaN (Not a Number)
A set of values that may be stored in a floating type but that are neither Inf nor valid floating-
point numbers. Not all systems support NaN values.

3.218 Native Language
A computer user’s spoken or written language, such as American English, British English,
Danish, Dutch, French, German, Italian, Japanese, Norwegian, or Swedish.

3.219 Negative
When describing a value (not a sign), less than zero. Note that in the phrase ``negative zero’’ it
describes a sign, and therefore negative zero (also represented as −0.0) is not a negative value.

3.220 Negative Response
An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword noexpr, matching an extended regular expression in the current locale.

Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 159).

3.221 Network
A collection of interconnected hosts.

Note: The term ``network’’ in POSIX.1-2024 is used to refer to the network of hosts. The term ``batch
system’’ is used to refer to the network of batch servers.

3.222 Network Address
A network-visible identifier used to designate specific endpoints in a network. Specific
endpoints on host systems have addresses, and host systems may also have addresses.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 63

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Network Byte Order Definitions

3.223 Network Byte Order
The way of representing any integer type such that, when transmitted over a network via a
network endpoint, the int type is transmitted as an appropriate number of octets with the most
significant octet first, followed by any other octets in descending order of significance.

Note: This order is more commonly known as big-endian ordering. See also Section 4.13 (on page 99).

3.224 Newline Character (<newline>)
A character that in the output stream indicates that printing should start at the beginning of the
next line. It is the character designated by '\n' in the C language. It is unspecified whether this
character is the exact sequence transmitted to an output device by the system to accomplish the
movement to the next line.

3.225 Nice Value
A number used as advice to the system to alter process scheduling. Numerically smaller values
give a process additional preference when scheduling a process to run. Numerically larger
values reduce the preference and make a process less likely to run. Typically, a process with a
smaller nice value runs to completion more quickly than an equivalent process with a higher
nice value. The symbol {NZERO} specifies the default nice value of the system.

3.226 Non-Blocking
A property of an open file description that causes function calls involving it to return without
delay when it is detected that the requested action associated with the function call cannot be
completed without unknown delay.

Note: The exact semantics are dependent on the type of file associated with the open file description.
For data reads from devices such as ttys and FIFOs, this property causes the read to return
immediately when no data was available. Similarly, for writes, it causes the call to return
immediately when the thread would otherwise be delayed in the write operation; for example,
because no space was available. For networking, it causes functions not to await protocol events
(for example, acknowledgements) to occur. See also XSH Section 2.10.7 (on page 551).

3.227 Non-Spacing Characters
A character, such as a character representing a diacritical mark in the ISO/IEC 6937: 2001
standard coded graphic character set, which is used in combination with other characters to
form composite graphic symbols.

3.228 NUL
A character with all bits set to zero.

64 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Null Byte

3.229 Null Byte
A byte with all bits set to zero.

3.230 Null Pointer
A pointer obtained by converting an integer constant expression with the value 0, or such an
expression cast to type void *, to a pointer type; for example, (char *)0. The C language
guarantees that a null pointer compares unequal to a pointer to any object or function, so it is
used by many functions that return pointers to indicate an error. POSIX.1-2024 additionally
guarantees that any pointer object whose representation has all bits set to zero, perhaps by
memset() to 0 or by calloc(), is interpreted as a null pointer.

3.231 Null String
See Empty String in Section 3.121 (on page 48).

3.232 Null Terminator
A term used for the null byte when used as a terminator for a string.

3.233 Null Wide-Character Code
A wide-character code with all bits set to zero.

3.234 Number-Sign Character (<number-sign>)
The character '#', also known as hash sign.

3.235 Object File
A regular file containing the output of a compiler, formatted as input to a linkage editor for
linking with other object files into an executable form. The methods of linking are unspecified
and may involve the dynamic linking of objects at runtime. The internal format of an object file
is unspecified, but a conforming application cannot assume an object file is a text file.

3.236 Octet
Unit of data representation that consists of eight contiguous bits.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 65

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

OFD-Owned File Lock Definitions

3.237 OFD-Owned File Lock
A record lock owned by an open file description. OFD-owned file locks are obtained through the
use of fcntl() with F_OFD_SETLK or F_OFD_SETLKW. Whenever a file descriptor associated
with the owning open file description is inherited these locks remain in effect. OFD-owned file
locks are automatically released on the last close of the open file description. These locks are
only shared among file descriptors associated with the same open file description. Thus, a multi-
threaded process can use multiple open file descriptions (such as by open()) to create
independent OFD-owned locks that can then be used to coordinate access patterns to the same
file, while multiple file descriptors associated with the same open file description (such as by
dup()) share lock actions among all other descriptors associated with the same open file
description.

3.238 Offset Maximum
An attribute of an open file description representing the largest value that can be used as a file
offset.

3.239 Opaque Address
An address such that the entity making use of it requires no details about its contents or format.

3.240 Open File
A file that is currently associated with a file descriptor.

3.241 Open File Description
A record of how a process or group of processes is accessing a file. Each file descriptor refers to
exactly one open file description, but an open file description can be referred to by more than
one file descriptor. The file offset, file status, and file access modes are attributes of an open file
description.

3.242 Operand
An argument to a command that is generally used as an object supplying information to a utility
necessary to complete its processing. Operands generally follow the options in a command line.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

3.243 Operator
In the shell command language, either a control operator or a redirection operator.

66 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Option

3.244 Option
An argument to a command that is generally used to specify changes in the utility’s default
behavior.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

3.245 Option-Argument
A parameter that follows certain options. In some cases an option-argument immediately
follows the option character within the same argument string as the option; otherwise the
option-argument is the next argument string.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

3.246 Orientation
A stream has one of three orientations: unoriented, byte-oriented, or wide-oriented.

Note: For further information, see XSH Section 2.5.2 (on page 524).

3.247 Orphaned Process Group
A process group in which the parent of every member is either itself a member of the group or is
not a member of the group’s session.

3.248 Page
The granularity of process memory mapping or locking.

Physical memory and memory objects can be mapped into the address space of a process on
page boundaries and in integral multiples of pages. Process address space can be locked into
memory (made memory-resident) on page boundaries and in integral multiples of pages.

3.249 Page Size
The size, in bytes, of the system unit of memory allocation, protection, and mapping. On
systems that have segment rather than page-based memory architectures, the term ``page’’
means a segment.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 67

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Parameter Definitions

3.250 Parameter
In the shell command language, an entity that stores values. There are three types of parameters:
variables (named parameters), positional parameters, and special parameters. Parameter
expansion is accomplished by introducing a parameter with the '$' character.

Note: See also XCU Section 2.5 (on page 2478).

In the C language, an object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier following the macro name in a function-like
macro definition.

3.251 Parent Directory
When discussing a given directory, the directory that both contains a directory entry for the
given directory and is represented by the pathname dot-dot in the given directory.

When discussing other types of files, a directory containing a directory entry for the file under
discussion.

This concept does not apply to dot and dot-dot.

3.252 Parent Process
The process which created (or inherited) the process under discussion.

3.253 Parent Process ID
An attribute of a new process identifying the parent of the process. The parent process ID of a
process is the process ID of its creator, for the lifetime of the creator. After the creator ’s lifetime
has ended, the parent process ID is the process ID of an implementation-defined system process.

3.254 Pathname
A string that is used to identify a file. In the context of POSIX.1-2024, a pathname may be limited
to {PATH_MAX} bytes, including the terminating null byte. It has optional beginning <slash>
characters, followed by zero or more filenames separated by <slash> characters. A pathname
can optionally contain one or more trailing <slash> characters. Multiple successive <slash>
characters are considered to be the same as one <slash>, except it is implementation-defined
whether the case of exactly two leading <slash> characters is treated specially.

Note: If a pathname consists of only bytes corresponding to characters from the portable filename
character set (see Section 3.265, on page 70), <slash> characters, and a single terminating
<NUL> character, the pathname will be usable as a character string in all supported locales;
otherwise, the pathname might only be a string (rather than a character string). Additionally,
since the single-byte encoding of the <slash> character is required to be the same across all
locales and to not occur within a multi-byte character, references to a <slash> character within a
pathname are well-defined even when the pathname is not a character string. However, this
property does not necessarily hold for the remaining characters within the portable filename
character set.

Pathname Resolution is defined in detail in Section 4.16 (on page 105).

68 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Pathname Component

3.255 Pathname Component
See Filename in Section 3.146 (on page 52).

3.256 Path Prefix
The part of a pathname up to, but not including, the last component and any trailing <slash>
characters, unless the pathname consists entirely of <slash> characters, in which case the path
prefix is '/' for a pathname containing either a single <slash> or three or more <slash>
characters, and '//' for the pathname //. The path prefix of a pathname containing no <slash>
characters is empty, but is treated as referring to the current working directory.

Note: The term is used both in the sense of identifying part of a pathname that forms the prefix and of
joining a non-empty path prefix to a filename to form a pathname. In the latter case, the path
prefix need not have a trailing <slash> (in which case the joining is done with a <slash>
character).

3.257 Pattern
A sequence of characters used either with regular expression notation or with shell pattern
matching notation.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 179).

Shell pattern matching notation is defined in detail in Section 2.14 (on page 2523).

The syntaxes of the two types of patterns are similar, but not identical; POSIX.1-2024 always
indicates the type of pattern being referred to in the immediate context of the use of the term.

3.258 Period Character (<period>)
The character '.'. The term ``period’’ is contrasted with dot (see also Section 3.110, on page 47),
which is used to describe a specific directory entry.

3.259 Permissions
Attributes of an object that determine the privilege necessary to access or manipulate the object.

Note: File Access Permissions are defined in detail in Section 4.7 (on page 97).

3.260 Persistence
A mode for semaphores, shared memory, and message queues requiring that the object and its
state (including data, if any) are preserved after the object is no longer referenced by any
process.

Persistence of an object does not imply that the state of the object is maintained across a system
crash or a system reboot.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 69

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Pipe Definitions

3.261 Pipe
An object identical to a FIFO which has no links in the file hierarchy.

Note: The pipe() function is defined in detail in the System Interfaces volume of POSIX.1-2024.

3.262 Polling
A scheduling scheme whereby the local process periodically checks until the pre-specified
events (for example, read, write) have occurred.

3.263 Portable Character Set
The collection of characters that are required to be present in all locales supported by
conforming systems.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 117).

This term is contrasted against the smaller portable filename character set; see also Section 3.265.

3.264 Portable Filename
A filename consisting only of characters from the portable filename character set.

Note: Applications should avoid using filenames that have the <hyphen-minus> character as the first
character since this may cause problems when filenames are passed as command line
arguments.

3.265 Portable Filename Character Set
The set of characters from which portable filenames are constructed.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the <period>, <underscore>, and <hyphen-minus> characters,
respectively. See also Section 3.254 (on page 68).

3.266 Portable Messages Object Source File (or Dot-Po File)
A text file containing messages and directives. A portable messages object source file can be
compiled into a messages object by the msgfmt utility.

Note: By convention, portable messages object source files have filenames ending with the .po suffix.
Utility descriptions in this standard frequently use dot-po file as a shorthand for portable
messages object source file (even though the .po suffix need not be included in the filename).
Template portable messages object source files can be created from C-language source files by
the xgettext utility.

70 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Positional Parameter

3.267 Positional Parameter
In the shell command language, a parameter denoted by a decimal representation of a positive
integer.

Note: For further information, see XCU Section 2.5.1 (on page 2479).

3.268 Positive
When describing a value (not a sign), greater than zero. Note that in the common phrase
``positive zero’’ (which is not used in this standard, although the representation +0.0 is) it
describes a sign, and therefore positive zero (+0.0) is not a positive value.

3.269 Preallocation
The reservation of resources in a system for a particular use.

Preallocation does not imply that the resources are immediately allocated to that use, but merely
indicates that they are guaranteed to be available in bounded time when needed.

3.270 Preempted Process (or Thread)
A running thread whose execution is suspended due to another thread becoming runnable at a
higher priority.

3.271 Previous Job
In the context of job control, the job used as the default for the fg or bg utilities if the current job
exits. There is at most one previous job; see also Section 3.182 (on page 57).

3.272 Printable Character
One of the characters included in the print character classification of the LC_CTYPE category in
the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 131).

3.273 Printable File
A text file consisting only of the characters included in the print and space character
classifications of the LC_CTYPE category and the <backspace>, all in the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 131).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 71

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Priority Definitions

3.274 Priority
A non-negative integer associated with processes or threads whose value is constrained to a
range defined by the applicable scheduling policy. Numerically higher values represent higher
priorities.

3.275 Priority Inversion
A condition in which a thread that is not voluntarily suspended (waiting for an event or time
delay) is not running while a lower priority thread is running. Such blocking of the higher
priority thread is often caused by contention for a shared resource.

3.276 Priority Scheduling
A performance and determinism improvement facility to allow applications to determine the
order in which threads that are ready to run are granted access to processor resources.

3.277 Priority-Based Scheduling
Scheduling in which the selection of a running thread is determined by the priorities of the
runnable processes or threads.

3.278 Privilege
See Appropriate Privileges in Section 3.21 (on page 34).

3.279 Process
A live process (see Section 3.189, on page 59) or a zombie process (see Section 3.426, on page 94).
The lifetime of a process is described in Section 3.285 (on page 73).

3.280 Process Group
A collection of processes that permits the signaling of related processes. Each process in the
system is a member of a process group that is identified by a process group ID. A newly created
process joins the process group of its creator.

3.281 Process Group ID
The unique positive integer identifier representing a process group during its lifetime.

Note: See also Process Group ID Reuse defined in Section 4.17 (on page 106).

3.282 Process Group Leader
A process whose process ID is the same as its process group ID.

72 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Process Group Lifetime

3.283 Process Group Lifetime
The period of time that begins when a process group is created and ends when the last
remaining process in the group leaves the group, due either to the end of the lifetime of the last
process or to the last remaining process calling the setsid() or setpgid() functions.

Note: The setsid() and setpgid() functions are defined in detail in the System Interfaces volume of
POSIX.1-2024.

3.284 Process ID
The unique positive integer identifier representing a process during its lifetime.

Note: See also Process ID Reuse defined in Section 4.17 (on page 106).

3.285 Process Lifetime
The period of time that begins when a process is created and ends when its process ID is
returned to the system.

See also Section 3.189 (on page 59), Section 3.287, and Section 3.426 (on page 94).

Note: Process creation is defined in detail in the descriptions of the fork(), posix_spawn(), and
posix_spawnp() functions in the System Interfaces volume of POSIX.1-2024.

3.286 Process Memory Locking
A performance improvement facility to bind application programs into the high-performance
random access memory of a computer system. This avoids potential latencies introduced by the
operating system in storing parts of a program that were not recently referenced on secondary
memory devices.

3.287 Process Termination
There are two kinds of process termination:

1. Normal termination occurs by a return from main(), when requested with the exit(),
_exit(), or _Exit() functions; or when the last thread in the process terminates by
returning from its start function, by calling the pthread_exit() or thrd_exit() function, or
through cancellation.

2. Abnormal termination occurs when requested by the abort() function or when some
signals are received.

Note: The consequences of process termination can be found in the description of the _Exit() function
in the System Interfaces volume of POSIX.1-2024. The _exit(), _Exit(), abort(), and exit()
functions are defined in detail in the System Interfaces volume of POSIX.1-2024.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 73

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Process Virtual Time Definitions

3.288 Process Virtual Time
The measurement of time in units elapsed by the system clock while a process is executing.

3.289 Process-Owned File Lock
A record lock owned by a process. Process-owned file locks are obtained through the use of
fcntl() with F_SETLK or F_SETLKW, or the use of lockf(). Process-owned file locks are not
inherited by child processes, but are preserved across the exec family of functions. A process-
owned file lock is released when the process exits, or when any file descriptor in the process
referring to the same file is closed (even if via a different open file description). These locks are
shared among all open file descriptions referring to the same file in the process, making the use
of process-owned file locks unsuitable for use for coordination of record access among multiple
threads in a process.

3.290 Process-To-Process Communication
The transfer of data between processes.

3.291 Program
A prepared sequence of instructions to the system to accomplish a defined task. The term
``program’’ in POSIX.1-2024 encompasses applications written in the Shell Command Language,
complex utility input languages (for example, awk, lex, sed, and so on), and high-level languages.

3.292 Protocol
A set of semantic and syntactic rules for exchanging information.

3.293 Pseudo-Terminal
A facility that provides an interface that is identical to the terminal subsystem, except where
noted otherwise in POSIX.1-2024. A pseudo-terminal is composed of two devices: the ``manager
device’’ and a ``subsidiary device’’. The subsidiary device provides processes with an interface
that is identical to the terminal interface, although there need not be hardware behind that
interface. Anything written on the manager device is presented to the subsidiary as an input and
anything written on the subsidiary device is presented as an input on the manager side.

3.294 Radix Character (or Decimal-Point Character)
The character that separates the integer part of a number from the fractional part.

74 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Read-Only File System

3.295 Read-Only File System
A file system that has implementation-defined characteristics restricting modifications.

Note: File Times Update is described in detail in Section 4.12 (on page 98).

3.296 Read-Write Lock
Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have write access at any given time.
They are typically used to protect data that is read-only more frequently than it is changed.

Read-write locks can be used to synchronize threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialized for this behavior.

3.297 Real Group ID
The attribute of a process that, at the time of process creation, identifies the group of the user
who created the process; see also Section 3.165 (on page 55).

3.298 Real Time
Time measured as total units elapsed by the system clock without regard to which thread is
executing.

3.299 Realtime Signal Extension
A determinism improvement facility to enable asynchronous signal notifications to an
application to be queued without impacting compatibility with the existing signal functions.

3.300 Real User ID
The attribute of a process that, at the time of process creation, identifies the user who created the
process; see also Section 3.408 (on page 91).

3.301 Record
A collection of related data units or words which is treated as a unit.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 75

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Record Lock Definitions

3.302 Record Lock
A file lock held on a record within a file. A record lock can be used to lock a whole file by
specifying a special record with starting offset zero and length zero. (This special record extends
to any future end-of-file, not just the current end-of-file.) This includes an OFD-owned file lock
(see Section 3.237, on page 66) or a process-owned file lock (see Section 3.289, on page 74). It is
unspecified whether an implementation will detect and prevent deadlocks caused by two
competing lock owners holding separate locks where each tries to obtain a lock that is blocked
by the other’s lock.

3.303 Redirection
In the shell command language, a method of associating files with the input or output of
commands.

Note: For further information, see XCU Section 2.7 (on page 2493).

3.304 Redirection Operator
In the shell command language, a token that performs a redirection function. It is one of the
following symbols:

< > >| << >> <& >& <<- <>

3.305 Referenced Shared Memory Object
A shared memory object that is open or has one or more mappings defined on it.

3.306 Refresh
Make the information on the user’s terminal screen up-to-date.

3.307 Regular Built-In Utility (or Regular Built-In)
See Built-In Utility in Section 3.54 (on page 39).

3.308 Regular Expression
A pattern that selects specific strings from a set of character strings.

Note: Regular Expressions are described in detail in Chapter 9 (on page 179).

3.309 Region
In the context of the address space of a process, a sequence of addresses.

In the context of a file, a sequence of offsets.

76 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Regular File

3.310 Regular File
A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
system.

3.311 Relative Pathname
A pathname not beginning with a <slash> character.

Note: Pathname Resolution is defined in detail in Section 4.16 (on page 105).

3.312 Relocatable File
A file holding code or data suitable for linking with other object files to create an executable or a
shared object file.

3.313 Relocation
The process of connecting symbolic references with symbolic definitions. For example, when a
program calls a function, the associated call instruction transfers control to the proper
destination address at execution.

3.314 (Time) Resolution
The minimum time interval that a clock can measure or whose passage a timer can detect.

3.315 Robust Mutex
A mutex with the robust attribute set.

Note: The robust attribute is defined in detail by the pthread_mutexattr_getrobust() function.

3.316 Root Directory
A directory, associated with a process, that is used in pathname resolution for pathnames that
begin with a <slash> character.

3.317 Runnable Process (or Thread)
A thread that is capable of being a running thread, but for which no processor is available.

3.318 Running Process (or Thread)
A thread currently executing on a processor. On multi-processor systems there may be more
than one such thread in a system at a time.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 77

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Saved Resource Limits Definitions

3.319 Saved Resource Limits
An attribute of a process that provides some flexibility in the handling of unrepresentable
resource limits, as described in the exec family of functions and setrlimit().

Note: The exec and setrlimit() functions are defined in detail in the System Interfaces volume of
POSIX.1-2024.

3.320 Saved Set-Group-ID
An attribute of a process that allows some flexibility in the assignment of the effective group ID
attribute, as described in the exec family of functions and setgid().

Note: The exec and setgid() functions are defined in detail in the System Interfaces volume of
POSIX.1-2024.

3.321 Saved Set-User-ID
An attribute of a process that allows some flexibility in the assignment of the effective user ID
attribute, as described in the exec family of functions and setuid().

Note: The exec and setuid() functions are defined in detail in the System Interfaces volume of
POSIX.1-2024.

3.322 Scheduling
The application of a policy to select a runnable process or thread to become a running process or
thread, or to alter one or more of the thread lists.

3.323 Scheduling Allocation Domain
The set of processors on which an individual thread can be scheduled at any given time.

3.324 Scheduling Contention Scope
A property of a thread that defines the set of threads against which that thread competes for
resources.

For example, in a scheduling decision, threads sharing scheduling contention scope compete for
processor resources. In POSIX.1-2024, a thread has scheduling contention scope of either
PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS.

78 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Scheduling Policy

3.325 Scheduling Policy
A set of rules that is used to determine the order of execution of processes or threads to achieve
some goal.

Note: Scheduling Policy is defined in detail in Section 4.18 (on page 107).

3.326 Screen
A rectangular region of columns and lines on a terminal display. A screen may be a portion of a
physical display device or may occupy the entire physical area of the display device.

3.327 Scroll
To move the representation of data vertically or horizontally relative to the terminal screen.
There are two types of scrolling:

1. The cursor moves with the data.

2. The cursor remains stationary while the data moves.

3.328 Semaphore
A minimum synchronization primitive to serve as a basis for more complex synchronization
mechanisms to be defined by the application program.

Note: Semaphores are defined in detail in Section 4.20 (on page 108).

3.329 Session
A collection of process groups established for job control purposes. Each process group is a
member of a session. A process is considered to be a member of the session of which its process
group is a member. A newly created process joins the session of its creator. A process can alter
its session membership; see setsid(). There can be multiple process groups in the same session.

Note: The setsid() function is defined in detail in the System Interfaces volume of POSIX.1-2024.

3.330 Session Leader
A process that has created a session.

Note: For further information, see the setsid() function defined in the System Interfaces volume of
POSIX.1-2024.

3.331 Session Lifetime
The period between when a session is created and the end of the lifetime of all the process
groups that remain as members of the session.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 79

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shared Memory Object Definitions

3.332 Shared Memory Object
An object that represents memory that can be mapped concurrently into the address space of
more than one process.

3.333 Shell
A program that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal.

3.334 Shell, the
The Shell Command Language Interpreter; a specific instance of a shell.

Note: For further information, see the sh utility defined in the Shell and Utilities volume of
POSIX.1-2024.

3.335 Shell Script
A file containing shell commands. If the file is made executable, it can be executed by specifying
its name as a simple command. Execution of a shell script causes a shell to execute the
commands within the script. Alternatively, a shell can be requested to execute the commands in
a shell script by specifying the name of the shell script as the operand to the sh utility.

Note: Simple Commands are defined in detail in XCU Section 2.9.1 (on page 2500).

The sh utility is defined in detail in the Shell and Utilities volume of POSIX.1-2024.

3.336 Signal
A mechanism by which a process or thread may be notified of, or affected by, an event occurring
in the system. Examples of such events include hardware exceptions and specific actions by
processes. The term signal is also used to refer to the event itself.

3.337 Signal Stack
Memory established for a thread, in which signal handlers catching signals sent to that thread
are executed.

3.338 Single-Quote Character
The character designated by '\'' in the C language, also known as <apostrophe>.

3.339 Single-Threaded Process
A process that contains a single thread.

80 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Single-Threaded Program

3.340 Single-Threaded Program
A program whose executable file was produced by compiling with c17 without using the flags
output by getconf POSIX_V8_THREADS_CFLAGS and linking with c17 using neither the flags
output by getconf POSIX_V8_THREADS_LDFLAGS nor the −l pthread option, or by compiling
and linking using a non-standard utility with equivalent flags. Execution of a single-threaded
program creates a single-threaded process; if the process attempts to create additional threads
using pthread_create(), thrd_create(), or SIGEV_THREAD notifications, the behavior is undefined.
If the process uses dlopen() to load a multi-threaded library, the behavior is undefined.

3.341 Slash Character (<slash>)
The character '/', also known as solidus.

3.342 Socket
A file of a particular type that is used as a communications endpoint for process-to-process
communication as described in the System Interfaces volume of POSIX.1-2024.

3.343 Socket Address
An address associated with a socket or remote endpoint, including an address family identifier
and addressing information specific to that address family. The address may include multiple
parts, such as a network address associated with a host system and an identifier for a specific
endpoint.

3.344 Soft Limit
A resource limitation established for each process that the process may set to any value less than
or equal to the hard limit.

3.345 Source Code
When dealing with the Shell Command Language, input to the command language interpreter.
The term ``shell script’’ is synonymous with this meaning.

When dealing with an ISO/IEC-conforming programming language, source code is input to a
compiler conforming to that ISO/IEC standard.

Source code also refers to the input statements prepared for the following standard utilities: awk,
bc, ed, ex, lex, localedef, make, sed, and yacc.

Source code can also refer to a collection of sources meeting any or all of these meanings.

Note: The awk, bc, ed, ex, lex, localedef, make, sed, and yacc utilities are defined in detail in the Shell and
Utilities volume of POSIX.1-2024.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 81

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Space Character (<space>) Definitions

3.346 Space Character (<space>)
The character defined in the portable character set as <space>. The <space> character is a
member of the space character class of the current locale, but represents the single character, and
not all of the possible members of the class; see also Section 3.413 (on page 92).

3.347 Sparse File
A file that contains more holes than just the virtual hole at the end of the file.

3.348 Spawn
A process creation primitive useful for systems that have difficulty with fork() and as an efficient
replacement for fork()/exec.

3.349 Special Built-In Utility (or Special Built-In)
See Built-In Utility in Section 3.54 (on page 39).

3.350 Special Parameter
In the shell command language, a parameter named by a single character from the following list:

* @ # ? ! - $ 0

Note: For further information, see XCU Section 2.5.2 (on page 2479).

3.351 Spin Lock
A synchronization object used to allow multiple threads to serialize their access to shared data.

3.352 Sporadic Server
A scheduling policy for threads and processes that reserves a certain amount of execution
capacity for processing aperiodic events at a given priority level.

3.353 Standard Error
In the context of file descriptors (see Section 3.141, on page 51), file descriptor number 2.

In the context of standard I/O streams (see XSH Section 2.5, on page 521), an output stream
usually intended to be used for diagnostic messages, and accessed using the global variable
stderr.

Note: The file descriptor underlying stderr is initially 2, but it can be changed by freopen() to 0 or 1
(and implementations may have extensions that allow it to be changed to other numbers).
Therefore, writing to the standard error stream does not always produce output on the standard
error file descriptor.

82 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Standard Error

3.354 Standard Input
In the context of file descriptors (see Section 3.141, on page 51), file descriptor number 0.

In the context of standard I/O streams (see XSH Section 2.5, on page 521), an input stream
usually intended to be used for primary data input, and accessed using the global variable stdin.

Note: The file descriptor underlying stdin is initially 0; this cannot change through the use of
interfaces defined in this standard, but implementations may have extensions that allow it to be
changed. Therefore, in conforming applications using extensions, reading from the standard
input stream does not always obtain input from the standard input file descriptor.

3.355 Standard Output
In the context of file descriptors (see Section 3.141, on page 51), file descriptor number 1.

In the context of standard I/O streams (see XSH Section 2.5, on page 521), an output stream
usually intended to be used for primary data output, and accessed using the global variable
stdout.

Note: The file descriptor underlying stdout is initially 1, but it can be changed by freopen() to 0 (and
implementations may have extensions that allow it to be changed to other numbers). Therefore,
writing to the standard output stream does not always produce output on the standard output
file descriptor.

3.356 Standard Utilities
The utilities described in the Shell and Utilities volume of POSIX.1-2024.

3.357 Stream
Appearing in lowercase, a stream is an ordered sequence of bytes, as described by the ISO C
standard.

In the shell command language, each stream is associated with a file descriptor. These can be
opened using redirection operators.

Note: Redirection is defined in detail in XCU Section 2.7 (on page 2493).

In the C language, each stream is accessed via a file access object and is either a stream
associated with a file descriptor or a memory stream. A file access object associated with a file
descriptor can be created by the fdopen(), fopen(), or popen() functions. A file access object for a
memory stream can be created by the fmemopen() or open_memstream() functions. A stream
provides the additional services of user-selectable buffering and formatted input and output.

Note: For further information, see XSH Section 2.5 (on page 521).

The fdopen(), fmemopen(), fopen(), open_memstream(), and popen() functions are defined in detail
in the System Interfaces volume of POSIX.1-2024.

3.358 String
A contiguous sequence of bytes terminated by and including the first null byte.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 83

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Subshell Definitions

3.359 Subshell
A shell execution environment, distinguished from the main or current shell execution
environment.

Note: For further information, see XCU Section 2.13 (on page 2522).

3.360 Successfully Transferred
For a write operation to a regular file, when the system ensures that all data written is readable
on any subsequent open of the file (even one that follows a system or power failure) in the
absence of a failure of the physical storage medium.

For a read operation, when an image of the data on the physical storage medium is available to
the requesting process.

3.361 Supplementary Group ID
An attribute of a process used in determining file access permissions. A process has up to
{NGROUPS_MAX} supplementary group IDs in addition to the effective group ID. The
supplementary group IDs of a process are set to the supplementary group IDs of the parent
process when the process is created.

3.362 Suspended Job
In the context of the System Interfaces volume of POSIX.1-2024, a job that has received a
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal that caused the process group to stop.

In the context of the shell, a job, other than a non-job-control background job, that became
suspended when a process returned a wait status to the shell indicating that the process was
stopped by a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal.

A suspended job is a job-control background job, but a job-control background job is not
necessarily a suspended job. A non-job-control background job is never a suspended job, even if
it includes processes that have been stopped by a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU
signal.

Note: See also Section 3.35 (on page 36), Section 3.180 (on page 57), and Section 3.158 (on page 54).

3.363 Symbolic Constant
An object-like macro defined with a constant value.

Unless stated otherwise, the following shall apply to every symbolic constant:

• It expands to a compile-time constant expression with an integer type.

• It may be defined as another type of constant—e.g., an enumeration constant—as well as
being a macro.

• It need not be usable in #if preprocessing directives.

84 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Symbolic Link

3.364 Symbolic Link
A type of file with the property that when the file is encountered during pathname resolution, a
string stored by the file is used to modify the pathname resolution. The stored string has a
length of {SYMLINK_MAX} bytes or fewer.

Note: Pathname Resolution is defined in detail in Section 4.16 (on page 105).

3.365 Synchronization Operation
An operation that synchronizes memory. See Section 4.15 (on page 100).

3.366 Synchronized Input and Output
A determinism and robustness improvement mechanism to enhance the data input and output
mechanisms, so that an application can be assured that the data being manipulated is physically
present on secondary mass storage devices.

3.367 Synchronized I/O Completion
The state of an I/O operation that has either been successfully transferred or diagnosed as
unsuccessful.

3.368 Synchronized I/O Data Integrity Completion
For read, when the operation has been completed or diagnosed if unsuccessful. The read is
complete only when an image of the data has been successfully transferred to the requesting
process. If there were any pending write requests affecting the data to be read at the time that
the synchronized read operation was requested, these write requests are successfully transferred
prior to reading the data.

For write, when the operation has been completed or diagnosed if unsuccessful. The write is
complete only when the data specified in the write request is successfully transferred and all file
system information required to retrieve the data is successfully transferred.

For the purpose of this definition, an operation that reads or searches a directory is considered to
be a read operation, an operation that modifies a directory is considered to be a write operation,
and a directory’s entries are considered to be the data read or written.

This standard provides no way to synchronize the contents or attributes of a symbolic link.

File attributes that are not necessary for data retrieval (access time, modification time, status
change time) need not be successfully transferred prior to returning to the calling process.

3.369 Synchronized I/O File Integrity Completion
Identical to a synchronized I/O data integrity completion with the addition that all file
attributes relative to the I/O operation (including access time, modification time, status change
time) are successfully transferred prior to returning to the calling process.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 85

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Synchronized I/O Operation Definitions

3.370 Synchronized I/O Operation
An I/O operation performed on a file that provides the application assurance of the integrity of
its data and files.

3.371 Synchronous I/O Operation
An I/O operation that causes the thread requesting the I/O to be blocked from further use of the
processor until that I/O operation completes.

Note: A synchronous I/O operation does not imply synchronized I/O data integrity completion or
synchronized I/O file integrity completion.

3.372 Synchronously-Generated Signal
A signal that is attributable to a specific thread.

For example, a thread executing an illegal instruction or touching invalid memory causes a
synchronously-generated signal. Being synchronous is a property of how the signal was
generated and not a property of the signal number.

3.373 System
An implementation of POSIX.1-2024.

3.374 System Boot
An unspecified sequence of events that may result in the loss of transitory data; that is, data that
is not saved in permanent storage. For example, message queues, shared memory, semaphores,
and processes.

3.375 System Clock
A clock with at least one second resolution that contains seconds since the Epoch.

3.376 System Console
A device that receives messages sent by the syslog() function, and the fmtmsg() function when
the MM_CONSOLE flag is set.

Note: The syslog() and fmtmsg() functions are defined in detail in the System Interfaces volume of
POSIX.1-2024.

3.377 System Crash
An interval initiated by an unspecified circumstance that causes all processes (possibly other
than special system processes) to be terminated in an undefined manner, after which any

86 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions System Crash

changes to the state and contents of files created or written to by an application prior to the
interval are undefined, except as required elsewhere in POSIX.1-2024.

3.378 System Databases
An implementation provides two system databases: the ``group database’’ (see also Section
3.164, on page 55) and the ``user database’’ (see also Section 3.407, on page 91).

3.379 System Documentation
All documentation provided with an implementation except for the conformance document.
Electronically distributed documents for an implementation are considered part of the system
documentation.

3.380 System Process
An object other than a process executing an application, that is provided by the system and has a
process ID.

3.381 System Reboot
See System Boot defined in Section 3.374 (on page 86).

3.382 System-Wide
Pertaining to events occurring in all processes existing in an implementation at a given point in
time.

3.383 Tab Character (<tab>)
A character that in the output stream indicates that printing or displaying should start at the
next horizontal tabulation position on the current line. It is the character designated by '\t' in
the C language. If the current position is at or past the last defined horizontal tabulation
position, the behavior is unspecified. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the tabulation.

3.384 Terminal (or Terminal Device)
A character special file that obeys the specifications of the general terminal interface.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

3.385 Text Column
A roughly rectangular block of characters capable of being laid out side-by-side next to other
text columns on an output page or terminal screen. The widths of text columns are measured in

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 87

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Te xt Column Definitions

column positions.

3.386 Text Domain
A named collection of messages objects (one messages object per supported language) for
internationalization and localization purposes. A text domain is often named after the
application or library that provides the collection, but may have a more general name if it is
intended to be shared by multiple applications or libraries.

Note: The use of text domains is defined in detail in the descriptions of the bindtextdomain() and
gettext family of functions in the System Interfaces volume of POSIX.1-2024.

3.387 Text File
A file that contains characters organized into zero or more lines. The lines do not contain NUL
characters and none can exceed {LINE_MAX} bytes in length, including the <newline>
character. Although POSIX.1-2024 does not distinguish between text files and binary files (see
the ISO C standard), many utilities only produce predictable or meaningful output when
operating on text files. The standard utilities that have such restrictions always specify ``text
files’’ in their STDIN or INPUT FILES sections.

3.388 Thread
A live thread (see Section 3.190, on page 59) or a zombie thread (see Section 3.427, on page 94).
The lifetime of a thread is described in Section 3.390 (on page 89).

3.389 Thread ID
A value that uniquely identifies each thread in a process during the thread’s lifetime. The value
shall be unique across all threads in a process, regardless of whether the thread is:

• The initial thread

• A thread created using pthread_create()

• A thread created using thrd_create()

• A thread created via a SIGEV_THREAD notification

Note: Since pthread_create() returns an ID of type pthread_t and thrd_create() returns an ID of type
thrd_t, this uniqueness requirement necessitates that these two types are defined as the same
underlying type because calls to pthread_self() and thrd_current() from the initial thread need to
return the same thread ID. The pthread_create(), pthread_self(), thrd_create(), and thrd_current()
functions and SIGEV_THREAD notifications are defined in detail in the System Interfaces
volume of POSIX.1-2024.

88 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Thread Lifetime

3.390 Thread Lifetime
The period of time that begins when a thread is created and ends when its thread ID is returned
to the process.

See also Live Thread in Section 3.190 (on page 59), Thread Termination in Section 3.392, and Zombie
Thread in Section 3.427 (on page 94).

Note: Thread creation is defined in detail in the descriptions of the pthread_create() and thrd_create()
functions in the System Interfaces volume of POSIX.1-2024.

3.391 Thread List
An ordered set of runnable threads that all have the same ordinal value for their priority.

The ordering of threads on the list is determined by a scheduling policy or policies. The set of
thread lists includes all runnable threads in the system.

3.392 Thread Termination
Thread termination occurs when a thread executes pthread_exit() or thrd_exit(), when it returns
from the start_routine function passed to pthread_create() or from the func function passed to
thrd_create(), or when it acts on a cancellation request initiated by pthread_cancel().

Note: The pthread_cancel(), pthread_create(), pthread_exit(), thrd_create(), and thrd_exit() functions are
defined in detail in the System Interfaces volume of POSIX.1-2024.

3.393 Thread-Safe
A thread-safe function shall avoid data races with other calls to the same function, and with calls
to any other thread-safe functions, by multiple threads. Each function defined in the System
Interfaces volume of POSIX.1-2024 is thread-safe unless explicitly stated otherwise. Examples
are any ``pure’’ function, a function which holds a mutex locked while it is accessing static
storage, or objects shared among threads.

A function that is not required to be thread-safe need not avoid data races with other calls to the
same function, nor with calls to any other function (including thread-safe functions), by multiple
threads, unless explicitly stated otherwise.

3.394 Thread-Specific Data Key
A process global handle which is used for naming thread-specific data. There are two types of
key: those of type pthread_key_t which are created using pthread_key_create() and those of type
tss_t which are created using tss_create(). If an application attempts to use the two types of key
interchangeably (that is, pass a key of type pthread_key_t to a function that takes a tss_t, or vice
versa), the behavior is undefined.

Although the same key value can be used by different threads, the values bound to the key by
pthread_setspecific() for keys of type pthread_key_t, and by tss_set() for keys of type tss_t, are
maintained on a per-thread basis and persist for the life of the calling thread.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 89

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Thread-Specific Data Key Definitions

Note: The pthread_getspecific(), pthread_setspecific(), tss_create(), and tss_set() functions are defined in
detail in the System Interfaces volume of POSIX.1-2024.

3.395 Tilde Character (<tilde>)
The character '~'.

3.396 Timeouts
A method of limiting the length of time an interface will block; see also Section 3.47 (on page 37).

3.397 Timer
A mechanism that can notify a thread when the time as measured by a particular clock has
reached or passed a specified value, or when a specified amount of time has passed.

3.398 Timer Overrun
A condition that occurs each time a timer, for which there is already an expiration signal queued
to the process, expires.

3.399 Token
In the shell command language, a sequence of characters that the shell considers as a single unit
when reading input. A token is either an operator or a word.

Note: The rules for reading input are defined in detail in XCU Section 2.3 (on page 2475).

3.400 Typed Memory Name Space
A system-wide name space that contains the names of the typed memory objects present in the
system. It is configurable for a given implementation.

3.401 Typed Memory Object
A combination of a typed memory pool and a typed memory port. The entire contents of the
pool are accessible from the port. The typed memory object is identified through a name that
belongs to the typed memory name space.

3.402 Typed Memory Pool
An extent of memory with the same operational characteristics. Typed memory pools may be
contained within each other.

90 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Typed Memory Port

3.403 Typed Memory Port
A hardware access path to one or more typed memory pools.

3.404 Unbind
Remove the association between a network address and an endpoint.

3.405 Unit Data
See Datagram in Section 3.96 (on page 45).

3.406 Upshifting
The conversion of a lowercase character that has a single-character uppercase representation into
this uppercase representation.

3.407 User Database
A system database that contains at least the following information for each user ID:

• User name

• Numerical user ID

• Initial numerical group ID

• Initial working directory

• Initial user program

The initial numerical group ID is used by the newgrp utility. Any other circumstances under
which the initial values are operative are implementation-defined.

If the initial user program field is null, an implementation-defined program is used.

If the initial working directory field is null, the interpretation of that field is implementation-
defined.

Note: The newgrp utility is defined in detail in the Shell and Utilities volume of POSIX.1-2024.

3.408 User ID
A non-negative integer that is used to identify a system user. When the identity of a user is
associated with a process, a user ID value is referred to as a real user ID, an effective user ID, or
a saved set-user-ID. The value (uid_t)−1 shall not be a valid user ID, but does have a defined use
in some interfaces defined in this standard.

3.409 User Name
A string that is used to identify a user; see also Section 3.407. To be portable across systems
conforming to POSIX.1-2024, the value is composed of characters from the portable filename

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 91

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

User Name Definitions

character set. The <hyphen-minus> character should not be used as the first character of a
portable user name.

3.410 Utility
A program, excluding special built-in utilities provided as part of the Shell Command Language,
that can be called by name from a shell to perform a specific task, or related set of tasks.

Note: For further information on special built-in utilities, see XCU Section 2.15 (on page 2526).

3.411 Variable
In the shell command language, a named parameter.

Note: For further information, see XCU Section 2.5 (on page 2478).

3.412 Vertical-Tab Character (<vertical-tab>)
A character that in the output stream indicates that printing should start at the next vertical
tabulation position. It is the character designated by '\v' in the C language. If the current
position is at or past the last defined vertical tabulation position, the behavior is unspecified. It is
unspecified whether this character is the exact sequence transmitted to an output device by the
system to accomplish the tabulation.

3.413 White Space
A sequence of one or more characters that belong to the space character class as defined via the
LC_CTYPE category in the current locale or a specified locale.

In the POSIX locale, white space consists of one or more <blank> (<space> and <tab>
characters), <newline>, <carriage-return>, <form-feed>, and <vertical-tab> characters.

3.414 White-Space Byte
A single-byte white-space character; that is, a character for which the isspace() or isspace_l()
function returns a non-zero value.

3.415 White-Space Character
A character that belongs to the space character class as defined via the LC_CTYPE category in
the current locale or a specified locale.

3.416 White-Space Wide Character
A wide-character code that belongs to the space character class as defined via the LC_CTYPE
category in the current locale or a specified locale.

92 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Wide-Character Code (C Language)

3.417 Wide-Character Code (C Language)
An integer value corresponding to a single graphic symbol or control code.

Note: C Language Wide-Character Codes are defined in detail in Section 6.3 (on page 120).

3.418 Wide-Character Input/Output Functions
The functions that perform wide-oriented input from streams or wide-oriented output to
streams: fgetwc(), fgetws(), fputwc(), fputws(), fwprintf(), fwscanf(), getwc(), getwchar(), putwc(),
putwchar(), ungetwc(), vfwprintf(), vfwscanf(), vwprintf(), vwscanf(), wprintf(), and wscanf().

Note: These functions are defined in detail in the System Interfaces volume of POSIX.1-2024.

3.419 Wide-Character String
A contiguous sequence of wide-character codes terminated by and including the first null wide-
character code.

3.420 Word
In the shell command language, a token other than an operator. In some cases a word is also a
portion of a word token: in the various forms of parameter expansion, such as ${name−word},
and variable assignment, such as name=word, the word is the portion of the token depicted by
word. The concept of a word is no longer applicable following word expansions—only fields
remain.

Note: For further information, see XCU Section 2.6.2 (on page 2485) and Section 2.6 (on page 2483).

3.421 Working Directory (or Current Working Directory)
A directory, associated with a process, that is used in pathname resolution for pathnames that do
not begin with a <slash> character.

3.422 Worldwide Portability Interface
Functions for handling characters in a codeset-independent manner.

3.423 Write
To output characters to a file, such as standard output or standard error. Unless otherwise stated,
standard output is the default output destination for all uses of the term ``write’’; see the
distinction between display and write in Section 3.107 (on page 46).

3.424 XSI
The X/Open System Interfaces (XSI) option is the core application programming interface for C

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 93

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

XSI Definitions

and sh programming for systems conforming to the Single UNIX Specification. This is a
superset of the mandatory requirements for conformance to POSIX.1-2024.

3.425 XSI-Conformant
A system which allows an application to be built using a set of services that are consistent across
all systems that conform to POSIX.1-2024 and that support the XSI option.

Note: See also Chapter 2 (on page 15).

3.426 Zombie Process
The remains of a live process (see Section 3.189, on page 59) after it terminates (see Section 3.287,
on page 73) and before its status information (see XSH Section 2.12, on page 563) is consumed by
its parent process.

3.427 Zombie Thread
The remains of a joinable live thread (see Section 3.183 (on page 58) and Section 3.190, on page
59) after it terminates (see Section 3.392, on page 89) and before it has been joined with
pthread_join() or thrd_join() or detached with pthread_detach() or thrd_detach().

Note: The pthread_detach(), pthread_join(), thrd_detach(), and thrd_join() functions are defined in detail
in the System Interfaces volume of POSIX.1-2024.

3.428 ±0
The algebraic sign provides additional information about any variable that has the value zero
when the representation allows the sign to be determined.

94 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 4

General Concepts

For the purposes of POSIX.1-2024, the general concepts given in Chapter 4 apply.

Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
definitions given in this chapter are used elsewhere in text related to extensions and options,
they are shaded as appropriate.

4.1 Case Insensitive Comparisons
When a standard utility or function that uses regular expressions or pattern matching specifies
that matching shall be case insensitive, then if a string would match the regular expression or
pattern when doing a case-sensitive match, the same string with any of its characters replaced
with their case counterparts, as defined by the toupper and tolower character mappings (see
Section 7.3.1, on page 131), shall also match when doing a case-insensitive match.

This definition of case-insensitive processing is intended to allow matching of multi-character
collating elements as well as characters, as each character in the string is matched using both its
cases. For example, in a locale with a "Ch" multi-character collating element (see Section 7.3.2,
on page 139), the bracket expression "[[.Ch.]]" (see Section 9.3.5 (on page 182) item 4)
matches the strings "ch", "Ch", "cH", and "CH" when matching without regard to case.

4.2 Concurrent Execution
Functions that suspend the execution of the calling thread shall not cause the execution of other
threads to be indefinitely suspended.

4.3 Default Initialization
Default initialization causes an object to be initialized according to these rules:

• If it has pointer type, it is initialized to a null pointer.

• If it has arithmetic type, it is initialized to (positive or unsigned) zero.

• If it is an aggregate, every member is initialized (recursively) according to these rules.

• If it is a union, the first named member is initialized (recursively) according to these rules.

For an object of aggregate type with an explicit initializer, the initialization shall occur in
initializer list order, each initializer provided for a particular subobject overriding any
previously listed initializer for the same subobject; all subobjects that are not initialized
explicitly shall be initialized implicitly according to the rules for default initialization.

Objects with static storage duration but no explicit initializer shall be initialized implicitly
according to the rules for default initialization.

An explicit initializer of { 0 } works to perform explicit default initialization for any object of
scalar or aggregate type, and for any storage duration.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 95

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Default Initialization General Concepts

Notes:

1. The ISO C standard does not require a compiler to set any field alignment padding bits
in a structure or array definition to a particular value. Because of this, a structure
initialized using { 0 } might not memcmp() as equal to the same structure initialized
using memset() to zero. For consistent results, portable applications comparing structures
should test each field individually.

2. If an implementation treats the all-zero bit pattern of a floating-point object as equivalent
to positive 0, then memset() to zero and calloc() have the same effects as default
initialization for all named members of a structure. Implementations that define
__STDC_IEC_559__ guarantee that the all-zero bit pattern of a floating-point object
represents 0.0.

4.4 Directory Operations
All file system operations that read or search a directory or that modify the contents of a
directory (for example creating, unlinking, or renaming a file) shall operate atomically. That is,
each operation shall either have its entire effect and succeed, or shall not affect the file system
and shall fail. Furthermore, these operations shall be serializable; that is, the state of the file
system and of the results of each operation shall always be values that would be obtained if the
operations were executed one after the other.

4.5 Directory Protection
If a directory is writable and the mode bit S_ISVTX is set on the directory, a process may remove
or rename files within that directory only if one or more of the following is true:

• The effective user ID of the process is the same as that of the owner ID of the file.

• The effective user ID of the process is the same as that of the owner ID of the directory.

• The process has appropriate privileges.

• Optionally, the file is writable by the process. Whether or not files that are writable by the
process can be removed or renamed is implementation-defined.

If the S_ISVTX bit is set on a non-directory file, the behavior is unspecified.

4.6 Extended Security Controls
An implementation may provide implementation-defined extended security controls (see
Section 3.135, on page 50). These permit an implementation to provide security mechanisms to
implement different security policies than those described in POSIX.1-2024. These mechanisms
shall not alter or override the defined semantics of any of the interfaces in POSIX.1-2024.

96 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts File Access Permissions

4.7 File Access Permissions
The standard file access control mechanism uses the file permission bits, as described below.

Implementations may provide additional or alternate file access control mechanisms, or both. An
additional access control mechanism shall only further restrict the access permissions defined by
the file permission bits. An alternate file access control mechanism shall:

• Specify file permission bits for the file owner class, file group class, and file other class of
that file, corresponding to the access permissions.

• Be enabled only by explicit user action, on a per-file basis by the file owner or a user with
appropriate privileges.

• Be disabled for a file after the file permission bits are changed for that file with chmod().
The disabling of the alternate mechanism need not disable any additional mechanisms
supported by an implementation.

Whenever a process requests file access permission for read, write, or execute/search, if no
additional mechanism denies access, access shall be determined as follows:

• If a process has appropriate privileges:

— If read, write, or directory search permission is requested, access shall be granted.

— If execute permission is requested, access shall be granted if execute permission is
granted to at least one user by the file permission bits or by an alternate access
control mechanism; otherwise, access shall be denied.

• Otherwise:

— The file permission bits of a file contain read, write, and execute/search permissions
for the file owner class, file group class, and file other class.

— Access shall be granted if an alternate access control mechanism is not enabled and
the requested access permission bit is set for the class (file owner class, file group
class, or file other class) to which the process belongs, or if an alternate access control
mechanism is enabled and it allows the requested access; otherwise, access shall be
denied.

4.8 File Hierarchy
Files in the system are organized in a hierarchical structure in which all of the non-terminal
nodes are directories and all of the terminal nodes are any other type of file. Since multiple
directory entries may refer to the same file, the hierarchy is properly described as a ``directed
graph’’.

4.9 Filenames
Uppercase and lowercase letters shall retain their unique identities between conforming
implementations.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 97

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Filename Portability General Concepts

4.10 Filename Portability
For a filename to be portable across implementations conforming to POSIX.1-2024, it shall
consist only of the portable filename character set as defined in Section 3.265 (on page 70).

Note: Applications should avoid using filenames that have the <hyphen-minus> character as the first
character since this may cause problems when filenames are passed as command line
arguments.

4.11 File System Cache
If the file system is accessed via a memory cache, file-related requirements stated in the rest of
this standard shall apply to the cache, except where explicitly stated otherwise: this includes
directory atomicity and serializability requirements (see Section 4.4), file times update
requirements (see Section 4.12), and read-write serializability requirements (see write()). Cache
entries shall be transferred to the underlying storage as the result of successful calls to
fdatasync(), fsync(), or aio_fsync(), and may be transferred to storage automatically at other
times. Such transfers shall be atomic, with minimum units being directory entries (for directory
contents), aligned data blocks of the fundamental file system block size (for regular-file contents;
see <sys/statvfs.h>), and all attributes of a single file (for file attributes).

Note: If the system crashes before the cache is fully transferred, later operations’ effects may be
present in storage with earlier effects missing.

Note: Operations that create or modify multiple directory entries, aligned data blocks, or file
attributes (e.g., mkdir(), rename(), write() with large buffer size, open() with O_CREAT) may
have only part of their effects transferred to storage, and after a crash these operations may
appear to have been only partly done, with the parts not necessarily done in any order. For
example, only the second half of a write() may be transferred; or rename("a","b") may
result in b being created without a being removed.

Note: Although conforming file systems are required to perform all caching as described above, some
file systems may support non-conforming configurations (for example via mount options) for
which this is not the case. Applications that are used on non-conforming file systems cannot
rely on files being synchronized properly.

4.12 File Times Update
Many operations have requirements to update file timestamps. These requirements do not apply
to streams that have no underlying file description (for example, memory streams created by
open_memstream() have no underlying file description).

Each file has three distinct associated timestamps: the time of last data access, the time of last
data modification, and the time the file status last changed. These values are returned in the file
characteristics structure struct stat, as described in <sys/stat.h> (on page 414).

Each function or utility in POSIX.1-2024 that reads or writes data (even if the data does not
change) or performs an operation to change file status (even if the file status does not change)
indicates which of the appropriate timestamps shall be marked for update. If an implementation
of such a function or utility marks for update one of these timestamps in a place or time not
specified by POSIX.1-2024, this shall be documented, except that any changes caused by
pathname resolution need not be documented. For the other functions or utilities in
POSIX.1-2024 (those that are not explicitly required to read or write file data or change file
status, but that in some implementations happen to do so), the effect is unspecified.

98 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts File Times Update

An implementation may update timestamps that are marked for update immediately, or it may
update such timestamps periodically. At the point in time when an update occurs, any marked
timestamps shall be set to the current time and the update marks shall be cleared. All
timestamps that are marked for update shall be updated when the file ceases to be open by any
process or before a fstat(), fstatat(), fsync(), futimens(), lstat(), stat(), utimensat(), or utimes() is
successfully performed on the file. Other times at which updates are done are unspecified.
Marks for update, and updates themselves, shall not be done for files on read-only file systems;
see Section 3.295 (on page 75).

The resolution of timestamps of files in a file system is implementation-defined, but shall be no
coarser than one-second resolution. The three timestamps shall always have values that are
supported by the file system. Whenever any of a file’s timestamps are to be set to a value V
according to the rules of the preceding paragraphs of this section, the implementation shall
immediately set the timestamp to the greatest value supported by the file system that is not
greater than V .

4.13 Host and Network Byte Orders
When data is transmitted over the network, it is sent as a sequence of octets (8-bit unsigned
values). If an entity (such as an address or a port number) can be larger than 8 bits, it needs to be
stored in several octets. The convention is that all such values are stored with 8 bits in each octet,
and with the first (lowest-addressed) octet holding the most-significant bits. This is called
``network byte order ’’.

Network byte order may not be convenient for processing actual values. For this, it is more
sensible for values to be stored as ordinary integers. This is known as ``host byte order ’’. In host
byte order:

• The most significant bit might not be stored in the first byte in address order.

• Bits might not be allocated to bytes in any obvious order at all.

8-bit values stored in uint8_t objects do not require conversion to or from host byte order, as
they have the same representation. 16 and 32-bit values can be converted using the htonl(),
htons(), ntohl(), and ntohs() functions. When reading data that is to be converted to host byte
order, it should either be received directly into a uint16_t or uint32_t object or should be copied
from an array of bytes using memcpy() or similar. Passing the data through other types could
cause the byte order to be changed. Similar considerations apply when sending data.

4.14 Measurement of Execution Time
The mechanism used to measure execution time shall be implementation-defined. The
implementation shall also define to whom the CPU time that is consumed by interrupt handlers
and system services on behalf of the operating system will be charged. See Section 3.90 (on page
44).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 99

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Memory Ordering and Synchronization General Concepts

4.15 Memory Ordering and Synchronization

4.15.1 Memory Ordering

4.15.1.1 Data Races

The value of an object visible to a thread T at a particular point is the initial value of the object, a
value stored in the object by T, or a value stored in the object by another thread, according to the
rules below.

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

This standard defines a number of atomic operations (see <stdatomic.h>) and operations on
mutexes (see <threads.h>) that are specially identified as synchronization operations. These
operations play a special role in making assignments in one thread visible to another. A
synchronization operation on one or more memory locations is either an acquire operation, a
release operation, both an acquire and release operation, or a consume operation. A synchronization
operation without an associated memory location is a fence and can be either an acquire fence, a
release fence, or both an acquire and release fence. In addition, there are relaxed atomic operations,
which are not synchronization operations, and atomic read-modify-write operations, which have
special characteristics.

Note: For example, a call that acquires a mutex will perform an acquire operation on the locations
composing the mutex. Correspondingly, a call that releases the same mutex will perform a
release operation on those same locations. Informally, performing a release operation on A
forces prior side effects on other memory locations to become visible to other threads that later
perform an acquire or consume operation on A. Relaxed atomic operations are not included as
synchronization operations although, like synchronization operations, they cannot contribute to
data races.

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens
before B, then A shall precede B in the modification order of M, which is defined below.

Note: This states that the modification orders must respect the ``happens before’’ relation.

Note: There is a separate order for each atomic object. There is no requirement that these can be
combined into a single total order for all objects. In general this will be impossible since
different threads may observe modifications to different variables in inconsistent orders.

A release sequence headed by a release operation A on an atomic object M is a maximal
contiguous sub-sequence of side effects in the modification order of M, where the first operation
is A and every subsequent operation either is performed by the same thread that performed the
release or is an atomic read-modify-write operation.

Certain system interfaces synchronize with other system interfaces performed by another thread.
In particular, an atomic operation A that performs a release operation on an object M shall
synchronize with an atomic operation B that performs an acquire operation on M and reads a
value written by any side effect in the release sequence headed by A.

Note: Except in the specified cases, reading a later value does not necessarily ensure visibility as
described below. Such a requirement would sometimes interfere with efficient implementation.

100 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Memory Ordering and Synchronization

Note: The specifications of the synchronization operations define when one reads the value written by
another. For atomic variables, the definition is clear. All operations on a given mutex occur in a
single total order. Each mutex acquisition ``reads the value written’’ by the last mutex release.

An evaluation A carries a dependency to an evaluation B if:

• the value of A is used as an operand of B, unless:

— B is an invocation of the kill_dependency() macro,

— A is the left operand of a && or || operator,

— A is the left operand of a ?: operator, or

— A is the left operand of a , (comma) operator; or

• A writes a scalar object or bit-field M, B reads from M the value written by A, and A is
sequenced before B, or

• for some evaluation X, A carries a dependency to X and X carries a dependency to B.

An evaluation A is dependency-ordered before an evaluation B if:

• A performs a release operation on an atomic object M, and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release
sequence headed by A, or

• for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X:

• A synchronizes with X and X is sequenced before B,

• A is sequenced before X and X inter-thread happens before B, or

• A inter-thread happens before X and X inter-thread happens before B.

Note: The ``inter-thread happens before’’ relation describes arbitrary concatenations of ``sequenced
before’’, ``synchronizes with’’, and ``dependency-ordered before’’ relationships, with two
exceptions. The first exception is that a concatenation is not permitted to end with
``dependency-ordered before’’ followed by ``sequenced before’’. The reason for this limitation is
that a consume operation participating in a ``dependency-ordered before’’ relationship provides
ordering only with respect to operations to which this consume operation actually carries a
dependency. The reason that this limitation applies only to the end of such a concatenation is
that any subsequent release operation will provide the required ordering for a prior consume
operation. The second exception is that a concatenation is not permitted to consist entirely of
``sequenced before’’. The reasons for this limitation are (1) to permit ``inter-thread happens
before’’ to be transitively closed and (2) the ``happens before’’ relation, defined below, provides
for relationships consisting entirely of ``sequenced before’’.

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread
happens before B. The implementation shall ensure that a cycle in the ``happens before’’ relation
never occurs.

Note: This cycle would otherwise be possible only through the use of consume operations.

A visible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

• A happens before B, and

• there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 101

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Memory Ordering and Synchronization General Concepts

stored by the visible side effect A.

Note: If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data
race and the behavior is undefined.

Note: This states that operations on ordinary variables are not visibly reordered. This is not actually
detectable without data races, but it is necessary to ensure that data races, as defined here, and
with suitable restrictions on the use of atomics, correspond to data races in a simple interleaved
(sequentially consistent) execution.

The value of an atomic object M, as determined by evaluation B, shall be the value stored by
some side effect A that modifies M, where B does not happen before A.

Note: The set of side effects from which a given evaluation might take its value is also restricted by
the rest of the rules described here, and in particular, by the coherence requirements below.

If an operation A that modifies an atomic object M happens before an operation B that modifies
M, then A shall be earlier than B in the modification order of M. (This is known as ``write-write
coherence’’.)

If a value computation A of an atomic object M happens before a value computation B of M, and
A takes its value from a side effect X on M, then the value computed by B shall either be the
value stored by X or the value stored by a side effect Y on M, where Y follows X in the
modification order of M. (This is known as ``read-read coherence’’.)

If a value computation A of an atomic object M happens before an operation B on M, then A
shall take its value from a side effect X on M, where X precedes B in the modification order of
M. (This is known as ``read-write coherence’’.)

If a side effect X on an atomic object M happens before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M. (This is known as ``write-read coherence’’.)

Note: This effectively disallows implementation reordering of atomic operations to a single object,
even if both operations are ``relaxed’’ loads. By doing so, it effectively makes the ``cache
coherence’’ guarantee provided by most hardware available to POSIX atomic operations.

Note: The value observed by a load of an atomic object depends on the ``happens before’’ relation,
which in turn depends on the values observed by loads of atomic objects. The intended reading
is that there must exist an association of atomic loads with modifications they observe that,
together with suitably chosen modification orders and the ``happens before’’ relation derived as
described above, satisfy the resulting constraints as imposed here.

An application contains a data race if it contains two conflicting actions in different threads, at
least one of which is not atomic, and neither happens before the other. Any such data race
results in undefined behavior.

4.15.1.2 Memory Order and Consistency

The enumerated type memory_order, defined in <stdatomic.h> (if supported), specifies the
detailed regular (non-atomic) memory synchronization operations as defined in Section 4.15.1.1
(on page 100) and may provide for operation ordering. Its enumeration constants specify
memory order as follows:

For memory_order_relaxed, no operation orders memory.

For memory_order_release, memory_order_acq_rel, and memory_order_seq_cst, a
store operation performs a release operation on the affected memory location.

For memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst, a
load operation performs an acquire operation on the affected memory location.

102 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Memory Ordering and Synchronization

For memory_order_consume, a load operation performs a consume operation on the affected
memory location.

There shall be a single total order S on all memory_order_seq_cst operations, consistent with
the ``happens before’’ order and modification orders for all affected locations, such that each
memory_order_seq_cst operation B that loads a value from an atomic object M observes one
of the following values:

• the result of the last modification A of M that precedes B in S, if it exists, or

• if A exists, the result of some modification of M that is not memory_order_seq_cst and
that does not happen before A, or

• if A does not exist, the result of some modification of M that is not
memory_order_seq_cst.

Note: Although it is not explicitly required that S include lock operations, it can always be extended
to an order that does include lock and unlock operations, since the ordering between those is
already included in the ``happens before’’ ordering.

Note: Atomic operations specifying memory_order_relaxed are relaxed only with respect to
memory ordering. Implementations must still guarantee that any given atomic access to a
particular atomic object be indivisible with respect to all other atomic accesses to that object.

For an atomic operation B that reads the value of an atomic object M, if there is a
memory_order_seq_cst fence X sequenced before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later
modification of M in its modification order.

For atomic operations A and B on an atomic object M, where A modifies M and B takes its value,
if there is a memory_order_seq_cst fence X such that A is sequenced before X and B follows
X in S, then B observes either the effects of A or a later modification of M in its modification
order.

For atomic modifications A and B of an atomic object M, B occurs later than A in the
modification order of M if:

• there is a memory_order_seq_cst fence X such that A is sequenced before X, and X
precedes B in S, or

• there is a memory_order_seq_cst fence Y such that Y is sequenced before B, and A
precedes Y in S, or

• there are memory_order_seq_cst fences X and Y such that A is sequenced before X, Y is
sequenced before B, and X precedes Y in S.

Atomic read-modify-write operations shall always read the last value (in the modification order)
stored before the write associated with the read-modify-write operation.

An atomic store shall only store a value that has been computed from constants and input values
by a finite sequence of evaluations, such that each evaluation observes the values of variables as
computed by the last prior assignment in the sequence. The ordering of evaluations in this
sequence shall be such that:

• If an evaluation B observes a value computed by A in a different thread, then B does not
happen before A.

• If an evaluation A is included in the sequence, then all evaluations that assign to the same
variable and happen before A are also included.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 103

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Memory Ordering and Synchronization General Concepts

Note: The second requirement disallows ``out-of-thin-air ’’, or ``speculative’’ stores of atomics when
relaxed atomics are used. Since unordered operations are involved, evaluations can appear in
this sequence out of thread order.

4.15.2 Memory Synchronization

In order to avoid data races, applications shall ensure that non-lock-free access to any memory
location by more than one thread of control (threads or processes) is restricted such that no
thread of control can read or modify a memory location while another thread of control might be
modifying it. Such access can be restricted using functions that synchronize thread execution
and also synchronize memory with respect to other threads. The following functions shall
synchronize memory with respect to other threads on all successful calls:

cnd_broadcast()
cnd_signal()
fork()
pthread_barrier_wait()
pthread_cond_broadcast()
pthread_cond_signal()
pthread_create()
pthread_join()
pthread_spin_lock()
pthread_spin_trylock()
pthread_spin_unlock()

pthread_rwlock_clockrdlock()
pthread_rwlock_clockwrlock()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
sem_clockwait()
sem_post()

sem_timedwait()
sem_trywait()
sem_wait()
semctl()
semop()
thrd_create()
thrd_join()
wait()
waitid()
waitpid()

The pthread_once() and call_once() functions shall synchronize memory for the first successful
call in each thread for a given pthread_once_t or once_flag object, respectively. If the init_routine
called by pthread_once() or call_once() is a cancellation point and is canceled, a successful call to
pthread_once() for the same pthread_once_t object or to call_once() for the same once_flag object,
made from a cancellation cleanup handler shall also synchronize memory.

RPP|TPP The pthread_mutex_clocklock(), pthread_mutex_lock(), pthread_mutex_setprioceiling(),
pthread_mutex_timedlock(), and pthread_mutex_trylock() functions shall synchronize memory on
all calls that acquire the mutex, including those that return [EOWNERDEAD]. The
pthread_mutex_unlock() function shall synchronize memory on all calls that release the mutex.

Note: If the mutex type is PTHREAD_MUTEX_RECURSIVE, calls to the locking functions do not
acquire the mutex if the calling thread already owns it, and calls to pthread_mutex_unlock() do
not release the mutex if it has a lock count greater than one.

The pthread_cond_clockwait(), pthread_cond_wait(), and pthread_cond_timedwait() functions shall
synchronize memory on all calls that release and re-acquire the specified mutex, including calls
that return [EOWNERDEAD], both when the mutex is released and when it is re-acquired.

Note: If the mutex type is PTHREAD_MUTEX_RECURSIVE, calls to pthread_cond_clockwait(),
pthread_cond_wait(), and pthread_cond_timedwait() do not release and re-acquire the mutex if it
has a lock count greater than one.

The mtx_lock(), mtx_timedlock(), and mtx_trylock() functions shall synchronize memory on all
calls that acquire the mutex. The mtx_unlock() function shall synchronize memory on all calls
that release the mutex.

Note: If the mutex is a recursive mutex, calls to the locking functions do not acquire the mutex if the
calling thread already owns it, and calls to mtx_unlock() do not release the mutex if it has a lock
count greater than one.

The cnd_wait() and cnd_timedwait() functions shall synchronize memory on all calls that release

104 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Memory Ordering and Synchronization

and re-acquire the specified mutex, both when the mutex is released and when it is re-acquired.

Note: If the mutex is a recursive mutex, calls to cnd_wait() and cnd_timedwait() do not release and re-
acquire the mutex if it has a lock count greater than one.

Unless explicitly stated otherwise, if one of the functions named in this section returns an error,
it is unspecified whether the invocation causes memory to be synchronized.

Applications can allow more than one thread of control to read a memory location
simultaneously.

For purposes of determining the existence of a data race, all lock and unlock operations on a
particular synchronization object that synchronize memory shall behave as atomic operations,
and they shall occur in some particular total order (see Section 4.15.1, on page 100).

4.16 Pathname Resolution
Pathname resolution is performed for a process to resolve a pathname to a particular directory
entry for a file in the file hierarchy. There may be multiple pathnames that resolve to the same
directory entry, and multiple directory entries for the same file. When a process resolves a
pathname of an existing directory entry, the entire pathname shall be resolved as described
below. When a process resolves a pathname of a directory entry that is to be created immediately
after the pathname is resolved, pathname resolution terminates when all components of the path
prefix of the last component have been resolved. It is then the responsibility of the process to
create the final component.

Each filename in the pathname is located in the directory specified by its predecessor (for
example, in the pathname fragment a/b, file b is located in the directory specified by a).
Pathname resolution shall fail if this cannot be accomplished. If the pathname begins with a
<slash>, the predecessor of the first filename in the pathname shall be taken to be the root
directory of the process (such pathnames are referred to as ``absolute pathnames’’). If the
pathname does not begin with a <slash>, the predecessor of the first filename of the pathname
shall be taken to be either the current working directory of the process or for certain interfaces
the directory identified by a file descriptor passed to the interface (such pathnames are referred
to as ``relative pathnames’’).

The interpretation of a pathname component is dependent on the value of {NAME_MAX} and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any pathname
component is longer than {NAME_MAX}, the implementation shall consider this an error.

A pathname that contains at least one non-<slash> character and that ends with one or more
trailing <slash> characters shall not be resolved successfully unless the last pathname
component before the trailing <slash> characters resolves (with symbolic links followed—see
below) to an existing directory or a directory entry that is to be created for a directory
immediately after the pathname is resolved. Interfaces using pathname resolution may specify
additional constraints7 when a pathname that does not name an existing directory contains at
least one non-<slash> character and contains one or more trailing <slash> characters.

If a symbolic link is encountered during pathname resolution, the behavior shall depend on
whether the pathname component is at the end of the pathname and on the function being
performed. If all of the following are true, then pathname resolution is complete:

7. The only interfaces that further constrain pathnames in POSIX.1-2024 are the rename() and renameat() functions (see XSH rename())
and the mv utility (see XCU mv).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 105

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Pathname Resolution General Concepts

1. This is the last pathname component of the pathname.

2. The pathname has no trailing <slash>.

3. The function is required to act on the symbolic link itself, or certain arguments direct that
the function act on the symbolic link itself.

In all other cases, the system shall prefix the remaining pathname, if any, with the contents of the
symbolic link, except that if the contents of the symbolic link is the empty string, then either
pathname resolution shall fail with functions reporting an [ENOENT] error and utilities writing
an equivalent diagnostic message, or the pathname of the directory containing the symbolic link
shall be used in place of the contents of the symbolic link. If the contents of the symbolic link
consist solely of <slash> characters, then all leading <slash> characters of the remaining
pathname shall be omitted from the resulting combined pathname, leaving only the leading
<slash> characters from the symbolic link contents. In the cases where prefixing occurs, if the
combined length exceeds {PATH_MAX}, and the implementation considers this to be an error,
pathname resolution shall fail with functions reporting an [ENAMETOOLONG] error and
utilities writing an equivalent diagnostic message. Otherwise, the resolved pathname shall be
the resolution of the pathname just created. If the resulting pathname does not begin with a
<slash>, the predecessor of the first filename of the pathname is taken to be the directory
containing the symbolic link.

If the system detects a loop in the pathname resolution process, pathname resolution shall fail
with functions reporting an [ELOOP] error and utilities writing an equivalent diagnostic
message. The same may happen if during the resolution process more symbolic links were
followed than the implementation allows. This implementation-defined limit shall not be
smaller than {SYMLOOP_MAX}.

The special filename dot shall refer to the directory specified by its predecessor. The special
filename dot-dot shall refer to the parent directory of its predecessor directory. As a special case,
in the root directory, dot-dot may refer to the root directory itself.

A pathname consisting of a single <slash> shall resolve to the root directory of the process. A
null pathname shall not be successfully resolved. If a pathname begins with two successive
<slash> characters, the first component following the leading <slash> characters may be
interpreted in an implementation-defined manner, although more than two leading <slash>
characters shall be treated as a single <slash> character.

Pathname resolution for a given pathname shall yield the same results when used by any
interface in POSIX.1-2024 as long as there are no changes to any files evaluated during pathname
resolution for the given pathname between resolutions.

4.17 Process ID Reuse
A process group ID shall not be reused by the system until the process group lifetime ends.

A process ID shall not be reused by the system until the process lifetime ends. In addition, if
there exists a process group whose process group ID is equal to that process ID, the process ID
shall not be reused by the system until the process group lifetime ends. A process that is not a
system process shall not have a process ID of 1.

106 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Scheduling Policy

4.18 Scheduling Policy
A scheduling policy affects process or thread ordering:

• When a process or thread is a running thread and it becomes a blocked thread

• When a process or thread is a running thread and it becomes a preempted thread

• When a process or thread is a blocked thread and it becomes a runnable thread

• When a running thread calls a function that can change the priority or scheduling policy of
a process or thread

• In other scheduling policy-defined circumstances

Conforming implementations shall define the manner in which each of the scheduling policies
may modify the priorities or otherwise affect the ordering of processes or threads at each of the
occurrences listed above. Additionally, conforming implementations shall define in what other
circumstances and in what manner each scheduling policy may modify the priorities or affect
the ordering of processes or threads.

4.19 Seconds Since the Epoch
A value that approximates the number of seconds that have elapsed since the Epoch. A
Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min),
hours (tm_hour), days since January 1 of the year (tm_yday), and calendar year minus 1900
(tm_year)) is related to a time represented as seconds since the Epoch, according to the
expression below.

If the year is <1970 or the value is negative, the relationship is undefined. If the year is ≥1970 and
the value is non-negative, the value is related to a Coordinated Universal Time name according
to the C-language expression, where tm_sec, tm_min, tm_hour, tm_yday, and tm_year are all
integer types:

tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
(tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400

The relationship between the actual date and time in Coordinated Universal Time, as
determined by the International Earth Rotation Service, and the system’s current value for
seconds since the Epoch is unspecified.

How any changes to the value of seconds since the Epoch are made to align to a desired
relationship with the current actual time is implementation-defined. As represented in seconds
since the Epoch, each and every day shall be accounted for by exactly 86 400 seconds.

Note: The last three terms of the expression add in a day for each year that follows a leap year starting
with the first leap year since the Epoch. The first term adds a day every 4 years starting in 1973,
the second subtracts a day back out every 100 years starting in 2001, and the third adds a day
back in every 400 years starting in 2001. The divisions in the formula are integer divisions; that
is, the remainder is discarded leaving only the integer quotient.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 107

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Semaphore General Concepts

4.20 Semaphore
A minimum synchronization primitive to serve as a basis for more complex synchronization
mechanisms to be defined by the application program.

For the mandatory semaphores (those not associated with the X/Open System Interfaces (XSI)
option), a semaphore is represented as a shareable resource that has a non-negative integer
value. When the value is zero, there is a (possibly empty) set of threads awaiting the availability
of the semaphore.

For the semaphores associated with the X/Open System Interfaces (XSI) option, a semaphore is
an integer with minimum value 0 and an implementation-defined maximum value which shall
be at least 32767. The semget() function can be called to create a set or array of semaphores. A
semaphore set can contain one or more semaphores up to an implementation-defined value.

Semaphore Lock Operation

An operation that is applied to a semaphore. If, prior to the operation, the value of the
semaphore is zero, the semaphore lock operation shall cause the calling thread to be blocked and
added to the set of threads awaiting the semaphore; otherwise, the value shall be decremented.

Semaphore Unlock Operation

An operation that is applied to a semaphore. If, prior to the operation, there are any threads in
the set of threads awaiting the semaphore, then some thread from that set shall be removed from
the set and becomes unblocked; otherwise, the semaphore value shall be incremented.

4.21 Special Device Drivers
Some devices require control operations, other than the operations that are common to most
devices (such as read(), write(), open(), and close()), but because the device belongs to a class that
is not present in the majority of systems, standardization of a device-specific application
program interface (API) for controlling it has not been practical. The driver for such a device
may respond to the write() function to transfer data to the device or the read() function to collect
information from the device. The interpretation of the information is defined by the
implementor of the driver.

The term special device refers to hardware, or an object that appears to the application as such;
access to the driver for this hardware uses the file abstraction character special file.
Implementations supporting the Device Control option shall provide the means to integrate a
device driver into the system. The means available to integrate drivers into the system and the
way character special files that refer to them are created are implementation defined. Character
special files that have no structure defined by this standard can be accessed using the
posix_devctl() function defined in the System Interfaces volume of POSIX.1-2024.

4.22 Thread-Safety
Refer to XSH Section 2.9 (on page 537).

108 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Tr eatment of Error Conditions for Mathematical Functions

4.23 Treatment of Error Conditions for Mathematical Functions
For all the functions in the <math.h> header, an application wishing to check for error situations
should set errno to 0 and call feclearexcept(FE_ALL_EXCEPT) before calling the function. On
return, if errno is non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
FE_UNDERFLOW) is non-zero, an error has occurred.

On implementations that support the IEC 60559 Floating-Point option, whether or when
functions in the <math.h> header raise an undeserved underflow floating-point exception is
unspecified. Otherwise, as implied by XSH feraiseexcept(), the <math.h> functions do not raise
spurious floating-point exceptions (detectable by the user), other than the inexact floating-point
exception.

The error conditions defined for all functions in the <math.h> header are domain, pole and
range errors, described below. If a domain, pole, or range error occurs and the integer expression
(math_errhandling & MATH_ERRNO) is zero, then errno shall either be set to the value
corresponding to the error, as specified below, or be left unmodified. If no such error occurs,
errno shall be left unmodified regardless of the setting of math_errhandling.

4.23.1 Domain Error

A ``domain error ’’ shall occur if an input argument is outside the domain over which the
mathematical function is defined. The description of each function lists any required domain
errors; an implementation may define additional domain errors, provided that such errors are
consistent with the mathematical definition of the function.

On a domain error, the function shall return an implementation-defined value; if the integer
expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [EDOM]; if
the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the ``invalid’’
floating-point exception shall be raised.

4.23.2 Pole Error

A ``pole error ’’ shall occur if the mathematical result of the function has an exact infinite result as
the finite input argument(s) are approached in the limit (for example, log(0.0)). The
description of each function lists any required pole errors; an implementation may define
additional pole errors, provided that such errors are consistent with the mathematical definition
of the function.

On a pole error, the function shall return the value of the macro HUGE_VAL, HUGE_VALF, or
HUGE_VALL according to the return type, with the same sign as the correct value of the
function; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall
be set to [ERANGE]; if the integer expression (math_errhandling & MATH_ERREXCEPT) is non-
zero, the ``divide-by-zero’’ floating-point exception shall be raised.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 109

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Tr eatment of Error Conditions for Mathematical Functions General Concepts

4.23.3 Range Error

A ``range error ’’ shall occur if the finite mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude. The description of
each function lists any required range errors; an implementation may define additional range
errors, provided that such errors are consistent with the mathematical definition of the function
and are the result of either overflow or underflow.

4.23.3.1 Result Overflows

A floating result overflows if the magnitude of the mathematical result is finite but so large that
the mathematical result cannot be represented without extraordinary roundoff error in an object
of the specified type. If a floating result overflows and default rounding is in effect, then the
function shall return the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL
according to the return type, with the same sign as the correct value of the function; if the integer
expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [ERANGE]; if
the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the ``overflow’’
floating-point exception shall be raised.

4.23.3.2 Result Underflows

The result underflows if the magnitude of the mathematical result is so small that the
mathematical result cannot be represented, without extraordinary roundoff error, in an object of
the specified type. If the result underflows, the function shall return an implementation-defined
value whose magnitude is no greater than the smallest normalized positive number in the
specified type; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
whether errno is set to [ERANGE] is implementation-defined; if the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, whether the ``underflow’’ floating-point
exception is raised is implementation-defined.

4.24 Treatment of NaN Arguments for the Mathematical Functions
For functions called with a NaN argument, no errors shall occur and a NaN shall be returned,
except where stated otherwise.

If a function with one or more NaN arguments returns a NaN result, the result should be the
same as one of the NaN arguments (after possible type conversion), except perhaps for the sign.

On implementations that support the IEC 60559: 1989 standard floating point, functions with
signaling NaN argument(s) shall be treated as if the function were called with an argument that
is a required domain error and shall return a quiet NaN result, except where stated otherwise.

Note: The function might never see the signaling NaN, since it might trigger when the arguments are
evaluated during the function call.

On implementations that support the IEC 60559: 1989 standard floating point, for those
functions that do not have a documented domain error, the following shall apply:

These functions shall fail if:

Domain Error Any argument is a signaling NaN.

Either, the integer expression (math_errhandling & MATH_ERRNO) is non-zero and errno
shall be set to [EDOM], or the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero and the invalid floating-point exception shall be raised.

110 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Tr eatment of NaN Arguments for the Mathematical Functions

4.25 Utility
A utility program shall be either an executable file, such as might be produced by a compiler or
linker system from computer source code, or a file of shell source code, directly interpreted by
the shell. The program may have been produced by the user, provided by the system
implementor, or acquired from an independent distributor.

The system may implement certain utilities as shell functions (see XCU Section 2.9.5, on page
2511) or built-in utilities, but only an application that is aware of the command search order (as
described in XCU Section 2.9.1.4, on page 2502) or of performance characteristics can discern
differences between the behavior of such a function or built-in utility and that of an executable
file.

4.26 Variable Assignment
In the shell command language, a word consisting of the following parts:

varname=value

When used in a context where assignment is defined to occur and at no other time, the value
(representing a word or field) shall be assigned as the value of the variable denoted by varname.
Assignment context occurs in the cmd_prefix portion of a shell simple command, as well as in
arguments of a recognized declaration utility.

Note: For further information, see XCU Section 2.9.1 (on page 2500).

The varname and value parts shall meet the requirements for a name and a word, respectively,
except that they are delimited by the embedded unquoted <equals-sign>, in addition to other
delimiters.

Note: Additional delimiters are described in XCU Section 2.3 (on page 2475).

When a variable assignment is done, the variable shall be created if it did not already exist. If
value is not specified, the variable shall be given a null value.

Note: An alternative form of variable assignment:

symbol=value

(where symbol is a valid word delimited by an <equals-sign>, but not a valid name) produces
unspecified results. The form symbol=value is used by the KornShell name[expression]=value
syntax.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 111

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts

112 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 5

File Format Notation

The STDIN, STDOUT, STDERR, INPUT FILES, and OUTPUT FILES sections of the utility
descriptions use a syntax to describe the data organization within the files, when that
organization is not otherwise obvious. The syntax is similar to that used by the System Interfaces
volume of POSIX.1-2024 printf() function, as described in this chapter. When used in STDIN or
INPUT FILES sections of the utility descriptions, this syntax describes the format that could
have been used to write the text to be read, not a format that could be used by the System
Interfaces volume of POSIX.1-2024 scanf() function to read the input file.

The description of an individual record is as follows:

"<format>", [<arg1>, <arg2>,..., <argn>]

The format is a character string that contains three types of objects defined below:

1. Characters that are not ``escape sequences’’ or ``conversion specifications’’, as described
below, shall be copied to the output.

2. Escape Sequences represent non-graphic characters and the escape character (<backslash>).

3. Conversion Specifications specify the output format of each argument; see below.

The following characters have the following special meaning in the format string:

’’ (An empty character position.) Represents one or more <blank> characters from the
portable character set.

Δ Represents exactly one <space> character.

Table 5-1 lists escape sequences and associated actions on display devices capable of the action.

Table 5-1 Escape Sequences and Associated Actions

Escape Represents
Sequence Character Terminal Action

\\ <backslash> Print the <backslash> character.
\a <alert> Attempt to alert the user through audible or visible notification.
\b <backspace> Move the printing position to one column before the current

position, unless the current position is the start of a line.
\f <form-feed> Move the printing position to the initial printing position of the

next logical page.
\n <newline> Move the printing position to the start of the next line.
\r <carriage-return> Move the printing position to the start of the current line.
\t <tab> Move the printing position to the next tab position on the current

line. If there are no more tab positions remaining on the line, the
behavior is undefined.

\v <vertical-tab> Move the printing position to the start of the next <vertical-tab>
position. If there are no more <vertical-tab> positions left on the
page, the behavior is undefined.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 113

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

File Format Notation

Each conversion specification is introduced by the <percent-sign> character ('%'). After the
character '%', the following shall appear in sequence:

flags Zero or more flags, in any order, that modify the meaning of the conversion
specification.

field width An optional string of decimal digits to specify a minimum field width. For an
output field, if the converted value has fewer bytes than the field width, it shall be
padded on the left (or right, if the left-adjustment flag ('−'), described below, has
been given) to the field width.

precision Gives the minimum number of digits to appear for the d, o, i, u, x, or X conversion
specifiers (the field is padded with leading zeros), the number of digits to appear
after the radix character for the e and f conversion specifiers, the maximum
number of significant digits for the g conversion specifier; or the maximum
number of bytes to be written from a string in the s conversion specifier. The
precision shall take the form of a <period> ('.') followed by a decimal digit
string; a null digit string is treated as zero.

conversion specifier characters
A conversion specifier character (see below) that indicates the type of conversion
to be applied.

The flag characters and their meanings are:

− The result of the conversion shall be left-justified within the field.

+ The result of a signed conversion shall always begin with a sign ('+' or '−').

<space> If the first character of a signed conversion is not a sign, a <space> shall be
prefixed to the result. This means that if the <space> and '+' flags both appear,
the <space> flag shall be ignored.

The value shall be converted to an alternative form. For c, d, i, u, and s
conversion specifiers, the behavior is undefined. For the o conversion specifier, it
shall increase the precision to force the first digit of the result to be a zero. For x or
X conversion specifiers, a non-zero result has 0x or 0X prefixed to it, respectively.
For a, A, e, E, f, F, g, and G conversion specifiers, the result shall always contain a
radix character, even if no digits follow the radix character. For g and G conversion
specifiers, trailing zeros shall not be removed from the result as they usually are.

0 For a, A, d, e, E, f, F, g, G, i, o, u, x, and X conversion specifiers, leading zeros
(following any indication of sign or base) shall be used to pad to the field width
rather than performing space padding, except when converting an infinity or NaN.
If the '0' and '−' flags both appear, the '0' flag shall be ignored. For d, i, o, u,
x, and X conversion specifiers, if a precision is specified, the '0' flag shall be
ignored. For other conversion specifiers, the behavior is undefined.

Each conversion specifier character shall result in fetching zero or more arguments. The results
are undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments shall be ignored.

The conversion specifiers and their meanings are:

a,A The floating-point number argument representing a floating-point number shall be
converted in the style "[−]0xh.hhhhp±d", where there is one hexadecimal digit
(which shall be non-zero if the argument is a normalized floating-point number
and is otherwise unspecified) before the decimal-point character and the number
of hexadecimal digits after it is equal to the precision; if the precision is missing

114 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

File Format Notation

and FLT_RADIX is a power of 2, then the precision shall be sufficient for an exact
representation of the value; if the precision is missing and FLT_RADIX is not a
power of 2, then the precision shall be sufficient to distinguish different floating-
point values in the internal representation used by the utility, except that trailing
zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point character shall appear. The letters "abcdef" shall be used for a
conversion and the letters "ABCDEF" for A conversion. The A conversion specifier
produces a number with X and P instead of x and p. The exponent shall always
contain at least one digit, and only as many more digits as necessary to represent
the decimal exponent of 2. If the value is zero, the exponent shall be zero. A
floating-point number argument representing an infinity or NaN shall be
converted in the style of an f or F conversion specifier.

d,i,o,u,x,X The integer argument shall be written as signed decimal (d or i), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x and X). The d and
i specifiers shall convert to signed decimal in the style "[−]dddd". The x
conversion specifier shall use the numbers and letters "0123456789abcdef" and
the X conversion specifier shall use the numbers and letters
"0123456789ABCDEF". The precision component of the argument shall specify
the minimum number of digits to appear. If the value being converted can be
represented in fewer digits than the specified minimum, it shall be expanded with
leading zeros. The default precision shall be 1. The result of converting a zero
value with a precision of 0 shall be no characters. If both the field width and
precision are omitted, the implementation may precede, follow, or precede and
follow numeric arguments of types d, i, and u with <blank> characters from the
portable character set; arguments of type o (octal) may be preceded with leading
zeros.

f,F The floating-point number argument shall be written in decimal notation in the
style [−]ddd.ddd, where the number of digits after the radix character (shown here
as a decimal point) shall be equal to the precision specification. The LC_NUMERIC
locale category shall determine the radix character to use in this format. If the
precision is omitted from the argument, six digits shall be written after the radix
character; if the precision is explicitly 0, no radix character shall appear.

A floating-point number argument representing an infinity shall be converted in
one of the styles "[-]inf" or "[-]infinity"; which style is implementation-
defined. A floating-point number argument representing a NaN shall be converted
in one of the styles "[−]nan(n-char-sequence)" or "[-]nan"; which style,
and the meaning of any n-char-sequence, is implementation-defined. The F
conversion specifier produces "INF", "INFINITY", or "NAN" instead of "inf",
"infinity", or "nan", respectively.

e,E The floating-point number argument shall be written in the style [−]d.ddde±dd (the
symbol '±' indicates either a <plus-sign> or <hyphen-minus>), where there is one
digit before the radix character (shown here as a decimal point) and the number of
digits after it is equal to the precision. The LC_NUMERIC locale category shall
determine the radix character to use in this format. When the precision is missing,
six digits shall be written after the radix character; if the precision is 0, no radix
character shall appear. The E conversion specifier shall produce a number with E
instead of e introducing the exponent. The exponent shall always contain at least
two digits. However, if the value to be written requires an exponent greater than
two digits, additional exponent digits shall be written as necessary.

A floating-point number argument representing an infinity or NaN shall be

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 115

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

File Format Notation

converted in the style of an f or F conversion specifier.

g,G The floating-point number argument shall be written in style f or e (or in style F
or E in the case of a G conversion specifier), with the precision specifying the
number of significant digits. The style used depends on the value converted: style
e (or E) shall be used only if the exponent resulting from the conversion is less
than −4 or greater than or equal to the precision. Trailing zeros are removed from
the result. A radix character shall appear only if it is followed by a digit.

A floating-point number argument representing an infinity or NaN shall be
converted in the style of an f or F conversion specifier.

c The single-byte character argument shall be written.

s The argument shall be taken to be a string and bytes from the string shall be
written until the end of the string or the number of bytes indicated by the precision
specification of the argument is reached. If the precision is omitted from the
argument, it shall be taken to be infinite, so all bytes up to the end of the string
shall be written.

% Write a '%' character; no argument shall be converted. Applications using the
printf utility shall ensure that the complete conversion specification is %%.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the
conversion result. The term ``field width’’ should not be confused with the term ``precision’’
used in the description of %s.

Examples

To represent the output of a program that prints a date and time in the form Sunday, July 3,
10:02, where weekday and month are strings:

"%s,Δ%sΔ%d,Δ%d:%.2d\n" <weekday>, <month>, <day>, <hour>, <min>

To show 'π' written to 5 decimal places:

"piΔ=Δ%.5f\n",<value of π>

To show an input file format consisting of five <colon>-separated fields:

"%s:%s:%s:%s:%s\n", <arg1>, <arg2>, <arg3>, <arg4>, <arg5>

116 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 6

Character Set

6.1 Portable Character Set
Conforming implementations shall support one or more coded character sets. Each supported
locale shall include the portable character set, which is the set of symbolic names for characters in
Table 6-1. This is used to describe characters within the text of POSIX.1-2024. The first eight
entries in Table 6-1 and all characters in Table 6-2 (on page 122) are defined in the
ISO/IEC 6429: 1992 standard. The rest of the characters in Table 6-1 are defined in the
ISO/IEC 10646: 2020 standard.

Table 6-1 Portable Character Set

Symbolic Name(s) Glyph UCS Description
<NUL> <U0000> NULL (NUL)
<alert>, <BEL> <U0007> BELL
<backspace>, <BS> <U0008> BACKSPACE
<tab>, <HT> <U0009> CHARACTER TABULATION
<newline>, <LF> <U000A> LINE FEED (LF)
<vertical-tab>, <VT> <U000B> LINE TABULATION
<form-feed>, <FF> <U000C> FORM FEED (FF)
<carriage-return>, <CR> <U000D> CARRIAGE RETURN (CR)
<space> <U0020> SPACE
<exclamation-mark> ! <U0021> EXCLAMATION MARK
<quotation-mark> " <U0022> QUOTATION MARK
<number-sign> # <U0023> NUMBER SIGN
<dollar-sign> $ <U0024> DOLLAR SIGN
<percent-sign> % <U0025> PERCENT SIGN
<ampersand> & <U0026> AMPERSAND
<apostrophe> ' <U0027> APOSTROPHE
<left-parenthesis> (<U0028> LEFT PARENTHESIS
<right-parenthesis>) <U0029> RIGHT PARENTHESIS
<asterisk> * <U002A> ASTERISK
<plus-sign> + <U002B> PLUS SIGN
<comma> , <U002C> COMMA
<hyphen-minus>, <hyphen> − <U002D> HYPHEN-MINUS
<full-stop>, <period> . <U002E> FULL STOP
<slash>, <solidus> / <U002F> SOLIDUS
<zero> 0 <U0030> DIGIT ZERO
<one> 1 <U0031> DIGIT ONE
<two> 2 <U0032> DIGIT TWO
<three> 3 <U0033> DIGIT THREE
<four> 4 <U0034> DIGIT FOUR
<five> 5 <U0035> DIGIT FIVE

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 117

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portable Character Set Character Set

Symbolic Name(s) Glyph UCS Description
<six> 6 <U0036> DIGIT SIX
<seven> 7 <U0037> DIGIT SEVEN
<eight> 8 <U0038> DIGIT EIGHT
<nine> 9 <U0039> DIGIT NINE
<colon> : <U003A> COLON
<semicolon> ; <U003B> SEMICOLON
<less-than-sign> < <U003C> LESS-THAN SIGN
<equals-sign> = <U003D> EQUALS SIGN
<greater-than-sign> > <U003E> GREATER-THAN SIGN
<question-mark> ? <U003F> QUESTION MARK
<commercial-at> @ <U0040> COMMERCIAL AT
<A> A <U0041> LATIN CAPITAL LETTER A
 B <U0042> LATIN CAPITAL LETTER B
<C> C <U0043> LATIN CAPITAL LETTER C
<D> D <U0044> LATIN CAPITAL LETTER D
<E> E <U0045> LATIN CAPITAL LETTER E
<F> F <U0046> LATIN CAPITAL LETTER F
<G> G <U0047> LATIN CAPITAL LETTER G
<H> H <U0048> LATIN CAPITAL LETTER H
<I> I <U0049> LATIN CAPITAL LETTER I
<J> J <U004A> LATIN CAPITAL LETTER J
<K> K <U004B> LATIN CAPITAL LETTER K
<L> L <U004C> LATIN CAPITAL LETTER L
<M> M <U004D> LATIN CAPITAL LETTER M
<N> N <U004E> LATIN CAPITAL LETTER N
<O> O <U004F> LATIN CAPITAL LETTER O
<P> P <U0050> LATIN CAPITAL LETTER P
<Q> Q <U0051> LATIN CAPITAL LETTER Q
<R> R <U0052> LATIN CAPITAL LETTER R
<S> S <U0053> LATIN CAPITAL LETTER S
<T> T <U0054> LATIN CAPITAL LETTER T
<U> U <U0055> LATIN CAPITAL LETTER U
<V> V <U0056> LATIN CAPITAL LETTER V
<W> W <U0057> LATIN CAPITAL LETTER W
<X> X <U0058> LATIN CAPITAL LETTER X
<Y> Y <U0059> LATIN CAPITAL LETTER Y
<Z> Z <U005A> LATIN CAPITAL LETTER Z
<left-square-bracket> [<U005B> LEFT SQUARE BRACKET
<backslash>, <reverse-solidus> \ <U005C> REVERSE SOLIDUS
<right-square-bracket>] <U005D> RIGHT SQUARE BRACKET
<circumflex-accent>, <circumflex> ˆ <U005E> CIRCUMFLEX ACCENT
<low-line>, <underscore> <U005F> LOW LINE
<grave-accent> ` <U0060> GRAVE ACCENT
<a> a <U0061> LATIN SMALL LETTER A
 b <U0062> LATIN SMALL LETTER B
<c> c <U0063> LATIN SMALL LETTER C
<d> d <U0064> LATIN SMALL LETTER D
<e> e <U0065> LATIN SMALL LETTER E
<f> f <U0066> LATIN SMALL LETTER F
<g> g <U0067> LATIN SMALL LETTER G
<h> h <U0068> LATIN SMALL LETTER H

118 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set Portable Character Set

Symbolic Name(s) Glyph UCS Description
<i> i <U0069> LATIN SMALL LETTER I
<j> j <U006A> LATIN SMALL LETTER J
<k> k <U006B> LATIN SMALL LETTER K
<l> l <U006C> LATIN SMALL LETTER L
<m> m <U006D> LATIN SMALL LETTER M
<n> n <U006E> LATIN SMALL LETTER N
<o> o <U006F> LATIN SMALL LETTER O
<p> p <U0070> LATIN SMALL LETTER P
<q> q <U0071> LATIN SMALL LETTER Q
<r> r <U0072> LATIN SMALL LETTER R
<s> s <U0073> LATIN SMALL LETTER S
<t> t <U0074> LATIN SMALL LETTER T
<u> u <U0075> LATIN SMALL LETTER U
<v> v <U0076> LATIN SMALL LETTER V
<w> w <U0077> LATIN SMALL LETTER W
<x> x <U0078> LATIN SMALL LETTER X
<y> y <U0079> LATIN SMALL LETTER Y
<z> z <U007A> LATIN SMALL LETTER Z
<left-brace>, <left-curly-bracket> { <U007B> LEFT CURLY BRACKET
<vertical-line> | <U007C> VERTICAL LINE
<right-brace>, <right-curly-bracket> } <U007D> RIGHT CURLY BRACKET
<tilde> ˜ <U007E> TILDE

POSIX.1-2024 uses character names other than the above, but only in an informative way; for
example, in examples to illustrate the use of characters beyond the portable character set with
the facilities of POSIX.1-2024.

Table 6-1 (on page 117) defines the characters in the portable character set and the corresponding
symbolic character names used to identify each character in a character set description file.
Characters defined in Table 6-2 (on page 122) may also be used in character set description files.

POSIX.1-2024 places only the following requirements on the encoded values of the characters in
the portable character set:

• If the encoded values associated with each member of the portable character set are not
invariant across all locales supported by the implementation, if an application uses any
pair of locales where the character encodings differ, or accesses data from an application
using a locale which has different encodings from the locales used by the application, the
results are unspecified.

• The encoded values associated with the digits 0 to 9 shall be such that the value of each
character after 0 shall be one greater than the value of the previous character.

• A null character, NUL, which has all bits set to zero, shall be in the set of characters.

• The encoded values associated with <period>, <slash>, <newline>, and <carriage-return>
shall be invariant across all locales supported by the implementation.

• The encoded values associated with the members of the portable character set are each
represented in a single byte. Moreover, if the value is stored in an object of C-language
type char, it is guaranteed to be positive (except the NUL, which is always zero).

Conforming implementations shall support certain character and character set attributes, as
defined in Section 7.2 (on page 128).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 119

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Encoding Character Set

6.2 Character Encoding
The POSIX locale shall contain 256 single-byte characters including the characters in Table 6-1
(on page 117) and Table 6-2 (on page 122), which have the properties listed in Section 7.3.1 (on
page 131). It is unspecified whether characters not listed in those two tables are classified as
punct or cntrl, or neither. Other locales shall contain the characters in Table 6-1 (on page 117)
and may contain any or all of the control characters identified in Table 6-2 (on page 122); the
presence, meaning, and representation of any additional characters are locale-specific.

In locales other than the POSIX locale, a character may have a state-dependent encoding. There
are two types of these encodings:

• A single-shift encoding (where each character not in the initial shift state is preceded by a
shift code) can be defined if each shift-code and character sequence is considered a multi-
byte character. This is done using the concatenated-constant format in a character set
description file, as described in Section 6.4 (on page 121). If the implementation supports a
character encoding of this type, all of the standard utilities in the Shell and Utilities volume
of POSIX.1-2024 shall support it. Use of a single-shift encoding with any of the functions in
the System Interfaces volume of POSIX.1-2024 that do not specifically mention the effects
of state-dependent encoding is implementation-defined.

• A locking-shift encoding (where the state of the character is determined by a shift code
that may affect more than the single character following it) cannot be defined with the
current character set description file format. Use of a locking-shift encoding with any of
the standard utilities in the Shell and Utilities volume of POSIX.1-2024 or with any of the
functions in the System Interfaces volume of POSIX.1-2024 that do not specifically mention
the effects of state-dependent encoding is implementation-defined.

While in the initial shift state, all characters in the portable character set shall retain their usual
interpretation and shall not alter the shift state. The interpretation for subsequent bytes in the
sequence shall be a function of the current shift state. A byte with all bits zero shall be
interpreted as the null character independent of shift state. Such a byte shall not occur as part of
any other character. Likewise, the byte values used to encode <period>, <slash>, <newline>, and
<carriage-return> shall not occur as part of any other character in any locale.

The maximum allowable number of bytes in a character in the current locale shall be indicated
by {MB_CUR_MAX}, defined in the <stdlib.h> header and by the <mb_cur_max> value in a
character set description file; see Section 6.4 (on page 121). The implementation’s maximum
number of bytes in a character shall be defined by the C-language macro {MB_LEN_MAX}.

6.3 C Language Wide-Character Codes
In the shell, the standard utilities are written so that the encodings of characters are described by
the locale’s LC_CTYPE definition (see Section 7.3.1, on page 131) and there is no differentiation
between characters consisting of single octets (8-bit bytes) or multiple bytes. However, in the C
language, a differentiation is made. To ease the handling of variable length characters, the C
language has introduced the concept of wide-character codes.

All wide-character codes in a given process consist of an equal number of bits. This is in contrast
to characters, which can consist of a variable number of bytes. The byte or byte sequence that
represents a character can also be represented as a wide-character code. Wide-character codes
thus provide a uniform size for manipulating text data. A wide-character code having all bits
zero is the null wide-character code (see Section 3.233, on page 65), and terminates wide-
character strings (see Section 3.417, on page 93). The wide-character value for each member of
the portable character set shall equal its value when used as the lone character in an integer

120 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set C Language Wide-Character Codes

character constant. Wide-character codes for other characters are locale and implementation-
defined. State shift bytes shall not have a wide-character code representation. POSIX.1-2024
provides no means of defining a wide-character codeset.

Arguments to the functions declared in the <wchar.h> header can point to arrays containing
wchar_t values that do not correspond to valid wide character codes according to the LC_CTYPE
category of the locale being used. Such values shall be processed according to the specified
semantics for the function in the System Interfaces volume of POSIX.1-2024, except that it is
unspecified whether an encoding error occurs if such a value appears in the format string of a
function that has a format string as a parameter and the specified semantics do not require that
value to be processed as if by wcrtomb().

6.4 Character Set Description File
Implementations shall provide a character set description file for at least one coded character set
supported by the implementation. These files are referred to elsewhere in POSIX.1-2024 as
charmap files. It is implementation-defined whether or not users or applications can provide
additional character set description files.

POSIX.1-2024 does not require that multiple character sets or codesets be supported. Although
multiple charmap files are supported, it is the responsibility of the implementation to provide
the file or files; if only one is provided, only that one is accessible using the localedef utility’s −f
option.

Each character set description file, except those that use the ISO/IEC 10646: 2020 standard
position values as the encoding values, shall define characteristics for the coded character set
and the encoding for the characters specified in Table 6-1 (on page 117), and may define
encoding for additional characters supported by the implementation. Other information about
the coded character set may also be in the file. Coded character set character values shall be
defined using symbolic character names followed by character encoding values.

Each symbolic name specified in Table 6-1 (on page 117) shall be included in the file. Each
character in Table 6-1 (on page 117) (each row in the table) shall be mapped to a unique coding
value. For each character in Table 6-2 (on page 122) that exists in the character set described by
the file, the character’s symbolic name(s) from Table 6-2 (on page 122) and the character’s single-
byte encoding value shall be included in the file.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 121

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set Description File Character Set

Table 6-2 Non-Portable Control Characters

Symbolic Name(s) UCS Description
<SOH> <U0001> START OF HEADING
<STX> <U0002> START OF TEXT
<ETX> <U0003> END OF TEXT
<EOT> <U0004> END OF TRANSMISSION
<ENQ> <U0005> ENQUIRY
<ACK> <U0006> ACKNOWLEDGE
<SO> <U000E> SHIFT OUT
<SI> <U000F> SHIFT IN
<DLE> <U0010> DATA LINK ESCAPE
<DC1> <U0011> DEVICE CONTROL ONE
<DC2> <U0012> DEVICE CONTROL TWO
<DC3> <U0013> DEVICE CONTROL THREE
<DC4> <U0014> DEVICE CONTROL FOUR
<NAK> <U0015> NEGATIVE ACKNOWLEDGE
<SYN> <U0016> SYNCHRONOUS IDLE
<ETB> <U0017> END OF TRANSMISSION BLOCK
<CAN> <U0018> CANCEL
 <U0019> END OF MEDIUM
<SUB> <U001A> SUBSTITUTE
<ESC> <U001B> ESCAPE
<IS4>, <FS> <U001C> INFORMATION SEPARATOR FOUR
<IS3>, <GS> <U001D> INFORMATION SEPARATOR THREE
<IS2>, <RS> <U001E> INFORMATION SEPARATOR TWO
<IS1>, <US> <U001F> INFORMATION SEPARATOR ONE
 <U007F> DELETE

The following declarations can precede the character definitions. Each shall consist of the
symbol shown in the following list, starting in column 1, including the surrounding brackets,
followed by one or more <blank> characters, followed by the value to be assigned to the symbol.

<code_set_name> The name of the coded character set for which the character set
description file is defined. The characters of the name shall be taken from
the set of characters with visible glyphs defined in Table 6-1 (on page 117).

<mb_cur_max> The maximum number of bytes in a multi-byte character. This shall
default to 1.

<mb_cur_min> An unsigned positive integer value that defines the minimum number of
XSI bytes in a character for the encoded character set. On XSI-conformant

systems, <mb_cur_min> shall always be 1.

<escape_char> The character used to indicate that the characters following shall be
interpreted in a special way, as defined later in this section. This shall
default to <backslash> ('\\'), which is the character used in all the
following text and examples, unless otherwise noted.

<comment_char> The character that, when placed in column 1 of a charmap line, is used to
indicate that the line shall be ignored. The default character shall be the
<number-sign> ('#').

The character set mapping definitions shall be all the lines immediately following an identifier
line containing the string "CHARMAP" starting in column 1, and preceding a trailer line

122 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set Character Set Description File

containing the string "END CHARMAP" starting in column 1. Empty lines and lines containing a
<comment_char> in the first column shall be ignored. Each non-comment line of the character
set mapping definition (that is, between the "CHARMAP" and "END CHARMAP" lines of the file)
shall be in either of two forms:

"%s %s %s\n", <symbolic-name>, <encoding>, <comments>

or:

"%s...%s %s %s\n", <symbolic-name>, <symbolic-name>,
<encoding>, <comments>

In the first format, the line in the character set mapping definition shall define a single symbolic
name and a corresponding encoding. A symbolic name is one or more characters from the set
shown with visible glyphs in Table 6-1 (on page 117), enclosed between angle brackets. A
character following an escape character is interpreted as itself; for example, the sequence
"<\\\>>" represents the symbolic name "\>" enclosed between angle brackets.

In the second format, the line in the character set mapping definition shall define a range of one
or more symbolic names. In this form, the symbolic names shall consist of zero or more non-
numeric characters from the set shown with visible glyphs in Table 6-1 (on page 117), followed
by an integer formed by one or more decimal digits. Both integers shall contain the same
number of digits. The characters preceding the integer shall be identical in the two symbolic
names, and the integer formed by the digits in the second symbolic name shall be equal to or
greater than the integer formed by the digits in the first name. This shall be interpreted as a
series of symbolic names formed from the common part and each of the integers between the
first and the second integer, inclusive. As an example, <j0101>. . .<j0104> is interpreted as the
symbolic names <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

A character set mapping definition line shall exist for all symbolic names specified in Table 6-1
(on page 117), and shall define the coded character value that corresponds to the character
indicated in the table, or the coded character value that corresponds to the control character
symbolic name. If the control characters commonly associated with the symbolic names in Table
6-2 (on page 122) are supported by the implementation, the symbolic name and the
corresponding encoding value shall be included in the file. Additional unique symbolic names
may be included. A coded character value can be represented by more than one symbolic name.

The encoding part is expressed as one (for single-byte character values) or more concatenated
decimal, octal, or hexadecimal constants in the following formats:

"%cd%u", <escape_char>, <decimal byte value>
"%cx%x", <escape_char>, <hexadecimal byte value>
"%c%o", <escape_char>, <octal byte value>

Decimal constants shall be represented by two or three decimal digits, preceded by the escape
character and the lowercase letter 'd'; for example, "\d05", "\d97", or "\d143".
Hexadecimal constants shall be represented by two hexadecimal digits, preceded by the escape
character and the lowercase letter 'x'; for example, "\x05", "\x61", or "\x8f". Octal
constants shall be represented by two or three octal digits, preceded by the escape character; for
example, "\05", "\141", or "\217". In a portable charmap file, each constant represents an
8-bit byte. When constants are concatenated for multi-byte character values, they shall be of the
same type, and interpreted in sequence from from first to last with the first byte of the multi-
byte character specified by the first byte in the sequence. The manner in which these constants
are represented in the character stored in the system is implementation-defined. (This notation
was chosen for reasons of portability. There is no requirement that the internal representation in
the computer memory be in this same order.) Omitting bytes from a multi-byte character
definition produces undefined results.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 123

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set Description File Character Set

In lines defining ranges of symbolic names, the encoded value shall be the value for the first
symbolic name in the range (the symbolic name preceding the ellipsis). Subsequent symbolic
names defined by the range shall have encoding values in increasing order. Bytes shall be
treated as unsigned octets, and carry shall be propagated between the bytes as necessary to
represent the range. However, because this causes a null byte in the second or subsequent bytes
of a character, such a declaration should not be specified. For example, the line:

<j0101>...<j0104> \d129\d254

is interpreted as:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d00
<j0104> \d130\d01

The expanded declaration of the symbol <j0103> in the above example is an invalid
specification, because it contains a null byte in the second byte of a character.

The comment is optional.

POSIX.1-2024 provides no means of defining a wide-character codeset.

The following declarations can follow the character set mapping definitions (after the "END
CHARMAP" statement). Each shall consist of the keyword shown in the following list, starting in
column 1, followed by the value(s) to be associated to the keyword, as defined below.

WIDTH A non-negative integer value defining the column width (see Section 3.75, on page
42) for the printable characters in the coded character set specified in Table 6-1 (on
page 117) and Table 6-2 (on page 122). Coded character set character values shall
be defined using symbolic character names followed by column width values.
Defining a character with more than one WIDTH produces undefined results. The
END WIDTH keyword shall be used to terminate the WIDTH definitions.
Specifying the width of a non-printable character in a WIDTH declaration
produces undefined results.

WIDTH_DEFAULT
A non-negative integer value defining the default column width for any printable
character not listed by one of the WIDTH keywords. If no WIDTH_DEFAULT
keyword is included in the charmap, the default character width shall be 1.

Example

After the "END CHARMAP" statement, a syntax for a width definition would be:

WIDTH
<A> 1
 1
<C>...<Z> 1
...
<foo1>...<foon> 2
...
END WIDTH

In this example, the numerical code point values represented by the symbols <A> and are
assigned a width of 1. The code point values <C> to <Z> inclusive (<C>, <D>, <E>, and so on)
are also assigned a width of 1. Using <A>. . .<Z> would have required fewer lines, but the
alternative was shown to demonstrate flexibility. The keyword WIDTH_DEFAULT could have

124 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set Character Set Description File

been added as appropriate.

6.4.1 State-Dependent Character Encodings

This section addresses the use of state-dependent character encodings (that is, those in which the
encoding of a character is dependent on one or more shift codes that may precede it).

A single-shift encoding (where each character not in the initial shift state is preceded by a shift
code) can be defined in the charmap format if each shift-code/character sequence is considered
a multi-byte character, defined using the concatenated-constant format described in Section 6.4
(on page 121). If the implementation supports a character encoding of this type, all of the
standard utilities shall support it. A locking-shift encoding (where the state of the character is
determined by a shift code that may affect more than the single character following it) could be
defined with an extension to the charmap format described in Section 6.4 (on page 121).

If the implementation supports a character encoding of this type, any of the standard utilities
that describe character (versus byte) or text-file manipulation shall have the following
characteristics:

1. The utility shall process the statefully encoded data as a concatenation of state-
independent characters. The presence of redundant locking shifts shall not affect the
comparison of two statefully encoded strings.

2. A utility that divides, truncates, or extracts substrings from statefully encoded data shall
produce output that contains locking shifts at the beginning or end of the resulting data,
if appropriate, to retain correct state information.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 125

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set

126 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 7

Locale

7.1 General
A locale is the definition of the subset of a user’s environment that depends on language and
cultural conventions. It is made up from one or more categories. Each category is identified by
its name and controls specific aspects of the behavior of components of the system. Category
names correspond to the following environment variable names:

LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_MONETARY Monetary formatting.

LC_NUMERIC Numeric, non-monetary formatting.

LC_TIME Date and time formats.

LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

The standard utilities in the Shell and Utilities volume of POSIX.1-2024 shall base their behavior
on the current locale, as defined in the ENVIRONMENT VARIABLES section for each utility.
The behavior of some of the C-language functions defined in the System Interfaces volume of
POSIX.1-2024 shall also be modified based on a locale selection. The locale to be used by these
functions can be selected in the following ways:

1. For functions such as isalnum_l() that take a locale object as an argument, a locale object
can be obtained from newlocale() or duplocale() and passed to the function.

2. For functions that do not take a locale object as an argument, the current locale for the
thread can be set by calling uselocale() or the global locale for the process can be set by
calling setlocale(). Such functions shall use the current locale of the calling thread if one
has been set for that thread; otherwise, they shall use the global locale.

3. Some functions, such as catopen() and those related to text domains, may reference
various environment variables and a locale category of a specific locale to access files they
need to use.

Locales other than those supplied by the implementation can be created via the localedef utility,
provided that the _POSIX2_LOCALEDEF symbol is defined on the system. Even if localedef is
not provided, all implementations conforming to the System Interfaces volume of POSIX.1-2024
shall provide one or more locales that behave as described in this chapter. The input to the
utility is described in Section 7.3 (on page 128). The value that is used to specify a locale when
using environment variables shall be the string specified as the name operand to the localedef
utility when the locale was created. The strings "C" and "POSIX" are reserved as identifiers for
the POSIX locale (see Section 7.2, on page 128). When the value of a locale environment variable
begins with a <slash> ('/'), it shall be interpreted as the pathname of the locale definition; the
type of file (regular, directory, and so on) used to store the locale definition is implementation-
defined. If the value does not begin with a <slash>, the mechanism used to locate the locale is
implementation-defined.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 127

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Locale

If incompatible character sets are used by the locale categories, the results achieved by an
application utilizing these categories are undefined. Two locale categories have incompatible
character sets if one of the categories is LC_CTYPE and the locale data associated with the other
category includes at least one character that either is not in the character set used by LC_CTYPE
or has a different encoding than the same character in the character set used by LC_CTYPE.

Likewise, unless specified otherwise, if different codesets are used by a particular category of the
selected locale and by the data being processed by an interface whose behavior is dependent on
that category of the selected locale, the results are undefined.

Applications can select the desired locale by calling the newlocale() or setlocale() function with
the appropriate value. If the function is invoked with an empty string, such as:

newlocale(LC_ALL_MASK, "", (locale_t)0);

or:

setlocale(LC_ALL, "");

the value of the corresponding environment variable is used. If the environment variable is
unset or is set to the empty string, the implementation shall set the appropriate environment as
defined in Chapter 8 (on page 167).

7.2 POSIX Locale
Conforming systems shall provide a POSIX locale, also known as the C locale. In POSIX.1 the
requirements for the POSIX locale are more extensive than the requirements for the C locale as
specified in the ISO C standard. However, in a conforming POSIX implementation, the POSIX
locale and the C locale are identical. The behavior of standard utilities and functions in the
POSIX locale shall be as if the locale was defined via the localedef utility with input data from the
POSIX locale tables in Section 7.3.

For C-language programs, the POSIX locale shall be the default locale when the setlocale()
function is not called.

The POSIX locale can be specified by assigning to the appropriate environment variables the
values "C" or "POSIX".

All implementations shall define a locale as the default locale, to be invoked when no
environment variables are set, or set to the empty string. This default locale can be the POSIX
locale or any other implementation-defined locale. Some implementations may provide facilities
for local installation administrators to set the default locale, customizing it for each location.
POSIX.1-2024 does not require such a facility.

7.3 Locale Definition
The capability to specify additional locales to those provided by an implementation is optional,
denoted by the _POSIX2_LOCALEDEF symbol. If the option is not supported, only
implementation-supplied locales are available. Such locales shall be documented using the
format specified in this section.

Locales can be described with the file format presented in this section. The file format is that
accepted by the localedef utility. For the purposes of this section, the file is referred to as the
``locale definition file’’, but no locales shall be affected by this file unless it is processed by
localedef or some similar mechanism. Any requirements in this section imposed upon the utility
shall apply to localedef or to any other similar utility used to install locale information using the

128 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

locale definition file format described here.

The locale definition file shall contain one or more locale category source definitions, and shall
not contain more than one definition for the same locale category. If the file contains source
definitions for more than one category, implementation-defined categories, if present, shall
appear after the categories defined by Section 7.1 (on page 127). A category source definition
contains either the definition of a category or a copy directive. For a description of the copy
directive, see localedef. In the event that some of the information for a locale category, as
specified in this volume of POSIX.1-2024, is missing from the locale source definition, the
behavior of that category, if it is referenced, is unspecified.

A category source definition shall consist of a category header, a category body, and a category
trailer. A category header shall consist of the character string naming of the category, beginning
with the characters LC_. The category trailer shall consist of the string "END", followed by one
or more <blank> characters and the string used in the corresponding category header.

The category body shall consist of one or more lines of text. Each line shall contain an identifier,
optionally followed by one or more operands. Identifiers shall be either keywords, identifying a
particular locale element, or collating elements. In addition to the keywords defined in this
volume of POSIX.1-2024, the source can contain implementation-defined keywords. Each
keyword within a locale shall have a unique name (that is, two categories cannot have a
commonly-named keyword); no keyword shall start with the characters LC_. Identifiers shall be
separated from the operands by one or more <blank> characters.

Operands shall be characters, collating elements, or strings of characters. Strings shall be
enclosed in double-quotes. Literal double-quotes within strings shall be preceded by the <escape
character>, described below. When a keyword is followed by more than one operand, the
operands shall be separated by <semicolon> characters; <blank> characters shall be allowed
both before and after a <semicolon>.

The first category header in the file can be preceded by a line modifying the comment character.
It shall have the following format, starting in column 1:

"comment_char %c\n", <comment character>

The comment character shall default to the <number-sign> ('#'). Blank lines and lines
containing the <comment character> in the first position shall be ignored.

The first category header in the file can be preceded by a line modifying the escape character to
be used in the file. It shall have the following format, starting in column 1:

"escape_char %c\n", <escape character>

The escape character shall default to <backslash>, which is the character used in all examples
shown in this volume of POSIX.1-2024.

A line can be continued by placing an escape character as the last character on the line; this
continuation character shall be discarded from the input. Although the implementation need not
accept any one portion of a continued line with a length exceeding {LINE_MAX} bytes, it shall
place no limits on the accumulated length of the continued line. Comment lines shall not be
continued on a subsequent line using an escaped <newline>.

Individual characters, characters in strings, and collating elements shall be represented using
symbolic names, as defined below. In addition, characters can be represented using the
characters themselves or as octal, hexadecimal, or decimal constants. When non-symbolic
notation is used, the resultant locale definitions are in many cases not portable between systems.
The left angle bracket ('<') is a reserved symbol, denoting the start of a symbolic name; when
used to represent itself it shall be preceded by the escape character. The following rules apply to
character representation:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

1. A character can be represented via a symbolic name, enclosed within angle brackets '<'
and '>'. The symbolic name, including the angle brackets, shall exactly match a
symbolic name defined in the charmap file specified via the localedef −f option, and it shall
be replaced by a character value determined from the value associated with the symbolic
name in the charmap file. The use of a symbolic name not found in the charmap file shall
constitute an error, unless the category is LC_CTYPE or LC_COLLATE, in which case it
shall constitute a warning condition (see localedef for a description of actions resulting
from errors and warnings). The specification of a symbolic name in a collating-element
or collating-symbol section that duplicates a symbolic name in the charmap file (if
present) shall be an error. Use of the escape character or a right angle bracket within a
symbolic name is invalid unless the character is preceded by the escape character.

For example:

<c>;<c-cedilla> "<M><a><y>"

2. A character in the portable character set can be represented by the character itself, in
which case the value of the character is implementation-defined. (Implementations may
allow other characters to be represented as themselves, but such locale definitions are not
portable.) Within a string, the double-quote character, the escape character, and the right
angle bracket character shall be escaped (preceded by the escape character) to be
interpreted as the character itself. Outside strings, the characters:

, ; < > escape_char

shall be escaped to be interpreted as the character itself.

For example:

c "May"

3. A character can be represented as an octal constant. An octal constant shall be specified as
the escape character followed by two or three octal digits. Each constant shall represent a
byte value. Multi-byte values can be represented by concatenated constants specified in
byte order with the last constant specifying the least significant byte of the character.

For example:

\143;\347;\143\150 "\115\141\171"

4. A character can be represented as a hexadecimal constant. A hexadecimal constant shall
be specified as the escape character followed by an 'x' followed by two hexadecimal
digits. Each constant shall represent a byte value. Multi-byte values can be represented by
concatenated constants specified in byte order with the last constant specifying the least
significant byte of the character.

For example:

\x63;\xe7;\x63\x68 "\x4d\x61\x79"

5. A character can be represented as a decimal constant. A decimal constant shall be
specified as the escape character followed by a 'd' followed by two or three decimal
digits. Each constant represents a byte value. Multi-byte values can be represented by
concatenated constants specified in byte order with the last constant specifying the least
significant byte of the character.

For example:

\d99;\d231;\d99\d104 "\d77\d97\d121"

Implementations may accept single-digit octal, decimal, or hexadecimal constants following the

130 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

escape character. Only characters existing in the character set for which the locale definition is
created shall be specified, whether using symbolic names, the characters themselves, or octal,
decimal, or hexadecimal constants. If a charmap file is present, only characters defined in the
charmap can be specified using octal, decimal, or hexadecimal constants. Symbolic names not
present in the charmap file can be specified and shall be ignored, as specified under item 1
above.

7.3.1 LC_CTYPE

The LC_CTYPE category shall define character classification, case conversion, and other
character attributes. In addition, a series of characters can be represented by three adjacent
<period> characters representing an ellipsis symbol ("..."). The ellipsis specification shall be
interpreted as meaning that all values between the values preceding and following it represent
valid characters. The ellipsis specification shall be valid only within a single encoded character
set; that is, within a group of characters of the same size. An ellipsis shall be interpreted as
including in the list all characters with an encoded value higher than the encoded value of the
character preceding the ellipsis and lower than the encoded value of the character following the
ellipsis.

For example:

\x30;...;\x39;

includes in the character class all characters with encoded values between the endpoints.

The following keywords shall be recognized. In the descriptions, the term ``automatically
included’’ means that it shall not be an error either to include or omit any of the referenced
characters; the implementation provides them if missing (even if the entire keyword is missing)
and accepts them silently if present. When the implementation automatically includes a missing
character, it shall have an encoded value dependent on the charmap file in effect (see the
description of the localedef −f option); otherwise, it shall have a value derived from an
implementation-defined character mapping.

The character classes digit, xdigit, lower, upper, and space have a set of automatically included
characters. It is not possible to define a locale without these automatically included characters
unless some implementation extension is used to prevent their inclusion. Such a definition
would not be a proper superset of the C or POSIX locale and, thus, it might not be possible for
conforming applications to work properly.

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

upper Define characters to be classified as uppercase letters.

In the POSIX locale, only:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

shall be included:

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. The uppercase letters <A> to <Z>, as
defined in Section 6.4 (on page 121) (the portable character set), are
automatically included in this class.

lower Define characters to be classified as lowercase letters.

In the POSIX locale, only:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 131

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

a b c d e f g h i j k l m n o p q r s t u v w x y z

shall be included.

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. The lowercase letters <a> to <z> of the
portable character set are automatically included in this class.

alpha Define characters to be classified as letters.

In the POSIX locale, only characters in the classes upper and lower shall be
included.

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. Characters classified as either upper or
lower are automatically included in this class.

digit Define the characters to be classified as numeric digits.

In all locales, only:

0 1 2 3 4 5 6 7 8 9

shall be included.

In a locale definition file, only the digits <zero>, <one>, <two>, <three>,
<four>, <five>, <six>, <seven>, <eight>, and <nine> shall be specified, and in
contiguous ascending sequence by numerical value. The digits <zero> to
<nine> of the portable character set are automatically included in this class.

alnum Define characters to be classified as letters and numeric digits. Only the
characters specified for the alpha and digit keywords shall be specified.
Characters specified for the keywords alpha and digit are automatically
included in this class.

space Define characters to be classified as white-space characters.

In the POSIX locale, exactly <space>, <form-feed>, <newline>, <carriage-
return>, <tab>, and <vertical-tab> shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, graph, or xdigit shall be specified. The <space>, <form-
feed>, <newline>, <carriage-return>, <tab>, and <vertical-tab> of the portable
character set, and any characters included in the class blank are automatically
included in this class.

cntrl Define characters to be classified as control characters.

In the POSIX locale, no characters in classes alpha or print shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, punct, graph, print, or xdigit shall be specified.

punct Define characters to be classified as punctuation characters.

In the POSIX locale, neither the <space> nor any characters in classes alpha,
digit, or cntrl shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, cntrl, xdigit, or as the <space> shall be specified.

132 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

graph Define characters to be classified as printable characters, not including the
<space>.

In the POSIX locale, all characters in classes alpha, digit, and punct shall be
included; no characters in class cntrl shall be included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, and punct are automatically included in this class. No
character specified for the keyword cntrl shall be specified.

print Define characters to be classified as printable characters, including the
<space>.

In the POSIX locale, all characters in class graph shall be included; no
characters in class cntrl shall be included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct, graph, and the <space> are automatically included
in this class. No character specified for the keyword cntrl shall be specified.

xdigit Define the characters to be classified as hexadecimal digits.

In all locales, only:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

shall be included.

In a locale definition file, only the characters defined for the class digit shall be
specified, in contiguous ascending sequence by numerical value, followed by
two sets, in either order, of six characters representing the hexadecimal digits
corresponding to the decimal numbers 10 to 15 inclusive, with each set in
ascending order: <A>, , <C>, <D>, <E>, <F> and <a>, , <c>, <d>, <e>,
<f>. The digits <zero> to <nine>, the uppercase letters <A> to <F>, and the
lowercase letters <a> to <f> of the portable character set are automatically
included in this class.

blank Define characters to be classified as <blank> characters.

In the POSIX locale, only the <space> and <tab> shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, graph, or xdigit shall be specified, and none of the
characters <form-feed>, <newline>, <carriage-return>, and <vertical-tab> of
the portable character set shall be specified. The <space> and <tab> are
automatically included in this class.

charclass Define one or more locale-specific character class names as strings separated
by <semicolon> characters. Each named character class can then be defined
subsequently in the LC_CTYPE definition. A character class name shall consist
of at least one and at most {CHARCLASS_NAME_MAX} bytes of
alphanumeric characters from the portable filename character set. The first
character of a character class name shall not be a digit. The name shall not
match any of the LC_CTYPE keywords defined in this volume of
POSIX.1-2024. Future versions of this standard will not specify any LC_CTYPE
keywords containing uppercase letters.

charclass-name Define characters to be classified as belonging to the named locale-specific
character class. In the POSIX locale, locale-specific named character classes
need not exist.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 133

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

If a class name is defined by a charclass keyword, but no characters are
subsequently assigned to it, this is not an error; it represents a class without
any characters belonging to it.

The charclass-name can be used as the property argument to the wctype()
function, in regular expression and shell pattern-matching bracket
expressions, and by the tr command.

toupper Define the mapping of lowercase letters to uppercase letters.

In the POSIX locale, the 26 lowercase characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

shall be mapped to the corresponding 26 uppercase characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, the operand shall consist of character pairs,
separated by <semicolon> characters. The characters in each character pair
shall be separated by a <comma> and the pair enclosed by parentheses. The
first character in each pair is the lowercase letter, the second the corresponding
uppercase letter. Only characters specified for the keywords lower and upper
shall be specified. The lowercase letters <a> to <z>, and their corresponding
uppercase letters <A> to <Z>, of the portable character set are automatically
included in this mapping, but only when the toupper keyword is omitted
from the locale definition.

tolower Define the mapping of uppercase letters to lowercase letters.

In the POSIX locale, the 26 uppercase characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

shall be mapped to the corresponding 26 lowercase characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, the operand shall consist of character pairs,
separated by <semicolon> characters. The characters in each character pair
shall be separated by a <comma> and the pair enclosed by parentheses. The
first character in each pair is the uppercase letter, the second the
corresponding lowercase letter. Only characters specified for the keywords
lower and upper shall be specified. If the tolower keyword is omitted from
the locale definition, the mapping is the reverse mapping of the one specified
for toupper.

The following table shows the character class combinations allowed:

134 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

Table 7-1 Valid Character Class Combinations

Can Also Belong To
In Class upper lower alpha digit space cntrl punct graph print xdigit blank
upper — A x x x x A A — x
lower — A x x x x A A — x
alpha — — x x x x A A — x
digit x x x x x x A A A x
space x x x x — * * * x —
cntrl x x x x — x x x x —
punct x x x x — x A A x —
graph — — — — — x — A — —
print — — — — — x — — — —
xdigit — — — — x x x A A x
blank x x x x A — * * * x

Notes:

1. Explanation of codes:

A Automatically included; see text.

— Permitted.

x Mutually-exclusive.

* See note 2.

2. The <space>, which is part of the space and blank classes, cannot belong to punct or
graph, but shall automatically belong to the print class. Other space or blank characters
can be classified as any of punct, graph, or print.

7.3.1.1 LC_CTYPE Category in the POSIX Locale

The minimum character classifications for the POSIX locale follow; the code listing depicts the
localedef input, and the table represents the same information, sorted by character.
Implementations may add additional characters to the cntrl and punct classifications but shall
not make any other additions.

LC_CTYPE
The following is the minimum POSIX locale LC_CTYPE.
"alpha" is by definition "upper" and "lower"
"alnum" is by definition "alpha" and "digit"
"print" is by definition "alnum", "punct", and the <space>
"graph" is by definition "alnum" and "punct"
#
upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\

<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\

<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 135

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

<carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\

<form-feed>;<carriage-return>;\
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
<IS1>;

#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\

<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen-minus>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<right-square-bracket>;\
<circumflex>;<underscore>;<grave-accent>;<left-curly-bracket>;\
<vertical-line>;<right-curly-bracket>;<tilde>

#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;\

<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;<a>;;<c>;<d>;<e>;<f>
#
blank <space>;<tab>
#
toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);(<z>,<Z>)

#
tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\

(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);\
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);\
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);\
(<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);(<Z>,<z>)

END LC_CTYPE

136 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

Symbolic Name Other Case Character Classes
<NUL> cntrl
<SOH> cntrl
<STX> cntrl
<ETX> cntrl
<EOT> cntrl
<ENQ> cntrl
<ACK> cntrl
<alert> cntrl
<backspace> cntrl
<tab> cntrl, space, blank
<newline> cntrl, space
<vertical-tab> cntrl, space
<form-feed> cntrl, space
<carriage-return> cntrl, space
<SO> cntrl
<SI> cntrl
<DLE> cntrl
<DC1> cntrl
<DC2> cntrl
<DC3> cntrl
<DC4> cntrl
<NAK> cntrl
<SYN> cntrl
<ETB> cntrl
<CAN> cntrl
 cntrl
<SUB> cntrl
<ESC> cntrl
<IS4> cntrl
<IS3> cntrl
<IS2> cntrl
<IS1> cntrl
<space> space, print, blank
<exclamation-mark> punct, print, graph
<quotation-mark> punct, print, graph
<number-sign> punct, print, graph
<dollar-sign> punct, print, graph
<percent-sign> punct, print, graph
<ampersand> punct, print, graph
<apostrophe> punct, print, graph
<left-parenthesis> punct, print, graph
<right-parenthesis> punct, print, graph
<asterisk> punct, print, graph
<plus-sign> punct, print, graph
<comma> punct, print, graph
<hyphen-minus> punct, print, graph
<period> punct, print, graph
<slash> punct, print, graph
<zero> digit, xdigit, print, graph
<one> digit, xdigit, print, graph
<two> digit, xdigit, print, graph

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 137

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

Symbolic Name Other Case Character Classes
<three> digit, xdigit, print, graph
<four> digit, xdigit, print, graph
<five> digit, xdigit, print, graph
<six> digit, xdigit, print, graph
<seven> digit, xdigit, print, graph
<eight> digit, xdigit, print, graph
<nine> digit, xdigit, print, graph
<colon> punct, print, graph
<semicolon> punct, print, graph
<less-than-sign> punct, print, graph
<equals-sign> punct, print, graph
<greater-than-sign> punct, print, graph
<question-mark> punct, print, graph
<commercial-at> punct, print, graph
<A> <a> upper, xdigit, alpha, print, graph
 upper, xdigit, alpha, print, graph
<C> <c> upper, xdigit, alpha, print, graph
<D> <d> upper, xdigit, alpha, print, graph
<E> <e> upper, xdigit, alpha, print, graph
<F> <f> upper, xdigit, alpha, print, graph
<G> <g> upper, alpha, print, graph
<H> <h> upper, alpha, print, graph
<I> <i> upper, alpha, print, graph
<J> <j> upper, alpha, print, graph
<K> <k> upper, alpha, print, graph
<L> <l> upper, alpha, print, graph
<M> <m> upper, alpha, print, graph
<N> <n> upper, alpha, print, graph
<O> <o> upper, alpha, print, graph
<P> <p> upper, alpha, print, graph
<Q> <q> upper, alpha, print, graph
<R> <r> upper, alpha, print, graph
<S> <s> upper, alpha, print, graph
<T> <t> upper, alpha, print, graph
<U> <u> upper, alpha, print, graph
<V> <v> upper, alpha, print, graph
<W> <w> upper, alpha, print, graph
<X> <x> upper, alpha, print, graph
<Y> <y> upper, alpha, print, graph
<Z> <z> upper, alpha, print, graph
<left-square-bracket> punct, print, graph
<backslash> punct, print, graph
<right-square-bracket> punct, print, graph
<circumflex> punct, print, graph
<underscore> punct, print, graph
<grave-accent> punct, print, graph
<a> <A> lower, xdigit, alpha, print, graph
 lower, xdigit, alpha, print, graph
<c> <C> lower, xdigit, alpha, print, graph
<d> <D> lower, xdigit, alpha, print, graph
<e> <E> lower, xdigit, alpha, print, graph

138 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4516

4517

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

4529

4530

4531

4532

4533

4534

4535

4536

4537

4538

4539

4540

4541

4542

4543

4544

4545

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

4566

4567

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

Symbolic Name Other Case Character Classes
<f> <F> lower, xdigit, alpha, print, graph
<g> <G> lower, alpha, print, graph
<h> <H> lower, alpha, print, graph
<i> <I> lower, alpha, print, graph
<j> <J> lower, alpha, print, graph
<k> <K> lower, alpha, print, graph
<l> <L> lower, alpha, print, graph
<m> <M> lower, alpha, print, graph
<n> <N> lower, alpha, print, graph
<o> <O> lower, alpha, print, graph
<p> <P> lower, alpha, print, graph
<q> <Q> lower, alpha, print, graph
<r> <R> lower, alpha, print, graph
<s> <S> lower, alpha, print, graph
<t> <T> lower, alpha, print, graph
<u> <U> lower, alpha, print, graph
<v> <V> lower, alpha, print, graph
<w> <W> lower, alpha, print, graph
<x> <X> lower, alpha, print, graph
<y> <Y> lower, alpha, print, graph
<z> <Z> lower, alpha, print, graph
<left-curly-bracket> punct, print, graph
<vertical-line> punct, print, graph
<right-curly-bracket> punct, print, graph
<tilde> punct, print, graph
 cntrl

7.3.2 LC_COLLATE

The LC_COLLATE category provides a collation sequence definition for numerous utilities in the
Shell and Utilities volume of POSIX.1-2024 (ls, sort, and so on), regular expression matching (see
Chapter 9, on page 179), and the strcoll(), strxfrm(), wcscoll(), and wcsxfrm() functions in the
System Interfaces volume of POSIX.1-2024.

A collation sequence definition shall define the relative order between collating elements
(characters and multi-character collating elements) in the locale. This order is expressed in terms
of collation values; that is, by assigning each element one or more collation values (also known
as collation weights). This does not imply that implementations shall assign such values, but
that ordering of strings using the resultant collation definition in the locale behaves as if such
assignment is done and used in the collation process. At least the following capabilities are
provided:

1. Multi-character collating elements. Specification of multi-character collating elements
(that is, sequences of two or more characters to be collated as an entity).

2. User-defined ordering of collating elements. Each collating element shall be assigned a
collation value defining its order in the character (or basic) collation sequence. This
ordering is used by regular expressions and pattern matching and, unless collation
weights are explicitly specified, also as the collation weight to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned one or
more (up to the limit {COLL_WEIGHTS_MAX}, as defined in <limits.h>) collating
weights for use in sorting. The first weight is hereafter referred to as the primary weight.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 139

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

4. One-to-many mapping. A single character is mapped into a string of collating elements.

5. Equivalence class definition. Two or more collating elements have the same collation
value (primary weight).

6. Ordering by weights. When two strings are compared to determine their relative order,
the two strings are first broken up into a series of collating elements; the elements in each
successive pair of elements are then compared according to the relative primary weights
for the elements. If equal, and more than one weight has been assigned, then the pairs of
collating elements are re-compared according to the relative subsequent weights, until
either a pair of collating elements compare unequal or the weights are exhausted.

All implementation-provided locales (either preinstalled or provided as locale definitions which
can be installed later) shall define a collation sequence that has a total ordering of all characters
unless the locale name has an '@' modifier indicating that it has a special collation sequence (for
example, @icase could indicate that each upper and lowercase character pair collates equally).

Note: Users installing their own locales should ensure that they define a collation sequence with a
total ordering of all characters unless an '@' modifier in the locale name (such as @icase)
indicates that it has a special collation sequence. As <NUL> is reserved as the string terminator
for most usages of LC_COLLATE, it is the responsibility of the locale writer to ensure <NUL>
has the lowest primary weight in a collation ordering for the interfaces to behave in the way
users typically expect. Unusual behavior may result if it has any other collation order
weighting, or is subject to IGNORE.

The following keywords shall be recognized in a collation sequence definition. They are
described in detail in the following sections.

copy Specify the name of an existing locale which shall be used as the
definition of this category. If this keyword is specified, no other keyword
shall be specified.

collating-element Define a collating-element symbol representing a multi-character
collating element. This keyword is optional.

collating-symbol Define a collating symbol for use in collation order statements. This
keyword is optional.

order_start Define collation rules. This statement shall be followed by one or more
collation order statements, assigning character collation values and
collation weights to collating elements.

order_end Specify the end of the collation-order statements.

7.3.2.1 The collating-element Keyword

In addition to the collating elements in the character set, the collating-element keyword can be
used to define multi-character collating elements. The syntax is as follows:

"collating-element %s from \"%s\"\n", <collating-symbol>, <string>

The <collating-symbol> operand shall be a symbolic name, enclosed between angle brackets ('<'
and '>'), and shall not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition. The string operand is a string of two or
more characters that collates as an entity. A <collating-element> defined via this keyword is only
recognized with the LC_COLLATE category.

For example:

collating-element <ch> from "<c><h>"

140 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

collating-element <e-acute> from "<acute><e>"
collating-element <ll> from "ll"

7.3.2.2 The collating-symbol Keyword

This keyword shall be used to define symbols for use in collation sequence statements; that is,
between the order_start and the order_end keywords. The syntax is as follows:

"collating-symbol %s\n", <collating-symbol>

The <collating-symbol> shall be a symbolic name, enclosed between angle brackets ('<' and
'>'), and shall not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition. A <collating-symbol> defined via this
keyword is only recognized within the LC_COLLATE category.

For example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

The collating-symbol keyword defines a symbolic name that can be associated with a relative
position in the character order sequence. While such a symbolic name does not represent any
collating element, it can be used as a weight.

7.3.2.3 The order_start Keyword

The order_start keyword shall precede collation order entries and also define the number of
weights for this collation sequence definition and other collation rules. The syntax is as follows:

"order_start %s;%s;...;%s\n", <sort-rules>, <sort-rules> ...

The operands to the order_start keyword are optional. If present, the operands define rules to be
applied when strings are compared. The number of operands define how many weights each
element is assigned; if no operands are present, one forward operand is assumed. If present, the
first operand defines rules to be applied when comparing strings using the first (primary)
weight; the second when comparing strings using the second weight, and so on. Operands shall
be separated by <semicolon> characters (';'). Each operand shall consist of one or more
collation directives, separated by <comma> characters (','). If the number of operands exceeds
the {COLL_WEIGHTS_MAX} limit, the utility shall issue a warning message. The following
directives shall be supported:

forward Specifies that comparison operations for the weight level shall proceed from start
of string towards the end of string.

backward Specifies that comparison operations for the weight level shall proceed from end of
string towards the beginning of string.

position Specifies that comparison operations for the weight level shall consider the relative
position of elements in the strings not subject to IGNORE. The string containing
an element not subject to IGNORE after the fewest collating elements subject to
IGNORE from the start of the compare shall collate first. If both strings contain a
character not subject to IGNORE in the same relative position, the collating values
assigned to the elements shall determine the ordering. In case of equality,
subsequent characters not subject to IGNORE shall be considered in the same
manner.

The directives forward and backward are mutually-exclusive.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 141

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4699

4700

4701

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

If no operands are specified, a single forward operand shall be assumed.

For example:

order_start forward;backward

7.3.2.4 Collation Order

The order_start keyword shall be followed by collating identifier entries. The syntax for the
collating element entries is as follows:

"%s %s;%s;...;%s\n", <collating-identifier>, <weight>, <weight>, ...

Each collating-identifier shall consist of either a character (in any of the forms defined in Section
7.3, on page 128), a <collating-element>, a <collating-symbol>, an ellipsis, or the special symbol
UNDEFINED. The order in which collating elements are specified determines the character
order sequence, such that each collating element shall compare less than the elements following
it.

A <collating-element> shall be used to specify multi-character collating elements, and indicates
that the character sequence specified via the <collating-element> is to be collated as a unit and in
the relative order specified by its place.

A <collating-symbol> can be used to define a position in the relative order for use in weights. No
weights shall be specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters shall collate according to their
encoded character values. It shall be interpreted as indicating that all characters with a coded
character set value higher than the value of the character in the preceding line, and lower than
the coded character set value for the character in the following line, in the current coded
character set, shall be placed in the character collation order between the previous and the
following character in ascending order according to their coded character set values. An initial
ellipsis shall be interpreted as if the preceding line specified the NUL character, and a trailing
ellipsis as if the following line specified the highest coded character set value in the current
coded character set. An ellipsis shall be treated as invalid if the preceding or following lines do
not specify characters in the current coded character set. The use of the ellipsis symbol ties the
definition to a specific coded character set and may preclude the definition from being portable
between implementations.

The symbol UNDEFINED shall be interpreted as including all coded character set values not
specified explicitly or via the ellipsis symbol. Such characters shall be inserted in the character
collation order at the point indicated by the symbol, and in ascending order according to their
coded character set values. If no UNDEFINED symbol is specified, and the current coded
character set contains characters not specified in this section, the utility shall issue a warning
message and place such characters at the end of the character collation order.

The optional operands for each collation-element shall be used to define the primary, secondary,
or subsequent weights for the collating element. The first operand specifies the relative primary
weight, the second the relative secondary weight, and so on. Two or more collation-elements can
be assigned the same weight; they belong to the same ``equivalence class’’ if they have the same
primary weight. Collation shall behave as if, for each weight level, elements subject to IGNORE
are removed, unless the position collation directive is specified for the corresponding level with
the order_start keyword. Then each successive pair of elements shall be compared according to
the relative weights for the elements. If the two strings compare equal, the process shall be
repeated for the next weight level, up to the limit {COLL_WEIGHTS_MAX}.

Weights shall be assigned such that the collation sequence has a total ordering of all characters

142 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

4741

4742

4743

4744

4745

4746

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

unless an '@' modifier in the locale name indicates that it has a special collation sequence.

Weights shall be expressed as characters (in any of the forms specified in Section 7.3, on page
128), <collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A
single character, a <collating-symbol>, or a <collating-element> shall represent the relative position
in the character collating sequence of the character or symbol, rather than the character or
characters themselves. Thus, rather than assigning absolute values to weights, a particular
weight is expressed using the relative order value assigned to a collating element based on its
order in the character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated characters or
symbolic names. For example, if the <eszet> is given the string "<s><s>" as a weight,
comparisons are performed as if all occurrences of the <eszet> are replaced by "<s><s>"
(assuming that "<s>" has the collating weight "<s>"). If it is necessary to define <eszet> and
"<s><s>" as an equivalence class, then a collating element needs to be defined for the string
"ss".

All characters specified via an ellipsis shall by default be assigned unique weights, equal to the
relative order of characters. Characters specified via an explicit or implicit UNDEFINED special
symbol shall by default be assigned the same primary weight (that is, they belong to the same
equivalence class) if the collation order has more than one weight level. If the collation order has
only one weight level, these characters shall be assigned unique primary weights, equal to the
relative order of their character in the character collation sequence.

An ellipsis symbol as a weight shall be interpreted to mean that each character in the sequence
shall have unique weights, equal to the relative order of their character in the character collation
sequence. The use of the ellipsis as a weight shall be treated as an error if the collating element is
neither an ellipsis nor the special symbol UNDEFINED.

The special keyword IGNORE as a weight shall indicate that when strings are compared using
the weights at the level where IGNORE is specified, the collating element shall be ignored; that
is, as if the string did not contain the collating element. In regular expressions and pattern
matching, all characters that are subject to IGNORE in their primary weight form an
equivalence class.

An empty operand shall be interpreted as the collating element itself.

For example, the order statement:

<a> <a>;<a>

is equal to:

<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and shall be
interpreted as the value of each character defined by the ellipsis.

The collation order as defined in this section affects the interpretation of bracket expressions in
regular expressions (see Section 9.3.5, on page 182).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 143

4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

For example:

order_start forward;backward
<NUL> <NUL>;<NUL>
<LOW>
<space> <LOW>;<space>
... <LOW>;...
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
<s> <s>;<s>
<eszet> "<s><s>";"<eszet><eszet>"
UNDEFINED IGNORE;...
order_end

This example is interpreted as follows:

1. All characters between <space> and 'a' shall have the same primary equivalence class
and individual secondary weights based on their ordinal encoded values.

2. All characters based on the uppercase or lowercase character 'a' belong to the same
primary equivalence class.

3. The multi-character collating element <ch> is represented by the collating symbol <ch>
and belongs to the same primary equivalence class as the multi-character collating
element <Ch>.

4. The UNDEFINED means that all characters not specified in this definition (explicitly or
via the ellipsis) shall be ignored when comparing primary weights, and have individual
secondary weights based on their ordinal encoded values.

7.3.2.5 The order_end Keyword

The collating order entries shall be terminated with an order_end keyword.

7.3.2.6 LC_COLLATE Category in the POSIX Locale

The minimum collation sequence definition of the POSIX locale follows; the code listing depicts
the localedef input. All characters not explicitly listed here shall be inserted in the character
collation order after the listed characters and shall be assigned unique primary weights. If the
listed characters have ASCII encoding, the other characters shall be in ascending order according
to their coded character set values; otherwise, the order of the other characters is unspecified.
The collation sequence shall not include any multi-character collating elements.

LC_COLLATE
This is the minimum input for the POSIX locale definition for the
LC_COLLATE category. Characters in this list are in the same order
as in the ASCII codeset.
order_start forward
<NUL>
<SOH>

144 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

4821

4822

4823

4824

4825

4826

4827

4828

4829

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>
<CAN>

<SUB>
<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen-minus>
<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 145

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875

4876

4877

4878

4879

4880

4881

4882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>

<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>
<M>
<N>
<O>
<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>

<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>
<k>

146 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4883

4884

4885

4886

4887

4888

4889

4890

4891

4892

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914

4915

4916

4917

4918

4919

4920

4921

4922

4923

4924

4925

4926

4927

4928

4929

4930

4931

4932

4933

4934

4935

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

<l>
<m>
<n>
<o>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end
#
END LC_COLLATE

7.3.3 LC_MONETARY

The LC_MONETARY category shall define the rules and symbols that are used to format
monetary numeric information.

This information is available through the localeconv() function and is used by the strfmon()
function.

Some of the information is also available in an alternative form via the nl_langinfo() function
(see CRNCYSTR in <langinfo.h>).

The following items are defined in this category of the locale. The item names are the keywords
recognized by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
header. The localeconv() function returns {CHAR_MAX} for unavailable integer items and the
empty string ("") for unavailable or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 7.4 (on page 160). For some keywords, the strings can contain only integers. Keywords
that are not provided, or integer keywords set to −1, can be used to indicate that the value is not
available in the locale. String values set to the empty string ("") can be used to indicate that the
value is available and is an empty string, or that the value is not available. The following
keywords shall be recognized:

copy Specify the name of an existing locale which shall be used as the
definition of this category. If this keyword is specified, no other keyword
shall be specified.

Note: This is a localedef utility keyword, unavailable through localeconv().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 147

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

4948

4949

4950

4951

4952

4953

4954

4955

4956

4957

4958

4959

4960

4961

4962

4963

4964

4965

4966

4967

4968

4969

4970

4971

4972

4973

4974

4975

4976

4977

4978

4979

4980

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

int_curr_symbol The international currency symbol. The operand shall be a four-character
string, with the first three characters containing the alphabetic
international currency symbol. The international currency symbol should
be chosen in accordance with those specified in the ISO 4217 standard.
The fourth character shall be the character used to separate the
international currency symbol from the monetary quantity.

currency_symbol The string that shall be used as the local currency symbol.

mon_decimal_point The operand is a string containing the symbol that shall be used as the
decimal delimiter (radix character) in monetary formatted quantities.

mon_thousands_sep The operand is a string containing the symbol that shall be used as a
separator for groups of digits to the left of the decimal delimiter in
formatted monetary quantities.

mon_grouping Define the size of each group of digits in formatted monetary quantities.
The operand is a sequence of integers separated by <semicolon>
characters. Each integer specifies the number of digits in each group, with
the initial integer defining the size of the group immediately preceding
the decimal delimiter, and the following integers defining the preceding
groups. If the last integer is not −1, then the size of the previous group (if
any) shall be repeatedly used for the remainder of the digits. If the last
integer is −1, then no further grouping shall be performed.

positive_sign A string that shall be used to indicate a non-negative-valued formatted
monetary quantity.

negative_sign A string that shall be used to indicate a negative-valued formatted
monetary quantity.

int_frac_digits An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using int_curr_symbol.

frac_digits An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using currency_symbol.

p_cs_precedes An integer set to 1 if the currency_symbol precedes the value for a
monetary quantity with a non-negative value, and set to 0 if the symbol
succeeds the value.

p_sep_by_space Set to a value indicating the separation of the currency_symbol, the sign
string, and the value for a non-negative formatted monetary quantity.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space,
and int_n_sep_by_space are interpreted according to the following:

0 No <space> separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a <space>
separates them from the value; otherwise, a <space> separates the
currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a <space>
separates them; otherwise, a <space> separates the sign string from
the value.

148 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

4981

4982

4983

4984

4985

4986

4987

4988

4989

4990

4991

4992

4993

4994

4995

4996

4997

4998

4999

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

n_cs_precedes An integer set to 1 if the currency_symbol precedes the value for a
monetary quantity with a negative value, and set to 0 if the symbol
succeeds the value.

n_sep_by_space Set to a value indicating the separation of the currency_symbol, the sign
string, and the value for a negative formatted monetary quantity.

p_sign_posn An integer set to a value indicating the positioning of the positive_sign
for a monetary quantity with a non-negative value. The following integer
values shall be recognized for int_n_sign_posn, int_p_sign_posn,
n_sign_posn, and p_sign_posn:

0 Parentheses enclose the quantity and the currency_symbol.

1 The sign string precedes the quantity and the currency_symbol.

2 The sign string succeeds the quantity and the currency_symbol.

3 The sign string precedes the currency_symbol.

4 The sign string succeeds the currency_symbol.

n_sign_posn An integer set to a value indicating the positioning of the negative_sign
for a negative formatted monetary quantity.

int_p_cs_precedes An integer set to 1 if the int_curr_symbol precedes the value for a
monetary quantity with a non-negative value, and set to 0 if the symbol
succeeds the value.

int_n_cs_precedes An integer set to 1 if the int_curr_symbol precedes the value for a
monetary quantity with a negative value, and set to 0 if the symbol
succeeds the value.

int_p_sep_by_space Set to a value indicating the separation of the int_curr_symbol, the sign
string, and the value for a non-negative internationally formatted
monetary quantity.

int_n_sep_by_space Set to a value indicating the separation of the int_curr_symbol, the sign
string, and the value for a negative internationally formatted monetary
quantity.

int_p_sign_posn An integer set to a value indicating the positioning of the positive_sign
for a positive monetary quantity formatted with the international format.

int_n_sign_posn An integer set to a value indicating the positioning of the negative_sign
for a negative monetary quantity formatted with the international format.

Certain combinations of the *_sign_posn, positive_sign, and negative_sign values are invalid
and shall not be accepted by localedef:

• If p_sign_posn and n_sign_posn are both greater than 0, and positive_sign and
negative_sign have the same value or are both either empty strings or omitted, this
combination is invalid because it requires signs to be used but does not provide the means
to distinguish negative from positive values using signs.

• Likewise, if int_p_sign_posn and int_n_sign_posn are both greater than 0, and
positive_sign and negative_sign have the same value or are both either empty strings or
omitted, this combination is invalid.

• If p_sign_posn and n_sign_posn are both 0, this combination is invalid because it requires
parentheses to be used but does not provide the means to distinguish negative from
positive values using parentheses.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 149

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050

5051

5052

5053

5054

5055

5056

5057

5058

5059

5060

5061

5062

5063

5064

5065

5066

5067

5068

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

• Likewise, if int_p_sign_posn and int_n_sign_posn are both 0, this combination is invalid.

7.3.3.1 LC_MONETARY Category in the POSIX Locale

The monetary formatting definitions for the POSIX locale follow; the code listing depicting the
localedef input, the table representing the same information with the addition of localeconv() and
nl_langinfo() formats. All values shall be unavailable in the POSIX locale.

LC_MONETARY
This is the POSIX locale definition for
the LC_MONETARY category.
#
int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping -1
positive_sign ""
negative_sign ""
int_frac_digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1
int_p_cs_precedes -1
int_p_sep_by_space -1
int_n_cs_precedes -1
int_n_sep_by_space -1
int_p_sign_posn -1
int_n_sign_posn -1
#
END LC_MONETARY

150 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5069

5070

5071

5072

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082

5083

5084

5085

5086

5087

5088

5089

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

langinfo POSIX Locale localeconv() localedef
Item Constant Value Value Value

int_curr_symbol — N/A " " " "
currency_symbol CRNCYSTR N/A " " " "
mon_decimal_point — N/A " " " "
mon_thousands_sep — N/A " " " "
mon_grouping — N/A " " −1
positive_sign — N/A " " " "
negative_sign — N/A " " " "
int_frac_digits — N/A {CHAR_MAX} −1
frac_digits — N/A {CHAR_MAX} −1
p_cs_precedes CRNCYSTR N/A {CHAR_MAX} −1
p_sep_by_space — N/A {CHAR_MAX} −1
n_cs_precedes CRNCYSTR N/A {CHAR_MAX} −1
n_sep_by_space — N/A {CHAR_MAX} −1
p_sign_posn — N/A {CHAR_MAX} −1
n_sign_posn — N/A {CHAR_MAX} −1
int_p_cs_precedes — N/A {CHAR_MAX} −1
int_p_sep_by_space — N/A {CHAR_MAX} −1
int_n_cs_precedes — N/A {CHAR_MAX} −1
int_n_sep_by_space — N/A {CHAR_MAX} −1
int_p_sign_posn — N/A {CHAR_MAX} −1
int_n_sign_posn — N/A {CHAR_MAX} −1

The entry N/A indicates that the value is not available in the POSIX locale.

7.3.4 LC_NUMERIC

The LC_NUMERIC category shall define the rules and symbols that are used to format non-
monetary numeric information. This information is available through the localeconv() function.

Some of the information is also available in an alternative form via the nl_langinfo() function.

The following items are defined in this category of the locale. The item names are the keywords
recognized by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
header. The localeconv() function returns {CHAR_MAX} for unavailable integer items and the
empty string ("") for unavailable or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 7.4 (on page 160). For some keywords, the strings can only contain integers. Keywords
that are not provided, or integer keywords set to −1, can be used to indicate that the value is not
available in the locale. String values set to the empty string ("") can be used to indicate that the
value is available and is an empty string, or that the value is not available. The following
keywords shall be recognized:

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

Note: This is a localedef utility keyword, unavailable through localeconv().

decimal_point The operand is a string containing the symbol that shall be used as the
decimal delimiter (radix character) in numeric, non-monetary formatted
quantities. This keyword cannot be omitted and cannot be set to the empty
string. In contexts where standards limit the decimal_point to a single byte,

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 151

5101

5102

5103

5104

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

5122

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

the result of specifying a multi-byte operand shall be unspecified.

thousands_sep The operand is a string containing the symbol that shall be used as a separator
for groups of digits to the left of the decimal delimiter in numeric, non-
monetary formatted monetary quantities. In contexts where standards limit
the thousands_sep to a single byte, the result of specifying a multi-byte
operand shall be unspecified.

grouping Define the size of each group of digits in formatted non-monetary quantities.
The operand is a sequence of integers separated by <semicolon> characters.
Each integer specifies the number of digits in each group, with the initial
integer defining the size of the group immediately preceding the decimal
delimiter, and the following integers defining the preceding groups. If the last
integer is not −1, then the size of the previous group (if any) shall be
repeatedly used for the remainder of the digits. If the last integer is −1, then no
further grouping shall be performed.

7.3.4.1 LC_NUMERIC Category in the POSIX Locale

The non-monetary numeric formatting definitions for the POSIX locale follow; the code listing
depicting the localedef input, the table representing the same information with the addition of
localeconv() values, and nl_langinfo() constants.

LC_NUMERIC
This is the POSIX locale definition for
the LC_NUMERIC category.
#
decimal_point "<period>"
thousands_sep ""
grouping -1
#
END LC_NUMERIC

langinfo POSIX Locale localeconv() localedef
Item Constant Value Value Value

decimal_point RADIXCHAR "." "." .
thousands_sep THOUSEP N/A " " " "
grouping — N/A " " −1

The entry N/A indicates that the value is not available in the POSIX locale.

7.3.5 LC_TIME

The LC_TIME category shall define the interpretation of the conversion specifications supported
by the date utility and shall affect the behavior of the strftime(), wcsftime(), strptime(), and
nl_langinfo() functions. Since the interfaces for C-language access and locale definition differ
significantly, they are described separately.

152 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5147

5148

5149

5150

5151

5152

5153

5154

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

5180

5181

5182

5183

5184

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

7.3.5.1 LC_TIME Locale Definition

In a locale definition, the following mandatory keywords shall be recognized:

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

abday Define the abbreviated weekday names, corresponding to the %a conversion
specification (conversion specification in the strftime(), wcsftime(), and
strptime() functions). The operand shall consist of seven
<semicolon>-separated strings, each surrounded by double-quotes. The first
string shall be the abbreviated name of the day corresponding to Sunday, the
second the abbreviated name of the day corresponding to Monday, and so on.

day Define the full weekday names, corresponding to the %A conversion
specification. The operand shall consist of seven <semicolon>-separated
strings, each surrounded by double-quotes. The first string is the full name of
the day corresponding to Sunday, the second the full name of the day
corresponding to Monday, and so on.

abmon Define the abbreviated month names, corresponding to the %b conversion
specification. The operand shall consist of twelve <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the
abbreviated name of the first month of the year (January), the second the
abbreviated name of the second month, and so on. For languages having both
a genitive (when used with a day number) and a nominative (no day number)
case, this operand shall be used to denote the genitive case.

ab_alt_mon Define the abbreviated month names, corresponding to the %Ob conversion
specification. The operand shall consist of twelve <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the
abbreviated name of the first month of the year (January), the second the
abbreviated name of the second month, and so on. For languages having both
a genitive (when used with a day number) and a nominative (no day number)
case, this operand shall be used to denote the nominative case.

mon Define the full month names, corresponding to the %B conversion
specification. The operand shall consist of twelve <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the full
name of the first month of the year (January), the second the full name of the
second month, and so on. For languages having both a genitive (when used
with a day number) and a nominative (no day number) case, this operand
shall be used to denote the genitive case.

alt_mon Define the full month names, corresponding to the %OB conversion
specification. The operand shall consist of twelve <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the full
name of the first month of the year (January), the second the full name of the
second month, and so on. For languages having both a genitive (when used
with a day number) and a nominative (no day number) case, this operand
shall be used to denote the nominative case.

d_t_fmt Define the appropriate date and time representation, corresponding to the %c
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in the table in Table 5-1 (on page
113) ('\\', '\a', '\b', '\f', '\n', '\r', '\t', '\v').

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 153

5185

5186

5187

5188

5189

5190

5191

5192

5193

5194

5195

5196

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

d_fmt Define the appropriate date representation, corresponding to the %x
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in Table 5-1 (on page 113).

t_fmt Define the appropriate time representation, corresponding to the %X
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in Table 5-1 (on page 113).

am_pm Define the appropriate representation of the ante-meridiem and post-meridiem
strings, corresponding to the %p conversion specification. The operand shall
consist of two strings, separated by a <semicolon>, each surrounded by
double-quotes; the first string shall represent the ante-meridiem designation,
the last string the post-meridiem designation. If and only if the 12-hour format
is not supported in the locale, both strings shall be empty.

t_fmt_ampm Define the appropriate time representation in the 12-hour clock format with
am_pm, corresponding to the %r conversion specification. The operand shall
consist of a string and can contain any combination of characters and
conversion specifications. If and only if the 12-hour format is not supported in
the locale, the string shall be empty.

era Define how years are counted and displayed for each era in a locale. The
operand shall consist of <semicolon>-separated strings. Each string shall be an
era description segment with the format:

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras.

Note: The start of an era might not be the earliest point in the era—it may be the
latest. For example, the Christian era BC starts on the day before January 1,
AD 1, and increases with earlier time.

direction Either a '+' or a '−' character. The '+' character shall indicate
that years closer to the start_date have lower numbers than those
closer to the end_date. The '−' character shall indicate that years
closer to the start_date have higher numbers than those closer to
the end_date.

offset The number of the year closest to the start_date in the era,
corresponding to the %Ey conversion specification.

start_date A date in the form yyyy/mm/dd, where yyyy, mm, and dd are the
year, month, and day numbers respectively of the start of the era.
Years prior to AD 1 shall be represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values "-*" or "+*". The value "-*"
shall indicate that the ending date is the beginning of time. The
value "+*" shall indicate that the ending date is the end of time.

era_name A string representing the name of the era, corresponding to the
%EC conversion specification.

era_format A string for formatting the year in the era, corresponding to the
%EY conversion specification.

154 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5233

5234

5235

5236

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

5254

5255

5256

5257

5258

5259

5260

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

era_d_fmt Define the format of the date in alternative era notation, corresponding to the
%Ex conversion specification.

era_t_fmt Define the locale’s appropriate alternative time format, corresponding to the
%EX conversion specification.

era_d_t_fmt Define the locale’s appropriate alternative date and time format,
corresponding to the %Ec conversion specification.

alt_digits Define alternative symbols for digits, corresponding to the %O modified
conversion specification. The operand shall consist of <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the
alternative symbol corresponding with zero, the second string the symbol
corresponding with one, and so on. Up to 100 alternative symbol strings can
be specified. The %O modifier shall indicate that the string corresponding to
the value specified via the conversion specification shall be used instead of the
value.

7.3.5.2 LC_TIME C-Language Access

The following constants used to identify items of langinfo data can be used as arguments to the
nl_langinfo() function to access information in the LC_TIME category. These constants are
defined in the <langinfo.h> header.

ABDAY_x The abbreviated weekday names (for example, Sun), where x is a number
from 1 to 7.

DAY_x The full weekday names (for example, Sunday), where x is a number from 1 to
7.

ABMON_x The abbreviated month names (for example, Jan), where x is a number from 1
to 12.

ABALTMON_x The alternative abbreviated month names (for example, Jan), where x is a
number from 1 to 12.

MON_x The full month names (for example, January), where x is a number from 1 to
12.

ALTMON_x The alternative full month names (for example, January), where x is a number
from 1 to 12.

D_T_FMT The appropriate date and time representation.

D_FMT The appropriate date representation.

T_FMT The appropriate time representation.

AM_STR The appropriate ante-meridiem affix; if AM_STR and PM_STR are both empty
strings, the 12-hour format is not supported in the locale.

PM_STR The appropriate post-meridiem affix; if AM_STR and PM_STR are both empty
strings, the 12-hour format is not supported in the locale.

T_FMT_AMPM The appropriate time representation in the 12-hour clock format; if the 12-hour
format is not supported in the locale, this shall be either an empty string or a
string specifying a 24-hour clock format.

ERA The era description segments, which describe how years are counted and
displayed for each era in a locale. Each era description segment shall have the
format:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 155

5279

5280

5281

5282

5283

5284

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

5296

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras. Era description
segments are separated by <semicolon> characters.

direction Either a '+' or a '−' character. The '+' character shall indicate
that years closer to the start_date have lower numbers than those
closer to the end_date. The '−' character shall indicate that years
closer to the start_date have higher numbers than those closer to
the end_date.

offset The number of the year closest to the start_date in the era.

start_date A date in the form yyyy/mm/dd, where yyyy, mm, and dd are the
year, month, and day numbers respectively of the start of the era.
Years prior to AD 1 shall be represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values "-*" or "+*". The value "-*"
shall indicate that the ending date is the beginning of time. The
value "+*" shall indicate that the ending date is the end of time.

era_name The era, corresponding to the %EC conversion specification.

era_format The format of the year in the era, corresponding to the %EY
conversion specification.

ERA_D_FMT The era date format.

ERA_T_FMT The locale’s appropriate alternative time format, corresponding to the %EX
conversion specification.

ERA_D_T_FMT The locale’s appropriate alternative date and time format, corresponding to
the %Ec conversion specification.

ALT_DIGITS The alternative symbols for digits, corresponding to the %O conversion
specification modifier. The value consists of <semicolon>-separated symbols.
The first is the alternative symbol corresponding to zero, the second is the
symbol corresponding to one, and so on. Up to 100 alternative symbols may
be specified.

7.3.5.3 LC_TIME Category in the POSIX Locale

The LC_TIME category definition of the POSIX locale follows; the code listing depicts the
localedef input; the table represents the same information with the addition of localedef keywords,
conversion specifiers used by the date utility and the strftime(), wcsftime(), and strptime()
functions, and nl_langinfo() constants.

LC_TIME
This is the POSIX locale definition for
the LC_TIME category.
#
Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\

"<T><h><u>";"<F><r><i>";"<S><a><t>"
#
Full weekday names (%A)
day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\

156 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5322

5323

5324

5325

5326

5327

5328

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

5358

5359

5360

5361

5362

5363

5364

5365

5366

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
"<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
"<S><a><t><u><r><d><a><y>"

#
Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e>";"<M><a><r>";\

"<A><p><r>";"<M><a><y>";"<J><u><n>";\
"<J><u><l>";"<A><u><g>";"<S><e><p>";\
"<O><c><t>";"<N><o><v>";"<D><e><c>"

#
Full month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\

"<M><a><r><c><h>";"<A><p><r><i><l>";\
"<M><a><y>";"<J><u><n><e>";\
"<J><u><l><y>";"<A><u><g><u><s><t>";\
"<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\
"<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"

#
Equivalent of AM/PM (%p) "AM";"PM"
am_pm "<A><M>";"<P><M>"
#
Appropriate date and time representation (%c)
"%a %b %e %H:%M:%S %Y"
d_t_fmt "<percent-sign><a><space><percent-sign>\
<space><percent-sign><e><space><percent-sign><H>\
<colon><percent-sign><M><colon><percent-sign><S>\
<space><percent-sign><Y>"
#
Appropriate date representation (%x) "%m/%d/%y"
d_fmt "<percent-sign><m><slash><percent-sign><d>\
<slash><percent-sign><y>"
#
Appropriate time representation (%X) "%H:%M:%S"
t_fmt "<percent-sign><H><colon><percent-sign><M>\
<colon><percent-sign><S>"
#
Appropriate 12-hour time representation (%r) "%I:%M:%S %p"
t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon>\
<percent-sign><S><space><percent-sign><p>"
#
END LC_TIME

localedef langinfo Conversion POSIX
Keyword Constant Specification Locale Value

d_t_fmt D_T_FMT %c "%a %b %e %H:%M:%S %Y"
d_fmt D_FMT %x "%m/%d/%y"
t_fmt T_FMT %X "%H:%M:%S"
am_pm AM_STR %p "AM"
am_pm PM_STR %p "PM"
t_fmt_ampm T_FMT_AMPM %r "%I:%M:%S %p"
day DAY_1 %A "Sunday"
day DAY_2 %A "Monday"

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 157

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

localedef langinfo Conversion POSIX
Keyword Constant Specification Locale Value

day DAY_3 %A "Tuesday"
day DAY_4 %A "Wednesday"
day DAY_5 %A "Thursday"
day DAY_6 %A "Friday"
day DAY_7 %A "Saturday"
abday ABDAY_1 %a "Sun"
abday ABDAY_2 %a "Mon"
abday ABDAY_3 %a "Tue"
abday ABDAY_4 %a "Wed"
abday ABDAY_5 %a "Thu"
abday ABDAY_6 %a "Fri"
abday ABDAY_7 %a "Sat"
mon MON_1 %B "January"
mon MON_2 %B "February"
mon MON_3 %B "March"
mon MON_4 %B "April"
mon MON_5 %B "May"
mon MON_6 %B "June"
mon MON_7 %B "July"
mon MON_8 %B "August"
mon MON_9 %B "September"
mon MON_10 %B "October"
mon MON_11 %B "November"
mon MON_12 %B "December"
alt_mon ALTMON_1 %OB N/A
alt_mon ALTMON_2 %OB N/A
alt_mon ALTMON_3 %OB N/A
alt_mon ALTMON_4 %OB N/A
alt_mon ALTMON_5 %OB N/A
alt_mon ALTMON_6 %OB N/A
alt_mon ALTMON_7 %OB N/A
alt_mon ALTMON_8 %OB N/A
alt_mon ALTMON_9 %OB N/A
alt_mon ALTMON_10 %OB N/A
alt_mon ALTMON_11 %OB N/A
alt_mon ALTMON_12 %OB N/A
abmon ABMON_1 %b "Jan"
abmon ABMON_2 %b "Feb"
abmon ABMON_3 %b "Mar"
abmon ABMON_4 %b "Apr"
abmon ABMON_5 %b "May"
abmon ABMON_6 %b "Jun"
abmon ABMON_7 %b "Jul"
abmon ABMON_8 %b "Aug"
abmon ABMON_9 %b "Sep"
abmon ABMON_10 %b "Oct"
abmon ABMON_11 %b "Nov"
abmon ABMON_12 %b "Dec"
ab_alt_mon ABALTMON_1 %Ob N/A
ab_alt_mon ABALTMON_2 %Ob N/A

158 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition

localedef langinfo Conversion POSIX
Keyword Constant Specification Locale Value

ab_alt_mon ABALTMON_3 %Ob N/A
ab_alt_mon ABALTMON_4 %Ob N/A
ab_alt_mon ABALTMON_5 %Ob N/A
ab_alt_mon ABALTMON_6 %Ob N/A
ab_alt_mon ABALTMON_7 %Ob N/A
ab_alt_mon ABALTMON_8 %Ob N/A
ab_alt_mon ABALTMON_9 %Ob N/A
ab_alt_mon ABALTMON_10 %Ob N/A
ab_alt_mon ABALTMON_11 %Ob N/A
ab_alt_mon ABALTMON_12 %Ob N/A
era ERA %EC, %Ey, %EY N/A
era_d_fmt ERA_D_FMT %Ex N/A
era_t_fmt ERA_T_FMT %EX N/A
era_d_t_fmt ERA_D_T_FMT %Ec N/A
alt_digits ALT_DIGITS %O N/A

The entry N/A indicates the value is not available in the POSIX locale.

7.3.6 LC_MESSAGES

The LC_MESSAGES category shall define the format and values used by various utilities for
affirmative and negative responses. This information is available through the nl_langinfo()
function.

The message catalog used by the standard utilities and selected by the catopen() function shall be
determined by the setting of NLSPATH; see Chapter 8 (on page 167). The LC_MESSAGES
category can be specified as part of an NLSPATH substitution field.

The following keywords shall be recognized as part of the locale definition file.

copy Specify the name of an existing locale which shall be used as the definition of this
category. If this keyword is specified, no other keyword shall be specified.

Note: This is a localedef keyword, unavailable through nl_langinfo().

yesexpr The operand consists of an extended regular expression (see Section 9.4, on page
187) that describes acceptable affirmative responses to a question expecting an
affirmative or negative response.

noexpr The operand consists of an extended regular expression that describes acceptable
negative responses to a question expecting an affirmative or negative response.

7.3.6.1 LC_MESSAGES Category in the POSIX Locale

The format and values for affirmative and negative responses of the POSIX locale follow; the
code listing depicting the localedef input, the table representing the same information with the
addition of nl_langinfo() constants.

LC_MESSAGES
This is the POSIX locale definition for
the LC_MESSAGES category.
#
yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
#

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 159

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

5481

5482

5483

5484

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500

5501

5502

5503

5504

5505

5506

5507

5508

5509

5510

5511

5512

5513

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Locale

noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"
#
END LC_MESSAGES

localedef Keyword langinfo Constant POSIX Locale Value
yesexpr YESEXPR "ˆ[yY]"
noexpr NOEXPR "ˆ[nN]"

7.4 Locale Definition Grammar
The grammar and lexical conventions in this section shall together describe the syntax for the
locale definition source. The general conventions for this style of grammar are described in XCU
Section 1.3 (on page 2461). The grammar shall take precedence over the text in this chapter.

7.4.1 Locale Lexical Conventions

The lexical conventions for the locale definition grammar are described in this section.

The following tokens shall be processed (in addition to those string constants shown in the
grammar):

LOC_NAME A string of characters representing the name of a locale.

CHAR Any single character.

NUMBER A decimal number, represented by one or more decimal digits.

COLLSYMBOL A symbolic name, enclosed between angle brackets. The string
cannot duplicate any charmap symbol defined in the current
charmap (if any), or a COLLELEMENT symbol.

COLLELEMENT A symbolic name, enclosed between angle brackets, which cannot
duplicate either any charmap symbol or a COLLSYMBOL symbol.

CHARCLASS A string of alphanumeric characters from the portable character set,
the first of which is not a digit, consisting of at least one and at most
{CHARCLASS_NAME_MAX} bytes, and optionally surrounded by
double-quotes.

CHARSYMBOL A symbolic name, enclosed between angle brackets, from the current
charmap (if any).

OCTAL_CHAR One or more octal representations of the encoding of each byte in a
single character. The octal representation consists of an escape
character (normally a <backslash>) followed by two or more octal
digits.

HEX_CHAR One or more hexadecimal representations of the encoding of each
byte in a single character. The hexadecimal representation consists of
an escape character followed by the constant x and two or more
hexadecimal digits.

DECIMAL_CHAR One or more decimal representations of the encoding of each byte in
a single character. The decimal representation consists of an escape
character followed by a character 'd' and two or more decimal
digits.

160 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

5527

5528

5529

5530

5531

5532

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition Grammar

ELLIPSIS The string "...".

EXTENDED_REG_EXP An extended regular expression as defined in the grammar in Section
9.5 (on page 191).

EOL The line termination character <newline>.

7.4.2 Locale Grammar

This section presents the grammar for the locale definition.

%token LOC_NAME
%token CHAR
%token NUMBER
%token COLLSYMBOL COLLELEMENT
%token CHARSYMBOL OCTAL_CHAR HEX_CHAR DECIMAL_CHAR
%token ELLIPSIS
%token EXTENDED_REG_EXP
%token EOL

%start locale_definition

%%

locale_definition : global_statements locale_categories
| locale_categories
;

global_statements : global_statements symbol_redefine
| symbol_redefine
;

symbol_redefine : 'escape_char' CHAR EOL
| 'comment_char' CHAR EOL
;

locale_categories : locale_categories locale_category
| locale_category
;

locale_category : lc_ctype | lc_collate | lc_messages
| lc_monetary | lc_numeric | lc_time
;

/* The following grammar rules are common to all categories */

char_list : char_list char_symbol
| char_symbol
;

char_symbol : CHAR | CHARSYMBOL
| OCTAL_CHAR | HEX_CHAR | DECIMAL_CHAR
;

elem_list : elem_list char_symbol
| elem_list COLLSYMBOL
| elem_list COLLELEMENT
| char_symbol
| COLLSYMBOL

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 161

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

5573

5574

5575

5576

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Grammar Locale

| COLLELEMENT
;

symb_list : symb_list COLLSYMBOL
| COLLSYMBOL
;

locale_name : LOC_NAME
| '"' LOC_NAME '"'
;

/* The following is the LC_CTYPE category grammar */

lc_ctype : ctype_hdr ctype_keywords ctype_tlr
| ctype_hdr 'copy' locale_name EOL ctype_tlr
;

ctype_hdr : 'LC_CTYPE' EOL
;

ctype_keywords : ctype_keywords ctype_keyword
| ctype_keyword
;

ctype_keyword : charclass_keyword charclass_list EOL
| charconv_keyword charconv_list EOL
| 'charclass' charclass_namelist EOL
;

charclass_namelist : charclass_namelist ';' CHARCLASS
| CHARCLASS
;

charclass_keyword : 'upper' | 'lower' | 'alpha' | 'digit'
| 'punct' | 'xdigit' | 'space' | 'print'
| 'graph' | 'blank' | 'cntrl' | 'alnum'
| CHARCLASS
;

charclass_list : charclass_list ';' char_symbol
| charclass_list ';' ELLIPSIS ';' char_symbol
| char_symbol
;

charconv_keyword : 'toupper'
| 'tolower'
;

charconv_list : charconv_list ';' charconv_entry
| charconv_entry
;

charconv_entry : '(' char_symbol ',' char_symbol ')'
;

ctype_tlr : 'END' 'LC_CTYPE' EOL
;

/* The following is the LC_COLLATE category grammar */

lc_collate : collate_hdr collate_keywords collate_tlr

162 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5597

5598

5599

5600

5601

5602

5603

5604

5605

5606

5607

5608

5609

5610

5611

5612

5613

5614

5615

5616

5617

5618

5619

5620

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition Grammar

| collate_hdr 'copy' locale_name EOL collate_tlr
;

collate_hdr : 'LC_COLLATE' EOL
;

collate_keywords : order_statements
| opt_statements order_statements
;

opt_statements : opt_statements collating_symbols
| opt_statements collating_elements
| collating_symbols
| collating_elements
;

collating_symbols : 'collating-symbol' COLLSYMBOL EOL
;

collating_elements : 'collating-element' COLLELEMENT
| 'from' '"' elem_list '"' EOL
;

order_statements : order_start collation_order order_end
;

order_start : 'order_start' EOL
| 'order_start' order_opts EOL
;

order_opts : order_opts ';' order_opt
| order_opt
;

order_opt : order_opt ',' opt_word
| opt_word
;

opt_word : 'forward' | 'backward' | 'position'
;

collation_order : collation_order collation_entry
| collation_entry
;

collation_entry : COLLSYMBOL EOL
| collation_element weight_list EOL
| collation_element EOL
;

collation_element : char_symbol
| COLLELEMENT
| ELLIPSIS
| 'UNDEFINED'
;

weight_list : weight_list ';' weight_symbol
| weight_list ';'
| weight_symbol
;

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 163

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

5652

5653

5654

5655

5656

5657

5658

5659

5660

5661

5662

5663

5664

5665

5666

5667

5668

5669

5670

5671

5672

5673

5674

5675

5676

5677

5678

5679

5680

5681

5682

5683

5684

5685

5686

5687

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Grammar Locale

weight_symbol : /* empty */
| char_symbol
| COLLSYMBOL
| '"' elem_list '"'
| '"' symb_list '"'
| ELLIPSIS
| 'IGNORE'
;

order_end : 'order_end' EOL
;

collate_tlr : 'END' 'LC_COLLATE' EOL
;

/* The following is the LC_MESSAGES category grammar */

lc_messages : messages_hdr messages_keywords messages_tlr
| messages_hdr 'copy' locale_name EOL messages_tlr
;

messages_hdr : 'LC_MESSAGES' EOL
;

messages_keywords : messages_keywords messages_keyword
| messages_keyword
;

messages_keyword : 'yesexpr' '"' EXTENDED_REG_EXP '"' EOL
| 'noexpr' '"' EXTENDED_REG_EXP '"' EOL
;

messages_tlr : 'END' 'LC_MESSAGES' EOL
;

/* The following is the LC_MONETARY category grammar */

lc_monetary : monetary_hdr monetary_keywords monetary_tlr
| monetary_hdr 'copy' locale_name EOL monetary_tlr
;

monetary_hdr : 'LC_MONETARY' EOL
;

monetary_keywords : monetary_keywords monetary_keyword
| monetary_keyword
;

monetary_keyword : mon_keyword_string mon_string EOL
| mon_keyword_char NUMBER EOL
| mon_keyword_char '-1' EOL
| mon_keyword_grouping mon_group_list EOL
;

mon_keyword_string : 'int_curr_symbol' | 'currency_symbol'
| 'mon_decimal_point' | 'mon_thousands_sep'
| 'positive_sign' | 'negative_sign'
;

mon_string : '"' char_list '"'

164 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5688

5689

5690

5691

5692

5693

5694

5695

5696

5697

5698

5699

5700

5701

5702

5703

5704

5705

5706

5707

5708

5709

5710

5711

5712

5713

5714

5715

5716

5717

5718

5719

5720

5721

5722

5723

5724

5725

5726

5727

5728

5729

5730

5731

5732

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Locale Definition Grammar

| '""'
;

mon_keyword_char : 'int_frac_digits' | 'frac_digits'
| 'p_cs_precedes' | 'p_sep_by_space'
| 'n_cs_precedes' | 'n_sep_by_space'
| 'p_sign_posn' | 'n_sign_posn'
| 'int_p_cs_precedes' | 'int_p_sep_by_space'
| 'int_n_cs_precedes' | 'int_n_sep_by_space'
| 'int_p_sign_posn' | 'int_n_sign_posn'
;

mon_keyword_grouping : 'mon_grouping'
;

mon_group_list : NUMBER
| mon_group_list ';' NUMBER
;

monetary_tlr : 'END' 'LC_MONETARY' EOL
;

/* The following is the LC_NUMERIC category grammar */

lc_numeric : numeric_hdr numeric_keywords numeric_tlr
| numeric_hdr 'copy' locale_name EOL numeric_tlr
;

numeric_hdr : 'LC_NUMERIC' EOL
;

numeric_keywords : numeric_keywords numeric_keyword
| numeric_keyword
;

numeric_keyword : num_keyword_string num_string EOL
| num_keyword_grouping num_group_list EOL
;

num_keyword_string : 'decimal_point'
| 'thousands_sep'
;

num_string : '"' char_list '"'
| '""'
;

num_keyword_grouping: 'grouping'
;

num_group_list : NUMBER
| num_group_list ';' NUMBER
;

numeric_tlr : 'END' 'LC_NUMERIC' EOL
;

/* The following is the LC_TIME category grammar */

lc_time : time_hdr time_keywords time_tlr
| time_hdr 'copy' locale_name EOL time_tlr

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 165

5733

5734

5735

5736

5737

5738

5739

5740

5741

5742

5743

5744

5745

5746

5747

5748

5749

5750

5751

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

5764

5765

5766

5767

5768

5769

5770

5771

5772

5773

5774

5775

5776

5777

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Definition Grammar Locale

;

time_hdr : 'LC_TIME' EOL
;

time_keywords : time_keywords time_keyword
| time_keyword
;

time_keyword : time_keyword_name time_list EOL
| time_keyword_fmt time_string EOL
| time_keyword_opt time_list EOL
;

time_keyword_name : 'abday' | 'day' | 'abmon' | 'mon'
;

time_keyword_fmt : 'd_t_fmt' | 'd_fmt' | 't_fmt'
| 'am_pm' | 't_fmt_ampm'
;

time_keyword_opt : 'era' | 'era_d_fmt' | 'era_t_fmt'
| 'era_d_t_fmt' | 'alt_digits'
| 'ab_alt_mon' | 'alt_mon'
;

time_list : time_list ';' time_string
| time_string
;

time_string : '"' char_list '"'
;

time_tlr : 'END' 'LC_TIME' EOL
;

166 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5778

5779

5780

5781

5782

5783

5784

5785

5786

5787

5788

5789

5790

5791

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

5803

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 8

Environment Variables

8.1 Environment Variable Definition
Environment variables defined in this chapter affect the operation of multiple utilities, functions,
and applications. There are other environment variables that are of interest only to specific
utilities. Environment variables that apply to a single utility only are defined as part of the
utility description. See the ENVIRONMENT VARIABLES section of the utility descriptions in
the Shell and Utilities volume of POSIX.1-2024 for information on environment variable usage.

The value of an environment variable is an arbitrary sequence of bytes, except for the null byte.
For a C-language program, an array of strings called the environment shall be made available
when a process begins. The array is pointed to by the external variable environ, which is defined
as:

extern char **environ;

These strings have the form name=value; names shall not contain any bytes that have the encoded
value of the character '='. For values to be portable across systems conforming to
POSIX.1-2024, the value shall be composed of bytes that have the encoded value of characters
from the portable character set (except NUL and as indicated below). There is no meaning
associated with the order of strings in the environment. If more than one string in an
environment of a process has the same name, the consequences are undefined.

Environment variable names used by the utilities in the Shell and Utilities volume of
POSIX.1-2024 consist solely of uppercase letters, digits, and the <underscore> ('_') from the
characters defined in Table 6-1 (on page 117) and do not begin with a digit. Other characters, and
byte sequences that do not form valid characters, may be permitted by an implementation;
applications shall tolerate the presence of such names. Uppercase and lowercase letters shall
retain their unique identities and shall not be folded together. The name space of environment
variable names containing lowercase letters is reserved for applications. Applications can define
any environment variables with names from this name space without modifying the behavior of
the standard utilities.

Note: Other applications may have difficulty dealing with environment variable names that start with
a digit. For this reason, use of such names is not recommended anywhere.

The values that the environment variables may be assigned are not restricted except that they are
considered to end with a null byte and the total space used to store the environment and the
arguments to the process is limited to {ARG_MAX} bytes.

Other name=value pairs may be placed in the environment by, for example, calling any of the
XSI setenv(), unsetenv(), or putenv() functions, assigning a new value to the environ variable, or by

using envp arguments when creating a process; see exec in the System Interfaces volume of
POSIX.1-2024.

If the application modifies the pointers to which environ points, the behavior of all interfaces
described in the System Interfaces volume of POSIX.1-2024 is undefined.

It is unwise to conflict with certain variables that are frequently exported by widely used
command interpreters and applications:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 167

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

5815

5816

5817

5818

5819

5820

5821

5822

5823

5824

5825

5826

5827

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Environment Variable Definition Environment Variables

ARFLAGS IFS MAILPATH PS1
CC LANG MAILRC PS2
CDPATH LC_ALL MAKEFLAGS PS3
CFLAGS LC_COLLATE MAKESHELL PS4
CHARSET LC_CTYPE MANPATH PWD
COLUMNS LC_MESSAGES MBOX RANDOM
DATEMSK LC_MONETARY MORE SECONDS
DEAD LC_NUMERIC MSGVERB SHELL
EDITOR LC_TIME NLSPATH TERM
ENV LDFLAGS NPROC TERMCAP
EXINIT LEX OLDPWD TERMINFO
FC LFLAGS OPTARG TMPDIR
FCEDIT LINENO OPTERR TZ
FFLAGS LINES OPTIND USER
GET LISTER PAGER VISUAL
GFLAGS LOGNAME PA TH YACC
HISTFILE LPDEST PPID YFLAGS
HISTORY MAIL PRINTER
HISTSIZE MAILCHECK PROCLANG
HOME MAILER PROJECTDIR

Additionally, a subset of the above variables are manipulated by shell built-in utilities outside of
shell assignments. If an attempt is made to mark any of the following variables as readonly, then
either the readonly utility shall reject the attempt, or readonly shall succeed but the shell can still
modify the variables outside of assignment context, or readonly shall succeed but use of a shell
built-in that would otherwise modify such a variable shall fail.

LINENO
OLDPWD
OPTARG
OPTIND
PWD

Implementations may provide an implementation-defined set of additional variables which are
manipulated by implementation-specific built-in utilities not defined in this standard. The
readonly utility shall not reject marking these additional variables as readonly, but when marked
readonly, those extension utilities shall either continue to modify the variables, or shall fail
because the variable is readonly. None of the variables defined by this standard shall be in this
implementation-defined set.

If the variables in the following two sections are present in the environment during the
execution of an application or utility, they shall be given the meaning described below. Some are
placed into the environment by the implementation at the time the user logs in; all can be added
or changed by the user or any ancestor of the current process. The implementation adds or
changes environment variables named in POSIX.1-2024 only as specified in POSIX.1-2024. If
they are defined in the application’s environment, the utilities in the Shell and Utilities volume
of POSIX.1-2024 and the functions in the System Interfaces volume of POSIX.1-2024 assume they
have the specified meaning. Conforming applications shall not set these environment variables
to have meanings other than as described. See getenv() (on page 1120) and XCU Section 2.13 (on
page 2522) for methods of accessing these variables.

Implementations may ignore some environment variables at the point of use for security
reasons, for example in programs whose real and effective user IDs or real and effective group
IDs were not equal at program startup. The behavior shall be as if the implementation obtains
the values for these environment variables using secure_getenv() instead of getenv() (see

168 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5845

5846

5847

5848

5849

5850

5851

5852

5853

5854

5855

5856

5857

5858

5859

5860

5861

5862

5863

5864

5865

5866

5867

5868

5869

5870

5871

5872

5873

5874

5875

5876

5877

5878

5879

5880

5881

5882

5883

5884

5885

5886

5887

5888

5889

5890

5891

5892

5893

5894

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Environment Variables Environment Variable Definition

getenv()); they shall not be removed from the environment of affected processes and shall be
inherited as required by this standard.

8.2 Internationalization Variables
This section describes environment variables that are relevant to the operation of
internationalized interfaces described in POSIX.1-2024.

Users may use the following environment variables to announce specific localization
requirements to applications. Applications can retrieve this information using the setlocale()
function to initialize the correct behavior of the internationalized interfaces. The descriptions of
the internationalization environment variables describe the resulting behavior only when the
application locale is initialized in this way. The use of the internationalization variables by
utilities described in the Shell and Utilities volume of POSIX.1-2024 is described in the
ENVIRONMENT VARIABLES section for those utilities in addition to the global effects
described in this section.

LANG This variable shall determine the locale category for native language, local
customs, and coded character set in the absence of the LC_ALL and other LC_*
(LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,
LC_TIME) environment variables. This can be used by applications to determine
the language to use for error messages and instructions, collating sequences, date
formats, and so on.

LANGUAGE
The LANGUAGE environment variable shall be examined to determine the
messages object to be used for the gettext family of functions or the gettext and

XSI ngettext utilities if NLSPATH is not set or the evaluation of NLSPATH did not lead
to a suitable messages object being found. The value of LANGUAGE shall be a list
of locale names separated by a <colon> (':') character. If LANGUAGE is set to a
non-empty string, each locale name shall be tried in the specified order and if a
messages object is found, it shall be used for translation. If a locale name has the
format language[_territory][.codeset][@modifier], additional searches of locale names
without .codeset (if present), without _territory (if present), and without @modifier (if
present) may be performed; if .codeset is not present, additional searches of locale
names with an added .codeset may be performed. If locale names contain a <slash>
('/') character, or consist entirely of a dot (".") or dot-dot ("..") character
sequence, or are empty the behavior is implementation defined and they may be
ignored for security reasons.

The locale names in LANGUAGE shall override the locale name associated with
the ``active category’’ of the current locale or, in the case of functions with an _l
suffix, the provided locale object, and the language-specific part of the default
search path for messages objects, unless the locale name that would be overridden
is C or POSIX. For the dcgettext(), dcgettext_l(), dcngettext(), and dcngettext_l()
functions, the active category is specified by the category argument; for all other
gettext family functions and for the gettext and ngettext utilities, the active category
is LC_MESSAGES.

For example, if:

• The LC_MESSAGES environment variable is "de_DE" (and LC_ALL is unset)
and setlocale(LC_ALL, "") has been used to set the current locale

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 169

5895

5896

5897

5898

5899

5900

5901

5902

5903

5904

5905

5906

5907

5908

5909

5910

5911

5912

5913

5914

5915

5916

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

5933

5934

5935

5936

5937

5938

5939

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Internationalization Variables Environment Variables

• The LANGUAGE environment variable is "fr_FR:it"

• Messages objects are by default searched for in /gettextlib

then the following pathnames are tried in this order by gettext family functions that
have neither a category argument nor an _l suffix until a valid messages object is
found:

• /gettextlib/fr_FR/LC_MESSAGES/textdomain.mo

• (Optionally) /gettextlib/fr/LC_MESSAGES/textdomain.mo

• (Optionally) the above two pathnames with added .codeset elements

• /gettextlib/it/LC_MESSAGES/textdomain.mo

• (Optionally) the above pathname with added .codeset elements

• /gettextlib/de_DE/LC_MESSAGES/textdomain.mo

LC_ALL This variable shall determine the values for all locale categories. The value of the
LC_ALL environment variable has precedence over any of the other environment
variables starting with LC_ (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME) and the LANG environment variable.

LC_COLLATE
This variable shall determine the locale category for character collation. It
determines collation information for regular expressions and sorting, including
equivalence classes and multi-character collating elements, in various utilities and
the strcoll() and strxfrm() functions. Additional semantics of this variable, if any,
are implementation-defined.

LC_CTYPE This variable shall determine the locale category for character handling functions,
such as tolower(), toupper(), and isalpha(). This environment variable determines
the interpretation of sequences of bytes of text data as characters (for example,
single as opposed to multi-byte characters), the classification of characters (for
example, alpha, digit, graph), and the behavior of character classes. Additional
semantics of this variable, if any, are implementation-defined.

LC_MESSAGES
This variable shall determine the locale category for processing affirmative and
negative responses and the language and cultural conventions in which messages
should be written. It also affects the behavior of the catopen() function in
determining the message catalog. Additional semantics of this variable, if any, are
implementation-defined. The language and cultural conventions of diagnostic and
informative messages whose format is unspecified by POSIX.1-2024 should be
affected by the setting of LC_MESSAGES.

LC_MONETARY
This variable shall determine the locale category for monetary-related numeric
formatting information. Additional semantics of this variable, if any, are
implementation-defined.

LC_NUMERIC
This variable shall determine the locale category for numeric formatting (for
example, thousands separator and radix character) information in various utilities
as well as the formatted I/O operations in printf() and scanf() and the string
conversion functions in strtod(). Additional semantics of this variable, if any, are
implementation-defined.

170 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5940

5941

5942

5943

5944

5945

5946

5947

5948

5949

5950

5951

5952

5953

5954

5955

5956

5957

5958

5959

5960

5961

5962

5963

5964

5965

5966

5967

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

5978

5979

5980

5981

5982

5983

5984

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Environment Variables Internationalization Variables

LC_TIME This variable shall determine the locale category for date and time formatting
information. It affects the behavior of the time functions in strftime(). Additional
semantics of this variable, if any, are implementation-defined.

XSI NLSPATH This variable shall contain a sequence of templates to be used by catopen() when
attempting to locate message catalogs, and by the gettext family of functions when
locating messages objects. Each template consists of an optional prefix, one or
more conversion specifications, and an optional suffix.

The conversion specification descriptions below refer to a ``currently active text
domain’’. The currently active text domain is, in decreasing order of precedence:

• The domain parameter of the gettext family of functions or the gettext and
ngettext utilities

• The text domain bound by the last call to textdomain() when using a gettext
family function, or the TEXTDOMAIN environment variable when using the
gettext and ngettext utilities

• The default text domain

Conversion specifications consist of a '%' symbol, followed by a single-letter
keyword. The following conversion specifications are currently defined:

%N The value of the name parameter passed to catopen() or the currently active
text domain of the gettext family of functions and the gettext and ngettext
utilities (see above).

%L The locale name given by the value of the active category (see LANGUAGE
above) in either the current locale or, in the case of functions with an _l suffix,
the provided locale object.

%l The language element of the locale name that would result from a %L
conversion.

%t The territory element of the locale name that would result from a %L
conversion.

%c The codeset element of the locale name that would result from a %L conversion.

%% A single '%' character.

An empty string shall be substituted if the specified value is not currently defined.
The separators <underscore> ('_') and <period> ('.') shall not be included in
the %t and %c conversion specifications.

Templates defined in NLSPATH are separated by <colon> characters (':'). A
leading, trailing, or two adjacent <colon> characters ("::") shall be equivalent to
specifying %N.

Since <colon> is a separator in this context, directory names that might be used in
NLSPATH should not include a <colon> character.

Example 1, for an application that uses catopen() but does not use the gettext family
of functions:

NLSPATH="/system/nlslib/%N.cat"

indicates that catopen() should look for all message catalogs in the directory
/system/nlslib, where the catalog name should be constructed from the name
argument (replacing %N) passed to catopen(), with the suffix .cat.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 171

5985

5986

5987

5988

5989

5990

5991

5992

5993

5994

5995

5996

5997

5998

5999

6000

6001

6002

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

6015

6016

6017

6018

6019

6020

6021

6022

6023

6024

6025

6026

6027

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Internationalization Variables Environment Variables

Example 2, for an application that uses the gettext family of functions but does not
use catopen():

NLSPATH="/usr/lib/locale/fr/LC_MESSAGES/%N.mo"

indicates that the gettext family of functions (and the gettext and ngettext utilities)
should look for all messages objects in the directory
/usr/lib/locale/fr/LC_MESSAGES, where the messages object’s name should be
constructed from the currently active text domain (replacing %N), with the suffix
.mo.

Example 3, for an application that uses catopen() but does not use the gettext family
of functions:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates that catopen() should look for the requested message catalog in name,
name.cat, and /nlslib/localename/name.cat, where localename is the locale name given
by the value of the LC_MESSAGES category of the current locale.

Example 4, for an application that uses the gettext family of functions but does not
use catopen():

NLSPATH="/usr/lib/locale/%L/%N.mo:/usr/lib/locale/fr/%N.mo"

indicates that the gettext family of functions (and the gettext and ngettext utilities)
should look for all messages objects first in
/usr/lib/locale/localename/textdomain.mo, and if not found there, then try in
/usr/lib/locale/fr/textdomain.mo, where localename is the locale name given by the
value of the active category in the current locale or provided locale object.

Example 5, for an application that uses catopen() and the gettext family of
functions:

NLSPATH="/usr/lib/locale/%L/%N.mo:/system/nlslib/%L/%N.cat"

indicates that the gettext family of functions (and the gettext and ngettext utilities)
should look for all messages objects in /usr/lib/locale/localename/textdomain.mo,
where localename is the locale name given by the value of the active category in the
current locale or provided locale object. Also, catopen() should look for all message
catalogs in the directory /system/nlslib/localename/name.cat, (assuming that
/usr/lib/locale/localename/name.mo is not a message catalog). In this scenario,
catopen() ignores all files that are not valid message catalogs while traversing
NLSPATH. Furthermore, the gettext family of functions and the gettext and ngettext
utilities ignore all files that are not valid messages objects found while traversing
NLSPATH.

Users should not set the NLSPATH variable unless they have a specific reason to
override the default system path. Setting NLSPATH to override the default system
path may produce undefined results in the standard utilities other than gettext and
ngettext, and in applications with appropriate privileges.

Specifying a relative pathname in the NLSPATH environment variable should be
avoided without a specific reason, including the use of a leading, trailing, or two
adjacent <colon> characters, since it may result in messages objects being searched
for in a directory relative to the current working directory of the calling process; if
the process calls the chdir() function, the directory searched for may also be
changed.

172 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6028

6029

6030

6031

6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046

6047

6048

6049

6050

6051

6052

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067

6068

6069

6070

6071

6072

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Environment Variables Internationalization Variables

TEXTDOMAIN
Specify the text domain name that the gettext and ngettext utilities use during the
search for messages objects. This is identical to the messages object filename
without the .mo suffix.

TEXTDOMAINDIR
Specify the pathname to the root directory of the messages object hierarchy the
gettext and ngettext utilities use during the search for messages objects. If present, it

XSI shall replace the default root directory pathname. NLSPATH has precedence over
TEXTDOMAINDIR.

The environment variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME, and NLSPATH provide for the support of
internationalized applications. The standard utilities shall make use of these environment
variables as described in this section and the individual ENVIRONMENT VARIABLES sections
for the utilities. See Section 7.1 (on page 127) for the consequences of setting these variables to
locales with different character sets.

The values of locale categories shall be determined by a precedence order; the first condition met
below determines the value:

1. If the LC_ALL environment variable is defined and is not null, the value of LC_ALL shall
be used.

2. If the LC_* environment variable (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME) is defined and is not null, the value of the
environment variable shall be used to initialize the category that corresponds to the
environment variable.

3. If the LANG environment variable is defined and is not null, the value of the LANG
environment variable shall be used.

4. Otherwise, the implementation-defined default locale shall be used.

If the locale value is "C" or "POSIX", the POSIX locale shall be used and the standard utilities
behave in accordance with the rules in Section 7.2 (on page 128) for the associated category.

If the locale value begins with a <slash>, it shall be interpreted as the pathname of a file that was
created in the output format used by the localedef utility; see OUTPUT FILES under localedef.
Referencing such a pathname shall result in that locale being used for the indicated category.

XSI If the locale value has the form:

language[_territory][.codeset]

it refers to an implementation-provided locale, where settings of language, territory, and codeset
are implementation-defined.

LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME are
defined to accept an additional field @modifier, which allows the user to select a specific instance
of localization data within a single category (for example, for selecting the dictionary as opposed
to the character ordering of data). The syntax for these environment variables is thus defined as:

[language[_territory][.codeset][@modifier]]

For example, if a user wanted to interact with the system in French, but required to sort German
text files, LANG and LC_COLLATE could be defined as:

LANG=Fr_FR
LC_COLLATE=De_DE

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 173

6073

6074

6075

6076

6077

6078

6079

6080

6081

6082

6083

6084

6085

6086

6087

6088

6089

6090

6091

6092

6093

6094

6095

6096

6097

6098

6099

6100

6101

6102

6103

6104

6105

6106

6107

6108

6109

6110

6111

6112

6113

6114

6115

6116

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Internationalization Variables Environment Variables

This could be extended to select dictionary collation (say) by use of the @modifier field; for
example:

LC_COLLATE=De_DE@dict

An implementation may support other formats.

If the locale value is not recognized by the implementation, the behavior is unspecified.

These environment variables are used by the newlocale() and setlocale() functions, and by the
standard utilities.

Additional criteria for determining a valid locale name are implementation-defined.

8.3 Other Environment Variables
COLUMNS This variable shall represent a decimal integer >0 used to indicate the user’s

preferred width in column positions for the terminal screen or window; see
Section 3.75 (on page 42). If this variable is unset or null, the number of
columns shall be set according to the terminal window size (see XSH
tcgetwinsize()); if the terminal window size cannot be obtained, the
implementation determines the number of columns, appropriate for the
terminal or window, in an unspecified manner. When COLUMNS is set, the
number of columns in the terminal window size and any terminal-width
information implied by TERM are overridden. Users and conforming
applications should not set COLUMNS unless they wish to override the
system selection and produce output unrelated to the terminal characteristics.

Users should not need to set this variable in the environment unless there is a
specific reason to override the implementation’s default behavior, such as to
display data in an area arbitrarily smaller than the terminal or window.

XSI DATEMSK Indicates the pathname of the template file used by getdate().

HOME The system shall initialize this variable at the time of login to be a pathname of
the user’s home directory. See <pwd.h>.

LINES This variable shall represent a decimal integer >0 used to indicate the user’s
preferred number of lines on a page or the vertical screen or window size in
lines. A line in this case is a vertical measure large enough to hold the tallest
character in the character set being displayed. If this variable is unset or null,
the number of lines shall be set either to the number of rows in the terminal
window size (see XSH tcgetwinsize()) or to a smaller number if appropriate for
the terminal or window (for example, if the terminal baud rate is low); if the
terminal window size cannot be obtained, the implementation determines the
number of lines, appropriate for the terminal or window, in an unspecified
manner. When LINES is set, the number of rows in the terminal window size
and any terminal-height information implied by TERM are overridden. Users
and conforming applications should not set LINES unless they wish to
override the system selection and produce output unrelated to the terminal
characteristics.

Users should not need to set this variable in the environment unless there is a
specific reason to override the implementation’s default behavior, such as to
display data in an area arbitrarily smaller than the terminal or window.

174 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6117

6118

6119

6120

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

6138

6139

6140

6141

6142

6143

6144

6145

6146

6147

6148

6149

6150

6151

6152

6153

6154

6155

6156

6157

6158

6159

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Environment Variables Other Environment Variables

LOGNAME The system shall initialize this variable at the time of login to be the user’s
login name. See <pwd.h>. For a value of LOGNAME to be portable across
implementations of POSIX.1-2024, the value should be composed of characters
from the portable filename character set.

XSI MSGVERB Describes which message components shall be used in writing messages by
fmtmsg().

PA TH This variable shall represent the sequence of path prefixes that certain
functions and utilities apply in searching for an executable file. The prefixes
shall be separated by a <colon> (':'). If the pathname being sought contains
no <slash> ('/') characters, and hence is a filename, the list shall be searched
from beginning to end, applying the filename to each prefix and attempting to
resolve the resulting pathname (see Section 4.16, on page 105), until an
executable file with appropriate execution permissions is found. When a non-
zero-length prefix is applied to this filename, a <slash> shall be inserted
between the prefix and the filename if the prefix did not end in <slash>. A
zero-length prefix is a legacy feature that indicates the current working
directory. It appears as two adjacent <colon> characters ("::"), as an initial
<colon> preceding the rest of the list, or as a trailing <colon> following the
rest of the list. A strictly conforming application shall use an actual pathname
(such as .) to represent the current working directory in PA TH. If the
pathname being sought contains any <slash> characters, the search through
the path prefixes shall not be performed and the pathname shall be resolved
as described in Section 4.16 (on page 105). If PA TH is unset or is set to null, or
if a path prefix in PA TH contains a <percent-sign> character ('%'), the path
search is implementation-defined.

Since <colon> is a separator in this context, directory names that might be
used in PA TH should not include a <colon> character. Since <percent-sign>
may have an implementation-defined meaning when searching for built-in
utilities, directory names in PA TH to be used to search for non-built-in utilities
should not contain a <percent-sign> character.

PWD This variable shall represent an absolute pathname of the current working
directory. It shall not contain any components that are dot or dot-dot. The
value is set by the cd utility, and by the sh utility during initialization.

SHELL This variable shall represent a pathname of the user’s preferred command
language interpreter. If this interpreter does not conform to the Shell
Command Language in XCU Chapter 2 (on page 2472), utilities may behave
differently from those described in POSIX.1-2024.

TMPDIR This variable shall represent a pathname of a directory made available for
programs that need a place to create temporary files.

TERM This variable shall represent the terminal type for which output is to be
prepared. This information is used by utilities and application programs
wishing to exploit special capabilities specific to a terminal. The format and
allowable values of this environment variable are unspecified.

TZ This variable shall represent timezone information. The contents of the
environment variable named TZ shall be used by the ctime(), localtime(),
localtime_r(), strftime(), and mktime() functions, and by various utilities, to
override the default timezone. The application shall ensure that the value of
TZ is in one of the three formats (spaces inserted for clarity):

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 175

6160

6161

6162

6163

6164

6165

6166

6167

6168

6169

6170

6171

6172

6173

6174

6175

6176

6177

6178

6179

6180

6181

6182

6183

6184

6185

6186

6187

6188

6189

6190

6191

6192

6193

6194

6195

6196

6197

6198

6199

6200

6201

6202

6203

6204

6205

6206

6207

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Other Environment Variables Environment Variables

:characters

or:

std offset dst offset, rule

or:

A format specifying a geographical timezone or a special timezone.

If TZ is of the first format (that is, if the first character is a <colon>), the
characters following the <colon> are handled in an implementation-defined
manner.

The expanded form of the second format (without the inserted spaces) is as
follows:

stdoffset[dst[offset][,start[/time],end[/time]]]

Where:

std and dst Indicate no less than three, nor more than {TZNAME_MAX},
bytes that are the designation for the standard (std) or the
Daylight Saving (dst) timezone. Only std is required; if dst is
missing, then Daylight Saving Time does not apply in this locale.

Note: The usage of the terms ``Standard Time’’ and ``Daylight
Saving Time’’ is not necessarily related to any legislated
timezone.

Each of these fields may occur in either of two formats quoted or
unquoted:

— In the quoted form, the first character shall be the <less-
than-sign> ('<') character and the last character shall be
the <greater-than-sign> ('>') character. All characters
between these quoting characters shall be alphanumeric
characters from the portable character set in the current
locale, the <plus-sign> ('+') character, or the <hyphen-
minus> ('−') character. The std and dst fields in this case
shall not include the quoting characters and the quoting
characters do not contribute to the three byte minimum
length and {TZNAME_MAX} maximum length.

— In the unquoted form, all characters in these fields shall be
alphabetic characters from the portable character set in the
current locale.

The interpretation of std and, if present, dst is unspecified if the
field is less than three bytes or more than {TZNAME_MAX}
bytes, or if it contains characters other than those specified.

offset Indicates the value added to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh)
shall be required and may be a single digit. The offset following
std shall be required. If no offset follows dst, Daylight Saving
Time is assumed to be one hour ahead of standard time. One or
more digits may be used; the value is always interpreted as a

176 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6208

6209

6210

6211

6212

6213

6214

6215

6216

6217

6218

6219

6220

6221

6222

6223

6224

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

6250

6251

6252

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Environment Variables Other Environment Variables

decimal number. The hour shall be between zero and 24, and the
minutes (and seconds)—if present—between zero and 59. The
result of using values outside of this range is unspecified. If
preceded by a '−', the timezone shall be east of the Prime
Meridian; otherwise, it shall be west (which may be indicated by
an optional preceding '+').

rule Indicates when to change from standard time to Daylight Saving
Time, and when to change back. The rule has the form:

date[/time],date[/time]

where the first date describes when the change from standard
time to Daylight Saving Time occurs and the second date
describes when it ends; if the second date is specified as earlier in
the year than the first, then the year begins and ends in Daylight
Saving Time. Each time field describes when, in current local
time, the change to the other time is made.

The format of date is one of the following:

Jn The Julian day n (1 ≤ n ≤ 365). Leap days shall not be
counted. That is, in all years—including leap years—
February 28 is day 59 and March 1 is day 60. It is
impossible to refer explicitly to the occasional February
29.

n The zero-based Julian day (0 ≤ n ≤ 365). Leap days shall
be counted, and it is possible to refer to February 29.

Mm.n.d The d’th day (0 ≤ d ≤ 6) of week n of month m of the
year (1 ≤ n ≤ 5, 1 ≤ m ≤ 12, where week 5 means ``the last
d day in month m’’ which may occur in either the fourth
or the fifth week). Week 1 is the first week in which the
d’th day occurs. Day zero is Sunday.

The time has the same format as offset except that the hour can
range from zero to 167. If preceded by a '-', the time shall
count backwards before midnight. For example, "47:30"
stands for 23:30 the next day, and "-3:30" stands for 20:30 the
previous day. The default, if time is not given, shall be 02:00:00.

Daylight Saving Time is in effect all year if it starts January 1 at 00:00 and ends
December 31 at 24:00 plus the difference between Daylight Saving Time and
standard time, leaving no room for standard time in the calendar. For
example, TZ=’EST5EDT,0/0,J365/25’ represents a time zone that
observes Daylight Saving Time all year, being 4 hours west of UTC with
abbreviation "EDT".

If the dst field is specified and the rule field is not, it is implementation-defined
when the changes to and from Daylight Saving Time occur.

If TZ is of the third format (that is, if the first character is not a <colon> and
the value does not match the syntax for the second format), the value indicates
either a geographical timezone or a special timezone from an implementation-
defined timezone database. Typically these take the form

Area/Location

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 177

6253

6254

6255

6256

6257

6258

6259

6260

6261

6262

6263

6264

6265

6266

6267

6268

6269

6270

6271

6272

6273

6274

6275

6276

6277

6278

6279

6280

6281

6282

6283

6284

6285

6286

6287

6288

6289

6290

6291

6292

6293

6294

6295

6296

6297

6298

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Other Environment Variables Environment Variables

as in the IANA timezone database. Examples of geographical timezones that
may be supported include Africa/Cairo, America/New_York,
America/Indiana/Indianapolis, Asia/Tokyo, and Europe/London.
The data for each geographical timezone shall include:

• The offset from Coordinated Universal Time of the timezone’s standard
time.

• If Daylight Saving Time (DST) is, or has historically been, observed: a
method to discover the dates and times of transitions to and from DST
and the offset from Coordinated Universal Time during periods when
DST was, is, or is predicted to be, in effect.

• The timezone names for standard time (std) and, if observed, for DST
(dst) to be used by tzset(). These shall each contain no more than
{TZNAME_MAX} bytes.

If there are any historical variations, or known future variations, of the above
data for a geographical timezone, these variations shall be included in the
database, except that historical variations from before the Epoch need not be
included.

If the database incorporates an external database such as the one maintained
by IANA, the implementation shall provide an implementation-defined
method to allow the database to be updated, for example the method specified
by RFC 6557.

178 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6299

6300

6301

6302

6303

6304

6305

6306

6307

6308

6309

6310

6311

6312

6313

6314

6315

6316

6317

6318

6319

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 9

Regular Expressions

Regular Expressions (REs) provide a mechanism to select specific strings from a set of character
strings.

Regular expressions are a context-independent syntax that can represent a wide variety of
character sets and character set orderings, where these character sets are interpreted according
to the current locale. While many regular expressions can be interpreted differently depending
on the current locale, many features, such as character class expressions, provide for contextual
invariance across locales.

The Basic Regular Expression (BRE) notation and construction rules in Section 9.3 (on page 181)
shall apply to most utilities supporting regular expressions. Some utilities, instead, support the
Extended Regular Expressions (ERE) described in Section 9.4 (on page 187); any exceptions for
both cases are noted in the descriptions of the specific utilities using regular expressions. Both
BREs and EREs are supported by the Regular Expression Matching interface in the System
Interfaces volume of POSIX.1-2024 under regcomp(), regexec(), and related functions.

9.1 Regular Expression Definitions
For the purposes of this section, the following definitions shall apply:

entire regular expression
The concatenated set of one or more BREs or EREs that make up the pattern specified for
string selection.

escape sequence
The escape character followed by any single character, which is thereby ``escaped’’. The
escape character is a <backslash> that is neither in a bracket expression nor itself escaped.

leftmost
The characters closest to the beginning of the string.

matched
A sequence of zero or more characters shall be said to be matched by a BRE or ERE when
the characters in the sequence correspond to a sequence of characters defined by the
pattern.

Matching shall be based on the bit pattern used for encoding the character, not on the
graphic representation of the character. This means that if a character set contains two or
more encodings for a graphic symbol, or if the strings searched contain text encoded in
more than one codeset, no attempt is made to search for any other representation of the
encoded symbol. If that is required, the user can specify equivalence classes containing all
variations of the desired graphic symbol.

The search for a matching sequence starts at the beginning of a string and stops when the
first sequence matching the expression is found, where ``first’’ is defined to mean ``begins
earliest in the string’’. If the pattern permits a variable number of matching characters and
thus there is more than one such sequence starting at that point, the longest such sequence
is matched. For example, the BRE "bb*" matches the second to fourth characters of the

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 179

6320

6321

6322

6323

6324

6325

6326

6327

6328

6329

6330

6331

6332

6333

6334

6335

6336

6337

6338

6339

6340

6341

6342

6343

6344

6345

6346

6347

6348

6349

6350

6351

6352

6353

6354

6355

6356

6357

6358

6359

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expression Definitions Regular Expressions

string "abbbc", and the ERE "(wee|week)(knights|night)" matches all ten
characters of the string "weeknights".

Consistent with the whole match being the longest of the leftmost matches, each subpattern,
from left to right, shall match the longest possible string. For this purpose, a null string shall
be considered to be longer than no match at all. For example, matching the BRE
"\(.*\).*" against "abcdef", the subexpression "(\1)" is "abcdef", and matching
the BRE "\(a*\)*" against "bc", the subexpression "(\1)" is the null string. However,
matching the ERE "(.*?).*" against "abcdef", the subpattern "(.*?)" matches the
empty string, since that is the longest possible match for the ERE ".*?".

When a multi-character collating element in a bracket expression (see Section 9.3.5, on page
182) is involved, the longest sequence shall be measured in characters consumed from the
string to be matched; that is, the collating element counts not as one element, but as the
number of characters it matches.

BRE (ERE) matching a single character
A BRE or ERE that shall match either a single character or a single collating element.

Only a BRE or ERE of this type that includes a bracket expression (see Section 9.3.5, on page
182) can match a collating element.

BRE (ERE) matching multiple characters
A BRE or ERE that shall match a concatenation of single characters or collating elements.

Such a BRE or ERE is made up from a BRE (ERE) matching a single character and BRE
(ERE) special characters.

invalid
This section uses the term ``invalid’’ for certain constructs or conditions. Invalid REs shall
cause the utility or function using the RE to generate an error condition. When invalid is not
used, violations of the specified syntax or semantics for REs produce undefined results: this
may entail an error, enabling an extended syntax for that RE, or using the construct in error
as literal characters to be matched. For example, the BRE construct "\{1,2,3\}" does not
comply with the grammar. A conforming application cannot rely on it producing an error
nor matching the literal characters "\{1,2,3\}".

9.2 Regular Expression General Requirements
The requirements in this section shall apply to both basic and extended regular expressions.

The use of regular expressions is generally associated with text processing. REs (BREs and EREs)
operate on text strings; that is, zero or more characters followed by an end-of-string delimiter
(typically NUL). Some utilities employing regular expressions limit the processing to lines; that
is, zero or more characters followed by a <newline>.

In the functions processing regular expressions described in System Interfaces volume of
POSIX.1-2024, the <newline> is regarded as an ordinary character and both a <period> and a
non-matching list can match one. The Shell and Utilities volume of POSIX.1-2024 specifies
within the individual descriptions of those standard utilities employing regular expressions
whether they permit matching of <newline> characters; if not stated otherwise, the use of literal
<newline> characters or any escape sequence equivalent in either patterns or matched text
produces undefined results. Those utilities (like grep) that do not allow <newline> characters to
match are responsible for eliminating any <newline> from strings before matching against the
RE. The regcomp() function in the System Interfaces volume of POSIX.1-2024, however, can
provide support for such processing without violating the rules of this section.

180 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6360

6361

6362

6363

6364

6365

6366

6367

6368

6369

6370

6371

6372

6373

6374

6375

6376

6377

6378

6379

6380

6381

6382

6383

6384

6385

6386

6387

6388

6389

6390

6391

6392

6393

6394

6395

6396

6397

6398

6399

6400

6401

6402

6403

6404

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Regular Expression General Requirements

The interfaces specified in POSIX.1-2024 do not permit the inclusion of a NUL character in an RE
or in the string to be matched. If during the operation of a standard utility a NUL is included in
the text designated to be matched, that NUL may designate the end of the text string for the
purposes of matching.

Some standard utilities and functions support case-insensitive regular expression matching.
When this type of matching is in effect, the matching process shall be modified as described in
Section 4.1 (on page 95).

The implementation shall support any regular expression that does not exceed 256 bytes in
length.

9.3 Basic Regular Expressions

9.3.1 BREs Matching a Single Character or Collating Element

When not inside a bracket expression, the following shall match a single character:

• a BRE ordinary character

• a BRE special character or ']' preceded by an unescaped <backslash>

• a <period>

A bracket expression shall match a single character or a single collating element.

9.3.2 BRE Ordinary Characters

An ordinary character is a BRE that matches itself: any character in the supported character set,
except for the BRE special characters listed in Section 9.3.3 (on page 182).

When not inside a bracket expression, the interpretation of an ordinary character preceded by an
unescaped <backslash> is undefined, except for:

• The characters ')', '(', '{', and '}'

• The digits 1 to 9 inclusive (see Section 9.3.6, on page 185)

• The ']' character; "\]" shall match a ']' character

• The '?', '+', and '|' characters; it is implementation-defined whether "\?", "\+", and
"\|" each match the literal character '?', '+', or '|', respectively, or behave as
described for the ERE special characters '?', '+', and '|', respectively (see Section 9.4.3,
on page 188).

Note: A future version of this standard may require "\?", "\+", and "\|" to behave as
described for the ERE special characters '?', '+', and '|', respectively.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 181

6405

6406

6407

6408

6409

6410

6411

6412

6413

6414

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

6427

6428

6429

6430

6431

6432

6433

6434

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Basic Regular Expressions Regular Expressions

9.3.3 BRE Special Characters

A BRE special character has special properties in certain contexts. Outside those contexts, or
when preceded by an unescaped <backslash>, such a character is a BRE that matches the special
character itself. The BRE special characters and the contexts in which they have their special
meaning are as follows:

.[\ The <period>, <left-square-bracket>, and <backslash> shall be special except when
used in a bracket expression (see Section 9.3.5). An expression containing a '[' that is
unescaped and is not part of a bracket expression produces undefined results.

* The <asterisk> shall be special except when used:

— In a bracket expression

— As the first character of an entire BRE (after an initial '^', if any)

— Immediately following a "\|" escape sequence (after an initial '^', if any), if the
implementation does not match the escape sequence "\|" to the literal character
'|'.

— As the first character of a subexpression (after an initial '^', if any); see Section
9.3.6 (on page 185)

ˆ The <circumflex> shall be special when used as an anchor (see Section 9.3.8, on page
186). The <circumflex> shall signify a non-matching list expression when it occurs first
in a list, immediately following a <left-square-bracket> (see Section 9.3.5).

$ The <dollar-sign> shall be special when used as an anchor.

9.3.4 Periods in BREs

When not inside a bracket expression, a <period> ('.') is a BRE that shall match any character
in the supported character set except NUL.

9.3.5 RE Bracket Expression

A bracket expression (an expression enclosed in square brackets, "[]") is an RE that shall
match a specific set of single characters, and may match a specific set of multi-character collating
elements, based on the non-empty set of list expressions contained in the bracket expression.

The following rules and definitions apply to bracket expressions:

1. A bracket expression is either a matching list expression or a non-matching list
expression. It consists of one or more expressions: ordinary characters, collating elements,
collating symbols, equivalence classes, character classes, or range expressions. The <right-
square-bracket> (']') shall lose its special meaning and represent itself in a bracket
expression if it occurs first in the list (after an initial <circumflex> ('^'), if any).
Otherwise, it shall terminate the bracket expression, unless it appears in a collating
symbol (such as "[.].]") or is the ending <right-square-bracket> for a collating symbol,
equivalence class, or character class. When the bracket expression appears within a BRE,
the special characters '.', '*', '[', and '\\' (<period>, <asterisk>, <left-square-
bracket>, and <backslash>, respectively) shall lose their special meaning within the
bracket expression. When the bracket expression appears within an ERE, the special
characters '.', '(', '*', '+', '?', '{', '|', '$', '[', and '\\' (<period>, <left-
parenthesis>, <asterisk>, <plus-sign>, <question-mark>, <left-brace>, <vertical-line>,
<dollar-sign>, <left-square-bracket>, and <backslash>, respectively) shall lose their

182 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6435

6436

6437

6438

6439

6440

6441

6442

6443

6444

6445

6446

6447

6448

6449

6450

6451

6452

6453

6454

6455

6456

6457

6458

6459

6460

6461

6462

6463

6464

6465

6466

6467

6468

6469

6470

6471

6472

6473

6474

6475

6476

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Basic Regular Expressions

special meaning within the bracket expression; <circumflex> ('^') shall lose its special
meaning as an anchor. When the bracket expression appears within a shell pattern (see
XCU Section 2.14, on page 2523), the special characters '?', '*', and '[' (<question-
mark>, <asterisk>, and <left-square-bracket>, respectively) shall lose their special
meaning within the bracket expression; whether or not <backslash> ('\\') loses its
special meaning as a pattern matching character is described in XCU Section 2.14.1 (on
page 2523), but in contexts where a shell-quoting <backslash> can be used it shall retain
its special meaning (see XCU Section 2.2, on page 2472). For example:

$ ls
! $ - \ a b c
$ echo [a\-c]
- a c
$ echo [\!a]
! a
$ echo ["!\$a-c"]
! $ - a c
$ echo [!"\$a-c"]
! \ b
$ echo [!\]\\]
! $ - a b c

The character sequences "[.", "[=", and "[:" (<left-square-bracket> followed by a
<period>, <equals-sign>, or <colon>) shall be special inside a bracket expression and are
used to delimit collating symbols, equivalence class expressions, and character class
expressions. These symbols shall be followed by a valid expression and the matching
terminating sequence ".]", "=]", or ":]", as described in the following items.

2. A matching list expression specifies a list that shall match any single character that is
matched by one of the expressions represented in the list. The first character in the list
cannot be the <circumflex>. An ordinary character in the list shall only match that
character; for example, "[abc]" is an RE that only matches one of the characters 'a',
'b', or 'c'.

It is unspecified whether a matching list expression matches a multi-character collating
element that is matched by one of the expressions.

3. A non-matching list expression begins with a <circumflex> ('^'), and the matching
behavior shall be the logical inverse of the corresponding matching list expression (the
same bracket expression but without the leading <circumflex>). For example, since the
RE "[abc]" only matches 'a', 'b', or 'c', it follows that "[^abc]" is an RE that
matches any character except 'a', 'b', or 'c'. It is unspecified whether a non-matching
list expression matches a multi-character collating element that is not matched by any of
the expressions. The <circumflex> shall have this special meaning only when it occurs
first in the list, immediately following the <left-square-bracket>.

4. A collating symbol is a collating element enclosed within bracket-period ("[." and
".]") delimiters. Collating elements are defined as described in Section 7.3.2.4 (on page
142). Conforming applications shall represent multi-character collating elements as
collating symbols when it is necessary to distinguish them from a list of the individual
characters that make up the multi-character collating element. For example, if the string
"ch" is a collating element defined using the line:

collating-element <ch-digraph> from "<c><h>"

in the locale definition, the expression "[[.ch.]]" shall be treated as an RE containing
the collating symbol 'ch', while "[ch]" shall be treated as an RE matching 'c' or 'h'.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 183

6477

6478

6479

6480

6481

6482

6483

6484

6485

6486

6487

6488

6489

6490

6491

6492

6493

6494

6495

6496

6497

6498

6499

6500

6501

6502

6503

6504

6505

6506

6507

6508

6509

6510

6511

6512

6513

6514

6515

6516

6517

6518

6519

6520

6521

6522

6523

6524

6525

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Basic Regular Expressions Regular Expressions

Collating symbols are recognized only inside bracket expressions. If the string is not a
collating element in the current locale, the expression is invalid.

5. An equivalence class expression shall represent the set of collating elements belonging to
an equivalence class, as described in Section 7.3.2.4 (on page 142). Only primary
equivalence classes shall be recognized. The class shall be expressed by enclosing any one
of the collating elements in the equivalence class within bracket-equal ("[=" and "=]")
delimiters. For example, if 'a', 'à', and 'ˆ' belong to the same equivalence class, then
"[[=a=]b]", "[[=à=]b]", and "[[=ˆ=]b]" are each equivalent to "[aàˆb]". If the
collating element does not belong to an equivalence class, the equivalence class
expression shall be treated as a collating symbol.

6. A character class expression shall represent the union of two sets:

a. The set of single characters that belong to the character class, as defined in the
LC_CTYPE category in the current locale.

b. An unspecified set of multi-character collating elements.

All character classes specified in the current locale shall be recognized. A character class
expression is expressed as a character class name enclosed within bracket-<colon> ("[:"
and ":]") delimiters.

The following character class expressions shall be supported in all locales:

[:alnum:] [:cntrl:] [:lower:] [:space:]
[:alpha:] [:digit:] [:print:] [:upper:]
[:blank:] [:graph:] [:punct:] [:xdigit:]

In addition, character class expressions of the form:

[:name:]

are recognized in those locales where the name keyword has been given a charclass
definition in the LC_CTYPE category.

7. In the POSIX locale, a range expression represents the set of collating elements that fall
between two elements in the collation sequence, inclusive. In other locales, a range
expression has unspecified behavior: strictly conforming applications shall not rely on
whether the range expression is valid, or on the set of collating elements matched. A
range expression shall be expressed as the starting point and the ending point separated
by a <hyphen-minus> ('−').

In the following, all examples assume the POSIX locale.

The starting range point and the ending range point shall be a collating element or
collating symbol. An equivalence class expression used as a starting or ending point of a
range expression produces unspecified results. An equivalence class can be used portably
within a bracket expression, but only outside the range. If the represented set of collating
elements is empty, it is unspecified whether the expression matches nothing, or is treated
as invalid.

The interpretation of range expressions where the ending range point is also the starting
range point of a subsequent range expression (for example, "[a-m-o]") is undefined.

The <hyphen-minus> character shall be treated as itself if it occurs first (after an initial
'^', if any) or last in the list, or as an ending range point in a range expression. As
examples, the expressions "[-ac]" and "[ac-]" are equivalent and match any of the
characters 'a', 'c', or '−'; "[^-ac]" and "[^ac-]" are equivalent and match any
characters except 'a', 'c', or '−'; the expression "[%--]" matches any of the

184 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6526

6527

6528

6529

6530

6531

6532

6533

6534

6535

6536

6537

6538

6539

6540

6541

6542

6543

6544

6545

6546

6547

6548

6549

6550

6551

6552

6553

6554

6555

6556

6557

6558

6559

6560

6561

6562

6563

6564

6565

6566

6567

6568

6569

6570

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Basic Regular Expressions

characters between '%' and '−' inclusive; the expression "[--@]" matches any of the
characters between '−' and '@' inclusive; and the expression "[a--@]" is either invalid
or equivalent to '@', because the letter 'a' follows the symbol '−' in the POSIX locale.
To use a <hyphen-minus> as the starting range point, it shall either come first in the
bracket expression or be specified as a collating symbol; for example, "[][.-.]-0]",
which matches either a <right-square-bracket> or any character or collating element that
collates between <hyphen-minus> and 0, inclusive.

If a bracket expression specifies both '−' and ']', the ']' shall be placed first (after the
'^', if any) and the '−' last within the bracket expression.

8. If a bracket expression contains at least three list elements, where the first and last list
elements are the same single-character element of <period>, <equals-sign>, or <colon>,
then it is unspecified whether the bracket expression will be treated as a collating symbol,
equivalence class, or character class, respectively; treated as a matching list expression; or
treated as an invalid bracket expression.

9.3.6 BREs Matching Multiple Characters

The following rules can be used to construct BREs matching multiple characters from BREs
matching a single character:

1. The concatenation of BREs shall match the concatenation of the strings matched by each
component of the BRE.

2. A subexpression can be defined within a BRE by enclosing it between the character pairs
"\(" and "\)". Such a subexpression shall match whatever it would have matched
without the "\(" and "\)", except that anchoring within subexpressions is optional
behavior; see Section 9.3.8 (on page 186). Subexpressions can be arbitrarily nested.

3. The back-reference expression '\n' shall match the same (possibly empty) string of
characters as was matched by a subexpression enclosed between "\(" and "\)"
preceding the '\n'. The character 'n' shall be a digit from 1 through 9, specifying the
nth subexpression (the one that begins with the nth "\(" from the beginning of the
pattern and ends with the corresponding paired "\)"). The expression is invalid if less
than n subexpressions precede the '\n'. The string matched by a contained
subexpression shall be within the string matched by the containing subexpression. If the
containing subexpression does not match, or if there is no match for the contained
subexpression within the string matched by the containing subexpression, then back-
reference expressions corresponding to the contained subexpression shall not match.
When a subexpression matches more than one string, a back-reference expression
corresponding to the subexpression shall refer to the last matched string. For example, the
expression "^\(.*\)\1$" matches strings consisting of two adjacent appearances of the
same substring, and the expression "\(a\)*\1" fails to match 'a', the expression
"\(a\(b\)*\)*\2" fails to match 'abab', and the expression "^\(ab*\)*\1$"
matches 'ababbabb', but fails to match 'ababbab'.

4. When a BRE matching a single character, a subexpression, or a back-reference is followed
by the special character <asterisk> ('*'), together with that <asterisk> it shall match
what zero or more consecutive occurrences of the BRE would match. For example,
"[ab]*" and "[ab][ab]" are equivalent when matching the string "ab".

5. When a BRE matching a single character, a subexpression, or a back-reference is followed
by an interval expression of the format "\{m\}", "\{m,\}", or "\{m,n\}", together
with that interval expression it shall match what repeated consecutive occurrences of the
BRE would match. The values of m and n are decimal integers in the range 0

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 185

6571

6572

6573

6574

6575

6576

6577

6578

6579

6580

6581

6582

6583

6584

6585

6586

6587

6588

6589

6590

6591

6592

6593

6594

6595

6596

6597

6598

6599

6600

6601

6602

6603

6604

6605

6606

6607

6608

6609

6610

6611

6612

6613

6614

6615

6616

6617

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Basic Regular Expressions Regular Expressions

≤m≤n≤{RE_DUP_MAX}, where m specifies the exact or minimum number of occurrences
and n specifies the maximum number of occurrences. The expression "\{m\}" shall
match exactly m occurrences of the preceding BRE, "\{m,\}" shall match at least m
occurrences, and "\{m,n\}" shall match any number of occurrences between m and n,
inclusive.

For example, in the string "abababccccccd" the BRE "c\{3\}" is matched by
characters seven to nine, the BRE "\(ab\)\{4,\}" is not matched at all, and the BRE
"c\{1,3\}d" is matched by characters ten to thirteen.

The behavior of multiple adjacent duplication symbols ('*' and intervals) produces undefined
results.

A subexpression repeated by an <asterisk> ('*') or an interval expression shall not match a null
expression unless this is the only match for the repetition or it is necessary to satisfy the exact or
minimum number of occurrences for the interval expression.

9.3.7 BRE Precedence

The order of precedence shall be as shown in the following table:

BRE Precedence (from high to low)
Collation-related bracket symbols [==] [::] [..]
Escaped characters \<special character>
Bracket expression []
Subexpressions/back-references \(\) \n
Single-character-BRE duplication * \{m,n\}
Concatenation
Anchoring ˆ $

9.3.8 BRE Expression Anchoring

A BRE can be limited to matching expressions that begin or end a string; this is called
``anchoring’’. The <circumflex> and <dollar-sign> special characters shall be considered BRE
anchors in the following contexts:

1. A <circumflex> ('^') shall be an anchor when used as the first character of an entire BRE
and, if the implementation does not match the escape sequence "\|" to the literal
character '|', when used immediately following a "\|" escape sequence that is not
inside a subexpression. The implementation may also treat a <circumflex> as an anchor
when used inside a subexpression; in this case it shall be an anchor only when either of
the following is true:

• It is the first character of the subexpression.

• It immediately follows a "\|" escape sequence and the implementation does not
match the escape sequence "\|" to the literal character '|'.

The <circumflex> shall anchor the expression (or optionally subexpression) to the
beginning of a string; only sequences starting at the first character of a string shall be
matched by the BRE. For example, the BRE "^ab" matches "ab" in the string "abcdef",
but fails to match in the string "cdefab". The BRE "\(^ab\)" may match the former
string. A portable BRE shall escape a leading <circumflex> in a subexpression to match a
literal <circumflex>.

186 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6618

6619

6620

6621

6622

6623

6624

6625

6626

6627

6628

6629

6630

6631

6632

6633

6634

6635

6636

6637

6638

6639

6640

6641

6642

6643

6644

6645

6646

6647

6648

6649

6650

6651

6652

6653

6654

6655

6656

6657

6658

6659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Basic Regular Expressions

2. A <dollar-sign> ('$') shall be an anchor when used as the last character of an entire BRE
and, if the implementation does not match the escape sequence "\|" to the literal
character '|', when used immediately preceding a "\|" escape sequence that is not
inside a subexpression. The implementation may also treat a <dollar-sign> as an anchor
when used inside a subexpression; in this case it shall be an anchor only when either of
the following is true:

• It is the last character of the subexpression.

• It immediately precedes a "\|" escape sequence and the implementation does not
match the escape sequence "\|" to the literal character '|'.

The <dollar-sign> shall anchor the expression (or optionally subexpression) to the end of
the string being matched; the <dollar-sign> can be said to match the end-of-string
following the last character. A portable BRE shall escape a trailing <dollar-sign> in a
subexpression to match a literal <dollar-sign>.

3. A BRE anchored by both '^' and '$' shall match only an entire string. For example, the
BRE "^abcdef$" matches strings consisting only of "abcdef".

9.4 Extended Regular Expressions
The extended regular expression (ERE) notation and construction rules shall apply to utilities
defined as using extended regular expressions; any exceptions to the following rules are noted
in the descriptions of the specific utilities using EREs.

9.4.1 EREs Matching a Single Character or Collating Element

When not inside a bracket expression, the following shall match a single character:

• an ERE ordinary character

• an ERE special character, ']', or '}' preceded by an unescaped <backslash>

• a <period>

A bracket expression shall match a single character or a single collating element. An ERE
matching a single character enclosed in parentheses shall match the same as the ERE without
parentheses would have matched.

9.4.2 ERE Ordinary Characters

An ordinary character is an ERE that matches itself. An ordinary character is any character in the
supported character set, except for the ERE special characters listed in Section 9.4.3 (on page
188). When not inside a bracket expression, the interpretation of an ordinary character preceded
by an unescaped <backslash> is undefined, except for the ']' and '}' characters; "\]" and
"\}" shall match the ']' and '}' characters, respectively.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 187

6660

6661

6662

6663

6664

6665

6666

6667

6668

6669

6670

6671

6672

6673

6674

6675

6676

6677

6678

6679

6680

6681

6682

6683

6684

6685

6686

6687

6688

6689

6690

6691

6692

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Extended Regular Expressions Regular Expressions

9.4.3 ERE Special Characters

An ERE special character has special properties in certain contexts. Outside those contexts, or
when preceded by an unescaped <backslash>, such a character shall be an ERE that matches the
special character itself. The extended regular expression special characters and the contexts in
which they shall have their special meaning are as follows:

.[\(The <period>, <left-square-bracket>, <backslash>, and <left-parenthesis> shall be
special except when used in a bracket expression (see Section 9.3.5, on page 182). When
not inside a bracket expression, an unescaped <left-parenthesis> immediately followed
by a <right-parenthesis> produces undefined results. A <left-square-bracket> that is
unescaped and is not part of a bracket expression also produces undefined results.

) The <right-parenthesis> shall be special when matched with a preceding <left-
parenthesis>, both not inside a bracket expression.

*+?{ The <asterisk>, <plus-sign>, <question-mark>, and <left-brace> shall be special except
when used in a bracket expression (see Section 9.3.5, on page 182). Any of the
following uses produce undefined results:

— If these characters appear first in an ERE, or immediately following an unescaped
<vertical-line>, <circumflex>, <dollar-sign>, or <left-parenthesis>

— If a <left-brace> is not part of a valid interval expression (see Section 9.4.6, on
page 189)

| The <vertical-line> is special except when used in a bracket expression (see Section
9.3.5, on page 182). A <vertical-line> appearing first or last in an ERE, or immediately
following a <vertical-line> or a <left-parenthesis>, or immediately preceding a <right-
parenthesis>, produces undefined results.

ˆ The <circumflex> shall be special when used as an anchor (see Section 9.4.9, on page
190). The <circumflex> shall signify a non-matching list expression when it occurs first
in a list, immediately following a <left-square-bracket> (see Section 9.3.5, on page 182).

$ The <dollar-sign> shall be special when used as an anchor.

9.4.4 Periods in EREs

When not inside a bracket expression, a <period> ('.') is an ERE that shall match any character
in the supported character set except NUL.

9.4.5 ERE Bracket Expression

The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions; see Section
9.3.5 (on page 182).

188 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6693

6694

6695

6696

6697

6698

6699

6700

6701

6702

6703

6704

6705

6706

6707

6708

6709

6710

6711

6712

6713

6714

6715

6716

6717

6718

6719

6720

6721

6722

6723

6724

6725

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Extended Regular Expressions

9.4.6 EREs Matching Multiple Characters

The following rules shall be used to construct EREs matching multiple characters from EREs
matching a single character:

1. A concatenation of EREs shall match the concatenation of the character sequences
matched by each component of the ERE. A concatenation of EREs enclosed in parentheses
shall match whatever the concatenation without the parentheses matches. For example,
both the ERE "cd" and the ERE "(cd)" are matched by the third and fourth character of
the string "abcdefabcdef".

2. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character <plus-sign> ('+'), together with that <plus-sign> it shall match
what one or more consecutive occurrences of the ERE would match. For example, the
ERE "b+(bc)" matches the fourth to seventh characters in the string "acabbbcde".
And, "[ab]+" and "[ab][ab]*" are equivalent.

3. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character <asterisk> ('*'), together with that <asterisk> it shall match
what zero or more consecutive occurrences of the ERE would match. For example, the
ERE "b*c" matches the first character in the string "cabbbcde", and the ERE "b*cd"
matches the third to seventh characters in the string "cabbbcdebbbbbbcdbc". And,
"[ab]*" and "[ab][ab]" are equivalent when matching the string "ab".

4. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character <question-mark> ('?'), together with that <question-mark> it
shall match what zero or one consecutive occurrences of the ERE would match. For
example, the ERE "b?c" matches the second character in the string "acabbbcde".

5. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by an interval expression of the format "{m}", "{m,}", or "{m,n}", together with that
interval expression it shall match what repeated consecutive occurrences of the ERE
would match. The values of m and n are decimal integers in the range 0
≤m≤n≤{RE_DUP_MAX}, where m specifies the exact or minimum number of occurrences
and n specifies the maximum number of occurrences. The expression "{m}" matches
exactly m occurrences of the preceding ERE, "{m,}" matches at least m occurrences, and
"{m,n}" matches any number of occurrences between m and n, inclusive.

For example, in the string "abababccccccd" the ERE "c{3}" is matched by characters
seven to nine and the ERE "(ab){2,}" is matched by characters one to six.

6. Each of the duplication symbols ('+', '*', '?', and intervals) can be suffixed by the
repetition modifier '?' (<question-mark>), in which case matching behavior for that
repetition shall be changed from the leftmost longest possible match to the leftmost
shortest possible match, including the null match (see Section A.9, on page 3709). For
example, the ERE ".*c" matches up to and including the last character ('c') in the
string "abc abc", whereas the ERE ".*?c" matches up to and including the first
character 'c', the third character in the string.

If the REG_MINIMAL flag, defined in the <regex.h> header, is used when compiling an
ERE via regcomp(), the leftmost shortest possible match shall be the default for all
duplication symbols, and the repetition modifier '?' can be used to select the leftmost
longest possible match for the repetition it modifies.

The behavior of multiple adjacent duplication symbols ('+', '*', '?', and intervals, possibly
suffixed by the repetition modifier '?') produces undefined results.

An ERE matching a single character repeated by an '*', '?', or an interval expression shall not

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 189

6726

6727

6728

6729

6730

6731

6732

6733

6734

6735

6736

6737

6738

6739

6740

6741

6742

6743

6744

6745

6746

6747

6748

6749

6750

6751

6752

6753

6754

6755

6756

6757

6758

6759

6760

6761

6762

6763

6764

6765

6766

6767

6768

6769

6770

6771

6772

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Extended Regular Expressions Regular Expressions

match a null expression unless this is the only match for the repetition or it is necessary to satisfy
the exact or minimum number of occurrences for the interval expression.

9.4.7 ERE Alternation

Two EREs separated by the special character <vertical-line> ('|') shall match a string that is
matched by either. For example, the ERE "a((bc)|d)" matches the string "abc" and the
string "ad". Single characters, or expressions matching single characters, separated by the
<vertical-line> and enclosed in parentheses, shall be treated as an ERE matching a single
character.

9.4.8 ERE Precedence

The order of precedence shall be as shown in the following table:

ERE Precedence (from high to low)
Collation-related bracket symbols [==] [::] [..]
Escaped characters \<special character>
Bracket expression []
Grouping ()
Single-character-ERE duplication * + ? {m,n}
Concatenation
Anchoring ˆ $
Alternation |

For example, the ERE "abba|cde" matches either the string "abba" or the string "cde"
(rather than the string "abbade" or "abbcde", because concatenation has a higher order of
precedence than alternation).

9.4.9 ERE Expression Anchoring

An ERE can be limited to matching expressions that begin or end a string; this is called
``anchoring’’. The <circumflex> and <dollar-sign> special characters shall be considered ERE
anchors when used anywhere except inside a bracket expression. This shall have the following
effects:

1. When not inside a bracket expression, a <circumflex> ('^') shall anchor the expression
or subexpression it begins to the beginning of a string; such an expression or
subexpression can match only a sequence starting at the first character of a string. For
example, the EREs "^ab" and "(^ab)" match "ab" in the string "abcdef", but fail to
match in the string "cdefab", and the ERE "a^b" is valid, but can never match because
the 'a' prevents the expression "^b" from matching starting at the first character.

2. When not inside a bracket expression, a <dollar-sign> ('$') shall anchor the expression
or subexpression it ends to the end of a string; such an expression or subexpression can
match only a sequence ending at the last character of a string. For example, the EREs
"ef$" and "(ef$)" match "ef" in the string "abcdef", but fail to match in the string
"cdefab", and the ERE "e$f" is valid, but can never match because the 'f' prevents
the expression "e$" from matching ending at the last character.

190 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6773

6774

6775

6776

6777

6778

6779

6780

6781

6782

6783

6784

6785

6786

6787

6788

6789

6790

6791

6792

6793

6794

6795

6796

6797

6798

6799

6800

6801

6802

6803

6804

6805

6806

6807

6808

6809

6810

6811

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Regular Expression Grammar

9.5 Regular Expression Grammar
Grammars describing the syntax of both basic and extended regular expressions are presented in
this section. The grammar takes precedence over the text. See XCU Section 1.3 (on page 2461).

9.5.1 BRE/ERE Grammar Lexical Conventions

The lexical conventions for regular expressions are as described in this section.

Except as noted, the longest possible token or delimiter beginning at a given point is recognized.

The following tokens are processed (in addition to those string constants shown in the
grammar):

COLL_ELEM_SINGLE Any single-character collating element, unless it is a META_CHAR.

COLL_ELEM_MULTI Any multi-character collating element.

BACKREF Applicable only to basic regular expressions. The character string
consisting of a <backslash> character followed by a single-digit
numeral, '1' to '9'.

DUP_COUNT Represents a numeric constant. It shall be an integer in the range 0
≤DUP_COUNT ≤{RE_DUP_MAX}. This token is only recognized
when the context of the grammar requires it. At all other times, digits
not preceded by a <backslash> character are treated as ORD_CHAR.

META_CHAR One of the characters:

ˆ When found first in a bracket expression

− When found anywhere but first (after an initial '^', if any)
or last in a bracket expression, or as the ending range point
in a range expression

] When found anywhere but first (after an initial '^', if any)
in a bracket expression

L_ANCHOR Applicable only to basic regular expressions. The character '^'
when it appears either as the first character of a basic regular
expression or, if the implementation does not match the escape
sequence "\|" to the literal character '|', when used immediately
following a "\|" escape sequence that is not inside a subexpression,
and when not QUOTED_CHAR. The '^' may be recognized as an
anchor elsewhere; see Section 9.3.8 (on page 186).

ORD_CHAR A character, other than one of the special characters in SPEC_CHAR.

QUOTED_CHAR In a BRE, one of the character sequences:

\^ \. * \[\] \$ \\

On implementations where the escape sequences "\?", "\+", and
"\|" match the literal characters '?', '+', and '|', respectively,
QUOTED_CHAR shall also include:

\? \+ \|

In an ERE, one of the character sequences:

\^ \. \[\] \$ \(\) \|

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 191

6812

6813

6814

6815

6816

6817

6818

6819

6820

6821

6822

6823

6824

6825

6826

6827

6828

6829

6830

6831

6832

6833

6834

6835

6836

6837

6838

6839

6840

6841

6842

6843

6844

6845

6846

6847

6848

6849

6850

6851

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expression Grammar Regular Expressions

* \+ \? \{ \} \\

R_ANCHOR (Applicable only to basic regular expressions.) The character '$'
when it appears either as the last character of a basic regular
expression or, if the implementation does not match the escape
sequence "\|" to the literal character '|', when used immediately
preceding a "\|" escape sequence that is not inside a subexpression,
and when not QUOTED_CHAR. The '$' may be recognized as an
anchor elsewhere; see Section 9.3.8 (on page 186).

SPEC_CHAR For basic regular expressions, one of the following special characters:

. Anywhere except inside bracket expressions

\ Anywhere except inside bracket expressions

[Anywhere except inside bracket expressions

ˆ When used as an anchor (see Section 9.3.8, on page 186)

$ When used as an anchor

* Anywhere except first in an entire RE, anywhere in a
bracket expression, directly following "\(", directly
following an anchoring '^'

For extended regular expressions, shall be one of the following
special characters found anywhere except inside bracket expressions:

^ . [$ () |
* + ? { \

The close-parenthesis shall be considered special in this context only
if matched with a preceding open-parenthesis.

9.5.2 RE and Bracket Expression Grammar

This section presents the grammar for basic regular expressions, including the bracket
expression grammar that is common to both BREs and EREs.

%token ORD_CHAR QUOTED_CHAR DUP_COUNT

%token BACKREF L_ANCHOR R_ANCHOR

%token Back_open_paren Back_close_paren
/* '\(' '\)' */

%token Back_open_brace Back_close_brace
/* '\{' '\}' */

/* The following shall be tokens on implementations where
\?, \+, and \| are not included in QUOTED_CHAR */

%token Back_qm Back_plus Back_bar
/* '\?' '\+' '\|' */

/* The following tokens are for the Bracket Expression
grammar common to both REs and EREs. */

%token COLL_ELEM_SINGLE COLL_ELEM_MULTI META_CHAR

%token Open_equal Equal_close Open_dot Dot_close Open_colon Colon_close

192 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6852

6853

6854

6855

6856

6857

6858

6859

6860

6861

6862

6863

6864

6865

6866

6867

6868

6869

6870

6871

6872

6873

6874

6875

6876

6877

6878

6879

6880

6881

6882

6883

6884

6885

6886

6887

6888

6889

6890

6891

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Regular Expression Grammar

/* '[=' '=]' '[.' '.]' '[:' ':]' */

%token class_name
/* class_name is a keyword to the LC_CTYPE locale category */
/* (representing a character class) in the current locale */
/* and is only recognized between [: and :] */

%start basic_reg_exp
%%

/* --
Basic Regular Expression
--

*/
basic_reg_exp : BRE_branch

| basic_reg_exp Back_bar BRE_branch /* if Back_bar
is a token */

;
BRE_branch : BRE_expression

| BRE_branch BRE_expression
;

BRE_expression : simple_BRE
| L_ANCHOR
| R_ANCHOR
| L_ANCHOR R_ANCHOR
| L_ANCHOR simple_BRE
| simple_BRE R_ANCHOR
| L_ANCHOR simple_BRE R_ANCHOR
;

simple_BRE : nondupl_BRE
| nondupl_BRE BRE_dupl_symbol
;

nondupl_BRE : one_char_or_coll_elem_BRE
| Back_open_paren basic_reg_exp Back_close_paren
| BACKREF
;

one_char_or_coll_elem_BRE : ORD_CHAR
| QUOTED_CHAR
| '.'
| bracket_expression
;

BRE_dupl_symbol : '*'
| Back_qm /* if Back_qm is a token */
| Back_plus /* if Back_plus is a token */
| Back_open_brace DUP_COUNT Back_close_brace
| Back_open_brace DUP_COUNT ',' Back_close_brace
| Back_open_brace DUP_COUNT ',' DUP_COUNT Back_close_brace
;

/* --
Bracket Expression

*/
bracket_expression : '[' matching_list ']'

| '[' nonmatching_list ']'

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 193

6892

6893

6894

6895

6896

6897

6898

6899

6900

6901

6902

6903

6904

6905

6906

6907

6908

6909

6910

6911

6912

6913

6914

6915

6916

6917

6918

6919

6920

6921

6922

6923

6924

6925

6926

6927

6928

6929

6930

6931

6932

6933

6934

6935

6936

6937

6938

6939

6940

6941

6942

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expression Grammar Regular Expressions

;
matching_list : bracket_list

;
nonmatching_list : '^' bracket_list

;
bracket_list : follow_list

| follow_list '-'
;

follow_list : expression_term
| follow_list expression_term
;

expression_term : single_expression
| range_expression
;

single_expression : end_range
| character_class
| equivalence_class
;

range_expression : start_range end_range
| start_range '-'
;

start_range : end_range '-'
;

end_range : COLL_ELEM_SINGLE
| collating_symbol
;

collating_symbol : Open_dot COLL_ELEM_SINGLE Dot_close
| Open_dot COLL_ELEM_MULTI Dot_close
| Open_dot META_CHAR Dot_close
;

equivalence_class : Open_equal COLL_ELEM_SINGLE Equal_close
| Open_equal COLL_ELEM_MULTI Equal_close
;

character_class : Open_colon class_name Colon_close
;

Note that although the BRE grammar appears always to permit L_ANCHOR or R_ANCHOR
inside "\(" and "\)", the lexical conventions (see Section 9.5.1, on page 191) imply that '^'
and '$' may be ordinary characters there. This reflects the semantic limits on the application, as
noted in Section 9.3.8 (on page 186). Since it is an implementation option whether to interpret
'^' and '$' as anchors in these locations, conforming applications cannot use unescaped '^'
and '$' in positions inside "\(" and "\)" that might be interpreted as anchors.

9.5.3 ERE Grammar

This section presents the grammar for extended regular expressions, excluding the bracket
expression grammar.

Note: The bracket expression grammar and the associated %token lines are identical between BREs
and EREs. It has been omitted from the ERE section to avoid unnecessary editorial duplication.

%token ORD_CHAR QUOTED_CHAR DUP_COUNT
%start extended_reg_exp
%%

194 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

6943

6944

6945

6946

6947

6948

6949

6950

6951

6952

6953

6954

6955

6956

6957

6958

6959

6960

6961

6962

6963

6964

6965

6966

6967

6968

6969

6970

6971

6972

6973

6974

6975

6976

6977

6978

6979

6980

6981

6982

6983

6984

6985

6986

6987

6988

6989

6990

6991

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Regular Expression Grammar

/* --
Extended Regular Expression
--

*/
extended_reg_exp : ERE_branch

| extended_reg_exp '|' ERE_branch
;

ERE_branch : ERE_expression
| ERE_branch ERE_expression
;

ERE_expression : one_char_or_coll_elem_ERE
| '^'
| '$'
| '(' extended_reg_exp ')'
| ERE_expression ERE_dupl_symbol
;

one_char_or_coll_elem_ERE : ORD_CHAR
| QUOTED_CHAR
| '.'
| bracket_expression
;

ERE_dupl_symbol : '*'
| '+'
| '?'
| '{' DUP_COUNT '}'
| '{' DUP_COUNT ',' '}'
| '{' DUP_COUNT ',' DUP_COUNT '}'
;

The ERE grammar does not permit several constructs that previous sections specify as having
undefined results. Additionally, there are some constructs which the grammar permits but
which still give undefined results:

• ORD_CHAR preceded by an unescaped <backslash> character

• One or more ERE_dupl_symbols appearing first in an ERE, or immediately following '|',
'^', '(', or '$'

• '{' not part of a valid ERE_dupl_symbol

• '|' appearing first or last in an ERE, or immediately following '|' or '(', or
immediately preceding ')'

Implementations are permitted to extend the language to allow these. Strictly Conforming
applications cannot use such constructs.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 195

6992

6993

6994

6995

6996

6997

6998

6999

7000

7001

7002

7003

7004

7005

7006

7007

7008

7009

7010

7011

7012

7013

7014

7015

7016

7017

7018

7019

7020

7021

7022

7023

7024

7025

7026

7027

7028

7029

7030

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions

196 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 10

Directory Structure and Devices

10.1 Directory Structure and Files
The following directories shall exist on conforming systems and conforming applications shall
make use of them only as described. Strictly conforming applications shall not assume the
ability to create files in any of these directories, unless specified below.

/ The root directory.

/dev Contains /dev/console, /dev/null, and /dev/tty, described below.

The following directory shall exist on conforming systems and shall be used as described:

/tmp A directory made available for applications that need a place to create temporary
files. Applications shall be allowed to create files in this directory, but shall not
assume that such files are preserved between invocations of the application.

The following files shall exist on conforming systems and shall be both readable and writable:

/dev/null An empty data source and infinite data sink. Data written to /dev/null shall be
discarded. Reads from /dev/null shall always return end-of-file (EOF).

/dev/tty In each process, a synonym for the controlling terminal associated with the process
group of that process, if any. It is useful for programs or shell procedures that wish
to be sure of writing messages to or reading data from the terminal no matter how
output has been redirected. It can also be used for applications that demand the
name of a file for output, when typed output is desired and it is tiresome to find
out what terminal is currently in use.

The following file shall exist on conforming systems and need not be readable or writable:

/dev/console The /dev/console file is a generic name given to the system console (see Section
3.376, on page 86). It is usually linked to an implementation-defined special file. It
shall provide an interface to the system console conforming to the requirements of
Chapter 11 (on page 199).

10.2 Output Devices and Terminal Types
The utilities in the Shell and Utilities volume of POSIX.1-2024 historically have been
implemented on a wide range of terminal types, but a conforming implementation need not
support all features of all utilities on every conceivable terminal. POSIX.1-2024 states which
features are optional for certain classes of terminals in the individual utility description sections.
The implementation shall document in the system documentation which terminal types it
supports and which of these features and utilities are not supported by each terminal.

When a feature or utility is not supported on a specific terminal type, as allowed by
POSIX.1-2024, and the implementation considers such a condition to be an error preventing use
of the feature or utility, the implementation shall indicate such conditions through diagnostic
messages or exit status values or both (as appropriate to the specific utility description) that

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 197

7031

7032

7033

7034

7035

7036

7037

7038

7039

7040

7041

7042

7043

7044

7045

7046

7047

7048

7049

7050

7051

7052

7053

7054

7055

7056

7057

7058

7059

7060

7061

7062

7063

7064

7065

7066

7067

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Output Devices and Terminal Types Directory Structure and Devices

inform the user that the terminal type lacks the appropriate capability.

POSIX.1-2024 uses a notational convention based on historical practice that identifies some of
the control characters defined in Section 7.3.1 (on page 131) in a manner easily remembered by
users on many terminals. The correspondence between this ``<control>-char’’ notation and the
actual control characters is shown in the following table. When POSIX.1-2024 refers to a
character by its <control>-name, it is referring to the actual control character shown in the Value
column of the table, which is not necessarily the exact control key sequence on all terminals.
Some terminals have keyboards that do not allow the direct transmission of all the non-
alphanumeric characters shown. In such cases, the system documentation shall describe which
data sequences transmitted by the terminal are interpreted by the system as representing the
special characters.

Table 10-1 Control Character Names

Name Value Name Value
<control>-A <SOH> <control>-Q <DC1>
<control>-B <STX> <control>-R <DC2>
<control>-C <ETX> <control>-S <DC3>
<control>-D <EOT> <control>-T <DC4>
<control>-E <ENQ> <control>-U <NAK>
<control>-F <ACK> <control>-V <SYN>
<control>-G <BEL> <control>-W <ETB>
<control>-H <BS> <control>-X <CAN>
<control>-I <HT> <control>-Y
<control>-J <LF> <control>-Z <SUB>
<control>-K <VT> <control>-[<ESC>
<control>-L <FF> <control>-\ <FS>
<control>-M <CR> <control>-] <GS>
<control>-N <SO> <control>-ˆ <RS>
<control>-O <SI> <control>-_ <US>
<control>-P <DLE> <control>-?

Note: The notation uses uppercase letters for arbitrary editorial reasons. There is no implication that
the keystrokes represent control-shift-letter sequences.

198 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7068

7069

7070

7071

7072

7073

7074

7075

7076

7077

7078

7079

7080

7081

7082

7083

7084

7085

7086

7087

7088

7089

7090

7091

7092

7093

7094

7095

7096

7097

7098

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 11

General Terminal Interface

This chapter describes a general terminal interface that shall be provided. It shall be supported
on any asynchronous communications ports if the implementation provides them. It is
implementation-defined whether it supports network connections or synchronous ports, or
both.

11.1 Interface Characteristics

11.1.1 Opening a Terminal Device File

When a terminal device file is opened, it normally causes the thread to wait until a connection is
established. In practice, application programs seldom open these files; they are opened by
special programs and become an application’s standard input, output, and error files.

Cases where applications do open a terminal device are as follows:

1. Opening /dev/tty, or the pathname returned by ctermid(), in order to obtain a file
descriptor for the controlling terminal; see Section 11.1.3 (on page 200).

2. Opening the subsidiary side of a pseudo-terminal; see XSH ptsname().

3. Opening a modem or similar piece of equipment connected by a serial line. In this case,
the terminal parameters (see Section 11.2, on page 205) may be initialized to default
settings by the implementation in between the last close of the device by any process and
the next open of the device, or they may persist from one use to the next. The terminal
parameters can be set to values that ensure the terminal behaves in a conforming manner
by means of the O_TTY_INIT open flag when opening a terminal device that is not
already open in any process, or by executing the stty utility with the operand sane.

As described in open(), opening a terminal device file with the O_NONBLOCK flag clear shall
cause the thread to block until the terminal device is ready and available. If CLOCAL mode is
not set, this means blocking until a connection is established. If CLOCAL mode is set in the
terminal, or the O_NONBLOCK flag is specified in the open(), the open() function shall return a
file descriptor without waiting for a connection to be established.

11.1.2 Process Groups

A terminal may have a foreground process group associated with it. This foreground process
group plays a special role in handling signal-generating input characters, as discussed in Section
11.1.9 (on page 203).

A command interpreter process supporting job control can allocate the terminal to different jobs,
or process groups, by placing related processes in a single process group and associating this
process group with the terminal. A terminal’s foreground process group may be set or examined
by a process, assuming the permission requirements are met; see tcgetpgrp() and tcsetpgrp().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 199

7099

7100

7101

7102

7103

7104

7105

7106

7107

7108

7109

7110

7111

7112

7113

7114

7115

7116

7117

7118

7119

7120

7121

7122

7123

7124

7125

7126

7127

7128

7129

7130

7131

7132

7133

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Interface Characteristics General Terminal Interface

The terminal interface aids in this allocation by restricting access to the terminal by processes
that are not in the current process group; see Section 11.1.4.

When there is no longer any process whose process ID or process group ID matches the
foreground process group ID, the terminal shall have no foreground process group. It is
unspecified whether the terminal has a foreground process group when there is a process whose
process ID matches the foreground process group ID, but whose process group ID does not. No
actions defined in POSIX.1-2024, other than allocation of a controlling terminal or a successful
call to tcsetpgrp(), shall cause a process group to become the foreground process group of the
terminal.

11.1.3 The Controlling Terminal

A terminal may belong to a process as its controlling terminal. Each process of a session that has
a controlling terminal has the same controlling terminal. A terminal may be the controlling
terminal for at most one session. The controlling terminal for a session is allocated by the session
leader in an implementation-defined manner. If a session leader has no controlling terminal, and
opens a terminal device file that is not already associated with a session without using the
O_NOCTTY option (see open()), it is implementation-defined whether the terminal becomes the
controlling terminal of the session leader. If a process which is not a session leader opens a
terminal file, or the O_NOCTTY option is used on open(), then that terminal shall not become
the controlling terminal of the calling process. When a controlling terminal becomes associated
with a session, its foreground process group shall be set to the process group of the session
leader.

The controlling terminal is inherited by a child process during a fork() function call. A process
relinquishes its controlling terminal when it creates a new session with the setsid() function;
other processes remaining in the old session that had this terminal as their controlling terminal
continue to have it. Upon the close of the last file descriptor in the system (whether or not it is in
the current session) associated with the controlling terminal, it is unspecified whether all
processes that had that terminal as their controlling terminal cease to have any controlling
terminal. Whether and how a session leader can reacquire a controlling terminal after the
controlling terminal has been relinquished in this fashion is unspecified. A process does not
relinquish its controlling terminal simply by closing all of its file descriptors associated with the
controlling terminal if other processes continue to have it open.

When a controlling process terminates, the controlling terminal is dissociated from the current
session, allowing it to be acquired by a new session leader. Subsequent access to the terminal by
other processes in the earlier session may be denied, with attempts to access the terminal treated
as if a modem disconnect had been sensed.

11.1.4 Terminal Access Control

If a process is in the foreground process group of its controlling terminal, read operations shall
be allowed, as described in Section 11.1.5 (on page 201). Any attempts by a process in a
background process group to read from its controlling terminal cause its process group to be
sent a SIGTTIN signal unless one of the following special cases applies: if the reading process is
ignoring the SIGTTIN signal or the reading thread is blocking the SIGTTIN signal, or if the
process group of the reading process is orphaned, the read() shall return −1, with errno set to
[EIO] and no signal shall be sent. The default action of the SIGTTIN signal shall be to stop the
process to which it is sent. See <signal.h>.

If a process is in the foreground process group of its controlling terminal, write operations shall

200 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7134

7135

7136

7137

7138

7139

7140

7141

7142

7143

7144

7145

7146

7147

7148

7149

7150

7151

7152

7153

7154

7155

7156

7157

7158

7159

7160

7161

7162

7163

7164

7165

7166

7167

7168

7169

7170

7171

7172

7173

7174

7175

7176

7177

7178

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Interface Characteristics

be allowed as described in Section 11.1.8 (on page 203). Attempts by a process in a background
process group to write to its controlling terminal shall cause the process group to be sent a
SIGTTOU signal unless one of the following special cases applies: if TOSTOP is not set, or if
TOSTOP is set and the process is ignoring the SIGTTOU signal or the writing thread is blocking
the SIGTTOU signal, the process is allowed to write to the terminal and the SIGTTOU signal is
not sent. If TOSTOP is set, the process group of the writing process is orphaned, the writing
process is not ignoring the SIGTTOU signal, and the writing thread is not blocking the SIGTTOU
signal, the write() shall return −1, with errno set to [EIO] and no signal shall be sent.

Certain calls that set terminal parameters are treated in the same fashion as write(), except that
TOSTOP is ignored; that is, the effect is identical to that of terminal writes when TOSTOP is set
(see Section 11.2.5 (on page 210), tcdrain(), tcflow(), tcflush(), tcsendbreak(), tcsetattr(), tcsetpgrp(),
and tcsetwinsize()).

11.1.5 Input Processing and Reading Data

A terminal device associated with a terminal device file may operate in full-duplex mode, so
that data may arrive even while output is occurring. Each terminal device file has an input
queue associated with it, into which incoming data is stored by the system before being read by
a process. The system may impose a limit, {MAX_INPUT}, on the number of bytes that may be
stored in the input queue. The behavior of the system when this limit is exceeded is
implementation-defined.

Two general kinds of input processing are available, determined by whether the terminal device
file is in canonical mode or non-canonical mode. These modes are described in Section 11.1.6 (on
page 202) and Section 11.1.7 (on page 202). Additionally, input characters are processed
according to the c_iflag (see Section 11.2.2, on page 206) and c_lflag (see Section 11.2.5, on page
210) fields. Such processing can include ``echoing’’, which in general means transmitting input
characters immediately back to the terminal when they are received from the terminal. This is
useful for terminals that can operate in full-duplex mode.

The manner in which data is provided to a process reading from a terminal device file is
dependent on whether the terminal file is in canonical or non-canonical mode, and on whether
or not the O_NONBLOCK flag is set by open() or fcntl().

If the O_NONBLOCK flag is clear, then the read request shall be blocked until data is available
or a signal has been received. If the O_NONBLOCK flag is set, then the read request shall be
completed, without blocking, in one of three ways:

1. If there is enough data available to satisfy the entire request, the read() shall complete
successfully and shall return the number of bytes read.

2. If there is not enough data available to satisfy the entire request, the read() shall complete
successfully, having read as much data as possible, and shall return the number of bytes it
was able to read.

3. If there is no data available, the read() shall return −1, with errno set to [EAGAIN].

When data is available depends on whether the input processing mode is canonical or non-
canonical. Section 11.1.6 (on page 202) and Section 11.1.7 (on page 202) describe each of these
input processing modes.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 201

7179

7180

7181

7182

7183

7184

7185

7186

7187

7188

7189

7190

7191

7192

7193

7194

7195

7196

7197

7198

7199

7200

7201

7202

7203

7204

7205

7206

7207

7208

7209

7210

7211

7212

7213

7214

7215

7216

7217

7218

7219

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Interface Characteristics General Terminal Interface

11.1.6 Canonical Mode Input Processing

In canonical mode input processing, terminal input is processed in units of lines. A line is
delimited by a <newline> character (NL), an end-of-file character (EOF), or an end-of-line (EOL)
character. See Section 11.1.9 (on page 203) for more information on EOF and EOL. This means
that a read request shall not return until an entire line has been typed or a signal has been
received. Also, no matter how many bytes are requested in the read() call, at most one line shall
be returned. It is not, however, necessary to read a whole line at once; any number of bytes, even
one, may be requested in a read() without losing information.

If {MAX_CANON} is defined for this terminal device, it shall be a limit on the number of bytes
in a line. The behavior of the system when this limit is exceeded is implementation-defined. If
{MAX_CANON} is not defined, there shall be no such limit; see pathconf().

Erase and kill processing occur when either of two special characters, the ERASE and KILL
characters (see Section 11.1.9, on page 203), is received. This processing shall affect data in the
input queue that has not yet been delimited by an NL, EOF, or EOL character. This un-delimited
data makes up the current line. The ERASE character shall delete the last character in the current
line, if there is one. The KILL character shall delete all data in the current line, if there is any.
The ERASE and KILL characters shall have no effect if there is no data in the current line. The
ERASE and KILL characters themselves shall not be placed in the input queue.

11.1.7 Non-Canonical Mode Input Processing

In non-canonical mode input processing, input bytes are not assembled into lines, and erase and
kill processing shall not occur. The values of the MIN and TIME members of the c_cc array are
used to determine how to process the bytes received. POSIX.1-2024 does not specify whether
the setting of O_NONBLOCK takes precedence over MIN or TIME settings. Therefore, if
O_NONBLOCK is set, read() may return immediately, regardless of the setting of MIN or TIME.
Also, if no data is available, read() may either return 0, or return −1 with errno set to [EAGAIN].

MIN represents the minimum number of bytes that should be received when the read() function
returns successfully. TIME is a timer of 0.1 second granularity that is used to time out bursty and
short-term data transmissions. If MIN is greater than {MAX_INPUT}, the response to the request
is undefined. The four possible values for MIN and TIME and their interactions are described
below.

Case A: MIN>0, TIME>0

In case A, TIME serves as an inter-byte timer which shall be activated after the first byte is
received. Since it is an inter-byte timer, it shall be reset after a byte is received. The interaction
between MIN and TIME is as follows. As soon as one byte is received, the inter-byte timer shall
be started. If MIN bytes are received before the inter-byte timer expires (remember that the timer
is reset upon receipt of each byte), the read shall be satisfied. If the timer expires before MIN
bytes are received, the characters received to that point shall be returned to the user. Note that if
TIME expires at least one byte shall be returned because the timer would not have been enabled
unless a byte was received. In this case (MIN>0, TIME>0) the read shall block until the MIN and
TIME mechanisms are activated by the receipt of the first byte, or a signal is received. If data is
in the buffer at the time of the read(), the result shall be as if data has been received immediately
after the read().

202 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7220

7221

7222

7223

7224

7225

7226

7227

7228

7229

7230

7231

7232

7233

7234

7235

7236

7237

7238

7239

7240

7241

7242

7243

7244

7245

7246

7247

7248

7249

7250

7251

7252

7253

7254

7255

7256

7257

7258

7259

7260

7261

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Interface Characteristics

Case B: MIN>0, TIME=0

In case B, since the value of TIME is zero, the timer plays no role and only MIN is significant. A
pending read shall not be satisfied until MIN bytes are received (that is, the pending read shall
block until MIN bytes are received), or a signal is received. A program that uses case B to read
record-based terminal I/O may block indefinitely in the read operation.

Case C: MIN=0, TIME>0

In case C, since MIN=0, TIME no longer represents an inter-byte timer. It now serves as a read
timer that shall be activated as soon as the read() function is processed. A read shall be satisfied
as soon as a single byte is received or the read timer expires. Note that in case C if the timer
expires, no bytes shall be returned. If the timer does not expire, the only way the read can be
satisfied is if a byte is received. If bytes are not received, the read shall not block indefinitely
waiting for a byte; if no byte is received within TIME*0.1 seconds after the read is initiated, the
read() shall return a value of zero, having read no data. If data is in the buffer at the time of the
read(), the timer shall be started as if data has been received immediately after the read().

Case D: MIN=0, TIME=0

The minimum of either the number of bytes requested or the number of bytes currently
available shall be returned without waiting for more bytes to be input. If no characters are
available, read() shall return a value of zero, having read no data.

11.1.8 Writing Data and Output Processing

When a process writes one or more bytes to a terminal device file, they are processed according
to the c_oflag field (see Section 11.2.3, on page 207). The implementation may provide a
buffering mechanism; as such, when a call to write() completes, all of the bytes written have
been scheduled for transmission to the device, but the transmission has not necessarily
completed. See write() for the effects of O_NONBLOCK on write().

11.1.9 Special Characters

Certain characters have special functions on input or output or both. These functions are
summarized as follows:

INTR Special character on input, which is recognized if the ISIG flag is set. Generates a
SIGINT signal which is sent to all processes in the foreground process group for which
the terminal is the controlling terminal. If ISIG is set, the INTR character shall be
discarded when processed.

QUIT Special character on input, which is recognized if the ISIG flag is set. Generates a
SIGQUIT signal which is sent to all processes in the foreground process group for
which the terminal is the controlling terminal. If ISIG is set, the QUIT character shall be
discarded when processed.

ERASE Special character on input, which is recognized if the ICANON flag is set. Erases the
last character in the current line; see Section 11.1.6 (on page 202). It shall not erase
beyond the start of a line, as delimited by an NL, EOF, or EOL character. If ICANON is
set, the ERASE character shall be discarded when processed.

KILL Special character on input, which is recognized if the ICANON flag is set. Deletes the
entire line, as delimited by an NL, EOF, or EOL character. If ICANON is set, the KILL
character shall be discarded when processed.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 203

7262

7263

7264

7265

7266

7267

7268

7269

7270

7271

7272

7273

7274

7275

7276

7277

7278

7279

7280

7281

7282

7283

7284

7285

7286

7287

7288

7289

7290

7291

7292

7293

7294

7295

7296

7297

7298

7299

7300

7301

7302

7303

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Interface Characteristics General Terminal Interface

EOF Special character on input, which is recognized if the ICANON flag is set. When
received, all the bytes waiting to be read are immediately passed to the process without
waiting for a <newline>, and the EOF is discarded. Thus, if there are no bytes waiting
(that is, the EOF occurred at the beginning of a line), a byte count of zero shall be
returned from the read(), representing an end-of-file indication. If ICANON is set, the
EOF character shall be discarded when processed.

NL Special character on input, which is recognized if the ICANON flag is set. It is the line
delimiter <newline>. It cannot be changed.

EOL Special character on input, which is recognized if the ICANON flag is set. It is an
additional line delimiter, like NL.

SUSP If the ISIG flag is set, receipt of the SUSP character shall cause a SIGTSTP signal to be
sent to all processes in the foreground process group for which the terminal is the
controlling terminal, and the SUSP character shall be discarded when processed.

STOP Special character on both input and output, which is recognized if the IXON (output
control) or IXOFF (input control) flag is set. Can be used to suspend output
temporarily. It is useful with CRT terminals to prevent output from disappearing before
it can be read. If IXON is set, the STOP character shall be discarded when processed.

START Special character on both input and output, which is recognized if the IXON (output
control) or IXOFF (input control) flag is set. Can be used to resume output that has been
suspended by a STOP character. If IXON is set, the START character shall be discarded
when processed.

CR Special character on input, which is recognized if the ICANON flag is set; it is the
<carriage-return> character. When ICANON and ICRNL are set and IGNCR is not set,
this character shall be translated into an NL, and shall have the same effect as an NL
character. It cannot be changed.

The NL and CR characters cannot be changed. It is implementation-defined whether the START
and STOP characters can be changed. The values for INTR, QUIT, ERASE, KILL, EOF, EOL, and
SUSP shall be changeable to suit individual tastes. Special character functions associated with
changeable special control characters can be disabled individually.

If two or more special characters have the same value, the function performed when that
character is received is undefined.

A special character is recognized not only by its value, but also by its context; for example, an
implementation may support multi-byte sequences that have a meaning different from the
meaning of the bytes when considered individually. Implementations may also support
additional single-byte functions. These implementation-defined multi-byte or single-byte
functions shall be recognized only if the IEXTEN flag is set; otherwise, data is received without
interpretation, except as required to recognize the special characters defined in this section.

XSI If IEXTEN is set, the ERASE, KILL, and EOF characters can be escaped by a preceding
<backslash> character, in which case no special function shall occur.

204 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7304

7305

7306

7307

7308

7309

7310

7311

7312

7313

7314

7315

7316

7317

7318

7319

7320

7321

7322

7323

7324

7325

7326

7327

7328

7329

7330

7331

7332

7333

7334

7335

7336

7337

7338

7339

7340

7341

7342

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Interface Characteristics

11.1.10 Modem Disconnect

If a modem disconnect is detected by the terminal interface for a controlling terminal, and if
CLOCAL is not set in the c_cflag field for the terminal (see Section 11.2.4, on page 209), the
SIGHUP signal shall be sent to the controlling process for which the terminal is the controlling
terminal. Unless other arrangements have been made, this shall cause the controlling process to
terminate (see exit()). Any subsequent read from the terminal device shall return the value of
zero, indicating end-of-file; see read(). Thus, processes that read a terminal file and test for end-
of-file can terminate appropriately after a disconnect. If the EIO condition as specified in read()
also exists, it is unspecified whether on EOF condition or [EIO] is returned. Any subsequent
write() to the terminal device shall return −1, with errno set to [EIO], until the device is closed.

11.1.11 Closing a Terminal Device File

The last process to close a terminal device file shall cause any output to be sent to the device and
shall cause any input to be discarded. If HUPCL is set in the control modes and the
communications port supports a disconnect function, the terminal device shall perform a
disconnect.

11.2 Parameters that Can be Set

11.2.1 The termios Structure

Routines that need to control certain terminal I/O characteristics shall do so by using the
termios structure as defined in the <termios.h> header.

Since the termios structure may include additional members, and the standard members may
include both standard and non-standard modes, the structure should never be initialized
directly by the application as this may cause the terminal to behave in a non-conforming
manner. When opening a terminal device (other than a pseudo-terminal) that is not already open
in any process, it should be opened with the O_TTY_INIT flag before initializing the structure
using tcgetattr() to ensure that any non-standard elements of the termios structure are set to
values that result in conforming behavior of the terminal interface.

The members of the termios structure include (but are not limited to):

Member Array Member
Type Size Name Description

tcflag_t c_iflag Input modes.
tcflag_t c_oflag Output modes.
tcflag_t c_cflag Control modes.
tcflag_t c_lflag Local modes.
cc_t NCCS c_cc[] Control characters.

The tcflag_t and cc_t types are defined in the <termios.h> header. They shall be unsigned
integer types.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 205

7343

7344

7345

7346

7347

7348

7349

7350

7351

7352

7353

7354

7355

7356

7357

7358

7359

7360

7361

7362

7363

7364

7365

7366

7367

7368

7369

7370

7371

7372

7373

7374

7375

7376

7377

7378

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Parameters that Can be Set General Terminal Interface

11.2.2 Input Modes

Values of the c_iflag field describe the basic terminal input control, and are composed of the
bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
symbols in this table are defined in <termios.h>:

Mask Name Description
BRKINT Signal interrupt on break.
ICRNL Map CR to NL on input.
IGNBRK Ignore break condition.
IGNCR Ignore CR.
IGNPAR Ignore characters with parity errors.
INLCR Map NL to CR on input.
INPCK Enable input parity check.
ISTRIP Strip character.
IXANY Enable any character to restart output.
IXOFF Enable start/stop input control.
IXON Enable start/stop output control.
PARMRK Mark parity errors.

In the context of asynchronous serial data transmission, a break condition shall be defined as a
sequence of zero-valued bits that continues for more than the time to send one byte. The entire
sequence of zero-valued bits is interpreted as a single break condition, even if it continues for a
time equivalent to more than one byte. In contexts other than asynchronous serial data
transmission, the definition of a break condition is implementation-defined.

If IGNBRK is set, a break condition detected on input shall be ignored; that is, not put on the
input queue and therefore not read by any process. If IGNBRK is not set and BRKINT is set, the
break condition shall flush the input and output queues, and if the terminal is the controlling
terminal of a foreground process group, the break condition shall generate a single SIGINT
signal to that foreground process group. If neither IGNBRK nor BRKINT is set, a break
condition shall be read as a single 0x00, or if PARMRK is set, as 0xff 0x00 0x00.

If IGNPAR is set, a byte with a framing or parity error (other than break) shall be ignored.

If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other than
break) shall be given to the application as the three-byte sequence 0xff 0x00 X, where 0xff 0x00 is
a two-byte flag preceding each sequence and X is the data of the byte received in error. To avoid
ambiguity in this case, if ISTRIP is not set, a valid byte of 0xff is given to the application as 0xff
0xff. If neither PARMRK nor IGNPAR is set, a framing or parity error (other than break) shall be
given to the application as a single byte 0x00.

If INPCK is set, input parity checking shall be enabled. If INPCK is not set, input parity checking
shall be disabled, allowing output parity generation without input parity errors. Note that
whether input parity checking is enabled or disabled is independent of whether parity detection
is enabled or disabled (see Section 11.2.4, on page 209). If parity detection is enabled but input
parity checking is disabled, the hardware to which the terminal is connected shall recognize the
parity bit, but the terminal special file shall not check whether or not this bit is correctly set.

If ISTRIP is set, valid input bytes shall first be stripped to seven bits; otherwise, all eight bits
shall be processed.

If INLCR is set, a received NL character shall be translated into a CR character. If IGNCR is set, a
received CR character shall be ignored (not read). If IGNCR is not set and ICRNL is set, a
received CR character shall be translated into an NL character.

If IXANY is set, any input character shall restart output that has been suspended.

206 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7379

7380

7381

7382

7383

7384

7385

7386

7387

7388

7389

7390

7391

7392

7393

7394

7395

7396

7397

7398

7399

7400

7401

7402

7403

7404

7405

7406

7407

7408

7409

7410

7411

7412

7413

7414

7415

7416

7417

7418

7419

7420

7421

7422

7423

7424

7425

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Parameters that Can be Set

If IXON is set, start/stop output control shall be enabled. A received STOP character shall
suspend output and a received START character shall restart output. When IXON is set, START
and STOP characters are not read, but merely perform flow control functions. When IXON is not
set, the START and STOP characters shall be read.

If IXOFF is set, start/stop input control shall be enabled. The system shall transmit STOP
characters, which are intended to cause the terminal device to stop transmitting data, as needed
to prevent the input queue from overflowing and causing implementation-defined behavior,
and shall transmit START characters, which are intended to cause the terminal device to resume
transmitting data, as soon as the device can continue transmitting data without risk of
overflowing the input queue. The precise conditions under which STOP and START characters
are transmitted are implementation-defined.

The initial input control value after open() is implementation-defined.

11.2.3 Output Modes

The c_oflag field specifies the terminal interface’s treatment of output, and is composed of the
bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
symbols in the following table are defined in <termios.h>:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 207

7426

7427

7428

7429

7430

7431

7432

7433

7434

7435

7436

7437

7438

7439

7440

7441

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Parameters that Can be Set General Terminal Interface

Mask Name Description
OPOST Perform output processing.

XSI ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NUL.
NLDLY Select newline delays:

NL0 Newline character type 0.
NL1 Newline character type 1.

CRDLY Select carriage-return delays:
CR0 Carriage-return delay type 0.
CR1 Carriage-return delay type 1.
CR2 Carriage-return delay type 2.
CR3 Carriage-return delay type 3.

TABDLY Select horizontal-tab delays:
TAB0 Horizontal-tab delay type 0.
TAB1 Horizontal-tab delay type 1.
TAB2 Horizontal-tab delay type 2.
TAB3 Expand tabs to spaces.

BSDLY Select backspace delays:
BS0 Backspace-delay type 0.
BS1 Backspace-delay type 1.

VTDLY Select vertical-tab delays:
VT0 Vertical-tab delay type 0.
VT1 Vertical-tab delay type 1.

FFDLY Select form-feed delays:
FF0 Form-feed delay type 0.
FF1 Form-feed delay type 1.

If OPOST is set, output data shall be post-processed as described below, so that lines of text are
modified to appear appropriately on the terminal device; otherwise, characters shall be
transmitted without change.

XSI If ONLCR is set, the NL character shall be transmitted as the CR-NL character pair. If OCRNL is
set, the CR character shall be transmitted as the NL character. If ONOCR is set, no CR character
shall be transmitted when at column 0 (first position). If ONLRET is set, the NL character is
assumed to do the carriage-return function; the column pointer shall be set to 0 and the delays
specified for CR shall be used. Otherwise, the NL character is assumed to do just the line-feed
function; the column pointer remains unchanged. The column pointer shall also be set to 0 if the
CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 shall indicate no delay. If
OFILL is set, fill characters shall be transmitted for delay instead of a timed delay. This is useful
for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character
shall be DEL; otherwise, NUL.

If a <form-feed> or <vertical-tab> delay is specified, it shall last for about 2 seconds.

Newline delay shall last about 0.10 seconds. If ONLRET is set, the carriage-return delays shall be
used instead of the newline delays. If OFILL is set, two fill characters shall be transmitted.

Carriage-return delay type 1 shall be dependent on the current column position, type 2 shall be

208 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7442

7443

7444

7445

7446

7447

7448

7449

7450

7451

7452

7453

7454

7455

7456

7457

7458

7459

7460

7461

7462

7463

7464

7465

7466

7467

7468

7469

7470

7471

7472

7473

7474

7475

7476

7477

7478

7479

7480

7481

7482

7483

7484

7485

7486

7487

7488

7489

7490

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Parameters that Can be Set

about 0.10 seconds, and type 3 shall be about 0.15 seconds. If OFILL is set, delay type 1 shall
transmit two fill characters, and type 2 four fill characters.

Horizontal-tab delay type 1 shall be dependent on the current column position. Type 2 shall be
about 0.10 seconds. Type 3 specifies that <tab> characters shall be expanded into <space>
characters. If OFILL is set, two fill characters shall be transmitted for any delay.

Backspace delay shall last about 0.05 seconds. If OFILL is set, one fill character shall be
transmitted.

The actual delays depend on line speed and system load.

The initial output control value after open() is implementation-defined.

11.2.4 Control Modes

The c_cflag field describes the hardware control of the terminal, and is composed of the bitwise-
inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name symbols in
this table are defined in <termios.h>; not all values specified are required to be supported by the
underlying hardware (if any). If the terminal is a pseudo-terminal, it is unspecified whether non-
default values are unsupported, or are supported and emulated in software, or are handled by
tcsetattr(), tcgetattr(), and the stty utility as if they are supported but have no effect on the
behavior of the terminal interface.

Mask Name Description
CLOCAL Ignore modem status lines.
CREAD Enable receiver.
CSIZE Number of bits transmitted or received per byte:

CS5 5 bits
CS6 6 bits
CS7 7 bits
CS8 8 bits.

CSTOPB Send two stop bits, else one.
HUPCL Hang up on last close.
PARENB Parity enable.
PARODD Odd parity, else even.

In addition, the input and output baud rates are stored in the termios structure. The symbols in
the following table are defined in <termios.h>. Not all values specified are required to be
supported by the underlying hardware (if any). For pseudo-terminals, the input and output
baud rates set in the termios structure need not affect the speed of data transmission through the
terminal interface.

Note: The term ``baud’’ is used historically here, but is not technically correct. This is properly ``bits
per second’’, which may not be the same as baud. However, the term is used because of the
historical usage and understanding.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 209

7491

7492

7493

7494

7495

7496

7497

7498

7499

7500

7501

7502

7503

7504

7505

7506

7507

7508

7509

7510

7511

7512

7513

7514

7515

7516

7517

7518

7519

7520

7521

7522

7523

7524

7525

7526

7527

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Parameters that Can be Set General Terminal Interface

Name Description Name Description
B0 Hang up B600 600 baud
B50 50 baud B1200 1200 baud
B75 75 baud B1800 1800 baud
B110 110 baud B2400 2400 baud
B134 134.5 baud B4800 4800 baud
B150 150 baud B9600 9600 baud
B200 200 baud B19200 19200 baud
B300 300 baud B38400 38400 baud

The following functions are provided for getting and setting the values of the input and output
baud rates in the termios structure: cfgetispeed(), cfgetospeed(), cfsetispeed(), and cfsetospeed().
The effects on the terminal device shall not become effective and not all errors need be detected
until the tcsetattr() function is successfully called.

The CSIZE bits shall specify the number of transmitted or received bits per byte. If ISTRIP is not
set, the value of all the other bits is unspecified. If ISTRIP is set, the value of all but the 7 low-
order bits shall be zero, but the value of any other bits beyond CSIZE is unspecified when read.
CSIZE shall not include the parity bit, if any. If CSTOPB is set, two stop bits shall be used;
otherwise, one stop bit. For example, at 110 baud, two stop bits are normally used.

If CREAD is set, the receiver shall be enabled; otherwise, no characters shall be received.

If PARENB is set, parity generation and detection shall be enabled and a parity bit is added to
each byte. If parity is enabled, PARODD shall specify odd parity if set; otherwise, even parity
shall be used.

If HUPCL is set, the modem control lines for the port shall be lowered when the last process
with the port open closes the port or the process terminates. The modem connection shall be
broken.

If CLOCAL is set, a connection shall not depend on the state of the modem status lines. If
CLOCAL is clear, the modem status lines shall be monitored.

Under normal circumstances, a call to the open() function shall wait for the modem connection
to complete. However, if the O_NONBLOCK flag is set (see open()) or if CLOCAL has been set,
the open() function shall return immediately without waiting for the connection.

If the object for which the control modes are set is not an asynchronous serial connection, some
of the modes may be ignored; for example, if an attempt is made to set the baud rate on a
network connection to a terminal on another host, the baud rate need not be set on the
connection between that terminal and the machine to which it is directly connected.

The initial hardware control value after open() is implementation-defined.

11.2.5 Local Modes

The c_lflag field of the argument structure is used to control various functions. It is composed of
the bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
symbols in this table are defined in <termios.h>.

210 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7528

7529

7530

7531

7532

7533

7534

7535

7536

7537

7538

7539

7540

7541

7542

7543

7544

7545

7546

7547

7548

7549

7550

7551

7552

7553

7554

7555

7556

7557

7558

7559

7560

7561

7562

7563

7564

7565

7566

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Parameters that Can be Set

Mask Name Description
ECHO Enable echo.
ECHOE Echo ERASE as an error correcting backspace.
ECHOK Echo KILL.
ECHONL Echo <newline>.
ICANON Canonical input (erase and kill processing).
IEXTEN Enable extended (implementation-defined) functions.
ISIG Enable signals.
NOFLSH Disable flush after interrupt, quit, or suspend.
TOSTOP Send SIGTTOU for background output.

If ECHO is set, input characters shall be echoed back to the terminal. If ECHO is clear, input
characters shall not be echoed.

If ECHOE and ICANON are set, the ERASE character shall cause the terminal to erase, if
possible, the last character in the current line from the display. If there is no character to erase, an
implementation may echo an indication that this was the case, or do nothing.

If ECHOK and ICANON are set, the KILL character shall either cause the terminal to erase the
line from the display or shall echo the <newline> character after the KILL character.

If ECHONL and ICANON are set, the <newline> character shall be echoed even if ECHO is not
set.

If ICANON is set, canonical processing shall be enabled. This enables the erase and kill edit
functions, and the assembly of input characters into lines delimited by NL, EOF, and EOL, as
described in Section 11.1.6 (on page 202).

If ICANON is not set, read requests shall be satisfied directly from the input queue. A read shall
not be satisfied until at least MIN bytes have been received or the timeout value TIME expired
between bytes. The time value represents tenths of a second. See Section 11.1.7 (on page 202) for
more details.

If IEXTEN is set, implementation-defined functions shall be recognized from the input data. It is
implementation-defined how IEXTEN being set interacts with ICANON, ISIG, IXON, or IXOFF.
If IEXTEN is not set, implementation-defined functions shall not be recognized and the
corresponding input characters are processed as described for ICANON, ISIG, IXON, and
IXOFF.

If ISIG is set, each input character shall be checked against the special control characters INTR,
QUIT, and SUSP. If an input character matches one of these control characters, the function
associated with that character shall be performed. If ISIG is not set, no checking shall be done.
Thus these special input functions are possible only if ISIG is set.

If NOFLSH is set, the normal flush of the input and output queues associated with the INTR,
QUIT, and SUSP characters shall not be done.

If TOSTOP is set, the signal SIGTTOU shall be sent to the process group of a process that tries to
write to its controlling terminal if it is not in the foreground process group for that terminal. This
signal, by default, stops the members of the process group. Otherwise, the output generated by
that process shall be output to the current output stream. If the writing process is ignoring the
SIGTTOU signal or the writing thread is blocking the SIGTTOU signal, the process is allowed to
produce output, and the SIGTTOU signal shall not be sent.

The initial local control value after open() is implementation-defined.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 211

7567

7568

7569

7570

7571

7572

7573

7574

7575

7576

7577

7578

7579

7580

7581

7582

7583

7584

7585

7586

7587

7588

7589

7590

7591

7592

7593

7594

7595

7596

7597

7598

7599

7600

7601

7602

7603

7604

7605

7606

7607

7608

7609

7610

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Parameters that Can be Set General Terminal Interface

11.2.6 Special Control Characters

The special control character values shall be defined by the array c_cc. The subscript name and
description for each element in both canonical and non-canonical modes are as follows:

Subscript Usage
Canonical Non-Canonical

Mode Mode Description
VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR VINTR INTR character
VKILL KILL character

VMIN MIN value
VQUIT VQUIT QUIT character
VSUSP VSUSP SUSP character

VTIME TIME value
VSTART VSTART START character
VSTOP VSTOP STOP character

The subscript values are unique, except that the VMIN and VTIME subscripts may have the
same values as the VEOF and VEOL subscripts, respectively.

Implementations that do not support changing the START and STOP characters may ignore the
character values in the c_cc array indexed by the VSTART and VSTOP subscripts when
tcsetattr() is called, but shall return the value in use when tcgetattr() is called.

The initial values of all control characters are implementation-defined.

If the value of one of the changeable special control characters (see Section 11.1.9, on page 203) is
_POSIX_VDISABLE, that function shall be disabled; that is, no input data is recognized as the
disabled special character. If ICANON is not set, the value of _POSIX_VDISABLE has no special
meaning for the VMIN and VTIME entries of the c_cc array.

212 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7611

7612

7613

7614

7615

7616

7617

7618

7619

7620

7621

7622

7623

7624

7625

7626

7627

7628

7629

7630

7631

7632

7633

7634

7635

7636

7637

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 12

Utility Conventions

12.1 Utility Argument Syntax
This section describes the argument syntax of the standard utilities and introduces terminology
used throughout POSIX.1-2024 for describing the arguments processed by the utilities.

Within POSIX.1-2024, a special notation is used for describing the syntax of a utility’s
arguments. Unless otherwise noted, all utility descriptions use this notation, which is illustrated
by this example (see XCU Section 2.9.1, on page 2500):

utility_name [-a] [-b] [-c option_argument]
[-d|-e] [-f[option_argument]] [operand...]

The notation used for the SYNOPSIS sections imposes requirements on the implementors of the
standard utilities and provides a simple reference for the application developer or system user.

1. The utility in the example is named utility_name. It is followed by options, option-
arguments, and operands. The arguments that consist of <hyphen-minus> characters
and single letters or digits, such as 'a', are known as ``options’’ (or, historically, ``flags’’).
Certain options are followed by an ``option-argument’’, as shown with [−c
option_argument]. The arguments following the last options and option-arguments are
named ``operands’’.

2. Option-arguments are shown separated from their options by <blank> characters, except
when the option-argument is enclosed in the '[' and ']' notation to indicate that it is
optional. This reflects the situation in which an optional option-argument (if present) is
included within the same argument string as the option; for a mandatory option-
argument, it is the next argument. The Utility Syntax Guidelines in Section 12.2 (on page
215) require that the option be a separate argument from its option-argument and that
option-arguments not be optional, but there are some exceptions in POSIX.1-2024 to
provide for continued operation of historical applications:

a. If the SYNOPSIS of a standard utility shows an option with a mandatory option-
argument (as with [−c option_argument] in the example), a conforming application
shall use separate arguments for that option and its option-argument. However, a
conforming implementation shall also permit applications to specify the option
and option-argument in the same argument string without intervening <blank>
characters.

b. If the SYNOPSIS shows an optional option-argument (as with
[−f[option_argument]] in the example), a conforming application shall place any
option-argument for that option directly adjacent to the option in the same
argument string, without intervening <blank> characters. If the utility receives an
argument containing only the option, it shall behave as specified in its description
for an omitted option-argument; it shall not treat the next argument (if any) as the
option-argument for that option.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 213

7638

7639

7640

7641

7642

7643

7644

7645

7646

7647

7648

7649

7650

7651

7652

7653

7654

7655

7656

7657

7658

7659

7660

7661

7662

7663

7664

7665

7666

7667

7668

7669

7670

7671

7672

7673

7674

7675

7676

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Argument Syntax Utility Conventions

3. Options are usually listed in alphabetical order unless this would make the utility
description more confusing. There are no implied relationships between the options
based upon the order in which they appear, unless otherwise stated in the OPTIONS
section, or unless the exception in Guideline 11 of Section 12.2 (on page 215) applies. If an
option that does not have option-arguments is repeated, the results are undefined, unless
otherwise stated.

4. Frequently, names of parameters that require substitution by actual values are shown
with embedded <underscore> characters. Alternatively, parameters are shown as follows:

<parameter name>

The angle brackets are used for the symbolic grouping of a phrase representing a single
parameter and conforming applications shall not include them in data submitted to the
utility.

5. When a utility has only a few permissible options, they are sometimes shown
individually, as in the example. Utilities with many flags generally show all of the
individual flags (that do not take option-arguments) grouped, as in:

utility_name [-abcDxyz] [-p arg] [operand]

Utilities with very complex arguments may be shown as follows:

utility_name [options] [operands]

6. Unless otherwise specified, whenever an operand or option-argument is, or contains, a
numeric value:

• The number is interpreted as a decimal integer.

• Numerals in the range 0 to 2 147 483 647 are syntactically recognized as numeric
values.

• When the utility description states that it accepts negative numbers as operands or
option-arguments, numerals in the range −2 147 483 647 to 2 147 483 647 are
syntactically recognized as numeric values.

• When the utility description states that the number is a file size-related value (such
as a file size or offset, line number, or block count), numerals in the range 0 to the
maximum file size supported by the implementation are syntactically recognized as
numeric values (see XCU Section 1.5, on page 2469). Where negative values are
permitted, any value in the range −(maximum file size) to the maximum file size is
accepted.

• Ranges greater than those listed here are allowed.

This does not mean that all numbers within the allowable range are necessarily
semantically correct. A standard utility that accepts an option-argument or operand that
is to be interpreted as a number, and for which a range of values smaller than that shown
above is permitted by the POSIX.1-2024, describes that smaller range along with the
description of the option-argument or operand. If an error is generated, the utility’s
diagnostic message shall indicate that the value is out of the supported range, not that it
is syntactically incorrect.

7. Arguments or option-arguments enclosed in the '[' and ']' notation are optional and
can be omitted. Conforming applications shall not include the '[' and ']' symbols in
data submitted to the utility.

214 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7677

7678

7679

7680

7681

7682

7683

7684

7685

7686

7687

7688

7689

7690

7691

7692

7693

7694

7695

7696

7697

7698

7699

7700

7701

7702

7703

7704

7705

7706

7707

7708

7709

7710

7711

7712

7713

7714

7715

7716

7717

7718

7719

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Conventions Utility Argument Syntax

8. Arguments separated by the '|' (<vertical-line>) bar notation are mutually-exclusive.
Conforming applications shall not include the '|' symbol in data submitted to the utility.
Alternatively, mutually-exclusive options and operands may be listed with multiple
synopsis lines.

For example:

utility_name -d [-a] [-c option_argument] [operand...]

utility_name [-a] [-b] [operand...]

When multiple synopsis lines are given for a utility, it is an indication that the utility has
mutually-exclusive arguments. These mutually-exclusive arguments alter the
functionality of the utility so that only certain other arguments are valid in combination
with one of the mutually-exclusive arguments. Only one of the mutually-exclusive
arguments is allowed for invocation of the utility. Unless otherwise stated in an
accompanying OPTIONS section, the relationships between arguments depicted in the
SYNOPSIS sections are mandatory requirements placed on conforming applications. The
use of conflicting mutually-exclusive arguments produces undefined results, unless a
utility description specifies otherwise. When an option is shown without the '[' and
']' brackets, it means that option is required for that version of the SYNOPSIS. However,
it is not required to be the first argument, as shown in the example above, unless
otherwise stated.

9. Ellipses ("...") are used to denote that one or more occurrences of an operand are
allowed. When an option or an operand followed by ellipses is enclosed in brackets, zero
or more options or operands can be specified. The form:

utility_name [-g option_argument]... [operand...]

indicates that multiple occurrences of the option and its option-argument preceding the
ellipses are valid, with semantics as indicated in the OPTIONS section of the utility. (See
also Guideline 11 in Section 12.2.)

The form:

utility_name -f option_argument [-f option_argument]... [operand...]

indicates that the −f option is required to appear at least once and may appear multiple
times.

10. When the synopsis line is too long to be printed on a single line in the Shell and Utilities
volume of POSIX.1-2024, the indented lines following the initial line are continuation
lines. An actual use of the command would appear on a single logical line.

12.2 Utility Syntax Guidelines
The following guidelines are established for the naming of utilities and for the specification of
options, option-arguments, and operands. The getopt() function in the System Interfaces
volume of POSIX.1-2024 assists utilities in handling options and operands that conform to these
guidelines.

Operands and option-arguments can contain characters not specified in the portable character
set.

The guidelines are intended to provide guidance to the authors of future utilities, such as those
written specific to a local system or that are components of a larger application. Some of the
standard utilities do not conform to all of these guidelines; in those cases, the OPTIONS sections
describe the deviations.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 215

7720

7721

7722

7723

7724

7725

7726

7727

7728

7729

7730

7731

7732

7733

7734

7735

7736

7737

7738

7739

7740

7741

7742

7743

7744

7745

7746

7747

7748

7749

7750

7751

7752

7753

7754

7755

7756

7757

7758

7759

7760

7761

7762

7763

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Syntax Guidelines Utility Conventions

Guideline 1: Utility names should be between two and nine characters, inclusive.

Guideline 2: Utility names should include lowercase letters (the lower character
classification) and digits only from the portable character set.

Guideline 3: Each option name should be a single alphanumeric character (the alnum
character classification) from the portable character set. The −W (capital-W)
option shall be reserved for vendor options.

Multi-digit options should not be allowed.

Guideline 4: All options should be preceded by the '−' delimiter character.

Guideline 5: One or more options without option-arguments, followed by at most one
option that takes an option-argument, should be accepted when grouped
behind one '−' delimiter.

Guideline 6: Each option and option-argument should be a separate argument, except as
noted in Section 12.1 (on page 213), item (2).

Guideline 7: Option-arguments should not be optional.

Guideline 8: When multiple option-arguments are specified to follow a single option, they
should be presented as a single argument, using <comma> characters within
that argument or <blank> characters within that argument to separate them.

Guideline 9: All options should precede operands on the command line.

Guideline 10: The first − − argument that is not an option-argument should be accepted as a
delimiter indicating the end of options. Any following arguments should be
treated as operands, even if they begin with the '−' character.

Guideline 11: The order of different options relative to one another should not matter, unless
the options are documented as mutually-exclusive and such an option is
documented to override any incompatible options preceding it. If an option
that has option-arguments is repeated, the option and option-argument
combinations should be interpreted in the order specified on the command
line.

Guideline 12: The order of operands may matter and position-related interpretations should
be determined on a utility-specific basis.

Guideline 13: For utilities that use operands to represent files to be opened for either reading
or writing, the '−' operand should be used to mean only standard input (or
standard output when it is clear from context that an output file is being
specified) or a file named −.

Guideline 14: If an argument can be identified according to Guidelines 3 through 10 as an
option, or as a group of options without option-arguments behind one '−'
delimiter, then it should be treated as such.

The utilities in the Shell and Utilities volume of POSIX.1-2024 that claim conformance to these
guidelines shall conform completely to these guidelines as if these guidelines contained the term
``shall’’ instead of ``should’’. On some implementations, the utilities accept usage in violation of
these guidelines for backwards-compatibility as well as accepting the required form.

Where a utility described in the Shell and Utilities volume of POSIX.1-2024 as conforming to
these guidelines is required to accept, or not to accept, the operand '−' to mean standard input
or output, this usage is explained in the OPERANDS section. Otherwise, if such a utility uses
operands to represent files, it is implementation-defined whether the operand '−' stands for
standard input (or standard output), or for a file named −.

216 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7764

7765

7766

7767

7768

7769

7770

7771

7772

7773

7774

7775

7776

7777

7778

7779

7780

7781

7782

7783

7784

7785

7786

7787

7788

7789

7790

7791

7792

7793

7794

7795

7796

7797

7798

7799

7800

7801

7802

7803

7804

7805

7806

7807

7808

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Conventions Utility Syntax Guidelines

It is recommended that all future utilities and applications use these guidelines to enhance user
portability. The fact that some historical utilities could not be changed (to avoid breaking
existing applications) should not deter this future goal.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 217

7809

7810

7811

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Conventions

218 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 13

Namespace and Future Directions

In order to prevent future versions of this standard from introducing features that could cause
older applications to fail, the prefixes posix_, POSIX_, and _POSIX_ are reserved for use by this
standard for any name (e.g. function, variable, utility, etc.). Neither implementations nor
applications shall introduce objects in this namespace.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 219

7812

7813

7814

7815

7816

7817

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Namespace and Future Directions

220 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 14

Headers

This chapter describes the contents of headers.

Headers contain function prototypes, the definition of symbolic constants, common structures,
preprocessor macros, and defined types. Each function in the System Interfaces volume of
POSIX.1-2024 specifies the headers that an application shall include in order to use that function.
In most cases, only one header is required. These headers are present on an application
development system; they need not be present on the target execution system.

Format of Entries

The entries in this chapter are based on a common format as follows. The only sections relating
to conformance are the SYNOPSIS and DESCRIPTION.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarizes the use of the entry being described.

DESCRIPTION
This section describes the functionality of the header.

APPLICATION USAGE
This section is informative. This section gives warnings and advice to application
developers about the entry. In the event of conflict between warnings and advice and a
normative part of this volume of POSIX.1-2024, the normative material is to be taken as
correct.

RATIONALE
This section is informative. This section contains historical information concerning the
contents of this volume of POSIX.1-2024 and why features were included or discarded
by the standard developers.

FUTURE DIRECTIONS
This section is informative. This section provides comments which should be used as a
guide to current thinking; there is not necessarily a commitment to adopt these future
directions.

SEE ALSO
This section is informative. This section gives references to related information.

CHANGE HISTORY
This section is informative. This section shows the derivation of the entry and any
significant changes that have been made to it.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 221

7818

7819

7820

7821

7822

7823

7824

7825

7826

7827

7828

7829

7830

7831

7832

7833

7834

7835

7836

7837

7838

7839

7840

7841

7842

7843

7844

7845

7846

7847

7848

7849

7850

7851

7852

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<aio.h> Headers

NAME
aio.h — asynchronous input and output

SYNOPSIS
#include <aio.h>

DESCRIPTION
The <aio.h> header shall define the aiocb structure, which shall include at least the following
members:

int aio_fildes File descriptor.
off_t aio_offset File offset.
volatile void *aio_buf Location of buffer.
size_t aio_nbytes Length of transfer.
int aio_reqprio Request priority offset.
struct sigevent aio_sigevent Signal number and value.
int aio_lio_opcode Operation to be performed.

The <aio.h> header shall define the off_t, pthread_attr_t, size_t, and ssize_t types as described
in <sys/types.h>.

The <aio.h> header shall define the struct timespec structure as described in <time.h>.

The <aio.h> header shall define the sigevent structure and sigval union as described in
<signal.h>.

The <aio.h> header shall define the following symbolic constants:

AIO_ALLDONE A return value indicating that none of the requested operations could be
canceled since they are already complete.

AIO_CANCELED A return value indicating that all requested operations have been
canceled.

AIO_NOTCANCELED
A return value indicating that some of the requested operations could not
be canceled since they are in progress.

LIO_NOP A lio_listio() element operation option indicating that no transfer is
requested.

LIO_NOWAIT A lio_listio() synchronization operation indicating that the calling thread
is to continue execution while the lio_listio() operation is being
performed, and no notification is given when the operation is complete.

LIO_READ A lio_listio() element operation option requesting a read.

LIO_WAIT A lio_listio() synchronization operation indicating that the calling thread
is to suspend until the lio_listio() operation is complete.

LIO_WRITE A lio_listio() element operation option requesting a write.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int aio_cancel(int, struct aiocb *);
int aio_error(const struct aiocb *);

FSC|SIO int aio_fsync(int, struct aiocb *);
int aio_read(struct aiocb *);
ssize_t aio_return(struct aiocb *);
int aio_suspend(const struct aiocb *const [], int,

222 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7853

7854

7855

7856

7857

7858

7859

7860

7861

7862

7863

7864

7865

7866

7867

7868

7869

7870

7871

7872

7873

7874

7875

7876

7877

7878

7879

7880

7881

7882

7883

7884

7885

7886

7887

7888

7889

7890

7891

7892

7893

7894

7895

7896

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <aio.h>

const struct timespec *);
int aio_write(struct aiocb *);
int lio_listio(int, struct aiocb *restrict const [restrict], int,

struct sigevent *restrict);

Inclusion of the <aio.h> header may make visible symbols defined in the headers <fcntl.h>,
<signal.h>, and <time.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<fcntl.h>, <signal.h>, <sys/types.h>, <time.h>

XSH aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_return(), aio_suspend(), aio_write(),
fsync(), lio_listio(), lseek(), read(), write()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <aio.h> header is marked as part of the Asynchronous Input and Output option.

The description of the constants is expanded.

The restrict keyword is added to the prototype for lio_listio().

Issue 7
The <aio.h> header is moved from the Asynchronous Input and Output option to the Base.

This reference page is clarified with respect to macros and symbolic constants, and type and
structure declarations are added.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0038 [98] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0058 [579] is applied.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 223

7897

7898

7899

7900

7901

7902

7903

7904

7905

7906

7907

7908

7909

7910

7911

7912

7913

7914

7915

7916

7917

7918

7919

7920

7921

7922

7923

7924

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<arpa/inet.h> Headers

NAME
arpa/inet.h — definitions for internet operations

SYNOPSIS
#include <arpa/inet.h>

DESCRIPTION
The <arpa/inet.h> header shall define the in_port_t and in_addr_t types as described in
<netinet/in.h> and the socklen_t type as defined in <sys/socket.h>.

The <arpa/inet.h> header shall define the in_addr structure as described in <netinet/in.h>.

IP6 The <arpa/inet.h> header shall define the INET_ADDRSTRLEN and INET6_ADDRSTRLEN
macros as described in <netinet/in.h>.

The following shall be declared as functions, or defined as macros, or both. If functions are
declared, function prototypes shall be provided.

uint32_t htonl(uint32_t);
uint16_t htons(uint16_t);
uint32_t ntohl(uint32_t);
uint16_t ntohs(uint16_t);

The <arpa/inet.h> header shall define the uint32_t and uint16_t types as described in
<inttypes.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

OB in_addr_t inet_addr(const char *);
char *inet_ntoa(struct in_addr);
const char *inet_ntop(int, const void *restrict, char *restrict,

socklen_t);
int inet_pton(int, const char *restrict, void *restrict);

Inclusion of the <arpa/inet.h> header may also make visible all symbols from <netinet/in.h>
and <inttypes.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<endian.h>, <inttypes.h>, <netinet/in.h>

XSH htonl(), inet_addr(), inet_ntop()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the prototypes for inet_ntop() and inet_pton().

Issue 7
SD5-XBD-ERN-6 is applied.

224 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7925

7926

7927

7928

7929

7930

7931

7932

7933

7934

7935

7936

7937

7938

7939

7940

7941

7942

7943

7944

7945

7946

7947

7948

7949

7950

7951

7952

7953

7954

7955

7956

7957

7958

7959

7960

7961

7962

7963

7964

7965

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <arpa/inet.h>

Issue 8
Austin Group Defect 162 is applied, adding <endian.h> to the SEE ALSO section.

Austin Group Defects 1101 and 1102 are applied, marking inet_addr() and inet_ntoa() as
obsolescent.

Austin Group Defect 1290 is applied, adding a requirement for <arpa/inet.h> to define the
socklen_t type.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 225

7966

7967

7968

7969

7970

7971

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<assert.h> Headers

NAME
assert.h — verify program assertion

SYNOPSIS
#include <assert.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <assert.h> header shall define the assert() macro. It refers to the macro NDEBUG which is
not defined in the header. If NDEBUG is defined as a macro name before the inclusion of this
header, the assert() macro shall be defined simply as:

#define assert(ignore)((void) 0)

Otherwise, the macro behaves as described in assert().

The assert() macro shall be redefined according to the current state of NDEBUG each time
<assert.h> is included.

The assert() macro shall be implemented as a macro, not as a function. If the macro definition is
suppressed in order to access an actual function, the behavior is undefined.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH assert()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The definition of the assert() macro is changed for alignment with the ISO/IEC 9899: 1999
standard.

226 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7972

7973

7974

7975

7976

7977

7978

7979

7980

7981

7982

7983

7984

7985

7986

7987

7988

7989

7990

7991

7992

7993

7994

7995

7996

7997

7998

7999

8000

8001

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <complex.h>

NAME
complex.h — complex arithmetic

SYNOPSIS
#include <complex.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations shall not define the macro __STDC_NO_COMPLEX__, except for profile
implementations that define _POSIX_SUBPROFILE (see Section 2.1.5.1, on page 20) in
<unistd.h>, which may define __STDC_NO_COMPLEX__ and, if they do so, need not provide
this header nor support any of its facilities.

The <complex.h> header shall define the following macros:

complex Expands to _Complex.

_Complex_I Expands to a constant expression of type const float _Complex, with the value
of the imaginary unit (that is, a number i such that i2=−1).

imaginary Expands to _Imaginary.

_Imaginary_I Expands to a constant expression of type const float _Imaginary with the
value of the imaginary unit.

I Expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined,
I expands to _Complex_I.

The macros imaginary and _Imaginary_I shall be defined if and only if the implementation
MXC supports imaginary types. Implementations that support the IEC 60559 Complex Floating-Point

option shall define the macros imaginary and _Imaginary_I, and the macro I shall expand to
_Imaginary_I.

An application may undefine and then, perhaps, redefine the complex, imaginary, and I macros.

The following shall be defined as macros.

double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);
long double complex CMPLXL(long double x, long double y);

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

double cabs(double complex);
float cabsf(float complex);
long double cabsl(long double complex);
double complex cacos(double complex);
float complex cacosf(float complex);
double complex cacosh(double complex);
float complex cacoshf(float complex);
long double complex cacoshl(long double complex);
long double complex cacosl(long double complex);
double carg(double complex);
float cargf(float complex);
long double cargl(long double complex);
double complex casin(double complex);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 227

8002

8003

8004

8005

8006

8007

8008

8009

8010

8011

8012

8013

8014

8015

8016

8017

8018

8019

8020

8021

8022

8023

8024

8025

8026

8027

8028

8029

8030

8031

8032

8033

8034

8035

8036

8037

8038

8039

8040

8041

8042

8043

8044

8045

8046

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<complex.h> Headers

float complex casinf(float complex);
double complex casinh(double complex);
float complex casinhf(float complex);
long double complex casinhl(long double complex);
long double complex casinl(long double complex);
double complex catan(double complex);
float complex catanf(float complex);
double complex catanh(double complex);
float complex catanhf(float complex);
long double complex catanhl(long double complex);
long double complex catanl(long double complex);
double complex ccos(double complex);
float complex ccosf(float complex);
double complex ccosh(double complex);
float complex ccoshf(float complex);
long double complex ccoshl(long double complex);
long double complex ccosl(long double complex);
double complex cexp(double complex);
float complex cexpf(float complex);
long double complex cexpl(long double complex);
double cimag(double complex);
float cimagf(float complex);
long double cimagl(long double complex);
double complex clog(double complex);
float complex clogf(float complex);
long double complex clogl(long double complex);
double complex conj(double complex);
float complex conjf(float complex);
long double complex conjl(long double complex);
double complex cpow(double complex, double complex);
float complex cpowf(float complex, float complex);
long double complex cpowl(long double complex, long double complex);
double complex cproj(double complex);
float complex cprojf(float complex);
long double complex cprojl(long double complex);
double creal(double complex);
float crealf(float complex);
long double creall(long double complex);
double complex csin(double complex);
float complex csinf(float complex);
double complex csinh(double complex);
float complex csinhf(float complex);
long double complex csinhl(long double complex);
long double complex csinl(long double complex);
double complex csqrt(double complex);
float complex csqrtf(float complex);
long double complex csqrtl(long double complex);
double complex ctan(double complex);
float complex ctanf(float complex);
double complex ctanh(double complex);
float complex ctanhf(float complex);
long double complex ctanhl(long double complex);

228 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8047

8048

8049

8050

8051

8052

8053

8054

8055

8056

8057

8058

8059

8060

8061

8062

8063

8064

8065

8066

8067

8068

8069

8070

8071

8072

8073

8074

8075

8076

8077

8078

8079

8080

8081

8082

8083

8084

8085

8086

8087

8088

8089

8090

8091

8092

8093

8094

8095

8096

8097

8098

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <complex.h>

long double complex ctanl(long double complex);

APPLICATION USAGE
The <complex.h> header is optional in the ISO C standard but is mandated by POSIX.1-2024.
Note however that subprofiles can choose to make this header optional (see Section 2.1.5.1, on
page 20), and therefore application portability to subprofile implementations would benefit from
checking whether __STDC_NO_COMPLEX__ is defined before inclusion of <complex.h>.

Values are interpreted as radians, not degrees.

RATIONALE
The choice of I instead of i for the imaginary unit concedes to the widespread use of the
identifier i for other purposes. The application can use a different identifier, say j, for the
imaginary unit by following the inclusion of the <complex.h> header with:

#undef I
#define j _Imaginary_I

An I suffix to designate imaginary constants is not required, as multiplication by I provides a
sufficiently convenient and more generally useful notation for imaginary terms. The
corresponding real type for the imaginary unit is float, so that use of I for algorithmic or
notational convenience will not result in widening types.

On systems with imaginary types, the application has the ability to control whether use of the
macro I introduces an imaginary type, by explicitly defining I to be _Imaginary_I or _Complex_I.
Disallowing imaginary types is useful for some applications intended to run on
implementations without support for such types.

The macro _Imaginary_I provides a test for whether imaginary types are supported.

The cis() function (cos(x) + I*sin(x)) was considered but rejected because its implementation is
easy and straightforward, even though some implementations could compute sine and cosine
more efficiently in tandem.

FUTURE DIRECTIONS
The following function names and the same names suffixed with f or l are reserved for future
use, and may be added to the declarations in the <complex.h> header.

cerf()
cerfc()
cexp2()

cexpm1()
clog10()
clog1p()

clog2()
clgamma()
ctgamma()

SEE ALSO
XSH CMPLX(), cabs(), cacos(), cacosh(), carg(), casin(), casinh(), catan(), catanh(), ccos(), ccosh(),
cexp(), cimag(), clog(), conj(), cpow(), cproj(), creal(), csin(), csinh(), csqrt(), ctan(), ctanh()

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 229

8099

8100

8101

8102

8103

8104

8105

8106

8107

8108

8109

8110

8111

8112

8113

8114

8115

8116

8117

8118

8119

8120

8121

8122

8123

8124

8125

8126

8127

8128

8129

8130

8131

8132

8133

8134

8135

8136

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<cpio.h> Headers

NAME
cpio.h — cpio archive values

SYNOPSIS
#include <cpio.h>

DESCRIPTION
The <cpio.h> header shall define the symbolic constants needed by the c_mode field of the cpio
archive format, with the names and values given in the following table:

Name Description Value (Octal)
C_IRUSR Read by owner. 0000400
C_IWUSR Write by owner. 0000200
C_IXUSR Execute by owner. 0000100
C_IRGRP Read by group. 0000040
C_IWGRP Write by group. 0000020
C_IXGRP Execute by group. 0000010
C_IROTH Read by others. 0000004
C_IWOTH Write by others. 0000002
C_IXOTH Execute by others. 0000001
C_ISUID Set user ID. 0004000
C_ISGID Set group ID. 0002000
C_ISVTX On directories, restricted deletion flag. 0001000
C_ISDIR Directory. 0040000
C_ISFIFO FIFO. 0010000
C_ISREG Regular file. 0100000
C_ISBLK Block special. 0060000
C_ISCHR Character special. 0020000
C_ISCTG Reserved. 0110000
C_ISLNK Symbolic link. 0120000
C_ISSOCK Socket. 0140000

The <cpio.h> header shall define the following symbolic constant as a string:

MAGIC "070707"

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XCU pax

CHANGE HISTORY
First released in the Headers Interface, Issue 3 specification. Derived from the POSIX.1-1988
standard.

Issue 6
The SEE ALSO is updated to refer to pax.

230 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8137

8138

8139

8140

8141

8142

8143

8144

8145

8146

8147

8148

8149

8150

8151

8152

8153

8154

8155

8156

8157

8158

8159

8160

8161

8162

8163

8164

8165

8166

8167

8168

8169

8170

8171

8172

8173

8174

8175

8176

8177

8178

8179

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <cpio.h>

Issue 7
The <cpio.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 231

8180

8181

8182

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<ctype.h> Headers

NAME
ctype.h — character types

SYNOPSIS
#include <ctype.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <ctype.h> header shall define the locale_t type as described in <locale.h>, representing a
locale object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int isalnum(int);
CX int isalnum_l(int, locale_t);

int isalpha(int);
CX int isalpha_l(int, locale_t);

int isblank(int);
CX int isblank_l(int, locale_t);

int iscntrl(int);
CX int iscntrl_l(int, locale_t);

int isdigit(int);
CX int isdigit_l(int, locale_t);

int isgraph(int);
CX int isgraph_l(int, locale_t);

int islower(int);
CX int islower_l(int, locale_t);

int isprint(int);
CX int isprint_l(int, locale_t);

int ispunct(int);
CX int ispunct_l(int, locale_t);

int isspace(int);
CX int isspace_l(int, locale_t);

int isupper(int);
CX int isupper_l(int, locale_t);

int isxdigit(int);
CX int isxdigit_l(int, locale_t);

int tolower(int);
CX int tolower_l(int, locale_t);

int toupper(int);
CX int toupper_l(int, locale_t);

232 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8183

8184

8185

8186

8187

8188

8189

8190

8191

8192

8193

8194

8195

8196

8197

8198

8199

8200

8201

8202

8203

8204

8205

8206

8207

8208

8209

8210

8211

8212

8213

8214

8215

8216

8217

8218

8219

8220

8221

8222

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <ctype.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>

XSH Section 2.2 (on page 496), isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),
islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit(), mblen(), mbstowcs(), mbtowc(),
setlocale(), tolower(), toupper(), wcstombs(), wctomb()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XBD-ERN-6 is applied, updating the wording regarding the function declarations for
consistency.

The *_l() functions are added from The Open Group Technical Standard, 2006, Extended API Set
Part 4.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 233

8223

8224

8225

8226

8227

8228

8229

8230

8231

8232

8233

8234

8235

8236

8237

8238

8239

8240

8241

8242

8243

8244

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<devctl.h> Headers

NAME
devctl.h — device control

SYNOPSIS
DC #include <devctl.h>

DESCRIPTION
The <devctl.h> header shall define the size_t type as described in <sys/types.h>.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int posix_devctl(int, int, void *restrict, size_t, int *restrict);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <termios.h>

XSH posix_devctl()

CHANGE HISTORY
First released in Issue 8. Derived from POSIX.26.

234 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8245

8246

8247

8248

8249

8250

8251

8252

8253

8254

8255

8256

8257

8258

8259

8260

8261

8262

8263

8264

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <dirent.h>

NAME
dirent.h — format of directory entries

SYNOPSIS
#include <dirent.h>

DESCRIPTION
The internal format of directories is unspecified.

The <dirent.h> header shall define the following type:

DIR A type representing a directory stream. The DIR type may be an incomplete type.

It shall also define the structure dirent which shall include the following members:

ino_t d_ino File serial number.
char d_name[] Filename string of entry.

and the structure posix_dent which shall include the following members:

ino_t d_ino File serial number.
reclen_t d_reclen Length of this entry, including trailing

padding if necessary. See posix_getdents().
unsigned char d_type File type or unknown-file-type indication.
char d_name[] Filename string of this entry.

The array d_name in each of these structures is of unspecified size, but shall contain a filename of
at most {NAME_MAX} bytes followed by a terminating null byte.

The <dirent.h> header shall define the ino_t, reclen_t, size_t, and ssize_t types as described in
<sys/types.h>.

The <dirent.h> header shall define the following symbolic constants for the file types and
unknown-file-type indicator returned in the d_type member of the posix_dent structure. The
values shall be distinct and shall be suitable for use in #if preprocessing directives:

DT_BLK Block special.

DT_CHR Character special.

DT_DIR Directory.

DT_FIFO FIFO special.

DT_LNK Symbolic link.

DT_REG Regular.

DT_SOCK Socket.

DT_UNKNOWN
Unknown file type.

TYM The implementation may implement message queues, semaphores, shared memory objects or
typed memory objects as distinct file types. The following macros shall be provided to represent
these types. The values shall be distinct from each other and from the above symbolic constants
beginning with DT_, except when a distinct file type is not implemented, in which case the
corresponding constant shall have a value that is never returned in d_type by posix_getdents().
The values shall be suitable for use in #if preprocessing directives:

DT_MQ Message queue.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 235

8265

8266

8267

8268

8269

8270

8271

8272

8273

8274

8275

8276

8277

8278

8279

8280

8281

8282

8283

8284

8285

8286

8287

8288

8289

8290

8291

8292

8293

8294

8295

8296

8297

8298

8299

8300

8301

8302

8303

8304

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<dirent.h> Headers

DT_SEM Semaphore.

DT_SHM Shared memory object.

TYM DT_TMO Typed memory object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int alphasort(const struct dirent **, const struct dirent **);
int closedir(DIR *);
int dirfd(DIR *);
DIR *fdopendir(int);
DIR *opendir(const char *);
ssize_t posix_getdents(int, void *, size_t, int);
struct dirent *readdir(DIR *);

OB int readdir_r(DIR *restrict, struct dirent *restrict,
struct dirent **restrict);

void rewinddir(DIR *);
int scandir(const char *, struct dirent ***,

int (*)(const struct dirent *),
int (*)(const struct dirent **,
const struct dirent **));

XSI void seekdir(DIR *, long);
long telldir(DIR *);

APPLICATION USAGE
None.

RATIONALE
Information similar to that in the <dirent.h> header is contained in a file <sys/dir.h> in 4.2 BSD
and 4.3 BSD. The equivalent in these implementations of struct dirent from this volume of
POSIX.1-2024 is struct direct. The filename was changed because the name <sys/dir.h> was also
used in earlier implementations to refer to definitions related to the older access method; this
produced name conflicts. The name of the structure was changed because this volume of
POSIX.1-2024 does not completely define what is in the structure, so it could be different on
some implementations from struct direct.

The posix_dent structure was based on existing structures used by traditional getdents()
functions, but the name was changed because the existing structures differed in name and in
their members. Some used the dirent structure but this is not required to include a d_type
member, which is the main advantage of using posix_getdents() over readdir(). The d_reclen
member was included, even though some implementations return fixed-length entries and
therefore do not need it, as almost all existing code that used getdents() used d_reclen to iterate
through the returned entries. Implementations that return fixed-length entries can simply set
d_reclen to that length in posix_getdents(). The type reclen_t for d_reclen was introduced, instead
of using unsigned short, so as not to create a requirement that {NAME_MAX} cannot be greater
than (a value somewhat smaller than) {SHRT_MAX}.

Implementations are encouraged to define a DT_FORCE_TYPE symbolic constant for use in the
flags argument to posix_getdents(). See the RATIONALE for posix_getdents().

The name of an array of char of an unspecified size should not be used as an lvalue. Use of:

sizeof(d_name)

236 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8305

8306

8307

8308

8309

8310

8311

8312

8313

8314

8315

8316

8317

8318

8319

8320

8321

8322

8323

8324

8325

8326

8327

8328

8329

8330

8331

8332

8333

8334

8335

8336

8337

8338

8339

8340

8341

8342

8343

8344

8345

8346

8347

8348

8349

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <dirent.h>

is incorrect; use:

strlen(d_name)

instead.

The array of char d_name cannot be assumed to have a fixed size. Implementations may define
the d_name array in the dirent and posix_dent structures to have size 1, or size greater than
{NAME_MAX}, or use a flexible array member, but in all cases the actual number of characters
used for d_name is at least the length of the filename string including the terminating NUL byte.

FUTURE DIRECTIONS
A future version of this standard may add a DT_FORCE_TYPE symbolic constant for use as
described in the RATIONALE for posix_getdents().

SEE ALSO
<sys/types.h>

XSH alphasort(), closedir(), dirfd(), fdopendir(), posix_getdents(), readdir(), rewinddir(), seekdir(),
telldir()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The Open Group Corrigendum U026/7 is applied, correcting the prototype for readdir_r().

The restrict keyword is added to the prototype for readdir_r().

Issue 7
The alphasort(), dirfd(), and scandir() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 1.

The fdopendir() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Austin Group Interpretation 1003.1-2001 #110 is applied, clarifying the definition of the DIR
type.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0039 [291], XBD/TC1-2008/0040 [291],
XBD/TC1-2008/0041 [291], and XBD/TC1-2008/0042 [206] are applied.

Issue 8
Austin Group Defect 696 is applied, making readdir_r() obsolescent.

Austin Group Defect 697 is applied, adding posix_getdents().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 237

8350

8351

8352

8353

8354

8355

8356

8357

8358

8359

8360

8361

8362

8363

8364

8365

8366

8367

8368

8369

8370

8371

8372

8373

8374

8375

8376

8377

8378

8379

8380

8381

8382

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<dlfcn.h> Headers

NAME
dlfcn.h — dynamic linking

SYNOPSIS
#include <dlfcn.h>

DESCRIPTION
The <dlfcn.h> header shall define the Dl_info_t structure type, which shall include at least the
following members:

const char *dli_fname Pathname of mapped object file.
void *dli_fbase Base of mapped address range.
const char *dli_sname Symbol name or null pointer.
void *dli_saddr Symbol address or null pointer.

The <dlfcn.h> header shall define at least the following symbolic constants for use in the
construction of a dlopen() mode argument:

RTLD_LAZY Relocations are performed at an implementation-defined time.

RTLD_NOW Relocations are performed when the object is loaded.

RTLD_GLOBAL All symbols are available for relocation processing of other modules.

RTLD_LOCAL All symbols are not made available for relocation processing by other
modules.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int dladdr(const void *restrict, Dl_info_t *restrict);
int dlclose(void *);
char *dlerror(void);
void *dlopen(const char *, int);
void *dlsym(void *restrict, const char *restrict);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH dladdr(), dlclose(), dlerror(), dlopen(), dlsym()

CHANGE HISTORY
First released in Issue 5.

Issue 6
The restrict keyword is added to the prototype for dlsym().

Issue 7
The <dlfcn.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

238 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8383

8384

8385

8386

8387

8388

8389

8390

8391

8392

8393

8394

8395

8396

8397

8398

8399

8400

8401

8402

8403

8404

8405

8406

8407

8408

8409

8410

8411

8412

8413

8414

8415

8416

8417

8418

8419

8420

8421

8422

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <dlfcn.h>

Issue 8
Austin Group Defect 993 is applied, adding dladdr().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 239

8423

8424

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<endian.h> Headers

NAME
endian.h — system endianness

SYNOPSIS
#include <endian.h>

DESCRIPTION
The <endian.h> header shall define at least the following macros for use in determining host
byte order for integer types.

BYTE_ORDER This macro shall have a value equal to one of the *_ENDIAN macros in this
header.

LITTLE_ENDIAN
If BYTE_ORDER == LITTLE_ENDIAN, the host byte order is from least
significant to most significant.

BIG_ENDIAN If BYTE_ORDER == BIG_ENDIAN, the host byte order is from most
significant to least significant.

These macros shall be suitable for use in #if preprocessing directives. The macros BIG_ENDIAN
and LITTLE_ENDIAN shall have distinct values. Implementations may define other macros
with the _ENDIAN suffix.

The following shall be declared as functions, or defined as macros, or both. If functions are
declared, function prototypes shall be provided.

uint16_t be16toh(uint16_t);
uint32_t be32toh(uint32_t);
uint64_t be64toh(uint64_t);

uint16_t htobe16(uint16_t);
uint32_t htobe32(uint32_t);
uint64_t htobe64(uint64_t);

uint16_t htole16(uint16_t);
uint32_t htole32(uint32_t);
uint64_t htole64(uint64_t);

uint16_t le16toh(uint16_t);
uint32_t le32toh(uint32_t);
uint64_t le64toh(uint64_t);

The <endian.h> header shall define the uint16_t, uint32_t, and uint64_t types as described in
<stdint.h>.

Inclusion of the <endian.h> header may also make visible all symbols from <stdint.h>.

APPLICATION USAGE
None.

RATIONALE
Many implementations also include PDP_ENDIAN to indicate a byte ordering where each pair
of bytes is swapped. If BIG_ENDIAN is defined as 4321, PDP_ENDIAN would be 3412.
However, this scheme is not universal, and derives its name from an obsolete processor.

FUTURE DIRECTIONS
None.

240 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8425

8426

8427

8428

8429

8430

8431

8432

8433

8434

8435

8436

8437

8438

8439

8440

8441

8442

8443

8444

8445

8446

8447

8448

8449

8450

8451

8452

8453

8454

8455

8456

8457

8458

8459

8460

8461

8462

8463

8464

8465

8466

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <endian.h>

SEE ALSO
<stdint.h>

XSH be16toh(), htonl(), swab()

CHANGE HISTORY
First released in Issue 8.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 241

8467

8468

8469

8470

8471

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<errno.h> Headers

NAME
errno.h — system error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The ISO C standard only requires the symbols [EDOM], [EILSEQ], and [ERANGE] to be defined.

The <errno.h> header shall provide a definition for the macro errno, which shall expand to a
modifiable lvalue of type int and thread local storage duration. If the macro definition is
suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

The <errno.h> header shall define the following macros which shall expand to integer constant
expressions with type int, distinct positive values (except as noted below), and which shall be
suitable for use in #if preprocessing directives:

[E2BIG] Argument list too long.

[EACCES] Permission denied.

[EADDRINUSE] Address in use.

[EADDRNOTAVAIL] Address not available.

[EAFNOSUPPORT] Address family not supported.

[EAGAIN] Resource unavailable, try again (may be the same value as
[EWOULDBLOCK]).

[EALREADY] Connection already in progress.

[EBADF] Bad file descriptor.

[EBADMSG] Bad message.

[EBUSY] Device or resource busy.

[ECANCELED] Operation canceled.

[ECHILD] No child processes.

[ECONNABORTED] Connection aborted.

[ECONNREFUSED] Connection refused.

[ECONNRESET] Connection reset.

[EDEADLK] Resource deadlock would occur.

[EDESTADDRREQ] Destination address required.

[EDOM] Mathematics argument out of domain of function.

[EDQUOT] Reserved.

[EEXIST] File exists.

242 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8472

8473

8474

8475

8476

8477

8478

8479

8480

8481

8482

8483

8484

8485

8486

8487

8488

8489

8490

8491

8492

8493

8494

8495

8496

8497

8498

8499

8500

8501

8502

8503

8504

8505

8506

8507

8508

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <errno.h>

[EFAULT] Bad address.

[EFBIG] File too large.

[EHOSTUNREACH] Host is unreachable.

[EIDRM] Identifier removed.

[EILSEQ] Illegal byte sequence.

[EINPROGRESS] Operation in progress.

[EINTR] Interrupted function.

[EINVAL] Invalid argument.

[EIO] I/O error.

[EISCONN] Socket is connected.

[EISDIR] Is a directory.

[ELOOP] Too many levels of symbolic links.

[EMFILE] File descriptor value too large.

[EMLINK] Too many hard links.

[EMSGSIZE] Message too large.

[EMULTIHOP] Reserved.

[ENAMETOOLONG] Filename too long.

[ENETDOWN] Network is down.

[ENETRESET] Connection aborted by network.

[ENETUNREACH] Network unreachable.

[ENFILE] Too many files open in system.

[ENOBUFS] No buffer space available.

[ENODEV] No such device.

[ENOENT] No such file or directory.

[ENOEXEC] Executable file format error.

[ENOLCK] No locks available.

[ENOLINK] Reserved.

[ENOMEM] Not enough space.

[ENOMSG] No message of the desired type.

[ENOPROTOOPT] Protocol not available.

[ENOSPC] No space left on device.

[ENOSYS] Functionality not supported.

[ENOTCONN] The socket is not connected.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 243

8509

8510

8511

8512

8513

8514

8515

8516

8517

8518

8519

8520

8521

8522

8523

8524

8525

8526

8527

8528

8529

8530

8531

8532

8533

8534

8535

8536

8537

8538

8539

8540

8541

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<errno.h> Headers

[ENOTDIR] Not a directory or a symbolic link to a directory.

[ENOTEMPTY] Directory not empty.

[ENOTRECOVERABLE]
State not recoverable.

[ENOTSOCK] Not a socket.

[ENOTSUP] Not supported (may be the same value as [EOPNOTSUPP]).

[ENOTTY] Inappropriate I/O control operation.

[ENXIO] No such device or address.

[EOPNOTSUPP] Operation not supported on socket (may be the same value as
[ENOTSUP]).

[EOVERFLOW] Value too large to be stored in data type.

[EOWNERDEAD] Previous owner died.

[EPERM] Operation not permitted.

[EPIPE] Broken pipe.

[EPROTO] Protocol error.

[EPROTONOSUPPORT]
Protocol not supported.

[EPROTOTYPE] Protocol wrong type for socket.

[ERANGE] Result too large.

[EROFS] Read-only file system.

[ESOCKTNOSUPPORT]
Socket type not supported.

[ESPIPE] Invalid seek.

[ESRCH] No such process.

[ESTALE] Reserved.

[ETIMEDOUT] Connection timed out.

[ETXTBSY] Text file busy.

[EWOULDBLOCK] Operation would block (may be the same value as [EAGAIN]).

[EXDEV] Improper hard link.

APPLICATION USAGE
Additional error numbers may be defined on conforming systems; see the System Interfaces
volume of POSIX.1-2024.

RATIONALE
None.

FUTURE DIRECTIONS
None.

244 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8542

8543

8544

8545

8546

8547

8548

8549

8550

8551

8552

8553

8554

8555

8556

8557

8558

8559

8560

8561

8562

8563

8564

8565

8566

8567

8568

8569

8570

8571

8572

8573

8574

8575

8576

8577

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <errno.h>

SEE ALSO
XSH Section 2.3 (on page 507)

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Updated for alignment with the POSIX Realtime Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The majority of the error conditions previously marked as extensions are now mandatory,
except for the STREAMS-related error conditions.

Values for errno are now required to be distinct positive values rather than non-zero values. This
change is for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #050 is applied, allowing [ENOTSUP] and
[EOPNOTSUPP] to be the same values.

The [ENOTRECOVERABLE] and [EOWNERDEAD] errors are added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0043 [324] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0059 [496] is applied.

Issue 8
Austin Group Defect 1067 is applied, adding [ESOCKTNOSUPPORT].

Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1380 is applied, changing the descriptions of [EMLINK] and [EXDEV].

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 245

8578

8579

8580

8581

8582

8583

8584

8585

8586

8587

8588

8589

8590

8591

8592

8593

8594

8595

8596

8597

8598

8599

8600

8601

8602

8603

8604

8605

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<fcntl.h> Headers

NAME
fcntl.h — file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The <fcntl.h> header shall define the f_owner_ex structure, which shall include at least the
following members:

int type Discriminator for pid.
pid_t pid Process ID or process group ID.

The <fcntl.h> header shall define the flock structure describing a file lock. It shall include the
following members:

short l_type Type of lock; F_RDLCK, F_WRLCK, F_UNLCK.
short l_whence Flag for starting offset.
off_t l_start Relative offset in bytes.
off_t l_len Size; if 0 then until EOF.
pid_t l_pid For a process-owned file lock, ignored on input or the process ID of the

owning process on output; for an OFD-owned file lock, zero on input or
(pid_t)−1 on output.

The <fcntl.h> header shall define the mode_t, off_t, and pid_t types as described in
<sys/types.h>.

The <fcntl.h> header shall define the following symbolic constants for the cmd argument used
by fcntl(). The values shall be unique and shall be suitable for use in #if preprocessing
directives.

F_DUPFD Duplicate file descriptor.

F_DUPFD_CLOEXEC
Duplicate file descriptor with the close-on-exec flag FD_CLOEXEC set.

F_DUPFD_CLOFORK
Duplicate file descriptor with the close-on-fork flag FD_CLOFORK set.

F_GETFD Get file descriptor flags.

F_SETFD Set file descriptor flags.

F_GETFL Get file status flags and file access modes.

F_SETFL Set file status flags.

F_GETLK Get information about file locks.

F_SETLK Set a process-owned file lock.

F_SETLKW Set a process-owned file lock; wait if blocked.

F_OFD_GETLK Get information about file locks.

F_OFD_SETLK Set an OFD-owned file lock.

F_OFD_SETLKW
Set an OFD-owned file lock; wait if blocked.

F_GETOWN Get process or process group ID to receive SIGURG signals, via int type.

246 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8606

8607

8608

8609

8610

8611

8612

8613

8614

8615

8616

8617

8618

8619

8620

8621

8622

8623

8624

8625

8626

8627

8628

8629

8630

8631

8632

8633

8634

8635

8636

8637

8638

8639

8640

8641

8642

8643

8644

8645

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <fcntl.h>

F_GETOWN_EX Get process or process group ID to receive SIGURG signals, via pid_t type.

F_SETOWN Set process or process group ID to receive SIGURG signals, via int type.

F_SETOWN_EX Set process or process group ID to receive SIGURG signals, via pid_t type.

The <fcntl.h> header shall define the following symbolic constants used for the fcntl() file
descriptor flags. The values shall be bitwise-distinct and shall be suitable for use in #if
preprocessing directives.

SPN FD_CLOEXEC Close the file descriptor upon execution of an exec family function and in the
new process image created by posix_spawn() or posix_spawnp().

FD_CLOFORK Close the file descriptor in any child process created from a process that has
the file descriptor open; that is, the child shall not inherit the file descriptor.

The <fcntl.h> header shall also define the following symbolic constants for the l_type argument
used for record locking with fcntl(). The values shall be unique and shall be suitable for use in
#if preprocessing directives.

F_RDLCK Shared or read lock.

F_UNLCK Unlock.

F_WRLCK Exclusive or write lock.

The <fcntl.h> header shall also define the following symbolic constants for the type member of
the f_owner_ex structure. The values shall be unique.

F_OWNER_PID The pid member of f_owner_ex holds a process ID.

F_OWNER_PGRP
The pid member of f_owner_ex holds a process group ID.

The <fcntl.h> header shall define the values used for l_whence, SEEK_SET, SEEK_CUR, and
SEEK_END as described in <stdio.h>.

The <fcntl.h> header shall define the following symbolic constants as file creation flags for use
in the oflag value to open() and openat(). The values shall be bitwise-distinct and shall be
suitable for use in #if preprocessing directives.

O_CLOEXEC Atomically set the FD_CLOEXEC flag on the new file descriptor.

O_CLOFORK Atomically set the FD_CLOFORK flag on the new file descriptor.

O_CREAT Create file if it does not exist.

O_DIRECTORY Fail if file is a non-directory file.

O_EXCL Exclusive use flag.

O_NOCTTY Do not assign controlling terminal.

O_NOFOLLOW Do not follow symbolic links.

O_TRUNC Truncate flag.

O_TTY_INIT Set the termios structure terminal parameters to a state that provides
conforming behavior; see Section 11.2 (on page 205).

The O_TTY_INIT flag can have the value zero and in this case it need not be bitwise-distinct
from the other flags.

The <fcntl.h> header shall define the following symbolic constants for use as file status flags for

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 247

8646

8647

8648

8649

8650

8651

8652

8653

8654

8655

8656

8657

8658

8659

8660

8661

8662

8663

8664

8665

8666

8667

8668

8669

8670

8671

8672

8673

8674

8675

8676

8677

8678

8679

8680

8681

8682

8683

8684

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<fcntl.h> Headers

open(), openat(), and fcntl(). The values shall be suitable for use in #if preprocessing directives.

O_APPEND Set append mode.

SIO O_DSYNC Write according to synchronized I/O data integrity completion.

O_NONBLOCK Non-blocking mode.

SIO O_RSYNC Synchronized read I/O operations.

O_SYNC Write according to synchronized I/O file integrity completion.

The <fcntl.h> header shall define the following symbolic constant for use as the mask for file
access modes. The value shall be suitable for use in #if preprocessing directives.

O_ACCMODE Mask for file access modes.

The <fcntl.h> header shall define the following symbolic constants for use as the file access
modes for open(), openat(), and fcntl(). The values shall be unique, except that O_EXEC and
O_SEARCH may have equal values. The values shall be suitable for use in #if preprocessing
directives.

O_EXEC Open for execute only (non-directory files). The result is unspecified if this
flag is applied to a directory.

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing.

O_SEARCH Open directory for search only. The result is unspecified if this flag is applied
to a non-directory file.

O_WRONLY Open for writing only.

The <fcntl.h> header shall define the symbolic constants for file modes for use as values of
mode_t as described in <sys/stat.h>.

The <fcntl.h> header shall define the following symbolic constant as a special value used in
place of a file descriptor for the *at() functions which take a directory file descriptor as a
parameter:

AT_FDCWD Use the current working directory to determine the target of relative file paths.

The <fcntl.h> header shall define the following symbolic constant as a value for the flag used by
faccessat():

AT_EACCESS Check access using effective user and group ID.

The <fcntl.h> header shall define the following symbolic constant as a value for the flag used by
fstatat(), fchmodat(), fchownat(), and utimensat():

AT_SYMLINK_NOFOLLOW
Do not follow symbolic links.

The <fcntl.h> header shall define the following symbolic constant as a value for the flag used by
linkat():

AT_SYMLINK_FOLLOW
Follow symbolic link.

248 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8685

8686

8687

8688

8689

8690

8691

8692

8693

8694

8695

8696

8697

8698

8699

8700

8701

8702

8703

8704

8705

8706

8707

8708

8709

8710

8711

8712

8713

8714

8715

8716

8717

8718

8719

8720

8721

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <fcntl.h>

The <fcntl.h> header shall define the following symbolic constant as a value for the flag used by
unlinkat():

AT_REMOVEDIR
Remove directory instead of file.

ADV The <fcntl.h> header shall define the following symbolic constants for the advice argument used
by posix_fadvise():

POSIX_FADV_DONTNEED
The application expects that it will not access the specified data in the near future.

POSIX_FADV_NOREUSE
The application expects to access the specified data once and then not reuse it thereafter.

POSIX_FADV_NORMAL
The application has no advice to give on its behavior with respect to the specified data. It is
the default characteristic if no advice is given for an open file.

POSIX_FADV_RANDOM
The application expects to access the specified data in a random order.

POSIX_FADV_SEQUENTIAL
The application expects to access the specified data sequentially from lower offsets to higher
offsets.

POSIX_FADV_WILLNEED
The application expects to access the specified data in the near future.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int creat(const char *, mode_t);
int fcntl(int, int, ...);
int open(const char *, int, ...);
int openat(int, const char *, int, ...);

ADV int posix_fadvise(int, off_t, off_t, int);
int posix_fallocate(int, off_t, off_t);

Inclusion of the <fcntl.h> header may also make visible all symbols from <sys/stat.h> and
<unistd.h>.

APPLICATION USAGE
Although no existing implementation defines AT_SYMLINK_FOLLOW and
AT_SYMLINK_NOFOLLOW as the same numeric value, POSIX.1-2024 does not prohibit that as
the two constants are not used with the same interfaces.

RATIONALE
While many of the symbolic constants introduced in the <fcntl.h> header do not strictly need to
be used in #if preprocessor directives, widespread historic practice has defined them as macros
that are usable in such constructs, and examination of existing applications has shown that they
are occasionally used in such a way. Therefore it was decided to retain this requirement on an
implementation in POSIX.1-2024.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 249

8722

8723

8724

8725

8726

8727

8728

8729

8730

8731

8732

8733

8734

8735

8736

8737

8738

8739

8740

8741

8742

8743

8744

8745

8746

8747

8748

8749

8750

8751

8752

8753

8754

8755

8756

8757

8758

8759

8760

8761

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<fcntl.h> Headers

FUTURE DIRECTIONS
A future version of this standard may add an O_NOCLOBBER file creation flag. See the
FUTURE DIRECTIONS section for open().

SEE ALSO
<stdio.h>, <sys/stat.h>, <sys/types.h>, <unistd.h>

XSH creat(), exec , fcntl(), futimens(), open(), posix_fadvise(), posix_fallocate(), posix_madvise()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Issue 6
The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• O_DSYNC and O_RSYNC are marked as part of the Synchronized Input and Output
option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The definition of the mode_t, off_t, and pid_t types is mandated.

The F_GETOWN and F_SETOWN values are added for sockets.

The posix_fadvise(), posix_fallocate(), and posix_madvise() functions are added for alignment with
IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #102 is applied, moving the prototype for posix_madvise() to
<sys/mman.h>.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/18 is applied, updating the prototypes for
posix_fadvise() and posix_fallocate() to be large file-aware, using off_t instead of size_t.

Issue 7
Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC flag.

The openat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Additional flags are added to support faccessat(), fchmodat(), fchownat(), fstatat(), linkat(),
open(), openat(), and unlinkat().

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0044 [274] and XBD/TC1-2008/0045
[78,432] are applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0060 [847] is applied.

250 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8762

8763

8764

8765

8766

8767

8768

8769

8770

8771

8772

8773

8774

8775

8776

8777

8778

8779

8780

8781

8782

8783

8784

8785

8786

8787

8788

8789

8790

8791

8792

8793

8794

8795

8796

8797

8798

8799

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <fcntl.h>

Issue 8
Austin Group Defect 768 is applied, adding OFD-owned file locks.

Austin Group Defect 1016 is applied, changing the FUTURE DIRECTIONS section.

Austin Group Defect 1274 is applied, adding the f_owner_ex structure and related symbolic
constants.

Austin Group Defect 1318 is applied, adding FD_CLOFORK and O_CLOFORK, and changing
O_CLOEXEC.

Austin Group Defect 1351 is applied, adding F_DUPFD_CLOFORK.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 251

8800

8801

8802

8803

8804

8805

8806

8807

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<fenv.h> Headers

NAME
fenv.h — floating-point environment

SYNOPSIS
#include <fenv.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <fenv.h> header shall define the following data types through typedef:

fenv_t Represents the entire floating-point environment. The floating-point environment
refers collectively to any floating-point status flags and control modes supported
by the implementation.

fexcept_t Represents the floating-point status flags collectively, including any status the
implementation associates with the flags. A floating-point status flag is a system
variable whose value is set (but never cleared) when a floating-point exception is
raised, which occurs as a side-effect of exceptional floating-point arithmetic to
provide auxiliary information. A floating-point control mode is a system variable
whose value may be set by the user to affect the subsequent behavior of floating-
point arithmetic.

The <fenv.h> header shall define each of the following macros if and only if the implementation
supports the floating-point exception by means of the floating-point functions feclearexcept(),
fegetexceptflag(), feraiseexcept(), fesetexceptflag(), and fetestexcept(). The defined macros shall
expand to integer constant expressions with values that are bitwise-distinct.

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

MX If the implementation supports the IEC 60559 Floating-Point option, all five macros shall be
defined. Additional implementation-defined floating-point exceptions with macros beginning
with FE_ and an uppercase letter may also be specified by the implementation.

The <fenv.h> header shall define the macro FE_ALL_EXCEPT as the bitwise-inclusive OR of all
floating-point exception macros defined by the implementation, if any. If no such macros are
defined, then the macro FE_ALL_EXCEPT shall be defined as zero.

The <fenv.h> header shall define each of the following macros if and only if the implementation
supports getting and setting the represented rounding direction by means of the fegetround()
and fesetround() functions. The defined macros shall expand to integer constant expressions
whose values are distinct non-negative values.

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

MX If the implementation supports the IEC 60559 Floating-Point option, all four macros shall be
defined. Additional implementation-defined rounding directions with macros beginning with
FE_ and an uppercase letter may also be specified by the implementation.

252 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8808

8809

8810

8811

8812

8813

8814

8815

8816

8817

8818

8819

8820

8821

8822

8823

8824

8825

8826

8827

8828

8829

8830

8831

8832

8833

8834

8835

8836

8837

8838

8839

8840

8841

8842

8843

8844

8845

8846

8847

8848

8849

8850

8851

8852

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <fenv.h>

The <fenv.h> header shall define the following macro, which represents the default floating-
point environment (that is, the one installed at program startup) and has type pointer to const-
qualified fenv_t. It can be used as an argument to the functions within the <fenv.h> header that
manage the floating-point environment.

FE_DFL_ENV

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int feclearexcept(int);
int fegetenv(fenv_t *);
int fegetexceptflag(fexcept_t *, int);
int fegetround(void);
int feholdexcept(fenv_t *);
int feraiseexcept(int);
int fesetenv(const fenv_t *);
int fesetexceptflag(const fexcept_t *, int);
int fesetround(int);
int fetestexcept(int);
int feupdateenv(const fenv_t *);

The FENV_ACCESS pragma provides a means to inform the implementation when an
application might access the floating-point environment to test floating-point status flags or run
under non-default floating-point control modes. The pragma shall occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
FENV_ACCESS pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another FENV_ACCESS
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. If part of an application tests floating-point status flags, sets floating-
point control modes, or runs under non-default mode settings, but was translated with the state
for the FENV_ACCESS pragma off, the behavior is undefined. The default state (on or off) for
the pragma is implementation-defined. (When execution passes from a part of the application
translated with FENV_ACCESS off to a part translated with FENV_ACCESS on, the state of the
floating-point status flags is unspecified and the floating-point control modes have their default
settings.)

APPLICATION USAGE
This header is designed to support the floating-point exception status flags and directed-
rounding control modes required by the IEC 60559: 1989 standard, and other similar floating-
point state information. Also it is designed to facilitate code portability among all systems.

Certain application programming conventions support the intended model of use for the
floating-point environment:

• A function call does not alter its caller’s floating-point control modes, clear its caller’s
floating-point status flags, nor depend on the state of its caller’s floating-point status flags
unless the function is so documented.

• A function call is assumed to require default floating-point control modes, unless its
documentation promises otherwise.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 253

8853

8854

8855

8856

8857

8858

8859

8860

8861

8862

8863

8864

8865

8866

8867

8868

8869

8870

8871

8872

8873

8874

8875

8876

8877

8878

8879

8880

8881

8882

8883

8884

8885

8886

8887

8888

8889

8890

8891

8892

8893

8894

8895

8896

8897

8898

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<fenv.h> Headers

• A function call is assumed to have the potential for raising floating-point exceptions,
unless its documentation promises otherwise.

With these conventions, an application can safely assume default floating-point control modes
(or be unaware of them). The responsibilities associated with accessing the floating-point
environment fall on the application that does so explicitly.

Even though the rounding direction macros may expand to constants corresponding to the
values of FLT_ROUNDS, they are not required to do so.

For example:

#include <fenv.h>
void f(double x)
{

#pragma STDC FENV_ACCESS ON
void g(double);
void h(double);
/* ... */
g(x + 1);
h(x + 1);
/* ... */

}

If the function g() might depend on status flags set as a side-effect of the first x+1, or if the
second x+1 might depend on control modes set as a side-effect of the call to function g(), then
the application shall contain an appropriately placed invocation as follows:

#pragma STDC FENV_ACCESS ON

RATIONALE

The fexcept_t Type

fexcept_t does not have to be an integer type. Its values must be obtained by a call to
fegetexceptflag(), and cannot be created by logical operations from the exception macros. An
implementation might simply implement fexcept_t as an int and use the representations
reflected by the exception macros, but is not required to; other representations might contain
extra information about the exceptions. fexcept_t might be a struct with a member for each
exception (that might hold the address of the first or last floating-point instruction that caused
that exception). The ISO C standard makes no claims about the internals of an fexcept_t, and so
the user cannot inspect it.

Exception and Rounding Macros

Macros corresponding to unsupported modes and rounding directions are not defined by the
implementation and must not be defined by the application. An application might use #ifdef to
test for this.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(), feholdexcept(), feraiseexcept(),
fetestexcept(), feupdateenv()

254 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8899

8900

8901

8902

8903

8904

8905

8906

8907

8908

8909

8910

8911

8912

8913

8914

8915

8916

8917

8918

8919

8920

8921

8922

8923

8924

8925

8926

8927

8928

8929

8930

8931

8932

8933

8934

8935

8936

8937

8938

8939

8940

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <fenv.h>

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

The return types for feclearexcept(), fegetexceptflag(), feraiseexcept(), fesetexceptflag(), fegetenv(),
fesetenv(), and feupdateenv() are changed from void to int for alignment with the
ISO/IEC 9899: 1999 standard, Defect Report 202.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #37 (SD5-XBD-ERN-49) is applied.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 #36 is applied.

SD5-XBD-ERN-48 and SD5-XBD-ERN-69 are applied.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 255

8941

8942

8943

8944

8945

8946

8947

8948

8949

8950

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<float.h> Headers

NAME
float.h — floating types

SYNOPSIS
#include <float.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.

The following parameters are used to define the model for each floating-point type:

s Sign (±1).

b Base or radix of exponent representation (an integer >1).

e Exponent (an integer between a minimum emin and a maximum emax).

p Precision (the number of base−b digits in the significand).

f k Non-negative integers less than b (the significand digits).

A floating-point number x is defined by the following model:

8951

8952

8953

8954

8955

8956

8957

8958

8959

8960

8961

8962

8963

8964

8965

8966

8967

8968

x = sbe
p

k=1
Σ f k b−k , emin ≤ e ≤ emax

In addition to normalized floating-point numbers (f1>0 if x≠0), floating types may be able to
contain other kinds of floating-point numbers, such as subnormal floating-point numbers (x≠0,
e=emin, f1=0) and unnormalized floating-point numbers (x≠0, e>emin, f1=0), and values that are
not floating-point numbers, such as infinities and NaNs. A NaN is an encoding signifying Not-a-
Number. A quiet NaN propagates through almost every arithmetic operation without raising a
floating-point exception; a signaling NaN generally raises a floating-point exception when
occurring as an arithmetic operand.

An implementation may give zero and non-numeric values, such as infinities and NaNs, a sign,
or may leave them unsigned. Wherever such values are unsigned, any requirement in
POSIX.1-2024 to retrieve the sign shall produce an unspecified sign and any requirement to set
the sign shall be ignored.

The accuracy of the floating-point operations ('+', '−', '*', '/') and of the functions in
<math.h> and <complex.h> that return floating-point results is implementation-defined, as is
the accuracy of the conversion between floating-point internal representations and string
representations performed by the functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The
implementation may state that the accuracy is unknown.

All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #if preprocessing directives; all floating values shall be constant expressions.
All except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have
separate names for all three floating-point types. The floating-point model representation is
provided for all values except FLT_EVAL_METHOD and FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the implementation-defined

256 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

8969

8970

8971

8972

8973

8974

8975

8976

8977

8978

8979

8980

8981

8982

8983

8984

8985

8986

8987

8988

8989

8990

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <float.h>

value of FLT_ROUNDS:

−1 Indeterminable.

0 Toward zero.

1 To nearest.

2 Toward positive infinity.

3 Toward negative infinity.

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

The values of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision may
be greater than required by the type. The use of evaluation formats is characterized by the
implementation-defined value of FLT_EVAL_METHOD:

−1 Indeterminable.

0 Evaluate all operations and constants just to the range and precision of the type.

1 Evaluate operations and constants of type float and double to the range and precision of
the double type; evaluate long double operations and constants to the range and precision
of the long double type.

2 Evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined
behavior.

The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

−1 Indeterminable.

0 Absent (type does not support subnormal numbers).

1 Present (type does support subnormal numbers).

Note: Characterization as indeterminable is intended if floating-point operations do not consistently
interpret subnormal representations as zero, nor as non-zero. Characterization as absent is
intended if no floating-point operations produce subnormal results from non-subnormal inputs,
even if the type format includes representations of subnormal numbers.

The <float.h> header shall define the following values as constant expressions with
implementation-defined values that are greater or equal in magnitude (absolute value) to those
shown, with the same sign.

• Radix of exponent representation, b.

FLT_RADIX 2

• Number of base-FLT_RADIX digits in the floating-point significand, p.

FLT_MANT_DIG

DBL_MANT_DIG

LDBL_MANT_DIG

• Number of decimal digits, n, such that any floating-point number with p radix b digits can
be rounded to a floating-point number with n decimal digits and back again without
change to the value.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 257

8991

8992

8993

8994

8995

8996

8997

8998

8999

9000

9001

9002

9003

9004

9005

9006

9007

9008

9009

9010

9011

9012

9013

9014

9015

9016

9017

9018

9019

9020

9021

9022

9023

9024

9025

9026

9027

9028

9029

9030

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<float.h> Headers

⎧
⎪
⎨
⎪
⎩

p log10 b
⎡
⎢

1 + p log10 b⎤
⎥

if b is a power of 10
otherwise

FLT_DECIMAL_DIG 6

DBL_DECIMAL_DIG 10

LDBL_DECIMAL_DIG 10

• Number of decimal digits, n, such that any floating-point number in the widest supported
floating type with pmax radix b digits can be rounded to a floating-point number with n
decimal digits and back again without change to the value.

9031

9032

9033

9034

9035

9036

⎧
⎪
⎨
⎪
⎩

pmax log10 b
⎡
⎢

1 + pmax log10 b⎤
⎥

if b is a power of 10
otherwise

DECIMAL_DIG 10

• Number of decimal digits, q, such that any floating-point number with q decimal digits can
be rounded into a floating-point number with p radix b digits and back again without
change to the q decimal digits.

9037

9038

9039

9040

⎧
⎪
⎨
⎪
⎩

p log10 b
⎢
⎣

(p − 1) log10 b ⎥
⎦

if b is a power of 10
otherwise

FLT_DIG 6

DBL_DIG 10

LDBL_DIG 10

• Minimum negative integer such that FLT_RADIX raised to that power minus 1 is a
normalized floating-point number, emin.

FLT_MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP

• Minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers.

9041

9042

9043

9044

9045

9046

9047

9048

9049

9050

⎡
⎢

log10 bemin
−1 ⎤

⎥

258 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <float.h>

FLT_MIN_10_EXP −37

DBL_MIN_10_EXP −37

LDBL_MIN_10_EXP −37

• Maximum integer such that FLT_RADIX raised to that power minus 1 is a representable
finite floating-point number, emax.

FLT_MAX_EXP

DBL_MAX_EXP

LDBL_MAX_EXP

CX Additionally, FLT_MAX_EXP shall be at least as large as FLT_MANT_DIG,
DBL_MAX_EXP shall be at least as large as DBL_MANT_DIG, and LDBL_MAX_EXP shall
be at least as large as LDBL_MANT_DIG; which has the effect that FLT_MAX, DBL_MAX,
and LDBL_MAX are integral.

• Maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers.

9051

9052

9053

9054

9055

9056

9057

9058

9059

9060

9061

9062

9063

9064

⎢
⎣

log10((1 − b−p) bemax) ⎥
⎦

FLT_MAX_10_EXP +37

DBL_MAX_10_EXP +37

LDBL_MAX_10_EXP +37

The <float.h> header shall define the following values as constant expressions with
implementation-defined values that are greater than or equal to those shown:

• Maximum representable finite floating-point number.

9065

9066

9067

9068

9069

9070

(1 − b−p) bemax

FLT_MAX 1E+37

DBL_MAX 1E+37

LDBL_MAX 1E+37

The <float.h> header shall define the following values as constant expressions with
implementation-defined (positive) values that are less than or equal to those shown:

• The difference between 1 and the least value greater than 1 that is representable in the
given floating-point type, b1 − p.

FLT_EPSILON 1E−5

DBL_EPSILON 1E−9

LDBL_EPSILON 1E−9

• Minimum normalized positive floating-point number, bemin
−1

.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 259

9071

9072

9073

9074

9075

9076

9077

9078

9079

9080

9081

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<float.h> Headers

FLT_MIN 1E−37

DBL_MIN 1E−37

LDBL_MIN 1E−37

• Minimum positive floating-point number.

FLT_TRUE_MIN 1E−37

DBL_TRUE_MIN 1E−37

LDBL_TRUE_MIN 1E−37

Note: If the presence or absence of subnormal numbers is indeterminable, then the value is
intended to be a positive number no greater than the minimum normalized positive
number for the type.

APPLICATION USAGE
None.

RATIONALE
All known hardware floating-point formats satisfy the property that the exponent range is larger
than the number of digits in the significand. The ISO C standard permits a floating-point format
where this property is not true, such that the largest finite value would not be integral; however,
it is unlikely that there will ever be hardware support for such a floating-point format, and it
introduces boundary cases that portable programs should not have to be concerned with (for
example, a non-integral DBL_MAX means that ceil() would have to worry about overflow).
Therefore, this standard imposes an additional requirement that the largest representable finite
value is integral.

FUTURE DIRECTIONS
The formula for calculating FLT_MAX, DBL_MAX, and LDBL_MAX is expected to change in the
next revision of the ISO C standard such that it only applies if the values are normalized.

SEE ALSO
<complex.h>, <math.h>, <stdio.h>, <stdlib.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The description of the operations with floating-point values is updated for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #4 (SD5-XBD-ERN-50) and #5
(SD5-XBD-ERN-51) are applied.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0046 [346] and XBD/TC1-2008/0047
[346] are applied.

Issue 8
Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1752 is applied, changing ``the number of mantissa digits’’ to ``the number
of digits in the significand’’.

Austin Group Defect 1754 is applied, changing the FUTURE DIRECTIONS section.

260 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9082

9083

9084

9085

9086

9087

9088

9089

9090

9091

9092

9093

9094

9095

9096

9097

9098

9099

9100

9101

9102

9103

9104

9105

9106

9107

9108

9109

9110

9111

9112

9113

9114

9115

9116

9117

9118

9119

9120

9121

9122

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <fmtmsg.h>

NAME
fmtmsg.h — message display structures

SYNOPSIS
XSI #include <fmtmsg.h>

DESCRIPTION
The <fmtmsg.h> header shall define the following symbolic constants:

MM_HARD Source of the condition is hardware.

MM_SOFT Source of the condition is software.

MM_FIRM Source of the condition is firmware.

MM_APPL Condition detected by application.

MM_UTIL Condition detected by utility.

MM_OPSYS Condition detected by operating system.

MM_RECOVER Recoverable error.

MM_NRECOV Non-recoverable error.

MM_HALT Error causing application to halt.

MM_ERROR Application has encountered a non-fatal fault.

MM_WARNING Application has detected unusual non-error condition.

MM_INFO Informative message.

MM_NOSEV No severity level provided for the message.

MM_PRINT Display message on standard error.

MM_CONSOLE Display message on system console.

The table below indicates the null values and identifiers for fmtmsg() arguments. The
<fmtmsg.h> header shall define the symbolic constants in the Identifier column, which shall
have the type indicated in the Type column:

Argument Type Null-Value Identifier
label char * (char*)0 MM_NULLLBL
severity int 0 MM_NULLSEV
class long 0L MM_NULLMC
text char * (char*)0 MM_NULLTXT
action char * (char*)0 MM_NULLACT
tag char * (char*)0 MM_NULLTAG

The <fmtmsg.h> header shall also define the following symbolic constants for use as return
values for fmtmsg():

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on standard error, but
otherwise succeeded.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 261

9123

9124

9125

9126

9127

9128

9129

9130

9131

9132

9133

9134

9135

9136

9137

9138

9139

9140

9141

9142

9143

9144

9145

9146

9147

9148

9149

9150

9151

9152

9153

9154

9155

9156

9157

9158

9159

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<fmtmsg.h> Headers

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int fmtmsg(long, const char *, int,
const char *, const char *, const char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH fmtmsg()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

262 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9160

9161

9162

9163

9164

9165

9166

9167

9168

9169

9170

9171

9172

9173

9174

9175

9176

9177

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <fnmatch.h>

NAME
fnmatch.h — filename-matching types

SYNOPSIS
#include <fnmatch.h>

DESCRIPTION
The <fnmatch.h> header shall define the following symbolic constants:

FNM_NOMATCH The string does not match the specified pattern.

FNM_PATHNAME <slash> in string only matches <slash> in pattern.

FNM_PERIOD Leading <period> in string only matches <period> in pattern.

FNM_NOESCAPE Disable backslash escaping.

FNM_CASEFOLD Compare string and pattern in a case-insensitive manner. See Section 4.1
(on page 95).

FNM_IGNORECASE Equivalent to FNM_CASEFOLD.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int fnmatch(const char *, const char *, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH fnmatch()

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 6
The FNM_NOSYS constant is marked obsolescent.

Issue 7
The obsolescent FNM_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 1031 is applied, adding FNM_CASEFOLD and FNM_IGNORECASE.

The description of FNM_PERIOD is updated to eliminate the use of ``must’’.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 263

9178

9179

9180

9181

9182

9183

9184

9185

9186

9187

9188

9189

9190

9191

9192

9193

9194

9195

9196

9197

9198

9199

9200

9201

9202

9203

9204

9205

9206

9207

9208

9209

9210

9211

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<ftw.h> Headers

NAME
ftw.h — file tree traversal

SYNOPSIS
XSI #include <ftw.h>

DESCRIPTION
The <ftw.h> header shall define the FTW structure, which shall include at least the following
members:

int base
int level

The <ftw.h> header shall define the following symbolic constants for use as values of the third
argument to the application-supplied function that is passed as the second argument to nftw():

FTW_F Non-directory file.

FTW_D Directory.

FTW_DNR Directory without read permission.

FTW_DP Directory with subdirectories visited.

FTW_NS Unknown type; stat() failed.

FTW_SL Symbolic link.

FTW_SLN Symbolic link that names a nonexistent file.

The <ftw.h> header shall define the following symbolic constants for use as values of the fourth
argument to nftw():

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw() follows
links but does not walk down any path that crosses itself.

FTW_MOUNT The walk only reports files that have the same device ID as the starting
directory and does not descend below directories that have a different
device ID than the starting directory.

FTW_XDEV The walk does not descend below directories that have a different device
ID than the starting directory.

FTW_DEPTH All subdirectories are visited before the directory itself.

FTW_CHDIR The walk changes to each directory before reading it.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int nftw(const char *, int (*)(const char *, const struct stat *,
int, struct FTW *), int, int);

The <ftw.h> header shall define the stat structure and the symbolic names for st_mode and the
file type test macros as described in <sys/stat.h>.

Inclusion of the <ftw.h> header may also make visible all symbols from <sys/stat.h>.

264 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9212

9213

9214

9215

9216

9217

9218

9219

9220

9221

9222

9223

9224

9225

9226

9227

9228

9229

9230

9231

9232

9233

9234

9235

9236

9237

9238

9239

9240

9241

9242

9243

9244

9245

9246

9247

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <ftw.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/stat.h>

XSH nftw()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A description of FTW_DP is added.

Issue 7
The ftw() function is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0048 [403] is applied.

Issue 8
Austin Group Defect 1133 is applied, adding FTW_XDEV.

Austin Group Defect 1210 is applied, changing the description of FTW_MOUNT.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 265

9248

9249

9250

9251

9252

9253

9254

9255

9256

9257

9258

9259

9260

9261

9262

9263

9264

9265

9266

9267

9268

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<glob.h> Headers

NAME
glob.h — pathname pattern-matching types

SYNOPSIS
#include <glob.h>

DESCRIPTION
The <glob.h> header shall define the structures and symbolic constants used by the glob()
function.

The <glob.h> header shall define the glob_t structure type, which shall include at least the
following members:

size_t gl_pathc Count of paths matched by pattern.
char **gl_pathv Pointer to a list of matched pathnames.
size_t gl_offs Slots to reserve at the beginning of gl_pathv.

The <glob.h> header shall define the size_t type as described in <sys/types.h>.

The <glob.h> header shall define the following symbolic constants as values for the flags
argument:

GLOB_APPEND Append generated pathnames to those previously obtained.

GLOB_DOOFFS Specify how many null pointers to add to the beginning of gl_pathv.

GLOB_ERR Cause glob() to return on error.

GLOB_MARK Each pathname that is a directory that matches pattern has a <slash>
appended.

GLOB_NOCHECK If pattern does not match any pathname, then return a list consisting of
only pattern.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Do not sort the pathnames returned.

The <glob.h> header shall define the following symbolic constants as error return values:

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc)()
returned non-zero.

GLOB_NOMATCH The pattern does not match any existing pathname, and
GLOB_NOCHECK was not set in flags.

GLOB_NOSPACE An attempt to allocate memory failed.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int glob(const char *restrict, int, int(*)(const char *, int),
glob_t *restrict);

void globfree(glob_t *);

266 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9269

9270

9271

9272

9273

9274

9275

9276

9277

9278

9279

9280

9281

9282

9283

9284

9285

9286

9287

9288

9289

9290

9291

9292

9293

9294

9295

9296

9297

9298

9299

9300

9301

9302

9303

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <glob.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH glob()

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 6
The restrict keyword is added to the prototype for glob().

The GLOB_NOSYS constant is marked obsolescent.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/8 is applied, correcting the glob()
prototype definition by removing the restrict qualifier from the function pointer argument.

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t

The obsolescent GLOB_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 267

9304

9305

9306

9307

9308

9309

9310

9311

9312

9313

9314

9315

9316

9317

9318

9319

9320

9321

9322

9323

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<grp.h> Headers

NAME
grp.h — group structure

SYNOPSIS
#include <grp.h>

DESCRIPTION
The <grp.h> header shall declare the group structure, which shall include the following
members:

char *gr_name The name of the group.
gid_t gr_gid Numerical group ID.
char **gr_mem Pointer to a null-terminated array of character

pointers to member names.

The <grp.h> header shall define the gid_t and size_t types as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

XSI void endgrent(void);
struct group *getgrent(void);
struct group *getgrgid(gid_t);
int getgrgid_r(gid_t, struct group *, char *,

size_t, struct group **);
struct group *getgrnam(const char *);
int getgrnam_r(const char *, struct group *, char *,

size_t , struct group **);
XSI void setgrent(void);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH endgrent(), getgrgid(), getgrnam()

CHANGE HISTORY
First released in Issue 1.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The definition of gid_t is mandated.

• The getgrgid_r() and getgrnam_r() functions are marked as part of the Thread-Safe
Functions option.

268 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9324

9325

9326

9327

9328

9329

9330

9331

9332

9333

9334

9335

9336

9337

9338

9339

9340

9341

9342

9343

9344

9345

9346

9347

9348

9349

9350

9351

9352

9353

9354

9355

9356

9357

9358

9359

9360

9361

9362

9363

9364

9365

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <grp.h>

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0049 [24] is applied.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 269

9366

9367

9368

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<iconv.h> Headers

NAME
iconv.h — codeset conversion facility

SYNOPSIS
#include <iconv.h>

DESCRIPTION
The <iconv.h> header shall define the following types:

iconv_t Identifies the conversion from one codeset to another.

size_t As described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

size_t iconv(iconv_t, char **restrict, size_t *restrict,
char **restrict, size_t *restrict);

int iconv_close(iconv_t);
iconv_t iconv_open(const char *, const char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH iconv(), iconv_close(), iconv_open()

CHANGE HISTORY
First released in Issue 4.

Issue 6
The restrict keyword is added to the prototype for iconv().

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

The <iconv.h> header is moved from the XSI option to the Base.

270 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9369

9370

9371

9372

9373

9374

9375

9376

9377

9378

9379

9380

9381

9382

9383

9384

9385

9386

9387

9388

9389

9390

9391

9392

9393

9394

9395

9396

9397

9398

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <inttypes.h>

NAME
inttypes.h — fixed size integer types

SYNOPSIS
#include <inttypes.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <inttypes.h> header shall include the <stdint.h> header.

The <inttypes.h> header shall define at least the following types:

imaxdiv_t Structure type that is the type of the value returned by the imaxdiv() function.

CX wchar_t As described in <stddef.h>.

The <inttypes.h> header shall define the following macros. Each expands to a character string
literal containing a conversion specifier, possibly modified by a length modifier, suitable for use
within the format argument of a formatted input/output function when converting the
corresponding integer type. These macros have the general form of PRI (character string literals
for the fprintf() and fwprintf() family of functions) or SCN (character string literals for the
fscanf() and fwscanf() family of functions), followed by the conversion specifier, followed by a
name corresponding to a similar type name in <stdint.h>. In these names, N represents the
width of the type as described in <stdint.h>. For example, PRIdFAST32 can be used in a format
string to print the value of an integer of type int_fast32_t.

The fprintf() macros for signed integers are:

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR

The fprintf() macros for unsigned integers are:

PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

The fscanf() macros for signed integers are:

SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

The fscanf() macros for unsigned integers are:

SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

For each type that the implementation provides in <stdint.h>, the corresponding fprintf() and
fwprintf() macros shall be defined and the corresponding fscanf() and fwscanf() macros shall be
defined unless the implementation does not have a suitable modifier for the type.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 271

9399

9400

9401

9402

9403

9404

9405

9406

9407

9408

9409

9410

9411

9412

9413

9414

9415

9416

9417

9418

9419

9420

9421

9422

9423

9424

9425

9426

9427

9428

9429

9430

9431

9432

9433

9434

9435

9436

9437

9438

9439

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<inttypes.h> Headers

intmax_t imaxabs(intmax_t);
imaxdiv_t imaxdiv(intmax_t, intmax_t);
intmax_t strtoimax(const char *restrict, char **restrict, int);
uintmax_t strtoumax(const char *restrict, char **restrict, int);
intmax_t wcstoimax(const wchar_t *restrict, wchar_t **restrict, int);
uintmax_t wcstoumax(const wchar_t *restrict, wchar_t **restrict, int);

EXAMPLES
#include <inttypes.h>
#include <wchar.h>
int main(void)
{

uintmax_t i = UINTMAX_MAX; // This type always exists.
wprintf(L"The largest integer value is %020"

PRIxMAX "\n", i);
return 0;

}

APPLICATION USAGE
The purpose of <inttypes.h> is to provide a set of integer types whose definitions are consistent
across machines and independent of operating systems and other implementation
idiosyncrasies. It defines, through typedef, integer types of various sizes. Implementations are
free to typedef them as ISO C standard integer types or extensions that they support. Consistent
use of this header will greatly increase the portability of applications across platforms.

RATIONALE
The ISO/IEC 9899: 1990 standard specified that the language should support four signed and
unsigned integer data types—char, short, int, and long—but placed very little requirement on
their size other than that int and short be at least 16 bits and long be at least as long as int and
not smaller than 32 bits. For 16-bit systems, most implementations assigned 8, 16, 16, and 32 bits
to char, short, int, and long, respectively. For 32-bit systems, the common practice has been to
assign 8, 16, 32, and 32 bits to these types. This difference in int size can create some problems
for users who migrate from one system to another which assigns different sizes to integer types,
because the ISO C standard integer promotion rule can produce silent changes unexpectedly.
The need for defining an extended integer type increased with the introduction of 64-bit
systems.

FUTURE DIRECTIONS
Macro names beginning with PRI or SCN followed by any lowercase letter or 'X' may be added
to the macros defined in the <inttypes.h> header.

SEE ALSO
<stddef.h>

XSH Section 2.2 (on page 496), imaxabs(), imaxdiv(), strtoimax(), wcstoimax()

CHANGE HISTORY
First released in Issue 5.

Issue 6
The Open Group Base Resolution bwg97-006 is applied.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

272 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9440

9441

9442

9443

9444

9445

9446

9447

9448

9449

9450

9451

9452

9453

9454

9455

9456

9457

9458

9459

9460

9461

9462

9463

9464

9465

9466

9467

9468

9469

9470

9471

9472

9473

9474

9475

9476

9477

9478

9479

9480

9481

9482

9483

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <inttypes.h>

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0050 [211] is applied.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 273

9484

9485

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<iso646.h> Headers

NAME
iso646.h — alternative spellings

SYNOPSIS
#include <iso646.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <iso646.h> header shall define the following eleven macros (on the left) that expand to the
corresponding tokens (on the right):

and &&

and_eq &=

bitand &

bitor |

compl ˜

not !

not_eq !=

or ||

or_eq |=

xor ˆ

xor_eq ˆ=

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

274 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9486

9487

9488

9489

9490

9491

9492

9493

9494

9495

9496

9497

9498

9499

9500

9501

9502

9503

9504

9505

9506

9507

9508

9509

9510

9511

9512

9513

9514

9515

9516

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <langinfo.h>

NAME
langinfo.h — language information constants

SYNOPSIS
#include <langinfo.h>

DESCRIPTION
The <langinfo.h> header shall define the symbolic constants used to identify items of langinfo
data (see nl_langinfo()).

The <langinfo.h> header shall define the locale_t type as described in <locale.h>.

The <langinfo.h> header shall define the nl_item type as described in <nl_types.h>.

The <langinfo.h> header shall define the following symbolic constants with type nl_item. The
entries under Category indicate in which setlocale() category each item is defined.

Constant Category Meaning
CODESET LC_CTYPE Codeset name.
D_T_FMT LC_TIME String for formatting date and time.
D_FMT LC_TIME Date format string.
T_FMT LC_TIME Time format string.
T_FMT_AMPM LC_TIME Time format string using 12-hour clock format, if supported

in the locale; if the 12-hour format is not supported, this
shall be either an empty string or a string specifying a
24-hour clock format.

AM_STR LC_TIME Ante-meridiem affix; if AM_STR and PM_STR are both
empty strings, the 12-hour format is not supported in the
locale.

PM_STR LC_TIME Post-meridiem affix; if AM_STR and PM_STR are both
empty strings, the 12-hour format is not supported in the
locale.

DAY_1 LC_TIME Name of the first day of the week (for example, Sunday).
DAY_2 LC_TIME Name of the second day of the week (for example, Monday).
DAY_3 LC_TIME Name of the third day of the week (for example, Tuesday).
DAY_4 LC_TIME Name of the fourth day of the week (for example,

Wednesday).
DAY_5 LC_TIME Name of the fifth day of the week (for example, Thursday).
DAY_6 LC_TIME Name of the sixth day of the week (for example, Friday).
DAY_7 LC_TIME Name of the seventh day of the week (for example,

Saturday).
ABDAY_1 LC_TIME Abbreviated name of the first day of the week.
ABDAY_2 LC_TIME Abbreviated name of the second day of the week.
ABDAY_3 LC_TIME Abbreviated name of the third day of the week.
ABDAY_4 LC_TIME Abbreviated name of the fourth day of the week.
ABDAY_5 LC_TIME Abbreviated name of the fifth day of the week.
ABDAY_6 LC_TIME Abbreviated name of the sixth day of the week.
ABDAY_7 LC_TIME Abbreviated name of the seventh day of the week.
MON_1 LC_TIME Name of the first month of the year.
MON_2 LC_TIME Name of the second month.
MON_3 LC_TIME Name of the third month.
MON_4 LC_TIME Name of the fourth month.
MON_5 LC_TIME Name of the fifth month.
MON_6 LC_TIME Name of the sixth month.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 275

9517

9518

9519

9520

9521

9522

9523

9524

9525

9526

9527

9528

9529

9530

9531

9532

9533

9534

9535

9536

9537

9538

9539

9540

9541

9542

9543

9544

9545

9546

9547

9548

9549

9550

9551

9552

9553

9554

9555

9556

9557

9558

9559

9560

9561

9562

9563

9564

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<langinfo.h> Headers

Constant Category Meaning
MON_7 LC_TIME Name of the seventh month.
MON_8 LC_TIME Name of the eighth month.
MON_9 LC_TIME Name of the ninth month.
MON_10 LC_TIME Name of the tenth month.
MON_11 LC_TIME Name of the eleventh month.
MON_12 LC_TIME Name of the twelfth month.
ALTMON_1 LC_TIME Name of the alternative appropriate first month of the year.
ALTMON_2 LC_TIME Name of the alternative appropriate second month.
ALTMON_3 LC_TIME Name of the alternative appropriate third month.
ALTMON_4 LC_TIME Name of the alternative appropriate fourth month.
ALTMON_5 LC_TIME Name of the alternative appropriate fifth month.
ALTMON_6 LC_TIME Name of the alternative appropriate sixth month.
ALTMON_7 LC_TIME Name of the alternative appropriate seventh month.
ALTMON_8 LC_TIME Name of the alternative appropriate eighth month.
ALTMON_9 LC_TIME Name of the alternative appropriate ninth month.
ALTMON_10 LC_TIME Name of the alternative appropriate tenth month.
ALTMON_11 LC_TIME Name of the alternative appropriate eleventh month.
ALTMON_12 LC_TIME Name of the alternative appropriate twelfth month.
ABMON_1 LC_TIME Abbreviated name of the first month.
ABMON_2 LC_TIME Abbreviated name of the second month.
ABMON_3 LC_TIME Abbreviated name of the third month.
ABMON_4 LC_TIME Abbreviated name of the fourth month.
ABMON_5 LC_TIME Abbreviated name of the fifth month.
ABMON_6 LC_TIME Abbreviated name of the sixth month.
ABMON_7 LC_TIME Abbreviated name of the seventh month.
ABMON_8 LC_TIME Abbreviated name of the eighth month.
ABMON_9 LC_TIME Abbreviated name of the ninth month.
ABMON_10 LC_TIME Abbreviated name of the tenth month.
ABMON_11 LC_TIME Abbreviated name of the eleventh month.
ABMON_12 LC_TIME Abbreviated name of the twelfth month.
ABALTMON_1 LC_TIME Abbreviated alternative name of the first month of the year.
ABALTMON_2 LC_TIME Abbreviated alternative name of the second month.
ABALTMON_3 LC_TIME Abbreviated alternative name of the third month.
ABALTMON_4 LC_TIME Abbreviated alternative name of the fourth month.
ABALTMON_5 LC_TIME Abbreviated alternative name of the fifth month.
ABALTMON_6 LC_TIME Abbreviated alternative name of the sixth month.
ABALTMON_7 LC_TIME Abbreviated alternative name of the seventh month.
ABALTMON_8 LC_TIME Abbreviated alternative name of the eighth month.
ABALTMON_9 LC_TIME Abbreviated alternative name of the ninth month.
ABALTMON_10 LC_TIME Abbreviated alternative name of the tenth month.
ABALTMON_11 LC_TIME Abbreviated alternative name of the eleventh month.
ABALTMON_12 LC_TIME Abbreviated alternative name of the twelfth month.
ERA LC_TIME Era description segments.
ERA_D_FMT LC_TIME Era date format string.
ERA_D_T_FMT LC_TIME Era date and time format string.
ERA_T_FMT LC_TIME Era time format string.
ALT_DIGITS LC_TIME Alternative symbols for digits.
RADIXCHAR LC_NUMERIC Radix character.
THOUSEP LC_NUMERIC Separator for thousands.
YESEXPR LC_MESSAGES Affirmative response expression.

276 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9565

9566

9567

9568

9569

9570

9571

9572

9573

9574

9575

9576

9577

9578

9579

9580

9581

9582

9583

9584

9585

9586

9587

9588

9589

9590

9591

9592

9593

9594

9595

9596

9597

9598

9599

9600

9601

9602

9603

9604

9605

9606

9607

9608

9609

9610

9611

9612

9613

9614

9615

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <langinfo.h>

Constant Category Meaning
NOEXPR LC_MESSAGES Negative response expression.
CRNCYSTR LC_MONETARY Local currency symbol, preceded by '−' if the symbol

should appear before the value, '+' if the symbol should
appear after the value, or '.' if the symbol should replace
the radix character. If the local currency symbol is the empty
string, implementations may return the empty string ("").

If the locale’s values for p_cs_precedes and n_cs_precedes do not match, the value of
nl_langinfo(CRNCYSTR) and nl_langinfo_l(CRNCYSTR,loc) is unspecified.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

char *nl_langinfo(nl_item);
char *nl_langinfo_l(nl_item, locale_t);

Inclusion of the <langinfo.h> header may also make visible all symbols from <nl_types.h>.

APPLICATION USAGE
Wherever possible, users are advised to use functions compatible with those in the ISO C
standard to access items of langinfo data. In particular, the strftime() function should be used to
access date and time information defined in category LC_TIME. The localeconv() function
should be used to access information corresponding to RADIXCHAR, THOUSEP, and
CRNCYSTR.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 7 (on page 127), <locale.h>, <nl_types.h>

XSH nl_langinfo(), localeconv(), strfmon(), strftime()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The constants YESSTR and NOSTR are marked LEGACY.

Issue 6
The constants YESSTR and NOSTR are removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/9 is applied, adding a sentence to
the``Meaning’’ column entry for the CRNCYSTR constant. This change is to accommodate
historic practice.

Issue 7
The <langinfo.h> header is moved from the XSI option to the Base.

The nl_langinfo_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the locale_t type is added.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0051 [107] is applied.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 277

9616

9617

9618

9619

9620

9621

9622

9623

9624

9625

9626

9627

9628

9629

9630

9631

9632

9633

9634

9635

9636

9637

9638

9639

9640

9641

9642

9643

9644

9645

9646

9647

9648

9649

9650

9651

9652

9653

9654

9655

9656

9657

9658

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<langinfo.h> Headers

Issue 8
Austin Group Defects 258 and 1166 are applied, adding the ALTMON_x and ABALTMON_x
symbolic constants.

Austin Group Defect 1307 is applied, changing the AM_STR, PM_STR, and T_FMT_AMPM
constants in relation to locales that do not support the 12-hour clock format.

278 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9659

9660

9661

9662

9663

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <libgen.h>

NAME
libgen.h — definitions for pattern matching functions

SYNOPSIS
XSI #include <libgen.h>

DESCRIPTION
The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

char *basename(char *);
char *dirname(char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH basename(), dirname()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The function prototypes for basename() and dirname() are changed to indicate that the first
argument is of type char * rather than const char *.

Issue 6
The _ _loc1 symbol and the regcmp() and regex() functions are removed.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 279

9664

9665

9666

9667

9668

9669

9670

9671

9672

9673

9674

9675

9676

9677

9678

9679

9680

9681

9682

9683

9684

9685

9686

9687

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<libintl.h> Headers

NAME
libintl.h — international messaging

SYNOPSIS
#include <libintl.h>

DESCRIPTION
The <libintl.h> header may define the macro TEXTDOMAINMAX. If defined, it shall have the
same value as {TEXTDOMAIN_MAX} in <limits.h>.

The <libintl.h> header shall define the locale_t type as described in <locale.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

char *bindtextdomain(const char *, const char *);
char *bind_textdomain_codeset(const char *, const char *);
char *dcgettext(const char *, const char *, int);
char *dcgettext_l(const char *, const char *, int, locale_t);
char *dcngettext(const char *, const char *, const char *,

unsigned long int, int);
char *dcngettext_l(const char *, const char *, const char *,

unsigned long int, int, locale_t);
char *dgettext(const char *, const char *);
char *dgettext_l(const char *, const char *, locale_t);
char *dngettext(const char *, const char *, const char *,

unsigned long int);
char *dngettext_l(const char *, const char *, const char *,

unsigned long int, locale_t);
char *gettext(const char *);
char *gettext_l(const char *, locale_t);
char *ngettext(const char *, const char *, unsigned long int);
char *ngettext_l(const char *, const char *,

unsigned long int, locale_t);
char *textdomain(const char *);

APPLICATION USAGE
None.

RATIONALE
Some historical implementations defined TEXTDOMAINMAX in this header. This standard
instead defines {TEXTDOMAIN_MAX} in <limits.h>. This was done to allow the maximum
length of a text domain name to vary depending on the filesystem type used to store message
catalogs. Implementations are allowed to continue to define TEXTDOMAINMAX in this header
as an extension to the standard (see XSH Section 2.2.2, on page 498).

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>

XSH gettext , bindtextdomain()

280 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9688

9689

9690

9691

9692

9693

9694

9695

9696

9697

9698

9699

9700

9701

9702

9703

9704

9705

9706

9707

9708

9709

9710

9711

9712

9713

9714

9715

9716

9717

9718

9719

9720

9721

9722

9723

9724

9725

9726

9727

9728

9729

9730

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <libintl.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 281

9731

9732

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<limits.h> Headers

NAME
limits.h — implementation-defined constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

Many of the symbols listed here are not defined by the ISO C standard. Such symbols are not
shown as CX shaded, except under the heading ``Numerical Limits’’.

The <limits.h> header shall define macros and symbolic constants for various limits. Different
categories of limits are described below, representing various limits on resources that the
implementation imposes on applications. All macros and symbolic constants defined in this
header shall be suitable for use in #if preprocessing directives.

Implementations may choose any appropriate value for each limit, provided it is not more
restrictive than the Minimum Acceptable Values listed below. Symbolic constant names
beginning with _POSIX may be found in <unistd.h>.

Applications should not assume any particular value for a limit. To achieve maximum
portability, an application should not require more resource than the Minimum Acceptable
Value quantity. However, an application wishing to avail itself of the full amount of a resource
available on an implementation may make use of the value given in <limits.h> on that
particular implementation, by using the macros and symbolic constants listed below. It should
be noted, however, that many of the listed limits are not invariant, and at runtime, the value of
the limit may differ from those given in this header, for the following reasons:

• The limit is pathname-dependent.

• The limit differs between the compile and runtime machines.

• The limit has been changed at runtime by an application (see setrlimit()).

For these reasons, an application can use the fpathconf(), getrlimit(), pathconf(), and sysconf()
functions to determine the actual value of a limit at runtime.

The items in the list ending in _MIN give the most negative values that the mathematical types
are guaranteed to be capable of representing. Numbers of a more negative value may be
supported on some implementations, as indicated by the <limits.h> header on the
implementation, but applications requiring such numbers are not guaranteed to be portable to
all implementations. For positive constants ending in _MIN, this indicates the minimum
acceptable value.

Runtime Invariant Values (Possibly Indeterminate)

A definition of one of the symbolic constants in the following list shall be omitted from
<limits.h> on specific implementations where the corresponding value is equal to or greater
than the stated minimum, but is unspecified.

This indetermination might depend on the amount of available memory space on a specific
instance of a specific implementation. The actual value supported by a specific instance shall be
provided by the sysconf() function.

282 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9733

9734

9735

9736

9737

9738

9739

9740

9741

9742

9743

9744

9745

9746

9747

9748

9749

9750

9751

9752

9753

9754

9755

9756

9757

9758

9759

9760

9761

9762

9763

9764

9765

9766

9767

9768

9769

9770

9771

9772

9773

9774

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <limits.h>

{AIO_LISTIO_MAX}
Maximum number of I/O operations in a single list I/O call supported by the
implementation.
Minimum Acceptable Value: {_POSIX_AIO_LISTIO_MAX}

{AIO_MAX}
Maximum number of outstanding asynchronous I/O operations supported by the
implementation.
Minimum Acceptable Value: {_POSIX_AIO_MAX}

{AIO_PRIO_DELTA_MAX}
The maximum amount by which a process can decrease its asynchronous I/O priority level
from its own scheduling priority.
Minimum Acceptable Value: 0

{ARG_MAX}
Maximum length of argument to the exec functions including environment data.
Minimum Acceptable Value: {_POSIX_ARG_MAX}

{ATEXIT_MAX}
Maximum number of functions that can be registered with atexit() or at_quick_exit(). The
limit shall apply independently to each function.
Minimum Acceptable Value: 32

{CHILD_MAX}
Maximum number of simultaneous processes per real user ID.
Minimum Acceptable Value: {_POSIX_CHILD_MAX}

{DELAYTIMER_MAX}
Maximum number of timer expiration overruns.
Minimum Acceptable Value: {_POSIX_DELAYTIMER_MAX}

{HOST_NAME_MAX}
Maximum length of a host name (not including the terminating null) as returned from the
gethostname() function.
Minimum Acceptable Value: {_POSIX_HOST_NAME_MAX}

XSI {IOV_MAX}
Maximum number of iovec structures that one process has available for use with readv() or
writev().
Minimum Acceptable Value: {_XOPEN_IOV_MAX}

{LOGIN_NAME_MAX}
Maximum length of a login name.
Minimum Acceptable Value: {_POSIX_LOGIN_NAME_MAX}

MSG {MQ_OPEN_MAX}
The maximum number of open message queue descriptors a process may hold.
Minimum Acceptable Value: {_POSIX_MQ_OPEN_MAX}

MSG {MQ_PRIO_MAX}
The maximum number of message priorities supported by the implementation.
Minimum Acceptable Value: {_POSIX_MQ_PRIO_MAX}

{OPEN_MAX}
A value one greater than the maximum value that the system may assign to a newly-created
file descriptor.
Minimum Acceptable Value: {_POSIX_OPEN_MAX}

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 283

9775

9776

9777

9778

9779

9780

9781

9782

9783

9784

9785

9786

9787

9788

9789

9790

9791

9792

9793

9794

9795

9796

9797

9798

9799

9800

9801

9802

9803

9804

9805

9806

9807

9808

9809

9810

9811

9812

9813

9814

9815

9816

9817

9818

9819

9820

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<limits.h> Headers

{PAGESIZE}
Size in bytes of a page.
Minimum Acceptable Value: 1

XSI {PAGE_SIZE}
Equivalent to {PAGESIZE}. If either {PAGESIZE} or {PAGE_SIZE} is defined, the other is
defined with the same value.

{PTHREAD_DESTRUCTOR_ITERATIONS}
Maximum number of attempts made to destroy a thread’s thread-specific data values on
thread exit.
Minimum Acceptable Value: {_POSIX_THREAD_DESTRUCTOR_ITERATIONS}

{PTHREAD_KEYS_MAX}
Maximum number of data keys that can be created by a process.
Minimum Acceptable Value: {_POSIX_THREAD_KEYS_MAX}

{PTHREAD_STACK_MIN}
Minimum size in bytes of thread stack storage.
Minimum Acceptable Value: 0

{PTHREAD_THREADS_MAX}
Maximum number of threads that can be created per process.
Minimum Acceptable Value: {_POSIX_THREAD_THREADS_MAX}

{RTSIG_MAX}
Maximum number of realtime signals reserved for application use in this implementation.
Minimum Acceptable Value: {_POSIX_RTSIG_MAX}

{SEM_NSEMS_MAX}
Maximum number of semaphores that a process may have.
Minimum Acceptable Value: {_POSIX_SEM_NSEMS_MAX}

{SEM_VALUE_MAX}
The maximum value a semaphore may have.
Minimum Acceptable Value: {_POSIX_SEM_VALUE_MAX}

{SIGQUEUE_MAX}
Maximum number of queued signals that a process may send and have pending at the
receiver(s) at any time.
Minimum Acceptable Value: {_POSIX_SIGQUEUE_MAX}

SS|TSP {SS_REPL_MAX}
The maximum number of replenishment operations that may be simultaneously pending
for a particular sporadic server scheduler.
Minimum Acceptable Value: {_POSIX_SS_REPL_MAX}

{STREAM_MAX}
Maximum number of streams that one process can have open at one time. If defined, it has
the same value as {FOPEN_MAX} (see <stdio.h>).
Minimum Acceptable Value: {_POSIX_STREAM_MAX}

{SYMLOOP_MAX}
Maximum number of symbolic links that can be reliably traversed in the resolution of a
pathname in the absence of a loop.
Minimum Acceptable Value: {_POSIX_SYMLOOP_MAX}

284 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9821

9822

9823

9824

9825

9826

9827

9828

9829

9830

9831

9832

9833

9834

9835

9836

9837

9838

9839

9840

9841

9842

9843

9844

9845

9846

9847

9848

9849

9850

9851

9852

9853

9854

9855

9856

9857

9858

9859

9860

9861

9862

9863

9864

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <limits.h>

{TIMER_MAX}
Maximum number of timers per process supported by the implementation.
Minimum Acceptable Value: {_POSIX_TIMER_MAX}

{TTY_NAME_MAX}
Maximum length of terminal device name.
Minimum Acceptable Value: {_POSIX_TTY_NAME_MAX}

{TZNAME_MAX}
Maximum number of bytes supported for the name of a timezone (not of the TZ variable).
Minimum Acceptable Value: {_POSIX_TZNAME_MAX}

Note: The length given by {TZNAME_MAX} does not include the quoting characters mentioned in
Section 8.3 (on page 174).

Pathname Variable Values

The values in the following list may be constants within an implementation or may vary from
one pathname to another. For example, file systems or directories may have different
characteristics.

A definition of one of the symbolic constants in the following list shall be omitted from the
<limits.h> header on specific implementations where the corresponding value is equal to or
greater than the stated minimum, but where the value can vary depending on the file to which it
is applied. The actual value supported for a specific pathname shall be provided by the
pathconf() function.

{FILESIZEBITS}
Minimum number of bits needed to represent, as a signed integer value, the maximum size
of a regular file allowed in the specified directory.
Minimum Acceptable Value: 32

{LINK_MAX}
Maximum number of links to a single file.
Minimum Acceptable Value: {_POSIX_LINK_MAX}

{MAX_CANON}
Maximum number of bytes in a terminal canonical input line.
Minimum Acceptable Value: {_POSIX_MAX_CANON}

{MAX_INPUT}
Minimum number of bytes for which space is available in a terminal input queue; therefore,
the maximum number of bytes a conforming application may require to be typed as input
before reading them.
Minimum Acceptable Value: {_POSIX_MAX_INPUT}

{NAME_MAX}
Maximum number of bytes in a filename (not including the terminating null of a filename
string).
Minimum Acceptable Value: {_POSIX_NAME_MAX}

XSI Minimum Acceptable Value: {_XOPEN_NAME_MAX}

{PATH_MAX}
Maximum number of bytes the implementation stores as a pathname in a user-supplied
buffer of unspecified size, including the terminating null character. Minimum number the
implementation shall accept as the maximum number of bytes in a pathname.
Minimum Acceptable Value: {_POSIX_PATH_MAX}

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 285

9865

9866

9867

9868

9869

9870

9871

9872

9873

9874

9875

9876

9877

9878

9879

9880

9881

9882

9883

9884

9885

9886

9887

9888

9889

9890

9891

9892

9893

9894

9895

9896

9897

9898

9899

9900

9901

9902

9903

9904

9905

9906

9907

9908

9909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<limits.h> Headers

XSI Minimum Acceptable Value: {_XOPEN_PATH_MAX}

{PIPE_BUF}
Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
Minimum Acceptable Value: {_POSIX_PIPE_BUF}

ADV {POSIX_ALLOC_SIZE_MIN}
Minimum number of bytes of storage actually allocated for any portion of a file.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_INCR_XFER_SIZE}
Recommended increment for file transfer sizes between the
{POSIX_REC_MIN_XFER_SIZE} and {POSIX_REC_MAX_XFER_SIZE} values.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_MAX_XFER_SIZE}
Maximum recommended file transfer size.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_MIN_XFER_SIZE}
Minimum recommended file transfer size.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_XFER_ALIGN}
Recommended file transfer buffer alignment.
Minimum Acceptable Value: Not specified.

{SYMLINK_MAX}
Maximum number of bytes in a symbolic link.
Minimum Acceptable Value: {_POSIX_SYMLINK_MAX}

{TEXTDOMAIN_MAX}
Maximum length of a text domain name, not including the terminating null byte.
Minimum Acceptable Value: {_POSIX_NAME_MAX} − 3

XSI Minimum Acceptable Value: {_XOPEN_NAME_MAX} − 3

Runtime Increasable Values

The magnitude limitations in the following list shall be fixed by specific implementations. An
application should assume that the value of the symbolic constant defined by <limits.h> in a
specific implementation is the minimum that pertains whenever the application is run under
that implementation. A specific instance of a specific implementation may increase the value
relative to that supplied by <limits.h> for that implementation. The actual value supported by a
specific instance shall be provided by the sysconf() function.

{BC_BASE_MAX}
Maximum obase values allowed by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_BASE_MAX}

{BC_DIM_MAX}
Maximum number of elements permitted in an array by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_DIM_MAX}

{BC_SCALE_MAX}
Maximum scale value allowed by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_SCALE_MAX}

286 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9910

9911

9912

9913

9914

9915

9916

9917

9918

9919

9920

9921

9922

9923

9924

9925

9926

9927

9928

9929

9930

9931

9932

9933

9934

9935

9936

9937

9938

9939

9940

9941

9942

9943

9944

9945

9946

9947

9948

9949

9950

9951

9952

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <limits.h>

{BC_STRING_MAX}
Maximum length of a string constant accepted by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_STRING_MAX}

{CHARCLASS_NAME_MAX}
Maximum number of bytes in a character class name.
Minimum Acceptable Value: {_POSIX2_CHARCLASS_NAME_MAX}

{COLL_WEIGHTS_MAX}
Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see Chapter 7 (on page 127).
Minimum Acceptable Value: {_POSIX2_COLL_WEIGHTS_MAX}

{EXPR_NEST_MAX}
Maximum number of expressions that can be nested within parentheses by the expr utility.
Minimum Acceptable Value: {_POSIX2_EXPR_NEST_MAX}

{LINE_MAX}
Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
standard input or another file), when the utility is described as processing text files. The
length includes room for the trailing <newline>.
Minimum Acceptable Value: {_POSIX2_LINE_MAX}

{NGROUPS_MAX}
Maximum number of simultaneous supplementary group IDs per process.
Minimum Acceptable Value: {_POSIX_NGROUPS_MAX}

{RE_DUP_MAX}
Maximum number of repeated occurrences of a BRE or ERE interval expression; see Section
9.3.6 (on page 185) and Section 9.4.6 (on page 189).
Minimum Acceptable Value: {_POSIX_RE_DUP_MAX}

Maximum Values

The <limits.h> header shall define the following symbolic constants with the values shown.
These are the most restrictive values for certain features on an implementation. A conforming
implementation shall provide values no larger than these values. A conforming application shall
not require a smaller value for correct operation.

{_POSIX_CLOCKRES_MIN}
The resolution of the CLOCK_REALTIME and CLOCK_MONOTONIC clocks, in
nanoseconds.
Value: 20 000 000

Minimum Values

The <limits.h> header shall define the following symbolic constants with the values shown.
These are the most restrictive values for certain features on an implementation conforming to
this volume of POSIX.1-2024. Related symbolic constants are defined elsewhere in this volume
of POSIX.1-2024 which reflect the actual implementation and which need not be as restrictive.
For each of these limits, a conforming implementation shall provide a value at least this large or
shall have no limit. A strictly conforming application shall not require a larger value for correct
operation.

{_POSIX_AIO_LISTIO_MAX}
The number of I/O operations that can be specified in a list I/O call.
Value: 2

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 287

9953

9954

9955

9956

9957

9958

9959

9960

9961

9962

9963

9964

9965

9966

9967

9968

9969

9970

9971

9972

9973

9974

9975

9976

9977

9978

9979

9980

9981

9982

9983

9984

9985

9986

9987

9988

9989

9990

9991

9992

9993

9994

9995

9996

9997

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<limits.h> Headers

{_POSIX_AIO_MAX}
The number of outstanding asynchronous I/O operations.
Value: 1

{_POSIX_ARG_MAX}
Maximum length of argument to the exec functions including environment data.
Value: 4 096

{_POSIX_CHILD_MAX}
Maximum number of simultaneous processes per real user ID.
Value: 25

{_POSIX_DELAYTIMER_MAX}
The number of timer expiration overruns.
Value: 32

{_POSIX_HOST_NAME_MAX}
Maximum length of a host name (not including the terminating null) as returned from the
gethostname() function.
Value: 255

{_POSIX_LINK_MAX}
Maximum number of links to a single file.
Value: 8

{_POSIX_LOGIN_NAME_MAX}
The size of the storage required for a login name, in bytes (including the terminating null).
Value: 9

{_POSIX_MAX_CANON}
Maximum number of bytes in a terminal canonical input queue.
Value: 255

{_POSIX_MAX_INPUT}
Maximum number of bytes allowed in a terminal input queue.
Value: 255

MSG {_POSIX_MQ_OPEN_MAX}
The number of message queues that can be open for a single process.
Value: 8

MSG {_POSIX_MQ_PRIO_MAX}
The maximum number of message priorities supported by the implementation.
Value: 32

{_POSIX_NAME_MAX}
Maximum number of bytes in a filename (not including the terminating null of a filename
string).
Value: 14

{_POSIX_NGROUPS_MAX}
Maximum number of simultaneous supplementary group IDs per process.
Value: 8

{_POSIX_OPEN_MAX}
A value one greater than the maximum value that the system may assign to a newly-created
file descriptor.
Value: 20

288 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9998

9999

10000

10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

10011

10012

10013

10014

10015

10016

10017

10018

10019

10020

10021

10022

10023

10024

10025

10026

10027

10028

10029

10030

10031

10032

10033

10034

10035

10036

10037

10038

10039

10040

10041

10042

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <limits.h>

{_POSIX_PATH_MAX}
Minimum number the implementation shall accept as the maximum number of bytes in a
pathname.
Value: 256

{_POSIX_PIPE_BUF}
Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
Value: 512

{_POSIX_RE_DUP_MAX}
Maximum number of repeated occurrences of a BRE or ERE interval expression; see Section
9.3.6 (on page 185) and Section 9.4.6 (on page 189).
Value: 255

{_POSIX_RTSIG_MAX}
The number of realtime signal numbers reserved for application use.
Value: 8

{_POSIX_SEM_NSEMS_MAX}
The number of semaphores that a process may have.
Value: 256

{_POSIX_SEM_VALUE_MAX}
The maximum value a semaphore may have.
Value: 32 767

{_POSIX_SIGQUEUE_MAX}
The number of queued signals that a process may send and have pending at the receiver(s)
at any time.
Value: 32

{_POSIX_SSIZE_MAX}
The value that can be stored in an object of type ssize_t.
Value: 32 767

SS|TSP {_POSIX_SS_REPL_MAX}
The number of replenishment operations that may be simultaneously pending for a
particular sporadic server scheduler.
Value: 4

{_POSIX_STREAM_MAX}
The number of streams that one process can have open at one time.
Value: 8

{_POSIX_SYMLINK_MAX}
The number of bytes in a symbolic link.
Value: 255

{_POSIX_SYMLOOP_MAX}
The number of symbolic links that can be traversed in the resolution of a pathname in the
absence of a loop.
Value: 8

{_POSIX_THREAD_DESTRUCTOR_ITERATIONS}
The number of attempts made to destroy a thread’s thread-specific data values on thread
exit.
Value: 4

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 289

10043

10044

10045

10046

10047

10048

10049

10050

10051

10052

10053

10054

10055

10056

10057

10058

10059

10060

10061

10062

10063

10064

10065

10066

10067

10068

10069

10070

10071

10072

10073

10074

10075

10076

10077

10078

10079

10080

10081

10082

10083

10084

10085

10086

10087

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<limits.h> Headers

{_POSIX_THREAD_KEYS_MAX}
The number of data keys per process.
Value: 128

{_POSIX_THREAD_THREADS_MAX}
The number of threads per process.
Value: 64

{_POSIX_TIMER_MAX}
The per-process number of timers.
Value: 32

{_POSIX_TTY_NAME_MAX}
The size of the storage required for a terminal device name, in bytes (including the
terminating null).
Value: 9

{_POSIX_TZNAME_MAX}
Maximum number of bytes supported for the name of a timezone (not of the TZ variable).
Value: 6

Note: The length given by {_POSIX_TZNAME_MAX} does not include the quoting characters
mentioned in Section 8.3 (on page 174).

{_POSIX2_BC_BASE_MAX}
Maximum obase values allowed by the bc utility.
Value: 99

{_POSIX2_BC_DIM_MAX}
Maximum number of elements permitted in an array by the bc utility.
Value: 2 048

{_POSIX2_BC_SCALE_MAX}
Maximum scale value allowed by the bc utility.
Value: 99

{_POSIX2_BC_STRING_MAX}
Maximum length of a string constant accepted by the bc utility.
Value: 1 000

{_POSIX2_CHARCLASS_NAME_MAX}
Maximum number of bytes in a character class name.
Value: 14

{_POSIX2_COLL_WEIGHTS_MAX}
Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see Chapter 7 (on page 127).
Value: 2

{_POSIX2_EXPR_NEST_MAX}
Maximum number of expressions that can be nested within parentheses by the expr utility.
Value: 32

{_POSIX2_LINE_MAX}
Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
standard input or another file), when the utility is described as processing text files. The
length includes room for the trailing <newline>.
Value: 2 048

290 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10088

10089

10090

10091

10092

10093

10094

10095

10096

10097

10098

10099

10100

10101

10102

10103

10104

10105

10106

10107

10108

10109

10110

10111

10112

10113

10114

10115

10116

10117

10118

10119

10120

10121

10122

10123

10124

10125

10126

10127

10128

10129

10130

10131

10132

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <limits.h>

{_POSIX2_RE_DUP_MAX}
Maximum number of repeated occurrences of a BRE or ERE interval expression; see Section
9.3.6 (on page 185) and Section 9.4.6 (on page 189).
Value: 255

XSI {_XOPEN_IOV_MAX}
Maximum number of iovec structures that one process has available for use with readv() or
writev().
Value: 16

XSI {_XOPEN_NAME_MAX}
Maximum number of bytes in a filename (not including the terminating null of a filename
string).
Value: 255

XSI {_XOPEN_PATH_MAX}
Minimum number the implementation shall accept as the maximum number of bytes in a
pathname.
Value: 1 024

Numerical Limits

The <limits.h> header shall define the following macros and, except for {CHAR_BIT},
{LONG_BIT}, {MB_LEN_MAX}, and {WORD_BIT}, they shall be replaced by expressions that
have the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions.

If an object of type char can hold negative values, the value of {CHAR_MIN} shall be the same as
that of {SCHAR_MIN} and the value of {CHAR_MAX} shall be the same as that of
{SCHAR_MAX}. Otherwise, the value of {CHAR_MIN} shall be 0 and the value of
{CHAR_MAX} shall be the same as that of {UCHAR_MAX}.

{CHAR_BIT}
Number of bits in a type char.

CX Value: 8

{CHAR_MAX}
Maximum value for an object of type char.
Value: {UCHAR_MAX} or {SCHAR_MAX}

{CHAR_MIN}
Minimum value for an object of type char.
Value: {SCHAR_MIN} or 0

{INT_MAX}
Maximum value for an object of type int.

CX Minimum Acceptable Value: 2 147 483 647

{INT_MIN}
Minimum value for an object of type int.

CX Maximum Acceptable Value: −2 147 483 648

{LLONG_MAX}
Maximum value for an object of type long long.
Minimum Acceptable Value: +9 223 372 036 854 775 807

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 291

10133

10134

10135

10136

10137

10138

10139

10140

10141

10142

10143

10144

10145

10146

10147

10148

10149

10150

10151

10152

10153

10154

10155

10156

10157

10158

10159

10160

10161

10162

10163

10164

10165

10166

10167

10168

10169

10170

10171

10172

10173

10174

10175

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<limits.h> Headers

{LLONG_MIN}
Minimum value for an object of type long long.

CX Maximum Acceptable Value: −9 223 372 036 854 775 808

CX {LONG_BIT}
Number of bits in an object of type long.
Minimum Acceptable Value: 32

{LONG_MAX}
Maximum value for an object of type long.
Minimum Acceptable Value: +2 147 483 647

{LONG_MIN}
Minimum value for an object of type long.

CX Maximum Acceptable Value: −2 147 483 648

{MB_LEN_MAX}
Maximum number of bytes in a character, for any supported locale.
Minimum Acceptable Value: 1

{SCHAR_MAX}
Maximum value for an object of type signed char.

CX Value: +127

{SCHAR_MIN}
Minimum value for an object of type signed char.

CX Value: −128

{SHRT_MAX}
Maximum value for an object of type short.
Minimum Acceptable Value: +32 767

{SHRT_MIN}
Minimum value for an object of type short.

CX Maximum Acceptable Value: −32 768

CX {SSIZE_MAX}
Maximum value for an object of type ssize_t.
Minimum Acceptable Value: {_POSIX_SSIZE_MAX}

{UCHAR_MAX}
Maximum value for an object of type unsigned char.

CX Value: 255

{UINT_MAX}
Maximum value for an object of type unsigned.

CX Minimum Acceptable Value: 4 294 967 295

{ULLONG_MAX}
Maximum value for an object of type unsigned long long.
Minimum Acceptable Value: 18 446 744 073 709 551 615

{ULONG_MAX}
Maximum value for an object of type unsigned long.
Minimum Acceptable Value: 4 294 967 295

{USHRT_MAX}
Maximum value for an object of type unsigned short.
Minimum Acceptable Value: 65 535

292 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10176

10177

10178

10179

10180

10181

10182

10183

10184

10185

10186

10187

10188

10189

10190

10191

10192

10193

10194

10195

10196

10197

10198

10199

10200

10201

10202

10203

10204

10205

10206

10207

10208

10209

10210

10211

10212

10213

10214

10215

10216

10217

10218

10219

10220

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <limits.h>

CX {WORD_BIT}
Number of bits in an object of type int.
Minimum Acceptable Value: 32

Other Invariant Values

The <limits.h> header shall define the following symbolic constants:

{GETENTROPY_MAX}
The maximum value of the length argument in calls to the getentropy() function.
Minimum Acceptable Value: 256

{NL_ARGMAX}
Maximum value of n in conversion specifications using the "%n$" sequence in calls to the
printf() and scanf() families of functions.
Minimum Acceptable Value: 9

XSI {NL_LANGMAX}
Maximum number of bytes in a LANG name.
Minimum Acceptable Value: 14

{NL_MSGMAX}
Maximum message number.
Minimum Acceptable Value: 32 767

{NL_SETMAX}
Maximum set number.
Minimum Acceptable Value: 255

{NL_TEXTMAX}
Maximum number of bytes in a message string.
Minimum Acceptable Value: {_POSIX2_LINE_MAX}

{NSIG_MAX}
Maximum possible return value of sysconf (_SC_NSIG). See XSH sysconf(). The value of
{NSIG_MAX} shall be no greater than the number of signals that the sigset_t type (see
<signal.h>) is capable of representing, ignoring any restrictions imposed by sigfillset() or
sigaddset().

XSI {NZERO}
Default process priority.
Minimum Acceptable Value: 20

APPLICATION USAGE
None.

RATIONALE
A request was made to reduce the value of {_POSIX_LINK_MAX} from the value of 8 specified
for it in the POSIX.1-1990 standard to 2. The standard developers decided to deny this request
for several reasons:

• They wanted to avoid making any changes to the standard that could break conforming
applications, and the requested change could have that effect.

• The use of multiple hard links to a file cannot always be replaced with use of symbolic
links. Symbolic links are semantically different from hard links in that they associate a
pathname with another pathname rather than a pathname with a file. This has
implications for access control, file permanence, and transparency.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 293

10221

10222

10223

10224

10225

10226

10227

10228

10229

10230

10231

10232

10233

10234

10235

10236

10237

10238

10239

10240

10241

10242

10243

10244

10245

10246

10247

10248

10249

10250

10251

10252

10253

10254

10255

10256

10257

10258

10259

10260

10261

10262

10263

10264

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<limits.h> Headers

• The original standard developers had considered the issue of allowing for
implementations that did not in general support hard links, and decided that this would
reduce consensus on the standard.

Systems that support historical versions of the development option of the ISO POSIX-2 standard
retain the name {_POSIX2_RE_DUP_MAX} as an alias for {_POSIX_RE_DUP_MAX}.

{NSIG_MAX}
Some historical implementations provided compile-time constants NSIG or SIGMAX to
define the maximum number of signals the implementation supported, but these values did
not necessarily reflect the number of signals that could be handled using a sigset_t. With
the addition of real-time signals and the desire by some applications to be able to allocate
additional real-time signals at run-time, neither of these constants provided a useable,
portable value. {NSIG_MAX} was added to the standard to allow applications to determine
the maximum number of signals that an implementation will support based on the size of
the sigset_t type (defined in <signal.h>).

{PATH_MAX}
IEEE PASC Interpretation 1003.1 #15 addressed the inconsistency in the standard with the
definition of pathname and the description of {PATH_MAX}, allowing application
developers to allocate either {PATH_MAX} or {PATH_MAX}+1 bytes. The inconsistency has
been removed by correction to the {PATH_MAX} definition to include the null character.
With this change, applications that previously allocated {PATH_MAX} bytes will continue to
succeed.

{SYMLINK_MAX}
This symbol refers to space for data that is stored in the file system, as opposed to
{PATH_MAX} which is the length of a name that can be passed to a function. In some
existing implementations, the pathnames pointed to by symbolic links are stored in the
inodes of the links, so it is important that {SYMLINK_MAX} not be constrained to be as large
as {PATH_MAX}.

The maximum values for {SCHAR_MIN}, {SHRT_MIN}, {LONG_MIN} and {LLONG_MIN}
differ from the ISO C standard because POSIX.1 requires two’s complement representation for
the corresponding integer types. The maximum value for {INT_MIN} differs both for that reason
and because POSIX.1 requires that int has a width of at least 32 bits. See also the RATIONALE
section for <stdint.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 7 (on page 127), <stdint.h>, <stdio.h>, <unistd.h>

XSH Section 2.2 (on page 496), fpathconf(), getrlimit(), sysconf()

CHANGE HISTORY
First released in Issue 1.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

{FILESIZEBITS} is added for the Large File Summit extensions.

The minimum acceptable values for {INT_MAX}, {INT_MIN}, and {UINT_MAX} are changed to
make 32-bit values the minimum requirement.

294 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10265

10266

10267

10268

10269

10270

10271

10272

10273

10274

10275

10276

10277

10278

10279

10280

10281

10282

10283

10284

10285

10286

10287

10288

10289

10290

10291

10292

10293

10294

10295

10296

10297

10298

10299

10300

10301

10302

10303

10304

10305

10306

10307

10308

10309

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <limits.h>

The entry is restructured to improve readability.

Issue 6
The Open Group Corrigendum U033/4 is applied. The wording is made clear for {CHAR_MIN},
{INT_MIN}, {LONG_MIN}, {SCHAR_MIN}, and {SHRT_MIN} that these are maximum
acceptable values.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The minimum value for {CHILD_MAX} is 25. This is a FIPS requirement.

• The minimum value for {OPEN_MAX} is 20. This is a FIPS requirement.

• The minimum value for {NGROUPS_MAX} is 8. This is also a FIPS requirement.

Symbolic constants are added for {_POSIX_SYMLINK_MAX}, {_POSIX_SYMLOOP_MAX},
{_POSIX_RE_DUP_MAX}, {RE_DUP_MAX}, {SYMLOOP_MAX}, and {SYMLINK_MAX}.

The following values are added for alignment with IEEE Std 1003.1d-1999:

{_POSIX_SS_REPL_MAX}
{SS_REPL_MAX}
{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

Reference to CLOCK_MONOTONIC is added in the description of {_POSIX_CLOCKRES_MIN}
for alignment with IEEE Std 1003.1j-2000.

The constants {LLONG_MIN}, {LLONG_MAX}, and {ULLONG_MAX} are added for alignment
with the ISO/IEC 9899: 1999 standard.

The following values are added for alignment with IEEE Std 1003.1q-2000:

{_POSIX_TRACE_EVENT_NAME_MAX}
{_POSIX_TRACE_NAME_MAX}
{_POSIX_TRACE_SYS_MAX}
{_POSIX_TRACE_USER_EVENT_MAX}
{TRACE_EVENT_NAME_MAX}
{TRACE_NAME_MAX}
{TRACE_SYS_MAX}
{TRACE_USER_EVENT_MAX}

The new limits {_XOPEN_NAME_MAX} and {_XOPEN_PATH_MAX} are added as minimum
values for {PATH_MAX} and {NAME_MAX} limits on XSI-conformant systems.

The LEGACY symbols {PASS_MAX} and {TMP_MAX} are removed.

The values for the limits {CHAR_BIT}, {SCHAR_MAX}, and {UCHAR_MAX} are now required
to be 8, +127, and 255, respectively.

The value for the limit {CHAR_MAX} is now {UCHAR_MAX} or {SCHAR_MAX}.

The value for the limit {CHAR_MIN} is now {SCHAR_MIN} or zero.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/10 is applied, correcting the value of
{_POSIX_CHILD_MAX} from 6 to 25. This is for FIPS 151-2 alignment.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 295

10310

10311

10312

10313

10314

10315

10316

10317

10318

10319

10320

10321

10322

10323

10324

10325

10326

10327

10328

10329

10330

10331

10332

10333

10334

10335

10336

10337

10338

10339

10340

10341

10342

10343

10344

10345

10346

10347

10348

10349

10350

10351

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<limits.h> Headers

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/19 is applied, updating the values for
{INT_MAX}, {UINT_MAX}, and {INT_MIN} to be CX extensions over the ISO C standard, and
correcting {WORD_BIT} from 16 to 32.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/20 is applied, removing
{CHARCLASS_NAME_MAX} from the ``Other Invariant Values’’ section (it also occurs under
``Runtime Increasable Values’’).

Issue 7
Austin Group Interpretations 1003.1-2001 #143 and #160 are applied.

Austin Group Interpretation 1003.1-2001 #173 is applied, updating the descriptions of
{TRACE_EVENT_NAME_MAX} and {TRACE_NAME_MAX} to not include the terminating
null.

SD5-XBD-ERN-36 is applied, changing the description of {RE_DUP_MAX}.

SD5-XBD-ERN-90 is applied.

{NL_NMAX} is removed; it should have been removed in Issue 6.

The Trace option values are marked obsolescent.

The {ATEXIT_MAX}, {LONG_BIT}, {NL_MSGMAX}, {NL_SETMAX}, {NL_TEXTMAX}, and
{WORD_BIT} values are moved from the XSI option to the Base.

The AIO_* and _POSIX_AIO_* values are moved from the Asynchronous Input and Output
option to the Base.

The {_POSIX_RTSIG_MAX}, {_POSIX_SIGQUEUE_MAX}, {RTSIG_MAX}, and
{SIGQUEUE_MAX} values are moved from the Realtime Signals Extension option to the Base.

Functionality relating to the Threads and Timers options is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0052 [108], XBD/TC1-2008/0053 [291],
XBD/TC1-2008/0054 [182,427], XBD/TC1-2008/0055 [291], XBD/TC1-2008/0056 [371],
XBD/TC1-2008/0057 [291], XBD/TC1-2008/0058 [108], and XBD/TC1-2008/0059 [291] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0061 [666] is applied.

Issue 8
Austin Group Defect 741 is applied, adding {NSIG_MAX}.

Austin Group Defect 1108 is applied, changing the maximum allowed value for all signed
integer minimum limits.

Austin Group Defect 1122 is applied, adding {TEXTDOMAIN_MAX}.

Austin Group Defect 1134 is applied, adding {GETENTROPY_MAX}.

Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

Austin Group Defect 1446 is applied, changing the introductory paragraphs of the
DESCRIPTION to include mention of setrlimit() and getrlimit().

296 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10352

10353

10354

10355

10356

10357

10358

10359

10360

10361

10362

10363

10364

10365

10366

10367

10368

10369

10370

10371

10372

10373

10374

10375

10376

10377

10378

10379

10380

10381

10382

10383

10384

10385

10386

10387

10388

10389

10390

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <locale.h>

NAME
locale.h — category macros

SYNOPSIS
#include <locale.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <locale.h> header shall define the lconv structure, which shall include at least the following
members. (See the definitions of LC_MONETARY in Section 7.3.3 (on page 147) and Section 7.3.4
(on page 151).)

char *currency_symbol
char *decimal_point
char frac_digits
char *grouping
char *int_curr_symbol
char int_frac_digits
char int_n_cs_precedes
char int_n_sep_by_space
char int_n_sign_posn
char int_p_cs_precedes
char int_p_sep_by_space
char int_p_sign_posn
char *mon_decimal_point
char *mon_grouping
char *mon_thousands_sep
char *negative_sign
char n_cs_precedes
char n_sep_by_space
char n_sign_posn
char *positive_sign
char p_cs_precedes
char p_sep_by_space
char p_sign_posn
char *thousands_sep

The <locale.h> header shall define NULL (as described in <stddef.h>) and at least the following
as macros:

LC_ALL
LC_COLLATE
LC_CTYPE

CX LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

which shall expand to integer constant expressions with distinct values for use as the first
argument to the setlocale() function.

Additional macro definitions, beginning with the characters LC_ and an uppercase letter, may
also be specified by the implementation.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 297

10391

10392

10393

10394

10395

10396

10397

10398

10399

10400

10401

10402

10403

10404

10405

10406

10407

10408

10409

10410

10411

10412

10413

10414

10415

10416

10417

10418

10419

10420

10421

10422

10423

10424

10425

10426

10427

10428

10429

10430

10431

10432

10433

10434

10435

10436

10437

10438

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<locale.h> Headers

CX The <locale.h> header shall contain at least the following macros representing bitmasks for use
with the newlocale() function for each supported locale category:

LC_COLLATE_MASK
LC_CTYPE_MASK
LC_MESSAGES_MASK
LC_MONETARY_MASK
LC_NUMERIC_MASK
LC_TIME_MASK

In addition, a macro to set the bits for all categories set shall be defined:

LC_ALL_MASK

The <locale.h> header shall define LC_GLOBAL_LOCALE, a special locale object descriptor
used by the duplocale() and uselocale() functions.

The <locale.h> header shall define the locale_t type, representing a locale object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

CX locale_t duplocale(locale_t);
void freelocale(locale_t);
const char *getlocalename_l(int, locale_t);
struct lconv *localeconv(void);

CX locale_t newlocale(int, const char *, locale_t);
char *setlocale(int, const char *);

CX locale_t uselocale (locale_t);

APPLICATION USAGE
None.

RATIONALE
It is suggested that each category macro name for use in setlocale() have a corresponding macro
name ending in _MASK for use in newlocale().

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 8 (on page 167), <stddef.h>

XSH duplocale(), freelocale(), getlocalename_l(), localeconv(), newlocale(), setlocale(), uselocale()

CHANGE HISTORY
First released in Issue 3.

Included for alignment with the ISO C standard.

Issue 6
The lconv structure is expanded with new members (int_n_cs_precedes, int_n_sep_by_space,
int_n_sign_posn, int_p_cs_precedes, int_p_sep_by_space, and int_p_sign_posn) for alignment
with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.

298 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10439

10440

10441

10442

10443

10444

10445

10446

10447

10448

10449

10450

10451

10452

10453

10454

10455

10456

10457

10458

10459

10460

10461

10462

10463

10464

10465

10466

10467

10468

10469

10470

10471

10472

10473

10474

10475

10476

10477

10478

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <locale.h>

Issue 7
The duplocale(), freelocale(), newlocale(), and uselocale() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0060 [301,427] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0062 [781] is applied.

Issue 8
Austin Group Defect 1220 is applied, adding getlocalename_l().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 299

10479

10480

10481

10482

10483

10484

10485

10486

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<math.h> Headers

NAME
math.h — mathematical declarations

SYNOPSIS
#include <math.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <math.h> header shall define at least the following types:

float_t A real-floating type at least as wide as float.

double_t A real-floating type at least as wide as double, and at least as wide as float_t.

If FLT_EVAL_METHOD equals 0, float_t and double_t shall be float and double, respectively; if
FLT_EVAL_METHOD equals 1, they shall both be double; if FLT_EVAL_METHOD equals 2,
they shall both be long double; for other values of FLT_EVAL_METHOD, they are otherwise
implementation-defined.

The <math.h> header shall define the following macros, where real-floating indicates that the
argument shall be an expression of real-floating type:

int fpclassify(real-floating x);
int isfinite(real-floating x);
int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isinf(real-floating x);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);
int isnan(real-floating x);
int isnormal(real-floating x);
int isunordered(real-floating x, real-floating y);
int signbit(real-floating x);

XSI The <math.h> header shall define the following symbolic constants. Where the constant name
ends in 'l' (lower case ell), the values shall have type long double; otherwise the values shall
have type double. The values shall be accurate to the precision of their type. If the
implementation supports FLT_EVAL_METHOD values other than 0 or 1, the values shall either
include an explicit cast for that type, or be expressed as hexadecimal floating constants.

300 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10487

10488

10489

10490

10491

10492

10493

10494

10495

10496

10497

10498

10499

10500

10501

10502

10503

10504

10505

10506

10507

10508

10509

10510

10511

10512

10513

10514

10515

10516

10517

10518

10519

10520

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <math.h>

Double Long Double Value
M_E M_El Value of e
M_EGAMMA M_EGAMMAl Value of γ , Euler-Mascheroni constant
M_LOG2E M_LOG2El Value of log2 e
M_LOG10E M_LOG10El Value of log10 e
M_LN2 M_LN2l Value of loge 2
M_LN10 M_LN10l Value of loge 10
M_PHI M_PHIl Value of φ , (1 + √⎯5)/2, golden ratio constant
M_PI M_PIl Value of π
M_PI_2 M_PI_2l Value of π /2
M_PI_4 M_PI_4l Value of π /4
M_1_PI M_1_PIl Value of 1/π
M_1_SQRTPI M_1_SQRTPIl Value of 1/√⎯ ⎯π
M_2_PI M_2_PIl Value of 2/π
M_2_SQRTPI M_2_SQRTPIl Value of 2/√⎯ ⎯π
M_SQRT2 M_SQRT2l Value of √⎯2
M_SQRT3 M_SQRT3l Value of √⎯3
M_SQRT1_2 M_SQRT1_2l Value of 1/√⎯2
M_SQRT1_3 M_SQRT1_3l Value of 1/√⎯3

The <math.h> header shall define the following macros:

HUGE_VAL A positive double constant expression, not necessarily representable as a
float. Used as an error value returned by the mathematics library.
HUGE_VAL evaluates to +infinity on systems supporting IEEE Std 754-1985.

HUGE_VALF A positive float constant expression. Used as an error value returned by the
mathematics library. HUGE_VALF evaluates to +infinity on systems
supporting IEEE Std 754-1985.

HUGE_VALL A positive long double constant expression. Used as an error value returned
by the mathematics library. HUGE_VALL evaluates to +infinity on systems
supporting IEEE Std 754-1985.

INFINITY A constant expression of type float representing positive or unsigned infinity,
if available; else a positive constant of type float that overflows at translation
time.

NAN A constant expression of type float representing a quiet NaN. This macro is
only defined if the implementation supports quiet NaNs for the float type.

The following macros shall be defined for number classification. They represent the mutually-
exclusive kinds of floating-point values. They expand to integer constant expressions with
distinct values. Additional implementation-defined floating-point classifications, with macro
definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

The following optional macros indicate whether the fma() family of functions are fast compared

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 301

10521

10522

10523

10524

10525

10526

10527

10528

10529

10530

10531

10532

10533

10534

10535

10536

10537

10538

10539

10540

10541

10542

10543

10544

10545

10546

10547

10548

10549

10550

10551

10552

10553

10554

10555

10556

10557

10558

10559

10560

10561

10562

10563

10564

10565

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<math.h> Headers

with direct code:

FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL

If defined, the FP_FAST_FMA macro shall expand to the integer constant 1 and shall indicate
that the fma() function generally executes about as fast as, or faster than, a multiply and an add
of double operands. If undefined, the speed of execution is unspecified. The other macros have
the equivalent meaning for the float and long double versions.

The following macros shall expand to integer constant expressions whose values are returned by
ilogb(x) if x is zero or NaN, respectively. The value of FP_ILOGB0 shall be either {INT_MIN} or
−{INT_MAX}. The value of FP_ILOGBNAN shall be either {INT_MAX} or {INT_MIN}.

FP_ILOGB0
FP_ILOGBNAN

The following macros shall expand to the integer constants 1 and 2, respectively;

MATH_ERRNO
MATH_ERREXCEPT

The following macro shall expand to an expression that has type int and the value
MATH_ERRNO, MATH_ERREXCEPT, or the bitwise-inclusive OR of both:

math_errhandling

The value of math_errhandling is constant for the duration of the program. It is unspecified
whether math_errhandling is a macro or an identifier with external linkage. If a macro definition
is suppressed or a program defines an identifier with the name math_errhandling , the behavior
is undefined. If the expression (math_errhandling & MATH_ERREXCEPT) can be non-zero, the
implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in
<fenv.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

double acos(double);
float acosf(float);
double acosh(double);
float acoshf(float);
long double acoshl(long double);
long double acosl(long double);
double asin(double);
float asinf(float);
double asinh(double);
float asinhf(float);
long double asinhl(long double);
long double asinl(long double);
double atan(double);
double atan2(double, double);
float atan2f(float, float);
long double atan2l(long double, long double);
float atanf(float);

302 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10566

10567

10568

10569

10570

10571

10572

10573

10574

10575

10576

10577

10578

10579

10580

10581

10582

10583

10584

10585

10586

10587

10588

10589

10590

10591

10592

10593

10594

10595

10596

10597

10598

10599

10600

10601

10602

10603

10604

10605

10606

10607

10608

10609

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <math.h>

double atanh(double);
float atanhf(float);
long double atanhl(long double);
long double atanl(long double);
double cbrt(double);
float cbrtf(float);
long double cbrtl(long double);
double ceil(double);
float ceilf(float);
long double ceill(long double);
double copysign(double, double);
float copysignf(float, float);
long double copysignl(long double, long double);
double cos(double);
float cosf(float);
double cosh(double);
float coshf(float);
long double coshl(long double);
long double cosl(long double);
double erf(double);
double erfc(double);
float erfcf(float);
long double erfcl(long double);
float erff(float);
long double erfl(long double);
double exp(double);
double exp2(double);
float exp2f(float);
long double exp2l(long double);
float expf(float);
long double expl(long double);
double expm1(double);
float expm1f(float);
long double expm1l(long double);
double fabs(double);
float fabsf(float);
long double fabsl(long double);
double fdim(double, double);
float fdimf(float, float);
long double fdiml(long double, long double);
double floor(double);
float floorf(float);
long double floorl(long double);
double fma(double, double, double);
float fmaf(float, float, float);
long double fmal(long double, long double, long double);
double fmax(double, double);
float fmaxf(float, float);
long double fmaxl(long double, long double);
double fmin(double, double);
float fminf(float, float);
long double fminl(long double, long double);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 303

10610

10611

10612

10613

10614

10615

10616

10617

10618

10619

10620

10621

10622

10623

10624

10625

10626

10627

10628

10629

10630

10631

10632

10633

10634

10635

10636

10637

10638

10639

10640

10641

10642

10643

10644

10645

10646

10647

10648

10649

10650

10651

10652

10653

10654

10655

10656

10657

10658

10659

10660

10661

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<math.h> Headers

double fmod(double, double);
float fmodf(float, float);
long double fmodl(long double, long double);
double frexp(double, int *);
float frexpf(float, int *);
long double frexpl(long double, int *);
double hypot(double, double);
float hypotf(float, float);
long double hypotl(long double, long double);
int ilogb(double);
int ilogbf(float);
int ilogbl(long double);

XSI double j0(double);
double j1(double);
double jn(int, double);
double ldexp(double, int);
float ldexpf(float, int);
long double ldexpl(long double, int);
double lgamma(double);
float lgammaf(float);
long double lgammal(long double);
long long llrint(double);
long long llrintf(float);
long long llrintl(long double);
long long llround(double);
long long llroundf(float);
long long llroundl(long double);
double log(double);
double log10(double);
float log10f(float);
long double log10l(long double);
double log1p(double);
float log1pf(float);
long double log1pl(long double);
double log2(double);
float log2f(float);
long double log2l(long double);
double logb(double);
float logbf(float);
long double logbl(long double);
float logf(float);
long double logl(long double);
long lrint(double);
long lrintf(float);
long lrintl(long double);
long lround(double);
long lroundf(float);
long lroundl(long double);
double modf(double, double *);
float modff(float, float *);
long double modfl(long double, long double *);
double nan(const char *);

304 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10662

10663

10664

10665

10666

10667

10668

10669

10670

10671

10672

10673

10674

10675

10676

10677

10678

10679

10680

10681

10682

10683

10684

10685

10686

10687

10688

10689

10690

10691

10692

10693

10694

10695

10696

10697

10698

10699

10700

10701

10702

10703

10704

10705

10706

10707

10708

10709

10710

10711

10712

10713

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <math.h>

float nanf(const char *);
long double nanl(const char *);
double nearbyint(double);
float nearbyintf(float);
long double nearbyintl(long double);
double nextafter(double, double);
float nextafterf(float, float);
long double nextafterl(long double, long double);
double nexttoward(double, long double);
float nexttowardf(float, long double);
long double nexttowardl(long double, long double);
double pow(double, double);
float powf(float, float);
long double powl(long double, long double);
double remainder(double, double);
float remainderf(float, float);
long double remainderl(long double, long double);
double remquo(double, double, int *);
float remquof(float, float, int *);
long double remquol(long double, long double, int *);
double rint(double);
float rintf(float);
long double rintl(long double);
double round(double);
float roundf(float);
long double roundl(long double);
double scalbln(double, long);
float scalblnf(float, long);
long double scalblnl(long double, long);
double scalbn(double, int);
float scalbnf(float, int);
long double scalbnl(long double, int);
double sin(double);
float sinf(float);
double sinh(double);
float sinhf(float);
long double sinhl(long double);
long double sinl(long double);
double sqrt(double);
float sqrtf(float);
long double sqrtl(long double);
double tan(double);
float tanf(float);
double tanh(double);
float tanhf(float);
long double tanhl(long double);
long double tanl(long double);
double tgamma(double);
float tgammaf(float);
long double tgammal(long double);
double trunc(double);
float truncf(float);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 305

10714

10715

10716

10717

10718

10719

10720

10721

10722

10723

10724

10725

10726

10727

10728

10729

10730

10731

10732

10733

10734

10735

10736

10737

10738

10739

10740

10741

10742

10743

10744

10745

10746

10747

10748

10749

10750

10751

10752

10753

10754

10755

10756

10757

10758

10759

10760

10761

10762

10763

10764

10765

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<math.h> Headers

long double truncl(long double);
XSI double y0(double);

double y1(double);
double yn(int, double);

The following external variable shall be defined:

XSI extern int signgam;

The behavior of each of the functions defined in <math.h> is specified in the System Interfaces
volume of POSIX.1-2024 for all representable values of its input arguments, except where stated
otherwise. Each function shall execute as if it were a single operation without generating any
externally visible exceptional conditions.

APPLICATION USAGE
The FP_CONTRACT pragma can be used to allow (if the state is on) or disallow (if the state is
off) the implementation to contract expressions. Each pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state (on or off) for the pragma is implementation-defined.

RATIONALE
Before the ISO/IEC 9899: 1999 standard, the math library was defined only for the floating type
double. All the names formed by appending 'f' or 'l' to a name in <math.h> were reserved
to allow for the definition of float and long double libraries; and the ISO/IEC 9899: 1999
standard provided for all three versions of math functions.

The functions ecvt(), fcvt(), and gcvt() have been dropped from the ISO C standard since their
capability is available through sprintf().

The requirement for an explicit cast or representation via hexadecimal floating constants is to
guarantee that even when FLT_EVAL_METHOD is neither 0 nor 1, the expression
(double)M_PI == M_PI will always hold true. Earlier versions of this standard did not make
this requirement, because they lacked the 'l' (lower case ell) versions of the constants and were
allowed to provide M_PI with long double precision depending on FLT_EVAL_METHOD.

FUTURE DIRECTIONS
None.

SEE ALSO
<float.h>, <stddef.h>, <sys/types.h>

XSH Section 2.2 (on page 496), acos(), acosh(), asin(), asinh(), atan(), atan2(), atanh(), cbrt(),
ceil(), copysign(), cos(), cosh(), erf(), erfc(), exp(), exp2(), expm1(), fabs(), fdim(), floor(), fma(),
fmax(), fmin(), fmod(), fpclassify(), frexp(), hypot(), ilogb(), isfinite(), isgreater(), isinf(), isnan(),
isnormal(), isunordered(), j0(), ldexp(), lgamma(), llrint(), llround(), log(), log10(), log1p(), log2(),
logb(), lrint(), lround(), modf(), nan(), nearbyint(), nextafter(), pow(), remainder(), remquo(),
rint(), round(), scalbln(), signbit(), sin(), sinh(), sqrt(), tan(), tanh(), tgamma(), trunc(), y0()

306 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10766

10767

10768

10769

10770

10771

10772

10773

10774

10775

10776

10777

10778

10779

10780

10781

10782

10783

10784

10785

10786

10787

10788

10789

10790

10791

10792

10793

10794

10795

10796

10797

10798

10799

10800

10801

10802

10803

10804

10805

10806

10807

10808

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <math.h>

CHANGE HISTORY
First released in Issue 1.

Issue 6
This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/21 is applied, making it clear that the
meaning of the FP_FAST_FMA macro is unspecified if the macro is undefined.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #47 (SD5-XBD-ERN-52) is applied,
clarifying the wording of the FP_FAST_FMA macro.

The MAXFLOAT constant is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0063 [801] and XBD/TC2-2008/0064
[801] are applied.

Issue 8
Austin Group Defect 828 is applied, adding long double counterparts with names ending in
'l' to the double constants whose names begin with "M_", and changing the representation
requirements for those constants.

Austin Group Defect 1302 is applied, changing ``provides’’ to ``provided’’.

Austin Group Defect 1330 is applied, removing the obsolescent MAXFLOAT.

Austin Group Defect 1503 is applied, adding M_1_SQRTPI, M_EGAMMA, M_PHI, M_SQRT1_3,
and M_SQRT3.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 307

10809

10810

10811

10812

10813

10814

10815

10816

10817

10818

10819

10820

10821

10822

10823

10824

10825

10826

10827

10828

10829

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<monetary.h> Headers

NAME
monetary.h — monetary types

SYNOPSIS
#include <monetary.h>

DESCRIPTION
The <monetary.h> header shall define the locale_t type as described in <locale.h>.

The <monetary.h> header shall define the size_t type as described in <stddef.h>.

The <monetary.h> header shall define the ssize_t type as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

ssize_t strfmon(char *restrict, size_t, const char *restrict, ...);
ssize_t strfmon_l(char *restrict, size_t, locale_t,

const char *restrict, ...);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, <stddef.h>, <sys/types.h>

XSH strfmon()

CHANGE HISTORY
First released in Issue 4.

Issue 6
The restrict keyword is added to the prototype for strfmon().

Issue 7
The <monetary.h> header is moved from the XSI option to the Base.

The strfmon_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

A declaration for the locale_t type is added.

308 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10830

10831

10832

10833

10834

10835

10836

10837

10838

10839

10840

10841

10842

10843

10844

10845

10846

10847

10848

10849

10850

10851

10852

10853

10854

10855

10856

10857

10858

10859

10860

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <mqueue.h>

NAME
mqueue.h — message queues (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

DESCRIPTION
The <mqueue.h> header shall define the mqd_t type, which is used for message queue
descriptors. This is not an array type.

The <mqueue.h> header shall define the size_t and ssize_t types as described in <sys/types.h>.

The <mqueue.h> header shall define the struct timespec structure as described in <time.h>.

The tag sigevent shall be declared as naming an incomplete structure type, the contents of which
are described in the <signal.h> header.

The <mqueue.h> header shall define the mq_attr structure, which is used in getting and setting
the attributes of a message queue. Attributes are initially set when the message queue is created.
An mq_attr structure shall have at least the following fields:

long mq_flags Message queue flags.
long mq_maxmsg Maximum number of messages.
long mq_msgsize Maximum message size.
long mq_curmsgs Number of messages currently queued.

The <mqueue.h> header shall define O_RDONLY, O_WRONLY, O_RDWR, O_CREAT, O_EXCL,
and O_NONBLOCK as described in <fcntl.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int mq_close(mqd_t);
int mq_getattr(mqd_t, struct mq_attr *);
int mq_notify(mqd_t, const struct sigevent *);
mqd_t mq_open(const char *, int, ...);
ssize_t mq_receive(mqd_t, char *, size_t, unsigned *);
int mq_send(mqd_t, const char *, size_t, unsigned);
int mq_setattr(mqd_t, const struct mq_attr *restrict,

struct mq_attr *restrict);
ssize_t mq_timedreceive(mqd_t, char *restrict, size_t,

unsigned *restrict, const struct timespec *restrict);
int mq_timedsend(mqd_t, const char *, size_t, unsigned,

const struct timespec *);
int mq_unlink(const char *);

Inclusion of the <mqueue.h> header may make visible symbols defined in the headers
<fcntl.h>, <signal.h>, and <time.h>.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 309

10861

10862

10863

10864

10865

10866

10867

10868

10869

10870

10871

10872

10873

10874

10875

10876

10877

10878

10879

10880

10881

10882

10883

10884

10885

10886

10887

10888

10889

10890

10891

10892

10893

10894

10895

10896

10897

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<mqueue.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<fcntl.h>, <signal.h>, <sys/types.h>, <time.h>

XSH mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
mq_unlink()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <mqueue.h> header is marked as part of the Message Passing option.

The mq_timedreceive() and mq_timedsend() functions are added for alignment with IEEE Std
1003.1d-1999.

The restrict keyword is added to the prototypes for mq_setattr() and mq_timedreceive().

Issue 7
Type and structure declarations are added.

Issue 8
Austin Group Defect 593 is applied, adding O_RDONLY, O_WRONLY, O_RDWR, O_CREAT,
O_EXCL, and O_NONBLOCK.

Austin Group Defect 1282 is applied, removing the requirement for <mqueue.h> to define
pthread_attr_t.

310 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10898

10899

10900

10901

10902

10903

10904

10905

10906

10907

10908

10909

10910

10911

10912

10913

10914

10915

10916

10917

10918

10919

10920

10921

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <ndbm.h>

NAME
ndbm.h — definitions for ndbm database operations

SYNOPSIS
XSI #include <ndbm.h>

DESCRIPTION
The <ndbm.h> header shall define the datum type as a structure, which shall include at least the
following members:

void *dptr A pointer to the application’s data.
size_t dsize The size of the object pointed to by dptr.

The <ndbm.h> header shall define the size_t type as described in <stddef.h>.

The <ndbm.h> header shall define the DBM type.

The <ndbm.h> header shall define the following symbolic constants as possible values for the
store_mode argument to dbm_store():

DBM_INSERT Insertion of new entries only.

DBM_REPLACE Allow replacing existing entries.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int dbm_clearerr(DBM *);
void dbm_close(DBM *);
int dbm_delete(DBM *, datum);
int dbm_error(DBM *);
datum dbm_fetch(DBM *, datum);
datum dbm_firstkey(DBM *);
datum dbm_nextkey(DBM *);
DBM *dbm_open(const char *, int, mode_t);
int dbm_store(DBM *, datum, datum, int);

The <ndbm.h> header shall define the mode_t type through typedef, as described in
<sys/types.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stddef.h>, <sys/types.h>

XSH dbm_clearerr()

CHANGE HISTORY
First released in Issue 4, Version 2.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 311

10922

10923

10924

10925

10926

10927

10928

10929

10930

10931

10932

10933

10934

10935

10936

10937

10938

10939

10940

10941

10942

10943

10944

10945

10946

10947

10948

10949

10950

10951

10952

10953

10954

10955

10956

10957

10958

10959

10960

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<ndbm.h> Headers

Issue 5
References to the definitions of size_t and mode_t are added to the DESCRIPTION.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

312 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10961

10962

10963

10964

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <net/if.h>

NAME
net/if.h — sockets local interfaces

SYNOPSIS
#include <net/if.h>

DESCRIPTION
The <net/if.h> header shall define the if_nameindex structure, which shall include at least the
following members:

unsigned if_index Numeric index of the interface.
char *if_name Null-terminated name of the interface.

The <net/if.h> header shall define the following symbolic constant for the length of a buffer
containing an interface name (including the terminating NULL character):

IF_NAMESIZE Interface name length.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void if_freenameindex(struct if_nameindex *);
char *if_indextoname(unsigned, char *);
struct if_nameindex *if_nameindex(void);
unsigned if_nametoindex(const char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH if_freenameindex(), if_indextoname(), if_nameindex(), if_nametoindex()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 313

10965

10966

10967

10968

10969

10970

10971

10972

10973

10974

10975

10976

10977

10978

10979

10980

10981

10982

10983

10984

10985

10986

10987

10988

10989

10990

10991

10992

10993

10994

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<netdb.h> Headers

NAME
netdb.h — definitions for network database operations

SYNOPSIS
#include <netdb.h>

DESCRIPTION
The <netdb.h> header shall define the hostent structure, which shall include at least the
following members:

char *h_name Official name of the host.
char **h_aliases A pointer to an array of pointers to

alternative host names, terminated by a
null pointer.

int h_addrtype Address type.
int h_length The length, in bytes, of the address.
char **h_addr_list A pointer to an array of pointers to network

addresses (in network byte order) for the host,
terminated by a null pointer.

The <netdb.h> header shall define the netent structure, which shall include at least the
following members:

char *n_name Official, fully-qualified (including the
domain) name of the host.

char **n_aliases A pointer to an array of pointers to
alternative network names, terminated by a
null pointer.

int n_addrtype The address type of the network.
uint32_t n_net The network number, in host byte order.

The <netdb.h> header shall define the uint32_t type as described in <inttypes.h>.

The <netdb.h> header shall define the protoent structure, which shall include at least the
following members:

char *p_name Official name of the protocol.
char **p_aliases A pointer to an array of pointers to

alternative protocol names, terminated by
a null pointer.

int p_proto The protocol number.

The <netdb.h> header shall define the servent structure, which shall include at least the
following members:

char *s_name Official name of the service.
char **s_aliases A pointer to an array of pointers to

alternative service names, terminated by
a null pointer.

int s_port A value which, when converted to uint16_t,
yields the port number in network byte order
at which the service resides.

char *s_proto The name of the protocol to use when
contacting the service.

The <netdb.h> header shall define the IPPORT_RESERVED symbolic constant with the value of
the highest reserved Internet port number.

314 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10995

10996

10997

10998

10999

11000

11001

11002

11003

11004

11005

11006

11007

11008

11009

11010

11011

11012

11013

11014

11015

11016

11017

11018

11019

11020

11021

11022

11023

11024

11025

11026

11027

11028

11029

11030

11031

11032

11033

11034

11035

11036

11037

11038

11039

11040

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <netdb.h>

Address Information Structure

The <netdb.h> header shall define the addrinfo structure, which shall include at least the
following members:

int ai_flags Input flags.
int ai_family Address family of socket.
int ai_socktype Socket type.
int ai_protocol Protocol of socket.
socklen_t ai_addrlen Length of socket address.
struct sockaddr *ai_addr Socket address of socket.
char *ai_canonname Canonical name of service location.
struct addrinfo *ai_next Pointer to next in list.

The addrinfo structure shall not include any additional members which have a floating-point
type if an object of that type with an all-bits-zero representation does not have the value 0.0.

MX Implementations that define __STDC_IEC_559__ are required to treat the all-zero bit pattern for
a floating point object as a representation of 0.0, and may therefore have floating-point type
members.

The <netdb.h> header shall define the following symbolic constants that evaluate to bitwise-
distinct integer constants for use in the ai_flags field of the addrinfo structure:

AI_PASSIVE Socket address is intended for bind().

AI_CANONNAME Request for canonical name.

AI_NUMERICHOST Return numeric host address as name.

AI_NUMERICSERV Inhibit service name resolution.

AI_V4MAPPED If no IPv6 addresses are found, query for IPv4 addresses and return them
to the caller as IPv4-mapped IPv6 addresses.

AI_ALL Query for both IPv4 and IPv6 addresses.

AI_ADDRCONFIG Query for IPv4 addresses only when an IPv4 address is configured; query
for IPv6 addresses only when an IPv6 address is configured.

The <netdb.h> header shall define the following symbolic constants that evaluate to bitwise-
distinct integer constants for use in the flags argument to getnameinfo():

NI_NOFQDN Only the nodename portion of the FQDN is returned for local hosts.

NI_NUMERICHOST The numeric form of the node’s address is returned instead of its name.

NI_NAMEREQD Return an error if the node’s name cannot be located in the database.

NI_NUMERICSERV The numeric form of the service address is returned instead of its name.

NI_NUMERICSCOPE
For IPv6 addresses, the numeric form of the scope identifier is returned
instead of its name.

NI_DGRAM Indicates that the service is a datagram service (SOCK_DGRAM).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 315

11041

11042

11043

11044

11045

11046

11047

11048

11049

11050

11051

11052

11053

11054

11055

11056

11057

11058

11059

11060

11061

11062

11063

11064

11065

11066

11067

11068

11069

11070

11071

11072

11073

11074

11075

11076

11077

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<netdb.h> Headers

Address Information Errors

The <netdb.h> header shall define the following symbolic constants for use as error values for
getaddrinfo() and getnameinfo(). The values shall be suitable for use in #if preprocessing
directives.

EAI_AGAIN The name could not be resolved at this time. Future attempts may
succeed.

EAI_BADFLAGS The flags had an invalid value.

EAI_FAIL A non-recoverable error occurred.

EAI_FAMILY The address family was not recognized or the address length was invalid
for the specified family.

EAI_MEMORY There was a memory allocation failure.

EAI_NONAME The name does not resolve for the supplied parameters.

NI_NAMEREQD is set and the host’s name cannot be located, or both
nodename and servname were null.

EAI_SERVICE The service passed was not recognized for the specified socket type.

EAI_SOCKTYPE The intended socket type was not recognized.

EAI_SYSTEM A system error occurred. The error code can be found in errno.

EAI_OVERFLOW An argument buffer overflowed.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void endhostent(void);
void endnetent(void);
void endprotoent(void);
void endservent(void);
void freeaddrinfo(struct addrinfo *);
const char *gai_strerror(int);
int getaddrinfo(const char *restrict, const char *restrict,

const struct addrinfo *restrict,
struct addrinfo **restrict);

struct hostent *gethostent(void);
int getnameinfo(const struct sockaddr *restrict, socklen_t,

char *restrict, socklen_t, char *restrict,
socklen_t, int);

struct netent *getnetbyaddr(uint32_t, int);
struct netent *getnetbyname(const char *);
struct netent *getnetent(void);
struct protoent *getprotobyname(const char *);
struct protoent *getprotobynumber(int);
struct protoent *getprotoent(void);
struct servent *getservbyname(const char *, const char *);
struct servent *getservbyport(int, const char *);
struct servent *getservent(void);
void sethostent(int);
void setnetent(int);
void setprotoent(int);

316 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11078

11079

11080

11081

11082

11083

11084

11085

11086

11087

11088

11089

11090

11091

11092

11093

11094

11095

11096

11097

11098

11099

11100

11101

11102

11103

11104

11105

11106

11107

11108

11109

11110

11111

11112

11113

11114

11115

11116

11117

11118

11119

11120

11121

11122

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <netdb.h>

void setservent(int);

The <netdb.h> header shall define the socklen_t type through typedef, as described in
<sys/socket.h>.

Inclusion of the <netdb.h> header may also make visible all symbols from <netinet/in.h>,
<sys/socket.h>, and <inttypes.h>.

APPLICATION USAGE
The requirement that addrinfo does not include any additional members which have a floating-
point type if an object of that type with an all-bits-zero representation does not have the value
0.0 is to allow initialization of an addrinfo hints structure (see XSH freeaddrinfo()) using:

struct addrinfo hints;
memset(&hints, 0, sizeof hints);

as an alternative to the use of default initialization.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<inttypes.h>, <netinet/in.h>, <sys/socket.h>

XSH bind(), endhostent(), endnetent(), endprotoent(), endservent(), freeaddrinfo(), gai_strerror(),
getnameinfo()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Open Group Base Resolution bwg2001-009 is applied, which changes the return type for
gai_strerror() from char * to const char *. This is for coordination with the IPnG Working Group.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/11 is applied, adding a description of the
NI_NUMERICSCOPE macro and correcting the getnameinfo() function prototype. These changes
are for alignment with IPv6.

Issue 7
SD5-XBD-ERN-14 is applied, changing the description of the s_port member of the servent
structure.

The obsolescent h_errno external integer, and the obsolescent gethostbyaddr() and gethostbyname()
functions are removed, along with the HOST_NOT_FOUND, NO_DATA, NO_RECOVERY, and
TRY_AGAIN macros.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 940 is applied, requiring that the addrinfo structure does not include any
additional members which have a floating-point type if an object of that type with an all-bits-
zero representation does not have the value 0.0.

Austin Group Defect 1289 is applied, removing some redundant text from the DESCRIPTION.

Austin Group Defect 1327 is applied, changing ``flags’’ to ``ai_flags’’.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 317

11123

11124

11125

11126

11127

11128

11129

11130

11131

11132

11133

11134

11135

11136

11137

11138

11139

11140

11141

11142

11143

11144

11145

11146

11147

11148

11149

11150

11151

11152

11153

11154

11155

11156

11157

11158

11159

11160

11161

11162

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<netinet/in.h> Headers

NAME
netinet/in.h — Internet address family

SYNOPSIS
#include <netinet/in.h>

DESCRIPTION
The <netinet/in.h> header shall define the following types:

in_port_t Equivalent to the type uint16_t as described in <inttypes.h>.

in_addr_t Equivalent to the type uint32_t as described in <inttypes.h>.

The <netinet/in.h> header shall define the sa_family_t type as described in <sys/socket.h>.

The <netinet/in.h> header shall define the uint8_t and uint32_t types as described in
<inttypes.h>. Inclusion of the <netinet/in.h> header may also make visible all symbols from
<inttypes.h> and <sys/socket.h>.

The <netinet/in.h> header shall define the in_addr structure, which shall include at least the
following member:

in_addr_t s_addr

The <netinet/in.h> header shall define the sockaddr_in structure, which shall include at least
the following members:

sa_family_t sin_family AF_INET.
in_port_t sin_port Port number.
struct in_addr sin_addr IP address.

The sin_port and sin_addr members shall be in network byte order. If the sin_port value passed to
bind() is zero, the port number bound to the socket shall be one chosen by the implementation
from an implementation-defined port range to produce an unused local address.

The sockaddr_in structure is used to store addresses for the Internet address family. Pointers to
this type shall be cast by applications to struct sockaddr * for use with socket functions.

IP6 The <netinet/in.h> header shall define the in6_addr structure, which shall include at least the
following member:

uint8_t s6_addr[16]

This array is used to contain a 128-bit IPv6 address, stored in network byte order.

The <netinet/in.h> header shall define the sockaddr_in6 structure, which shall include at least
the following members:

sa_family_t sin6_family AF_INET6.
in_port_t sin6_port Port number.
uint32_t sin6_flowinfo IPv6 traffic class and flow information.
struct in6_addr sin6_addr IPv6 address.
uint32_t sin6_scope_id Set of interfaces for a scope.

The sockaddr_in6 structure shall not include any additional members which have a floating-
point type if an object of that type with an all-bits-zero representation does not have the value
0.0.

IP6 MX Implementations that define __STDC_IEC_559__ are required to treat the all-zero bit pattern for
a floating point object as a representation of 0.0, and may therefore have floating-point type
members.

318 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11163

11164

11165

11166

11167

11168

11169

11170

11171

11172

11173

11174

11175

11176

11177

11178

11179

11180

11181

11182

11183

11184

11185

11186

11187

11188

11189

11190

11191

11192

11193

11194

11195

11196

11197

11198

11199

11200

11201

11202

11203

11204

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <netinet/in.h>

IP6 The sin6_port and sin6_addr members shall be in network byte order. If the sin6_port value
passed to bind() is zero, the port number bound to the socket shall be one chosen by the
implementation from an implementation-defined port range to produce an unused local
address.

Prior to calling a function in this standard which reads values from a sockaddr_in6 structure (for
example, bind() or connect()), the application shall ensure that all members of the structure,
including any additional non-standard members, if any, are initialized. If the sockaddr_in6
structure has a non-standard member, and that member has a value other than the value that
would result from default initialization, the behavior of any function in this standard that reads
values from the sockaddr_in6 structure is implementation-defined. All functions in this
standard that return data in a sockaddr_in6 structure (for example, getaddrinfo() or accept())
shall initialize the structure in a way that meets the above requirements, and shall ensure that
each non-standard member, if any, has a value that produces the same behavior as default
initialization would in all functions in this standard which read values from a sockaddr_in6
structure.

The sin6_scope_id field is a 32-bit integer that identifies a set of interfaces as appropriate for the
scope of the address carried in the sin6_addr field. For a link scope sin6_addr, the application
shall ensure that sin6_scope_id is a link index. For a site scope sin6_addr, the application shall
ensure that sin6_scope_id is a site index. The mapping of sin6_scope_id to an interface or set of
interfaces is implementation-defined.

The <netinet/in.h> header shall declare the following external variable:

const struct in6_addr in6addr_any

This variable is initialized by the system to contain the wildcard IPv6 address. The
<netinet/in.h> header also defines the IN6ADDR_ANY_INIT macro. This macro shall be
constant at compile time and can be used to initialize a variable of type struct in6_addr to the
IPv6 wildcard address.

The <netinet/in.h> header shall declare the following external variable:

const struct in6_addr in6addr_loopback

This variable is initialized by the system to contain the loopback IPv6 address. The
<netinet/in.h> header also defines the IN6ADDR_LOOPBACK_INIT macro. This macro shall be
constant at compile time and can be used to initialize a variable of type struct in6_addr to the
IPv6 loopback address.

The <netinet/in.h> header shall define the ipv6_mreq structure, which shall include at least the
following members:

struct in6_addr ipv6mr_multiaddr IPv6 multicast address.
unsigned ipv6mr_interface Interface index.

The <netinet/in.h> header shall define the following symbolic constants for use as values of the
level argument of getsockopt() and setsockopt():

IPPROTO_IP Internet protocol.

IP6 IPPROTO_IPV6 Internet Protocol Version 6.

IPPROTO_ICMP Control message protocol.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 319

11205

11206

11207

11208

11209

11210

11211

11212

11213

11214

11215

11216

11217

11218

11219

11220

11221

11222

11223

11224

11225

11226

11227

11228

11229

11230

11231

11232

11233

11234

11235

11236

11237

11238

11239

11240

11241

11242

11243

11244

11245

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<netinet/in.h> Headers

RS IPPROTO_RAW Raw IP Packets Protocol.

IPPROTO_TCP Transmission control protocol.

IPPROTO_UDP User datagram protocol.

The <netinet/in.h> header shall define the following symbolic constant for use as a local address
in the structure passed to bind():

INADDR_ANY IPv4 wildcard address.

The <netinet/in.h> header shall define the following symbolic constant for use as a destination
address in the structures passed to connect(), sendmsg(), and sendto():

INADDR_BROADCAST IPv4 broadcast address.

The <netinet/in.h> header shall define the following symbolic constant, with the value
specified, to help applications declare buffers of the proper size to store IPv4 addresses in string
form:

INET_ADDRSTRLEN 16. Length of the string form for IP.

The htonl(), htons(), ntohl(), and ntohs() functions shall be available as described in
<arpa/inet.h>. Inclusion of the <netinet/in.h> header may also make visible all symbols from
<arpa/inet.h>.

IP6 The <netinet/in.h> header shall define the following symbolic constant, with the value
specified, to help applications declare buffers of the proper size to store IPv6 addresses in string
form:

INET6_ADDRSTRLEN 46. Length of the string form for IPv6.

IP6 The <netinet/in.h> header shall define the following symbolic constants, with distinct integer
values, for use in the option_name argument in the getsockopt() or setsockopt() functions at
protocol level IPPROTO_IPV6:

IPV6_JOIN_GROUP Join a multicast group.

IPV6_LEAVE_GROUP Quit a multicast group.

IPV6_MULTICAST_HOPS
Multicast hop limit.

IPV6_MULTICAST_IF Interface to use for outgoing multicast packets.

IPV6_MULTICAST_LOOP
Multicast packets are delivered back to the local application.

IPV6_UNICAST_HOPS Unicast hop limit.

IPV6_V6ONLY Restrict AF_INET6 socket to IPv6 communications only.

The <netinet/in.h> header shall define the following macros that test for special IPv6 addresses.
Each macro is of type int and takes a single argument of type const struct in6_addr *:

IN6_IS_ADDR_UNSPECIFIED
Unspecified address.

IN6_IS_ADDR_LOOPBACK
Loopback address.

320 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11246

11247

11248

11249

11250

11251

11252

11253

11254

11255

11256

11257

11258

11259

11260

11261

11262

11263

11264

11265

11266

11267

11268

11269

11270

11271

11272

11273

11274

11275

11276

11277

11278

11279

11280

11281

11282

11283

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <netinet/in.h>

IN6_IS_ADDR_MULTICAST
Multicast address.

IN6_IS_ADDR_LINKLOCAL
Unicast link-local address.

IN6_IS_ADDR_SITELOCAL
Unicast site-local address.

IN6_IS_ADDR_V4MAPPED
IPv4 mapped address.

IN6_IS_ADDR_V4COMPAT
IPv4-compatible address.

IN6_IS_ADDR_MC_NODELOCAL
Multicast node-local address.

IN6_IS_ADDR_MC_LINKLOCAL
Multicast link-local address.

IN6_IS_ADDR_MC_SITELOCAL
Multicast site-local address.

IN6_IS_ADDR_MC_ORGLOCAL
Multicast organization-local address.

IN6_IS_ADDR_MC_GLOBAL
Multicast global address.

APPLICATION USAGE
Although applications are required to initialize all members (including any non-standard ones)
of a sockaddr_in6 structure, the same is not required for the sockaddr_in structure, since
historically many applications only initialized the standard members. Despite this, applications
are encouraged to initialize sockaddr_in structures in a manner similar to the required
initialization of sockaddr_in6 structures.

The requirement that sockaddr_in6 does not include any additional members which have a
floating-point type if an object of that type with an all-bits-zero representation does not have the
value 0.0 is to allow initialization of a sockaddr_in6 structure using:

struct sockaddr_in6 sa;
memset(&sa, 0, sizeof sa);

as an alternative to the use of default initialization.

RATIONALE
The INADDR_ANY and INADDR_BROADCAST values are byte-order-neutral and thus their
byte order is not specified. Many implementations have additional constants as extensions, such
as INADDR_LOOPBACK, that are not byte-order-neutral. Traditionally, these constants are in
host byte order, requiring the use of htonl() when using them in a sockaddr_in structure.

FUTURE DIRECTIONS
None.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 321

11284

11285

11286

11287

11288

11289

11290

11291

11292

11293

11294

11295

11296

11297

11298

11299

11300

11301

11302

11303

11304

11305

11306

11307

11308

11309

11310

11311

11312

11313

11314

11315

11316

11317

11318

11319

11320

11321

11322

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<netinet/in.h> Headers

SEE ALSO
Section 4.13 (on page 99), <arpa/inet.h>, <inttypes.h>, <sys/socket.h>

XSH bind(), connect(), getsockopt(), htonl(), sendmsg(), sendto(), setsockopt()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The sin_zero member was removed from the sockaddr_in structure as per The Open Group Base
Resolution bwg2001-004.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/12 is applied, adding const qualifiers to
the in6addr_any and in6addr_loopback external variables.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/22 is applied, making it clear which
structure members are in network byte order.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0061 [355] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0065 [934], XBD/TC2-2008/0066 [952],
XBD/TC2-2008/0067 [934], and XBD/TC2-2008/0068 [952] are applied.

Issue 8
Austin Group Defect 940 is applied, requiring that the sockaddr_in6 structure does not include
any additional members which have a floating-point type if an object of that type with an all-
bits-zero representation does not have the value 0.0.

Austin Group Defect 1068 is applied, specifying how a sin_port or sin6_port value of zero is
handled by bind().

Austin Group Defect 1299 is applied, changing <netinet_in.h> to <netinet/in.h>.

322 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11323

11324

11325

11326

11327

11328

11329

11330

11331

11332

11333

11334

11335

11336

11337

11338

11339

11340

11341

11342

11343

11344

11345

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <netinet/tcp.h>

NAME
netinet/tcp.h — definitions for the Internet Transmission Control Protocol (TCP)

SYNOPSIS
#include <netinet/tcp.h>

DESCRIPTION
The <netinet/tcp.h> header shall define the following symbolic constant for use as a socket
option at the IPPROTO_TCP level:

TCP_NODELAY Avoid coalescing of small segments.

The implementation need not allow the value of the option to be set via setsockopt() or retrieved
via getsockopt().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/socket.h>

XSH getsockopt(), setsockopt()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 323

11346

11347

11348

11349

11350

11351

11352

11353

11354

11355

11356

11357

11358

11359

11360

11361

11362

11363

11364

11365

11366

11367

11368

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<nl_types.h> Headers

NAME
nl_types.h — data types

SYNOPSIS
#include <nl_types.h>

DESCRIPTION
The <nl_types.h> header shall define at least the following types:

nl_catd Used by the message catalog functions catopen(), catgets(), and catclose()
to identify a catalog descriptor.

nl_item Used by nl_langinfo() to identify items of langinfo data. Values of objects
of type nl_item are defined in <langinfo.h>.

The <nl_types.h> header shall define at least the following symbolic constants:

NL_SETD Used by gencat when no $set directive is specified in a message text source
file. This constant can be passed as the value of set_id on subsequent calls
to catgets() (that is, to retrieve messages from the default message set).
The value of NL_SETD is implementation-defined.

NL_CAT_LOCALE Value that can be passed as the oflag argument to catopen() to request that
message catalog selection depends on the LC_MESSAGES locale category,
rather than directly on the LANG environment variable.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int catclose(nl_catd);
char *catgets(nl_catd, int, int, const char *);
nl_catd catopen(const char *, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<langinfo.h>

XSH catclose(), catgets(), catopen(), nl_langinfo()

XCU gencat

CHANGE HISTORY
First released in Issue 2.

Issue 7
The <nl_types.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
The description of NL_CAT_LOCALE is updated to eliminate the use of ``must’’.

324 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11369

11370

11371

11372

11373

11374

11375

11376

11377

11378

11379

11380

11381

11382

11383

11384

11385

11386

11387

11388

11389

11390

11391

11392

11393

11394

11395

11396

11397

11398

11399

11400

11401

11402

11403

11404

11405

11406

11407

11408

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <poll.h>

NAME
poll.h — definitions for the poll() function

SYNOPSIS
#include <poll.h>

DESCRIPTION
The <poll.h> header shall define the pollfd structure, which shall include at least the following
members:

int fd The following descriptor being polled.
short events The input event flags (see below).
short revents The output event flags (see below).

The <poll.h> header shall define the following type through typedef:

nfds_t An unsigned integer type used for the number of file descriptors.

The implementation shall support one or more programming environments in which the width
of nfds_t is no greater than the width of type long. The names of these programming
environments can be obtained using the confstr() function or the getconf utility.

The <poll.h> header shall define the sigset_t type as described in <signal.h>.

The <poll.h> header shall define the timespec structure as described in <time.h>.

The <poll.h> header shall define the following symbolic constants, zero or more of which may
be OR’ed together to form the events or revents members in the pollfd structure:

POLLIN Data other than high-priority data may be read without blocking.

POLLRDNORM Normal data may be read without blocking.

POLLRDBAND Priority data may be read without blocking.

POLLPRI High priority data may be read without blocking.

POLLOUT Normal data may be written without blocking.

POLLWRNORM Equivalent to POLLOUT.

POLLWRBAND Priority data may be written.

POLLERR An error has occurred (revents only).

POLLHUP Device has been disconnected (revents only).

POLLNVAL Invalid fd member (revents only).

The significance and semantics of normal, priority, and high-priority data are file and device-
specific.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int poll(struct pollfd [], nfds_t, int);
int ppoll(struct pollfd [], nfds_t, const struct timespec *restrict,

const sigset_t *restrict);

Inclusion of the <poll.h> header may make visible all symbols from the headers <signal.h> and
<time.h>.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 325

11409

11410

11411

11412

11413

11414

11415

11416

11417

11418

11419

11420

11421

11422

11423

11424

11425

11426

11427

11428

11429

11430

11431

11432

11433

11434

11435

11436

11437

11438

11439

11440

11441

11442

11443

11444

11445

11446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<poll.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH confstr(), poll()

XCU getconf

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
The description of the symbolic constants is updated to match the poll() function.

Text related to STREAMS has been moved to the poll() reference page.

A note is added to the DESCRIPTION regarding the significance and semantics of normal,
priority, and high-priority data.

Issue 7
The <poll.h> header is moved from the XSI option to the Base.

Issue 8
Austin Group Defect 1263 is applied, adding ppoll(), requiring <poll.h> to define sigset_t and
struct timespec, and allowing <poll.h> to make visible all symbols from <signal.h> and
<time.h>.

326 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11447

11448

11449

11450

11451

11452

11453

11454

11455

11456

11457

11458

11459

11460

11461

11462

11463

11464

11465

11466

11467

11468

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <pthread.h>

NAME
pthread.h — threads

SYNOPSIS
#include <pthread.h>

DESCRIPTION
The <pthread.h> header shall define the following symbolic constants:

PTHREAD_BARRIER_SERIAL_THREAD
PTHREAD_CANCEL_ASYNCHRONOUS
PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_DISABLE
PTHREAD_CANCELED
PTHREAD_CREATE_DETACHED
PTHREAD_CREATE_JOINABLE

TPS PTHREAD_EXPLICIT_SCHED
PTHREAD_INHERIT_SCHED
PTHREAD_MUTEX_DEFAULT
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_ROBUST
PTHREAD_MUTEX_STALLED
PTHREAD_ONCE_INIT

RPI|TPI PTHREAD_PRIO_INHERIT
MC1 PTHREAD_PRIO_NONE
RPP|TPP PTHREAD_PRIO_PROTECT

PTHREAD_PROCESS_SHARED
PTHREAD_PROCESS_PRIVATE

TPS PTHREAD_SCOPE_PROCESS
PTHREAD_SCOPE_SYSTEM

The <pthread.h> header shall define the following compile-time constant expressions valid as
initializers for the following types:

Name Initializer for Type
PTHREAD_COND_INITIALIZER pthread_cond_t
PTHREAD_MUTEX_INITIALIZER pthread_mutex_t
PTHREAD_RWLOCK_INITIALIZER pthread_rwlock_t

The <pthread.h> header shall define the following compile-time constant expression, valid as an
initializer for pthread_t, representing a value that shall not compare equal to the thread ID of
any existing thread:

PTHREAD_NULL

The <pthread.h> header shall define the pthread_attr_t, pthread_barrier_t,
pthread_barrierattr_t, pthread_cond_t, pthread_condattr_t, pthread_key_t, pthread_mutex_t,
pthread_mutexattr_t, pthread_once_t, pthread_rwlock_t, pthread_rwlockattr_t,
pthread_spinlock_t, and pthread_t types as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 327

11469

11470

11471

11472

11473

11474

11475

11476

11477

11478

11479

11480

11481

11482

11483

11484

11485

11486

11487

11488

11489

11490

11491

11492

11493

11494

11495

11496

11497

11498

11499

11500

11501

11502

11503

11504

11505

11506

11507

11508

11509

11510

11511

11512

11513

11514

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<pthread.h> Headers

OB int pthread_atfork(void (*)(void), void (*)(void),
void(*)(void));

int pthread_attr_destroy(pthread_attr_t *);
int pthread_attr_getdetachstate(const pthread_attr_t *, int *);
int pthread_attr_getguardsize(const pthread_attr_t *restrict,

size_t *restrict);
TPS int pthread_attr_getinheritsched(const pthread_attr_t *restrict,

int *restrict);
int pthread_attr_getschedparam(const pthread_attr_t *restrict,

struct sched_param *restrict);
TPS int pthread_attr_getschedpolicy(const pthread_attr_t *restrict,

int *restrict);
int pthread_attr_getscope(const pthread_attr_t *restrict,

int *restrict);
TSA TSS int pthread_attr_getstack(const pthread_attr_t *restrict,

void **restrict, size_t *restrict);
TSS int pthread_attr_getstacksize(const pthread_attr_t *restrict,

size_t *restrict);
int pthread_attr_init(pthread_attr_t *);
int pthread_attr_setdetachstate(pthread_attr_t *, int);
int pthread_attr_setguardsize(pthread_attr_t *, size_t);

TPS int pthread_attr_setinheritsched(pthread_attr_t *, int);
int pthread_attr_setschedparam(pthread_attr_t *restrict,

const struct sched_param *restrict);
TPS int pthread_attr_setschedpolicy(pthread_attr_t *, int);

int pthread_attr_setscope(pthread_attr_t *, int);
TSA TSS int pthread_attr_setstack(pthread_attr_t *, void *, size_t);
TSS int pthread_attr_setstacksize(pthread_attr_t *, size_t);

int pthread_barrier_destroy(pthread_barrier_t *);
int pthread_barrier_init(pthread_barrier_t *restrict,

const pthread_barrierattr_t *restrict, unsigned);
int pthread_barrier_wait(pthread_barrier_t *);
int pthread_barrierattr_destroy(pthread_barrierattr_t *);

TSH int pthread_barrierattr_getpshared(
const pthread_barrierattr_t *restrict, int *restrict);

int pthread_barrierattr_init(pthread_barrierattr_t *);
TSH int pthread_barrierattr_setpshared(pthread_barrierattr_t *, int);

int pthread_cancel(pthread_t);
int pthread_cond_broadcast(pthread_cond_t *);
int pthread_cond_clockwait(pthread_cond_t *restrict,

pthread_mutex_t *restrict, clockid_t,
const struct timespec *restrict);

int pthread_cond_destroy(pthread_cond_t *);
int pthread_cond_init(pthread_cond_t *restrict,

const pthread_condattr_t *restrict);
int pthread_cond_signal(pthread_cond_t *);
int pthread_cond_timedwait(pthread_cond_t *restrict,

pthread_mutex_t *restrict, const struct timespec *restrict);
int pthread_cond_wait(pthread_cond_t *restrict,

pthread_mutex_t *restrict);
int pthread_condattr_destroy(pthread_condattr_t *);
int pthread_condattr_getclock(const pthread_condattr_t *restrict,

328 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11515

11516

11517

11518

11519

11520

11521

11522

11523

11524

11525

11526

11527

11528

11529

11530

11531

11532

11533

11534

11535

11536

11537

11538

11539

11540

11541

11542

11543

11544

11545

11546

11547

11548

11549

11550

11551

11552

11553

11554

11555

11556

11557

11558

11559

11560

11561

11562

11563

11564

11565

11566

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <pthread.h>

clockid_t *restrict);
TSH int pthread_condattr_getpshared(const pthread_condattr_t *restrict,

int *restrict);
int pthread_condattr_init(pthread_condattr_t *);
int pthread_condattr_setclock(pthread_condattr_t *, clockid_t);

TSH int pthread_condattr_setpshared(pthread_condattr_t *, int);
int pthread_create(pthread_t *restrict, const pthread_attr_t *restrict,

void *(*)(void*), void *restrict);
int pthread_detach(pthread_t);
int pthread_equal(pthread_t, pthread_t);
_Noreturn void

pthread_exit(void *);
TCT int pthread_getcpuclockid(pthread_t, clockid_t *);
TPS int pthread_getschedparam(pthread_t, int *restrict,

struct sched_param *restrict);
void *pthread_getspecific(pthread_key_t);
int pthread_join(pthread_t, void **);
int pthread_key_create(pthread_key_t *, void (*)(void*));
int pthread_key_delete(pthread_key_t);
int pthread_mutex_clocklock(pthread_mutex_t *restrict, clockid_t,

const struct timespec *restrict);
int pthread_mutex_consistent(pthread_mutex_t *);
int pthread_mutex_destroy(pthread_mutex_t *);

RPP|TPP int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict,
int *restrict);

int pthread_mutex_init(pthread_mutex_t *restrict,
const pthread_mutexattr_t *restrict);

int pthread_mutex_lock(pthread_mutex_t *);
RPP|TPP int pthread_mutex_setprioceiling(pthread_mutex_t *restrict, int,

int *restrict);
int pthread_mutex_timedlock(pthread_mutex_t *restrict,

const struct timespec *restrict);
int pthread_mutex_trylock(pthread_mutex_t *);
int pthread_mutex_unlock(pthread_mutex_t *);
int pthread_mutexattr_destroy(pthread_mutexattr_t *);

RPP|TPP int pthread_mutexattr_getprioceiling(
const pthread_mutexattr_t *restrict, int *restrict);

MC1 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *restrict,
int *restrict);

TSH int pthread_mutexattr_getpshared(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_init(pthread_mutexattr_t *);
RPP|TPP int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *, int);
MC1 int pthread_mutexattr_setprotocol(pthread_mutexattr_t *, int);
TSH int pthread_mutexattr_setpshared(pthread_mutexattr_t *, int);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *, int);
int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
int pthread_once(pthread_once_t *, void (*)(void));

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 329

11567

11568

11569

11570

11571

11572

11573

11574

11575

11576

11577

11578

11579

11580

11581

11582

11583

11584

11585

11586

11587

11588

11589

11590

11591

11592

11593

11594

11595

11596

11597

11598

11599

11600

11601

11602

11603

11604

11605

11606

11607

11608

11609

11610

11611

11612

11613

11614

11615

11616

11617

11618

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<pthread.h> Headers

int pthread_rwlock_destroy(pthread_rwlock_t *);
int pthread_rwlock_init(pthread_rwlock_t *restrict,

const pthread_rwlockattr_t *restrict);
int pthread_rwlock_clockrdlock(pthread_rwlock_t *restrict,

clockid_t, const struct timespec *restrict);
int pthread_rwlock_clockwrlock(pthread_rwlock_t *restrict,

clockid_t, const struct timespec *restrict);
int pthread_rwlock_rdlock(pthread_rwlock_t *);
int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict,

const struct timespec *restrict);
int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict,

const struct timespec *restrict);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
int pthread_rwlock_trywrlock(pthread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock(pthread_rwlock_t *);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);

TSH int pthread_rwlockattr_getpshared(
const pthread_rwlockattr_t *restrict, int *restrict);

int pthread_rwlockattr_init(pthread_rwlockattr_t *);
TSH int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);

pthread_t
pthread_self(void);

int pthread_setcancelstate(int, int *);
int pthread_setcanceltype(int, int *);

TPS int pthread_setschedparam(pthread_t, int,
const struct sched_param *);

int pthread_setschedprio(pthread_t, int);
int pthread_setspecific(pthread_key_t, const void *);
int pthread_spin_destroy(pthread_spinlock_t *);
int pthread_spin_init(pthread_spinlock_t *, int);
int pthread_spin_lock(pthread_spinlock_t *);
int pthread_spin_trylock(pthread_spinlock_t *);
int pthread_spin_unlock(pthread_spinlock_t *);
void pthread_testcancel(void);

The following may be declared as functions, or defined as macros, or both. If functions are
declared, function prototypes shall be provided.

pthread_cleanup_pop()
pthread_cleanup_push()

Inclusion of the <pthread.h> header shall make symbols defined in the headers <sched.h> and
<time.h> visible.

330 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11619

11620

11621

11622

11623

11624

11625

11626

11627

11628

11629

11630

11631

11632

11633

11634

11635

11636

11637

11638

11639

11640

11641

11642

11643

11644

11645

11646

11647

11648

11649

11650

11651

11652

11653

11654

11655

11656

11657

11658

11659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <pthread.h>

APPLICATION USAGE
None.

RATIONALE
Since pthread_t is an opaque type, a definition of PTHREAD_NULL was added to allow for a
null value of that type. Some conforming definitions of PTHREAD_NULL could be:

For a pointer type:

#define PTHREAD_NULL ((pthread_t)NULL)

For an integer type:

#define PTHREAD_NULL ((pthread_t)-42)

For a struct type:

#define PTHREAD_NULL ((const pthread_t){ .__foo = -1 })

FUTURE DIRECTIONS
None.

SEE ALSO
<sched.h>, <sys/types.h>, <time.h>

XSH pthread_atfork(), pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getguardsize(), pthread_attr_getinheritsched(), pthread_attr_getschedparam(),
pthread_attr_getschedpolicy(), pthread_attr_getscope(), pthread_attr_getstack(),
pthread_attr_getstacksize(), pthread_barrier_destroy(), pthread_barrier_wait(),
pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), pthread_cancel(),
pthread_cleanup_pop(), pthread_cond_broadcast(), pthread_cond_clockwait(), pthread_cond_destroy(),
pthread_condattr_destroy(), pthread_condattr_getclock(), pthread_condattr_getpshared(),
pthread_create(), pthread_detach(), pthread_equal(), pthread_exit(), pthread_getcpuclockid(),
pthread_getschedparam(), pthread_getspecific(), pthread_join(), pthread_key_create(),
pthread_key_delete(), pthread_mutex_clocklock(), pthread_mutex_consistent(),
pthread_mutex_destroy(), pthread_mutex_getprioceiling(), pthread_mutex_lock(),
pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_getpshared(), pthread_mutexattr_getrobust(), pthread_mutexattr_gettype(),
pthread_once(), pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(),
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_trywrlock(),
pthread_rwlock_unlock(), pthread_rwlockattr_destroy(), pthread_rwlockattr_getpshared(),
pthread_self(), pthread_setcancelstate(), pthread_setschedprio(), pthread_spin_destroy(),
pthread_spin_lock(), pthread_spin_unlock()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The RTT margin markers are broken out into their POSIX options.

The Open Group Corrigendum U021/9 is applied, correcting the prototype for the
pthread_cond_wait() function.

The Open Group Corrigendum U026/2 is applied, correcting the prototype for the
pthread_setschedparam() function so that its second argument is of type int.

The pthread_getcpuclockid() and pthread_mutex_timedlock() functions are added for alignment
with IEEE Std 1003.1d-1999.

The following functions are added for alignment with IEEE Std 1003.1j-2000:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 331

11660

11661

11662

11663

11664

11665

11666

11667

11668

11669

11670

11671

11672

11673

11674

11675

11676

11677

11678

11679

11680

11681

11682

11683

11684

11685

11686

11687

11688

11689

11690

11691

11692

11693

11694

11695

11696

11697

11698

11699

11700

11701

11702

11703

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<pthread.h> Headers

pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(),
pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), pthread_barrierattr_init(),
pthread_barrierattr_setpshared(), pthread_condattr_getclock(), pthread_condattr_setclock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_spin_destroy(),
pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(), and pthread_spin_unlock().

PTHREAD_RWLOCK_INITIALIZER is removed for alignment with IEEE Std 1003.1j-2000.

Functions previously marked as part of the Read-Write Locks option are now moved to the
Threads option.

The restrict keyword is added to the prototypes for pthread_attr_getguardsize(),
pthread_attr_getinheritsched(), pthread_attr_getschedparam(), pthread_attr_getschedpolicy(),
pthread_attr_getscope(), pthread_attr_getstackaddr,() pthread_attr_getstacksize(),
pthread_attr_setschedparam(), pthread_barrier_init(), pthread_barrierattr_getpshared(),
pthread_cond_init(), pthread_cond_signal(), pthread_cond_timedwait(), pthread_cond_wait(),
pthread_condattr_getclock(), pthread_condattr_getpshared(), pthread_create(),
pthread_getschedparam(), pthread_mutex_getprioceiling(), pthread_mutex_init(),
pthread_mutex_setprioceiling(), pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_getpshared(), pthread_mutexattr_gettype(), pthread_rwlock_init(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlockattr_getpshared(), and
pthread_sigmask().

IEEE PASC Interpretation 1003.1 #86 is applied, allowing the symbols from <sched.h> and
<time.h> to be made visible when <pthread.h> is included. Previously this was an XSI option.

IEEE PASC Interpretation 1003.1c #42 is applied, removing the requirement for prototypes for
the pthread_kill() and pthread_sigmask() functions. These are required to be in the <signal.h>
header. They are allowed here through the name space rules.

IEEE PASC Interpretation 1003.1 #96 is applied, adding the pthread_setschedprio() function.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/13 is applied, correcting shading errors
that were in contradiction with the System Interfaces volume of POSIX.1-2024.

Issue 7
SD5-XBD-ERN-55 is applied, adding the restrict keyword to the pthread_mutex_timedlock()
function prototype.

SD5-XBD-ERN-62 is applied.

Austin Group Interpretation 1003.1-2001 #048 is applied, reinstating the
PTHREAD_RWLOCK_INITIALIZER symbol.

The <pthread.h> header is moved from the Threads option to the Base.

The following extended mutex types are moved from the XSI option to the Base:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_DEFAULT

The PTHREAD_MUTEX_ROBUST and PTHREAD_MUTEX_STALLED symbols and the
pthread_mutex_consistent(), pthread_mutexattr_getrobust(), and pthread_mutexattr_setrobust()
functions are added from The Open Group Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the Thread Priority Protection and Thread Priority Inheritance options
is changed to be Non-Robust Mutex or Robust Mutex Priority Protection and Non-Robust Mutex

332 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11704

11705

11706

11707

11708

11709

11710

11711

11712

11713

11714

11715

11716

11717

11718

11719

11720

11721

11722

11723

11724

11725

11726

11727

11728

11729

11730

11731

11732

11733

11734

11735

11736

11737

11738

11739

11740

11741

11742

11743

11744

11745

11746

11747

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <pthread.h>

or Robust Mutex Priority Inheritance, respectively.

This reference page is clarified with respect to macros and symbolic constants.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0069 [624] is applied.

Issue 8
Austin Group Defect 599 is applied, adding the PTHREAD_NULL constant.

Austin Group Defect 851 is applied, marking pthread_atfork() as obsolescent.

Austin Group Defect 1216 is applied, adding pthread_cond_clockwait(), pthread_mutex_clocklock(),
pthread_rwlock_clockrdlock(), and pthread_rwlock_clockwrlock().

Austin Group Defect 1302 is applied, adding _Noreturn to pthread_exit().

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 333

11748

11749

11750

11751

11752

11753

11754

11755

11756

11757

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<pwd.h> Headers

NAME
pwd.h — password structure

SYNOPSIS
#include <pwd.h>

DESCRIPTION
The <pwd.h> header shall define the struct passwd, structure, which shall include at least the
following members:

char *pw_name User ’s login name.
uid_t pw_uid Numerical user ID.
gid_t pw_gid Numerical group ID.
char *pw_dir Initial working directory.
char *pw_shell Program to use as shell.

The <pwd.h> header shall define the gid_t, uid_t, and size_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

XSI void endpwent(void);
struct passwd *getpwent(void);
struct passwd *getpwnam(const char *);
int getpwnam_r(const char *, struct passwd *, char *,

size_t, struct passwd **);
struct passwd *getpwuid(uid_t);
int getpwuid_r(uid_t, struct passwd *, char *,

size_t, struct passwd **);
XSI void setpwent(void);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH endpwent(), getpwnam(), getpwuid()

CHANGE HISTORY
First released in Issue 1.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The gid_t and uid_t types are mandated.

334 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11758

11759

11760

11761

11762

11763

11764

11765

11766

11767

11768

11769

11770

11771

11772

11773

11774

11775

11776

11777

11778

11779

11780

11781

11782

11783

11784

11785

11786

11787

11788

11789

11790

11791

11792

11793

11794

11795

11796

11797

11798

11799

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <pwd.h>

• The getpwnam_r() and getpwuid_r() functions are marked as part of the Thread-Safe
Functions option.

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 335

11800

11801

11802

11803

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<regex.h> Headers

NAME
regex.h — regular expression matching types

SYNOPSIS
#include <regex.h>

DESCRIPTION
The <regex.h> header shall define the structures and symbolic constants used by the regcomp(),
regexec(), regerror(), and regfree() functions.

The <regex.h> header shall define the regex_t structure type, which shall include at least the
following member:

size_t re_nsub Number of parenthesized subexpressions.

The <regex.h> header shall define the size_t type as described in <sys/types.h>.

The <regex.h> header shall define the regoff_t type as a signed integer type that can hold the
largest value that can be stored in either a ptrdiff_t type or a ssize_t type.

The <regex.h> header shall define the regmatch_t structure type, which shall include at least the
following members:

regoff_t rm_so Byte offset from start of string
to start of substring.

regoff_t rm_eo Byte offset from start of string of the
first character after the end of substring.

The <regex.h> header shall define the following symbolic constants for the cflags parameter to
the regcomp() function:

REG_EXTENDED Use Extended Regular Expressions.

REG_ICASE Perform pattern matching in a case-insensitive manner.

REG_MINIMAL Change default matching behavior to leftmost shortest possible match.
Only applicable to REG_EXTENDED regular expressions.

REG_NOSUB Report only success or fail in regexec().

REG_NEWLINE Change the handling of <newline>.

The <regex.h> header shall define the following symbolic constants for the eflags parameter to
the regexec() function:

REG_NOTBOL The <circumflex> character ('^'), when taken as a special character, does
not match the beginning of string.

REG_NOTEOL The <dollar-sign> ('$'), when taken as a special character, does not
match the end of string.

The <regex.h> header shall define the following symbolic constants as error return values:

REG_NOMATCH regexec() failed to match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing <backslash> character in pattern.

336 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11804

11805

11806

11807

11808

11809

11810

11811

11812

11813

11814

11815

11816

11817

11818

11819

11820

11821

11822

11823

11824

11825

11826

11827

11828

11829

11830

11831

11832

11833

11834

11835

11836

11837

11838

11839

11840

11841

11842

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <regex.h>

REG_ESUBREG Number in \digit invalid or in error.

REG_EBRACK "[]" imbalance.

REG_EPAREN "\(\)" or "()" imbalance.

REG_EBRACE "\{\}" imbalance.

REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than
two numbers, first larger than second.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT '?', '*', or '+' not preceded by valid regular expression.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int regcomp(regex_t *restrict, const char *restrict, int);
size_t regerror(int, const regex_t *restrict, char *restrict, size_t);
int regexec(const regex_t *restrict, const char *restrict, size_t,

regmatch_t [restrict], int);
void regfree(regex_t *);

The implementation may define additional macros or constants using names beginning with
REG_.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH regcomp()

CHANGE HISTORY
First released in Issue 4.

Originally derived from the ISO POSIX-2 standard.

Issue 6
The REG_ENOSYS constant is marked obsolescent.

The restrict keyword is added to the prototypes for regcomp(), regerror(), and regexec().

A statement is added that the size_t type is defined as described in <sys/types.h>.

Issue 7
SD5-XBD-ERN-60 is applied.

The obsolescent REG_ENOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 337

11843

11844

11845

11846

11847

11848

11849

11850

11851

11852

11853

11854

11855

11856

11857

11858

11859

11860

11861

11862

11863

11864

11865

11866

11867

11868

11869

11870

11871

11872

11873

11874

11875

11876

11877

11878

11879

11880

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<regex.h> Headers

Issue 8
Austin Group Defect 793 is applied, adding REG_MINIMAL.

Austin Group Defect 1031 is applied, changing the description of REG_ICASE.

338 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11881

11882

11883

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sched.h>

NAME
sched.h — execution scheduling

SYNOPSIS
#include <sched.h>

DESCRIPTION
PS The <sched.h> header shall define the pid_t type as described in <sys/types.h>.

SS|TSP The <sched.h> header shall define the time_t type as described in <sys/types.h>.

The <sched.h> header shall define the timespec structure as described in <time.h>.

The <sched.h> header shall define the sched_param structure, which shall include the
scheduling parameters required for implementation of each supported scheduling policy. This
structure shall include at least the following member:

int sched_priority Process or thread execution scheduling priority.

SS|TSP The sched_param structure defined in <sched.h> shall include the following members in
addition to those specified above:

int sched_ss_low_priority Low scheduling priority for
sporadic server.

struct timespec sched_ss_repl_period Replenishment period for
sporadic server.

struct timespec sched_ss_init_budget Initial budget for sporadic server.
int sched_ss_max_repl Maximum pending replenishments for

sporadic server.

Each process or thread is controlled by an associated scheduling policy and priority. Associated
with each policy is a priority range. Each policy definition specifies the minimum priority range
for that policy. The priority ranges for each policy may overlap the priority ranges of other
policies.

Four scheduling policies are defined; others may be defined by the implementation. The four
standard policies are indicated by the values of the following symbolic constants:

PS|TPS SCHED_FIFO First in-first out (FIFO) scheduling policy.

PS|TPS SCHED_RR Round robin scheduling policy.

SS|TSP SCHED_SPORADIC Sporadic server scheduling policy.

PS|TPS SCHED_OTHER Another scheduling policy.

The values of these constants are distinct.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

PS|TPS int sched_get_priority_max(int);
int sched_get_priority_min(int);

PS int sched_getparam(pid_t, struct sched_param *);
int sched_getscheduler(pid_t);

PS|TPS int sched_rr_get_interval(pid_t, struct timespec *);
PS int sched_setparam(pid_t, const struct sched_param *);

int sched_setscheduler(pid_t, int, const struct sched_param *);
int sched_yield(void);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 339

11884

11885

11886

11887

11888

11889

11890

11891

11892

11893

11894

11895

11896

11897

11898

11899

11900

11901

11902

11903

11904

11905

11906

11907

11908

11909

11910

11911

11912

11913

11914

11915

11916

11917

11918

11919

11920

11921

11922

11923

11924

11925

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sched.h> Headers

Inclusion of the <sched.h> header may make visible all symbols from the <time.h> header.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <time.h>

XSH sched_get_priority_max(), sched_getparam(), sched_getscheduler(), sched_rr_get_interval(),
sched_setparam(), sched_setscheduler(), sched_yield()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <sched.h> header is marked as part of the Process Scheduling option.

Sporadic server members are added to the sched_param structure, and the SCHED_SPORADIC
scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #108 is applied, correcting the sched_param structure whose
members sched_ss_repl_period and sched_ss_init_budget should be type struct timespec and not
timespec.

Symbols from <time.h> may be made visible when <sched.h> is included.

IEEE Std 1003.1-2001/Cor 1-2002, items XSH/TC1/D6/52 and XSH/TC1/D6/53 are applied,
aligning the function prototype shading and margin codes with the System Interfaces volume of
IEEE Std 1003.1-2001.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/23 is applied, updating the
DESCRIPTION to differentiate between thread and process execution.

Issue 7
SD5-XBD-ERN-13 is applied.

Austin Group Interpretation 1003.1-2001 #064 is applied, correcting the options markings.

The <sched.h> headers is moved from the Threads option to the Base.

Declarations for the pid_t and time_t types and the timespec structure are added.

340 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11926

11927

11928

11929

11930

11931

11932

11933

11934

11935

11936

11937

11938

11939

11940

11941

11942

11943

11944

11945

11946

11947

11948

11949

11950

11951

11952

11953

11954

11955

11956

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <search.h>

NAME
search.h — search tables

SYNOPSIS
XSI #include <search.h>

DESCRIPTION
The <search.h> header shall define the ENTRY type for structure entry which shall include the
following members:

char *key
void *data

and shall define ACTION and VISIT as enumeration data types through type definitions as
follows:

enum { FIND, ENTER } ACTION;
enum { preorder, postorder, endorder, leaf } VISIT;

The <search.h> header shall define the size_t type as described in <sys/types.h>.

The <search.h> header shall define via typedef the posix_tnode type as an alias for void.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int hcreate(size_t);
void hdestroy(void);
ENTRY *hsearch(ENTRY, ACTION);
void insque(void *, void *);
void *lfind(const void *, const void *, size_t *,

size_t, int (*)(const void *, const void *));
void *lsearch(const void *, void *, size_t *,

size_t, int (*)(const void *, const void *));
void remque(void *);
void *tdelete(const void *restrict, posix_tnode **restrict,

int(*)(const void *, const void *));
posix_tnode *tfind(const void *, posix_tnode *const *,

int(*)(const void *, const void *));
posix_tnode *tsearch(const void *, posix_tnode **,

int(*)(const void *, const void *));
void twalk(const posix_tnode *,

void (*)(const posix_tnode *, VISIT, int));

APPLICATION USAGE
None.

RATIONALE
Earlier versions of this standard explicitly used void for both node and key references where this
version now uses posix_tnode for nodes and keeps void in the text referring only to keys. In
order to preserve backwards compatibility, this version defines posix_tnode as an alias for void.
The change was made to make the function prototypes more easily understandable.

FUTURE DIRECTIONS
None.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 341

11957

11958

11959

11960

11961

11962

11963

11964

11965

11966

11967

11968

11969

11970

11971

11972

11973

11974

11975

11976

11977

11978

11979

11980

11981

11982

11983

11984

11985

11986

11987

11988

11989

11990

11991

11992

11993

11994

11995

11996

11997

11998

11999

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<search.h> Headers

SEE ALSO
<sys/types.h>

XSH hcreate(), insque(), lsearch(), tdelete()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The Open Group Corrigendum U021/6 is applied, updating the prototypes for tdelete() and
tsearch().

The restrict keyword is added to the prototype for tdelete().

Issue 8
Austin Group Defect 1011 is applied, adding the posix_tnode type and changing some
prototypes to use it instead of void.

342 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12000

12001

12002

12003

12004

12005

12006

12007

12008

12009

12010

12011

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <semaphore.h>

NAME
semaphore.h — semaphores

SYNOPSIS
#include <semaphore.h>

DESCRIPTION
The <semaphore.h> header shall define the sem_t type, used in performing semaphore
operations. The semaphore may be implemented using a file descriptor, in which case
applications are able to open up at least a total of {OPEN_MAX} files and semaphores.

The <semaphore.h> header shall define the timespec structure as described in <time.h>.

The <semaphore.h> header shall define the symbolic constant SEM_FAILED which shall have
type sem_t *.

The <semaphore.h> header shall define O_CREAT and O_EXCL as described in <fcntl.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int sem_clockwait(sem_t *restrict, clockid_t,
const struct timespec *restrict);

int sem_close(sem_t *);
int sem_destroy(sem_t *);
int sem_getvalue(sem_t *restrict, int *restrict);
int sem_init(sem_t *, int, unsigned);
sem_t *sem_open(const char *, int, ...);
int sem_post(sem_t *);
int sem_timedwait(sem_t *restrict, const struct timespec *restrict);
int sem_trywait(sem_t *);
int sem_unlink(const char *);
int sem_wait(sem_t *);

Inclusion of the <semaphore.h> header may make visible symbols defined in the <fcntl.h> and
<time.h> headers.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<fcntl.h>, <sys/types.h>, <time.h>

XSH sem_clockwait(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(),
sem_post(), sem_trywait(), sem_unlink()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <semaphore.h> header is marked as part of the Semaphores option.

The Open Group Corrigendum U021/3 is applied, adding a description of SEM_FAILED.

The sem_timedwait() function is added for alignment with IEEE Std 1003.1d-1999.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 343

12012

12013

12014

12015

12016

12017

12018

12019

12020

12021

12022

12023

12024

12025

12026

12027

12028

12029

12030

12031

12032

12033

12034

12035

12036

12037

12038

12039

12040

12041

12042

12043

12044

12045

12046

12047

12048

12049

12050

12051

12052

12053

12054

12055

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<semaphore.h> Headers

The restrict keyword is added to the prototypes for sem_getvalue() and sem_timedwait().

Issue 7
SD5-XBD-ERN-57 is applied, allowing the header to make visible symbols from the <time.h>
header.

The <semaphore.h> header is moved from the Semaphores option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 592 is applied, requiring <semaphore.h> to define the timespec structure.

Austin Group Defect 593 is applied, adding O_CREAT and O_EXCL.

Austin Group Defect 1216 is applied, adding sem_clockwait().

344 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12056

12057

12058

12059

12060

12061

12062

12063

12064

12065

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <setjmp.h>

NAME
setjmp.h — stack environment declarations

SYNOPSIS
#include <setjmp.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

CX The <setjmp.h> header shall define the array types jmp_buf and sigjmp_buf.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

_Noreturn void longjmp(jmp_buf, int);
CX _Noreturn void siglongjmp(sigjmp_buf, int);

The following may be declared as functions, or defined as macros, or both. If functions are
declared, function prototypes shall be provided.

int setjmp(jmp_buf);
CX int sigsetjmp(sigjmp_buf, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH Section 2.2 (on page 496), longjmp(), setjmp(), siglongjmp(), sigsetjmp()

CHANGE HISTORY
First released in Issue 1.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XBD-ERN-6 is applied.

Issue 8
Austin Group Defect 1302 is applied, adding _Noreturn to longjmp() and siglongjmp().

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 345

12066

12067

12068

12069

12070

12071

12072

12073

12074

12075

12076

12077

12078

12079

12080

12081

12082

12083

12084

12085

12086

12087

12088

12089

12090

12091

12092

12093

12094

12095

12096

12097

12098

12099

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<signal.h> Headers

NAME
signal.h — signals

SYNOPSIS
#include <signal.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <signal.h> header shall define the following macros, which shall expand to constant
expressions with distinct values that have a type compatible with the second argument to, and
the return value of, the signal() function, and whose values shall compare unequal to the
address of any declarable function.

SIG_DFL Request for default signal handling.

SIG_ERR Return value from signal() in case of error.

SIG_IGN Request that signal be ignored.

CX The <signal.h> header shall define the pthread_t, size_t, and uid_t types as described in
<sys/types.h>.

The <signal.h> header shall define the timespec structure as described in <time.h>.

The <signal.h> header shall define the following data types:

sig_atomic_t Possibly volatile-qualified integer type of an object that can be accessed as
an atomic entity, even in the presence of asynchronous interrupts.

CX sigset_t Integer or structure type of an object used to represent sets of signals.

CX pid_t As described in <sys/types.h>.

CX The <signal.h> header shall define the pthread_attr_t type as described in <sys/types.h>.

The <signal.h> header shall define the sigevent structure, which shall include at least the
following members:

int sigev_notify Notification type.
int sigev_signo Signal number.
union sigval sigev_value Signal value.
void (*sigev_notify_function)(union sigval)

Notification function.
pthread_attr_t *sigev_notify_attributes Notification attributes.

The <signal.h> header shall define the following symbolic constants for the values of
sigev_notify:

SIGEV_NONE No asynchronous notification is delivered when the event of interest
occurs.

SIGEV_SIGNAL A queued signal, with an application-defined value, is generated when
the event of interest occurs.

SIGEV_THREAD A notification function is called to perform notification.

346 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12100

12101

12102

12103

12104

12105

12106

12107

12108

12109

12110

12111

12112

12113

12114

12115

12116

12117

12118

12119

12120

12121

12122

12123

12124

12125

12126

12127

12128

12129

12130

12131

12132

12133

12134

12135

12136

12137

12138

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <signal.h>

The sigval union shall be defined as:

int sival_int Integer signal value.
void *sival_ptr Pointer signal value.

The <signal.h> header shall declare the SIGRTMIN and SIGRTMAX macros, which shall expand
to positive integer expressions with type int, but which need not be constant expressions. These
macros specify a range of signal numbers that are reserved for application use and for which the
realtime signal behavior specified in this volume of POSIX.1-2024 is supported. The signal
numbers in this range do not overlap any of the signals specified in the following table.

The range SIGRTMIN through SIGRTMAX inclusive shall include at least {RTSIG_MAX} signal
numbers. The value of SIGRTMAX shall be less than the value returned by sysconf (_SC_NSIG).

It is implementation-defined whether realtime signal behavior is supported for other signals.

The <signal.h> header shall define the following symbolic constant. The value shall be suitable
for use in #if preprocessing directives:

SIG2STR_MAX Maximum size of a signal name returned by sig2str(), including the
terminating null byte.

The <signal.h> header shall define the following macros that are used to refer to the signals that
occur in the system. Signals defined here begin with the letters SIG followed by an uppercase
letter. The macros shall expand to positive integer constant expressions with type int and

CX distinct values less than the value of {NSIG_MAX} defined in <limits.h>. The value 0 is
reserved for use as the null signal (see kill()). Additional implementation-defined signals may
occur in the system.

The ISO C standard only requires the signal names SIGABRT, SIGFPE, SIGILL, SIGINT,
SIGSEGV, and SIGTERM to be defined. An implementation need not generate any of these six

CX signals, except as a result of explicit use of interfaces that generate signals, such as raise(), kill(),
the General Terminal Interface (see Section 11.1.9, on page 203), and the kill utility, unless
otherwise stated (see, for example, XSH Section 2.8.3.3, on page 530).

The following signals shall be supported on all implementations (default actions are explained
below the table):

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 347

12139

12140

12141

12142

12143

12144

12145

12146

12147

12148

12149

12150

12151

12152

12153

12154

12155

12156

12157

12158

12159

12160

12161

12162

12163

12164

12165

12166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<signal.h> Headers

Signal Default Action Description
SIGABRT A Process abort signal.
SIGALRM T Alarm clock.
SIGBUS A Access to an undefined portion of a memory object.
SIGCHLD I Child process terminated, stopped,

XSI or continued.
SIGCONT C Continue executing, if stopped.
SIGFPE A Erroneous arithmetic operation.
SIGHUP T Hangup.
SIGILL A Illegal instruction.
SIGINT T Terminal interrupt signal.
SIGKILL T Kill (cannot be caught or ignored).
SIGPIPE T Write on a pipe with no one to read it.
SIGQUIT A Terminal quit signal.
SIGSEGV A Invalid memory reference.
SIGSTOP S Stop executing (cannot be caught or ignored).
SIGTERM T Termination signal.
SIGTSTP S Terminal stop signal.
SIGTTIN S Background process attempting read.
SIGTTOU S Background process attempting write.
SIGUSR1 T User-defined signal 1.
SIGUSR2 T User-defined signal 2.
SIGWINCH I Terminal window size changed.

XSI SIGSYS A Bad system call.
SIGTRAP A Trace/breakpoint trap.
SIGURG I High bandwidth data is available at a socket.

XSI SIGVTALRM T Virtual timer expired.
SIGXCPU A CPU time limit exceeded.
SIGXFSZ A File size limit exceeded.

The default actions are as follows:

T Abnormal termination of the process.
A Abnormal termination of the process with additional actions.
I Ignore the signal.
S Stop the process.
C Continue the process, if it is stopped; otherwise, ignore the signal.

The effects on the process in each case are described in XSH Section 2.4.3 (on page 516).

CX The <signal.h> header shall declare the sigaction structure, which shall include at least the
following members:

void (*sa_handler)(int) Pointer to a signal-catching function
or one of the SIG_IGN or SIG_DFL.

sigset_t sa_mask Set of signals to be blocked during execution
of the signal handling function.

int sa_flags Special flags.
void (*sa_sigaction)(int, siginfo_t *, void *)

Pointer to a signal-catching function.

348 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12167

12168

12169

12170

12171

12172

12173

12174

12175

12176

12177

12178

12179

12180

12181

12182

12183

12184

12185

12186

12187

12188

12189

12190

12191

12192

12193

12194

12195

12196

12197

12198

12199

12200

12201

12202

12203

12204

12205

12206

12207

12208

12209

12210

12211

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <signal.h>

CX The storage occupied by sa_handler and sa_sigaction may overlap, and a conforming application
shall not use both simultaneously.

The <signal.h> header shall define the following macros which shall expand to integer constant
expressions that need not be usable in #if preprocessing directives:

CX SIG_BLOCK The resulting set is the union of the current set and the signal set pointed
to by the argument set.

CX SIG_UNBLOCK The resulting set is the intersection of the current set and the complement
of the signal set pointed to by the argument set.

CX SIG_SETMASK The resulting set is the signal set pointed to by the argument set.

The <signal.h> header shall also define the following symbolic constants:

CX SA_NOCLDSTOP Do not generate SIGCHLD when children stop
XSI or stopped children continue.

XSI SA_ONSTACK Causes signal delivery to occur on an alternate stack.

CX SA_RESETHAND Causes signal dispositions to be set to SIG_DFL on entry to signal
handlers.

CX SA_RESTART Causes certain functions to become restartable.

CX SA_SIGINFO Causes extra information to be passed to signal handlers at the time of
receipt of a signal.

XSI SA_NOCLDWAIT Causes implementations not to create zombie processes or status
information on child termination. See sigaction().

CX SA_NODEFER Causes signal not to be automatically blocked on entry to signal handler.

XSI SS_ONSTACK Process is executing on an alternate signal stack.

XSI SS_DISABLE Alternate signal stack is disabled.

XSI MINSIGSTKSZ Minimum stack size for a signal handler.

XSI SIGSTKSZ Default size in bytes for the alternate signal stack.

CX The <signal.h> header shall define the mcontext_t type through typedef.

CX The <signal.h> header shall define the ucontext_t type as a structure that shall include at least
the following members:

ucontext_t *uc_link Pointer to the context that is resumed
when this context returns.

sigset_t uc_sigmask The set of signals that are blocked when this
context is active.

stack_t uc_stack The stack used by this context.
mcontext_t uc_mcontext A machine-specific representation of the saved

context.

The <signal.h> header shall define the stack_t type as a structure, which shall include at least
the following members:

void *ss_sp Stack base or pointer.
size_t ss_size Stack size.
int ss_flags Flags.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 349

12212

12213

12214

12215

12216

12217

12218

12219

12220

12221

12222

12223

12224

12225

12226

12227

12228

12229

12230

12231

12232

12233

12234

12235

12236

12237

12238

12239

12240

12241

12242

12243

12244

12245

12246

12247

12248

12249

12250

12251

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<signal.h> Headers

CX The <signal.h> header shall define the siginfo_t type as a structure, which shall include at least
the following members:

CX int si_signo Signal number.
int si_code Signal code.

XSI int si_errno If non-zero, an errno value associated with
this signal, as described in <errno.h>.

CX pid_t si_pid Sending process ID.
uid_t si_uid Real user ID of sending process.
void *si_addr Address that caused fault.
int si_status Exit value or signal.
union sigval si_value Signal value.

CX The <signal.h> header shall define the symbolic constants in the Code column of the following
table for use as values of si_code that are signal-specific or non-signal-specific reasons why the
signal was generated.

350 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12252

12253

12254

12255

12256

12257

12258

12259

12260

12261

12262

12263

12264

12265

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <signal.h>

Signal Code Reason
CX SIGILL ILL_ILLOPC Illegal opcode.

ILL_ILLOPN Illegal operand.
ILL_ILLADR Illegal addressing mode.
ILL_ILLTRP Illegal trap.
ILL_PRVOPC Privileged opcode.
ILL_PRVREG Privileged register.
ILL_COPROC Coprocessor error.
ILL_BADSTK Internal stack error.

SIGFPE FPE_INTDIV Integer divide by zero.
FPE_INTOVF Integer overflow.
FPE_FLTDIV Floating-point divide by zero.
FPE_FLTOVF Floating-point overflow.
FPE_FLTUND Floating-point underflow.
FPE_FLTRES Floating-point inexact result.
FPE_FLTINV Invalid floating-point operation.
FPE_FLTSUB Subscript out of range.

SIGSEGV SEGV_MAPERR Address not mapped to object.
SEGV_ACCERR Invalid permissions for mapped object.

SIGBUS BUS_ADRALN Invalid address alignment.
BUS_ADRERR Nonexistent physical address.
BUS_OBJERR Object-specific hardware error.

XSI SIGTRAP TRAP_BRKPT Process breakpoint.
TRAP_TRACE Process trace trap.

CX SIGCHLD CLD_EXITED Child has exited.
CLD_KILLED Child has terminated abnormally with no additional actions.
CLD_DUMPED Child has terminated abnormally and additional actions may

have been taken.
CLD_TRAPPED Traced child has trapped.
CLD_STOPPED Child has stopped.
CLD_CONTINUED Stopped child has continued.

Any SI_USER Signal sent by kill().
SI_QUEUE Signal sent by sigqueue().
SI_TIMER Signal generated by expiration of a timer set by timer_settime().
SI_ASYNCIO Signal generated by completion of an asynchronous I/O

request.
SI_MESGQ Signal generated by arrival of a message on an empty message

queue.

CX Implementations may support additional si_code values not included in this list, may generate
values included in this list under circumstances other than those described in this list, and may
contain extensions or limitations that prevent some values from being generated.
Implementations do not generate a different value from the ones described in this list for
circumstances described in this list.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 351

12266

12267

12268

12269

12270

12271

12272

12273

12274

12275

12276

12277

12278

12279

12280

12281

12282

12283

12284

12285

12286

12287

12288

12289

12290

12291

12292

12293

12294

12295

12296

12297

12298

12299

12300

12301

12302

12303

12304

12305

12306

12307

12308

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<signal.h> Headers

CX In addition, the following signal-specific information shall be available:

Signal Member Value
SIGILL void * si_addr Address of faulting instruction.
SIGFPE
SIGSEGV void * si_addr Address of faulting memory reference.
SIGBUS
SIGCHLD pid_t si_pid Child process ID.

int si_status If si_code is equal to CLD_EXITED, then si_status holds the exit
value of the process; otherwise, it is equal to the signal that
caused the process to change state. The exit value in si_status
shall be equal to the full exit value (that is, the value passed to
_exit(), _Exit(), or exit(), or returned from main()); it shall not
be limited to the least significant eight bits of the value.

uid_t si_uid Real user ID of the process that sent the signal.

For some implementations, the value of si_addr may be inaccurate.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

CX int kill(pid_t, int);
XSI int killpg(pid_t, int);
CX void psiginfo(const siginfo_t *, const char *);

void psignal(int, const char *);
int pthread_kill(pthread_t, int);
int pthread_sigmask(int, const sigset_t *restrict,

sigset_t *restrict);
int raise(int);

CX int sig2str(int, char *);
int sigaction(int, const struct sigaction *restrict,

struct sigaction *restrict);
int sigaddset(sigset_t *, int);

XSI int sigaltstack(const stack_t *restrict, stack_t *restrict);
CX int sigdelset(sigset_t *, int);

int sigemptyset(sigset_t *);
int sigfillset(sigset_t *);
int sigismember(const sigset_t *, int);
void (*signal(int, void (*)(int)))(int);

CX int sigpending(sigset_t *);
int sigprocmask(int, const sigset_t *restrict, sigset_t *restrict);
int sigqueue(pid_t, int, union sigval);
int sigsuspend(const sigset_t *);
int sigtimedwait(const sigset_t *restrict, siginfo_t *restrict,

const struct timespec *restrict);
int sigwait(const sigset_t *restrict, int *restrict);
int sigwaitinfo(const sigset_t *restrict, siginfo_t *restrict);
int str2sig(const char *restrict, int *restrict);

CX Inclusion of the <signal.h> header may make visible all symbols from the <time.h> header.

352 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12309

12310

12311

12312

12313

12314

12315

12316

12317

12318

12319

12320

12321

12322

12323

12324

12325

12326

12327

12328

12329

12330

12331

12332

12333

12334

12335

12336

12337

12338

12339

12340

12341

12342

12343

12344

12345

12346

12347

12348

12349

12350

12351

12352

12353

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <signal.h>

APPLICATION USAGE
On systems not supporting the XSI option, the si_pid and si_uid members of siginfo_t are only
required to be valid when si_code is SI_USER or SI_QUEUE. On XSI-conforming systems, they
are also valid for all si_code values less than or equal to 0; however, it is unspecified whether
SI_USER and SI_QUEUE have values less than or equal to zero, and therefore XSI applications
should check whether si_code has the value SI_USER or SI_QUEUE or is less than or equal to 0 to
tell whether si_pid and si_uid are valid.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<errno.h>, <limits.h>, <sys/types.h>, <time.h>

XSH Section 2.2 (on page 496), alarm(), kill(), killpg(), psiginfo(), pthread_kill(), pthread_sigmask(),
raise(), sig2str(), sigaction(), sigaddset(), sigaltstack(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), signal(), sigpending(), sigqueue(), sigsuspend(), sigtimedwait(), sigwait(),
timer_create(), wait(), waitid()

XCU kill

CHANGE HISTORY
First released in Issue 1.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

The default action for SIGURG is changed from i to iii. The function prototype for sigmask() is
removed.

Issue 6
The Open Group Corrigendum U035/2 is applied. In the DESCRIPTION, the wording for
abnormal termination is clarified.

The Open Group Corrigendum U028/8 is applied, correcting the prototype for the sigset()
function.

The Open Group Corrigendum U026/3 is applied, correcting the type of the sigev_notify_function
function member of the sigevent structure.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals are now
mandated. This is also a FIPS requirement.

• The pid_t definition is mandated.

The RT markings are changed to RTS to denote that the semantics are part of the Realtime
Signals Extension option.

The restrict keyword is added to the prototypes for sigaction(), sigaltstack(), sigprocmask(),
sigtimedwait(), sigwait(), and sigwaitinfo().

IEEE PASC Interpretation 1003.1 #85 is applied, adding the statement that symbols from
<time.h> may be made visible when <signal.h> is included.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 353

12354

12355

12356

12357

12358

12359

12360

12361

12362

12363

12364

12365

12366

12367

12368

12369

12370

12371

12372

12373

12374

12375

12376

12377

12378

12379

12380

12381

12382

12383

12384

12385

12386

12387

12388

12389

12390

12391

12392

12393

12394

12395

12396

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<signal.h> Headers

Extensions beyond the ISO C standard are marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/14 is applied, changing the descriptive
text for members of the sigaction structure.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/15 is applied, correcting the definition of
the sa_sigaction member of the sigaction structure.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/24 is applied, reworking the ordering of
the siginfo_t type structure in the DESCRIPTION. This is an editorial change and no normative
change is intended.

Issue 7
SD5-XBD-ERN-5 is applied.

SD5-XBD-ERN-39 is applied, removing the sigstack structure which should have been removed
at the same time as the LEGACY sigstack() function.

SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

Austin Group Interpretation 1003.1-2001 #034 is applied.

The ucontext_t and mcontext_t structures are added here from the obsolescent <ucontext.h>
header.

The psiginfo() and psignal() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The SIGPOLL and SIGPROF signals and text relating to the XSI STREAMS option are marked
obsolescent.

The SA_RESETHAND, SA_RESTART, SA_SIGINFO, SA_NOCLDWAIT, and SA_NODEFER
constants are moved from the XSI option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants, and declarations
for the pthread_attr_t, pthread_t, and uid_t types and the timespec structure are added.

SIGRTMIN and SIGRTMAX are required to be positive integer expressions.

The APPLICATION USAGE section is updated to describe the si_pid and si_uid members of
siginfo_t.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0062 [208], XBD/TC1-2008/0063 [80],
and XBD/TC1-2008/0064 [157] are applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0070 [536], XBD/TC2-2008/0071 [690],
XBD/TC2-2008/0072 [594], XBD/TC2-2008/0073 [844], and XBD/TC2-2008/0074 [536] are
applied.

Issue 8
Austin Group Defect 741 is applied, restricting the value of SIGRTMAX to less than the value
returned by sysconf (_SC_NSIG) and the value of macros that are used to refer to the signals to
less than {NSIG_MAX}.

Austin Group Defect 1138 is applied, adding sig2str() and str2sig().

Austin Group Defect 1141 is applied, changing the descriptions of CLD_KILLED and
CLD_DUMPED.

Austin Group Defect 1151 is applied, adding SIGWINCH.

354 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12397

12398

12399

12400

12401

12402

12403

12404

12405

12406

12407

12408

12409

12410

12411

12412

12413

12414

12415

12416

12417

12418

12419

12420

12421

12422

12423

12424

12425

12426

12427

12428

12429

12430

12431

12432

12433

12434

12435

12436

12437

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <signal.h>

Austin Group Defect 1215 is applied, removing XSI shading from text relating to abnormal
process termination with additional actions.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1775 is applied, changing the description of the si_addr member of
siginfo_t.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 355

12438

12439

12440

12441

12442

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<spawn.h> Headers

NAME
spawn.h — spawn (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

DESCRIPTION
The <spawn.h> header shall define the posix_spawnattr_t and posix_spawn_file_actions_t
types used in performing spawn operations.

The <spawn.h> header shall define the mode_t and pid_t types as described in <sys/types.h>.

The <spawn.h> header shall define the sigset_t type as described in <signal.h>.

The tag sched_param shall be declared as naming an incomplete structure type, the contents of
which are described in the <sched.h> header.

The <spawn.h> header shall define the following symbolic constants for use as the flags that
may be set in a posix_spawnattr_t object using the posix_spawnattr_setflags() function:

POSIX_SPAWN_RESETIDS
POSIX_SPAWN_SETPGROUP

PS POSIX_SPAWN_SETSCHEDPARAM
POSIX_SPAWN_SETSCHEDULER
POSIX_SPAWN_SETSID
POSIX_SPAWN_SETSIGDEF
POSIX_SPAWN_SETSIGMASK

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int posix_spawn(pid_t *restrict, const char *restrict,
const posix_spawn_file_actions_t *restrict,
const posix_spawnattr_t *restrict, char *const [restrict],
char *const [restrict]);

int posix_spawn_file_actions_addchdir(posix_spawn_file_actions_t
*restrict, const char *restrict);

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *,
int);

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *,
int, int);

int posix_spawn_file_actions_addfchdir(posix_spawn_file_actions_t *,
int);

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t
*restrict, int, const char *restrict, int, mode_t);

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *);
int posix_spawn_file_actions_init(posix_spawn_file_actions_t *);
int posix_spawnattr_destroy(posix_spawnattr_t *);
int posix_spawnattr_getflags(const posix_spawnattr_t *restrict,

short *restrict);
int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict,

pid_t *restrict);
PS int posix_spawnattr_getschedparam(const posix_spawnattr_t *restrict,

struct sched_param *restrict);
int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *restrict,

int *restrict);

356 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12443

12444

12445

12446

12447

12448

12449

12450

12451

12452

12453

12454

12455

12456

12457

12458

12459

12460

12461

12462

12463

12464

12465

12466

12467

12468

12469

12470

12471

12472

12473

12474

12475

12476

12477

12478

12479

12480

12481

12482

12483

12484

12485

12486

12487

12488

12489

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t *restrict,
sigset_t *restrict);

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict,
sigset_t *restrict);

int posix_spawnattr_init(posix_spawnattr_t *);
int posix_spawnattr_setflags(posix_spawnattr_t *, short);
int posix_spawnattr_setpgroup(posix_spawnattr_t *, pid_t);

PS int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict,
const struct sched_param *restrict);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *, int);
int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict,

const sigset_t *restrict);
int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict,

const sigset_t *restrict);
int posix_spawnp(pid_t *restrict, const char *restrict,

const posix_spawn_file_actions_t *restrict,
const posix_spawnattr_t *restrict,
char *const [restrict], char *const [restrict]);

Inclusion of the <spawn.h> header may make visible symbols defined in the <sched.h> and
<signal.h> headers.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sched.h>, <semaphore.h>, <signal.h>, <sys/types.h>

XSH posix_spawn(), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_destroy(), posix_spawnattr_destroy(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigdefault(), posix_spawnattr_getsigmask()

CHANGE HISTORY
First released in Issue 6. Included for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the prototypes for posix_spawn(),
posix_spawn_file_actions_addopen(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setschedparam(),
posix_spawnattr_setsigmask(), and posix_spawnp().

Issue 7
This reference page is clarified with respect to macros and symbolic constants, and declarations
for the mode_t, pid_t, and sigset_t types are added.

Issue 8
Austin Group Defect 1044 is applied, adding POSIX_SPAWN_SETSID.

Austin Group Defect 1208 is applied, adding posix_spawn_file_actions_addchdir() and
posix_spawn_file_actions_addfchdir().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 357

12490

12491

12492

12493

12494

12495

12496

12497

12498

12499

12500

12501

12502

12503

12504

12505

12506

12507

12508

12509

12510

12511

12512

12513

12514

12515

12516

12517

12518

12519

12520

12521

12522

12523

12524

12525

12526

12527

12528

12529

12530

12531

12532

12533

12534

12535

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<spawn.h> Headers

Austin Group Defect 1328 is applied, adding the restrict keyword to the third parameter of
posix_spawn() and posix_spawnp().

358 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12536

12537

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdalign.h>

NAME
stdalign.h — alignment macros

SYNOPSIS
#include <stdalign.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <stdalign.h> header shall define the following macros:

alignas Expands to _Alignas

alignof Expands to _Alignof

__alignas_is_defined
Expands to the integer constant 1

__alignof_is_defined
Expands to the integer constant 1

The __alignas_is_defined and __alignof_is_defined macros shall be suitable for use in #if
preprocessing directives.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 359

12538

12539

12540

12541

12542

12543

12544

12545

12546

12547

12548

12549

12550

12551

12552

12553

12554

12555

12556

12557

12558

12559

12560

12561

12562

12563

12564

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdatomic.h> Headers

NAME
stdatomic.h — atomics

SYNOPSIS
#include <stdatomic.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide this header
nor support any of its facilities.

The <stdatomic.h> header shall define the atomic_flag type as a structure type. This type
provides the classic test-and-set functionality. It shall have two states, set and clear. Operations
on an object of type atomic_flag shall be lock free.

The <stdatomic.h> header shall define each of the atomic integer types in the following table as
a type that has the same representation and alignment requirements as the corresponding direct
type.

Note: The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

360 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12565

12566

12567

12568

12569

12570

12571

12572

12573

12574

12575

12576

12577

12578

12579

12580

12581

12582

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdatomic.h>

Atomic type name Direct type
atomic_bool _Atomic _Bool
atomic_char _Atomic char
atomic_schar _Atomic signed char
atomic_uchar _Atomic unsigned char
atomic_short _Atomic short
atomic_ushort _Atomic unsigned short
atomic_int _Atomic int
atomic_uint _Atomic unsigned int
atomic_long _Atomic long
atomic_ulong _Atomic unsigned long
atomic_llong _Atomic long long
atomic_ullong _Atomic unsigned long long
atomic_char16_t _Atomic char16_t
atomic_char32_t _Atomic char32_t
atomic_wchar_t _Atomic wchar_t
atomic_int_least8_t _Atomic int_least8_t
atomic_uint_least8_t _Atomic uint_least8_t
atomic_int_least16_t _Atomic int_least16_t
atomic_uint_least16_t _Atomic uint_least16_t
atomic_int_least32_t _Atomic int_least32_t
atomic_uint_least32_t _Atomic uint_least32_t
atomic_int_least64_t _Atomic int_least64_t
atomic_uint_least64_t _Atomic uint_least64_t
atomic_int_fast8_t _Atomic int_fast8_t
atomic_uint_fast8_t _Atomic uint_fast8_t
atomic_int_fast16_t _Atomic int_fast16_t
atomic_uint_fast16_t _Atomic uint_fast16_t
atomic_int_fast32_t _Atomic int_fast32_t
atomic_uint_fast32_t _Atomic uint_fast32_t
atomic_int_fast64_t _Atomic int_fast64_t
atomic_uint_fast64_t _Atomic uint_fast64_t
atomic_intptr_t _Atomic intptr_t
atomic_uintptr_t _Atomic uintptr_t
atomic_size_t _Atomic size_t
atomic_ptrdiff_t _Atomic ptrdiff_t
atomic_intmax_t _Atomic intmax_t
atomic_uintmax_t _Atomic uintmax_t

The <stdatomic.h> header shall define the memory_order type as an enumerated type whose
enumerators shall include at least the following:

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel
memory_order_seq_cst

The <stdatomic.h> header shall define the following atomic lock-free macros:

AT OMIC_BOOL_LOCK_FREE
AT OMIC_CHAR_LOCK_FREE
AT OMIC_CHAR16_T_LOCK_FREE

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 361

12583

12584

12585

12586

12587

12588

12589

12590

12591

12592

12593

12594

12595

12596

12597

12598

12599

12600

12601

12602

12603

12604

12605

12606

12607

12608

12609

12610

12611

12612

12613

12614

12615

12616

12617

12618

12619

12620

12621

12622

12623

12624

12625

12626

12627

12628

12629

12630

12631

12632

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdatomic.h> Headers

AT OMIC_CHAR32_T_LOCK_FREE
AT OMIC_WCHAR_T_LOCK_FREE
AT OMIC_SHORT_LOCK_FREE
AT OMIC_INT_LOCK_FREE
AT OMIC_LONG_LOCK_FREE
AT OMIC_LLONG_LOCK_FREE
AT OMIC_POINTER_LOCK_FREE

which shall expand to constant expressions suitable for use in #if preprocessing directives and
which shall indicate the lock-free property of the corresponding atomic types (both signed and
unsigned). A value of 0 shall indicate that the type is never lock-free; a value of 1 shall indicate
that the type is sometimes lock-free; a value of 2 shall indicate that the type is always lock-free.

The <stdatomic.h> header shall define the macro ATOMIC_FLAG_INIT which shall expand to
an initializer for an object of type atomic_flag. This macro shall initialize an atomic_flag to the
clear state. An atomic_flag that is not explicitly initialized with ATOMIC_FLAG_INIT is initially
in an indeterminate state.

OB The <stdatomic.h> header shall define the macro ATOMIC_VAR_INIT(value) which shall
expand to a token sequence suitable for initializing an atomic object of a type that is
initialization-compatible with the non-atomic type of its value argument. An atomic object with
automatic storage duration that is not explicitly initialized is initially in an indeterminate state.

The <stdatomic.h> header shall define the macro kill_dependency() which shall behave as
described in kill_dependency().

The <stdatomic.h> header shall declare the following generic functions, where A refers to an
atomic type, C refers to its corresponding non-atomic type, and M is C for atomic integer types
or ptrdiff_t for atomic pointer types.

_Bool atomic_compare_exchange_strong(volatile A *, C *, C);
_Bool atomic_compare_exchange_strong_explicit(volatile A *,

C *, C, memory_order, memory_order);
_Bool atomic_compare_exchange_weak(volatile A *, C *, C);
_Bool atomic_compare_exchange_weak_explicit(volatile A *, C *,

C, memory_order, memory_order);
C atomic_exchange(volatile A *, C);
C atomic_exchange_explicit(volatile A *, C, memory_order);
C atomic_fetch_add(volatile A *, M);
C atomic_fetch_add_explicit(volatile A *, M,

memory_order);
C atomic_fetch_and(volatile A *, M);
C atomic_fetch_and_explicit(volatile A *, M,

memory_order);
C atomic_fetch_or(volatile A *, M);
C atomic_fetch_or_explicit(volatile A *, M, memory_order);
C atomic_fetch_sub(volatile A *, M);
C atomic_fetch_sub_explicit(volatile A *, M,

memory_order);
C atomic_fetch_xor(volatile A *, M);
C atomic_fetch_xor_explicit(volatile A *, M,

memory_order);
void atomic_init(volatile A *, C);
_Bool atomic_is_lock_free(const volatile A *);
C atomic_load(const volatile A *);

362 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12633

12634

12635

12636

12637

12638

12639

12640

12641

12642

12643

12644

12645

12646

12647

12648

12649

12650

12651

12652

12653

12654

12655

12656

12657

12658

12659

12660

12661

12662

12663

12664

12665

12666

12667

12668

12669

12670

12671

12672

12673

12674

12675

12676

12677

12678

12679

12680

12681

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdatomic.h>

C atomic_load_explicit(const volatile A *, memory_order);
void atomic_store(volatile A *, C);
void atomic_store_explicit(volatile A *, C, memory_order);

It is unspecified whether any generic function declared in <stdatomic.h> is a macro or an
identifier declared with external linkage. If a macro definition is suppressed in order to access an
actual function, or a program defines an external identifier with the name of a generic function,
the behavior is undefined.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void atomic_flag_clear(volatile atomic_flag *);
void atomic_flag_clear_explicit(volatile atomic_flag *,

memory_order);
_Bool atomic_flag_test_and_set(volatile atomic_flag *);
_Bool atomic_flag_test_and_set_explicit(

volatile atomic_flag *, memory_order);
void atomic_signal_fence(memory_order);
void atomic_thread_fence(memory_order);

APPLICATION USAGE
None.

RATIONALE
Since operations on the atomic_flag type are lock free, the operations should also be address-
free. No other type requires lock-free operations, so the atomic_flag type is the minimum
hardware-implemented type needed to conform to this standard. The remaining types can be
emulated with atomic_flag, though with less than ideal properties.

The representation of atomic integer types need not have the same size as their corresponding
regular types. They should have the same size whenever possible, as it eases effort required to
port existing code.

FUTURE DIRECTIONS
The ISO C standard states that the macro ATOMIC_VAR_INIT is an obsolescent feature. This
macro may be removed in a future version of this standard.

SEE ALSO
Section 4.15.1

XSH atomic_compare_exchange_strong(), atomic_exchange(), atomic_fetch_add(), atomic_flag_clear(),
atomic_flag_test_and_set(), atomic_init(), atomic_is_lock_free(), atomic_load(), atomic_signal_fence(),
atomic_store(), kill_dependency().

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 363

12682

12683

12684

12685

12686

12687

12688

12689

12690

12691

12692

12693

12694

12695

12696

12697

12698

12699

12700

12701

12702

12703

12704

12705

12706

12707

12708

12709

12710

12711

12712

12713

12714

12715

12716

12717

12718

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdarg.h> Headers

NAME
stdarg.h — handle variable argument list

SYNOPSIS
#include <stdarg.h>

void va_start(va_list ap, argN);
void va_copy(va_list dest, va_list src);
type va_arg(va_list ap, type);
void va_end(va_list ap);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <stdarg.h> header shall contain a set of macros which allows portable functions that accept
variable argument lists to be written. Functions that have variable argument lists (such as
printf()) but do not use these macros are inherently non-portable, as different systems use
different argument-passing conventions.

The <stdarg.h> header shall define the va_list type for variables used to traverse the list.

The va_start() macro is invoked to initialize ap to the beginning of the list before any calls to
va_arg().

The va_copy() macro initializes dest as a copy of src, as if the va_start() macro had been applied
to dest followed by the same sequence of uses of the va_arg() macro as had previously been used
to reach the present state of src. Neither the va_copy() nor va_start() macro shall be invoked to
reinitialize dest without an intervening invocation of the va_end() macro for the same dest.

The object ap may be passed as an argument to another function; if that function invokes the
va_arg() macro with parameter ap, the value of ap in the calling function is unspecified and shall
be passed to the va_end() macro prior to any further reference to ap. The parameter argN is the
identifier of the rightmost parameter in the variable parameter list in the function definition (the
one just before the . . .). If the parameter argN is declared with the register storage class, with a
function type or array type, or with a type that is not compatible with the type that results after
application of the default argument promotions, the behavior is undefined.

The va_arg() macro shall return the next argument in the list pointed to by ap. Each invocation
of va_arg() modifies ap so that the values of successive arguments are returned in turn. The type
parameter shall be a type name specified such that the type of a pointer to an object that has the
specified type can be obtained simply by postfixing a '*' to type. If there is no actual next
argument, or if type is not compatible with the type of the actual next argument (as promoted
according to the default argument promotions), the behavior is undefined, except for the
following cases:

• One type is a signed integer type, the other type is the corresponding unsigned integer
type, and the value is representable in both types.

• One type is a pointer to void and the other is a pointer to a character type.

XSI • Both types are pointers.

Different types can be mixed, but it is up to the routine to know what type of argument is
expected.

The va_end() macro is used to clean up; it invalidates ap for use (unless va_start() or va_copy() is
invoked again).

364 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12719

12720

12721

12722

12723

12724

12725

12726

12727

12728

12729

12730

12731

12732

12733

12734

12735

12736

12737

12738

12739

12740

12741

12742

12743

12744

12745

12746

12747

12748

12749

12750

12751

12752

12753

12754

12755

12756

12757

12758

12759

12760

12761

12762

12763

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdarg.h>

Each invocation of the va_start() and va_copy() macros shall be matched by a corresponding
invocation of the va_end() macro in the same function.

Multiple traversals, each bracketed by va_start() . . . va_end(), are possible.

EXAMPLES
This example is a possible implementation of execl():

#include <stdarg.h>

#define MAXARGS 31

/*
* execl is called by
* execl(file, arg1, arg2, ..., (char *)(0));
*/
int execl(const char *file, const char *args, ...)
{

va_list ap;
char *array[MAXARGS +1];
int argno = 0;

va_start(ap, args);
while (args != 0 && argno < MAXARGS)
{

array[argno++] = args;
args = va_arg(ap, const char *);

}
array[argno] = (char *) 0;
va_end(ap);
return execv(file, array);

}

APPLICATION USAGE
It is up to the calling routine to communicate to the called routine how many arguments there
are, since it is not always possible for the called routine to determine this in any other way. For
example, execl() is passed a null pointer to signal the end of the list. The printf() function can tell
how many arguments are there by the format argument.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH exec , fprintf()

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 365

12764

12765

12766

12767

12768

12769

12770

12771

12772

12773

12774

12775

12776

12777

12778

12779

12780

12781

12782

12783

12784

12785

12786

12787

12788

12789

12790

12791

12792

12793

12794

12795

12796

12797

12798

12799

12800

12801

12802

12803

12804

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdbool.h> Headers

NAME
stdbool.h — boolean type and values

SYNOPSIS
#include <stdbool.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <stdbool.h> header shall define the following macros:

bool Expands to _Bool.

true Expands to the integer constant 1.

false Expands to the integer constant 0.

_ _bool_true_false_are_defined
Expands to the integer constant 1.

The macros true, false and _ _bool_true_false_are_defined shall be suitable for use in #if
preprocessing directives.

OB An application can undefine and then possibly redefine the macros bool, true, and false.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The ability to undefine and redefine the macros bool, true, and false is an obsolescent feature
and may be removed in a future version.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1257 is applied, correcting a mismatch with the ISO C standard by adding
the requirement for the integer-valued macros to be suitable for use in #if preprocessing
directives.

Austin Group Defect 1302 is applied, adding OB shading to the statement that an application
can ``undefine and then possibly redefine the macros bool, true, and false’’.

366 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12805

12806

12807

12808

12809

12810

12811

12812

12813

12814

12815

12816

12817

12818

12819

12820

12821

12822

12823

12824

12825

12826

12827

12828

12829

12830

12831

12832

12833

12834

12835

12836

12837

12838

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stddef.h>

NAME
stddef.h — standard type definitions

SYNOPSIS
#include <stddef.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <stddef.h> header shall define the following macros:

CX NULL Null pointer constant. The macro shall expand to an integer constant expression
with the value 0 cast to type void *. Additionally, any pointer object whose
representation has all bits set to zero, perhaps by memset() to 0 or by calloc(), shall
be treated as a null pointer.

offsetof(type, member-designator)
Integer constant expression of type size_t, the value of which is the offset in bytes
to the structure member (member-designator), from the beginning of its structure
(type).

The <stddef.h> header shall define the following types:

max_align_t Object type whose alignment is the greatest fundamental alignment.

ptrdiff_t Signed integer type of the result of subtracting two pointers.

wchar_t Integer type whose range of values can represent distinct codes for all members of
the largest extended character set specified among the supported locales; the null
character shall have the code value zero. Each member of the basic character set
shall have a code value equal to its value when used as the lone character in an
integer character constant if an implementation does not define
_ _STDC_MB_MIGHT_NEQ_WC_ _.

size_t Unsigned integer type of the result of the sizeof operator.

The implementation shall support one or more programming environments in which the widths
of ptrdiff_t, size_t, and wchar_t are no greater than the width of type long. The names of these
programming environments can be obtained using the confstr() function or the getconf utility.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard does not require the NULL macro to include the cast to type void * and
specifies that the NULL macro be implementation-defined. POSIX.1-2024 requires the cast and
therefore need not be implementation-defined.

Likewise, the ISO C standard does not require a pointer object whose representation has all bits
set to zero to be treated as a null pointer. While there has been historical hardware where non-
zero patterns were more efficient for use as the canonical null pointer, no known POSIX system
has tried to target such hardware. However, though unlikely in modern hardware, a compiler is
still allowed to treat more than one bit pattern as a representation of the null pointer (all such
patterns will compare equal to one another, and unequal to any pointer to any other object).
Thus, applications should not assume that a pointer object with non-zero representation is not a
null pointer.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 367

12839

12840

12841

12842

12843

12844

12845

12846

12847

12848

12849

12850

12851

12852

12853

12854

12855

12856

12857

12858

12859

12860

12861

12862

12863

12864

12865

12866

12867

12868

12869

12870

12871

12872

12873

12874

12875

12876

12877

12878

12879

12880

12881

12882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stddef.h> Headers

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <wchar.h>

XSH confstr()

XCU getconf

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

SD5-XBD-ERN-53 is applied, updating the definition of wchar_t to align with
ISO/IEC 9899: 1999 standard, Technical Corrigendum 3.

Issue 8
Austin Group Defect 940 is applied, adding a requirement that any pointer object whose
representation has all bits set to zero is interpreted as a null pointer.

Austin Group Defect 1302 is applied, adding max_align_t.

368 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12883

12884

12885

12886

12887

12888

12889

12890

12891

12892

12893

12894

12895

12896

12897

12898

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdint.h>

NAME
stdint.h — integer types

SYNOPSIS
#include <stdint.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <stdint.h> header shall declare sets of integer types having specified widths, and shall
define corresponding sets of macros. It shall also define macros that specify limits of integer
types corresponding to types defined in other standard headers.

Note: The ``width’’ of an integer type is the number of bits used to store its value in a pure binary
system; the actual type may use more bits than that (for example, a 28-bit type could be stored
in 32 bits of actual storage). An N-bit signed type in two’s complement representation has
values in the range −2N−1 to 2N−1−1, while an N-bit unsigned type has values in the range 0 to
2N−1. While the ISO C standard also permits signed integers in sign-magnitude or one’s
complement form, this standard requires an implementation to use two’s complement
representation for the standard integer types.

Types are defined in the following categories:

• Integer types having certain exact widths

• Integer types having at least certain specified widths

• Fastest integer types having at least certain specified widths

• Integer types wide enough to hold pointers to objects

• Integer types having greatest width

(Some of these types may denote the same type.)

Corresponding macros specify limits of the declared types and construct suitable constants.

For each type described herein that the implementation provides, the <stdint.h> header shall
declare that typedef name and define the associated macros. Conversely, for each type described
herein that the implementation does not provide, the <stdint.h> header shall not declare that
typedef name, nor shall it define the associated macros. An implementation shall provide those
types described as required, but need not provide any of the others (described as optional).

Integer Types

When typedef names differing only in the absence or presence of the initial u are defined, they
shall denote corresponding signed and unsigned types as described in the ISO C standard,
Section 6.2.5; an implementation providing one of these corresponding types shall also provide
the other.

In the following descriptions, the symbol N represents an unsigned decimal integer with no
leading zeros (for example, 8 or 24, but not 04 or 048).

• Exact-width integer types

The typedef name intN_t designates a signed integer type with width N , no padding bits,
and a two’s-complement representation. Thus, int8_t denotes such a signed integer type
with a width of exactly 8 bits.

The typedef name uintN_t designates an unsigned integer type with width N and no

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 369

12899

12900

12901

12902

12903

12904

12905

12906

12907

12908

12909

12910

12911

12912

12913

12914

12915

12916

12917

12918

12919

12920

12921

12922

12923

12924

12925

12926

12927

12928

12929

12930

12931

12932

12933

12934

12935

12936

12937

12938

12939

12940

12941

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdint.h> Headers

padding bits. Thus, uint24_t denotes such an unsigned integer type with a width of exactly
24 bits.

CX The following types are required:

int8_t
int16_t
int32_t
uint8_t
uint16_t
uint32_t

If an implementation provides integer types with width 64 that meet these requirements,
then the following types are required:

int64_t
uint64_t

CX In particular, this is the case if any of the following are true:

— The implementation supports the _POSIX_V8_ILP32_OFFBIG programming
environment and the application is being built in the _POSIX_V8_ILP32_OFFBIG
programming environment (see the Shell and Utilities volume of POSIX.1-2024, c17,
Programming Environments).

— The implementation supports the _POSIX_V8_LP64_OFF64 programming
environment and the application is being built in the _POSIX_V8_LP64_OFF64
programming environment.

— The implementation supports the _POSIX_V8_LPBIG_OFFBIG programming
environment and the application is being built in the _POSIX_V8_LPBIG_OFFBIG
programming environment.

If the representation of any of the standard types short, int, long or long long is not the
same as one of the above required types, an intN_t type with that representation shall be
defined along with its uintN_t counterpart.

All other types of this form are optional.

• Minimum-width integer types

The typedef name int_leastN_t designates a signed integer type with a width of at least N ,
such that no signed integer type with lesser size has at least the specified width. Thus,
int_least32_t denotes a signed integer type with a width of at least 32 bits.

The typedef name uint_leastN_t designates an unsigned integer type with a width of at
least N , such that no unsigned integer type with lesser size has at least the specified width.
Thus, uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.

The following types are required:

370 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12942

12943

12944

12945

12946

12947

12948

12949

12950

12951

12952

12953

12954

12955

12956

12957

12958

12959

12960

12961

12962

12963

12964

12965

12966

12967

12968

12969

12970

12971

12972

12973

12974

12975

12976

12977

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdint.h>

int_least8_t
int_least16_t
int_least32_t
int_least64_t
uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t

All other types of this form are optional.

• Fastest minimum-width integer types

Each of the following types designates an integer type that is usually fastest to operate
with among all integer types that have at least the specified width.

The designated type is not guaranteed to be fastest for all purposes; if the implementation
has no clear grounds for choosing one type over another, it may simply pick some integer
type satisfying the signedness and width requirements.

The typedef name int_fastN_t designates the fastest signed integer type with a width of at
least N . The typedef name uint_fastN_t designates the fastest unsigned integer type with
a width of at least N .

The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t
uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

All other types of this form are optional.

• Integer types capable of holding object pointers

The following type designates a signed integer type with the property that any valid
pointer to void can be converted to this type, then converted back to a pointer to void, and
the result shall compare equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid
pointer to void can be converted to this type, then converted back to a pointer to void, and
the result shall compare equal to the original pointer:

uintptr_t

XSI On XSI-conformant systems, the intptr_t and uintptr_t types are required; otherwise, they
are optional.

• Greatest-width integer types

CX The following type designates a signed integer type using two’s complement
representation capable of representing any value of any signed integer type:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 371

12978

12979

12980

12981

12982

12983

12984

12985

12986

12987

12988

12989

12990

12991

12992

12993

12994

12995

12996

12997

12998

12999

13000

13001

13002

13003

13004

13005

13006

13007

13008

13009

13010

13011

13012

13013

13014

13015

13016

13017

13018

13019

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdint.h> Headers

intmax_t

The following type designates an unsigned integer type capable of representing any value
of any unsigned integer type:

uintmax_t

These types are required.

Note: Applications can test for optional types by using the corresponding limit macro from Limits of
Specified-Width Integer Types.

Limits of Specified-Width Integer Types

The following macros specify the minimum and maximum limits of the types declared in the
<stdint.h> header. Each macro name corresponds to a similar type name in Integer Types (on
page 369).

Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives, and this expression shall have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Its implementation-defined value shall be equal to or greater in magnitude
(absolute value) than the corresponding value given below, with the same sign, except where
stated to be exactly the given value.

• Limits of exact-width integer types

— Minimum values of exact-width signed integer types:

{INTN_MIN} Exactly −(2N−1)

— Maximum values of exact-width signed integer types:

{INTN_MAX} Exactly 2N−1 −1

— Maximum values of exact-width unsigned integer types:

{UINTN_MAX} Exactly 2N −1

• Limits of minimum-width integer types

— Minimum values of minimum-width signed integer types:

CX {INT_LEASTN_MIN} −(2N−1)

— Maximum values of minimum-width signed integer types:

{INT_LEASTN_MAX} 2N−1 −1

— Maximum values of minimum-width unsigned integer types:

{UINT_LEASTN_MAX} 2N −1

• Limits of fastest minimum-width integer types

— Minimum values of fastest minimum-width signed integer types:

CX {INT_FASTN_MIN} −(2N−1)

— Maximum values of fastest minimum-width signed integer types:

372 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13020

13021

13022

13023

13024

13025

13026

13027

13028

13029

13030

13031

13032

13033

13034

13035

13036

13037

13038

13039

13040

13041

13042

13043

13044

13045

13046

13047

13048

13049

13050

13051

13052

13053

13054

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdint.h>

{INT_FASTN_MAX} 2N−1 −1

— Maximum values of fastest minimum-width unsigned integer types:

{UINT_FASTN_MAX} 2N −1

• Limits of integer types capable of holding object pointers

— Minimum value of pointer-holding signed integer type:

CX {INTPTR_MIN} −(215)

— Maximum value of pointer-holding signed integer type:

{INTPTR_MAX} 215 −1

— Maximum value of pointer-holding unsigned integer type:

{UINTPTR_MAX} 216 −1

• Limits of greatest-width integer types

— Minimum value of greatest-width signed integer type:

CX {INTMAX_MIN} −(263)

— Maximum value of greatest-width signed integer type:

{INTMAX_MAX} 263 −1

— Maximum value of greatest-width unsigned integer type:

{UINTMAX_MAX} 264 −1

Limits of Other Integer Types

The following macros specify the minimum and maximum limits of integer types corresponding
to types defined in other standard headers.

Each instance of these macros shall be replaced by a constant expression suitable for use in #if
preprocessing directives, and this expression shall have the same type as would an expression
that is an object of the corresponding type converted according to the integer promotions. Its
implementation-defined value shall be equal to or greater in magnitude (absolute value) than
the corresponding value given below, with the same sign.

• Limits of ptrdiff_t:

CX {PTRDIFF_MIN} −65 536

{PTRDIFF_MAX} +65 535

• Limits of sig_atomic_t:

{SIG_ATOMIC_MIN} See below.

{SIG_ATOMIC_MAX} See below.

• Limit of size_t:

{SIZE_MAX} 65 535

• Limits of wchar_t:

{WCHAR_MIN} See below.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 373

13055

13056

13057

13058

13059

13060

13061

13062

13063

13064

13065

13066

13067

13068

13069

13070

13071

13072

13073

13074

13075

13076

13077

13078

13079

13080

13081

13082

13083

13084

13085

13086

13087

13088

13089

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdint.h> Headers

{WCHAR_MAX} See below.

• Limits of wint_t:

{WINT_MIN} See below.

{WINT_MAX} See below.

If sig_atomic_t (see the <signal.h> header) is defined as a signed integer type, the value of
{SIG_ATOMIC_MIN} shall be no greater than −127 and the value of {SIG_ATOMIC_MAX} shall
be no less than 127; otherwise, sig_atomic_t shall be defined as an unsigned integer type, and
the value of {SIG_ATOMIC_MIN} shall be 0 and the value of {SIG_ATOMIC_MAX} shall be no
less than 255.

If wchar_t (see the <stddef.h> header) is defined as a signed integer type, the value of
{WCHAR_MIN} shall be no greater than −127 and the value of {WCHAR_MAX} shall be no less
than 127; otherwise, wchar_t shall be defined as an unsigned integer type, and the value of
{WCHAR_MIN} shall be 0 and the value of {WCHAR_MAX} shall be no less than 255.

If wint_t (see the <wchar.h> header) is defined as a signed integer type, the value of
{WINT_MIN} shall be no greater than −32 767 and the value of {WINT_MAX} shall be no less
than 32 767; otherwise, wint_t shall be defined as an unsigned integer type, and the value of
{WINT_MIN} shall be 0 and the value of {WINT_MAX} shall be no less than 65 535.

Macros for Integer Constant Expressions

The following macros expand to integer constant expressions suitable for initializing objects that
have integer types corresponding to types defined in the <stdint.h> header. Each macro name
corresponds to a similar type name listed under Minimum-width integer types and Greatest-width
integer types.

Each invocation of one of these macros shall expand to an integer constant expression suitable
for use in #if preprocessing directives. The type of the expression shall have the same type as
would an expression that is an object of the corresponding type converted according to the
integer promotions. The value of the expression shall be that of the argument.

The argument in any instance of these macros shall be an unsuffixed integer constant with a
value that does not exceed the limits for the corresponding type.

• Macros for minimum-width integer constant expressions

The macro INTN_C(value) shall expand to an integer constant expression corresponding to
the type int_leastN_t. The macro UINTN_C(value) shall expand to an integer constant
expression corresponding to the type uint_leastN_t. For example, if uint_least64_t is a
name for the type unsigned long long, then UINT64_C(0x123) might expand to the integer
constant 0x123ULL.

• Macros for greatest-width integer constant expressions

The following macro expands to an integer constant expression having the value specified
by its argument and the type intmax_t:

INTMAX_C(value)

The following macro expands to an integer constant expression having the value specified
by its argument and the type uintmax_t:

UINTMAX_C(value)

374 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13090

13091

13092

13093

13094

13095

13096

13097

13098

13099

13100

13101

13102

13103

13104

13105

13106

13107

13108

13109

13110

13111

13112

13113

13114

13115

13116

13117

13118

13119

13120

13121

13122

13123

13124

13125

13126

13127

13128

13129

13130

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdint.h>

APPLICATION USAGE
None.

RATIONALE
The <stdint.h> header is a subset of the <inttypes.h> header more suitable for use in
freestanding environments, which might not support the formatted I/O functions. In some
environments, if the formatted conversion support is not wanted, using this header instead of
the <inttypes.h> header avoids defining such a large number of macros.

As a consequence of adding int8_t, the following are true:

• A byte is exactly 8 bits.

• {CHAR_BIT} has the value 8, {SCHAR_MAX} has the value 127, {SCHAR_MIN} has the
value −128, and {UCHAR_MAX} has the value 255.

Since the POSIX.1 standard explicitly requires 8-bit char with two’s complement arithmetic, it is
easier for application writers if the same two’s complement guarantees are extended to all of the
other standard integer types. Furthermore, in programming environments with a 32-bit long,
some POSIX.1 interfaces, such as mrand48(), cannot be implemented if long does not use a two’s
complement representation.

FUTURE DIRECTIONS
typedef names beginning with int or uint and ending with _t may be added to the types defined
in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX,
_MIN, or _C may be added to the macros defined in the <stdint.h> header.

SEE ALSO
<inttypes.h>, <signal.h>, <stddef.h>, <wchar.h>

XSH Section 2.2 (on page 496)

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is applied.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 #40 is applied.

SD5-XBD-ERN-67 is applied.

Issue 8
Austin Group Defect 1108 is applied, changing the maximum allowed value for all signed
integer minimum limits.

Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1330 is applied, changing ``_V7_’’ to ``_V8_’’.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 375

13131

13132

13133

13134

13135

13136

13137

13138

13139

13140

13141

13142

13143

13144

13145

13146

13147

13148

13149

13150

13151

13152

13153

13154

13155

13156

13157

13158

13159

13160

13161

13162

13163

13164

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdio.h> Headers

NAME
stdio.h — standard buffered input/output

SYNOPSIS
#include <stdio.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <stdio.h> header shall define the following data types through typedef:

FILE A type containing information about a file. The FILE type may be an
incomplete type.

fpos_t A complete object type, other than an array type, capable of recording all
the information needed to specify uniquely every position within a file.

off_t As described in <sys/types.h>.

size_t As described in <stddef.h>.

CX ssize_t As described in <sys/types.h>.

CX va_list As described in <stdarg.h>.

The <stdio.h> header shall define the following macros which shall expand to integer constant
expressions:

CX BUFSIZ Size of <stdio.h> buffers. This shall expand to a positive value.

CX L_ctermid Maximum size of character array to hold ctermid() output.

OB L_tmpnam Maximum size of character array to hold tmpnam() output.

The <stdio.h> header shall define the following macros which shall expand to integer constant
expressions with distinct values:

_IOFBF Input/output fully buffered.

_IOLBF Input/output line buffered.

_IONBF Input/output unbuffered.

The <stdio.h> header shall define the following macros which shall expand to integer constant
expressions with distinct values:

SEEK_CUR Seek relative to current position.

SEEK_END Seek relative to end-of-file.

SEEK_SET Seek relative to start-of-file.

The <stdio.h> header shall define the following macros which shall expand to integer constant
expressions denoting implementation limits:

{FILENAME_MAX} Maximum size in bytes of the longest pathname that the implementation
guarantees can be opened.

{FOPEN_MAX} Number of streams which the implementation guarantees can be open
simultaneously. The value is at least eight.

376 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13165

13166

13167

13168

13169

13170

13171

13172

13173

13174

13175

13176

13177

13178

13179

13180

13181

13182

13183

13184

13185

13186

13187

13188

13189

13190

13191

13192

13193

13194

13195

13196

13197

13198

13199

13200

13201

13202

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdio.h>

OB {TMP_MAX} Minimum number of unique filenames generated by tmpnam().
Maximum number of times an application can call tmpnam() reliably. The
value of {TMP_MAX} is at least 25.

OB XSI On XSI-conformant systems, the value of {TMP_MAX} is at least 10 000.

The <stdio.h> header shall define the following macro which shall expand to an integer constant
expression with type int and a negative value:

EOF End-of-file return value.

The <stdio.h> header shall define NULL as described in <stddef.h>.

The <stdio.h> header shall define the following macros which shall expand to expressions of
type ``pointer to FILE’’ that point to the FILE objects associated, respectively, with the standard
error, input, and output streams:

stderr Standard error output stream.

stdin Standard input stream.

stdout Standard output stream.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void clearerr(FILE *);
CX char *ctermid(char *);

int dprintf(int, const char *restrict, ...)
int fclose(FILE *);

CX FILE *fdopen(int, const char *);
int feof(FILE *);
int ferror(FILE *);
int fflush(FILE *);
int fgetc(FILE *);
int fgetpos(FILE *restrict, fpos_t *restrict);
char *fgets(char *restrict, int, FILE *restrict);

CX int fileno(FILE *);
void flockfile(FILE *);
FILE *fmemopen(void *restrict, size_t, const char *restrict);
FILE *fopen(const char *restrict, const char *restrict);
int fprintf(FILE *restrict, const char *restrict, ...);
int fputc(int, FILE *);
int fputs(const char *restrict, FILE *restrict);
size_t fread(void *restrict, size_t, size_t, FILE *restrict);
FILE *freopen(const char *restrict, const char *restrict,

FILE *restrict);
int fscanf(FILE *restrict, const char *restrict, ...);
int fseek(FILE *, long, int);

CX int fseeko(FILE *, off_t, int);
int fsetpos(FILE *, const fpos_t *);
long ftell(FILE *);

CX off_t ftello(FILE *);
int ftrylockfile(FILE *);
void funlockfile(FILE *);
size_t fwrite(const void *restrict, size_t, size_t, FILE *restrict);
int getc(FILE *);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 377

13203

13204

13205

13206

13207

13208

13209

13210

13211

13212

13213

13214

13215

13216

13217

13218

13219

13220

13221

13222

13223

13224

13225

13226

13227

13228

13229

13230

13231

13232

13233

13234

13235

13236

13237

13238

13239

13240

13241

13242

13243

13244

13245

13246

13247

13248

13249

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdio.h> Headers

int getchar(void);
CX int getc_unlocked(FILE *);

int getchar_unlocked(void);
ssize_t getdelim(char **restrict, size_t *restrict, int,

FILE *restrict);
ssize_t getline(char **restrict, size_t *restrict, FILE *restrict);
FILE *open_memstream(char **, size_t *);
int pclose(FILE *);
void perror(const char *);

CX FILE *popen(const char *, const char *);
int printf(const char *restrict, ...);
int putc(int, FILE *);
int putchar(int);

CX int putc_unlocked(int, FILE *);
int putchar_unlocked(int);
int puts(const char *);
int remove(const char *);
int rename(const char *, const char *);

CX int renameat(int, const char *, int, const char *);
void rewind(FILE *);
int scanf(const char *restrict, ...);
void setbuf(FILE *restrict, char *restrict);
int setvbuf(FILE *restrict, char *restrict, int, size_t);
int snprintf(char *restrict, size_t, const char *restrict, ...);
int sprintf(char *restrict, const char *restrict, ...);
int sscanf(const char *restrict, const char *restrict, ...);
FILE *tmpfile(void);

OB char *tmpnam(char *);
int ungetc(int, FILE *);

CX int vdprintf(int, const char *restrict, va_list);
int vfprintf(FILE *restrict, const char *restrict, va_list);
int vfscanf(FILE *restrict, const char *restrict, va_list);
int vprintf(const char *restrict, va_list);
int vscanf(const char *restrict, va_list);
int vsnprintf(char *restrict, size_t, const char *restrict,

va_list);
int vsprintf(char *restrict, const char *restrict, va_list);
int vsscanf(const char *restrict, const char *restrict, va_list);

CX Inclusion of the <stdio.h> header may also make visible all symbols from <stddef.h>.

APPLICATION USAGE
Since standard I/O streams may use an underlying file descriptor to access the file associated
with a stream, application developers need to be aware that {FOPEN_MAX} streams may not be
available if file descriptors are being used to access files that are not associated with streams.

Since the latest revision of the ISO C standard allows FILE to be an incomplete type (and POSIX
also allows it), portable applications can no longer allocate or copy an object of type FILE; only
pointers to objects of type FILE can be allocated.

378 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13250

13251

13252

13253

13254

13255

13256

13257

13258

13259

13260

13261

13262

13263

13264

13265

13266

13267

13268

13269

13270

13271

13272

13273

13274

13275

13276

13277

13278

13279

13280

13281

13282

13283

13284

13285

13286

13287

13288

13289

13290

13291

13292

13293

13294

13295

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdio.h>

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stdarg.h>, <stddef.h>, <sys/types.h>

XSH Section 2.2 (on page 496), clearerr(), ctermid(), fclose(), fdopen(), feof(), ferror(), fflush(),
fgetc(), fgetpos(), fgets(), fileno(), flockfile(), fmemopen(), fopen(), fprintf(), fputc(), fputs(), fread(),
freopen(), fscanf(), fseek(), fsetpos(), ftell(), fwrite(), getc(), getchar(), getc_unlocked(), getdelim(),
getopt(), open_memstream(), pclose(), perror(), popen(), putc(), putchar(), puts(), remove(),
rename(), rewind(), setbuf(), setvbuf(), stdin , system(), tmpfile(), tmpnam(), ungetc(), vfprintf(),
vfscanf()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Large File System extensions are added.

The constant L_cuserid and the external variables optarg, opterr, optind, and optopt are marked as
extensions and LEGACY.

The cuserid() and getopt() functions are marked LEGACY.

Issue 6
The constant L_cuserid and the external variables optarg, opterr, optind, and optopt are removed
as they were previously marked LEGACY.

The cuserid(), getopt(), and getw() functions are removed as they were previously marked
LEGACY.

Several functions are marked as part of the Thread-Safe Functions option.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard. Note that the
description of the fpos_t type is now explicitly updated to exclude array types.

Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #172 is applied, adding rationale about a conflict for the
definition of {TMP_MAX} with the ISO C standard.

SD5-XBD-ERN-99 is applied, adding APPLICATION USAGE.

The dprintf(), fmemopen(), getdelim(), getline(), open_memstream(), and vdprintf() functions are
added from The Open Group Technical Standard, 2006, Extended API Set Part 1.

The renameat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

The gets(), tmpnam(), and tempnam() functions and the L_tmpnam macro are marked
obsolescent.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the off_t type is added.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0065 [291,427] is applied.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 379

13296

13297

13298

13299

13300

13301

13302

13303

13304

13305

13306

13307

13308

13309

13310

13311

13312

13313

13314

13315

13316

13317

13318

13319

13320

13321

13322

13323

13324

13325

13326

13327

13328

13329

13330

13331

13332

13333

13334

13335

13336

13337

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdio.h> Headers

Issue 8
Austin Group Defect 1054 is applied, allowing FILE to be an incomplete type.

Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

380 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13338

13339

13340

13341

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdlib.h>

NAME
stdlib.h — standard library definitions

SYNOPSIS
#include <stdlib.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <stdlib.h> header shall define the following macros which shall expand to integer constant
expressions:

CX EXIT_FAILURE Unsuccessful termination for exit(); the value shall be between 1 and 125
inclusive.

EXIT_SUCCESS Successful termination for exit(); the value shall be 0.

{RAND_MAX} Maximum value returned by rand(); at least 32 767.

The <stdlib.h> header shall define the following macro which shall expand to a positive integer
expression with type size_t:

{MB_CUR_MAX} Maximum number of bytes in a character specified by the current locale
(category LC_CTYPE).

CX In the POSIX locale the value of {MB_CUR_MAX} shall be 1.

The <stdlib.h> header shall define NULL as described in <stddef.h>.

The <stdlib.h> header shall define the following data types through typedef:

div_t Structure type returned by the div() function.

ldiv_t Structure type returned by the ldiv() function.

lldiv_t Structure type returned by the lldiv() function.

size_t As described in <stddef.h>.

wchar_t As described in <stddef.h>.

CX In addition, the <stdlib.h> header shall define the following symbolic constants and macros as
described in <sys/wait.h>:

WCOREDUMP
WEXITSTATUS
WIFEXITED
WIFSIGNALED
WIFSTOPPED
WNOHANG
WSTOPSIG
WTERMSIG
WUNTRACED

CX The <stdlib.h> header shall define the following symbolic constants as described in <fcntl.h>:

O_APPEND
O_CLOEXEC
O_CLOFORK

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 381

13342

13343

13344

13345

13346

13347

13348

13349

13350

13351

13352

13353

13354

13355

13356

13357

13358

13359

13360

13361

13362

13363

13364

13365

13366

13367

13368

13369

13370

13371

13372

13373

13374

13375

13376

13377

13378

13379

13380

13381

13382

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdlib.h> Headers

SIO O_DSYNC
XSI O_NOCTTY

O_RDWR
SIO O_RSYNC
CX O_SYNC

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

_Noreturn void _Exit(int);
XSI long a64l(const char *);

_Noreturn void abort(void);
int abs(int);
void *aligned_alloc(size_t, size_t);
int at_quick_exit(void (*)(void));
int atexit(void (*)(void));
double atof(const char *);
int atoi(const char *);
long atol(const char *);
long long atoll(const char *);
void *bsearch(const void *, const void *, size_t, size_t,

int (*)(const void *, const void *));
void *calloc(size_t, size_t);
div_t div(int, int);

XSI double drand48(void);
double erand48(unsigned short [3]);
_Noreturn void exit(int);
void free(void *);
char *getenv(const char *);

CX int getsubopt(char **restrict, char *const *restrict,
char **restrict);

XSI int grantpt(int);
char *initstate(unsigned, char *, size_t);
long jrand48(unsigned short [3]);
char *l64a(long);
long labs(long);

XSI void lcong48(unsigned short [7]);
ldiv_t ldiv(long, long);
long long llabs(long long);
lldiv_t lldiv(long long, long long);

XSI long lrand48(void);
void *malloc(size_t);
int mblen(const char *, size_t);
size_t mbstowcs(wchar_t *restrict, const char *restrict,

size_t);
int mbtowc(wchar_t *restrict, const char *restrict, size_t);

CX char *mkdtemp(char *);
int mkostemp(char *, int);
int mkstemp(char *);

XSI long mrand48(void);
long nrand48(unsigned short [3]);

382 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13383

13384

13385

13386

13387

13388

13389

13390

13391

13392

13393

13394

13395

13396

13397

13398

13399

13400

13401

13402

13403

13404

13405

13406

13407

13408

13409

13410

13411

13412

13413

13414

13415

13416

13417

13418

13419

13420

13421

13422

13423

13424

13425

13426

13427

13428

13429

13430

13431

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdlib.h>

ADV int posix_memalign(void **, size_t, size_t);
XSI int posix_openpt(int);

char *ptsname(int);
int ptsname_r(int, char *, size_t);
int putenv(char *);
void qsort(void *, size_t, size_t, int (*)(const void *,

const void *));
_Noreturn void quick_exit(int);

CX void qsort_r(void *, size_t, size_t, int (*)(const void *,
const void *, void *), void *);

int rand(void);
XSI long random(void);

void *realloc(void *, size_t);
CX void *reallocarray(void *, size_t, size_t);

char *realpath(const char *restrict, char *restrict);
char *secure_getenv(const char *);

XSI unsigned short *seed48(unsigned short [3]);
CX int setenv(const char *, const char *, int);
OB XSI void setkey(const char *);
XSI char *setstate(char *);

void srand(unsigned);
XSI void srand48(long);

void srandom(unsigned);
double strtod(const char *restrict, char **restrict);
float strtof(const char *restrict, char **restrict);
long strtol(const char *restrict, char **restrict, int);
long double strtold(const char *restrict, char **restrict);
long long strtoll(const char *restrict, char **restrict, int);
unsigned long strtoul(const char *restrict, char **restrict, int);
unsigned long long

strtoull(const char *restrict, char **restrict, int);
int system(const char *);

XSI int unlockpt(int);
CX int unsetenv(const char *);

size_t wcstombs(char *restrict, const wchar_t *restrict,
size_t);

int wctomb(char *, wchar_t);

CX Inclusion of the <stdlib.h> header may also make visible all symbols from <fcntl.h>, <limits.h>,
<math.h>, <stddef.h>, and <sys/wait.h>.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard requires that exit(EXIT_FAILURE) returns ``unsuccessful termination
status’’ to the host environment. In a POSIX host environment this means that the lower 8 bits of
EXIT_FAILURE must have at least one bit set. The standard developers decided to further
restrict the allowed values for the following reasons:

• Exit statuses of 126 and greater are ambiguous in certain circumstances because they have
special meanings in the shell (see XCU Section 2.8.2 (on page 2499) and the EXIT STATUS
section of sh).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 383

13432

13433

13434

13435

13436

13437

13438

13439

13440

13441

13442

13443

13444

13445

13446

13447

13448

13449

13450

13451

13452

13453

13454

13455

13456

13457

13458

13459

13460

13461

13462

13463

13464

13465

13466

13467

13468

13469

13470

13471

13472

13473

13474

13475

13476

13477

13478

13479

13480

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdlib.h> Headers

• The xargs utility quits when a command execution exits with status 255 (see XCU xargs).

• Calling exit() with a value greater than 255 or less than 0 is something that only programs
which are specifically designed to have their exit status obtained by waitid() should do
(since it does not truncate the exit status to 8 bits). ``Pure ISO C’’ programs that call
exit(EXIT_FAILURE) do not meet this design criterion.

The requirement that the value of EXIT_SUCCESS is 0 is not shaded CX because this matches the
requirement in the ISO C standard that exit(EXIT_SUCCESS) returns ``successful termination
status’’ to the host environment (when the host environment is a POSIX implementation).

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <math.h>, <stddef.h>, <sys/types.h>, <sys/wait.h>

XSH Section 2.2 (on page 496), _Exit(), a64l(), abort(), abs(), atexit(), atof(), atoi(), atol(),
bsearch(), calloc(), div(), drand48(), exit(), free(), getenv(), getsubopt(), grantpt(), initstate(), labs(),
ldiv(), malloc(), mblen(), mbstowcs(), mbtowc(), mkdtemp(), posix_memalign(), posix_openpt(),
ptsname(), putenv(), qsort(), rand(), realloc(), realpath(), setenv(), setkey(), strtod(), strtol(),
strtoul(), system(), unlockpt(), unsetenv(), waitid(), wcstombs(), wctomb()

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

The ttyslot() and valloc() functions are marked LEGACY.

The type of the third argument to initstate() is changed from int to size_t. The type of the return
value from setstate() is changed from char to char *, and the type of the first argument is
changed from char * to const char *.

Issue 6
The Open Group Corrigendum U021/1 is applied, correcting the prototype for realpath() to be
consistent with the reference page.

The Open Group Corrigendum U028/13 is applied, correcting the prototype for putenv() to be
consistent with the reference page.

The rand_r() function is marked as part of the Thread-Safe Functions option.

Function prototypes for setenv() and unsetenv() are added.

The posix_memalign() function is added for alignment with IEEE Std 1003.1d-1999.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

The ecvt(), fcvt(), gcvt(), and mktemp() functions are marked LEGACY.

The ttyslot() and valloc() functions are removed as they were previously marked LEGACY.

Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XBD-ERN-79 and SD5-XBD-ERN-105 are applied.

The LEGACY functions are removed.

The mkdtemp() function is added from The Open Group Technical Standard, 2006, Extended API

384 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13481

13482

13483

13484

13485

13486

13487

13488

13489

13490

13491

13492

13493

13494

13495

13496

13497

13498

13499

13500

13501

13502

13503

13504

13505

13506

13507

13508

13509

13510

13511

13512

13513

13514

13515

13516

13517

13518

13519

13520

13521

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <stdlib.h>

Set Part 1.

The rand_r() function is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

The type of the first argument to setstate() is changed from const char * to char *.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0066 [197] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0075 [663] is applied.

Issue 8
Austin Group Defect 411 is applied, adding mkostemp().

Austin Group Defect 444 is applied, adding the restrict keyword to the getsubopt() prototype.

Austin Group Defect 508 is applied, adding the ptsname_r() function.

Austin Group Defects 593 and 1350 are applied, adding some O_* symbolic constants and
allowing <stdlib.h> to make visible all symbols from <fcntl.h>.

Austin Group Defect 900 is applied, adding the qsort_r() function.

Austin Group Defect 922 is applied, adding the secure_getenv() function.

Austin Group Defect 1141 is applied, adding WCOREDUMP.

Austin Group Defect 1192 is applied, marking the setkey() function as obsolescent.

Austin Group Defect 1218 is applied, adding reallocarray().

Austin Group Defect 1229 is applied, changing the descriptions of EXIT_FAILURE and
EXIT_SUCCESS, and the RATIONALE section.

Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1629 is applied, changing the RATIONALE section.

Austin Group Defect 1663 is applied, removing XSI shading from realpath().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 385

13522

13523

13524

13525

13526

13527

13528

13529

13530

13531

13532

13533

13534

13535

13536

13537

13538

13539

13540

13541

13542

13543

13544

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<stdnoreturn.h> Headers

NAME
stdnoreturn.h — noreturn macro

SYNOPSIS
#include <stdnoreturn.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <stdnoreturn.h> header shall define the macro noreturn which shall expand to _Noreturn.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

386 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13545

13546

13547

13548

13549

13550

13551

13552

13553

13554

13555

13556

13557

13558

13559

13560

13561

13562

13563

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <string.h>

NAME
string.h — string operations

SYNOPSIS
#include <string.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <string.h> header shall define NULL and size_t as described in <stddef.h>.

CX The <string.h> header shall define the locale_t type as described in <locale.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

XSI void *memccpy(void *restrict, const void *restrict, int, size_t);
void *memchr(const void *, int, size_t);
int memcmp(const void *, const void *, size_t);
void *memcpy(void *restrict, const void *restrict, size_t);

CX void *memmem(const void *, size_t, const void *, size_t);
void *memmove(void *, const void *, size_t);
void *memset(void *, int, size_t);

CX char *stpcpy(char *restrict, const char *restrict);
char *stpncpy(char *restrict, const char *restrict, size_t);
char *strcat(char *restrict, const char *restrict);
char *strchr(const char *, int);
int strcmp(const char *, const char *);
int strcoll(const char *, const char *);

CX int strcoll_l(const char *, const char *, locale_t);
char *strcpy(char *restrict, const char *restrict);
size_t strcspn(const char *, const char *);

CX char *strdup(const char *);
char *strerror(int);

CX char *strerror_l(int, locale_t);
int strerror_r(int, char *, size_t);
size_t strlcat(char *restrict, const char *restrict, size_t);
size_t strlcpy(char *restrict, const char *restrict, size_t);
size_t strlen(const char *);
char *strncat(char *restrict, const char *restrict, size_t);
int strncmp(const char *, const char *, size_t);
char *strncpy(char *restrict, const char *restrict, size_t);

CX char *strndup(const char *, size_t);
size_t strnlen(const char *, size_t);
char *strpbrk(const char *, const char *);
char *strrchr(const char *, int);

CX char *strsignal(int);
size_t strspn(const char *, const char *);
char *strstr(const char *, const char *);
char *strtok(char *restrict, const char *restrict);

CX char *strtok_r(char *restrict, const char *restrict, char **restrict);
size_t strxfrm(char *restrict, const char *restrict, size_t);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 387

13564

13565

13566

13567

13568

13569

13570

13571

13572

13573

13574

13575

13576

13577

13578

13579

13580

13581

13582

13583

13584

13585

13586

13587

13588

13589

13590

13591

13592

13593

13594

13595

13596

13597

13598

13599

13600

13601

13602

13603

13604

13605

13606

13607

13608

13609

13610

13611

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<string.h> Headers

CX size_t strxfrm_l(char *restrict, const char *restrict,
size_t, locale_t);

CX Inclusion of the <string.h> header may also make visible all symbols from <stddef.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, <stddef.h>, <sys/types.h>

XSH Section 2.2 (on page 496), memccpy(), memchr(), memcmp(), memcpy(), memmem(),
memmove(), memset(), strcat(), strchr(), strcmp(), strcoll(), strcpy(), strcspn(), strdup(), strerror(),
strlcat(), strlen(), strncat(), strncmp(), strncpy(), strpbrk(), strrchr(), strsignal(), strspn(), strstr(),
strtok(), strxfrm()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The strtok_r() function is marked as part of the Thread-Safe Functions option.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

The strerror_r() function is added in response to IEEE PASC Interpretation 1003.1c #39.

Issue 7
SD5-XBD-ERN-15 is applied, correcting the prototype for the strerror_r() function.

The stpcpy(), stpncpy(), strndup(), strnlen(), and strsignal() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 1.

The strcoll_l(), strerror_l(), and strxfrm_l() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the locale_t type is added.

Issue 8
Austin Group Defect 986 is applied, adding strlcat() and strlcpy().

Austin Group Defect 1061 is applied, adding memmem().

388 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13612

13613

13614

13615

13616

13617

13618

13619

13620

13621

13622

13623

13624

13625

13626

13627

13628

13629

13630

13631

13632

13633

13634

13635

13636

13637

13638

13639

13640

13641

13642

13643

13644

13645

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <strings.h>

NAME
strings.h — string operations

SYNOPSIS
#include <strings.h>

DESCRIPTION
The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

XSI int ffs(int);
int ffsl(long);
int ffsll(long long);
int strcasecmp(const char *, const char *);
int strcasecmp_l(const char *, const char *, locale_t);
int strncasecmp(const char *, const char *, size_t);
int strncasecmp_l(const char *, const char *, size_t, locale_t);

The <strings.h> header shall define the locale_t type as described in <locale.h>.

The <strings.h> header shall define the size_t type as described in <sys/types.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, <sys/types.h>

XSH ffs(), strcasecmp()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
The Open Group Corrigendum U021/2 is applied, correcting the prototype for index() to be
consistent with the reference page.

The bcmp(), bcopy(), bzero(), index(), and rindex() functions are marked LEGACY.

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

The LEGACY functions are removed.

The <strings.h> header is moved from the XSI option to the Base.

The strcasecmp_l() and strncasecmp_l() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 4.

A declaration for the locale_t type is added.

Issue 8
Austin Group Defect 617 is applied, adding ffsl() and ffsll().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 389

13646

13647

13648

13649

13650

13651

13652

13653

13654

13655

13656

13657

13658

13659

13660

13661

13662

13663

13664

13665

13666

13667

13668

13669

13670

13671

13672

13673

13674

13675

13676

13677

13678

13679

13680

13681

13682

13683

13684

13685

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/ipc.h> Headers

NAME
sys/ipc.h — XSI interprocess communication access structure

SYNOPSIS
XSI #include <sys/ipc.h>

DESCRIPTION
The <sys/ipc.h> header is used by three mechanisms for XSI interprocess communication (IPC):
messages, semaphores, and shared memory. All use a common structure type, ipc_perm, to pass
information used in determining permission to perform an IPC operation.

The <sys/ipc.h> header shall define the ipc_perm structure, which shall include the following
members:

uid_t uid Owner ’s user ID.
gid_t gid Owner ’s group ID.
uid_t cuid Creator ’s user ID.
gid_t cgid Creator ’s group ID.
mode_t mode Read/write permission.

The <sys/ipc.h> header shall define the uid_t, gid_t, mode_t, and key_t types as described in
<sys/types.h>.

The <sys/ipc.h> header shall define the following symbolic constants.

Mode bits:

IPC_CREAT Create entry if key does not exist.

IPC_EXCL Fail if key exists.

IPC_NOWAIT Error if request would need to wait.

Keys:

IPC_PRIVATE Private key.

Control commands:

IPC_RMID Remove identifier.

IPC_SET Set options.

IPC_STAT Get options.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

key_t ftok(const char *, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

390 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13686

13687

13688

13689

13690

13691

13692

13693

13694

13695

13696

13697

13698

13699

13700

13701

13702

13703

13704

13705

13706

13707

13708

13709

13710

13711

13712

13713

13714

13715

13716

13717

13718

13719

13720

13721

13722

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/ipc.h>

SEE ALSO
<sys/types.h>

XSH ftok()

CHANGE HISTORY
First released in Issue 2. Derived from System V Release 2.0.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Issue 8
The description of IPC_NOWAIT is updated to eliminate the use of ``must’’.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 391

13723

13724

13725

13726

13727

13728

13729

13730

13731

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/mman.h> Headers

NAME
sys/mman.h — memory management declarations

SYNOPSIS
#include <sys/mman.h>

DESCRIPTION
The <sys/mman.h> header shall define the following symbolic constants for use as protection
options:

PROT_EXEC Page can be executed.

PROT_NONE Page cannot be accessed.

PROT_READ Page can be read.

PROT_WRITE Page can be written.

The <sys/mman.h> header shall define the following symbolic constants for use as flag options:

MAP_ANON Synonym for MAP_ANONYMOUS. MAP_ANON shall have the same
value as MAP_ANONYMOUS.

MAP_ANONYMOUS Map anonymous memory.

MAP_FIXED Interpret addr exactly.

MAP_PRIVATE Changes are private.

MAP_SHARED Share changes.

XSI|SIO The <sys/mman.h> header shall define the following symbolic constants for the msync()
function:

MS_ASYNC Perform asynchronous writes.

MS_INVALIDATE Invalidate mappings.

MS_SYNC Perform synchronous writes.

ML The <sys/mman.h> header shall define the following symbolic constants for the mlockall()
function:

MCL_CURRENT Lock currently mapped pages.

MCL_FUTURE Lock pages that become mapped.

The <sys/mman.h> header shall define the symbolic constant MAP_FAILED which shall have
type void * and shall be used to indicate a failure from the mmap() function .

ADV If the Advisory Information option is supported, the <sys/mman.h> header shall define
symbolic constants for the advice argument to the posix_madvise() function as follows:

POSIX_MADV_DONTNEED
The application expects that it will not access the specified range in the near future.

POSIX_MADV_NORMAL
The application has no advice to give on its behavior with respect to the specified range. It
is the default characteristic if no advice is given for a range of memory.

392 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13732

13733

13734

13735

13736

13737

13738

13739

13740

13741

13742

13743

13744

13745

13746

13747

13748

13749

13750

13751

13752

13753

13754

13755

13756

13757

13758

13759

13760

13761

13762

13763

13764

13765

13766

13767

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/mman.h>

POSIX_MADV_RANDOM
The application expects to access the specified range in a random order.

POSIX_MADV_SEQUENTIAL
The application expects to access the specified range sequentially from lower addresses to
higher addresses.

POSIX_MADV_WILLNEED
The application expects to access the specified range in the near future.

TYM The <sys/mman.h> header shall define the following symbolic constants for use as flags for the
posix_typed_mem_open() function:

POSIX_TYPED_MEM_ALLOCATE
Allocate on mmap().

POSIX_TYPED_MEM_ALLOCATE_CONTIG
Allocate contiguously on mmap().

POSIX_TYPED_MEM_MAP_ALLOCATABLE
Map on mmap(), without affecting allocatability.

The <sys/mman.h> header shall define the mode_t, off_t, and size_t types as described in
<sys/types.h>.

TYM The <sys/mman.h> header shall define the posix_typed_mem_info structure, which shall
include at least the following member:

size_t posix_tmi_length Maximum length which may be allocated
from a typed memory object.

The <sys/mman.h> header shall define the following symbolic constants as described in
<fcntl.h>:

SHM|TYM O_RDONLY
O_RDWR

TYM O_WRONLY
O_CLOEXEC
O_CLOFORK

SHM O_CREAT
O_EXCL
O_TRUNC

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

MLR int mlock(const void *, size_t);
ML int mlockall(int);

void *mmap(void *, size_t, int, int, int, off_t);
int mprotect(void *, size_t, int);

XSI|SIO int msync(void *, size_t, int);
MLR int munlock(const void *, size_t);
ML int munlockall(void);

int munmap(void *, size_t);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 393

13768

13769

13770

13771

13772

13773

13774

13775

13776

13777

13778

13779

13780

13781

13782

13783

13784

13785

13786

13787

13788

13789

13790

13791

13792

13793

13794

13795

13796

13797

13798

13799

13800

13801

13802

13803

13804

13805

13806

13807

13808

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/mman.h> Headers

ADV int posix_madvise(void *, size_t, int);
TYM int posix_mem_offset(const void *restrict, size_t, off_t *restrict,

size_t *restrict, int *restrict);
int posix_typed_mem_get_info(int, struct posix_typed_mem_info *);
int posix_typed_mem_open(const char *, int, int);

SHM int shm_open(const char *, int, mode_t);
int shm_unlink(const char *);

Inclusion of the <sys/mman.h> header may make visible all symbols from the <fcntl.h> header.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH mlock(), mlockall(), mmap(), mprotect(), msync(), munmap(), posix_madvise(),
posix_mem_offset(), posix_typed_mem_get_info(), posix_typed_mem_open(), shm_open(),
shm_unlink()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Updated for alignment with the POSIX Realtime Extension.

Issue 6
The <sys/mman.h> header is marked as dependent on support for either the Memory Mapped
Files, Process Memory Locking, or Shared Memory Objects options.

The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The TYM margin code is added to the list of margin codes for the <sys/mman.h> header
line, as well as for other lines.

• The POSIX_TYPED_MEM_ALLOCATE, POSIX_TYPED_MEM_ALLOCATE_CONTIG,
and POSIX_TYPED_MEM_MAP_ALLOCATABLE flags are added.

• The posix_tmi_length structure is added.

• The posix_mem_offset(), posix_typed_mem_get_info(), and posix_typed_mem_open() functions
are added.

The restrict keyword is added to the prototype for posix_mem_offset().

IEEE PASC Interpretation 1003.1 #102 is applied, adding the prototype for posix_madvise().

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/16 is applied, correcting margin code and
shading errors for the mlock() and munlock() functions.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/34 is applied, changing the margin code
for the mmap() function from MF|SHM to MC3 (notation for MF|SHM|TYM).

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/36 is applied, changing the margin code

394 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13809

13810

13811

13812

13813

13814

13815

13816

13817

13818

13819

13820

13821

13822

13823

13824

13825

13826

13827

13828

13829

13830

13831

13832

13833

13834

13835

13836

13837

13838

13839

13840

13841

13842

13843

13844

13845

13846

13847

13848

13849

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/mman.h>

for the munmap() function from MF|SHM to MC3 (notation for MF|SHM|TYM).

Issue 7
SD5-XBD-ERN-5 is applied, rewriting the DESCRIPTION.

Functionality relating to the Memory Protection and Memory Mapped Files options is moved to
the Base.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 593 is applied, adding O_RDONLY, O_RDWR, O_WRONLY, O_CLOEXEC,
O_CLOFORK, O_CREAT, O_EXCL, and O_TRUNC, and allowing <sys/mman.h> to make
visible all symbols from <fcntl.h>.

Austin Group Defect 850 is applied, adding MAP_ANON and MAP_ANONYMOUS.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 395

13850

13851

13852

13853

13854

13855

13856

13857

13858

13859

13860

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/msg.h> Headers

NAME
sys/msg.h — XSI message queue structures

SYNOPSIS
XSI #include <sys/msg.h>

DESCRIPTION
The <sys/msg.h> header shall define the following data types through typedef:

msgqnum_t Used for the number of messages in the message queue.

msglen_t Used for the number of bytes allowed in a message queue.

These types shall be unsigned integer types that are able to store values at least as large as a type
unsigned short.

The <sys/msg.h> header shall define the following symbolic constant as a message operation
flag:

MSG_NOERROR No error if big message.

The <sys/msg.h> header shall define the msqid_ds structure, which shall include the following
members:

struct ipc_perm msg_perm Operation permission structure.
msgqnum_t msg_qnum Number of messages currently on queue.
msglen_t msg_qbytes Maximum number of bytes allowed on queue.
pid_t msg_lspid Process ID of last msgsnd().
pid_t msg_lrpid Process ID of last msgrcv().
time_t msg_stime Time of last msgsnd().
time_t msg_rtime Time of last msgrcv().
time_t msg_ctime Time of last change.

The <sys/msg.h> header shall define the pid_t, size_t, ssize_t, and time_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int msgctl(int, int, struct msqid_ds *);
int msgget(key_t, int);
ssize_t msgrcv(int, void *, size_t, long, int);
int msgsnd(int, const void *, size_t, int);

In addition, the <sys/msg.h> header shall include the <sys/ipc.h> header.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/ipc.h>, <sys/types.h>

XSH msgctl(), msgget(), msgrcv(), msgsnd()

396 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13861

13862

13863

13864

13865

13866

13867

13868

13869

13870

13871

13872

13873

13874

13875

13876

13877

13878

13879

13880

13881

13882

13883

13884

13885

13886

13887

13888

13889

13890

13891

13892

13893

13894

13895

13896

13897

13898

13899

13900

13901

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from System V Release 2.0.

Issue 7
Austin Group Interpretation 1003.1-2001 #179 is applied.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 397

13902

13903

13904

13905

13906

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/resource.h> Headers

NAME
sys/resource.h — definitions for resource operations

SYNOPSIS
#include <sys/resource.h>

DESCRIPTION
XSI The <sys/resource.h> header shall define the following symbolic constants as possible values of

the which argument of getpriority() and setpriority():

PRIO_PROCESS Identifies the who argument as a process ID.

PRIO_PGRP Identifies the who argument as a process group ID.

PRIO_USER Identifies the who argument as a user ID.

The <sys/resource.h> header shall define the following type through typedef:

rlim_t Unsigned integer type used for limit values.

The <sys/resource.h> header shall define the following symbolic constants, which shall have
values suitable for use in #if preprocessing directives:

RLIM_INFINITY A value of rlim_t indicating no limit.

RLIM_SAVED_MAX A value of type rlim_t indicating an unrepresentable saved hard
limit.

RLIM_SAVED_CUR A value of type rlim_t indicating an unrepresentable saved soft limit.

On implementations where all resource limits are representable in an object of type rlim_t,
RLIM_SAVED_MAX and RLIM_SAVED_CUR need not be distinct from RLIM_INFINITY.

XSI The <sys/resource.h> header shall define the following symbolic constants as possible values of
the who parameter of getrusage():

RUSAGE_SELF Returns information about the current process.

RUSAGE_CHILDREN Returns information about children of the current process.

The <sys/resource.h> header shall define the rlimit structure, which shall include at least the
following members:

rlim_t rlim_cur The current (soft) limit.
rlim_t rlim_max The hard limit.

XSI The <sys/resource.h> header shall define the rusage structure, which shall include at least the
following members:

struct timeval ru_utime User time used.
struct timeval ru_stime System time used.

The <sys/resource.h> header shall define the timeval structure as described in <sys/time.h>.

The <sys/resource.h> header shall define the following symbolic constants as possible values for
the resource argument of getrlimit() and setrlimit():

RLIMIT_CORE Limit on size of core image.

XSI RLIMIT_CPU Limit on CPU time per process.

398 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13907

13908

13909

13910

13911

13912

13913

13914

13915

13916

13917

13918

13919

13920

13921

13922

13923

13924

13925

13926

13927

13928

13929

13930

13931

13932

13933

13934

13935

13936

13937

13938

13939

13940

13941

13942

13943

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/resource.h>

RLIMIT_DATA Limit on data segment size.

RLIMIT_FSIZE Limit on file size.

RLIMIT_NOFILE Limit on number of open files.

RLIMIT_STACK Limit on stack size.

RLIMIT_AS Limit on address space size.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

XSI int getpriority(int, id_t);
int getrlimit(int, struct rlimit *);

XSI int getrusage(int, struct rusage *);
int setpriority(int, id_t, int);
int setrlimit(int, const struct rlimit *);

XSI The <sys/resource.h> header shall define the id_t type through typedef, as described in
<sys/types.h>.

Inclusion of the <sys/resource.h> header may also make visible all symbols from <sys/time.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/time.h>, <sys/types.h>

XSH getpriority(), getrlimit(), getrusage()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Large File System extensions are added.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defects 51 and 1669 are applied, moving the getrlimit() and setrlimit() functions,
excluding the RLIMIT_CPU limit, from the XSI option to the Base.

Austin Group Defect 1141 is applied, changing the description of RLIMIT_CORE.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 399

13944

13945

13946

13947

13948

13949

13950

13951

13952

13953

13954

13955

13956

13957

13958

13959

13960

13961

13962

13963

13964

13965

13966

13967

13968

13969

13970

13971

13972

13973

13974

13975

13976

13977

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/select.h> Headers

NAME
sys/select.h — select types

SYNOPSIS
#include <sys/select.h>

DESCRIPTION
The <sys/select.h> header shall define the timeval structure, which shall include at least the
following members:

time_t tv_sec Seconds.
suseconds_t tv_usec Microseconds.

The <sys/select.h> header shall define the time_t and suseconds_t types as described in
<sys/types.h>.

The <sys/select.h> header shall define the sigset_t type as described in <signal.h>.

The <sys/select.h> header shall define the timespec structure as described in <time.h>.

The <sys/select.h> header shall define the fd_set type as a structure.

The <sys/select.h> header shall define the following symbolic constant, which shall have a value
suitable for use in #if preprocessing directives:

FD_SETSIZE Maximum number of file descriptors in an fd_set structure.

The following shall be declared as functions, defined as macros, or both. If functions are
declared, function prototypes shall be provided.

void FD_CLR(int, fd_set *);
int FD_ISSET(int, const fd_set *);
void FD_SET(int, fd_set *);
void FD_ZERO(fd_set *);

If implemented as macros, these may evaluate their arguments more than once, so applications
should ensure that the arguments they supply are never expressions with side-effects.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int pselect(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,
const struct timespec *restrict, const sigset_t *restrict);

int select(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,
struct timeval *restrict);

Inclusion of the <sys/select.h> header may make visible all symbols from the headers
<signal.h> and <time.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

400 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

13978

13979

13980

13981

13982

13983

13984

13985

13986

13987

13988

13989

13990

13991

13992

13993

13994

13995

13996

13997

13998

13999

14000

14001

14002

14003

14004

14005

14006

14007

14008

14009

14010

14011

14012

14013

14014

14015

14016

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/select.h>

SEE ALSO
<signal.h>, <sys/time.h>, <sys/types.h>, <time.h>

XSH pselect()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

The requirement for the fd_set structure to have a member fds_bits has been removed as per The
Open Group Base Resolution bwg2001-005.

Issue 7
SD5-XBD-ERN-6 is applied, reordering the DESCRIPTION.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 220 is applied, adding const to the second parameter of FD_ISSET().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 401

14017

14018

14019

14020

14021

14022

14023

14024

14025

14026

14027

14028

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/sem.h> Headers

NAME
sys/sem.h — XSI semaphore facility

SYNOPSIS
XSI #include <sys/sem.h>

DESCRIPTION
The <sys/sem.h> header shall define the following symbolic constant for use as a semaphore
operation flag:

SEM_UNDO Set up adjust on exit entry.

The <sys/sem.h> header shall define the following symbolic constants for use as commands for
the semctl() function:

GETNCNT Get semncnt.

GETPID Get sempid.

GETVAL Get semval.

GETALL Get all cases of semval.

GETZCNT Get semzcnt.

SETVAL Set semval.

SETALL Set all cases of semval.

The <sys/sem.h> header shall define the semid_ds structure, which shall include the following
members:

struct ipc_perm sem_perm Operation permission structure.
unsigned short sem_nsems Number of semaphores in set.
time_t sem_otime Last semop() time.
time_t sem_ctime Last time changed by semctl().

The <sys/sem.h> header shall define the pid_t, size_t, and time_t types as described in
<sys/types.h>.

A semaphore shall be represented by an anonymous structure, which shall include the following
members:

unsigned short semval Semaphore value.
pid_t sempid Process ID of last operation.
unsigned short semncnt Number of processes waiting for semval

to become greater than current value.
unsigned short semzcnt Number of processes waiting for semval

to become 0.

The <sys/sem.h> header shall define the sembuf structure, which shall include the following
members:

unsigned short sem_num Semaphore number.
short sem_op Semaphore operation.
short sem_flg Operation flags.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int semctl(int, int, int, ...);

402 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14029

14030

14031

14032

14033

14034

14035

14036

14037

14038

14039

14040

14041

14042

14043

14044

14045

14046

14047

14048

14049

14050

14051

14052

14053

14054

14055

14056

14057

14058

14059

14060

14061

14062

14063

14064

14065

14066

14067

14068

14069

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/sem.h>

int semget(key_t, int, int);
int semop(int, struct sembuf *, size_t);

In addition, the <sys/sem.h> header shall include the <sys/ipc.h> header.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/ipc.h>, <sys/types.h>

XSH semctl(), semget(), semop()

CHANGE HISTORY
First released in Issue 2. Derived from System V Release 2.0.

Issue 7
Austin Group Interpretation 1003.1-2001 #179 is applied.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 403

14070

14071

14072

14073

14074

14075

14076

14077

14078

14079

14080

14081

14082

14083

14084

14085

14086

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/shm.h> Headers

NAME
sys/shm.h — XSI shared memory facility

SYNOPSIS
XSI #include <sys/shm.h>

DESCRIPTION
The <sys/shm.h> header shall define the following symbolic constants:

SHM_RDONLY Attach read-only (else read-write).

SHM_RND Round attach address to SHMLBA.

SHMLBA Segment low boundary address multiple.

The <sys/shm.h> header shall define the symbolic constant SHM_FAILED which shall evaluate
to the same value as ((void *)(intptr_t)−1).

The <sys/shm.h> header shall define the type intptr_t as described in <stdint.h>.

The <sys/shm.h> header shall define the following data type through typedef:

shmatt_t Unsigned integer used for the number of current attaches that shall be able to
store values at least as large as a type unsigned short.

The <sys/shm.h> header shall define the shmid_ds structure, which shall include the following
members:

struct ipc_perm shm_perm Operation permission structure.
size_t shm_segsz Size of segment in bytes.
pid_t shm_lpid Process ID of last shared memory operation.
pid_t shm_cpid Process ID of creator.
shmatt_t shm_nattch Number of current attaches.
time_t shm_atime Time of last shmat().
time_t shm_dtime Time of last shmdt().
time_t shm_ctime Time of last change by shmctl().

The <sys/shm.h> header shall define the pid_t, size_t, and time_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void *shmat(int, const void *, int);
int shmctl(int, int, struct shmid_ds *);
int shmdt(const void *);
int shmget(key_t, size_t, int);

In addition, the <sys/shm.h> header shall include the <sys/ipc.h> header.

404 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14087

14088

14089

14090

14091

14092

14093

14094

14095

14096

14097

14098

14099

14100

14101

14102

14103

14104

14105

14106

14107

14108

14109

14110

14111

14112

14113

14114

14115

14116

14117

14118

14119

14120

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/shm.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/ipc.h>, <sys/types.h>

XSH shmat(), shmctl(), shmdt(), shmget()

CHANGE HISTORY
First released in Issue 2. Derived from System V Release 2.0.

Issue 5
The type of shm_segsz is changed from int to size_t.

Issue 7
Austin Group Interpretation 1003.1-2001 #179 is applied.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 1239 is applied, adding SHM_FAILED and requiring <sys/shm.h> to
define intptr_t.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 405

14121

14122

14123

14124

14125

14126

14127

14128

14129

14130

14131

14132

14133

14134

14135

14136

14137

14138

14139

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/socket.h> Headers

NAME
sys/socket.h — main sockets header

SYNOPSIS
#include <sys/socket.h>

DESCRIPTION
The <sys/socket.h> header shall define the socklen_t type, which is an integer type of width of
at least 32 bits; see APPLICATION USAGE.

The <sys/socket.h> header shall define the sa_family_t unsigned integer type.

The <sys/socket.h> header shall define the sockaddr structure, which shall include at least the
following members:

sa_family_t sa_family Address family.
char sa_data[] Socket address (variable-length data).

The sockaddr structure is used to define a socket address which is used in the bind(), connect(),
getpeername(), getsockname(), recvfrom(), and sendto() functions.

The <sys/socket.h> header shall define the sockaddr_storage structure, which shall be:

• Large enough to accommodate all supported protocol-specific address structures

• Aligned at an appropriate boundary so that pointers to it can be cast as pointers to
protocol-specific address structures and used to access the fields of those structures
without alignment problems

The sockaddr_storage structure shall include at least the following members:

sa_family_t ss_family

When a pointer to a sockaddr_storage structure is converted to a pointer to a sockaddr
structure, or vice versa, the ss_family member of the sockaddr_storage structure shall map onto
the sa_family member of the sockaddr structure. When a pointer to a sockaddr_storage structure
is converted to a pointer to a protocol-specific address structure, or vice versa, the ss_family
member shall map onto a member of that structure that is of type sa_family_t that identifies the
protocol’s address family. When a pointer to a sockaddr structure is converted to a pointer to a
protocol-specific address structure, or vice versa, the sa_family member shall map onto a member
of that structure that is of type sa_family_t that identifies the protocol’s address family.
Additionally, the structures shall be defined in such a way that the compiler treats an access to
the stored value of the sa_family_t member of any of these structures, via an lvalue expression
whose type involves any other one of these structures, as permissible, despite the more
restrictive expression rules on stored value access as stated in the ISO C standard. Similarly,
when a pointer to a sockaddr_storage or sockaddr structure is converted to a pointer to a
protocol-specific address structure, the compiler shall treat an access (using this converted
pointer) to the stored value of any member of the protocol-specific structure as permissible. The
application shall ensure that the protocol-specific address structure corresponds to the family
indicated by the member with type sa_family_t of that structure and the pointed-to object has
sufficient memory for addressing all members of the protocol-specific structure.

The <sys/socket.h> header shall define the msghdr structure, which shall include at least the
following members:

void *msg_name Optional address.
socklen_t msg_namelen Size of address.
struct iovec *msg_iov Scatter/gather array.
int msg_iovlen Members in msg_iov.

406 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14140

14141

14142

14143

14144

14145

14146

14147

14148

14149

14150

14151

14152

14153

14154

14155

14156

14157

14158

14159

14160

14161

14162

14163

14164

14165

14166

14167

14168

14169

14170

14171

14172

14173

14174

14175

14176

14177

14178

14179

14180

14181

14182

14183

14184

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/socket.h>

void *msg_control Ancillary data; see below.
socklen_t msg_controllen Ancillary data buffer len.
int msg_flags Flags on received message.

The msghdr structure is used to reduce the number of directly supplied parameters to the
recvmsg() and sendmsg() functions. This structure is used as a value-result parameter in the
recvmsg() function and value only for the sendmsg() function.

The <sys/socket.h> header shall define the iovec structure as described in <sys/uio.h>.

The <sys/socket.h> header shall define the cmsghdr structure, which shall include at least the
following members:

socklen_t cmsg_len Data byte count, including the cmsghdr.
int cmsg_level Originating protocol.
int cmsg_type Protocol-specific type.

The cmsghdr structure is used for storage of ancillary data object information.

Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr structure followed
by a data array. The data array contains the ancillary data message, and the cmsghdr structure
contains descriptive information that allows an application to correctly parse the data.

The values for cmsg_level shall be legal values for the level argument to the getsockopt() and
setsockopt() functions. The system documentation shall specify the cmsg_type definitions for the
supported protocols.

Ancillary data is also possible at the socket level. The <sys/socket.h> header shall define the
following symbolic constant for use as the cmsg_type value when cmsg_level is SOL_SOCKET:

SCM_RIGHTS Indicates that the data array contains the access rights to be sent or
received.

The <sys/socket.h> header shall define the following macros to gain access to the data arrays in
the ancillary data associated with a message header:

CMSG_DATA(cmsg)
If the argument is a pointer to a cmsghdr structure, this macro shall return an unsigned
character pointer to the data array associated with the cmsghdr structure.

CMSG_NXTHDR(mhdr,cmsg)
If the first argument is a pointer to a msghdr structure and the second argument is a pointer
to a cmsghdr structure in the ancillary data pointed to by the msg_control field of that
msghdr structure, this macro shall return a pointer to the next cmsghdr structure, or a null
pointer if the second argument points to the last cmsghdr and data array pair in the
ancillary data. If the ancillary data contains another cmsghdr structure after this one but the
cmsg_len value in that structure is such that the data array following that structure would
extend beyond the end of the ancillary data, it is unspecified whether this macro returns a
pointer to that cmsghdr structure or returns a null pointer.

If the first argument is a pointer to a msghdr structure and the second argument is a null
pointer, this macro shall be equivalent to CMSG_FIRSTHDR(mhdr).

CMSG_FIRSTHDR(mhdr)
If the argument is a pointer to a msghdr structure, this macro shall return a pointer to the
first cmsghdr structure in the ancillary data associated with this msghdr structure, or a null
pointer if either there is no ancillary data associated with the msghdr structure
(msg_controllen is zero) or there is insufficient room in the ancillary data for a complete
cmsghdr structure (msg_controllen is non-zero but less than sizeof(struct cmsghdr)).

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 407

14185

14186

14187

14188

14189

14190

14191

14192

14193

14194

14195

14196

14197

14198

14199

14200

14201

14202

14203

14204

14205

14206

14207

14208

14209

14210

14211

14212

14213

14214

14215

14216

14217

14218

14219

14220

14221

14222

14223

14224

14225

14226

14227

14228

14229

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/socket.h> Headers

CMSG_SPACE(length)
If the argument has a type such that its value can be assigned to an object of type socklen_t,
this macro shall return the space required by an ancillary data object of the specified length
and its cmsghdr structure, including any padding needed to satisfy alignment
requirements. This macro can be used, for example, to allocate space dynamically for the
ancillary data. This macro should not be used to initialize the cmsg_len member of a
cmsghdr structure. If the argument is an integer constant expression, this macro shall
expand to an integer constant expression.

CMSG_LEN(length)
If the argument has a type such that its value can be assigned to an object of type socklen_t,
this macro shall return the value to store in the cmsg_len member of the cmsghdr structure
for an ancillary data object of the specified length, taking into account any padding needed
to satisfy alignment requirements. If the argument is an integer constant expression, this
macro shall expand to an integer constant expression.

The <sys/socket.h> header shall define the linger structure, which shall include at least the
following members:

int l_onoff Indicates whether linger option is enabled.
int l_linger Linger time, in seconds.

The <sys/socket.h> header shall define the following socket types (see XSH Section 2.10.6, on
page 550) as symbolic constants with distinct values:

SOCK_DGRAM Datagram socket.

RS SOCK_RAW Raw Protocol Interface.

SOCK_SEQPACKET Sequenced-packet socket.

SOCK_STREAM Byte-stream socket.

Implementations may provide additional socket types.

The header shall define the following socket creation flags, for use in socket(), socketpair(), and
accept4(). These flags shall be symbolic constants with values that are bitwise distinct from each
other and from all SOCK_* constants representing socket types:

SOCK_NONBLOCK Create a socket file descriptor with the O_NONBLOCK flag atomically set
on the new open file description.

SOCK_CLOEXEC Create a socket file descriptor with the FD_CLOEXEC flag atomically set
on that file descriptor.

SOCK_CLOFORK Create a socket file descriptor with the FD_CLOFORK flag atomically set
on that file descriptor.

Implementations may provide additional socket creation flags.

The <sys/socket.h> header shall define the following symbolic constant for use as the level
argument of setsockopt() and getsockopt().

SOL_SOCKET Options to be accessed at socket level, not protocol level.

The <sys/socket.h> header shall define the following symbolic constants with distinct values for
use as the option_name argument in getsockopt() or setsockopt() calls (see XSH Section 2.10.16, on
page 554):

408 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14230

14231

14232

14233

14234

14235

14236

14237

14238

14239

14240

14241

14242

14243

14244

14245

14246

14247

14248

14249

14250

14251

14252

14253

14254

14255

14256

14257

14258

14259

14260

14261

14262

14263

14264

14265

14266

14267

14268

14269

14270

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/socket.h>

SO_ACCEPTCONN Socket is accepting connections.

SO_BROADCAST Transmission of broadcast messages is supported.

SO_DEBUG Debugging information is being recorded.

SO_DOMAIN Socket domain.

SO_DONTROUTE Bypass normal routing.

SO_ERROR Socket error status.

SO_KEEPALIVE Connections are kept alive with periodic messages.

SO_LINGER Socket lingers on close.

SO_OOBINLINE Out-of-band data is transmitted in line.

SO_PROTOCOL Socket protocol.

SO_RCVBUF Receive buffer size.

SO_RCVLOWAT Receive ``low water mark’’.

SO_RCVTIMEO Receive timeout.

SO_REUSEADDR Reuse of local addresses is supported.

SO_SNDBUF Send buffer size.

SO_SNDLOWAT Send ``low water mark’’.

SO_SNDTIMEO Send timeout.

SO_TYPE Socket type.

The <sys/socket.h> header shall define the following symbolic constant for use as the maximum
backlog queue length which may be specified by the backlog field of the listen() function:

SOMAXCONN The maximum backlog queue length.

The <sys/socket.h> header shall define the following symbolic constants with distinct values for
use as the valid values for the msg_flags field in the msghdr structure, or the flags parameter in
recv(), recvfrom(), recvmsg(), send(), sendmsg(), or sendto() calls:

MSG_CMSG_CLOEXEC
Atomically set the FD_CLOEXEC flag on any file descriptors created via
SCM_RIGHTS during recvmsg().

MSG_CMSG_CLOFORK
Atomically set the FD_CLOFORK flag on any file descriptors created via
SCM_RIGHTS during recvmsg().

MSG_CTRUNC Control data truncated.

MSG_DONTROUTE Send without using routing tables.

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Out-of-band data.

MSG_NOSIGNAL No SIGPIPE generated when an attempt to send is made on a stream-
oriented socket that is no longer connected.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 409

14271

14272

14273

14274

14275

14276

14277

14278

14279

14280

14281

14282

14283

14284

14285

14286

14287

14288

14289

14290

14291

14292

14293

14294

14295

14296

14297

14298

14299

14300

14301

14302

14303

14304

14305

14306

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/socket.h> Headers

MSG_PEEK Leave received data in queue.

MSG_TRUNC Normal data truncated.

MSG_WAITALL Attempt to fill the read buffer.

The <sys/socket.h> header shall define the following symbolic constants with distinct values:

AF_INET Internet domain sockets for use with IPv4 addresses.

IP6 AF_INET6 Internet domain sockets for use with IPv6 addresses.

AF_UNIX UNIX domain sockets.

AF_UNSPEC Unspecified.

The value of AF_UNSPEC shall be 0.

The <sys/socket.h> header shall define the following symbolic constants with distinct values:

SHUT_RD Disables further receive operations.

SHUT_RDWR Disables further send and receive operations.

SHUT_WR Disables further send operations.

The <sys/socket.h> header shall define the size_t and ssize_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int accept(int, struct sockaddr *restrict, socklen_t *restrict);
int accept4(int, struct sockaddr *restrict, socklen_t *restrict,

int);
int bind(int, const struct sockaddr *, socklen_t);
int connect(int, const struct sockaddr *, socklen_t);
int getpeername(int, struct sockaddr *restrict, socklen_t *restrict);
int getsockname(int, struct sockaddr *restrict, socklen_t *restrict);
int getsockopt(int, int, int, void *restrict, socklen_t *restrict);
int listen(int, int);
ssize_t recv(int, void *, size_t, int);
ssize_t recvfrom(int, void *restrict, size_t, int,

struct sockaddr *restrict, socklen_t *restrict);
ssize_t recvmsg(int, struct msghdr *, int);
ssize_t send(int, const void *, size_t, int);
ssize_t sendmsg(int, const struct msghdr *, int);
ssize_t sendto(int, const void *, size_t, int, const struct sockaddr *,

socklen_t);
int setsockopt(int, int, int, const void *, socklen_t);
int shutdown(int, int);
int sockatmark(int);
int socket(int, int, int);
int socketpair(int, int, int, int [2]);

Inclusion of <sys/socket.h> may also make visible all symbols from <sys/uio.h>.

410 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14307

14308

14309

14310

14311

14312

14313

14314

14315

14316

14317

14318

14319

14320

14321

14322

14323

14324

14325

14326

14327

14328

14329

14330

14331

14332

14333

14334

14335

14336

14337

14338

14339

14340

14341

14342

14343

14344

14345

14346

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/socket.h>

APPLICATION USAGE
To forestall portability problems, it is recommended that applications not use values larger than
231 −1 for the socklen_t type.

The sockaddr_storage structure solves the problem of declaring storage for automatic variables
which is both large enough and aligned enough for storing the socket address data structure of
any family. For example, code with a file descriptor and without the context of the address
family can pass a pointer to a variable of this type, where a pointer to a socket address structure
is expected in calls such as getpeername(), and determine the address family by accessing the
received content after the call.

The example below illustrates a data structure which aligns on a 64-bit boundary. An
implementation-defined field _ss_align following _ss_pad1 is used to force a 64-bit alignment
which covers proper alignment good enough for needs of at least sockaddr_in6 (IPv6) and
sockaddr_in (IPv4) address data structures. The size of padding field _ss_pad1 depends on the
chosen alignment boundary. The size of padding field _ss_pad2 depends on the value of overall
size chosen for the total size of the structure. This size and alignment are represented in the
above example by implementation-defined (not required) constants _SS_MAXSIZE (chosen
value 128) and _SS_ALIGNMENT (with chosen value 8). Constants _SS_PAD1SIZE (derived
value 6) and _SS_PAD2SIZE (derived value 112) are also for illustration and not required. The
implementation-defined definitions and structure field names above start with an <underscore>
to denote implementation private name space. Portable code is not expected to access or
reference those fields or constants. Note that this example only deals with size and alignment;
see RATIONALE for additional issues related to these structures.

/*
* Desired design of maximum size and alignment.
*/
#define _SS_MAXSIZE 128

/* Implementation-defined maximum size. */
#define _SS_ALIGNSIZE (sizeof(int64_t))

/* Implementation-defined desired alignment. */

/*
* Definitions used for sockaddr_storage structure paddings design.
*/
#define _SS_PAD1SIZE (_SS_ALIGNSIZE - sizeof(sa_family_t))
#define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(sa_family_t)+ \

_SS_PAD1SIZE + _SS_ALIGNSIZE))
struct sockaddr_storage {

sa_family_t ss_family; /* Address family. */
/*
* Following fields are implementation-defined.
*/

char _ss_pad1[_SS_PAD1SIZE];
/* 6-byte pad; this is to make implementation-defined

pad up to alignment field that follows explicit in
the data structure. */

int64_t _ss_align; /* Field to force desired structure
storage alignment. */

char _ss_pad2[_SS_PAD2SIZE];
/* 112-byte pad to achieve desired size,

_SS_MAXSIZE value minus size of ss_family
__ss_pad1, __ss_align fields is 112. */

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 411

14347

14348

14349

14350

14351

14352

14353

14354

14355

14356

14357

14358

14359

14360

14361

14362

14363

14364

14365

14366

14367

14368

14369

14370

14371

14372

14373

14374

14375

14376

14377

14378

14379

14380

14381

14382

14383

14384

14385

14386

14387

14388

14389

14390

14391

14392

14393

14394

14395

14396

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/socket.h> Headers

};

Portable applications need to account for the alternative behaviors of the CMSG_NXTHDR
macro as follows:

• When constructing ancillary data in a msghdr structure, ensure that all locations within
the ancillary data that might be returned by CMSG_NXTHDR contain a cmsg_len value of
zero (typically this is achieved by using memset() to initialize the entire msg_control buffer
to null bytes before populating the first cmsghdr structure).

• When extracting ancillary data from a received msghdr structure, check that the data array
following the last cmsghdr structure does not extend beyond the end of the ancillary data.

RATIONALE
Note that defining the sockaddr_storage and sockaddr structures using only mechanisms
defined in early editions of the ISO C standard may produce aliasing diagnostics when
applications use casting between pointers to the various socket address structures. Because of
the large body of existing code utilizing sockets in a way that could trigger undefined behavior
due to strict aliasing rules, this standard mandates that these structures can alias each other for
accessing the sa_family_t member of the structures (or other members for protocol-specific
structure references), so as to preserve well-defined semantics. An implementation’s header files
may need to use anonymous unions, or even an implementation-specific extension, to comply
with the requirements of this standard.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <sys/uio.h>

XSH accept(), bind(), connect(), getpeername(), getsockname(), getsockopt(), listen(), recv(),
recvfrom(), recvmsg(), send(), sendmsg(), sendto(), setsockopt(), shutdown(), sockatmark(), socket(),
socketpair()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the prototypes for accept(), getpeername(), getsockname(),
getsockopt(), and recvfrom().

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the ssize_t type.

SD5-XBD-ERN-62 is applied.

The MSG_NOSIGNAL symbolic constant is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the size_t type is added.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0067 [355] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0077 [934] is applied.

Issue 8
Austin Group Defects 411 and 1318 are applied, adding SOCK_NONBLOCK, SOCK_CLOEXEC,
SOCK_CLOFORK, MSG_CMSG_CLOEXEC, MSG_CMSG_CLOFORK, and accept4().

Austin Group Defect 840 is applied, adding SO_DOMAIN and SO_PROTOCOL.

412 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14397

14398

14399

14400

14401

14402

14403

14404

14405

14406

14407

14408

14409

14410

14411

14412

14413

14414

14415

14416

14417

14418

14419

14420

14421

14422

14423

14424

14425

14426

14427

14428

14429

14430

14431

14432

14433

14434

14435

14436

14437

14438

14439

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/socket.h>

Austin Group Defect 978 is applied, adding CMSG_SPACE and CMSG_LEN, and clarifying the
behavior of CMSG_NXTHDR when the second argument is a null pointer.

Austin Group Defect 1056 is applied, clarifying the conditions under which CMSG_NXTHDR
and CMSG_FIRSTHDR return a null pointer, and adding a new paragraph to APPLICATION
USAGE.

Austin Group Defect 1641 is applied, clarifying the requirements for conversions between
pointers to sockaddr_storage and storage structures and between pointers to those structures
and pointers to protocol-specific address structures.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 413

14440

14441

14442

14443

14444

14445

14446

14447

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/stat.h> Headers

NAME
sys/stat.h — data returned by the stat() function

SYNOPSIS
#include <sys/stat.h>

DESCRIPTION
The <sys/stat.h> header shall define the structure of the data returned by the fstat(), lstat(), and
stat() functions.

The <sys/stat.h> header shall define the stat structure, which shall include at least the following
members:

dev_t st_dev Device ID of device containing file.
ino_t st_ino File serial number.
mode_t st_mode Mode of file (see below).
nlink_t st_nlink Number of hard links to the file.
uid_t st_uid User ID of file.
gid_t st_gid Group ID of file.

XSI dev_t st_rdev Device ID (if file is character or block special).
off_t st_size For regular files, the file size in bytes.

For symbolic links, the length in bytes of the
pathname contained in the symbolic link.

SHM For a shared memory object, the length in bytes.
TYM For a typed memory object, the length in bytes.

For other file types, the use of this field is
unspecified.

struct timespec st_atim Last data access timestamp.
struct timespec st_mtim Last data modification timestamp.
struct timespec st_ctim Last file status change timestamp.

XSI blksize_t st_blksize A file system-specific preferred I/O block size
for this object. In some file system types, this
may vary from file to file.

blkcnt_t st_blocks Number of blocks allocated for this object.

A file identity is uniquely determined by the combination of st_dev and st_ino. At any given time
in a system, distinct files shall have distinct file identities; hard links to the same file shall have
the same file identity. Over time, these file identities can be reused for different files. For
example, the st_ino value can be reused after the last link to a file is unlinked and the space
occupied by the file has been freed, and the st_dev value associated with a file system can be
reused if that file system is detached (``unmounted’’) and another is attached (``mounted’’).

The st_nlink value shall be the number of hard links to the file within the file system in which the
file resides.

Note: The number of links to the file that can be found by traversing the file hierarchy can differ from
st_nlink. For example, it can be less than st_nlink if a link to the file cannot be reached because it
is below a directory that has been overlaid with a mount point for a different file system, and it
can be greater than st_nlink on implementations that allow a file system (or part of one) to be
duplicated at additional mount points.

XSI The <sys/stat.h> header shall define the blkcnt_t, blksize_t, dev_t, ino_t, mode_t, nlink_t,
uid_t, gid_t, off_t, and time_t types as described in <sys/types.h>.

The <sys/stat.h> header shall define the timespec structure as described in <time.h>. Times
shall be given in seconds since the Epoch.

414 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14448

14449

14450

14451

14452

14453

14454

14455

14456

14457

14458

14459

14460

14461

14462

14463

14464

14465

14466

14467

14468

14469

14470

14471

14472

14473

14474

14475

14476

14477

14478

14479

14480

14481

14482

14483

14484

14485

14486

14487

14488

14489

14490

14491

14492

14493

14494

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/stat.h>

Which structure members have meaningful values depends on the type of file. For further
information, see the descriptions of fstat(), lstat(), and stat() in the System Interfaces volume of
POSIX.1-2024.

For compatibility with earlier versions of this standard, the st_atime macro shall be defined with
the value st_atim.tv_sec. Similarly, st_ctime and st_mtime shall be defined as macros with the
values st_ctim.tv_sec and st_mtim.tv_sec, respectively.

The <sys/stat.h> header shall define the following symbolic constants for the file types encoded
in type mode_t. The values shall be suitable for use in #if preprocessing directives:

XSI S_IFMT Type of file.

S_IFBLK Block special.

S_IFCHR Character special.

S_IFIFO FIFO special.

S_IFREG Regular.

S_IFDIR Directory.

S_IFLNK Symbolic link.

S_IFSOCK Socket.

The <sys/stat.h> header shall define the following symbolic constants for the file mode bits
encoded in type mode_t, with the indicated numeric values. These macros shall expand to an
expression which has a type that allows them to be used, either singly or OR’ed together, as the
third argument to open() without the need for a mode_t cast. The values shall be suitable for use
in #if preprocessing directives.

Name Numeric Value Description
S_IRWXU 0700 Read, write, execute/search by owner.
S_IRUSR 0400 Read permission, owner.
S_IWUSR 0200 Write permission, owner.
S_IXUSR 0100 Execute/search permission, owner.
S_IRWXG 070 Read, write, execute/search by group.
S_IRGRP 040 Read permission, group.
S_IWGRP 020 Write permission, group.
S_IXGRP 010 Execute/search permission, group.
S_IRWXO 07 Read, write, execute/search by others.
S_IROTH 04 Read permission, others.
S_IWOTH 02 Write permission, others.
S_IXOTH 01 Execute/search permission, others.
S_ISUID 04000 Set-user-ID on execution.
S_ISGID 02000 Set-group-ID on execution.

XSI S_ISVTX 01000 On directories, restricted deletion flag.

The following macros shall be provided to test whether a file is of the specified type. The value
m supplied to the macros is the value of st_mode from a stat structure. The macro shall evaluate
to a non-zero value if the test is true; 0 if the test is false.

S_ISBLK(m) Test for a block special file.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 415

14495

14496

14497

14498

14499

14500

14501

14502

14503

14504

14505

14506

14507

14508

14509

14510

14511

14512

14513

14514

14515

14516

14517

14518

14519

14520

14521

14522

14523

14524

14525

14526

14527

14528

14529

14530

14531

14532

14533

14534

14535

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/stat.h> Headers

S_ISCHR(m) Test for a character special file.

S_ISDIR(m) Test for a directory.

S_ISFIFO(m) Test for a pipe or FIFO special file.

S_ISREG(m) Test for a regular file.

S_ISLNK(m) Test for a symbolic link.

S_ISSOCK(m) Test for a socket.

The implementation may implement message queues, semaphores, or shared memory objects as
distinct file types, in which case these file types need not be encoded in type mode_t. The
following macros shall be provided to test whether a file is of the specified type. The value of the
buf argument supplied to the macros is a pointer to a stat structure. The macro shall evaluate to a
non-zero value if the specified object is implemented as a distinct file type and the specified file
type is contained in the stat structure referenced by buf . Otherwise, the macro shall evaluate to
zero.

S_TYPEISMQ(buf) Test for a message queue.

S_TYPEISSEM(buf) Test for a semaphore.

S_TYPEISSHM(buf) Test for a shared memory object.

TYM The implementation may implement typed memory objects as a distinct file type, in which case
this file type need not be encoded in type mode_t. The following macro shall test whether a file
is of the specified type. The value of the buf argument supplied to the macros is a pointer to a
stat structure. The macro shall evaluate to a non-zero value if the specified object is implemented
as a distinct file type and the specified file type is contained in the stat structure referenced by
buf . Otherwise, the macro shall evaluate to zero.

S_TYPEISTMO(buf) Test macro for a typed memory object.

The <sys/stat.h> header shall define the following symbolic constants as distinct integer values
outside of the range [0,999 999 999], for use with the futimens() and utimensat() functions:

UTIME_NOW
UTIME_OMIT

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int chmod(const char *, mode_t);
int fchmod(int, mode_t);
int fchmodat(int, const char *, mode_t, int);
int fstat(int, struct stat *);
int fstatat(int, const char *restrict, struct stat *restrict, int);
int futimens(int, const struct timespec [2]);
int lstat(const char *restrict, struct stat *restrict);
int mkdir(const char *, mode_t);
int mkdirat(int, const char *, mode_t);
int mkfifo(const char *, mode_t);
int mkfifoat(int, const char *, mode_t);

XSI int mknod(const char *, mode_t, dev_t);
int mknodat(int, const char *, mode_t, dev_t);
int stat(const char *restrict, struct stat *restrict);

416 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14536

14537

14538

14539

14540

14541

14542

14543

14544

14545

14546

14547

14548

14549

14550

14551

14552

14553

14554

14555

14556

14557

14558

14559

14560

14561

14562

14563

14564

14565

14566

14567

14568

14569

14570

14571

14572

14573

14574

14575

14576

14577

14578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/stat.h>

mode_t umask(mode_t);
int utimensat(int, const char *, const struct timespec [2], int);

Inclusion of the <sys/stat.h> header may make visible all symbols from the <time.h> header.

APPLICATION USAGE
Use of the macros is recommended for determining the type of a file.

RATIONALE
A conforming C-language application must include <sys/stat.h> for functions that have
arguments or return values of type mode_t, so that symbolic values for that type can be used.
An alternative would be to require that these constants are also defined by including
<sys/types.h>.

The S_ISUID and S_ISGID bits may be cleared on any write, not just on open(), as some
historical implementations do.

System calls that update the time entry fields in the stat structure must be documented by the
implementors. POSIX-conforming systems should not update the time entry fields for functions
listed in the System Interfaces volume of POSIX.1-2024 unless the standard requires that they do,
except in the case of documented extensions to the standard.

Upon assignment, file timestamps are immediately converted to the resolution of the file system
by truncation (i.e., the recorded time can be older than the actual time). For example, if the file
system resolution is 1 microsecond, then a conforming stat() must always return an
st_mtim.tv_nsec that is a multiple of 1000. Some older implementations returned higher-
resolution timestamps while the inode information was cached, and then spontaneously
truncated the tv_nsec fields when they were stored to and retrieved from disk, but this behavior
does not conform.

Note that st_dev must be unique within a Local Area Network (LAN) in a ``system’’ made up of
multiple computers’ file systems connected by a LAN.

Networked implementations of a POSIX-conforming system must guarantee that all files visible
within the file tree (including parts of the tree that may be remotely mounted from other
machines on the network) on each individual processor are uniquely identified by the
combination of the st_ino and st_dev fields.

The unit for the st_blocks member of the stat structure is not defined within POSIX.1-2024. In
some implementations it is 512 bytes. It may differ on a file system basis. There is no correlation
between values of the st_blocks and st_blksize, and the f_bsize (from <sys/statvfs.h>) structure
members.

Traditionally, some implementations defined the multiplier for st_blocks in <sys/param.h> as the
symbol DEV_BSIZE.

Some earlier versions of this standard did not specify values for the file mode bit macros. The
expectation was that some implementors might choose to use a different encoding for these bits
than the traditional one, and that new applications would use symbolic file modes instead of
numeric. This version of the standard specifies the traditional encoding, in recognition that
nearly 20 years after the first publication of this standard numeric file modes are still in
widespread use by application developers, and that all conforming implementations still use the
traditional encoding.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 417

14579

14580

14581

14582

14583

14584

14585

14586

14587

14588

14589

14590

14591

14592

14593

14594

14595

14596

14597

14598

14599

14600

14601

14602

14603

14604

14605

14606

14607

14608

14609

14610

14611

14612

14613

14614

14615

14616

14617

14618

14619

14620

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/stat.h> Headers

FUTURE DIRECTIONS
No new S_IFMT symbolic names for the file type values of mode_t will be defined by
POSIX.1-2024; if new file types are required, they will only be testable through S_ISxx() or
S_TYPEISxxx() macros instead.

SEE ALSO
<sys/statvfs.h>, <sys/types.h>, <time.h>

XSH chmod(), fchmod(), fstat(), fstatat(), futimens(), mkdir(), mkfifo(), mknod(), umask()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

The type of st_blksize is changed from long to blksize_t; the type of st_blocks is changed from
long to blkcnt_t.

Issue 6
The S_TYPEISMQ(), S_TYPEISSEM(), and S_TYPEISSHM() macros are unconditionally
mandated.

The Open Group Corrigendum U035/4 is applied. In the DESCRIPTION, the types blksize_t
and blkcnt_t have been described.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The dev_t, ino_t, mode_t, nlink_t, uid_t, gid_t, off_t, and time_t types are mandated.

S_IFSOCK and S_ISSOCK are added for sockets.

The description of stat structure members is changed to reflect contents when file type is a
symbolic link.

The test macro S_TYPEISTMO is added for alignment with IEEE Std 1003.1j-2000.

The restrict keyword is added to the prototypes for lstat() and stat().

The lstat() function is made mandatory.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/17 is applied, adding text regarding the
st_blocks member of the stat structure to the RATIONALE.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/25 is applied, adding to the
DESCRIPTION that the timespec structure may be defined as described in the <time.h> header.

Issue 7
SD5-XSH-ERN-161 is applied, updating the DESCRIPTION to clarify that the descriptions of the
interfaces should be consulted in order to determine which structure members have meaningful
values.

The fchmodat(), fstatat(), mkdirat(), mkfifoat(), mknodat(), and utimensat() functions are added
from The Open Group Technical Standard, 2006, Extended API Set Part 2.

The futimens() function is added.

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps and the UTIME_NOW and
UTIME_OMIT symbolic constants are added.

418 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14621

14622

14623

14624

14625

14626

14627

14628

14629

14630

14631

14632

14633

14634

14635

14636

14637

14638

14639

14640

14641

14642

14643

14644

14645

14646

14647

14648

14649

14650

14651

14652

14653

14654

14655

14656

14657

14658

14659

14660

14661

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/stat.h>

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0068 [207] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0078 [531] is applied.

Issue 8
Austin Group Defect 732 is applied, clarifying that if message queues, semaphores, shared
memory objects, or typed memory objects are implemented as distinct file types, they need not
be encoded in type mode_t.

Austin Group Defect 1314 is applied, clarifying how the st_dev and st_ino values identify files.

Austin Group Defect 1323 is applied, clarifying how the st_nlink value relates to the number of
links to the file that can be found by traversing the file hierarchy.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 419

14662

14663

14664

14665

14666

14667

14668

14669

14670

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/statvfs.h> Headers

NAME
sys/statvfs.h — VFS File System information structure

SYNOPSIS
#include <sys/statvfs.h>

DESCRIPTION
The <sys/statvfs.h> header shall define the statvfs structure, which shall include at least the
following members:

unsigned long f_bsize File system block size.
unsigned long f_frsize Fundamental file system block size.
fsblkcnt_t f_blocks Total number of blocks on file system in units of f_frsize.
fsblkcnt_t f_bfree Total number of free blocks.
fsblkcnt_t f_bavail Number of free blocks available to

non-privileged process.
fsfilcnt_t f_files Total number of file serial numbers.
fsfilcnt_t f_ffree Total number of free file serial numbers.
fsfilcnt_t f_favail Number of file serial numbers available to

non-privileged process.
unsigned long f_fsid File system ID.
unsigned long f_flag Bit mask of f_flag values.
unsigned long f_namemax Maximum filename length.

The <sys/statvfs.h> header shall define the fsblkcnt_t and fsfilcnt_t types as described in
<sys/types.h>.

The <sys/statvfs.h> header shall define the following symbolic constants for the f_flag member:

ST_RDONLY Read-only file system.

ST_NOSUID Does not support the semantics of the ST_ISUID and ST_ISGID file mode bits.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int fstatvfs(int, struct statvfs *);
int statvfs(const char *restrict, struct statvfs *restrict);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH fstatvfs()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The type of f_blocks, f_bfree, and f_bavail is changed from unsigned long to fsblkcnt_t; the type of
f_files, f_ffree, and f_favail is changed from unsigned long to fsfilcnt_t.

420 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14671

14672

14673

14674

14675

14676

14677

14678

14679

14680

14681

14682

14683

14684

14685

14686

14687

14688

14689

14690

14691

14692

14693

14694

14695

14696

14697

14698

14699

14700

14701

14702

14703

14704

14705

14706

14707

14708

14709

14710

14711

14712

14713

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/statvfs.h>

Issue 6
The Open Group Corrigendum U035/5 is applied. In the DESCRIPTION, the types fsblkcnt_t
and fsfilcnt_t have been described.

The restrict keyword is added to the prototype for statvfs().

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/18 is applied, changing the description of
ST_NOSUID from ``Does not support setuid()/setgid() semantics’’ to ``Does not support the
semantics of the ST_ISUID and ST_ISGID file mode bits’’.

Issue 7
The <sys/statvfs.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 421

14714

14715

14716

14717

14718

14719

14720

14721

14722

14723

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/time.h> Headers

NAME
sys/time.h — time types

SYNOPSIS
XSI #include <sys/time.h>

DESCRIPTION
The <sys/time.h> header shall define the fd_set type and the timeval structure, as described in
<sys/select.h>.

The <sys/time.h> header shall define the time_t and suseconds_t types as described in
<sys/types.h>.

The <sys/time.h> header shall define the following as described in <sys/select.h>:

FD_CLR()
FD_ISSET()
FD_SET()
FD_ZERO()
FD_SETSIZE

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int select(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,
struct timeval *restrict);

int utimes(const char *, const struct timeval [2]);

Inclusion of the <sys/time.h> header may make visible all symbols from the <sys/select.h>
header.

APPLICATION USAGE
None.

RATIONALE
The <sys/time.h> header refers to <sys/select.h> for the definition of the timeval structure,
instead of the other way round, because <sys/time.h> is an optional (XSI) header whereas
<sys/select.h> is mandatory.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/select.h>, <sys/types.h>

XSH futimens(), pselect()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The type of tv_usec is changed from long to suseconds_t.

Issue 6
The restrict keyword is added to the prototypes for gettimeofday(), select(), and setitimer().

The note is added that inclusion of this header may also make symbols visible from
<sys/select.h>.

The utimes() function is marked LEGACY.

422 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14724

14725

14726

14727

14728

14729

14730

14731

14732

14733

14734

14735

14736

14737

14738

14739

14740

14741

14742

14743

14744

14745

14746

14747

14748

14749

14750

14751

14752

14753

14754

14755

14756

14757

14758

14759

14760

14761

14762

14763

14764

14765

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/time.h>

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 1171 is applied, replacing the timeval structure definition with a reference
to its description in <sys/select.h>.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 423

14766

14767

14768

14769

14770

14771

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/times.h> Headers

NAME
sys/times.h — file access and modification times structure

SYNOPSIS
#include <sys/times.h>

DESCRIPTION
The <sys/times.h> header shall define the tms structure, which is returned by times() and shall
include at least the following members:

clock_t tms_utime User CPU time.
clock_t tms_stime System CPU time.
clock_t tms_cutime User CPU time of terminated child processes.
clock_t tms_cstime System CPU time of terminated child processes.

The <sys/times.h> header shall define the clock_t type as described in <sys/types.h>.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

clock_t times(struct tms *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH times()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

424 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14772

14773

14774

14775

14776

14777

14778

14779

14780

14781

14782

14783

14784

14785

14786

14787

14788

14789

14790

14791

14792

14793

14794

14795

14796

14797

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/types.h>

NAME
sys/types.h — data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The <sys/types.h> header shall define at least the following types:

blkcnt_t Used for file block counts.

blksize_t Used for block sizes.

clock_t Used for system times in clock ticks or CLOCKS_PER_SEC; see
<time.h>.

clockid_t Used for clock ID type in the clock and timer functions.

dev_t Used for device IDs.

fsblkcnt_t Used for file system block counts.

fsfilcnt_t Used for file system file counts.

gid_t Used for group IDs.

id_t Used as a general identifier; can be used to contain at least a pid_t,
uid_t, or gid_t.

ino_t Used for file serial numbers.

XSI key_t Used for XSI interprocess communication.

mode_t Used for some file attributes.

nlink_t Used for link counts.

off_t Used for file sizes.

pid_t Used for process IDs and process group IDs.

pthread_attr_t Used to identify a thread attribute object.

pthread_barrier_t Used to identify a barrier.

pthread_barrierattr_t Used to define a barrier attributes object.

pthread_cond_t Used for condition variables.

pthread_condattr_t Used to identify a condition attribute object.

pthread_key_t Used for thread-specific data keys.

pthread_mutex_t Used for mutexes.

pthread_mutexattr_t Used to identify a mutex attribute object.

pthread_once_t Used for dynamic package initialization.

pthread_rwlock_t Used for read-write locks.

pthread_rwlockattr_t Used for read-write lock attributes.

pthread_spinlock_t Used to identify a spin lock.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 425

14798

14799

14800

14801

14802

14803

14804

14805

14806

14807

14808

14809

14810

14811

14812

14813

14814

14815

14816

14817

14818

14819

14820

14821

14822

14823

14824

14825

14826

14827

14828

14829

14830

14831

14832

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/types.h> Headers

pthread_t Used to identify a thread.

reclen_t Used for directory entry lengths.

size_t Used for sizes of objects.

ssize_t Used for a count of bytes or an error indication.

suseconds_t Used for time in microseconds.

time_t Used for time in seconds.

timer_t Used for timer ID returned by timer_create().

uid_t Used for user IDs.

All of the types shall be defined as arithmetic types of an appropriate length, with the following
exceptions:

pthread_attr_t
pthread_barrier_t
pthread_barrierattr_t
pthread_cond_t
pthread_condattr_t
pthread_key_t
pthread_mutex_t
pthread_mutexattr_t
pthread_once_t
pthread_rwlock_t
pthread_rwlockattr_t
pthread_spinlock_t
pthread_t
timer_t

Additionally:

• mode_t shall be an integer type.

• dev_t shall be an integer type.

• nlink_t, uid_t, gid_t, and id_t shall be integer types.

• blkcnt_t and off_t shall be signed integer types.

• fsblkcnt_t, fsfilcnt_t, reclen_t, and ino_t shall be defined as unsigned integer types.

• size_t shall be an unsigned integer type.

• blksize_t, pid_t, and ssize_t shall be signed integer types.

• clock_t shall be an integer or real-floating type.

CX • time_t shall be an integer type with a width (see <stdint.h>) of at least 64 bits.

The type ssize_t shall be capable of storing values at least in the range [−1, {SSIZE_MAX}].

XSI The type suseconds_t shall be a signed integer type capable of storing values at least in the
range [−1, 1 000 000].

The implementation shall support one or more programming environments in which the widths
of blksize_t, pid_t, size_t, ssize_t, and suseconds_t are no greater than the width of type long.
The names of these programming environments can be obtained using the confstr() function or
the getconf utility.

426 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14833

14834

14835

14836

14837

14838

14839

14840

14841

14842

14843

14844

14845

14846

14847

14848

14849

14850

14851

14852

14853

14854

14855

14856

14857

14858

14859

14860

14861

14862

14863

14864

14865

14866

14867

14868

14869

14870

14871

14872

14873

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/types.h>

There are no defined comparison or assignment operators for the following types:

pthread_attr_t
pthread_barrier_t
pthread_barrierattr_t
pthread_cond_t
pthread_condattr_t
pthread_mutex_t
pthread_mutexattr_t
pthread_rwlock_t
pthread_rwlockattr_t
pthread_spinlock_t
timer_t

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stdint.h>, <time.h>

XSH confstr()

XCU getconf

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The clockid_t and timer_t types are defined for alignment with the POSIX Realtime Extension.

The types blkcnt_t, blksize_t, fsblkcnt_t, fsfilcnt_t, and suseconds_t are added.

Large File System extensions are added.

Updated for alignment with the POSIX Threads Extension.

Issue 6
The pthread_barrier_t, pthread_barrierattr_t, and pthread_spinlock_t types are added for
alignment with IEEE Std 1003.1j-2000.

The margin code is changed from XSI to THR for the pthread_rwlock_t and
pthread_rwlockattr_t types as Read-Write Locks have been absorbed into the POSIX Threads
option. The threads types are marked THR.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/26 is applied, adding pthread_t to the list
of types that are not required to be arithmetic types, thus allowing pthread_t to be defined as a
structure.

Issue 7
Austin Group Interpretation 1003.1-2001 #033 is applied, requiring key_t to be an arithmetic
type.

The Trace option types are marked obsolescent.

The clock_t and id_t types are moved from the XSI option to the Base.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 427

14874

14875

14876

14877

14878

14879

14880

14881

14882

14883

14884

14885

14886

14887

14888

14889

14890

14891

14892

14893

14894

14895

14896

14897

14898

14899

14900

14901

14902

14903

14904

14905

14906

14907

14908

14909

14910

14911

14912

14913

14914

14915

14916

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/types.h> Headers

The pthread_barrier_t and pthread_barrierattr_t types are moved from the Barriers option to
the Base.

The pthread_spinlock_t type is moved from the Spin Locks option to the Base.

Functionality relating to the Timers and Threads options is moved to the Base.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0069 [210], XBD/TC1-2008/0070 [28],
XBD/TC1-2008/0071 [376], XBD/TC1-2008/0072 [210], and XBD/TC1-2008/0073 [327] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0079 [856] and XBD/TC2-2008/0080
[659] are applied.

Issue 8
Austin Group Defect 697 is applied, adding reclen_t.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1462 is applied, changing time_t to have a width of at least 64 bits.

428 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14917

14918

14919

14920

14921

14922

14923

14924

14925

14926

14927

14928

14929

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/uio.h>

NAME
sys/uio.h — definitions for vector I/O operations

SYNOPSIS
XSI #include <sys/uio.h>

DESCRIPTION
The <sys/uio.h> header shall define the iovec structure, which shall include at least the
following members:

void *iov_base Base address of a memory region for input or output.
size_t iov_len The size of the memory pointed to by iov_base.

The <sys/uio.h> header uses the iovec structure for scatter/gather I/O.

The <sys/uio.h> header shall define the ssize_t and size_t types as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

ssize_t readv(int, const struct iovec *, int);
ssize_t writev(int, const struct iovec *, int);

APPLICATION USAGE
The implementation can put a limit on the number of scatter/gather elements which can be
processed in one call. The symbol {IOV_MAX} defined in <limits.h> should always be used to
learn about the limits instead of assuming a fixed value.

RATIONALE
Traditionally, the maximum number of scatter/gather elements the system can process in one
call were described by the symbolic value {UIO_MAXIOV}. In IEEE Std 1003.1-2001 this value is
replaced by the constant {IOV_MAX} which can be found in <limits.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <sys/types.h>

XSH read(), readv(), write(), writev()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
Text referring to scatter/gather I/O is added to the DESCRIPTION.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 429

14930

14931

14932

14933

14934

14935

14936

14937

14938

14939

14940

14941

14942

14943

14944

14945

14946

14947

14948

14949

14950

14951

14952

14953

14954

14955

14956

14957

14958

14959

14960

14961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/un.h> Headers

NAME
sys/un.h — definitions for UNIX domain sockets

SYNOPSIS
#include <sys/un.h>

DESCRIPTION
The <sys/un.h> header shall define the sockaddr_un structure, which shall include at least the
following members:

sa_family_t sun_family Address family.
char sun_path[size] Socket pathname storage.

The sun_path member shall be the last member of the sockaddr_un structure, where size shall be
an implementation-provided constant size of at least 92 bytes. This size value need not be
accessible as a constant available for use in the application namespace.

The sockaddr_un structure is used to store addresses for UNIX domain sockets. Pointers to this
type shall be cast by applications to struct sockaddr * for use with socket functions.

The <sys/un.h> header shall define the sa_family_t type as described in <sys/socket.h>.

APPLICATION USAGE
The size of sun_path is required to be constant, but intentionally does not have a specified name
for that constant. Historically, different implementations used different sizes. For example, 4.3
BSD used a size of 108, and 4.4 BSD used a size of 104. Since most implementations originate
from BSD versions, the size is typically in the range 92 to 108. An application can deduce the size
by using sizeof(((struct sockaddr_un *)0)->sun_path).

Applications should not assume a particular length for sun_path or assume that it can hold
{_POSIX_PATH_MAX} bytes (256).

Although applications are required to initialize all members (including any non-standard ones)
of a sockaddr_in6 structure (see <netinet/in.h>, on page 318), the same is not required for the
sockaddr_un structure, since historically many applications only initialized the standard
members. Despite this, applications are encouraged to initialize sockaddr_un structures in a
manner similar to the required initialization of sockaddr_in6 structures.

RATIONALE
Some implementations expose a macro SUN_LEN for the size of a pathname stored in sun_path.
However, this was not widely adopted, and differences on how a terminating null byte is
interpreted between implementations did not make it worth standardizing.

FUTURE DIRECTIONS
None.

SEE ALSO
<netinet/in.h>, <sys/socket.h>

XSH bind(), socket(), socketpair()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
The value for {_POSIX_PATH_MAX} is updated to 256.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0074 [355] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0081 [934] is applied.

430 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

14962

14963

14964

14965

14966

14967

14968

14969

14970

14971

14972

14973

14974

14975

14976

14977

14978

14979

14980

14981

14982

14983

14984

14985

14986

14987

14988

14989

14990

14991

14992

14993

14994

14995

14996

14997

14998

14999

15000

15001

15002

15003

15004

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/un.h>

Issue 8
Austin Group Defect 561 is applied, changing the requirements for the sun_path member of the
sockaddr_un structure.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 431

15005

15006

15007

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/utsname.h> Headers

NAME
sys/utsname.h — system name structure

SYNOPSIS
#include <sys/utsname.h>

DESCRIPTION
The <sys/utsname.h> header shall define the structure utsname which shall include at least the
following members:

char sysname[] Name of this implementation of the operating system.
char nodename[] Name of this node within the communications

network to which this node is attached, if any.
char release[] Current release level of this implementation.
char version[] Current version level of this release.
char machine[] Name of the hardware type on which the system is running.

The character arrays are of unspecified size, but the data stored in them shall be terminated by a
null byte.

The following shall be declared as a function and may also be defined as a macro:

int uname(struct utsname *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH uname()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/27 is applied, changing the description of
nodename within the utsname structure from ``an implementation-defined communications
network’’ to ``the communications network to which this node is attached, if any’’.

432 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15008

15009

15010

15011

15012

15013

15014

15015

15016

15017

15018

15019

15020

15021

15022

15023

15024

15025

15026

15027

15028

15029

15030

15031

15032

15033

15034

15035

15036

15037

15038

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <sys/wait.h>

NAME
sys/wait.h — declarations for waiting

SYNOPSIS
#include <sys/wait.h>

DESCRIPTION
The <sys/wait.h> header shall define the following symbolic constants for use with waitpid():

XSI WCONTINUED Report status of continued child process.

WNOHANG Do not hang if no status is available; return immediately.

WUNTRACED Report status of stopped child process.

The <sys/wait.h> header shall define the following macros for analysis of process status values:

WCOREDUMP True if WIFSIGNALED is true and creation of a core image was
attempted.

Note: The use of the word ``attempted’’ here means that the process terminated abnormally with
additional actions (see SIG_DFL in XSH Section 2.4.3, on page 516). A core image might or
might not have been produced. Some implementations do not set this bit if a core image was not
produced, but this is not a requirement.

WEXITSTATUS Return exit status.

XSI WIFCONTINUED Tr ue if child has been continued.

WIFEXITED True if child exited normally.

WIFSIGNALED True if child exited due to uncaught signal.

WIFSTOPPED True if child stopped due to uncaught signal.

WSTOPSIG Return signal number that caused process to stop.

WTERMSIG Return signal number that caused process to terminate.

The <sys/wait.h> header shall define the following symbolic constants as possible values for the
options argument to waitid():

WEXITED Wait for processes that have terminated.

WNOWAIT Keep the process whose status is returned in infop in a waitable state.

WSTOPPED Status is returned for any child that has stopped upon receipt of a signal.

XSI The WCONTINUED and WNOHANG constants, described above for waitpid(), can also be
used with waitid().

The type idtype_t shall be defined as an enumeration type whose possible values shall include
at least the following:

P_ALL
P_PGID
P_PID

The <sys/wait.h> header shall define the id_t and pid_t types as described in <sys/types.h>.

The <sys/wait.h> header shall define the siginfo_t type and the sigval union as described in
<signal.h>.

Inclusion of the <sys/wait.h> header may also make visible all symbols from <signal.h>.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 433

15039

15040

15041

15042

15043

15044

15045

15046

15047

15048

15049

15050

15051

15052

15053

15054

15055

15056

15057

15058

15059

15060

15061

15062

15063

15064

15065

15066

15067

15068

15069

15070

15071

15072

15073

15074

15075

15076

15077

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<sys/wait.h> Headers

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

pid_t wait(int *);
int waitid(idtype_t, id_t, siginfo_t *, int);
pid_t waitpid(pid_t, int *, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<signal.h>, <sys/resource.h>, <sys/types.h>

XSH wait(), waitid()

CHANGE HISTORY
First released in Issue 3.

Included for alignment with the POSIX.1-1988 standard.

Issue 6
The wait3() function is removed.

Issue 7
The waitid() function and symbolic constants for its options argument are moved to the Base.

The description of the WNOHANG constant is clarified.

The requirement for <sys/wait.h> to define the rusage structure as described in
<sys/resource.h> is removed, and <sys/wait.h> is no longer allowed to make visible all symbols
from <sys/resource.h>.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0082 [579] and XBD/TC2-2008/0083
[564] are applied.

Issue 8
Austin Group Defect 1141 is applied, adding WCOREDUMP and changing the description of
WIFSTOPPED.

Austin Group Defect 1332 is applied, changing the description of WEXITED.

434 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15078

15079

15080

15081

15082

15083

15084

15085

15086

15087

15088

15089

15090

15091

15092

15093

15094

15095

15096

15097

15098

15099

15100

15101

15102

15103

15104

15105

15106

15107

15108

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <syslog.h>

NAME
syslog.h — definitions for system error logging

SYNOPSIS
XSI #include <syslog.h>

DESCRIPTION
The <syslog.h> header shall define the following symbolic constants, zero or more of which
may be OR’ed together to form the logopt option of openlog():

LOG_PID Log the process ID with each message.

LOG_CONS Log to the system console on error.

LOG_NDELAY Connect to syslog daemon immediately.

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes.

The <syslog.h> header shall define the following symbolic constants for use as the facility
argument to openlog():

LOG_KERN Reserved for message generated by the system.

LOG_USER Message generated by a process.

LOG_MAIL Reserved for message generated by mail system.

LOG_NEWS Reserved for message generated by news system.

LOG_UUCP Reserved for message generated by UUCP system.

LOG_DAEMON Reserved for message generated by system daemon.

LOG_AUTH Reserved for message generated by authorization daemon.

LOG_CRON Reserved for message generated by clock daemon.

LOG_LPR Reserved for message generated by printer system.

LOG_LOCAL0 Reserved for local use.

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

The <syslog.h> header shall define the following macros for constructing the maskpri argument
to setlogmask(). The following macros expand to an expression of type int when the argument
pri is an expression of type int:

LOG_MASK(pri) A mask for priority pri.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 435

15109

15110

15111

15112

15113

15114

15115

15116

15117

15118

15119

15120

15121

15122

15123

15124

15125

15126

15127

15128

15129

15130

15131

15132

15133

15134

15135

15136

15137

15138

15139

15140

15141

15142

15143

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<syslog.h> Headers

LOG_UPTO(pri) A mask for all priorities from LOG_EMERG through pri inclusive in the
order listed in the list of priority symbolic constants below. Any
additional implementation-defined priorities not included in the list
below shall not be included in the mask.

The <syslog.h> header shall define the following symbolic constants for use as the severity level
portion of the priority argument of syslog() and the pri argument of the LOG_MASK(pri) and
LOG_UPTO(pri) macros:

LOG_EMERG A panic condition was reported to all processes.

LOG_ALERT A condition that should be corrected immediately.

LOG_CRIT A critical condition.

LOG_ERR An error message.

LOG_WARNING A warning message.

LOG_NOTICE A condition requiring special handling.

LOG_INFO A general information message.

LOG_DEBUG A message useful for debugging programs.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void closelog(void);
void openlog(const char *, int, int);
int setlogmask(int);
void syslog(int, const char *, ...);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH closelog()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/Open UNIX to BASE.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 1033 is applied, adding the LOG_UPTO macro.

436 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15144

15145

15146

15147

15148

15149

15150

15151

15152

15153

15154

15155

15156

15157

15158

15159

15160

15161

15162

15163

15164

15165

15166

15167

15168

15169

15170

15171

15172

15173

15174

15175

15176

15177

15178

15179

15180

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <tar.h>

NAME
tar.h — extended tar definitions

SYNOPSIS
#include <tar.h>

DESCRIPTION
The <tar.h> header shall define the following symbolic constants with the indicated values.

General definitions:

Name Value Description
TMAGIC "ustar" Used in the magic field in the ustar header

block, including the trailing null byte.
TMAGLEN 6 Length in octets of the magic field.
TVERSION "00" Used in the version field in the ustar header

block, excluding the trailing null byte.
TVERSLEN 2 Length in octets of the version field.

Typeflag field definitions:

Name Value Description
REGTYPE ’0’ Regular file.
AREGTYPE ’\0’ Regular file.
LNKTYPE ’1’ Hard Link.
SYMTYPE ’2’ Symbolic link.
CHRTYPE ’3’ Character special.
BLKTYPE ’4’ Block special.
DIRTYPE ’5’ Directory.
FIFOTYPE ’6’ FIFO special.
CONTTYPE ’7’ Reserved.

Mode field bit definitions (octal):

Name Value Description
TSUID 04000 Set UID on execution.
TSGID 02000 Set GID on execution.

XSI TSVTX 01000 On directories, restricted deletion flag.
TUREAD 00400 Read by owner.
TUWRITE 00200 Write by owner special.
TUEXEC 00100 Execute/search by owner.
TGREAD 00040 Read by group.
TGWRITE 00020 Write by group.
TGEXEC 00010 Execute/search by group.
TOREAD 00004 Read by other.
TOWRITE 00002 Write by other.
TOEXEC 00001 Execute/search by other.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 437

15181

15182

15183

15184

15185

15186

15187

15188

15189

15190

15191

15192

15193

15194

15195

15196

15197

15198

15199

15200

15201

15202

15203

15204

15205

15206

15207

15208

15209

15210

15211

15212

15213

15214

15215

15216

15217

15218

15219

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<tar.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XCU pax

CHANGE HISTORY
First released in Issue 3. Derived from the POSIX.1-1988 standard.

Issue 6
The SEE ALSO section is updated to refer to pax.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0084 [707] is applied.

Issue 8
Austin Group Defect 1380 is applied, changing the description of LNKTYPE.

438 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15220

15221

15222

15223

15224

15225

15226

15227

15228

15229

15230

15231

15232

15233

15234

15235

15236

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <termios.h>

NAME
termios.h — define values for termios

SYNOPSIS
#include <termios.h>

DESCRIPTION
The <termios.h> header shall contain the definitions used by the terminal I/O interfaces (see
Chapter 11 (on page 199) for the structures and names defined).

The termios Structure

The <termios.h> header shall define the following data types through typedef:

cc_t Used for terminal special characters.

speed_t Used for terminal baud rates.

tcflag_t Used for terminal modes.

The above types shall be all unsigned integer types.

The implementation shall support one or more programming environments in which the widths
of cc_t, speed_t, and tcflag_t are no greater than the width of type long. The names of these
programming environments can be obtained using the confstr() function or the getconf utility.

The <termios.h> header shall define the termios structure, which shall include at least the
following members:

tcflag_t c_iflag Input modes.
tcflag_t c_oflag Output modes.
tcflag_t c_cflag Control modes.
tcflag_t c_lflag Local modes.
cc_t c_cc[NCCS] Control characters.

The <termios.h> header shall define the following symbolic constant:

NCCS Size of the array c_cc for control characters.

The <termios.h> header shall define the following symbolic constants for use as subscripts for
the array c_cc:

Subscript Usage
Canonical Mode Non-Canonical Mode Description
VEOF EOF character.
VEOL EOL character.
VERASE ERASE character.
VINTR VINTR INTR character.
VKILL KILL character.

VMIN MIN value.
VQUIT VQUIT QUIT character.
VSTART VSTART START character.
VSTOP VSTOP STOP character.
VSUSP VSUSP SUSP character.

VTIME TIME value.

The subscript values shall be suitable for use in #if preprocessing directives and shall be distinct,
except that the VMIN and VTIME subscripts may have the same values as the VEOF and VEOL
subscripts, respectively.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 439

15237

15238

15239

15240

15241

15242

15243

15244

15245

15246

15247

15248

15249

15250

15251

15252

15253

15254

15255

15256

15257

15258

15259

15260

15261

15262

15263

15264

15265

15266

15267

15268

15269

15270

15271

15272

15273

15274

15275

15276

15277

15278

15279

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<termios.h> Headers

Input Modes

The <termios.h> header shall define the following symbolic constants for use as flags in the
c_iflag field. The c_iflag field describes the basic terminal input control.

BRKINT Signal interrupt on break.

ICRNL Map CR to NL on input.

IGNBRK Ignore break condition.

IGNCR Ignore CR.

IGNPAR Ignore characters with parity errors.

INLCR Map NL to CR on input.

INPCK Enable input parity check.

ISTRIP Strip character.

IXANY Enable any character to restart output.

IXOFF Enable start/stop input control.

IXON Enable start/stop output control.

PARMRK Mark parity errors.

Output Modes

The <termios.h> header shall define the following symbolic constants for use as flags in the
c_oflag field. The c_oflag field specifies the system treatment of output.

OPOST Post-process output.

XSI ONLCR Map NL to CR-NL on output.

XSI OCRNL Map CR to NL on output.

XSI ONOCR No CR output at column 0.

XSI ONLRET NL performs CR function.

XSI OFDEL Fill is DEL.

XSI OFILL Use fill characters for delay.

XSI NLDLY Select newline delays:

NL0 Newline type 0.

NL1 Newline type 1.

XSI CRDLY Select carriage-return delays:

CR0 Carriage-return delay type 0.

CR1 Carriage-return delay type 1.

CR2 Carriage-return delay type 2.

CR3 Carriage-return delay type 3.

440 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15280

15281

15282

15283

15284

15285

15286

15287

15288

15289

15290

15291

15292

15293

15294

15295

15296

15297

15298

15299

15300

15301

15302

15303

15304

15305

15306

15307

15308

15309

15310

15311

15312

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <termios.h>

XSI TABDLY Select horizontal-tab delays:

TAB0 Horizontal-tab delay type 0.

TAB1 Horizontal-tab delay type 1.

TAB2 Horizontal-tab delay type 2.

TAB3 Expand tabs to spaces.

XSI BSDLY Select backspace delays:

BS0 Backspace-delay type 0.

BS1 Backspace-delay type 1.

XSI VTDLY Select vertical-tab delays:

VT0 Vertical-tab delay type 0.

VT1 Vertical-tab delay type 1.

XSI FFDLY Select form-feed delays:

FF0 Form-feed delay type 0.

FF1 Form-feed delay type 1.

Baud Rate Selection

The <termios.h> header shall define the following symbolic constants for use as values of
objects of type speed_t.

The input and output baud rates are stored in the termios structure. These are the valid values
for objects of type speed_t. Not all baud rates need be supported by the underlying hardware.

B0 Hang up

B50 50 baud

B75 75 baud

B110 110 baud

B134 134.5 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1 200 baud

B1800 1 800 baud

B2400 2 400 baud

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 441

15313

15314

15315

15316

15317

15318

15319

15320

15321

15322

15323

15324

15325

15326

15327

15328

15329

15330

15331

15332

15333

15334

15335

15336

15337

15338

15339

15340

15341

15342

15343

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<termios.h> Headers

B4800 4 800 baud

B9600 9 600 baud

B19200 19 200 baud

B38400 38 400 baud

Control Modes

The <termios.h> header shall define the following symbolic constants for use as flags in the
c_cflag field. The c_cflag field describes the hardware control of the terminal; not all values
specified are required to be supported by the underlying hardware.

CSIZE Character size:

CS5 5 bits

CS6 6 bits

CS7 7 bits

CS8 8 bits

CSTOPB Send two stop bits, else one.

CREAD Enable receiver.

PARENB Parity enable.

PARODD Odd parity, else even.

HUPCL Hang up on last close.

CLOCAL Ignore modem status lines.

The implementation shall support the functionality associated with the symbols CS7, CS8,
CSTOPB, PARODD, and PARENB.

Local Modes

The <termios.h> header shall define the following symbolic constants for use as flags in the
c_lflag field. The c_lflag field of the argument structure is used to control various terminal
functions.

ECHO Enable echo.

ECHOE Echo erase character as error-correcting backspace.

ECHOK Echo KILL.

ECHONL Echo NL.

ICANON Canonical input (erase and kill processing).

IEXTEN Enable extended input character processing.

ISIG Enable signals.

NOFLSH Disable flush after interrupt or quit.

TOSTOP Send SIGTTOU for background output.

442 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15344

15345

15346

15347

15348

15349

15350

15351

15352

15353

15354

15355

15356

15357

15358

15359

15360

15361

15362

15363

15364

15365

15366

15367

15368

15369

15370

15371

15372

15373

15374

15375

15376

15377

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <termios.h>

The winsize Structure

The <termios.h> header shall define the winsize structure, which shall include at least the
following members:

unsigned short ws_row Rows, in characters.
unsigned short ws_col Columns, in characters.

Attribute Selection

The <termios.h> header shall define the following symbolic constants for use with tcsetattr():

TCSANOW Change attributes immediately.

TCSADRAIN Change attributes when output has drained.

TCSAFLUSH Change attributes when output has drained; also flush pending input.

Line Control

The <termios.h> header shall define the following symbolic constants for use with tcflush():

TCIFLUSH Flush pending input.

TCIOFLUSH Flush both pending input and untransmitted output.

TCOFLUSH Flush untransmitted output.

The <termios.h> header shall define the following symbolic constants for use with tcflow():

TCIOFF Transmit a STOP character, intended to suspend input data.

TCION Transmit a START character, intended to restart input data.

TCOOFF Suspend output.

TCOON Restart output.

The <termios.h> header shall define the pid_t type as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

speed_t cfgetispeed(const struct termios *);
speed_t cfgetospeed(const struct termios *);
int cfsetispeed(struct termios *, speed_t);
int cfsetospeed(struct termios *, speed_t);
int tcdrain(int);
int tcflow(int, int);
int tcflush(int, int);
int tcgetattr(int, struct termios *);
pid_t tcgetsid(int);
int tcgetwinsize(int, struct winsize *);
int tcsendbreak(int, int);
int tcsetattr(int, int, const struct termios *);
int tcsetwinsize(int, const struct winsize *);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 443

15378

15379

15380

15381

15382

15383

15384

15385

15386

15387

15388

15389

15390

15391

15392

15393

15394

15395

15396

15397

15398

15399

15400

15401

15402

15403

15404

15405

15406

15407

15408

15409

15410

15411

15412

15413

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<termios.h> Headers

APPLICATION USAGE
The following names are reserved for XSI-conformant systems to use as an extension to the
above; therefore strictly conforming applications shall not use them:

CBAUD EXTB VDSUSP
DEFECHO FLUSHO VLNEXT
ECHOCTL LOBLK VREPRINT
ECHOKE PENDIN VSTATUS
ECHOPRT SWTCH VWERASE
EXTA VDISCARD

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), confstr(), tcdrain(), tcflow(), tcflush(),
tcgetattr(), tcgetsid(), tcgetwinsize(), tcsendbreak(), tcsetattr(), tcsetwinsize()

XCU Chapter 11 (on page 199), getconf

CHANGE HISTORY
First released in Issue 3.

Included for alignment with the ISO POSIX-1 standard.

Issue 6
The LEGACY symbols IUCLC, OLCUC, and XCASE are removed.

FIPS 151-2 requirements for the symbols CS7, CS8, CSTOPB, PARODD, and PARENB are
reaffirmed.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/19 is applied, changing ECHOK to
ECHOKE in the APPLICATION USAGE section.

Issue 7
Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality relating to the
IXANY symbol from the XSI option to the Base.

SD5-XBD-ERN-35 is applied, adding the OFDEL output mode.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the pid_t type is added.

Issue 8
Austin Group Defects 1151 and 1484 are applied, adding the winsize structure and the
tcgetwinsize() and tcsetwinsize() functions.

444 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15414

15415

15416

15417

15418

15419

15420

15421

15422

15423

15424

15425

15426

15427

15428

15429

15430

15431

15432

15433

15434

15435

15436

15437

15438

15439

15440

15441

15442

15443

15444

15445

15446

15447

15448

15449

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <tgmath.h>

NAME
tgmath.h — type-generic macros

SYNOPSIS
#include <tgmath.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <tgmath.h> header shall include the headers <math.h> and <complex.h> and shall define
several type-generic macros.

Of the functions contained within the <math.h> and <complex.h> headers without an f (float)
or l (long double) suffix, several have one or more parameters whose corresponding real type is

XSI double. For each such function, except modf(), j0(), j1(), jn(), y0(), y1(), and yn(), there shall
be a corresponding type-generic macro. The parameters whose corresponding real type is
double in the function synopsis are generic parameters. Use of the macro invokes a function
whose corresponding real type and type domain are determined by the arguments for the
generic parameters.

Use of the macro invokes a function whose generic parameters have the corresponding real type
determined as follows:

• First, if any argument for generic parameters has type long double, the type determined is
long double.

• Otherwise, if any argument for generic parameters has type double or is of integer type,
the type determined is double.

• Otherwise, the type determined is float.

For each unsuffixed function in the <math.h> header for which there is a function in the
<complex.h> header with the same name except for a c prefix, the corresponding type-generic
macro (for both functions) has the same name as the function in the <math.h> header. The
corresponding type-generic macro for fabs() and cabs() is fabs().

<math.h> Function <complex.h> Function Type-Generic Macro
acos() cacos() acos()
asin() casin() asin()
atan() catan() atan()
acosh() cacosh() acosh()
asinh() casinh() asinh()
atanh() catanh() atanh()
cos() ccos() cos()
sin() csin() sin()
tan() ctan() tan()
cosh() ccosh() cosh()
sinh() csinh() sinh()
tanh() ctanh() tanh()
exp() cexp() exp()
log() clog() log()
pow() cpow() pow()
sqrt() csqrt() sqrt()
fabs() cabs() fabs()

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 445

15450

15451

15452

15453

15454

15455

15456

15457

15458

15459

15460

15461

15462

15463

15464

15465

15466

15467

15468

15469

15470

15471

15472

15473

15474

15475

15476

15477

15478

15479

15480

15481

15482

15483

15484

15485

15486

15487

15488

15489

15490

15491

15492

15493

15494

15495

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<tgmath.h> Headers

If at least one argument for a generic parameter is complex, then use of the macro invokes a
complex function; otherwise, use of the macro invokes a real function.

For each unsuffixed function in the <math.h> header without a c-prefixed counterpart in the
XSI <complex.h> header, except for modf(), j0(), j1(), jn(), y0(), y1(), and yn(), the corresponding

type-generic macro has the same name as the function. These type-generic macros are:

atan2()
cbrt()
ceil()
copysign()
erf()
erfc()
exp2()
expm1()
fdim()
floor()

fma()
fmax()
fmin()
fmod()
frexp()
hypot()
ilogb()
ldexp()
lgamma()
llrint()

llround()
log10()
log1p()
log2()
logb()
lrint()
lround()
nearbyint()
nextafter()
nexttoward()

remainder()
remquo()
rint()
round()
scalbln()
scalbn()
tgamma()
trunc()

If all arguments for generic parameters are real, then use of the macro invokes a real function;
otherwise, use of the macro results in undefined behavior.

For each unsuffixed function in the <complex.h> header that is not a c-prefixed counterpart to a
function in the <math.h> header, the corresponding type-generic macro has the same name as
the function. These type-generic macros are:

carg()
cimag()
conj()
cproj()
creal()

Use of the macro with any real or complex argument invokes a complex function.

MXC Type-generic macros that accept complex arguments shall also accept imaginary arguments. If
an argument is imaginary, the macro shall expand to an expression whose type is real,
imaginary, or complex, as appropriate for the particular function: if the argument is imaginary,
then the types of cos(), cosh(), fabs(), carg(), cimag(), and creal() shall be real; the types of sin(),
tan(), sinh(), tanh(), asin(), atan(), asinh(), and atanh() shall be imaginary; and the types of the
others shall be complex.

Given an imaginary argument, each of the type-generic macros cos(), sin(), tan(), cosh(), sinh(),
tanh(), asin(), atan(), asinh(), and atanh() is specified by a formula in terms of real functions:

=cos(iy) cosh(y)
=sin(iy) i sinh(y)
=tan(iy) i tanh(y)
=cosh(iy) cos(y)
=sinh(iy) i sin(y)
=tanh(iy) i tan(y)
=asin(iy) i asinh(y)
=atan(iy) i atanh(y)
=asinh(iy) i asin(y)
=atanh(iy) i atan(y)

446 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15496

15497

15498

15499

15500

15501

15502

15503

15504

15505

15506

15507

15508

15509

15510

15511

15512

15513

15514

15515

15516

15517

15518

15519

15520

15521

15522

15523

15524

15525

15526

15527

15528

15529

15530

15531

15532

15533

15534

15535

15536

15537

15538

15539

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <tgmath.h>

APPLICATION USAGE
With the declarations:

#include <tgmath.h>
int n;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;

functions invoked by use of type-generic macros are shown in the following table:

Macro Use Invokes
exp(n) exp(n), the function
acosh(f) acoshf(f)
sin(d) sin(d), the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)
pow(ldc,f) cpowl(ldc, f)
remainder(n,n) remainder(n, n), the function
nextafter(d,f) nextafter(d, f), the function
nexttoward(f,ld) nexttowardf(f, ld)
copysign(n,ld) copysignl(n, ld)
ceil(fc) Undefined behavior
rint(dc) Undefined behavior
fmax(ldc,ld) Undefined behavior
carg(n) carg(n), the function
cproj(f) cprojf(f)
creal(d) creal(d), the function
cimag(ld) cimagl(ld)
cabs(fc) cabsf(fc)
carg(dc) carg(dc), the function
cproj(ldc) cprojl(ldc)

RATIONALE
Type-generic macros allow calling a function whose type is determined by the argument type, as
is the case for C operators such as '+' and '*'. For example, with a type-generic cos() macro,
the expression cos((float)x) will have type float. This feature enables writing more portably
efficient code and alleviates need for awkward casting and suffixing in the process of porting or
adjusting precision. Generic math functions are a widely appreciated feature of Fortran.

The only arguments that affect the type resolution are the arguments corresponding to the
parameters that have type double in the synopsis. Hence the type of a type-generic call to
nexttoward(), whose second parameter is long double in the synopsis, is determined solely by
the type of the first argument.

The term ``type-generic’’ was chosen over the proposed alternatives of intrinsic and overloading.
The term is more specific than intrinsic, which already is widely used with a more general
meaning, and reflects a closer match to Fortran’s generic functions than to C++ overloading.

The macros are placed in their own header in order not to silently break old programs that

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 447

15540

15541

15542

15543

15544

15545

15546

15547

15548

15549

15550

15551

15552

15553

15554

15555

15556

15557

15558

15559

15560

15561

15562

15563

15564

15565

15566

15567

15568

15569

15570

15571

15572

15573

15574

15575

15576

15577

15578

15579

15580

15581

15582

15583

15584

15585

15586

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<tgmath.h> Headers

include the <math.h> header; for example, with:

printf ("%e", sin(x))

modf (double, double *) is excluded because no way was seen to make it safe without
complicating the type resolution.

The implementation might, as an extension, endow appropriate ones of the macros that
POSIX.1-2024 specifies only for real arguments with the ability to invoke the complex functions.

POSIX.1-2024 does not prescribe any particular implementation mechanism for generic macros.
It could be implemented simply with built-in macros. The generic macro for sqrt(), for example,
could be implemented with:

#undef sqrt
#define sqrt(x) __BUILTIN_GENERIC_sqrt(x)

Generic macros are designed for a useful level of consistency with C++ overloaded math
functions.

The great majority of existing C programs are expected to be unaffected when the <tgmath.h>
header is included instead of the <math.h> or <complex.h> headers. Generic macros are similar
to the ISO C standard library masking macros, though the semantic types of return values differ.

The ability to overload on integer as well as floating types would have been useful for some
functions; for example, copysign(). Overloading with different numbers of arguments would
have allowed reusing names; for example, remainder() for remquo(). However, these facilities
would have complicated the specification; and their natural consistent use, such as for a floating
abs() or a two-argument atan(), would have introduced further inconsistencies with the
ISO/IEC 9899: 1999 standard for insufficient benefit.

The ISO C standard in no way limits the implementation’s options for efficiency, including
inlining library functions.

FUTURE DIRECTIONS
None.

SEE ALSO
<math.h>, <complex.h>

XSH cabs(), fabs(), modf()

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #184 is applied, clarifying the functions for which a
corresponding type-generic macro exists with the same name as the function.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0075 [357,427] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

448 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15587

15588

15589

15590

15591

15592

15593

15594

15595

15596

15597

15598

15599

15600

15601

15602

15603

15604

15605

15606

15607

15608

15609

15610

15611

15612

15613

15614

15615

15616

15617

15618

15619

15620

15621

15622

15623

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <threads.h>

NAME
threads.h — ISO C threads

SYNOPSIS
#include <threads.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations shall not define the macro __STDC_NO_THREADS__, except for profile
implementations that define _POSIX_SUBPROFILE (see Section 2.1.5.1, on page 20) in
<unistd.h>, which may define __STDC_NO_THREADS__ and, if they do so, need not provide
this header nor support any of its facilities.

The <threads.h> header shall define the following macros:

thread_local Expands to _Thread_local.

ONCE_FLAG_INIT Expands to a value that can be used to initialize an object of type
once_flag.

TSS_DTOR_ITERATIONS
Expands to an integer constant expression representing the maximum
number of times that destructors will be called when a thread terminates
and shall be suitable for use in #if preprocessing directives.

CX If {PTHREAD_DESTRUCTOR_ITERATIONS} is defined in <limits.h>, the value of
TSS_DTOR_ITERATIONS shall be equal to {PTHREAD_DESTRUCTOR_ITERATIONS};
otherwise, the value of TSS_DTOR_ITERATIONS shall be greater than or equal to the value of
{_POSIX_THREAD_DESTRUCTOR_ITERATIONS} and shall be less than or equal to the
maximum positive value that can be returned by a call to
sysconf (_SC_THREAD_DESTRUCTOR_ITERATIONS) in any process.

The <threads.h> header shall define the types cnd_t, mtx_t, once_flag, thrd_t, and tss_t as
complete object types, the type thrd_start_t as the function pointer type int (*)(void*), and the

CX type tss_dtor_t as the function pointer type void (*)(void*). The type thrd_t shall be defined to
be the same type that pthread_t is defined to be in <pthread.h>.

The <threads.h> header shall define the enumeration constants mtx_plain, mtx_recursive,
mtx_timed, thrd_busy, thrd_error, thrd_nomem, thrd_success and thrd_timedout.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void call_once(once_flag *, void (*)(void));
int cnd_broadcast(cnd_t *);
void cnd_destroy(cnd_t *);
int cnd_init(cnd_t *);
int cnd_signal(cnd_t *);
int cnd_timedwait(cnd_t * restrict, mtx_t * restrict,

const struct timespec * restrict);
int cnd_wait(cnd_t *, mtx_t *);
void mtx_destroy(mtx_t *);
int mtx_init(mtx_t *, int);
int mtx_lock(mtx_t *);
int mtx_timedlock(mtx_t * restrict,

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 449

15624

15625

15626

15627

15628

15629

15630

15631

15632

15633

15634

15635

15636

15637

15638

15639

15640

15641

15642

15643

15644

15645

15646

15647

15648

15649

15650

15651

15652

15653

15654

15655

15656

15657

15658

15659

15660

15661

15662

15663

15664

15665

15666

15667

15668

15669

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<threads.h> Headers

const struct timespec * restrict);
int mtx_trylock(mtx_t *);
int mtx_unlock(mtx_t *);
int thrd_create(thrd_t *, thrd_start_t, void *);
thrd_t thrd_current(void);
int thrd_detach(thrd_t);
int thrd_equal(thrd_t, thrd_t);
_Noreturn void thrd_exit(int);
int thrd_join(thrd_t, int *);
int thrd_sleep(const struct timespec *, struct timespec *);
void thrd_yield(void);
int tss_create(tss_t *, tss_dtor_t);
void tss_delete(tss_t);
void *tss_get(tss_t);
int tss_set(tss_t, void *);

Inclusion of the <threads.h> header shall make symbols defined in the header <time.h> visible.

APPLICATION USAGE
The <threads.h> header is optional in the ISO C standard but is mandated by POSIX.1-2024.
Note however that subprofiles can choose to make this header optional (see Section 2.1.5.1, on
page 20), and therefore application portability to subprofile implementations would benefit from
checking whether __STDC_NO_THREADS__ is defined before inclusion of <threads.h>.

The features provided by <threads.h> are not as extensive as those provided by <pthread.h>. It
is present on POSIX.1 implementations in order to facilitate porting of ISO C programs that use
it. It is recommended that applications intended for use on POSIX.1 implementations use
<pthread.h> rather than <threads.h> even if none of the additional features are needed initially,
to save the need to convert should the need to use them arise later in the application’s lifecycle.

RATIONALE
Although the <threads.h> header is optional in the ISO C standard, it is mandated by
POSIX.1-2024 because <pthread.h> is mandatory and the interfaces in <threads.h> can easily be
implemented as a thin wrapper for interfaces in <pthread.h>.

The type thrd_t is required to be defined as the same type that pthread_t is defined to be in
<pthread.h> because thrd_current() and pthread_self() need to return the same thread ID when
called from the initial thread. However, these types are not fully interchangeable (that is, it is
not always possible to pass a thread ID obtained as a thrd_t to a function that takes a pthread_t,
and vice versa) because threads created using thrd_create() have a different exit status than
pthreads threads, which is reflected in differences between the prototypes for thrd_create() and
pthread_create(), thrd_exit() and pthread_exit(), and thrd_join() and pthread_join(); also,
thrd_join() has no way to indicate that a thread was cancelled.

The standard developers considered making it implementation-defined whether the types
cnd_t, mtx_t and tss_t are interchangeable with the corresponding types pthread_cond_t,
pthread_mutex_t and pthread_key_t defined in <pthread.h> (that is, whether any function that
can be called with a valid cnd_t can also be called with a valid pthread_cond_t, and vice versa,
and likewise for the other types). However, this would have meant extending mtx_lock() to
provide a way for it to indicate that the owner of a mutex has terminated (equivalent to
[EOWNERDEAD]). It was felt that such an extension would be invention. Although there was
no similar concern for cnd_t and tss_t, they were treated the same way as mtx_t for consistency.
See also the RATIONALE for mtx_lock() concerning the inability of mtx_t to contain information
about whether or not a mutex supports timeout if it is the same type as pthread_mutex_t.

450 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15670

15671

15672

15673

15674

15675

15676

15677

15678

15679

15680

15681

15682

15683

15684

15685

15686

15687

15688

15689

15690

15691

15692

15693

15694

15695

15696

15697

15698

15699

15700

15701

15702

15703

15704

15705

15706

15707

15708

15709

15710

15711

15712

15713

15714

15715

15716

15717

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <threads.h>

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <pthread.h>, <time.h>

XSH Section 2.9, call_once(), cnd_broadcast(), cnd_destroy(), cnd_timedwait(), mtx_destroy(),
mtx_lock(), sysconf(), thrd_create(), thrd_current(), thrd_detach(), thrd_equal(), thrd_exit(),
thrd_join(), thrd_sleep(), thrd_yield(), tss_create(), tss_delete(), tss_get()

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 451

15718

15719

15720

15721

15722

15723

15724

15725

15726

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<time.h> Headers

NAME
time.h — time types

SYNOPSIS
#include <time.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <time.h> header shall define the clock_t, size_t, time_t, types as described in
<sys/types.h>.

CX The <time.h> header shall define the clockid_t and timer_t types as described in <sys/types.h>.

The <time.h> header shall define the locale_t type as described in <locale.h>.

CPT The <time.h> header shall define the pid_t type as described in <sys/types.h>.

CX The tag sigevent shall be declared as naming an incomplete structure type, the contents of which
are described in the <signal.h> header.

The <time.h> header shall declare the tm structure, which shall include at least the following
members:

int tm_sec Seconds [0,60].
int tm_min Minutes [0,59].
int tm_hour Hour [0,23].
int tm_mday Day of month [1,31].
int tm_mon Month of year [0,11].
int tm_year Years since 1900.
int tm_wday Day of week [0,6] (Sunday =0).
int tm_yday Day of year [0,365].
int tm_isdst Daylight Saving flag.
long tm_gmtoff Seconds east of UTC.
const char *tm_zone Timezone abbreviation.

When tm_isdst is set by an interface defined in this standard, its value shall be positive if
CX Daylight Saving Time (DST) is in effect and 0 if DST is not in effect. It shall not be set to a

negative value by any interface defined in this standard. When tm_isdst is passed to the mktime()
function, it specifies how mktime() is to handle DST when calculating the time since the Epoch
value; see mktime().

CX If the value of tm_zone is accessed after the value of TZ is subsequently modified, and the
tm_zone value was not set by a call to gmtime() or gmtime_r(), the behavior is undefined.

The <time.h> header shall declare the timespec structure, which shall include at least the
following members:

time_t tv_sec Whole seconds.
long tv_nsec Nanoseconds [0, 999 999 999].

CX The <time.h> header shall also declare the itimerspec structure, which shall include at least the
following members:

struct timespec it_interval Timer period.
struct timespec it_value Timer expiration.

452 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15727

15728

15729

15730

15731

15732

15733

15734

15735

15736

15737

15738

15739

15740

15741

15742

15743

15744

15745

15746

15747

15748

15749

15750

15751

15752

15753

15754

15755

15756

15757

15758

15759

15760

15761

15762

15763

15764

15765

15766

15767

15768

15769

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <time.h>

The <time.h> header shall define the following macros:

NULL As described in <stddef.h>.

CLOCKS_PER_SEC A number used to convert the value returned by the clock() function into
XSI seconds. The value shall be an expression with type clock_t. The value of

CLOCKS_PER_SEC shall be 1 million on XSI-conformant systems.
However, it may be variable on other systems, and it should not be
assumed that CLOCKS_PER_SEC is a compile-time constant.

TIME_UTC An integer constant greater than 0 that designates the UTC time base in
calls to timespec_get(). The value shall be suitable for use in #if
preprocessing directives.

CX The <time.h> header shall define the following symbolic constants. The values shall have a type
that is assignment-compatible with clockid_t.

CX CLOCK_MONOTONIC
The identifier for the system-wide monotonic clock, which is defined as a
clock measuring real time, whose value cannot be set via clock_settime()
and which cannot have negative clock jumps. The maximum possible
clock jump shall be implementation-defined.

CPT CLOCK_PROCESS_CPUTIME_ID
The identifier of the CPU-time clock associated with the process making a
clock*() or timer*() function call.

CX CLOCK_REALTIME The identifier of the system-wide clock measuring real time.

TCT CLOCK_THREAD_CPUTIME_ID
The identifier of the CPU-time clock associated with the thread making a
clock*() or timer*() function call.

CX The <time.h> header shall define the following symbolic constant:

TIMER_ABSTIME Flag indicating time is absolute. For functions taking timer objects, this
refers to the clock associated with the timer.

XSI The <time.h> header shall provide a declaration or definition for getdate_err. The getdate_err
symbol shall expand to an expression of type int. It is unspecified whether getdate_err is a macro
or an identifier declared with external linkage, and whether or not it is a modifiable lvalue. If a
macro definition is suppressed in order to access an actual object, or a program defines an
identifier with the name getdate_err, the behavior is undefined.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

OB char *asctime(const struct tm *);
clock_t clock(void);

CPT int clock_getcpuclockid(pid_t, clockid_t *);
CX int clock_getres(clockid_t, struct timespec *);

int clock_gettime(clockid_t, struct timespec *);
int clock_nanosleep(clockid_t, int, const struct timespec *,

struct timespec *);
int clock_settime(clockid_t, const struct timespec *);

OB char *ctime(const time_t *);
double difftime(time_t, time_t);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 453

15770

15771

15772

15773

15774

15775

15776

15777

15778

15779

15780

15781

15782

15783

15784

15785

15786

15787

15788

15789

15790

15791

15792

15793

15794

15795

15796

15797

15798

15799

15800

15801

15802

15803

15804

15805

15806

15807

15808

15809

15810

15811

15812

15813

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<time.h> Headers

XSI struct tm *getdate(const char *);
struct tm *gmtime(const time_t *);

CX struct tm *gmtime_r(const time_t *restrict, struct tm *restrict);
struct tm *localtime(const time_t *);

CX struct tm *localtime_r(const time_t *restrict, struct tm *restrict);
time_t mktime(struct tm *);

CX int nanosleep(const struct timespec *, struct timespec *);
size_t strftime(char *restrict, size_t, const char *restrict,

const struct tm *restrict);
CX size_t strftime_l(char *restrict, size_t, const char *restrict,

const struct tm *restrict, locale_t);
XSI char *strptime(const char *restrict, const char *restrict,

struct tm *restrict);
time_t time(time_t *);

CX int timer_create(clockid_t, struct sigevent *restrict,
timer_t *restrict);

int timer_delete(timer_t);
int timer_getoverrun(timer_t);
int timer_gettime(timer_t, struct itimerspec *);
int timer_settime(timer_t, int, const struct itimerspec *restrict,

struct itimerspec *restrict);
int timespec_get(struct timespec *, int);

CX void tzset(void);

The <time.h> header shall declare the following as variables:

XSI extern int daylight;
extern long timezone;

CX extern char *tzname[];

CX Inclusion of the <time.h> header may make visible all symbols from the <signal.h> header.

APPLICATION USAGE
The range [0,60] for tm_sec allows for the occasional leap second.

tm_year is a signed value; therefore, years before 1900 may be represented.

To obtain the number of clock ticks per second returned by the times() function, applications
should call sysconf (_SC_CLK_TCK).

RATIONALE
The range [0,60] seconds allows for positive or negative leap seconds. The formal definition of
UTC does not permit double leap seconds, so all mention of double leap seconds has been
removed, and the range shortened from the former [0,61] seconds seen in earlier versions of this
standard.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, <signal.h>, <stddef.h>, <sys/types.h>

XSH Section 2.2 (on page 496), asctime(), clock(), clock_getcpuclockid(), clock_getres(),
clock_nanosleep(), ctime(), difftime(), futimens(), getdate(), gmtime(), localtime(), mktime(),
mq_receive(), mq_send(), nanosleep(), pthread_getcpuclockid(), pthread_mutex_clocklock(),

454 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15814

15815

15816

15817

15818

15819

15820

15821

15822

15823

15824

15825

15826

15827

15828

15829

15830

15831

15832

15833

15834

15835

15836

15837

15838

15839

15840

15841

15842

15843

15844

15845

15846

15847

15848

15849

15850

15851

15852

15853

15854

15855

15856

15857

15858

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <time.h>

pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), sem_clockwait(), strftime(), strptime(),
sysconf(), time(), timer_create(), timer_delete(), timer_getoverrun(), timespec_get(), tzset()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Issue 6
The Open Group Corrigendum U035/6 is applied. In the DESCRIPTION, the types clockid_t
and timer_t have been described.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The POSIX timer-related functions are marked as part of the Timers option.

The symbolic name CLK_TCK is removed. Application usage is added describing how its
equivalent functionality can be obtained using sysconf().

The clock_getcpuclockid() function and manifest constants CLOCK_PROCESS_CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID are added for alignment with IEEE Std 1003.1d-1999.

The manifest constant CLOCK_MONOTONIC and the clock_nanosleep() function are added for
alignment with IEEE Std 1003.1j-2000.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The range for seconds is changed from [0,61] to [0,60].

• The restrict keyword is added to the prototypes for asctime_r(), gmtime_r(), localtime_r(),
strftime(), strptime(), timer_create(), and timer_settime().

IEEE PASC Interpretation 1003.1 #84 is applied adding the statement that symbols from the
<signal.h> header may be made visible when the <time.h> header is included.

Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #111 is applied.

SD5-XBD-ERN-74 is applied.

The strftime_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Functionality relating to the Timers option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants, and declarations
for the locale_t and pid_t types and the sigevent structure are added.

The description of the getdate_err value is expanded.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0076 [212] and XBD/TC1-2008/0077
[212] are applied.

Issue 8
Austin Group Defect 1253 is applied, changing ``Daylight Savings’’ to ``Daylight Saving’’.

Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 455

15859

15860

15861

15862

15863

15864

15865

15866

15867

15868

15869

15870

15871

15872

15873

15874

15875

15876

15877

15878

15879

15880

15881

15882

15883

15884

15885

15886

15887

15888

15889

15890

15891

15892

15893

15894

15895

15896

15897

15898

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<time.h> Headers

Austin Group Defect 1410 is applied, removing the asctime_r() and ctime_r() functions.

Austin Group Defect 1533 is applied, adding tm_gmtoff and tm_zone to the tm structure.

Austin Group Defect 1597 is applied, changing clock() to clock*() in the descriptions of
CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID.

Austin Group Defect 1614 is applied, clarifying the requirements for the tm_isdst member of the
tm structure.

456 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15899

15900

15901

15902

15903

15904

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <uchar.h>

NAME
uchar.h — Unicode character handling

SYNOPSIS
#include <uchar.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The <uchar.h> header shall define the following types:

mbstate_t As described in <wchar.h>.

size_t As described in <stddef.h>.

char16_t The same type as uint_least16_t, described in <stdint.h>.

char32_t The same type as uint_least32_t, described in <stdint.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

size_t c16rtomb(char *restrict, char16_t, mbstate_t *restrict);
size_t c32rtomb(char *restrict, char32_t, mbstate_t *restrict);
size_t mbrtoc16(char16_t *restrict, const char *restrict, size_t,

mbstate_t *restrict);
size_t mbrtoc32(char32_t *restrict, const char *restrict, size_t,

mbstate_t *restrict);

CX Inclusion of the <uchar.h> header may make visible all symbols from the headers <stddef.h>,
<stdint.h>, and <wchar.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stddef.h>, <stdint.h>, <wchar.h>

XSH c16rtomb(), mbrtoc16()

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 457

15905

15906

15907

15908

15909

15910

15911

15912

15913

15914

15915

15916

15917

15918

15919

15920

15921

15922

15923

15924

15925

15926

15927

15928

15929

15930

15931

15932

15933

15934

15935

15936

15937

15938

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

NAME
unistd.h — standard symbolic constants and types

SYNOPSIS
#include <unistd.h>

DESCRIPTION
The <unistd.h> header defines miscellaneous symbolic constants and types, and declares
miscellaneous functions. The actual values of the constants are unspecified except as shown. The
contents of this header are shown below.

Version Test Macros

The <unistd.h> header shall define the following symbolic constants. The values shall be
suitable for use in #if preprocessing directives.

_POSIX_VERSION
Integer value indicating version of this standard (C-language binding) to which the
implementation conforms. For implementations conforming to POSIX.1-2024, the value
shall be 202405L.

_POSIX2_VERSION
Integer value indicating version of the Shell and Utilities volume of POSIX.1 to which the
implementation conforms. For implementations conforming to POSIX.1-2024, the value
shall be 202405L. For profile implementations that define _POSIX_SUBPROFILE (see
Section 2.1.5.1) in <unistd.h>, _POSIX2_VERSION may be left undefined or be defined with
the value −1 to indicate that the Shell and Utilities volume of POSIX.1 is not supported. In
this case, a call to sysconf (_SC_2_VERSION) shall return either 202405L or −1 indicating that
the Shell and Utilities volume of POSIX.1 is or is not, respectively, supported at runtime.

The <unistd.h> header shall define the following symbolic constant only if the implementation
supports the XSI option; see Section 2.1.4 (on page 19). If defined, its value shall be suitable for
use in #if preprocessing directives.

XSI _XOPEN_VERSION
Integer value indicating version of the X/Open Portability Guide to which the
implementation conforms. The value shall be 800.

Constants for Options and Option Groups

The following symbolic constants, if defined in <unistd.h>, shall have a value of −1, 0, or
greater, unless otherwise specified below. For profile implementations that define
_POSIX_SUBPROFILE (see Section 2.1.5.1) in <unistd.h>, constants described below as always
having a value greater than zero need not be defined and, if defined, may have a value of −1, 0,
or greater. The values shall be suitable for use in #if preprocessing directives.

If a symbolic constant is not defined or is defined with the value −1, the option is not supported
for compilation. If it is defined with a value greater than zero, the option shall always be
supported when the application is executed. If it is defined with the value zero, the option shall
be supported for compilation and might or might not be supported at runtime. See Section 2.1.6
(on page 25) for further information about the conformance requirements of these three
categories of support.

ADV _POSIX_ADVISORY_INFO
The implementation supports the Advisory Information option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported by
sysconf() shall either be −1 or 202405L.

458 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15939

15940

15941

15942

15943

15944

15945

15946

15947

15948

15949

15950

15951

15952

15953

15954

15955

15956

15957

15958

15959

15960

15961

15962

15963

15964

15965

15966

15967

15968

15969

15970

15971

15972

15973

15974

15975

15976

15977

15978

15979

15980

15981

15982

15983

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

_POSIX_ASYNCHRONOUS_IO
The implementation supports asynchronous input and output. This symbol shall always be
set to the value 202405L.

_POSIX_BARRIERS
The implementation supports barriers. This symbol shall always be set to the value
202405L.

_POSIX_CHOWN_RESTRICTED
The use of chown() and fchown() is restricted to a process with appropriate privileges, and
to changing the group ID of a file only to the effective group ID of the process or to one of
its supplementary group IDs. This symbol shall be defined with a value other than −1.

_POSIX_CLOCK_SELECTION
The implementation supports clock selection. This symbol shall always be set to the value
202405L.

CPT _POSIX_CPUTIME
The implementation supports the Process CPU-Time Clocks option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

DC _POSIX_DEVICE_CONTROL
The implementation supports the device control option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported by
sysconf() shall either be −1 or 202405L.

FSC _POSIX_FSYNC
The implementation supports the File Synchronization option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported by
sysconf() shall either be −1 or 202405L.

IP6 _POSIX_IPV6
The implementation supports the IPv6 option. If this symbol is defined in <unistd.h>, it
shall be defined to be −1, 0, or 202405L. The value of this symbol reported by sysconf() shall
either be −1 or 202405L.

_POSIX_JOB_CONTROL
The implementation supports job control. This symbol shall always be set to a value greater
than zero.

_POSIX_MAPPED_FILES
The implementation supports memory mapped Files. This symbol shall always be set to the
value 202405L.

ML _POSIX_MEMLOCK
The implementation supports the Process Memory Locking option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported
by sysconf() shall either be −1 or 202405L.

MLR _POSIX_MEMLOCK_RANGE
The implementation supports the Range Memory Locking option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported
by sysconf() shall either be −1 or 202405L.

_POSIX_MEMORY_PROTECTION
The implementation supports memory protection. This symbol shall always be set to the
value 202405L.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 459

15984

15985

15986

15987

15988

15989

15990

15991

15992

15993

15994

15995

15996

15997

15998

15999

16000

16001

16002

16003

16004

16005

16006

16007

16008

16009

16010

16011

16012

16013

16014

16015

16016

16017

16018

16019

16020

16021

16022

16023

16024

16025

16026

16027

16028

16029

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

MSG _POSIX_MESSAGE_PASSING
The implementation supports the Message Passing option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported by
sysconf() shall either be −1 or 202405L.

_POSIX_MONOTONIC_CLOCK
The implementation supports a monotonic clock. This symbol shall always be set to the
value 202405L.

_POSIX_NO_TRUNC
Pathname components longer than {NAME_MAX} generate an error. This symbol shall be
defined with a value other than −1.

PIO _POSIX_PRIORITIZED_IO
The implementation supports the Prioritized Input and Output option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

PS _POSIX_PRIORITY_SCHEDULING
The implementation supports the Process Scheduling option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported by
sysconf() shall either be −1 or 202405L.

RS _POSIX_RAW_SOCKETS
The implementation supports the Raw Sockets option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported by
sysconf() shall either be −1 or 202405L.

_POSIX_READER_WRITER_LOCKS
The implementation supports read-write locks. This symbol shall always be set to the value
202405L.

_POSIX_REALTIME_SIGNALS
The implementation supports realtime signals. This symbol shall always be set to the value
202405L.

_POSIX_REGEXP
The implementation supports the Regular Expression Handling option. This symbol shall
always be set to a value greater than zero.

_POSIX_SAVED_IDS
Each process has a saved set-user-ID and a saved set-group-ID. This symbol shall always be
set to a value greater than zero.

_POSIX_SEMAPHORES
The implementation supports semaphores. This symbol shall always be set to the value
202405L.

SHM _POSIX_SHARED_MEMORY_OBJECTS
The implementation supports the Shared Memory Objects option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported
by sysconf() shall either be −1 or 202405L.

_POSIX_SHELL
The implementation supports the POSIX shell. This symbol shall always be set to a value
greater than zero.

460 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16030

16031

16032

16033

16034

16035

16036

16037

16038

16039

16040

16041

16042

16043

16044

16045

16046

16047

16048

16049

16050

16051

16052

16053

16054

16055

16056

16057

16058

16059

16060

16061

16062

16063

16064

16065

16066

16067

16068

16069

16070

16071

16072

16073

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

SPN _POSIX_SPAWN
The implementation supports the Spawn option. If this symbol is defined in <unistd.h>, it
shall be defined to be −1, 0, or 202405L. The value of this symbol reported by sysconf() shall
either be −1 or 202405L.

_POSIX_SPIN_LOCKS
The implementation supports spin locks. This symbol shall always be set to the value
202405L.

SS _POSIX_SPORADIC_SERVER
The implementation supports the Process Sporadic Server option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported
by sysconf() shall either be −1 or 202405L.

SIO _POSIX_SYNCHRONIZED_IO
The implementation supports the Synchronized Input and Output option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

TSA _POSIX_THREAD_ATTR_STACKADDR
The implementation supports the Thread Stack Address Attribute option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

TSS _POSIX_THREAD_ATTR_STACKSIZE
The implementation supports the Thread Stack Size Attribute option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

TCT _POSIX_THREAD_CPUTIME
The implementation supports the Thread CPU-Time Clocks option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

TPI _POSIX_THREAD_PRIO_INHERIT
The implementation supports the Non-Robust Mutex Priority Inheritance option. If this
symbol is defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this
symbol reported by sysconf() shall either be −1 or 202405L.

TPP _POSIX_THREAD_PRIO_PROTECT
The implementation supports the Non-Robust Mutex Priority Protection option. If this
symbol is defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this
symbol reported by sysconf() shall either be −1 or 202405L.

TPS _POSIX_THREAD_PRIORITY_SCHEDULING
The implementation supports the Thread Execution Scheduling option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

TSH _POSIX_THREAD_PROCESS_SHARED
The implementation supports the Thread Process-Shared Synchronization option. If this
symbol is defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this
symbol reported by sysconf() shall either be −1 or 202405L.

RPI _POSIX_THREAD_ROBUST_PRIO_INHERIT
The implementation supports the Robust Mutex Priority Inheritance option. If this symbol
is defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 461

16074

16075

16076

16077

16078

16079

16080

16081

16082

16083

16084

16085

16086

16087

16088

16089

16090

16091

16092

16093

16094

16095

16096

16097

16098

16099

16100

16101

16102

16103

16104

16105

16106

16107

16108

16109

16110

16111

16112

16113

16114

16115

16116

16117

16118

16119

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

reported by sysconf() shall either be −1 or 202405L.

RPP _POSIX_THREAD_ROBUST_PRIO_PROTECT
The implementation supports the Robust Mutex Priority Protection option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

_POSIX_THREAD_SAFE_FUNCTIONS
The implementation supports thread-safe functions. This symbol shall always be set to the
value 202405L.

TSP _POSIX_THREAD_SPORADIC_SERVER
The implementation supports the Thread Sporadic Server option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported
by sysconf() shall either be −1 or 202405L.

_POSIX_THREADS
The implementation supports threads. This symbol shall always be set to the value
202405L.

_POSIX_TIMEOUTS
The implementation supports timeouts. This symbol shall always be set to the value
202405L.

_POSIX_TIMERS
The implementation supports timers. This symbol shall always be set to the value 202405L.

TYM _POSIX_TYPED_MEMORY_OBJECTS
The implementation supports the Typed Memory Objects option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported
by sysconf() shall either be −1 or 202405L.

OB _POSIX_V7_ILP32_OFF32
The implementation provides a C-language compilation environment with 32-bit int, long,
off_t, and all pointer types.

OB _POSIX_V7_ILP32_OFFBIG
The implementation provides a C-language compilation environment with 32-bit int, long,
and all pointer types, and an off_t type using at least 64 bits.

OB _POSIX_V7_LP64_OFF64
The implementation provides a C-language compilation environment with a 32-bit int type
and 64-bit long, off_t, and all pointer types.

OB _POSIX_V7_LPBIG_OFFBIG
The implementation provides a C-language compilation environment with an int type
using at least 32 bits and long, off_t, and all pointer types using at least 64 bits.

_POSIX_V8_ILP32_OFF32
The implementation provides a C-language compilation environment with 32-bit int, long,
off_t, and all pointer types.

_POSIX_V8_ILP32_OFFBIG
The implementation provides a C-language compilation environment with 32-bit int, long,
and all pointer types, and an off_t type using at least 64 bits.

_POSIX_V8_LP64_OFF64
The implementation provides a C-language compilation environment with a 32-bit int type
and 64-bit long, off_t, and all pointer types.

462 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16120

16121

16122

16123

16124

16125

16126

16127

16128

16129

16130

16131

16132

16133

16134

16135

16136

16137

16138

16139

16140

16141

16142

16143

16144

16145

16146

16147

16148

16149

16150

16151

16152

16153

16154

16155

16156

16157

16158

16159

16160

16161

16162

16163

16164

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

_POSIX_V8_LPBIG_OFFBIG
The implementation provides a C-language compilation environment with an int type
using at least 32 bits and long, off_t, and all pointer types using at least 64 bits.

_POSIX2_C_BIND
The implementation supports the C-Language Binding option. This symbol shall always
have the value 202405L.

CD _POSIX2_C_DEV
The implementation supports the C-Language Development Utilities option. If this symbol
is defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

_POSIX2_CHAR_TERM
The implementation supports the Terminal Characteristics option. The value of this symbol
reported by sysconf() shall either be −1 or a value greater than zero.

FR _POSIX2_FORT_RUN
The implementation supports the FORTRAN Runtime Utilities option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

_POSIX2_LOCALEDEF
The implementation supports the creation of locales by the localedef utility. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

SD _POSIX2_SW_DEV
The implementation supports the Software Development Utilities option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol
reported by sysconf() shall either be −1 or 202405L.

UP _POSIX2_UPE
The implementation supports the User Portability Utilities option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported
by sysconf() shall either be −1 or 202405L.

XSI _XOPEN_CRYPT
The implementation supports the X/Open Encryption Option Group.

_XOPEN_ENH_I18N
The implementation supports the Issue 4, Version 2 Enhanced Internationalization Option
Group. This symbol shall always be set to a value other than −1.

_XOPEN_REALTIME
The implementation supports the X/Open Realtime Option Group.

_XOPEN_REALTIME_THREADS
The implementation supports the X/Open Realtime Threads Option Group.

_XOPEN_SHM
The implementation supports the Issue 4, Version 2 Shared Memory Option Group. This
symbol shall always be set to a value other than −1.

_XOPEN_UNIX
The implementation supports the XSI option.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 463

16165

16166

16167

16168

16169

16170

16171

16172

16173

16174

16175

16176

16177

16178

16179

16180

16181

16182

16183

16184

16185

16186

16187

16188

16189

16190

16191

16192

16193

16194

16195

16196

16197

16198

16199

16200

16201

16202

16203

16204

16205

16206

16207

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

UU _XOPEN_UUCP
The implementation supports the UUCP Utilities option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 202405L. The value of this symbol reported by
sysconf() shall be either −1 or 202405L.

Execution-Time Symbolic Constants

If any of the following symbolic constants are not defined in the <unistd.h> header, the value
shall vary depending on the file to which it is applied. If defined, they shall have values suitable
for use in #if preprocessing directives.

If any of the following symbolic constants are defined to have value −1 in the <unistd.h> header,
the implementation shall not provide the option on any file; if any are defined to have a value
other than −1 in the <unistd.h> header, the implementation shall provide the option on all
applicable files.

All of the following values, whether defined as symbolic constants in <unistd.h> or not, may be
queried with respect to a specific file using the pathconf() or fpathconf() functions:

_POSIX_ASYNC_IO
Asynchronous input or output operations may be performed for the associated file.

_POSIX_FALLOC
The posix_fallocate() function is supported by the associated file.

_POSIX_PRIO_IO
Prioritized input or output operations may be performed for the associated file.

_POSIX_SYNC_IO
Synchronized input or output operations may be performed for the associated file.

If the following symbolic constants are defined in the <unistd.h> header, they apply to files and
all paths in all file systems on the implementation:

_POSIX_TIMESTAMP_RESOLUTION
The resolution in nanoseconds for all file timestamps.

_POSIX2_SYMLINKS
Symbolic links can be created.

Constants for Functions

The <unistd.h> header shall define NULL as described in <stddef.h>.

The <unistd.h> header shall define the symbolic constants O_CLOEXEC and O_CLOFORK as
described in <fcntl.h>.

The <unistd.h> header shall define the following symbolic constants for use with the access()
function. The values shall be suitable for use in #if preprocessing directives.

F_OK Test for existence of file.

R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute (search) permission.

The constants F_OK, R_OK, W_OK, and X_OK and the expressions R_OK|W_OK, R_OK|X_OK,
and R_OK|W_OK|X_OK shall all have distinct values.

464 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16208

16209

16210

16211

16212

16213

16214

16215

16216

16217

16218

16219

16220

16221

16222

16223

16224

16225

16226

16227

16228

16229

16230

16231

16232

16233

16234

16235

16236

16237

16238

16239

16240

16241

16242

16243

16244

16245

16246

16247

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

The <unistd.h> header shall define the following symbolic constants for the confstr() function:

_CS_PATH
This is the value for the PA TH environment variable that finds all of the standard utilities
that are provided in a manner accessible via the exec family of functions.

_CS_POSIX_V8_ILP32_OFF32_CFLAGS
If sysconf(_SC_V8_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c17 utility to build an
application using a programming model with 32-bit int, long, off_t, and all pointer types.

_CS_POSIX_V8_ILP32_OFF32_LDFLAGS
If sysconf(_SC_V8_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c17 utility to build an
application using a programming model with 32-bit int, long, off_t, and all pointer types.

_CS_POSIX_V8_ILP32_OFF32_LIBS
If sysconf(_SC_V8_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the c17 utility to build an
application using a programming model with 32-bit int, long, off_t, and all pointer types.

_CS_POSIX_V8_ILP32_OFFBIG_CFLAGS
If sysconf(_SC_V8_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c17 utility to build an
application using a programming model with 32-bit int, long, and all pointer types, and an
off_t type using at least 64 bits.

_CS_POSIX_V8_ILP32_OFFBIG_LDFLAGS
If sysconf(_SC_V8_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c17 utility to build an
application using a programming model with 32-bit int, long, and all pointer types, and an
off_t type using at least 64 bits.

_CS_POSIX_V8_ILP32_OFFBIG_LIBS
If sysconf(_SC_V8_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the c17 utility to build an
application using a programming model with 32-bit int, long, and all pointer types, and an
off_t type using at least 64 bits.

_CS_POSIX_V8_LP64_OFF64_CFLAGS
If sysconf(_SC_V8_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c17 utility to build an
application using a programming model with a 32-bit int type and 64-bit long, off_t, and all
pointer types.

_CS_POSIX_V8_LP64_OFF64_LDFLAGS
If sysconf(_SC_V8_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c17 utility to build an
application using a programming model with a 32-bit int type and 64-bit long, off_t, and all
pointer types.

_CS_POSIX_V8_LP64_OFF64_LIBS
If sysconf(_SC_V8_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the c17 utility to build an
application using a programming model with a 32-bit int type and 64-bit long, off_t, and all
pointer types.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 465

16248

16249

16250

16251

16252

16253

16254

16255

16256

16257

16258

16259

16260

16261

16262

16263

16264

16265

16266

16267

16268

16269

16270

16271

16272

16273

16274

16275

16276

16277

16278

16279

16280

16281

16282

16283

16284

16285

16286

16287

16288

16289

16290

16291

16292

16293

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

_CS_POSIX_V8_LPBIG_OFFBIG_CFLAGS
If sysconf(_SC_V8_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c17 utility to build an
application using a programming model with an int type using at least 32 bits and long,
off_t, and all pointer types using at least 64 bits.

_CS_POSIX_V8_LPBIG_OFFBIG_LDFLAGS
If sysconf(_SC_V8_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c17 utility to build an
application using a programming model with an int type using at least 32 bits and long,
off_t, and all pointer types using at least 64 bits.

_CS_POSIX_V8_LPBIG_OFFBIG_LIBS
If sysconf(_SC_V8_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the c17 utility to build an
application using a programming model with an int type using at least 32 bits and long,
off_t, and all pointer types using at least 64 bits.

_CS_POSIX_V8_THREADS_CFLAGS
This value is the set of initial options to be given to the c17 utility to build a multi-threaded
application. These flags are in addition to those associated with any of the other
_CS_POSIX_V8_*_CFLAGS values used to specify particular type size programming
environments.

_CS_POSIX_V8_THREADS_LDFLAGS
This value is the set of final options to be given to the c17 utility to build a multi-threaded
application. These flags are in addition to those associated with any of the other
_CS_POSIX_V8_*_LDFLAGS values used to specify particular type size programming
environments.

_CS_POSIX_V8_WIDTH_RESTRICTED_ENVS
This value is a <newline>-separated list of names of programming environments supported
by the implementation in which the widths of the blksize_t, cc_t, mode_t, nfds_t, pid_t,
ptrdiff_t, size_t, speed_t, ssize_t, suseconds_t, tcflag_t, wchar_t, and wint_t types are no
greater than the width of type long. The format of each name shall be suitable for use with
the getconf −v option.

_CS_V8_ENV
This is the value that provides the environment variable information (other than that
provided by _CS_PATH) that is required by the implementation to create a conforming
environment, as described in the implementation’s conformance documentation.

OB The following symbolic constants are reserved for compatibility with Issue 7:

_CS_POSIX_V7_ILP32_OFF32_CFLAGS
_CS_POSIX_V7_ILP32_OFF32_LDFLAGS
_CS_POSIX_V7_ILP32_OFF32_LIBS
_CS_POSIX_V7_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LIBS
_CS_POSIX_V7_LP64_OFF64_CFLAGS
_CS_POSIX_V7_LP64_OFF64_LDFLAGS
_CS_POSIX_V7_LP64_OFF64_LIBS
_CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LIBS

466 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16294

16295

16296

16297

16298

16299

16300

16301

16302

16303

16304

16305

16306

16307

16308

16309

16310

16311

16312

16313

16314

16315

16316

16317

16318

16319

16320

16321

16322

16323

16324

16325

16326

16327

16328

16329

16330

16331

16332

16333

16334

16335

16336

16337

16338

16339

16340

16341

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

_CS_POSIX_V7_THREADS_CFLAGS
_CS_POSIX_V7_THREADS_LDFLAGS
_CS_POSIX_V7_WIDTH_RESTRICTED_ENVS
_CS_V7_ENV

The implementation may define additional symbolic constants beginning with _CS_ for use by
confstr().

The <unistd.h> header shall define SEEK_CUR, SEEK_END, and SEEK_SET as described in
<stdio.h>.

Additionally, it shall define the following macros which shall expand to integer constant
expressions with values that are distinct from each other and from SEEK_CUR, SEEK_END, and
SEEK_SET:

SEEK_HOLE Seek forwards from offset relative to start-of-file for a position within a hole.

SEEK_DATA Seek forwards from offset relative to start-of-file for a position not within a
hole

XSI The <unistd.h> header shall define the following symbolic constants as possible values for the
function argument to the lockf() function:

F_LOCK Lock a section for exclusive use.

F_TEST Test section for locks by other processes.

F_TLOCK Test and lock a section for exclusive use.

F_ULOCK Unlock locked sections.

The <unistd.h> header shall define the following symbolic constants for pathconf():

_PC_2_SYMLINKS
_PC_ALLOC_SIZE_MIN
_PC_ASYNC_IO
_PC_CHOWN_RESTRICTED
_PC_FALLOC
_PC_FILESIZEBITS
_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_NO_TRUNC
_PC_PATH_MAX
_PC_PIPE_BUF
_PC_PRIO_IO
_PC_REC_INCR_XFER_SIZE
_PC_REC_MAX_XFER_SIZE
_PC_REC_MIN_XFER_SIZE
_PC_REC_XFER_ALIGN
_PC_SYMLINK_MAX
_PC_SYNC_IO
_PC_TEXTDOMAIN_MAX
_PC_TIMESTAMP_RESOLUTION
_PC_VDISABLE

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 467

16342

16343

16344

16345

16346

16347

16348

16349

16350

16351

16352

16353

16354

16355

16356

16357

16358

16359

16360

16361

16362

16363

16364

16365

16366

16367

16368

16369

16370

16371

16372

16373

16374

16375

16376

16377

16378

16379

16380

16381

16382

16383

16384

16385

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

The implementation may define additional symbolic constants beginning with _PC_ for use by
pathconf().

The <unistd.h> header shall define the following symbolic constants for sysconf():

_SC_2_C_BIND
_SC_2_C_DEV
_SC_2_CHAR_TERM
_SC_2_FORT_RUN
_SC_2_LOCALEDEF
_SC_2_SW_DEV
_SC_2_UPE
_SC_2_VERSION
_SC_ADVISORY_INFO
_SC_AIO_LISTIO_MAX
_SC_AIO_MAX
_SC_AIO_PRIO_DELTA_MAX
_SC_ARG_MAX
_SC_ASYNCHRONOUS_IO
_SC_ATEXIT_MAX
_SC_BARRIERS
_SC_BC_BASE_MAX
_SC_BC_DIM_MAX
_SC_BC_SCALE_MAX
_SC_BC_STRING_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_CLOCK_SELECTION
_SC_COLL_WEIGHTS_MAX
_SC_CPUTIME
_SC_DELAYTIMER_MAX
_SC_DEVICE_CONTROL
_SC_EXPR_NEST_MAX
_SC_FSYNC
_SC_GETGR_R_SIZE_MAX
_SC_GETPW_R_SIZE_MAX
_SC_HOST_NAME_MAX
_SC_IOV_MAX
_SC_IPV6
_SC_JOB_CONTROL
_SC_LINE_MAX
_SC_LOGIN_NAME_MAX
_SC_MAPPED_FILES
_SC_MEMLOCK
_SC_MEMLOCK_RANGE
_SC_MEMORY_PROTECTION
_SC_MESSAGE_PASSING
_SC_MONOTONIC_CLOCK
_SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX
_SC_NGROUPS_MAX
_SC_NPROCESSORS_CONF
_SC_NPROCESSORS_ONLN

468 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16386

16387

16388

16389

16390

16391

16392

16393

16394

16395

16396

16397

16398

16399

16400

16401

16402

16403

16404

16405

16406

16407

16408

16409

16410

16411

16412

16413

16414

16415

16416

16417

16418

16419

16420

16421

16422

16423

16424

16425

16426

16427

16428

16429

16430

16431

16432

16433

16434

16435

16436

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

_SC_NSIG
_SC_OPEN_MAX
_SC_PAGE_SIZE
_SC_PAGESIZE
_SC_PRIORITIZED_IO
_SC_PRIORITY_SCHEDULING
_SC_RAW_SOCKETS
_SC_RE_DUP_MAX
_SC_READER_WRITER_LOCKS
_SC_REALTIME_SIGNALS
_SC_REGEXP
_SC_RTSIG_MAX
_SC_SAVED_IDS
_SC_SEM_NSEMS_MAX
_SC_SEM_VALUE_MAX
_SC_SEMAPHORES
_SC_SHARED_MEMORY_OBJECTS
_SC_SHELL
_SC_SIGQUEUE_MAX
_SC_SPAWN
_SC_SPIN_LOCKS
_SC_SPORADIC_SERVER
_SC_SS_REPL_MAX
_SC_STREAM_MAX
_SC_SYMLOOP_MAX
_SC_SYNCHRONIZED_IO
_SC_THREAD_ATTR_STACKADDR
_SC_THREAD_ATTR_STACKSIZE
_SC_THREAD_CPUTIME
_SC_THREAD_DESTRUCTOR_ITERATIONS
_SC_THREAD_KEYS_MAX
_SC_THREAD_PRIO_INHERIT
_SC_THREAD_PRIO_PROTECT
_SC_THREAD_PRIORITY_SCHEDULING
_SC_THREAD_PROCESS_SHARED
_SC_THREAD_ROBUST_PRIO_INHERIT
_SC_THREAD_ROBUST_PRIO_PROTECT
_SC_THREAD_SAFE_FUNCTIONS
_SC_THREAD_SPORADIC_SERVER
_SC_THREAD_STACK_MIN
_SC_THREAD_THREADS_MAX
_SC_THREADS
_SC_TIMEOUTS
_SC_TIMER_MAX
_SC_TIMERS
_SC_TTY_NAME_MAX
_SC_TYPED_MEMORY_OBJECTS
_SC_TZNAME_MAX
_SC_V8_ILP32_OFF32
_SC_V8_ILP32_OFFBIG
_SC_V8_LP64_OFF64
_SC_V8_LPBIG_OFFBIG

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 469

16437

16438

16439

16440

16441

16442

16443

16444

16445

16446

16447

16448

16449

16450

16451

16452

16453

16454

16455

16456

16457

16458

16459

16460

16461

16462

16463

16464

16465

16466

16467

16468

16469

16470

16471

16472

16473

16474

16475

16476

16477

16478

16479

16480

16481

16482

16483

16484

16485

16486

16487

16488

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

OB _SC_V7_ILP32_OFF32
_SC_V7_ILP32_OFFBIG
_SC_V7_LP64_OFF64
_SC_V7_LPBIG_OFFBIG
_SC_VERSION
_SC_XOPEN_CRYPT
_SC_XOPEN_ENH_I18N
_SC_XOPEN_REALTIME
_SC_XOPEN_REALTIME_THREADS
_SC_XOPEN_SHM
_SC_XOPEN_UNIX
_SC_XOPEN_UUCP
_SC_XOPEN_VERSION

The two constants _SC_PAGESIZE and _SC_PAGE_SIZE may be defined to have the same value.

The implementation may define additional symbolic constants beginning with _SC_ for use by
sysconf().

The <unistd.h> header shall define the following symbolic constants for file streams:

STDERR_FILENO File number of stderr; 2.

STDIN_FILENO File number of stdin; 0.

STDOUT_FILENO File number of stdout; 1.

The <unistd.h> header shall define the following symbolic constant for terminal special
character handling:

_POSIX_VDISABLE This symbol shall be defined to be the value of a character that shall
disable terminal special character handling as described in Section 11.2.6
(on page 212). This symbol shall always be set to a value other than −1.

The <unistd.h> header shall define the following symbolic constant as a value for the flag used
by posix_close():

POSIX_CLOSE_RESTART
Allows restarts if a signal interrupts a close operation. This constant shall
not be 0 unless posix_close() never returns −1 with errno set to [EINTR].

Type Definitions

The <unistd.h> header shall define the size_t, ssize_t, uid_t, gid_t, off_t, and pid_t types as
described in <sys/types.h>.

The <unistd.h> header shall define the intptr_t type as described in <stdint.h>.

Declarations

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int access(const char *, int);
unsigned alarm(unsigned);
int chdir(const char *);
int chown(const char *, uid_t, gid_t);
int close(int);
size_t confstr(int, char *, size_t);

470 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16489

16490

16491

16492

16493

16494

16495

16496

16497

16498

16499

16500

16501

16502

16503

16504

16505

16506

16507

16508

16509

16510

16511

16512

16513

16514

16515

16516

16517

16518

16519

16520

16521

16522

16523

16524

16525

16526

16527

16528

16529

16530

16531

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

XSI char *crypt(const char *, const char *);
int dup(int);
int dup2(int, int);
int dup3(int, int, int);
_Noreturn void

_exit(int);
OB XSI void encrypt(char [64], int);

int execl(const char *, const char *, ...);
int execle(const char *, const char *, ...);
int execlp(const char *, const char *, ...);
int execv(const char *, char *const []);
int execve(const char *, char *const [], char *const []);
int execvp(const char *, char *const []);
int faccessat(int, const char *, int, int);
int fchdir(int);
int fchown(int, uid_t, gid_t);
int fchownat(int, const char *, uid_t, gid_t, int);

SIO int fdatasync(int);
int fexecve(int, char *const [], char *const []);
pid_t _Fork(void);
pid_t fork(void);
long fpathconf(int, int);

FSC int fsync(int);
int ftruncate(int, off_t);
char *getcwd(char *, size_t);
gid_t getegid(void);
int getentropy(void *, size_t);
uid_t geteuid(void);
gid_t getgid(void);
int getgroups(int, gid_t []);

XSI long gethostid(void);
int gethostname(char *, size_t);
char *getlogin(void);
int getlogin_r(char *, size_t);
int getopt(int, char * const [], const char *);
pid_t getpgid(pid_t);
pid_t getpgrp(void);
pid_t getpid(void);
pid_t getppid(void);

XSI int getresgid(gid_t *restrict, gid_t *restrict,
gid_t *restrict);

int getresuid(uid_t *restrict, uid_t *restrict,
uid_t *restrict);

pid_t getsid(pid_t);
uid_t getuid(void);
int isatty(int);
int lchown(const char *, uid_t, gid_t);
int link(const char *, const char *);
int linkat(int, const char *, int, const char *, int);

XSI int lockf(int, int, off_t);
off_t lseek(int, off_t, int);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 471

16532

16533

16534

16535

16536

16537

16538

16539

16540

16541

16542

16543

16544

16545

16546

16547

16548

16549

16550

16551

16552

16553

16554

16555

16556

16557

16558

16559

16560

16561

16562

16563

16564

16565

16566

16567

16568

16569

16570

16571

16572

16573

16574

16575

16576

16577

16578

16579

16580

16581

16582

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

XSI int nice(int);
long pathconf(const char *, int);
int pause(void);
int pipe(int [2]);
int pipe2(int [2], int);
int posix_close(int, int);
ssize_t pread(int, void *, size_t, off_t);
ssize_t pwrite(int, const void *, size_t, off_t);
ssize_t read(int, void *, size_t);
ssize_t readlink(const char *restrict, char *restrict, size_t);
ssize_t readlinkat(int, const char *restrict, char *restrict,

size_t);
int rmdir(const char *);
int setegid(gid_t);
int seteuid(uid_t);
int setgid(gid_t);
int setpgid(pid_t, pid_t);

XSI int setregid(gid_t, gid_t);
int setresgid(gid_t, gid_t, gid_t);
int setresuid(uid_t, uid_t, uid_t);
int setreuid(uid_t, uid_t);
pid_t setsid(void);
int setuid(uid_t);
unsigned sleep(unsigned);

XSI void swab(const void *restrict, void *restrict, ssize_t);
int symlink(const char *, const char *);
int symlinkat(const char *, int, const char *);

XSI void sync(void);
long sysconf(int);
pid_t tcgetpgrp(int);
int tcsetpgrp(int, pid_t);
int truncate(const char *, off_t);
char *ttyname(int);
int ttyname_r(int, char *, size_t);
int unlink(const char *);
int unlinkat(int, const char *, int);
ssize_t write(int, const void *, size_t);

The <unistd.h> header shall declare the following external variables:

extern char *optarg;
extern int opterr, optind, optopt;

Inclusion of the <unistd.h> header may make visible all symbols from the headers <fcntl.h>,
<stddef.h>, <stdint.h>, and <stdio.h>.

472 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16583

16584

16585

16586

16587

16588

16589

16590

16591

16592

16593

16594

16595

16596

16597

16598

16599

16600

16601

16602

16603

16604

16605

16606

16607

16608

16609

16610

16611

16612

16613

16614

16615

16616

16617

16618

16619

16620

16621

16622

16623

16624

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

APPLICATION USAGE
POSIX.1-2024 only describes the behavior of systems that claim conformance to it. However,
application developers who want to write applications that adapt to other versions of this
standard (or to systems that do not conform to any POSIX standard) may find it useful to code
them so as to conditionally compile different code depending on the value of
_POSIX_VERSION, for example:

#if _POSIX_VERSION >= 200112L
/* Use the newer function that copes with large files. */
off_t pos=ftello(fp);
#else
/* Either this is an old version of POSIX, or _POSIX_VERSION is

not even defined, so use the traditional function. */
long pos=ftell(fp);
#endif

Earlier versions of POSIX.1-2024 and of the Single UNIX Specification can be identified by the
following macros:

POSIX.1-1988 standard
_POSIX_VERSION == 198808L

POSIX.1-1990 standard
_POSIX_VERSION == 199009L

POSIX.1-1996 standard
_POSIX_VERSION == 199506L

Single UNIX Specification, Version 1
_XOPEN_UNIX and _XOPEN_VERSION == 4

Single UNIX Specification, Version 2
_XOPEN_UNIX and _XOPEN_VERSION == 500

POSIX.1-2001 and Single UNIX Specification, Version 3
_POSIX_VERSION == 200112L, plus (if the XSI option is supported) _XOPEN_UNIX and
_XOPEN_VERSION == 600

POSIX.1-2008, POSIX.1-2017, and Single UNIX Specification, Version 4
_POSIX_VERSION == 200809L, plus (if the XSI option is supported) _XOPEN_UNIX and
_XOPEN_VERSION == 700

Note that _POSIX_VERSION did not change in POSIX.1-2017 as it was technically identical to
POSIX.1-2008 with its two technical corrigenda applied.

POSIX.1-2024 does not make any attempt to define application binary interaction with the
underlying operating system. However, application developers may find it useful to query
_SC_VERSION at runtime via sysconf() to determine whether the current version of the
operating system supports the necessary functionality as in the following program fragment:

if (sysconf(_SC_VERSION) < 202405L) {
fprintf(stderr, "POSIX.1-2024 system required, terminating \n");
exit(1);

}

Implementations may support multiple programming environments with some of them
conforming to this standard and some not conforming. The _POSIX_Vn_ILP* and
_POSIX_Vn_LP* constants, and corresponding sysconf() and getconf calls, only indicate whether

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 473

16625

16626

16627

16628

16629

16630

16631

16632

16633

16634

16635

16636

16637

16638

16639

16640

16641

16642

16643

16644

16645

16646

16647

16648

16649

16650

16651

16652

16653

16654

16655

16656

16657

16658

16659

16660

16661

16662

16663

16664

16665

16666

16667

16668

16669

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

each programming environment is supported; they do not indicate anything about conformance
of the environments that are supported. For example, an implementation may support the
ILP32_OFF32 environment for legacy reasons with a 32-bit time_t, whereas in a conforming
environment time_t is required to have a width of at least 64 bits. Application writers should
consult an implementation’s POSIX Conformance Document for information about the
conformance of each supported programming environment.

New applications should not use _XOPEN_SHM or _XOPEN_ENH_I18N.

RATIONALE
As POSIX.1-2024 evolved, certain options became sufficiently standardized that it was
concluded that simply requiring one of the option choices was simpler than retaining the option.
However, for backwards-compatibility, the option flags (with required constant values) are
retained.

Version Test Macros

The standard developers considered altering the definition of _POSIX_VERSION and removing
_SC_VERSION from the specification of sysconf() since the utility to an application was deemed
by some to be minimal, and since the implementation of the functionality is potentially
problematic. However, they recognized that support for existing application binaries is a
concern to manufacturers, application developers, and the users of implementations conforming
to POSIX.1-2024.

While the example using _SC_VERSION in the APPLICATION USAGE section does not provide
the greatest degree of imaginable utility to the application developer or user, it is arguably better
than the production of a core image or some other equally obscure result. (It is also possible for
implementations to encode and recognize application binaries compiled in various
POSIX.1-conforming environments, and modify the semantics of the underlying system to
conform to the expectations of the application.) For the reasons outlined in the preceding
paragraphs and in the APPLICATION USAGE section, the standard developers elected to retain
the _POSIX_VERSION and _SC_VERSION functionality.

Compile-Time Symbolic Constants for System-Wide Options

POSIX.1-2024 includes support in certain areas for the newly adopted policy governing options
and stubs.

This policy provides flexibility for implementations in how they support options. It also
specifies how conforming applications can adapt to different implementations that support
different sets of options. It allows the following:

1. If an implementation has no interest in supporting an option, it does not have to provide
anything associated with that option beyond the announcement that it does not support
it.

2. An implementation can support a partial or incompatible version of an option (as a non-
standard extension) as long as it does not claim to support the option.

3. An application can determine whether the option is supported. A strictly conforming
application must check this announcement mechanism before first using anything
associated with the option.

There is an important implication of this policy. POSIX.1-2024 cannot dictate the behavior of
interfaces associated with an option when the implementation does not claim to support the
option. In particular, it cannot require that a function associated with an unsupported option
will fail if it does not perform as specified. However, this policy does not prevent a standard

474 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16670

16671

16672

16673

16674

16675

16676

16677

16678

16679

16680

16681

16682

16683

16684

16685

16686

16687

16688

16689

16690

16691

16692

16693

16694

16695

16696

16697

16698

16699

16700

16701

16702

16703

16704

16705

16706

16707

16708

16709

16710

16711

16712

16713

16714

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

from requiring certain functions to always be present, but that they shall always fail on some
implementations. The setpgid() function in the POSIX.1-1990 standard, for example, is
considered appropriate.

The POSIX standards include various options, and the C-language binding support for an
option implies that the implementation must supply data types and function interfaces. An
application must be able to discover whether the implementation supports each option.

Any application must consider the following three cases for each option:

1. Option never supported.

The implementation advertises at compile time that the option will never be supported.
In this case, it is not necessary for the implementation to supply any of the data types or
function interfaces that are provided only as part of the option. The implementation
might provide data types and functions that are similar to those defined by POSIX.1-2024,
but there is no guarantee for any particular behavior.

2. Option always supported.

The implementation advertises at compile time that the option will always be supported.
In this case, all data types and function interfaces shall be available and shall operate as
specified.

3. Option might or might not be supported.

Some implementations might not provide a mechanism to specify support of options at
compile time. In addition, the implementation might be unable or unwilling to specify
support or non-support at compile time. In either case, any application that might use the
option at runtime must be able to compile and execute. The implementation must
provide, at compile time, all data types and function interfaces that are necessary to allow
this. In this situation, there must be a mechanism that allows the application to query, at
runtime, whether the option is supported. If the application attempts to use the option
when it is not supported, the result is unspecified unless explicitly specified otherwise in
POSIX.1-2024.

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <stddef.h>, <stdint.h>, <stdio.h>, <sys/socket.h>, <sys/types.h>, <termios.h>,
<wctype.h>

XSH access(), alarm(), chown(), close(), confstr(), crypt(), ctermid(), dup(), _Exit(), encrypt(), exec ,
fchdir(), fchown(), fdatasync(), fork(), fpathconf(), fsync(), ftruncate(), getcwd(), getentropy(),
getegid(), geteuid(), getgid(), getgroups(), gethostid(), gethostname(), getlogin(), getopt(), getpgid(),
getpgrp(), getpid(), getppid(), getresgid(), getresuid(), getsid(), getuid(), isatty(), lchown(), link(),
lockf(), lseek(), nice(), pause(), pipe(), read(), readlink(), rmdir(), setegid(), seteuid(), setgid(),
setpgid(), setregid(), setresgid(), setresuid(), setreuid(), setsid(), setuid(), sleep(), swab(), symlink(),
sync(), sysconf(), tcgetpgrp(), tcsetpgrp(), truncate(), ttyname(), unlink(), write()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

The symbolic constants _XOPEN_REALTIME and _XOPEN_REALTIME_THREADS are added.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 475

16715

16716

16717

16718

16719

16720

16721

16722

16723

16724

16725

16726

16727

16728

16729

16730

16731

16732

16733

16734

16735

16736

16737

16738

16739

16740

16741

16742

16743

16744

16745

16746

16747

16748

16749

16750

16751

16752

16753

16754

16755

16756

16757

16758

16759

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

_POSIX2_C_BIND, _XOPEN_ENH_I18N, and _XOPEN_SHM must now be set to a value other
than −1 by a conforming implementation.

Large File System extensions are added.

The type of the argument to sbrk() is changed from int to intptr_t.

XBS constants are added to the list of constants for Options and Option Groups, to the list of
constants for the confstr() function, and to the list of constants to the sysconf() function. These
are all marked EX.

Issue 6
_POSIX2_C_VERSION is removed.

The Open Group Corrigendum U026/4 is applied, adding the prototype for fdatasync().

The Open Group Corrigendum U026/1 is applied, adding the symbols _SC_XOPEN_LEGACY,
_SC_XOPEN_REALTIME, and _SC_XOPEN_REALTIME_THREADS.

The symbols _XOPEN_STREAMS and _SC_XOPEN_STREAMS are added to support the XSI
STREAMS Option Group.

Text in the DESCRIPTION relating to conformance requirements is moved elsewhere in
IEEE Std 1003.1-2001.

The LEGACY symbol _SC_PASS_MAX is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The _CS_POSIX_* and _CS_XBS5_* constants are added for the confstr() function.

• The _SC_XBS5_* constants are added for the sysconf() function.

• The symbolic constants F_ULOCK, F_LOCK, F_TLOCK, and F_TEST are added.

• The uid_t, gid_t, off_t, pid_t, and useconds_t types are mandated.

The gethostname() prototype is added for sockets.

A new section is added for System-Wide Options.

Function prototypes for setegid() and seteuid() are added.

Option symbolic constants are added for _POSIX_ADVISORY_INFO, _POSIX_CPUTIME,
_POSIX_SPAWN, _POSIX_SPORADIC_SERVER, _POSIX_THREAD_CPUTIME,
_POSIX_THREAD_SPORADIC_SERVER, and _POSIX_TIMEOUTS, and pathconf() variables are
added for _PC_ALLOC_SIZE_MIN, _PC_REC_INCR_XFER_SIZE, _PC_REC_MAX_XFER_SIZE,
_PC_REC_MIN_XFER_SIZE, and _PC_REC_XFER_ALIGN for alignment with IEEE Std
1003.1d-1999.

The following are added for alignment with IEEE Std 1003.1j-2000:

• Option symbolic constants _POSIX_BARRIERS, _POSIX_CLOCK_SELECTION,
_POSIX_MONOTONIC_CLOCK, _POSIX_READER_WRITER_LOCKS,
_POSIX_SPIN_LOCKS, and _POSIX_TYPED_MEMORY_OBJECTS

• sysconf() variables _SC_BARRIERS, _SC_CLOCK_SELECTION,
_SC_MONOTONIC_CLOCK, _SC_READER_WRITER_LOCKS, _SC_SPIN_LOCKS, and
_SC_TYPED_MEMORY_OBJECTS

The _SC_XBS5 macros associated with the ISO/IEC 9899: 1990 standard are marked LEGACY,
and new equivalent _SC_V6 macros associated with the ISO/IEC 9899: 1999 standard are

476 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16760

16761

16762

16763

16764

16765

16766

16767

16768

16769

16770

16771

16772

16773

16774

16775

16776

16777

16778

16779

16780

16781

16782

16783

16784

16785

16786

16787

16788

16789

16790

16791

16792

16793

16794

16795

16796

16797

16798

16799

16800

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

introduced.

The getwd() function is marked LEGACY.

The restrict keyword is added to the prototypes for readlink() and swab().

Constants for options are now harmonized, so when supported they take the year of approval of
IEEE Std 1003.1-2001 as the value.

The following are added for alignment with IEEE Std 1003.1q-2000:

• Optional symbolic constants _POSIX_TRACE, _POSIX_TRACE_EVENT_FILTER,
_POSIX_TRACE_LOG, and _POSIX_TRACE_INHERIT

• The sysconf() symbolic constants _SC_TRACE, _SC_TRACE_EVENT_FILTER,
_SC_TRACE_LOG, and _SC_TRACE_INHERIT

The brk() and sbrk() LEGACY functions are removed.

The Open Group Base Resolution bwg2001-006 is applied, which reworks the XSI versioning
information.

The Open Group Base Resolution bwg2001-008 is applied, changing the namelen parameter for
gethostname() from socklen_t to size_t.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/2 is applied, changing ``Thread Stack
Address Size’’ to ``Thread Stack Size Attribute’’.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/20 is applied, adding the _POSIX_IPV6,
_SC_V6, and _SC_RAW_SOCKETS symbols.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/21 is applied, correcting the description
in ``Constants for Functions’’ for the _CS_POSIX_V6_LP64_OFF64_CFLAGS,
_CS_POSIX_V6_LP64_OFF64_LDFLAGS, and _CS_POSIX_V6_LP64_OFF64_LIBS symbols.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/22 is applied, removing the shading for
the _PC* and _SC* constants, since these are mandatory on all implementations.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/23 is applied, adding the
_PC_SYMLINK_MAX and _SC_SYMLOOP_MAX constants.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/24 is applied, correcting the shading and
margin code for the fsync() function.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/25 is applied, adding the following text to
the APPLICATION USAGE section: ``New applications should not use _XOPEN_SHM or
_XOPEN_ENH_I18N.’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/29 is applied, clarifying the requirements
for when constants for Options and Option Groups can be defined or undefined.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/30 is applied, changing the
_V6_ILP32_OFF32, _V6_ILP32_OFFBIG, _V6_LP64_OFF64, and _V6_LPBIG_OFFBIG symbols to
_POSIX_V6_ILP32_OFF32, _POSIX_V6_ILP32_OFFBIG, _POSIX_V6_LP64_OFF64, and
_POSIX_V6_LPBIG_OFFBIG, respectively. This is for consistency with the sysconf() and c99
reference pages.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/31 is applied, adding that the format of
names of programming environments can be obtained using the getconf −v option.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/32 is applied, deleting the
_SC_FILE_LOCKING, _SC_2_C_VERSION, and _SC_XOPEN_XCU_VERSION constants.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 477

16801

16802

16803

16804

16805

16806

16807

16808

16809

16810

16811

16812

16813

16814

16815

16816

16817

16818

16819

16820

16821

16822

16823

16824

16825

16826

16827

16828

16829

16830

16831

16832

16833

16834

16835

16836

16837

16838

16839

16840

16841

16842

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<unistd.h> Headers

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/33 is applied, adding
_SC_SS_REPL_MAX, _SC_TRACE_EVENT_NAME_MAX, _SC_TRACE_NAME_MAX,
_SC_TRACE_SYS_MAX, and _SC_TRACE_USER_EVENT_MAX to the list of symbolic constants
for sysconf().

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/34 is applied, updating the prototype for
the symlink() function to match that in the System Interfaces volume of IEEE Std 1003.1-2001.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/35 is applied, adding _PC_2_SYMLINKS
to the symbolic constants list for pathconf(). This corresponds to the definition of
POSIX2_SYMLINKS in the Shell and Utilities volume of IEEE Std 1003.1-2001.

Issue 7
Austin Group Interpretations 1003.1-2001 #026 and #047 are applied.

Austin Group Interpretation 1003.1-2001 #166 is applied to permit an additional compiler flag to
enable threads.

Austin Group Interpretation 1003.1-2001 #178 is applied, clarifying the values allowed for
_POSIX2_CHAR_TERM.

SD5-XBD-ERN-41 is applied, adding the _POSIX2_SYMLINKS constant.

SD5-XBD-ERN-76 and SD5-XBD-ERN-77 are applied.

Symbols to support the UUCP Utilities option are added.

The variables for the supported programming environments are updated to be V7.

The LEGACY and obsolescent symbols are removed.

The faccessat(), fchownat(), fexecve(), linkat(), readlinkat(), symlinkat(), and unlinkat() functions
are added from The Open Group Technical Standard, 2006, Extended API Set Part 2.

The _POSIX_TRACE* constants from the Trace option are marked obsolescent.

The _POSIX2_PBS* constants from the Batch Environment Services and Utilities option are
marked obsolescent.

Functionality relating to the Asynchronous Input and Output, Barriers, Clock Selection, Memory
Mapped Files, Memory Protection, Realtime Signals Extension, Semaphores, Spin Locks,
Threads, Timeouts, and Timers options is moved to the Base.

Functionality relating to the Thread Priority Protection and Thread Priority Inheritance options
is changed to be Non-Robust Mutex or Robust Mutex Priority Protection and Non-Robust Mutex
or Robust Mutex Priority Inheritance, respectively.

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps and the
_POSIX_TIMESTAMP_RESOLUTION constant is added.

The _SC_THREAD_ROBUST_PRIO_INHERIT and _SC_THREAD_ROBUST_PRIO_PROTECT
symbolic constants are added.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0078 [311], XBD/TC1-2008/0079 [209],
and XBD/TC1-2008/0080 [360] are applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0085 [783], XBD/TC2-2008/0086 [911],
and XBD/TC2-2008/0087 [566] are applied.

478 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16843

16844

16845

16846

16847

16848

16849

16850

16851

16852

16853

16854

16855

16856

16857

16858

16859

16860

16861

16862

16863

16864

16865

16866

16867

16868

16869

16870

16871

16872

16873

16874

16875

16876

16877

16878

16879

16880

16881

16882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <unistd.h>

Issue 8
Austin Group Defect 62 is applied, adding the _Fork() function.

Austin Group Defect 339 is applied, adding _SC_NPROCESSORS_CONF and
_SC_NPROCESSORS_ONLN.

Austin Group Defects 411 and 598 are applied, adding dup3() and pipe2().

Austin Group Defects 415 and 1357 are applied, adding SEEK_HOLE and SEEK_DATA.

Austin Group Defect 529 is applied, adding the POSIX_CLOSE_RESTART symbolic constant
and the posix_close() function.

Austin Group Defect 687 is applied, adding _POSIX_FALLOC and _PC_FALLOC.

Austin Group Defect 729 is applied, adding _POSIX_DEVICE_CONTROL and
_SC_DEVICE_CONTROL.

Austin Group Defect 741 is applied, adding _SC_NSIG.

Austin Group Defects 1074 and 1116 are applied, changing the descriptions of
_CS_POSIX_V8_THREADS_CFLAGS and _CS_POSIX_V8_THREADS_LDFLAGS.

Austin Group Defect 1122 is applied, adding _PC_TEXTDOMAIN_MAX.

Austin Group Defect 1134 is applied, adding getentropy().

Austin Group Defect 1141 is applied, changing the RATIONALE section.

Austin Group Defect 1192 is applied, marking the encrypt() function as obsolescent.

Austin Group Defect 1302 is applied, adding _Noreturn to _exit().

Austin Group Defects 1330 and 1595 are applied, removing obsolescent interfaces and changing
``_V7_’’ to ``_V8_’’ and ``_V6_’’ to ``_V7_’’.

Austin Group Defects 1344 and 1666 are applied, adding getresgid(), getresuid(), setresgid(), and
setresuid().

Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

Austin Group Defect 1456 is applied, clarifying the reservation of symbolic constants with the
prefix _CS_, _PC_, and _SC_.

Austin Group Defect 1462 is applied, adding a paragraph to APPLICATION USAGE about
conformance of supported programming environments.

Austin Group Defect 1473 is applied, updating the list of earlier versions of this standard in the
APPLICATION USAGE section.

Austin Group Defect 1518 is applied, correcting the spelling of ``programming’’.

Austin Group Defect 1569 is applied, changing references to a pointer type to ``all pointer
types’’.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 479

16883

16884

16885

16886

16887

16888

16889

16890

16891

16892

16893

16894

16895

16896

16897

16898

16899

16900

16901

16902

16903

16904

16905

16906

16907

16908

16909

16910

16911

16912

16913

16914

16915

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<utmpx.h> Headers

NAME
utmpx.h — user accounting database definitions

SYNOPSIS
XSI #include <utmpx.h>

DESCRIPTION
The <utmpx.h> header shall define the utmpx structure that shall include at least the following
members:

char ut_user[] User login name.
char ut_id[] Unspecified initialization process identifier.
char ut_line[] Device name.
pid_t ut_pid Process ID.
short ut_type Type of entry.
struct timeval ut_tv Time entry was made.

The <utmpx.h> header shall define the pid_t type through typedef, as described in
<sys/types.h>.

The <utmpx.h> header shall define the timeval structure as described in <sys/time.h>.

Inclusion of the <utmpx.h> header may also make visible all symbols from <sys/time.h>.

The <utmpx.h> header shall define the following symbolic constants as possible values for the
ut_type member of the utmpx structure:

EMPTY No valid user accounting information.

BOOT_TIME Identifies time of system boot.

OLD_TIME Identifies time when system clock changed.

NEW_TIME Identifies time after system clock changed.

USER_PROCESS Identifies a process.

INIT_PROCESS Identifies a process spawned by the init process.

LOGIN_PROCESS Identifies the session leader of a logged-in user.

DEAD_PROCESS Identifies a session leader who has exited.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *);
struct utmpx *getutxline(const struct utmpx *);
struct utmpx *pututxline(const struct utmpx *);
void setutxent(void);

480 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16916

16917

16918

16919

16920

16921

16922

16923

16924

16925

16926

16927

16928

16929

16930

16931

16932

16933

16934

16935

16936

16937

16938

16939

16940

16941

16942

16943

16944

16945

16946

16947

16948

16949

16950

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <utmpx.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/time.h>, <sys/types.h>

XSH endutxent()

CHANGE HISTORY
First released in Issue 4, Version 2.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 481

16951

16952

16953

16954

16955

16956

16957

16958

16959

16960

16961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<wchar.h> Headers

NAME
wchar.h — wide-character handling

SYNOPSIS
#include <wchar.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <wchar.h> header shall define the following types:

CX FILE As described in <stdio.h>.

CX locale_t As described in <locale.h>.

mbstate_t A complete object type other than an array type that can hold the conversion
state information necessary to convert between sequences of (possibly multi-

CX byte) characters and wide characters. If a codeset is being used such that an
mbstate_t needs to preserve more than two levels of reserved state, the results
are unspecified.

size_t As described in <stddef.h>.

CX va_list As described in <stdarg.h>.

wchar_t As described in <stddef.h>.

wint_t An integer type capable of storing any valid value of wchar_t or WEOF.

The tag tm shall be declared as naming an incomplete structure type, the contents of which are
described in the <time.h> header.

The implementation shall support one or more programming environments in which the width
of wint_t is no greater than the width of type long. The names of these programming
environments can be obtained using the confstr() function or the getconf utility.

The <wchar.h> header shall define the following macros:

WCHAR_MAX As described in <stdint.h>.

WCHAR_MIN As described in <stdint.h>.

WEOF Constant expression of type wint_t that is returned by several WP functions to
indicate end-of-file.

NULL As described in <stddef.h>.

CX Inclusion of the <wchar.h> header may make visible all symbols from the headers <ctype.h>,
<string.h>, <stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>, and <time.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers. Arguments to functions in
this list can point to arrays containing wchar_t values that do not correspond to members of the
character set of the current locale. Such values shall be processed according to the specified
semantics, unless otherwise stated.

wint_t btowc(int);
wint_t fgetwc(FILE *);
wchar_t *fgetws(wchar_t *restrict, int, FILE *restrict);
wint_t fputwc(wchar_t, FILE *);

482 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

16962

16963

16964

16965

16966

16967

16968

16969

16970

16971

16972

16973

16974

16975

16976

16977

16978

16979

16980

16981

16982

16983

16984

16985

16986

16987

16988

16989

16990

16991

16992

16993

16994

16995

16996

16997

16998

16999

17000

17001

17002

17003

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <wchar.h>

int fputws(const wchar_t *restrict, FILE *restrict);
int fwide(FILE *, int);
int fwprintf(FILE *restrict, const wchar_t *restrict, ...);
int fwscanf(FILE *restrict, const wchar_t *restrict, ...);
wint_t getwc(FILE *);
wint_t getwchar(void);
size_t mbrlen(const char *restrict, size_t, mbstate_t *restrict);
size_t mbrtowc(wchar_t *restrict, const char *restrict, size_t,

mbstate_t *restrict);
int mbsinit(const mbstate_t *);

CX size_t mbsnrtowcs(wchar_t *restrict, const char **restrict,
size_t, size_t, mbstate_t *restrict);

size_t mbsrtowcs(wchar_t *restrict, const char **restrict, size_t,
mbstate_t *restrict);

CX FILE *open_wmemstream(wchar_t **, size_t *);
wint_t putwc(wchar_t, FILE *);
wint_t putwchar(wchar_t);
int swprintf(wchar_t *restrict, size_t,

const wchar_t *restrict, ...);
int swscanf(const wchar_t *restrict,

const wchar_t *restrict, ...);
wint_t ungetwc(wint_t, FILE *);
int vfwprintf(FILE *restrict, const wchar_t *restrict, va_list);
int vfwscanf(FILE *restrict, const wchar_t *restrict, va_list);
int vswprintf(wchar_t *restrict, size_t,

const wchar_t *restrict, va_list);
int vswscanf(const wchar_t *restrict, const wchar_t *restrict,

va_list);
int vwprintf(const wchar_t *restrict, va_list);
int vwscanf(const wchar_t *restrict, va_list);

CX wchar_t *wcpcpy(wchar_t *restrict, const wchar_t *restrict);
wchar_t *wcpncpy(wchar_t *restrict, const wchar_t *restrict, size_t);
size_t wcrtomb(char *restrict, wchar_t, mbstate_t *restrict);

CX int wcscasecmp(const wchar_t *, const wchar_t *);
int wcscasecmp_l(const wchar_t *, const wchar_t *, locale_t);
wchar_t *wcscat(wchar_t *restrict, const wchar_t *restrict);
wchar_t *wcschr(const wchar_t *, wchar_t);
int wcscmp(const wchar_t *, const wchar_t *);
int wcscoll(const wchar_t *, const wchar_t *);

CX int wcscoll_l(const wchar_t *, const wchar_t *, locale_t);
wchar_t *wcscpy(wchar_t *restrict, const wchar_t *restrict);
size_t wcscspn(const wchar_t *, const wchar_t *);

CX wchar_t *wcsdup(const wchar_t *);
size_t wcsftime(wchar_t *restrict, size_t,

const wchar_t *restrict, const struct tm *restrict);
CX size_t wcslcat(wchar_t *restrict, const wchar_t *restrict,

size_t);
size_t wcslcpy(wchar_t *restrict, const wchar_t *restrict,

size_t);
size_t wcslen(const wchar_t *);

CX int wcsncasecmp(const wchar_t *, const wchar_t *, size_t);
int wcsncasecmp_l(const wchar_t *, const wchar_t *, size_t,

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 483

17004

17005

17006

17007

17008

17009

17010

17011

17012

17013

17014

17015

17016

17017

17018

17019

17020

17021

17022

17023

17024

17025

17026

17027

17028

17029

17030

17031

17032

17033

17034

17035

17036

17037

17038

17039

17040

17041

17042

17043

17044

17045

17046

17047

17048

17049

17050

17051

17052

17053

17054

17055

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<wchar.h> Headers

locale_t);
wchar_t *wcsncat(wchar_t *restrict, const wchar_t *restrict, size_t);
int wcsncmp(const wchar_t *, const wchar_t *, size_t);
wchar_t *wcsncpy(wchar_t *restrict, const wchar_t *restrict, size_t);

CX size_t wcsnlen(const wchar_t *, size_t);
size_t wcsnrtombs(char *restrict, const wchar_t **restrict, size_t,

size_t, mbstate_t *restrict);
wchar_t *wcspbrk(const wchar_t *, const wchar_t *);
wchar_t *wcsrchr(const wchar_t *, wchar_t);
size_t wcsrtombs(char *restrict, const wchar_t **restrict,

size_t, mbstate_t *restrict);
size_t wcsspn(const wchar_t *, const wchar_t *);
wchar_t *wcsstr(const wchar_t *restrict, const wchar_t *restrict);
double wcstod(const wchar_t *restrict, wchar_t **restrict);
float wcstof(const wchar_t *restrict, wchar_t **restrict);
wchar_t *wcstok(wchar_t *restrict, const wchar_t *restrict,

wchar_t **restrict);
long wcstol(const wchar_t *restrict, wchar_t **restrict, int);
long double wcstold(const wchar_t *restrict, wchar_t **restrict);
long long wcstoll(const wchar_t *restrict, wchar_t **restrict, int);
unsigned long wcstoul(const wchar_t *restrict, wchar_t **restrict, int);
unsigned long long

wcstoull(const wchar_t *restrict, wchar_t **restrict, int);
XSI int wcswidth(const wchar_t *, size_t);

size_t wcsxfrm(wchar_t *restrict, const wchar_t *restrict, size_t);
CX size_t wcsxfrm_l(wchar_t *restrict, const wchar_t *restrict,

size_t, locale_t);
int wctob(wint_t);

XSI int wcwidth(wchar_t);
wchar_t *wmemchr(const wchar_t *, wchar_t, size_t);
int wmemcmp(const wchar_t *, const wchar_t *, size_t);
wchar_t *wmemcpy(wchar_t *restrict, const wchar_t *restrict, size_t);
wchar_t *wmemmove(wchar_t *, const wchar_t *, size_t);
wchar_t *wmemset(wchar_t *, wchar_t, size_t);
int wprintf(const wchar_t *restrict, ...);
int wscanf(const wchar_t *restrict, ...);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<ctype.h>, <locale.h>, <stdarg.h>, <stddef.h>, <stdint.h>, <stdio.h>, <stdlib.h>, <string.h>,
<time.h>, <wctype.h>

XSH Section 2.2 (on page 496), btowc(), confstr(), fgetwc(), fgetws(), fputwc(), fputws(), fwide(),
fwprintf(), fwscanf(), getwc(), getwchar(), iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(),
iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(), mbrlen(),
mbrtowc(), mbsinit(), mbsrtowcs(), open_memstream(), putwc(), putwchar(), towlower(),

484 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

17056

17057

17058

17059

17060

17061

17062

17063

17064

17065

17066

17067

17068

17069

17070

17071

17072

17073

17074

17075

17076

17077

17078

17079

17080

17081

17082

17083

17084

17085

17086

17087

17088

17089

17090

17091

17092

17093

17094

17095

17096

17097

17098

17099

17100

17101

17102

17103

17104

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <wchar.h>

towupper(), ungetwc(), vfwprintf(), vfwscanf(), wcrtomb(), wcscasecmp(), wcscat(), wcschr(),
wcscmp(), wcscoll(), wcscpy(), wcscspn(), wcsdup(), wcsftime(), wcslcat(), wcslen(), wcsncat(),
wcsncmp(), wcsncpy(), wcspbrk(), wcsrchr(), wcsrtombs(), wcsspn(), wcsstr(), wcstod(), wcstok(),
wcstol(), wcstoul(), wcswidth(), wcsxfrm(), wctob(), wctype(), wcwidth(), wmemchr(), wmemcmp(),
wmemcpy(), wmemmove(), wmemset()

XCU getconf

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with the ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 6
The Open Group Corrigendum U021/10 is applied. The prototypes for wcswidth() and
wcwidth() are marked as extensions.

The Open Group Corrigendum U028/5 is applied, correcting the prototype for the mbsinit()
function.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• Various function prototypes are updated to add the restrict keyword.

• The functions vfwscanf(), vswscanf(), wcstof(), wcstold(), wcstoll(), and wcstoull() are
added.

The type wctype_t, the isw*(), to*(), and wctype() functions are marked as XSI extensions.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/26 is applied, adding the APPLICATION
USAGE section.

Issue 7
The mbsnrtowcs(), open_wmemstream(), wcpcpy(), wcpncpy(), wcscasecmp(), wcsdup(),
wcsncasecmp(), wcsnlen(), and wcsnrtombs() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 1.

The wcscasecmp_l(), wcsncasecmp_l(), wcscoll_l(), and wcsxfrm_l() functions are added from The
Open Group Technical Standard, 2006, Extended API Set Part 4.

The wctype_t type, and the isw*(), towlower(), and towupper() functions are marked obsolescent
in <wchar.h> since the ISO C standard requires the declarations to be in <wctype.h>.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the locale_t type is added.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0081 [380] is applied.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0088 [73] is applied.

Issue 8
Austin Group Defect 986 is applied, adding wcslcat() and wcslcpy().

Austin Group Defect 1302 is applied, aligning this header with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1352 is applied, changing the APPLICATION USAGE and RATIONALE
sections.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 485

17105

17106

17107

17108

17109

17110

17111

17112

17113

17114

17115

17116

17117

17118

17119

17120

17121

17122

17123

17124

17125

17126

17127

17128

17129

17130

17131

17132

17133

17134

17135

17136

17137

17138

17139

17140

17141

17142

17143

17144

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<wctype.h> Headers

NAME
wctype.h — wide-character classification and mapping utilities

SYNOPSIS
#include <wctype.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 496) to
enable the visibility of these symbols in this header.

The <wctype.h> header shall define the following types:

wint_t As described in <wchar.h>.

wctrans_t A scalar type that can hold values which represent locale-specific character
mappings.

wctype_t A scalar type of a data object that can hold values which represent locale-
specific character classification.

CX The <wctype.h> header shall define the locale_t type as described in <locale.h>.

The <wctype.h> header shall define the following macro:

WEOF As described in <wchar.h>.

For all functions described in this header that accept an argument of type wint_t, the value is
representable as a wchar_t or equals the value of WEOF. If this argument has any other value,
the behavior is undefined.

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

CX Inclusion of the <wctype.h> header may make visible all symbols from the headers <ctype.h>,
<stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, <time.h>, and <wchar.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int iswalnum(wint_t);
CX int iswalnum_l(wint_t, locale_t);

int iswalpha(wint_t);
CX int iswalpha_l(wint_t, locale_t);

int iswblank(wint_t);
CX int iswblank_l(wint_t, locale_t);

int iswcntrl(wint_t);
CX int iswcntrl_l(wint_t, locale_t);

int iswctype(wint_t, wctype_t);
CX int iswctype_l(wint_t, wctype_t, locale_t);

int iswdigit(wint_t);
CX int iswdigit_l(wint_t, locale_t);

int iswgraph(wint_t);
CX int iswgraph_l(wint_t, locale_t);

int iswlower(wint_t);
CX int iswlower_l(wint_t, locale_t);

int iswprint(wint_t);
CX int iswprint_l(wint_t, locale_t);

int iswpunct(wint_t);

486 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

17145

17146

17147

17148

17149

17150

17151

17152

17153

17154

17155

17156

17157

17158

17159

17160

17161

17162

17163

17164

17165

17166

17167

17168

17169

17170

17171

17172

17173

17174

17175

17176

17177

17178

17179

17180

17181

17182

17183

17184

17185

17186

17187

17188

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <wctype.h>

CX int iswpunct_l(wint_t, locale_t);
int iswspace(wint_t);

CX int iswspace_l(wint_t, locale_t);
int iswupper(wint_t);

CX int iswupper_l(wint_t, locale_t);
int iswxdigit(wint_t);

CX int iswxdigit_l(wint_t, locale_t);
wint_t towctrans(wint_t, wctrans_t);

CX wint_t towctrans_l(wint_t, wctrans_t, locale_t);
wint_t towlower(wint_t);

CX wint_t towlower_l(wint_t, locale_t);
wint_t towupper(wint_t);

CX wint_t towupper_l(wint_t, locale_t);
wctrans_t wctrans(const char *);

CX wctrans_t wctrans_l(const char *, locale_t);
wctype_t wctype(const char *);

CX wctype_t wctype_l(const char *, locale_t);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<ctype.h>, <locale.h>, <stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, <time.h>,
<wchar.h>

XSH Section 2.2 (on page 496), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswctype(),
iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(),
setlocale(), towctrans(), towlower(), towupper(), wctrans(), wctype()

CHANGE HISTORY
First released in Issue 5. Derived from the ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 6
The iswblank() function is added for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XBD-ERN-6 is applied.

The *_l() functions are added from The Open Group Technical Standard, 2006, Extended API Set
Part 4.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 1330 is applied, moving the description of wctype_t from <wchar.h> to
<wctype.h>.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 487

17189

17190

17191

17192

17193

17194

17195

17196

17197

17198

17199

17200

17201

17202

17203

17204

17205

17206

17207

17208

17209

17210

17211

17212

17213

17214

17215

17216

17217

17218

17219

17220

17221

17222

17223

17224

17225

17226

17227

17228

17229

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

<wordexp.h> Headers

NAME
wordexp.h — word-expansion types

SYNOPSIS
#include <wordexp.h>

DESCRIPTION
The <wordexp.h> header shall define the structures and symbolic constants used by the
wordexp() and wordfree() functions.

The <wordexp.h> header shall define the wordexp_t structure type, which shall include at least
the following members:

size_t we_wordc Count of words matched by words.
char **we_wordv Pointer to list of expanded words.
size_t we_offs Slots to reserve at the beginning of we_wordv.

The <wordexp.h> header shall define the following symbolic constants for use as flags for the
wordexp() function:

WRDE_APPEND Append words to those previously generated.

WRDE_DOOFFS Number of null pointers to prepend to we_wordv.

WRDE_NOCMD Fail if command substitution is requested.

WRDE_REUSE The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result is the same
as if the application had called wordfree() and then called wordexp()
without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The <wordexp.h> header shall define the following symbolic constants as error return values:

WRDE_BADCHAR One of the unquoted characters—<newline>, '|', '&', ';', '<', '>',
'(', ')', '{', '}'—appears in words in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
string.

The <wordexp.h> header shall define the size_t type as described in <stddef.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int wordexp(const char *restrict, wordexp_t *restrict, int);
void wordfree(wordexp_t *);

488 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

17230

17231

17232

17233

17234

17235

17236

17237

17238

17239

17240

17241

17242

17243

17244

17245

17246

17247

17248

17249

17250

17251

17252

17253

17254

17255

17256

17257

17258

17259

17260

17261

17262

17263

17264

17265

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers <wordexp.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stddef.h>

XSH wordexp()

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 6
The restrict keyword is added to the prototype for wordexp().

The WRDE_NOSYS constant is marked obsolescent.

Issue 7
The obsolescent WRDE_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

Issue 8
Austin Group Defect 1444 is applied, correcting cross-references to wordexp().

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 489

17266

17267

17268

17269

17270

17271

17272

17273

17274

17275

17276

17277

17278

17279

17280

17281

17282

17283

17284

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Headers

490 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Open Group Standard

Vol. 2:

System Interfaces, Issue 8

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 491

17285

17286

17287

17288

17289

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

492 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 1

Introduction

The System Interfaces volume of POSIX.1-2024 describes the interfaces offered to application
programs by POSIX-conformant systems.

1.1 Relationship to Other Formal Standards
This volume of POSIX.1-2024 is aligned with the following standards, except where stated
otherwise:

ISO C (C17)
ISO/IEC 9899: 2018, Programming Languages — C.

Parts of the ISO/IEC 9899: 2018 standard (hereinafter referred to as the ISO C standard) are
referenced to describe requirements also mandated by this volume of POSIX.1-2024. Some
functions and headers included within this volume of POSIX.1-2024 have a version in the ISO C
standard; in this case CX markings are added as appropriate to show where the ISO C standard
has been extended (see Section 1.8.1, on page 7). Any conflict between this volume of
POSIX.1-2024 and the ISO C standard is unintentional, except where stated otherwise.

This volume of POSIX.1-2024 also allows, but does not require, mathematics functions to
support IEEE Std 754-1985 and IEEE Std 854-1987.

1.2 Format of Entries
The entries in Chapter 3 are based on a common format as follows. The only sections relating to
conformance are the SYNOPSIS, DESCRIPTION, RETURN VALUE, and ERRORS sections.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarizes the use of the entry being described. If it is necessary to
include a header to use this function, the names of such headers are shown, for
example:

#include <stdio.h>

DESCRIPTION
This section describes the functionality of the function or header.

RETURN VALUE
This section indicates the possible return values, if any.

If the implementation can detect errors, ``successful completion’’ means that no error
has been detected during execution of the function. If the implementation does detect
an error, the error is indicated.

For functions where no errors are defined, ``successful completion’’ means that if the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 493

17290

17291

17292

17293

17294

17295

17296

17297

17298

17299

17300

17301

17302

17303

17304

17305

17306

17307

17308

17309

17310

17311

17312

17313

17314

17315

17316

17317

17318

17319

17320

17321

17322

17323

17324

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Format of Entries Introduction

implementation checks for errors, no error has been detected. If the implementation can
detect errors, and an error is detected, the indicated return value is returned and errno
may be set.

ERRORS
This section gives the symbolic names of the error values returned by a function or
stored into a variable accessed through the symbol errno if an error occurs.

``No errors are defined’’ means that error values returned by a function or stored into a
variable accessed through the symbol errno, if any, depend on the implementation.

EXAMPLES
This section is informative.

This section gives examples of usage, where appropriate. In the event of conflict
between an example and a normative part of this volume of POSIX.1-2024, the
normative material is to be taken as correct.

APPLICATION USAGE
This section is informative.

This section gives warnings and advice to application developers about the entry. In the
event of conflict between warnings and advice and a normative part of this volume of
POSIX.1-2024, the normative material is to be taken as correct.

RATIONALE
This section is informative.

This section contains historical information concerning the contents of this volume of
POSIX.1-2024 and why features were included or discarded by the standard
developers.

FUTURE DIRECTIONS
This section is informative.

This section provides comments which should be used as a guide to current thinking;
there is not necessarily a commitment to adopt these future directions.

SEE ALSO
This section is informative.

This section gives references to related information.

CHANGE HISTORY
This section is informative.

This section shows the derivation of the entry and any significant changes that have
been made to it.

494 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17325

17326

17327

17328

17329

17330

17331

17332

17333

17334

17335

17336

17337

17338

17339

17340

17341

17342

17343

17344

17345

17346

17347

17348

17349

17350

17351

17352

17353

17354

17355

17356

17357

17358

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 2

General Information

This chapter covers information that is relevant to all the functions specified in Chapter 3 and
XBD Chapter 14 (on page 221).

2.1 Use and Implementation of Interfaces

2.1.1 Use and Implementation of Functions

Each of the following statements shall apply to all functions unless explicitly stated otherwise in
the detailed descriptions that follow:

1. If an argument to a function has an invalid value, such as a value outside the domain of
the function, a pointer to an object whose lifetime has ended (even if a new object now
has the same address), a pointer outside the address space of the program, or a null
pointer, the behavior is undefined.

2. Any function declared in a header may also be implemented as a macro defined in the
header, so a function should not be declared explicitly if its header is included. Any
macro definition of a function can be suppressed locally by enclosing the name of the
function in parentheses, because the name is then not followed by the <left-parenthesis>
that indicates expansion of a macro function name. For the same syntactic reason, it is
permitted to take the address of a function even if it is also defined as a macro. The use of
the C-language #undef construct to remove any such macro definition shall also ensure
that an actual function is referred to.

3. Any invocation of a function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where
necessary, so it is generally safe to use arbitrary expressions as arguments.

4. For functions from the ISO C standard only, provided that the function can be declared
without reference to any type defined in a header from the ISO C standard, it is also
permissible to declare the function explicitly and use it without including its associated
header.

5. If a function that accepts a variable number of arguments is not declared (explicitly or by
including its associated header), the behavior is undefined.

6. Functions shall prevent data races as follows: A function shall not directly or indirectly
access objects accessible by threads other than the current thread unless the objects are
accessed directly or indirectly via the function’s arguments. A function shall not directly
or indirectly modify objects accessible by threads other than the current thread unless the
objects are accessed directly or indirectly via the function’s non-const arguments.
Implementations may share their own internal objects between threads if the objects are
not visible to applications and are protected against data races.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 495

17359

17360

17361

17362

17363

17364

17365

17366

17367

17368

17369

17370

17371

17372

17373

17374

17375

17376

17377

17378

17379

17380

17381

17382

17383

17384

17385

17386

17387

17388

17389

17390

17391

17392

17393

17394

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Use and Implementation of Interfaces General Information

7. Functions shall perform all operations solely within the current thread if those operations
have effects that are visible to applications.

2.1.2 Use and Implementation of Macros

Each of the following statements shall apply to all macros unless explicitly stated otherwise:

1. Any definition of an object-like macro in a header shall expand to code that is fully
protected by parentheses where necessary, so that it groups in an arbitrary expression as
if it were a single identifier.

2. All object-like macros listed as expanding to integer constant expressions shall
additionally be suitable for use in #if preprocessing directives.

3. Any definition of a function-like macro in a header shall expand to code that evaluates
each of its arguments exactly once, fully protected by parentheses where necessary, so
that it is generally safe to use arbitrary expressions as arguments.

4. Any definition of a function-like macro in a header can be invoked in an expression
anywhere a function with a compatible return type could be called.

2.2 The Compilation Environment

2.2.1 POSIX.1 Symbols

Certain symbols in this volume of POSIX.1-2024 are defined in headers (see XBD Chapter 14, on
page 221). Some of those headers could also define symbols other than those defined by
POSIX.1-2024, potentially conflicting with symbols used by the application. Also, POSIX.1-2024
defines symbols that are not permitted by other standards to appear in those headers without
some control on the visibility of those symbols.

Symbols called ``feature test macros’’ are used to control the visibility of symbols that might be
included in a header. Implementations, future versions of this standard, and other standards
may define additional feature test macros.

In the compilation of an application that #defines a feature test macro specified by
POSIX.1-2024, no header defined by POSIX.1-2024 shall be included prior to the definition of the
feature test macro. This restriction also applies to any implementation-provided header in
which these feature test macros are used. If the definition of the macro does not precede the
#include, the result is undefined.

Feature test macros shall begin with the <underscore> character ('_').

2.2.1.1 The _POSIX_C_SOURCE Feature Test Macro

A POSIX-conforming application shall ensure that the feature test macro _POSIX_C_SOURCE is
defined before inclusion of any header.

When an application includes a header described by POSIX.1-2024, and when this feature test
macro is defined to have the value 202405L:

496 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17395

17396

17397

17398

17399

17400

17401

17402

17403

17404

17405

17406

17407

17408

17409

17410

17411

17412

17413

17414

17415

17416

17417

17418

17419

17420

17421

17422

17423

17424

17425

17426

17427

17428

17429

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information The Compilation Environment

1. All symbols required by POSIX.1-2024 to appear when the header is included shall be
made visible.

2. Symbols that are explicitly permitted, but not required, by POSIX.1-2024 to appear in that
header (including those in reserved name spaces) may be made visible.

3. Additional symbols not required or explicitly permitted by POSIX.1-2024 to be in that
header shall not be made visible, except when enabled by another feature test macro.

Identifiers in POSIX.1-2024 may only be undefined using the #undef directive as described in
Section 2.1 (on page 495) or Section 2.2.2 (on page 498). These #undef directives shall follow all
#include directives of any header in POSIX.1-2024.

Note: The POSIX.1-1990 standard specified a macro called _POSIX_SOURCE. This has been
superseded by _POSIX_C_SOURCE.

2.2.1.2 The _XOPEN_SOURCE Feature Test Macro

XSI An XSI-conforming application shall ensure that the feature test macro _XOPEN_SOURCE is
defined with the value 800 before inclusion of any header. This is needed to enable the
functionality described in Section 2.2.1.1 (on page 496) and to ensure that the XSI option is
enabled.

Since this volume of POSIX.1-2024 is aligned with the ISO C standard, and since all functionality
enabled by _POSIX_C_SOURCE set equal to 202405L is enabled by _XOPEN_SOURCE set equal
to 800, there should be no need to define _POSIX_C_SOURCE if _XOPEN_SOURCE is so
defined. Therefore, if _XOPEN_SOURCE is set equal to 800 and _POSIX_C_SOURCE is set equal
to 202405L, the behavior is the same as if only _XOPEN_SOURCE is defined and set equal to
800. However, should _POSIX_C_SOURCE be set to a value greater than 202405L, the behavior
is unspecified.

If _XOPEN_SOURCE is defined with the value 800 and _POSIX_C_SOURCE is undefined before
inclusion of any header, then the header may define the _POSIX_C_SOURCE macro with the
value 202405L.

2.2.1.3 The __STDC_WANT_LIB_EXT1__ Feature Test Macro

XSI A POSIX-conforming or XSI-conforming application can define the feature test macro
__STDC_WANT_LIB_EXT1__ before inclusion of any header.

When an application includes a header described by POSIX.1-2024, and when this feature test
macro is defined to have the value 1, the header may make visible those symbols specified for
the header in Annex K of the ISO C standard that are not already explicitly permitted by
POSIX.1-2024 to be made visible in the header. These symbols are listed in Section 2.2.2 below.

When an application includes a header described by POSIX.1-2024, and when this feature test
macro is either undefined or defined to have the value 0, the header shall not make any
additional symbols visible that are not already made visible by the feature test macro

XSI _POSIX_C_SOURCE or _XOPEN_SOURCE as described above, except when enabled by
another feature test macro.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 497

17430

17431

17432

17433

17434

17435

17436

17437

17438

17439

17440

17441

17442

17443

17444

17445

17446

17447

17448

17449

17450

17451

17452

17453

17454

17455

17456

17457

17458

17459

17460

17461

17462

17463

17464

17465

17466

17467

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Compilation Environment General Information

2.2.2 The Name Space

All identifiers in this volume of POSIX.1-2024, except environ, are defined in at least one of the
XSI headers, as shown in XBD Chapter 14 (on page 221). When _XOPEN_SOURCE or

_POSIX_C_SOURCE is defined, each header defines or declares some identifiers, potentially
conflicting with identifiers used by the application. The set of identifiers visible to the
application consists of precisely those identifiers from the header pages of the included headers,
as well as additional identifiers reserved for the implementation. In addition, some headers may
make visible identifiers from other headers as indicated on the relevant header pages.

Implementations may also add members to a structure or union without controlling the
visibility of those members with a feature test macro, as long as a user-defined macro with the
same name cannot interfere with the correct interpretation of the program. The identifiers
reserved for use by the implementation are described below:

1. Each identifier with external linkage described in the header section is reserved for use as
an identifier with external linkage if the header is included.

2. Each macro described in the header section is reserved for any use if the header is
included.

3. Each identifier with file scope described in the header section is reserved for use as a
macro name and as an identifier with file scope in the same name space if the header is
included.

As described in Chapter 13 (on page 219), the prefixes posix_, POSIX_, and _POSIX_ are
reserved for use by POSIX.1-2024 and other POSIX standards. Implementations may add
symbols to the headers shown in the following table, provided the identifiers for those symbols
either:

1. Begin with the corresponding reserved prefixes in the table, or

2. Have one of the corresponding complete names in the table, or

3. End in the string indicated as a reserved suffix in the table and do not use the reserved
prefixes posix_, POSIX_, or _POSIX_, as long as the reserved suffix is in that part of the
name considered significant by the implementation.

Symbols that use the reserved prefix _POSIX_ may be made visible by implementations in any
header defined by POSIX.1-2024.

498 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17468

17469

17470

17471

17472

17473

17474

17475

17476

17477

17478

17479

17480

17481

17482

17483

17484

17485

17486

17487

17488

17489

17490

17491

17492

17493

17494

17495

17496

17497

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information The Compilation Environment

Complete
Header Prefix Suffix Name

<aio.h> aio_, lio_, AIO_, LIO_
<arpa/inet.h> inet_
<ctype.h> to[a-z], is[a-z]
<dlfcn.h> RTLD_, dli_
<dirent.h> d_, DT_
<fcntl.h> l_

XSI <fmtmsg.h> MM_
<fnmatch.h> FNM_

XSI <ftw.h> FTW
<glob.h> gl_, GLOB_
<grp.h> gr_
<libintl.h> TEXTDOMAINMAX
<limits.h> _MAX, _MIN

XSI <math.h> M_
MSG <mqueue.h> mq_, MQ_
XSI <ndbm.h> dbm_, DBM_

<netdb.h> ai_, h_, n_, p_, s_
<net/if.h> if_, IF_
<netinet/in.h> in_, ip_, s_, sin_, INADDR_,

IPPROTO_
IP6 in6_, in6addr_, s6_, sin6_, IPV6_

<netinet/tcp.h> TCP_
<nl_types.h> NL_
<poll.h> pd_, ph_, ps_, POLL
<pthread.h> pthread_, PTHREAD_
<pwd.h> pw_
<regex.h> re_, rm_, REG_
<sched.h> sched_, SCHED_
<semaphore.h> sem_, SEM_

CX <signal.h> sa_, si_, sigev_, sival_, uc_, BUS_,
CLD_, FPE_, ILL_, SA_, SEGV_, SI_,
SIGEV_,

XSI ss_, sv_, SS_, TRAP_
<stdatomic.h> atomic_[a-z], memory_[a-z]
<stdlib.h> str[a-z]
<string.h> str[a-z], mem[a-z], wcs[a-z]

XSI <sys/ipc.h> ipc_, IPC_ key, pad, seq
<sys/mman.h> shm_, MAP_, MCL_, MS_,

PROT_
XSI <sys/msg.h> msg, MSG_[A-Z] msg
XSI <sys/resource.h> rlim_, ru_, PRIO_, RLIMIT_,

RUSAGE_
<sys/select.h> fd_, fds_, FD_

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 499

17498

17499

17500

17501

17502

17503

17504

17505

17506

17507

17508

17509

17510

17511

17512

17513

17514

17515

17516

17517

17518

17519

17520

17521

17522

17523

17524

17525

17526

17527

17528

17529

17530

17531

17532

17533

17534

17535

17536

17537

17538

17539

17540

17541

17542

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Compilation Environment General Information

Complete
Header Prefix Suffix Name

XSI <sys/sem.h> sem, SEM_ sem
XSI <sys/shm.h> shm, SHM[A-Z], SHM_[A-Z]

<sys/socket.h> cmsg_, if_, ifc_, ifra_, ifru_,
infu_, l_, msg_, sa_, ss_,

XSI AF_, MSG_, PF_, SCM_,
SHUT_, SO

<sys/stat.h> st_
<sys/statvfs.h> f_, ST_

XSI <sys/time.h> tv_
<sys/times.h> tms_

XSI <sys/uio.h> iov_ UIO_MAXIOV
<sys/un.h> sun_
<sys/utsname.h> uts_
<sys/wait.h> P_, W[A-Z]

XSI <syslog.h> LOG_
<termios.h> c_, B[0-9], TC, ws_
<threads.h> cnd_[a-z], mtx_[a-z], thrd_[a-z],

tss_[a-z]
CX <time.h> clock_, it_, timer_, tm_, tv_,

CLOCK_, TIMER_
XSI <utmpx.h> ut_ _LVL, _PROCESS,

_TIME
<wchar.h> wcs[a-z]
<wctype.h> is[a-z], to[a-z]
<wordexp.h> we_, WRDE_

CX ANY header _t

Note: The notation [0−9] indicates any digit. The notation [A−Z] indicates any uppercase letter in the
portable character set. The notation [a−z] indicates any lowercase letter in the portable character
set. Commas and spaces in the lists of prefixes and complete names in the above table are not
part of any prefix or complete name. The ISO C standard reserves int[0-9a-z_]*_t and uint[0-9a-
z_]*_t in <stdint.h>; this is not included in the table above because it is covered by the reserved
_t suffix for any header.

Additional symbolic constants with the prefix _CS_, _PC_, and _SC_ may be defined by the
inclusion of <unistd.h>, but as these are already reserved for the implementation, they are not
included in the table above. Extensions with these prefixes should be compatible with use by
confstr(), pathconf(), and sysconf(), respectively.

Implementations may also add symbols to the <complex.h> header with the following complete
names or the same names suffixed with 'f' or 'l':

cerf
cexpm1
clog2

cerfc
clog10
clgamma

cexp2
clog1p
ctgamma

500 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17543

17544

17545

17546

17547

17548

17549

17550

17551

17552

17553

17554

17555

17556

17557

17558

17559

17560

17561

17562

17563

17564

17565

17566

17567

17568

17569

17570

17571

17572

17573

17574

17575

17576

17577

17578

17579

17580

17581

17582

17583

17584

17585

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information The Compilation Environment

If any header in the following table is included, macros with the prefixes or suffixes shown may
be defined. After the last inclusion of a given header, an application may use identifiers with the
corresponding prefixes for its own purpose, provided their use is preceded by a #undef of the
corresponding macro.

Header Prefix Suffix
<endian.h> _ENDIAN
<errno.h> E[0-9], E[A-Z]
<fcntl.h> F_, O_
<fenv.h> FE_[A-Z]
<inttypes.h> PRI[Xa-z], SCN[Xa-z]
<locale.h> LC_[A-Z]
<math.h> FP_[A-Z]
<netinet/in.h> IMPLINK_, IN_, IP_, IPPORT_, SOCK_,

IP6 IN6_
<signal.h> SIG_, SIG[A-Z],

XSI SV_
<stdatomic.h> AT OMIC_[A-Z]

CX <stdio.h> SEEK_
XSI <sys/resource.h> RLIM_
XSI <sys/socket.h> CMSG_

<sys/stat.h> S_
XSI <sys/uio.h> IOV_

<termios.h> I, O, V (See below.)
<time.h> TIME_[A-Z]
<unistd.h> SEEK_

The following are used to reserve complete names for the <stdint.h> header:

INT[0-9A-Za-z_]*_MIN
INT[0-9A-Za-z_]*_MAX
INT[0-9A-Za-z_]*_C
UINT[0-9A-Za-z_]*_MIN
UINT[0-9A-Za-z_]*_MAX
UINT[0-9A-Za-z_]*_C

Note: The notation [0−9] indicates any digit. The notation [A−Z] indicates any uppercase letter in the
portable character set. The notation [Xa−z] indicates the character 'X' or any lowercase letter
in the portable character set. The notation [0−9A−Za−z_]* indicates zero or more occurrences of
any of the following: a digit, an uppercase or lowercase letter in the portable character set, or an
<underscore>.

XSI The following reserved names are used as exact matches for <termios.h>:

CBAUD EXTB VDSUSP
DEFECHO FLUSHO VLNEXT
ECHOCTL LOBLK VREPRINT
ECHOKE PENDIN VSTATUS
ECHOPRT SWTCH VWERASE
EXTA VDISCARD

When the feature test macro__STDC_WANT_LIB_EXT1__ is defined with the value 1 (see
Section 2.2.1, on page 496), implementations may add symbols to the headers shown in the
following table provided the identifiers for those symbols have one of the corresponding

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 501

17586

17587

17588

17589

17590

17591

17592

17593

17594

17595

17596

17597

17598

17599

17600

17601

17602

17603

17604

17605

17606

17607

17608

17609

17610

17611

17612

17613

17614

17615

17616

17617

17618

17619

17620

17621

17622

17623

17624

17625

17626

17627

17628

17629

17630

17631

17632

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Compilation Environment General Information

complete names in the table.

Header Complete Name
<stdio.h> fopen_s, fprintf_s, freopen_s, fscanf_s, gets_s, printf_s, scanf_s,

snprintf_s, sprintf_s, sscanf_s, tmpfile_s, tmpnam_s, vfprintf_s,
vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, vsscanf_s

<stdlib.h> abort_handler_s, bsearch_s, getenv_s, ignore_handler_s,
mbstowcs_s, qsort_s, set_constraint_handler_s, wcstombs_s,
wctomb_s

<time.h> asctime_s, ctime_s, gmtime_s, localtime_s
<wchar.h> fwprintf_s, fwscanf_s, mbsrtowcs_s, snwprintf_s, swprintf_s,

swscanf_s, vfwprintf_s, vfwscanf_s, vsnwprintf_s, vswprintf_s,
vswscanf_s, vwprintf_s, vwscanf_s, wcrtomb_s, wmemcpy_s,
wmemmove_s, wprintf_s, wscanf_s

When the feature test macro__STDC_WANT_LIB_EXT1__ is defined with the value 1 (see
Section 2.2.1, on page 496), if any header in the following table is included, macros with the
complete names shown may be defined.

Header Complete Name
<stdint.h> RSIZE_MAX
<stdio.h> L_tmpnam_s, TMP_MAX_S

Note: The above two tables only include those symbols from Annex K of the ISO C standard that are
not already allowed to be visible by entries in earlier tables in this section.

502 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17633

17634

17635

17636

17637

17638

17639

17640

17641

17642

17643

17644

17645

17646

17647

17648

17649

17650

17651

17652

17653

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information The Compilation Environment

The following identifiers are reserved regardless of the inclusion of headers:

1. With the exception of identifiers beginning with the prefix _POSIX_ and those identifiers
which are lexically identical to keywords defined by the ISO C standard (for example
_Bool), all identifiers that begin with an <underscore> and either an uppercase letter or
another <underscore> are always reserved for any use by the implementation.

2. All identifiers that begin with an <underscore> are always reserved for use as identifiers
with file scope in both the ordinary identifier and tag name spaces.

3. All identifiers in the table below are reserved for use as identifiers with external linkage.
Some of these identifiers do not appear in this volume of POSIX.1-2024, but are reserved for
future use by the ISO C standard.

4. All functions and external identifiers defined in XBD Chapter 14 (on page 221) are reserved
for use as identifiers with external linkage.

5. All the identifiers defined in this volume of POSIX.1-2024 that have external linkage and
errno are always reserved for use as identifiers with external linkage.

Note: The notation [a−z] indicates any lowercase letter in the portable character set. The notation '*'
indicates any combination of digits, letters in the portable character set, or <underscore>.

No other identifiers are reserved.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 503

17654

17655

17656

17657

17658

17659

17660

17661

17662

17663

17664

17665

17666

17667

17668

17669

17670

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Compilation Environment General Information

_Exit
abort
abs
acos
acosf
acosh
acoshf
acoshl
acosl
aligned_alloc
asctime
asin
asinf
asinh
asinhf
asinhl
asinl
at_quick_exit
atan
atan2
atan2f
atan2l
atanf
atanh
atanhf
atanhl
atanl
atexit
atof
atoi
atol
atoll
atomic_compare_exchange_strong
atomic_compare_exchange_strong_explicit
atomic_compare_exchange_weak
atomic_compare_exchange_weak_explicit
atomic_exchange
atomic_exchange_explicit
atomic_fetch_add
atomic_fetch_add_explicit
atomic_fetch_and
atomic_fetch_and_explicit
atomic_fetch_or
atomic_fetch_or_explicit
atomic_fetch_sub
atomic_fetch_sub_explicit
atomic_fetch_xor
atomic_fetch_xor_explicit
atomic_flag_clear
atomic_flag_clear_explicit
atomic_flag_test_and_set
atomic_flag_test_and_set_explicit

atomic_init
atomic_is_lock_free
atomic_load
atomic_load_explicit
atomic_signal_fence
atomic_store
atomic_store_explicit
atomic_thread_fence
bsearch
btowc
c16rtomb
c32rtomb
cabs
cabsf
cabsl
cacos
cacosf
cacosh
cacoshf
cacoshl
cacosl
call_once
calloc
carg
cargf
cargl
casin
casinf
casinh
casinhf
casinhl
casinl
catan
catanf
catanh
catanhf
catanhl
catanl
cbrt
cbrtf
cbrtl
ccos
ccosf
ccosh
ccoshf
ccoshl
ccosl
ceil
ceilf
ceill
cerf
cerfc

cerfcf
cerfcl
cerff
cerfl
cexpm1
cexpm1f
cexpm1l
cexp
cexp2
cexp2f
cexp2l
cexpf
cexpl
cimag
cimagf
cimagl
clearerr
clgamma
clgammaf
clgammal
clock
clog
clog10
clog10f
clog10l
clog1p
clog1pf
clog1pl
clog2
clog2f
clog2l
clogf
clogl
cnd_broadcast
cnd_destroy
cnd_init
cnd_signal
cnd_timedwait
cnd_wait
conj
conjf
conjl
copysign
copysignf
copysignl
cos
cosf
cosh
coshf
coshl
cosl
cpow

504 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17671

17672

17673

17674

17675

17676

17677

17678

17679

17680

17681

17682

17683

17684

17685

17686

17687

17688

17689

17690

17691

17692

17693

17694

17695

17696

17697

17698

17699

17700

17701

17702

17703

17704

17705

17706

17707

17708

17709

17710

17711

17712

17713

17714

17715

17716

17717

17718

17719

17720

17721

17722

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information The Compilation Environment

cpowf
cpowl
cproj
cprojf
cprojl
creal
crealf
creall
csin
csinf
csinh
csinhf
csinhl
csinl
csqrt
csqrtf
csqrtl
ctan
ctanf
ctanh
ctanhf
ctanhl
ctanl
ctgamma
ctgammaf
ctgammal
ctime
difftime
div
erf
erfc
erfcf
erfcl
erff
erfl
errno
exit
exp
exp2
exp2f
exp2l
expf
expl
expm1
expm1f
expm1l
fabs
fabsf
fabsl
fclose
fdim
fdimf

fdiml
feclearexcept
fegetenv
fegetexceptflag
fegetround
feholdexcept
feof
feraiseexcept
ferror
fesetenv
fesetexceptflag
fesetround
fetestexcept
feupdateenv
fflush
fgetc
fgetpos
fgets
fgetwc
fgetws
floor
floorf
floorl
fma
fmaf
fmal
fmax
fmaxf
fmaxl
fmin
fminf
fminl
fmod
fmodf
fmodl
fopen
fprintf
fputc
fputs
fputwc
fputws
fread
free
freopen
frexp
frexpf
frexpl
fscanf
fseek
fsetpos
ftell
fwide

fwprintf
fwrite
fwscanf
getc
getchar
getenv
getwc
getwchar
gmtime
hypot
hypotf
hypotl
ilogb
ilogbf
ilogbl
imaxabs
imaxdiv
is[a-z]*
kill_dependency
labs
ldexp
ldexpf
ldexpl
ldiv
lgamma
lgammaf
lgammal
llabs
lldiv
llrint
llrintf
llrintl
llround
llroundf
llroundl
localeconv
localtime
log
log10
log10f
log10l
log1p
log1pf
log1pl
log2
log2f
log2l
logb
logbf
logbl
logf
logl

longjmp
lrint
lrintf
lrintl
lround
lroundf
lroundl
malloc
math_errhandling
mblen
mbrlen
mbrtoc16
mbrtoc32
mbrtowc
mbsinit
mbsrtowcs
mbstowcs
mbtowc
mem[a-z]*
mktime
modf
modff
modfl
mtx_destroy
mtx_init
mtx_lock
mtx_timedlock
mtx_trylock
mtx_unlock
nan
nanf
nanl
nearbyint
nearbyintf
nearbyintl
nextafter
nextafterf
nextafterl
nexttoward
nexttowardf
nexttowardl
perror
pow
powf
powl
printf
putc
putchar
puts
putwc
putwchar
qsort

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 505

17723

17724

17725

17726

17727

17728

17729

17730

17731

17732

17733

17734

17735

17736

17737

17738

17739

17740

17741

17742

17743

17744

17745

17746

17747

17748

17749

17750

17751

17752

17753

17754

17755

17756

17757

17758

17759

17760

17761

17762

17763

17764

17765

17766

17767

17768

17769

17770

17771

17772

17773

17774

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Compilation Environment General Information

quick_exit
raise
rand
realloc
remainder
remainderf
remainderl
remove
remquo
remquof
remquol
rename
rewind
rint
rintf
rintl
round
roundf
roundl
scalbln
scalblnf
scalblnl
scalbn
scalbnf
scalbnl
scanf
setbuf

setjmp
setlocale
setvbuf
signal
sin
sinf
sinh
sinhf
sinhl
sinl
snprintf
sprintf
sqrt
sqrtf
sqrtl
srand
sscanf
str[a-z]*
swprintf
swscanf
system
tan
tanf
tanh
tanhf
tanhl
tanl

tgamma
tgammaf
tgammal
thrd_create
thrd_current
thrd_detach
thrd_equal
thrd_exit
thrd_join
thrd_sleep
thrd_yield
time
timespec_get
tmpfile
tmpnam
to[a-z]*
trunc
truncf
truncl
tss_create
tss_delete
tss_get
tss_set
ungetc
ungetwc
va_copy
va_end

vfprintf
vfscanf
vfwprintf
vfwscanf
vprintf
vscanf
vsnprintf
vsprintf
vsscanf
vswprintf
vswscanf
vwprintf
vwscanf
wcrtomb
wcs[a-z]*
wctob
wctomb
wctrans
wctype
wmemchr
wmemcmp
wmemcpy
wmemmove
wmemset
wprintf
wscanf

Note: The notation [a−z] indicates any lowercase letter in the portable character set. The notation '*'
indicates any sequence of zero or more characters that are valid in identifiers with external
linkage.

Applications shall not declare or define identifiers with the same name as an identifier reserved
in the same context. Since macro names are replaced whenever found, independent of scope and
name space, macro names matching any of the reserved identifier names shall not be defined by
an application if any associated header is included.

Except that the effect of each inclusion of <assert.h> depends on the definition of NDEBUG,
headers may be included in any order, and each may be included more than once in a given
scope, with no difference in effect from that of being included only once.

If used, the application shall ensure that a header is included outside of any external declaration
or definition, and it shall be first included before the first reference to any type or macro it
defines, or to any function or object it declares. However, if an identifier is declared or defined in
more than one header, the second and subsequent associated headers may be included after the
initial reference to the identifier. Prior to the inclusion of a header, or when any macro defined in
the header is expanded, the application shall not define any macros with names lexically
identical to symbols defined by that header.

506 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17775

17776

17777

17778

17779

17780

17781

17782

17783

17784

17785

17786

17787

17788

17789

17790

17791

17792

17793

17794

17795

17796

17797

17798

17799

17800

17801

17802

17803

17804

17805

17806

17807

17808

17809

17810

17811

17812

17813

17814

17815

17816

17817

17818

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Error Numbers

2.3 Error Numbers
Most functions can provide an error number. The means by which each function provides its
error numbers is specified in its description.

Some functions provide the error number in a variable accessed through the symbol errno,
defined by including the <errno.h> header. The value of errno should only be examined when it
is indicated to be valid by a function’s return value. No function in this volume of POSIX.1-2024
shall set errno to zero. For each thread of a process, the value of errno shall not be affected by
function calls or assignments to errno by other threads.

Some functions return an error number directly as the function value. These functions return a
value of zero to indicate success.

If more than one error occurs in processing a function call, any one of the possible errors may be
returned, as the order of detection is undefined.

Implementations may support additional errors not included in this list, may generate errors
included in this list under circumstances other than those described here, or may contain
extensions or limitations that prevent some errors from occurring.

The ERRORS section on each reference page specifies which error conditions shall be detected
by all implementations (``shall fail’’) and which may be optionally detected by an
implementation (``may fail’’). If no error condition is detected, the action requested shall be
successful. If an error condition is detected, the action requested may have been partially
performed, unless otherwise stated.

Implementations may generate error numbers listed here under circumstances other than those
described, if and only if all those error conditions can always be treated identically to the error
conditions as described in this volume of POSIX.1-2024. Implementations shall not generate a
different error number from one required by this volume of POSIX.1-2024 for an error condition
described in this volume of POSIX.1-2024, but may generate additional errors unless explicitly
disallowed for a particular function.

Each implementation shall document, in the conformance document, situations in which each of
the optional conditions defined in POSIX.1-2024 is detected. The conformance document may
also contain statements that one or more of the optional error conditions are not detected.

Certain threads-related functions are not allowed to return an error code of [EINTR]. Where this
applies it is stated in the ERRORS section on the individual function pages.

The following macro names identify the possible error numbers, in the context of the functions
specifically defined in this volume of POSIX.1-2024; these general descriptions are more
precisely defined in the ERRORS sections of the functions that return them. Only these macro
names should be used in programs, since the actual value of the error number is unspecified. All
values listed in this section shall be unique, except as noted below. The values for all these
macros shall be found in the <errno.h> header defined in the Base Definitions volume of
POSIX.1-2024. The actual values are unspecified by this volume of POSIX.1-2024.

[E2BIG]
Argument list too long. The sum of the number of bytes used by the new process image’s
argument list and environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

or:

Lack of space in an output buffer.

or:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 507

17819

17820

17821

17822

17823

17824

17825

17826

17827

17828

17829

17830

17831

17832

17833

17834

17835

17836

17837

17838

17839

17840

17841

17842

17843

17844

17845

17846

17847

17848

17849

17850

17851

17852

17853

17854

17855

17856

17857

17858

17859

17860

17861

17862

17863

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Error Numbers General Information

Argument is greater than the system-imposed maximum.

[EACCES]
Permission denied. An attempt was made to access a file in a way forbidden by its file
access permissions.

[EADDRINUSE]
Address in use. The specified address is in use.

[EADDRNOTAVAIL]
Address not available. The specified address is not available from the local system.

[EAFNOSUPPORT]
Address family not supported. The implementation does not support the specified address
family, or the specified address is not a valid address for the address family of the specified
socket.

[EAGAIN]
Resource temporarily unavailable. This is a temporary condition and later calls to the same
routine may complete normally.

[EALREADY]
Connection already in progress. A connection request is already in progress for the specified
socket.

[EBADF]
Bad file descriptor. A file descriptor argument is out of range, refers to no open file, or a
read (write) request is made to a file that is only open for writing (reading).

[EBADMSG]
Bad Message. The implementation has detected a corrupted message.

[EBUSY]
Resource busy. An attempt was made to make use of a system resource that is not currently
available, as it is being used by another process in a manner that would have conflicted
with the request being made by this process.

[ECANCELED]
Operation canceled. The associated asynchronous operation was canceled before
completion.

[ECHILD]
No child process. A wait(), waitid(), or waitpid() function was executed by a process that
had no existing or unwaited-for child process.

[ECONNABORTED]
Connection aborted. The connection has been aborted.

[ECONNREFUSED]
Connection refused. An attempt to connect to a socket was refused because there was no
process listening or because the queue of connection requests was full and the underlying
protocol does not support retransmissions.

[ECONNRESET]
Connection reset. The connection was forcibly closed by the peer.

[EDEADLK]
Resource deadlock would occur. An attempt was made to lock a system resource that would
have resulted in a deadlock situation.

508 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17864

17865

17866

17867

17868

17869

17870

17871

17872

17873

17874

17875

17876

17877

17878

17879

17880

17881

17882

17883

17884

17885

17886

17887

17888

17889

17890

17891

17892

17893

17894

17895

17896

17897

17898

17899

17900

17901

17902

17903

17904

17905

17906

17907

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Error Numbers

[EDESTADDRREQ]
Destination address required. No bind address was established.

[EDOM]
Domain error. An input argument is outside the defined domain of the mathematical
function (defined in the ISO C standard).

[EDQUOT]
Reserved.

[EEXIST]
File exists. An existing file was mentioned in an inappropriate context; for example, as a
new link name in the link() function.

[EFAULT]
Bad address. The system detected an invalid address in attempting to use an argument of a
call. The reliable detection of this error cannot be guaranteed, and when not detected may
result in the generation of a signal, indicating an address violation, which is sent to the
process.

[EFBIG]
File too large. The size of a file would exceed the implementation’s maximum file size, the
file size limit of the process, or the offset maximum established in the corresponding open
file description.

[EHOSTUNREACH]
Host is unreachable. The destination host cannot be reached (probably because the host is
down or a remote router cannot reach it).

[EIDRM]
Identifier removed. Returned during XSI interprocess communication if an identifier has
been removed from the system.

[EILSEQ]
Illegal byte sequence. A wide-character code has been detected that does not correspond to
a valid character, or a byte sequence does not form a valid wide-character code (defined in
the ISO C standard).

[EINPROGRESS]
Operation in progress. This code is used to indicate that an asynchronous operation has not
yet completed.

or:

O_NONBLOCK is set for the socket file descriptor and the connection cannot be
immediately established.

[EINTR]
Interrupted function call. An asynchronous signal was caught by the process during the
execution of an interruptible function. If the signal handler performs a normal return, the
interrupted function call may return this condition (see the Base Definitions volume of
POSIX.1-2024, <signal.h>).

[EINVAL]
Invalid argument. Some invalid argument was supplied; for example, specifying an
undefined signal in a signal() function or a kill() function.

[EIO]
Input/output error. Some physical input or output error has occurred. This error may be
reported on a subsequent operation on the same file descriptor. Any other error-causing

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 509

17908

17909

17910

17911

17912

17913

17914

17915

17916

17917

17918

17919

17920

17921

17922

17923

17924

17925

17926

17927

17928

17929

17930

17931

17932

17933

17934

17935

17936

17937

17938

17939

17940

17941

17942

17943

17944

17945

17946

17947

17948

17949

17950

17951

17952

17953

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Error Numbers General Information

operation on the same file descriptor may cause the [EIO] error indication to be lost.

[EISCONN]
Socket is connected. The specified socket is already connected.

[EISDIR]
Is a directory. An attempt was made to open a directory with write mode specified.

[ELOOP]
Symbolic link loop. A loop exists in symbolic links encountered during pathname
resolution. This error may also be returned if more than {SYMLOOP_MAX} symbolic links
are encountered during pathname resolution.

[EMFILE]
File descriptor value too large or too many open streams. An attempt was made to open a

XSI file descriptor with a value greater than or equal to {OPEN_MAX}, or greater than or equal
to the soft limit RLIMIT_NOFILE for the process (if smaller than {OPEN_MAX}); or an
attempt was made to open more than the maximum number of streams allowed in the
process.

[EMLINK]
Too many hard links. An attempt was made to have the link count of a single file exceed
{LINK_MAX}.

[EMSGSIZE]
Message too large. A message sent on a transport provider was larger than an internal
message buffer or some other network limit.

or:

Inappropriate message buffer length.

[EMULTIHOP]
Reserved.

[ENAMETOOLONG]
Filename too long. The length of a pathname exceeds {PATH_MAX} and the
implementation considers this to be an error, or a pathname component is longer than
{NAME_MAX}. This error may also occur when pathname substitution, as a result of
encountering a symbolic link during pathname resolution, results in a pathname string the
size of which exceeds {PATH_MAX}.

[ENETDOWN]
Network is down. The local network interface used to reach the destination is down.

[ENETRESET]
The connection was aborted by the network.

[ENETUNREACH]
Network unreachable. No route to the network is present.

[ENFILE]
Too many files open in system. Too many files are currently open in the system. The system
has reached its predefined limit for simultaneously open files and temporarily cannot
accept requests to open another one.

[ENOBUFS]
No buffer space available. Insufficient buffer resources were available in the system to
perform the socket operation.

510 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17954

17955

17956

17957

17958

17959

17960

17961

17962

17963

17964

17965

17966

17967

17968

17969

17970

17971

17972

17973

17974

17975

17976

17977

17978

17979

17980

17981

17982

17983

17984

17985

17986

17987

17988

17989

17990

17991

17992

17993

17994

17995

17996

17997

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Error Numbers

[ENODEV]
No such device. An attempt was made to apply an inappropriate function to a device; for
example, trying to read a write-only device such as a printer.

[ENOENT]
No such file or directory. A component of a specified pathname does not exist, or the
pathname is an empty string.

[ENOEXEC]
Executable file format error. A request is made to execute a file that, although it has
appropriate privileges, is not in the format required by the implementation for executable
files.

[ENOLCK]
No locks available. A system-imposed limit on the number of simultaneous file and record
locks has been reached and no more are currently available.

[ENOLINK]
Reserved.

[ENOMEM]
Not enough space. The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

[ENOMSG]
No message of the desired type. The message queue does not contain a message of the
required type during XSI interprocess communication.

[ENOPROTOOPT]
Protocol not available. The protocol option specified to setsockopt() is not supported by the
implementation.

[ENOSPC]
No space left on a device. During the write() function on a regular file or when extending a
directory, there is no free space left on the device.

[ENOSYS]
Functionality not supported. An attempt was made to use optional functionality that is not
supported in this implementation.

[ENOTCONN]
Socket not connected. The socket is not connected.

[ENOTDIR]
Not a directory. A component of the specified pathname exists, but it is not a directory,
when a directory was expected; or an attempt was made to create a non-directory file, and
the specified pathname contains at least one non-<slash> character and ends with one or
more trailing <slash> characters.

[ENOTEMPTY]
Directory not empty. A directory other than an empty directory was supplied when an
empty directory was expected.

[ENOTRECOVERABLE]
State not recoverable. The state protected by a robust mutex is not recoverable.

[ENOTSOCK]
Not a socket. The file descriptor does not refer to a socket.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 511

17998

17999

18000

18001

18002

18003

18004

18005

18006

18007

18008

18009

18010

18011

18012

18013

18014

18015

18016

18017

18018

18019

18020

18021

18022

18023

18024

18025

18026

18027

18028

18029

18030

18031

18032

18033

18034

18035

18036

18037

18038

18039

18040

18041

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Error Numbers General Information

[ENOTSUP]
Not supported. The implementation does not support the requested feature or value.

[ENOTTY]
Inappropriate I/O control operation. A control function has been attempted for a file or
special file for which the operation is inappropriate.

[ENXIO]
No such device or address. Input or output on a special file refers to a device that does not
exist, or makes a request beyond the capabilities of the device. It may also occur when, for
example, a tape drive is not on-line.

[EOPNOTSUPP]
Operation not supported on socket. The type of socket (address family or protocol) does not
support the requested operation. A conforming implementation may assign the same values
for [EOPNOTSUPP] and [ENOTSUP].

[EOVERFLOW]
Value too large to be stored in data type. An operation was attempted which would
generate a value that is outside the range of values that can be represented in the relevant
data type or that are allowed for a given data item.

[EOWNERDEAD]
Previous owner died. The owner of a robust mutex terminated while holding the mutex
lock.

[EPERM]
Operation not permitted. An attempt was made to perform an operation limited to
processes with appropriate privileges or to the owner of a file or other resource.

[EPIPE]
Broken pipe. A write was attempted on a socket, pipe, or FIFO for which there is no process
to read the data.

[EPROTO]
Protocol error. Some protocol error occurred. This error is device-specific, but is generally
not related to a hardware failure.

[EPROTONOSUPPORT]
Protocol not supported. The protocol is not supported by the address family, or the protocol
is not supported by the implementation.

[EPROTOTYPE]
Protocol wrong type for socket. The socket type is not supported by the protocol.

[ERANGE]
Result too large or too small. The result of the function is too large (overflow) or too small
(underflow) to be represented in the available space (defined in the ISO C standard).

[EROFS]
Read-only file system. An attempt was made to modify a file or directory on a file system
that is read-only.

[ESOCKTNOSUPPORT]
Socket type not supported. The socket type is not supported by the address family, or the
socket type is not supported by the implementation.

[ESPIPE]
Invalid seek. An attempt was made to access the file offset associated with a pipe or FIFO.

512 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18042

18043

18044

18045

18046

18047

18048

18049

18050

18051

18052

18053

18054

18055

18056

18057

18058

18059

18060

18061

18062

18063

18064

18065

18066

18067

18068

18069

18070

18071

18072

18073

18074

18075

18076

18077

18078

18079

18080

18081

18082

18083

18084

18085

18086

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Error Numbers

[ESRCH]
No such process. No process can be found corresponding to that specified by the given
process ID.

[ESTALE]
Reserved.

[ETIMEDOUT]
Connection timed out. The connection to a remote machine has timed out. If the connection
timed out during execution of the function that reported this error (as opposed to timing
out prior to the function being called), it is unspecified whether the function has completed
some or all of the documented behavior associated with a successful completion of the
function.

or:

Operation timed out. The time limit associated with the operation was exceeded before the
operation completed.

[ETXTBSY]
Text file busy. An attempt was made to execute a pure-procedure program that is currently
open for writing, or an attempt has been made to open for writing a pure-procedure
program that is being executed.

[EWOULDBLOCK]
Operation would block. An operation on a socket marked as non-blocking has encountered
a situation such as no data available that otherwise would have caused the function to
suspend execution.

A conforming implementation may assign the same values for [EWOULDBLOCK] and
[EAGAIN].

[EXDEV]
Improper hard link. Creation of a hard link to a file on another file system was attempted.

2.3.1 Additional Error Numbers

Additional implementation-defined error numbers may be defined in <errno.h>.

2.4 Signal Concepts

2.4.1 Signal Generation and Delivery

A signal is said to be ``generated’’ for (or sent to) a process or thread when the event that causes
the signal first occurs. Examples of such events include detection of hardware faults, timer
expiration, signals generated via the sigevent structure and terminal activity, as well as
invocations of the kill() and sigqueue() functions. In some circumstances, the same event
generates signals for multiple processes.

At the time of generation, a determination shall be made whether the signal has been generated
for the process or for a specific thread within the process. Signals which are generated by some
action attributable to a particular thread, such as a hardware fault, shall be generated for the
thread that caused the signal to be generated. Signals that are generated in association with a

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 513

18087

18088

18089

18090

18091

18092

18093

18094

18095

18096

18097

18098

18099

18100

18101

18102

18103

18104

18105

18106

18107

18108

18109

18110

18111

18112

18113

18114

18115

18116

18117

18118

18119

18120

18121

18122

18123

18124

18125

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Signal Concepts General Information

process ID or process group ID or an asynchronous event, such as terminal activity, shall be
generated for the process.

Each process has an action to be taken in response to each signal defined by the system (see
Section 2.4.3). A signal is said to be ``delivered’’ to a process when the appropriate action for the
process and signal is taken. A signal is said to be ``accepted’’ by a process when the signal is
selected and returned by one of the sigwait() functions.

During the time between the generation of a signal and its delivery or acceptance, the signal is
said to be ``pending’’. Ordinarily, this interval cannot be detected by an application. However, a
signal can be ``blocked’’ from delivery to a thread. If the action associated with a blocked signal
is anything other than to ignore the signal, and if that signal is generated for the thread, the
signal shall remain pending until it is unblocked, it is accepted when it is selected and returned
by a call to the sigwait() function, or the action associated with it is set to ignore the signal.
Signals generated for the process shall be delivered to exactly one of those threads within the
process which is in a call to a sigwait() function selecting that signal or has not blocked delivery
of the signal. If there are no threads in a call to a sigwait() function selecting that signal, and if all
threads within the process block delivery of the signal, the signal shall remain pending on the
process until a thread calls a sigwait() function selecting that signal, a thread unblocks delivery
of the signal, or the action associated with the signal is set to ignore the signal. If the action
associated with a blocked signal is to ignore the signal and if that signal is generated for the
process, it is unspecified whether the signal is discarded immediately upon generation or
remains pending.

Each thread has a ``signal mask’’ that defines the set of signals currently blocked from delivery
to it. The signal mask for a thread shall be initialized from that of its parent or creating thread,
or from the corresponding thread in the parent process if the thread was created as the result of a
call to fork(). The pthread_sigmask(), sigaction(), sigprocmask(), and sigsuspend() functions control
the manipulation of the signal mask.

The determination of which action is taken in response to a signal is made at the time the signal
is delivered, allowing for any changes since the time of generation. This determination is
independent of the means by which the signal was originally generated. If a subsequent
occurrence of a pending signal is generated, it is implementation-defined as to whether the
signal is delivered or accepted more than once in circumstances other than those in which
queuing is required. The order in which multiple, simultaneously pending signals outside the
range SIGRTMIN to SIGRTMAX are delivered to or accepted by a process is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a process or
thread, all pending SIGCONT signals for that process or any of the threads within that process
shall be discarded. Conversely, when SIGCONT is generated for a process or thread, all pending
stop signals for that process or any of the threads within that process shall be discarded. When
SIGCONT is generated for a process that is stopped, the process shall be continued, even if the
SIGCONT signal is ignored by the process or is blocked by all threads within the process and
there are no threads in a call to a sigwait() function selecting SIGCONT. If SIGCONT is blocked
by all threads within the process, there are no threads in a call to a sigwait() function selecting
SIGCONT, and SIGCONT is not ignored by the process, the SIGCONT signal shall remain
pending on the process until it is either unblocked by a thread or a thread calls a sigwait()
function selecting SIGCONT, or a stop signal is generated for the process or any of the threads
within the process.

An implementation shall document any condition not specified by this volume of POSIX.1-2024
under which the implementation generates signals.

514 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18126

18127

18128

18129

18130

18131

18132

18133

18134

18135

18136

18137

18138

18139

18140

18141

18142

18143

18144

18145

18146

18147

18148

18149

18150

18151

18152

18153

18154

18155

18156

18157

18158

18159

18160

18161

18162

18163

18164

18165

18166

18167

18168

18169

18170

18171

18172

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Signal Concepts

2.4.2 Realtime Signal Generation and Delivery

This section describes functionality to support realtime signal generation and delivery.

Some signal-generating functions, such as high-resolution timer expiration, asynchronous I/O
completion, interprocess message arrival, and the sigqueue() function, support the specification
of an application-defined value, either explicitly as a parameter to the function or in a sigevent
structure parameter. The sigevent structure is defined in <signal.h> and contains at least the
following members:

Member Type Member Name Description
int sigev_notify Notification type.
int sigev_signo Signal number.
union sigval sigev_value Signal value.
void(*)(union sigval) sigev_notify_function Notification function.
(pthread_attr_t*) sigev_notify_attributes Notification attributes.

The sigev_notify member specifies the notification mechanism to use when an asynchronous
event occurs. This volume of POSIX.1-2024 defines the following values for the sigev_notify
member:

SIGEV_NONE No asynchronous notification shall be delivered when the event of
interest occurs.

SIGEV_SIGNAL The signal specified in sigev_signo shall be generated for the process when
the event of interest occurs. If the SA_SIGINFO flag is set for that signal
number, then the signal shall be queued to the process and the value
specified in sigev_value shall be the si_value component of the generated
signal. If SA_SIGINFO is not set for that signal number, it is unspecified
whether the signal is queued and what value, if any, is sent.

SIGEV_THREAD A notification function shall be called to perform notification.

An implementation may define additional notification mechanisms.

The sigev_signo member specifies the signal to be generated. The sigev_value member is the
application-defined value to be passed to the signal-catching function at the time of the signal
delivery or to be returned at signal acceptance as the si_value member of the siginfo_t structure.

The sigval union is defined in <signal.h> and contains at least the following members:

Member Type Member Name Description
int sival_int Integer signal value.
void* sival_ptr Pointer signal value.

The sival_int member shall be used when the application-defined value is of type int; the
sival_ptr member shall be used when the application-defined value is a pointer.

When a signal is generated by the sigqueue() function or any signal-generating function that
supports the specification of an application-defined value, the signal shall be marked pending
and, if the SA_SIGINFO flag is set for that signal, the signal shall be queued to the process along
with the application-specified signal value. Multiple occurrences of signals so generated are
queued in FIFO order. It is unspecified whether signals so generated are queued when the
SA_SIGINFO flag is not set for that signal.

Signals generated by the kill() function or other events that cause signals to occur, such as
detection of hardware faults, alarm() timer expiration, or terminal activity, and for which the
implementation does not support queuing, shall have no effect on signals already queued for the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 515

18173

18174

18175

18176

18177

18178

18179

18180

18181

18182

18183

18184

18185

18186

18187

18188

18189

18190

18191

18192

18193

18194

18195

18196

18197

18198

18199

18200

18201

18202

18203

18204

18205

18206

18207

18208

18209

18210

18211

18212

18213

18214

18215

18216

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Signal Concepts General Information

same signal number.

When multiple unblocked signals, all in the range SIGRTMIN to SIGRTMAX, are pending, the
behavior shall be as if the implementation delivers the pending unblocked signal with the
lowest signal number within that range. No other ordering of signal delivery is specified.

If, when a pending signal is delivered, there are additional signals queued to that signal number,
the signal shall remain pending. Otherwise, the pending indication shall be reset.

Multi-threaded programs can use an alternate event notification mechanism. When a
notification is processed, and the sigev_notify member of the sigevent structure has the value
SIGEV_THREAD, the function sigev_notify_function is called with parameter sigev_value.

The function shall be executed in a newly created thread as if it were the start_routine for a call to
pthread_create() with the thread attributes specified by sigev_notify_attributes. If
sigev_notify_attributes is NULL, the behavior shall be as if the thread were created with the
detachstate attribute set to PTHREAD_CREATE_DETACHED. Supplying an attributes structure
with a detachstate attribute of PTHREAD_CREATE_JOINABLE results in undefined behavior. It
is implementation-defined whether the signal mask of this thread has all signals except SIGKILL
and SIGSTOP blocked, or is the same as the mask that was in effect for the thread which
installed the sigevent notification handler at the time of the call that installed the handler.

2.4.3 Signal Actions

There are three types of action that can be associated with a signal: SIG_DFL, SIG_IGN, or a
pointer to a function. Initially, all signals shall be set to SIG_DFL or SIG_IGN prior to entry of
the main() routine (see the exec functions). The actions prescribed by these values are as follows.

SIG_DFL

Signal-specific default action.

The default actions for the signals defined in this volume of POSIX.1-2024 are specified under
<signal.h>. The default actions for the realtime signals in the range SIGRTMIN to SIGRTMAX
shall be to terminate the process abnormally.

If the default action is to terminate the process abnormally, the process is terminated as if by a
call to _exit(), except that the status made available to wait(), waitid(), and waitpid() indicates
abnormal termination by the signal. If the default action is to terminate the process abnormally
with additional actions, implementation-defined abnormal termination actions, such as creation
of a core image, may also occur.

If the default action is to stop the process, the execution of that process is temporarily
suspended. When a process stops, a SIGCHLD signal shall be generated for its parent process,
unless the parent process has set the SA_NOCLDSTOP flag. While a process is stopped, any
additional signals that are sent to the process shall not be delivered until the process is
continued, except SIGKILL which always terminates the receiving process. A process that is a
member of an orphaned process group shall not be allowed to stop in response to the SIGTSTP,
SIGTTIN, or SIGTTOU signals. In cases where delivery of one of these signals would stop such a
process, the signal shall be discarded.

If the default action is to ignore the signal, delivery of the signal shall have no effect on the
process.

Setting a signal action to SIG_DFL for a signal that is pending, and whose default action is to
ignore the signal (for example, SIGCHLD), shall cause the pending signal to be discarded,
whether or not it is blocked. Any queued values pending shall be discarded and the resources

516 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18217

18218

18219

18220

18221

18222

18223

18224

18225

18226

18227

18228

18229

18230

18231

18232

18233

18234

18235

18236

18237

18238

18239

18240

18241

18242

18243

18244

18245

18246

18247

18248

18249

18250

18251

18252

18253

18254

18255

18256

18257

18258

18259

18260

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Signal Concepts

used to queue them shall be released and returned to the system for other use.

The default action for SIGCONT is to resume execution at the point where the process was
stopped, after first handling any pending unblocked signals.

XSI When a stopped process is continued, a SIGCHLD signal may be generated for its parent
process, unless the parent process has set the SA_NOCLDSTOP flag.

SIG_IGN

Ignore signal.

Delivery of the signal shall have no effect on the process. The behavior of a process is undefined
after it ignores a SIGFPE, SIGILL, SIGSEGV, or SIGBUS signal that was not generated by kill(),
sigqueue(), or raise().

The system shall not allow the action for the signals SIGKILL or SIGSTOP to be set to SIG_IGN.

Setting a signal action to SIG_IGN for a signal that is pending shall cause the pending signal to
be discarded, whether or not it is blocked.

If a process sets the action for the SIGCHLD signal to SIG_IGN, the behavior is unspecified,
XSI except as specified under ``Consequences of Process Termination’’ in the description of the

_Exit() function (see XSH _Exit(), on page 568).

Any queued values pending shall be discarded and the resources used to queue them shall be
released and made available to queue other signals.

Pointer to a Function

Catch signal.

On delivery of the signal, the receiving process is to execute the signal-catching function at the
specified address. After returning from the signal-catching function, the receiving process shall
resume execution at the point at which it was interrupted.

If the SA_SIGINFO flag for the signal is cleared, the signal-catching function shall be entered as
a C-language function call as follows:

void func(int signo);

If the SA_SIGINFO flag for the signal is set, the signal-catching function shall be entered as a C-
language function call as follows:

void func(int signo, siginfo_t *info, void *context);

where func is the specified signal-catching function, signo is the signal number of the signal
being delivered, and info is a pointer to a siginfo_t structure defined in <signal.h> containing at
least the following members:

Member Type Member Name Description
int si_signo Signal number.
int si_code Cause of the signal.
pid_t si_pid Sending process ID.
uid_t si_uid Real user ID of sending process.
void * si_addr Address of faulting instruction.
int si_status Exit value or signal.
union sigval si_value Signal value.

The si_signo member shall contain the signal number. This shall be the same as the signo
parameter. The si_code member shall contain a code identifying the cause of the signal. The

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 517

18261

18262

18263

18264

18265

18266

18267

18268

18269

18270

18271

18272

18273

18274

18275

18276

18277

18278

18279

18280

18281

18282

18283

18284

18285

18286

18287

18288

18289

18290

18291

18292

18293

18294

18295

18296

18297

18298

18299

18300

18301

18302

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Signal Concepts General Information

following non-signal-specific values are defined for si_code:

SI_USER The signal was sent by the kill() function. The implementation may set si_code
to SI_USER if the signal was sent by the raise() or abort() functions or any
similar functions provided as implementation extensions.

SI_QUEUE The signal was sent by the sigqueue() function.

SI_TIMER The signal was generated by the expiration of a timer set by timer_settime().

SI_ASYNCIO The signal was generated by the completion of an asynchronous I/O request.

MSG SI_MESGQ The signal was generated by the arrival of a message on an empty message
queue.

Signal-specific values for si_code are also defined, as described in XBD <signal.h>.

If the signal was not generated by one of the functions or events listed above, si_code shall be set
either to one of the signal-specific values described in XBD <signal.h>, or to an implementation-
defined value that is not equal to any of the values defined above.

XSI If si_code is SI_USER or SI_QUEUE, or any value less than or equal to 0, then the signal was
generated by a process and si_pid and si_uid shall be set to the process ID and the real user ID of
the sender, respectively.

In addition, si_addr, si_pid, si_status, and si_uid shall be set for certain signal-specific values of
si_code, as described in XBD <signal.h>.

If si_code is one of SI_QUEUE, SI_TIMER, SI_ASYNCIO, or SI_MESGQ, then si_value shall
contain the application-specified signal value. Otherwise, the contents of si_value are undefined.

The behavior of a process is undefined after it returns normally from a signal-catching function
for a SIGBUS, SIGFPE, SIGILL, or SIGSEGV signal that was not generated by kill(), sigqueue(),
or raise().

The system shall not allow a process to catch the signals SIGKILL and SIGSTOP.

If a process establishes a signal-catching function for the SIGCHLD signal while it has a
terminated child process for which it has not waited, it is unspecified whether a SIGCHLD
signal is generated to indicate that child process.

If the process is multi-threaded, or if the process is single-threaded and a signal handler is
executed other than as the result of:

• The process calling abort(), raise(), kill(), pthread_kill(), or sigqueue() to generate a signal
that is not blocked

• A pending signal being unblocked and being delivered before the call that unblocked it
returns

the behavior is undefined if:

• The signal handler refers to any object other than errno with static or thread storage
duration that is not a lock-free atomic object, and not a non-modifiable object (for example,
string literals, objects that were defined with a const-qualified type, and objects in memory
that is mapped read-only), other than by assigning a value to an object declared as volatile
sig_atomic_t, unless the previous modification (if any) to the object happens before the
signal handler is called and the return from the signal handler happens before the next
modification (if any) to the object.

518 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18303

18304

18305

18306

18307

18308

18309

18310

18311

18312

18313

18314

18315

18316

18317

18318

18319

18320

18321

18322

18323

18324

18325

18326

18327

18328

18329

18330

18331

18332

18333

18334

18335

18336

18337

18338

18339

18340

18341

18342

18343

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Signal Concepts

• The signal handler calls any function or function-like macro defined in this standard other
than one of the functions and macros specified below as being async-signal-safe.

The following table defines a set of functions and function-like macros that shall be async-signal-
safe. Therefore, applications can call them, without restriction, from signal-catching functions.
Note that, although there is no restriction on the calls themselves, for certain functions there are
restrictions on subsequent behavior after the function is called from a signal-catching function
(see longjmp()).

_Exit()
_Fork()
_exit()
abort()
accept()
accept4()
access()
aio_error()
aio_return()
aio_suspend()
alarm()
be16toh()
be32toh()
be64toh()
bind()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
clock_gettime()
close()
connect()
creat()
dup()
dup2()
dup3()
execl()
execle()
execv()
execve()
faccessat()
fchdir()
fchmod()
fchmodat()
fchown()
fchownat()
fcntl()
fdatasync()
fexecve()
ffs()

fstat()
fstatat()
fsync()
ftruncate()
futimens()
getegid()
geteuid()
getgid()
getgroups()
getpeername()
getpgrp()
getpid()
getppid()
getresgid()
getresuid()
getsockname()
getsockopt()
getuid()
htobe16()
htobe32()
htobe64()
htole16()
htole32()
htole64()
htonl()
htons()
kill()
killpg()
le16toh()
le32toh()
le64toh()
link()
linkat()
listen()
longjmp()
lseek()
lstat()
memccpy()
memchr()
memcmp()
memcpy()
memmove()
memset()

mkdir()
mkdirat()
mkfifo()
mkfifoat()
mknod()
mknodat()
ntohl()
ntohs()
open()
openat()
pause()
pipe()
pipe2()
poll()
posix_close()
ppoll()
pread()
pselect()
pthread_kill()
pthread_self()
pthread_setcancelstate()
pthread_sigmask()
pwrite()
quick_exit()
raise()
read()
readv()
readlink()
readlinkat()
recv()
recvfrom()
recvmsg()
rename()
renameat()
rmdir()
select()
sem_post()
send()
sendmsg()
sendto()
setegid()
seteuid()
setgid()

setpgid()
setregid()
setresgid()
setresuid()
setreuid()
setsid()
setsockopt()
setuid()
shutdown()
sig2str()
sigaction()
sigaddset()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
siglongjmp()
signal()
sigpending()
sigprocmask()
sigqueue()
sigsuspend()
sleep()
sockatmark()
socket()
socketpair()
stat()
stpcpy()
stpncpy()
strcat()
strchr()
strcmp()
strcpy()
strcspn()
strlcat()
strlcpy()
strlen()
strncat()
strncmp()
strncpy()
strnlen()
strpbrk()
strrchr()

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 519

18344

18345

18346

18347

18348

18349

18350

18351

18352

18353

18354

18355

18356

18357

18358

18359

18360

18361

18362

18363

18364

18365

18366

18367

18368

18369

18370

18371

18372

18373

18374

18375

18376

18377

18378

18379

18380

18381

18382

18383

18384

18385

18386

18387

18388

18389

18390

18391

18392

18393

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Signal Concepts General Information

strspn()
strstr()
strtok_r()
symlink()
symlinkat()
tcdrain()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcgetwinsize()
tcsendbreak()
tcsetattr()
tcsetpgrp()
tcsetwinsize()

time()
timer_getoverrun()
timer_gettime()
timer_settime()
times()
umask()
uname()
unlink()
unlinkat()
utimensat()
utimes()
va_arg()
va_copy()
va_end()
va_start()

wait()
waitid()
waitpid()
wcpcpy()
wcpncpy()
wcscat()
wcschr()
wcscmp()
wcscpy()
wcscspn()
wcslcat()
wcslcpy()
wcslen()
wcsncat()
wcsncmp()

wcsncpy()
wcsnlen()
wcspbrk()
wcsrchr()
wcsspn()
wcsstr()
wcstok()
wmemchr()
wmemcmp()
wmemcpy()
wmemmove()
wmemset()
write()
writev()

In addition, the functions in <stdatomic.h> other than atomic_init() shall be async-signal-safe
when the atomic arguments are lock-free, and the atomic_is_lock_free() function shall be async-
signal-safe when called with an atomic argument.

All other functions (including generic functions) and function-like macros may be unsafe with
respect to signals. It is implementation-defined which additional interfaces, if any, are also
async-signal-safe. In the presence of signals, all functions defined by this volume of
POSIX.1-2024 shall behave as defined when called from or interrupted by a signal-catching
function, with the exception that when a signal interrupts an unsafe function or function-like
macro, or equivalent (such as the processing equivalent to exit() performed after a return from
the initial call to main()), and the signal-catching function calls an unsafe function or function-
like macro, the behavior is undefined. Additional exceptions are specified in the descriptions of
individual functions such as longjmp().

Operations which obtain the value of errno and operations which assign a value to errno shall be
async-signal-safe, provided that the signal-catching function saves the value of errno upon entry
and restores it before it returns.

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or
continue, the entire process shall be terminated, stopped, or continued, respectively.

2.4.4 Signal Effects on Other Functions

Signals affect the behavior of certain functions defined by this volume of POSIX.1-2024 if
delivered to a process while it is executing such a function. If the action of the signal is to
terminate the process, the process shall be terminated and the function shall not return. If the
action of the signal is to stop the process, the process shall stop until continued or terminated.
Generation of a SIGCONT signal for the process shall cause the process to be continued, and the
original function shall continue at the point the process was stopped. If the action of the signal is
to invoke a signal-catching function, the signal-catching function shall be invoked; in this case
the original function is said to be ``interrupted’’ by the signal. If the signal-catching function
executes a return statement, the behavior of the interrupted function shall be as described
individually for that function, except as noted for unsafe functions. After returning from a
signal-catching function, the value of errno is unspecified if the signal-catching function or any
function it called assigned a value to errno and the signal-catching function did not save and
restore the original value of errno. Signals that are ignored shall not affect the behavior of any
function; signals that are blocked shall not affect the behavior of any function until they are
unblocked and then delivered, except as specified for the sigpending() and sigwait() functions.

520 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18394

18395

18396

18397

18398

18399

18400

18401

18402

18403

18404

18405

18406

18407

18408

18409

18410

18411

18412

18413

18414

18415

18416

18417

18418

18419

18420

18421

18422

18423

18424

18425

18426

18427

18428

18429

18430

18431

18432

18433

18434

18435

18436

18437

18438

18439

18440

18441

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Standard I/O Streams

2.5 Standard I/O Streams
CX A stream is associated with an external file (which may be a physical device) or memory buffer
CX by ``opening’’ a file or buffer. This may involve ``creating’’ a new file. Creating an existing file

causes its former contents to be discarded if necessary. If a file can support positioning requests
(such as a disk file, as opposed to a terminal), then a ``file position indicator’’ associated with the
stream is positioned at the start (byte number 0) of the file, unless the file is opened with append
mode, in which case it is implementation-defined whether the file position indicator is initially
positioned at the beginning or end of the file. The file position indicator is maintained by
subsequent reads, writes, and positioning requests, to facilitate an orderly progression through
the file.

The wide-character input functions shall read characters from the stream and convert them to
wide characters as if they were read by successive calls to the fgetwc() function. Each conversion
shall occur as if by a call to the mbrtowc() function, with the conversion state described by the
stream’s own mbstate_t object (see Section 2.5.2, on page 524). The byte input functions shall
read characters from the stream as if by successive calls to the fgetc() function.

The wide-character output functions shall convert wide characters to characters and write them
to the stream as if they were written by successive calls to the fputwc() function. Each conversion
shall occur as if by a call to the wcrtomb() function, with the conversion state described by the
stream’s own mbstate_t object (see Section 2.5.2, on page 524). The byte output functions shall
write characters to the stream as if by successive calls to the fputc() function.

The perror(), psiginfo(), and psignal() functions shall behave as described above for the byte
output functions if the stream is already byte-oriented, and shall behave as described above for
the wide-character output functions if the stream is already wide-oriented. If the stream has no
orientation, they shall behave as described for the byte output functions except that they shall
not change the orientation of the stream.

Functions other than perror(), psiginfo(), and psignal() that write to streams but are neither wide-
character output nor byte output functions (getopt() and wordexp()), shall behave as described
above for the byte output functions, except that if the stream has no orientation, it is unspecified
whether they set the stream to byte orientation or leave it with no orientation.

When a stream is ``unbuffered’’, bytes are intended to appear from the source or at the
destination as soon as possible; otherwise, bytes may be accumulated and transmitted as a
block. When a stream is ``fully buffered’’, bytes are intended to be transmitted as a block when a
buffer is filled. When a stream is ``line buffered’’, bytes are intended to be transmitted as a block
when a <newline> byte is encountered. Furthermore, bytes are intended to be transmitted as a
block when a buffer is filled, when input is requested on an unbuffered stream, or when input is
requested on a line-buffered stream that requires the transmission of bytes. Support for these
characteristics is implementation-defined, and may be affected via setbuf() and setvbuf().

A file may be disassociated from a controlling stream by ``closing’’ the file. Output streams are
flushed (any unwritten buffer contents are transmitted) before the stream is disassociated from
the file. The value of a pointer to a FILE object is unspecified after the associated file is closed
(including the standard streams).

A file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main() function
returns to its original caller, or if the exit() function is called, all open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination,
such as calling abort(), need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a FILE
object need not necessarily serve in place of the original.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 521

18442

18443

18444

18445

18446

18447

18448

18449

18450

18451

18452

18453

18454

18455

18456

18457

18458

18459

18460

18461

18462

18463

18464

18465

18466

18467

18468

18469

18470

18471

18472

18473

18474

18475

18476

18477

18478

18479

18480

18481

18482

18483

18484

18485

18486

18487

18488

18489

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Standard I/O Streams General Information

At program start-up, three streams shall be predefined and already open: stdin (standard input,
for conventional input) for reading, stdout (standard output, for conventional output) for
writing, and stderr (standard error, for diagnostic output) for writing. When opened, stderr shall

CX not be fully buffered; stdin and stdout shall be fully buffered if and only if the file descriptor
associated with the stream is determined not to be associated with an interactive device.

Each stream shall have an associated lock that is used to prevent data races when multiple
threads of execution access a stream, and to restrict the interleaving of stream operations
performed by multiple threads. Only one thread can hold this lock at a time. The lock shall be
reentrant: a single thread can hold the lock multiple times at a given time. All functions that

CX read, write, position, or query the position of a stream, except those with names ending
CX _unlocked, shall lock the stream as if by a call to flockfile() before accessing it and release the
CX lock as if by a call to funlockfile() when the access is complete.

CX If the lock is not immediately available, the function shall wait for it to become available, except
in the following circumstances. If the stream is line buffered and is open for writing or for
update, and the reason the function is attempting to lock the stream is because it is going to
request input on another stream that is unbuffered, or is line buffered and requires the
transmission of characters from the host environment (see above), then the function shall
attempt to determine whether a deadlock situation exists. If a deadlock situation is found to
exist, the function shall fail. If the function is able to establish that a deadlock situation does not
exist, it shall wait for the lock to become available. If the function does not establish whether or
not a deadlock situation exists, it shall continue as if it had already locked the stream, found its
buffer to be empty, and released the lock.

CX A stream associated with a memory buffer shall have the same operations for text files that a
stream associated with an external file would have. In addition, the stream orientation shall be
determined in exactly the same fashion.

Input and output operations on a stream associated with a memory buffer by a call to
fmemopen() shall be constrained by the implementation to take place within the bounds of the
memory buffer. In the case of a stream opened by open_memstream() or open_wmemstream(), the
memory area shall grow dynamically to accommodate write operations as necessary. For output,
if the stream is fully buffered or line buffered, data shall be moved from the stream’s internal
buffer, or a buffer provided by setvbuf(), to the memory buffer during a flush or close operation.
For input, it is unspecified whether a buffer provided by setvbuf() is used or whether read
operations read directly from the memory buffer provided to or allocated by fmemopen().

When a standard I/O stream has an associated memory buffer (whether allocated internally,
supplied to setvbuf(), or supplied to fmemopen()), the behavior is undefined if that buffer
overlaps with the destination buffer passed to a call that reads from the stream or with the
source buffer passed to a call that writes to the stream.

2.5.1 Interaction of File Descriptors and Standard I/O Streams

CX This section describes the interaction of file descriptors and standard I/O streams. The
functionality described in this section is an extension to the ISO C standard (and the rest of this
section is not further CX shaded).

An open file description may be accessed through a file descriptor, which is created using
functions such as open() or pipe(), or through a stream, which is created using functions such as
fopen() or popen(). Either a file descriptor or a stream is called a ``handle’’ on the open file
description to which it refers; an open file description may have several handles.

Handles can be created or destroyed by explicit user action, without affecting the underlying
open file description. Some of the ways to create them include fcntl(), dup(), fdopen(), fileno(),

522 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18490

18491

18492

18493

18494

18495

18496

18497

18498

18499

18500

18501

18502

18503

18504

18505

18506

18507

18508

18509

18510

18511

18512

18513

18514

18515

18516

18517

18518

18519

18520

18521

18522

18523

18524

18525

18526

18527

18528

18529

18530

18531

18532

18533

18534

18535

18536

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Standard I/O Streams

and fork(). They can be destroyed by at least fclose(), close(), and the exec functions.

A file descriptor that is never used in an operation that could affect the file offset (for example,
read(), write(), or lseek()) is not considered a handle for this discussion, but could give rise to
one (for example, as a consequence of fdopen(), dup(), or fork()). This exception does not include
the file descriptor underlying a stream, whether created with fopen() or fdopen(), so long as it is
not used directly by the application to affect the file offset. The read() and write() functions
implicitly affect the file offset; lseek() explicitly affects it.

The result of function calls involving any one handle (the ``active handle’’) is defined elsewhere
in this volume of POSIX.1-2024, but if two or more handles are used, and any one of them is a
stream, the application shall ensure that their actions are coordinated as described below. If this
is not done, the result is undefined.

A handle which is a stream is considered to be closed when either an fclose(), or freopen() with
non-null filename, is executed on it (for freopen() with a null filename, it is implementation-
defined whether a new handle is created or the existing one reused), or when the process
owning that stream terminates with exit(), abort(), or due to a signal. Several functions close file
descriptors, including close(), dup2(), _exit(), the exec functions when FD_CLOEXEC is set on a
file descriptor, fork() when FD_CLOFORK is set on a file descriptor, and posix_spawn() when
either FD_CLOEXEC or FD_CLOFORK is set.

For a handle to become the active handle, the application shall ensure that the actions below are
performed between the last use of the handle (the current active handle) and the first use of the
second handle (the future active handle). The second handle then becomes the active handle. All
activity by the application affecting the file offset on the first handle shall be suspended until it
again becomes the active file handle. (If a stream function has as an underlying function one that
affects the file offset, the stream function shall be considered to affect the file offset.)

The handles need not be in the same process for these rules to apply.

Note that after a fork(), two handles exist where one existed before. The application shall ensure
that, if both handles can ever be accessed, they are both in a state where the other could become
the active handle first. The application shall prepare for a fork() exactly as if it were a change of
active handle. (If the only action performed by one of the processes is one of the exec functions or
_exit() (not exit()), the handle is never accessed in that process.)

For the first handle, the first applicable condition below applies. After the actions required
below are taken, if the handle is still open, the application can close it.

• If it is a file descriptor, no action is required.

• If the only further action to be performed on any handle to this open file descriptor is to
close it, no action need be taken.

• If it is a stream which is unbuffered, no action need be taken.

• If it is a stream which is line buffered, and the last byte written to the stream was a
<newline> (that is, as if a:

putc('\n')

was the most recent operation on that stream), no action need be taken.

• If it is a stream which is open for writing or appending (but not also open for reading), the
application shall either perform an fflush(), or the stream shall be closed.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 523

18537

18538

18539

18540

18541

18542

18543

18544

18545

18546

18547

18548

18549

18550

18551

18552

18553

18554

18555

18556

18557

18558

18559

18560

18561

18562

18563

18564

18565

18566

18567

18568

18569

18570

18571

18572

18573

18574

18575

18576

18577

18578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Standard I/O Streams General Information

• If the stream is open for reading and it is at the end of the file (feof() is true), no action need
be taken.

• If the stream is open with a mode that allows reading and the underlying open file
description refers to a device that is capable of seeking, the application shall either perform
an fflush(), or the stream shall be closed.

For the second handle:

• If any previous active handle has been used by a function that explicitly changed the file
offset, except as required above for the first handle, the application shall perform an lseek()
or fseek() (as appropriate to the type of handle) to an appropriate location.

If the active handle ceases to be accessible before the requirements on the first handle, above,
have been met, the state of the open file description becomes undefined. This might occur
during functions such as a fork() or _exit().

The exec functions make inaccessible all streams that are open at the time they are called,
independent of which streams or file descriptors may be available to the new process image.

When these rules are followed, regardless of the sequence of handles used, no data shall be lost
or duplicated when writing, and all data shall be written in order, except as requested by seeks.
It is implementation-defined whether, and under what conditions, all input is seen exactly once.

Each function that operates on a stream is said to have zero or more ``underlying functions’’.
This means that the stream function shares certain traits with the underlying functions, but does
not require that there be any relation between the implementations of the stream function and its
underlying functions.

2.5.2 Stream Orientation and Encoding Rules

The definition of a stream includes an ``orientation’’. After a stream is associated with an
external file, but before any operations are performed on it, the stream is without orientation.
Once a wide-character input/output function has been applied to a stream without orientation,
the stream shall become ``wide-oriented’’. Similarly, once a byte input/output function has been
applied to a stream without orientation, the stream shall become ``byte-oriented’’. Only a call to
the freopen() function or the fwide() function can otherwise alter the orientation of a stream.

A successful call to freopen() shall remove any orientation. The three predefined streams standard
input, standard output, and standard error shall be unoriented at program start-up.

Byte input/output functions cannot be applied to a wide-oriented stream, and wide-character
input/output functions cannot be applied to a byte-oriented stream. The remaining stream
operations shall not affect and shall not be affected by a stream’s orientation, except for the
following additional restriction:

• For wide-oriented streams, after a successful call to a file-positioning function that leaves
the file position indicator prior to the end-of-file, a wide-character output function can
overwrite a partial character; any file contents beyond the byte(s) written are henceforth
undefined.

CX Each wide-oriented stream that was not opened with open_wmemstream() has an associated
mbstate_t object that stores the current parse state of the stream. A successful call to fgetpos()
shall store a representation of the value of this mbstate_t object as part of the value of the fpos_t
object. A later successful call to fsetpos() using the same stored fpos_t value shall restore the
value of the associated mbstate_t object as well as the position within the controlled stream.

Implementations that support multiple encoding rules associate an encoding rule with the

524 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18579

18580

18581

18582

18583

18584

18585

18586

18587

18588

18589

18590

18591

18592

18593

18594

18595

18596

18597

18598

18599

18600

18601

18602

18603

18604

18605

18606

18607

18608

18609

18610

18611

18612

18613

18614

18615

18616

18617

18618

18619

18620

18621

18622

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Standard I/O Streams

stream. The encoding rule shall be determined by the setting of the LC_CTYPE category in the
current locale at the time when the stream becomes wide-oriented. As with the stream’s
orientation, the encoding rule associated with a stream cannot be changed once it has been set,
except by a successful call to freopen() which clears the encoding rule and resets the orientation
to unoriented.

Although wide-oriented streams are conceptually sequences of wide characters, the external file
CX associated with a wide-oriented stream that was not opened with open_wmemstream() is a

sequence of (possibly multi-byte) characters generalized as follows:

• Multi-byte encodings within files may contain embedded null bytes (unlike multi-byte
encodings valid for use internal to the program).

• A file need not begin nor end in the initial shift state.

Moreover, the encodings used for characters may differ among files. Both the nature and choice
of such encodings are implementation-defined.

CX On streams that were not opened with open_wmemstream(), the wide-character input functions
read characters from the stream and convert them to wide characters as if they were read by
successive calls to the fgetwc() function. Each conversion shall occur as if by a call to the

CX mbrtowc() function, with the conversion state described by the stream’s own mbstate_t object,
except the encoding rule associated with the stream is used instead of the encoding rule implied
by the LC_CTYPE category of the current locale.

CX On streams that were not opened with open_wmemstream(), the wide-character output functions
convert wide characters to (possibly multi-byte) characters and write them to the stream as if
they were written by successive calls to the fputwc() function. Each conversion shall occur as if
by a call to the wcrtomb() function, with the conversion state described by the stream’s own

CX mbstate_t object, except the encoding rule associated with the stream is used instead of the
encoding rule implied by the LC_CTYPE category of the current locale.

An ``encoding error ’’ shall occur if the character sequence presented to the underlying mbrtowc()
function does not form a valid (generalized) character, or if the code value passed to the
underlying wcrtomb() function does not correspond to a valid (generalized) character. The wide-
character input/output functions and the byte input/output functions store the value of the
macro [EILSEQ] in errno if and only if an encoding error occurs.

2.6 File Descriptor Allocation
All functions that open one or more file descriptors shall, unless specified otherwise, atomically
allocate the lowest numbered available (that is, not already open in the calling process) file
descriptor at the time of each allocation. Where a single function allocates two file descriptors
(for example, pipe() or socketpair()), the allocations may be independent and therefore
applications should not expect them to have adjacent values or depend on which has the higher
value.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 525

18623

18624

18625

18626

18627

18628

18629

18630

18631

18632

18633

18634

18635

18636

18637

18638

18639

18640

18641

18642

18643

18644

18645

18646

18647

18648

18649

18650

18651

18652

18653

18654

18655

18656

18657

18658

18659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

XSI Interprocess Communication General Information

2.7 XSI Interprocess Communication
XSI This section describes extensions to support interprocess communication. The functionality

described in this section shall be provided on implementations that support the XSI option (and
the rest of this section is not further shaded).

The following message passing, semaphore, and shared memory services form an XSI
interprocess communication facility. Certain aspects of their operation are common, and are
defined as follows.

IPC Functions
msgctl()
msgget()
msgrcv()
msgsnd()

semctl()
semget()
semop()

shmat()
shmctl()
shmdt()
shmget()

Another interprocess communication facility is provided by functions in the Realtime Option
Group; see Section 2.8 (on page 527).

2.7.1 IPC General Description

Each individual shared memory segment, message queue, and semaphore set shall be identified
by a unique positive integer, called, respectively, a shared memory identifier, shmid, a semaphore
identifier, semid, and a message queue identifier, msqid. The identifiers shall be returned by calls
to shmget(), semget(), and msgget(), respectively.

Associated with each identifier is a data structure which contains data related to the operations
which may be or may have been performed; see the Base Definitions volume of POSIX.1-2024,
<sys/shm.h>, <sys/sem.h>, and <sys/msg.h> for their descriptions.

Each of the data structures contains both ownership information and an ipc_perm structure (see
the Base Definitions volume of POSIX.1-2024, <sys/ipc.h>) which are used in conjunction to
determine whether or not read/write (read/alter for semaphores) permissions should be
granted to processes using the IPC facilities. The mode member of the ipc_perm structure acts as
a bit field which determines the permissions.

The values of the bits are given below in octal notation along with the symbolic constants
defined in <sys/stat.h> that can be used to represent them.

Octal <sys/stat.h>
Value Symbolic Constant Meaning

0400 S_IRUSR Read by user.
0200 S_IWUSR Write (for shared memory & message queues) or

alter (for semaphores) by user.
0040 S_IRGRP Read by group.
0020 S_IWGRP Write or alter by group.
0004 S_IROTH Read by others.
0002 S_IWOTH Write or alter by others.

The name of the ipc_perm structure is shm_perm, sem_perm, or msg_perm, depending on which
service is being used. In each case, read and write/alter permissions shall be granted to a
process if one or more of the following are true ("xxx" is replaced by shm, sem, or msg, as
appropriate):

526 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18660

18661

18662

18663

18664

18665

18666

18667

18668

18669

18670

18671

18672

18673

18674

18675

18676

18677

18678

18679

18680

18681

18682

18683

18684

18685

18686

18687

18688

18689

18690

18691

18692

18693

18694

18695

18696

18697

18698

18699

18700

18701

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information XSI Interprocess Communication

• The process has appropriate privileges.

• The effective user ID of the process matches xxx_perm.cuid or xxx_perm.uid in the data
structure associated with the IPC identifier, and the appropriate bit of the user field in
xxx_perm.mode is set.

• The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid but the
effective group ID of the process matches xxx_perm.cgid or xxx_perm.gid in the data
structure associated with the IPC identifier, and the appropriate bit of the group field in
xxx_perm.mode is set.

• The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid and the
effective group ID of the process does not match xxx_perm.cgid or xxx_perm.gid in the data
structure associated with the IPC identifier, but the appropriate bit of the other field in
xxx_perm.mode is set.

Otherwise, the permission shall be denied.

In addition to the ipc_perm structure, each associated data structure includes several time_t
fields for recording timestamps of particular operations. When an operation is described as
setting a timestamp to the current time, that particular timestamp member of the associated data
structure shall be set to the largest time_t value which is not greater than the current time.

2.8 Realtime
This section defines functions to support the source portability of applications with realtime
requirements. The presence of some of these functions is dependent on support for
implementation options described in the text.

The specific functional areas included in this section and their scope include the following. Full
definitions of these terms can be found in XBD Chapter 3 (on page 31).

• Semaphores

• Process Memory Locking

• Memory Mapped Files and Shared Memory Objects

• Priority Scheduling

• Realtime Signal Extension

• Timers

• Interprocess Communication

• Synchronized Input and Output

• Asynchronous Input and Output

All the realtime functions defined in this volume of POSIX.1-2024 are portable, although some of
the numeric parameters used by an implementation may have hardware dependencies.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 527

18702

18703

18704

18705

18706

18707

18708

18709

18710

18711

18712

18713

18714

18715

18716

18717

18718

18719

18720

18721

18722

18723

18724

18725

18726

18727

18728

18729

18730

18731

18732

18733

18734

18735

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Realtime General Information

2.8.1 Realtime Signals

See Section 2.4.2 (on page 515).

2.8.2 Asynchronous I/O

An asynchronous I/O control block structure aiocb is used in many asynchronous I/O
functions. It is defined in the Base Definitions volume of POSIX.1-2024, <aio.h> and has at least
the following members:

Member Type Member Name Description
int aio_fildes File descriptor.
off_t aio_offset File offset.
volatile void* aio_buf Location of buffer.
size_t aio_nbytes Length of transfer.
int aio_reqprio Request priority offset.
struct sigevent aio_sigevent Signal number and value.
int aio_lio_opcode Operation to be performed.

The aio_fildes element is the file descriptor on which the asynchronous operation is performed.

If O_APPEND is not set for the file descriptor aio_fildes and if aio_fildes is associated with a
device that is capable of seeking, then the requested operation takes place at the absolute
position in the file as given by aio_offset, as if lseek() were called immediately prior to the
operation with an offset argument equal to aio_offset and a whence argument equal to SEEK_SET.
If O_APPEND is set for the file descriptor, or if aio_fildes is associated with a device that is
incapable of seeking, write operations append to the file in the same order as the calls were
made, with the following exception: under implementation-defined circumstances, such as
operation on a multi-processor or when requests of differing priorities are submitted at the same
time, the ordering restriction may be relaxed. Since there is no way for a strictly conforming
application to determine whether this relaxation applies, all strictly conforming applications
which rely on ordering of output shall be written in such a way that they operate correctly if the
relaxation applies. After a successful call to enqueue an asynchronous I/O operation, the value
of the file offset for the file is unspecified. The aio_nbytes and aio_buf elements are the same as the
nbyte and buf arguments defined by read() and write(), respectively.

If _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined, then
asynchronous I/O is queued in priority order, with the priority of each asynchronous operation
based on the current scheduling priority of the calling process. The aio_reqprio member can be
used to lower (but not raise) the asynchronous I/O operation priority and is within the range
zero through {AIO_PRIO_DELTA_MAX}, inclusive. Unless both _POSIX_PRIORITIZED_IO and
_POSIX_PRIORITY_SCHEDULING are defined, the order of processing asynchronous I/O
requests is unspecified. When both _POSIX_PRIORITIZED_IO and
_POSIX_PRIORITY_SCHEDULING are defined, the order of processing of requests submitted
by processes whose schedulers are not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is
unspecified. The priority of an asynchronous request is computed as (process scheduling
priority) minus aio_reqprio. The priority assigned to each asynchronous I/O request is an
indication of the desired order of execution of the request relative to other asynchronous I/O
requests for this file. If _POSIX_PRIORITIZED_IO is defined, requests issued with the same
priority to a character special file are processed by the underlying device in FIFO order; the
order of processing of requests of the same priority issued to files that are not character special
files is unspecified. Numerically higher priority values indicate requests of higher priority. The
value of aio_reqprio has no effect on process scheduling priority. When prioritized asynchronous
I/O requests to the same file are blocked waiting for a resource required for that I/O operation,

528 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18736

18737

18738

18739

18740

18741

18742

18743

18744

18745

18746

18747

18748

18749

18750

18751

18752

18753

18754

18755

18756

18757

18758

18759

18760

18761

18762

18763

18764

18765

18766

18767

18768

18769

18770

18771

18772

18773

18774

18775

18776

18777

18778

18779

18780

18781

18782

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Realtime

the higher-priority I/O requests shall be granted the resource before lower-priority I/O requests
are granted the resource. The relative priority of asynchronous I/O and synchronous I/O is
implementation-defined. If _POSIX_PRIORITIZED_IO is defined, the implementation shall
define for which files I/O prioritization is supported.

The aio_sigevent determines how the calling process shall be notified upon I/O completion, as
specified in Section 2.4.1 (on page 513). If aio_sigevent.sigev_notify is SIGEV_NONE, then no
signal shall be posted upon I/O completion, but the error status for the operation and the return
status for the operation shall be set appropriately.

The aio_lio_opcode field is used only by the lio_listio() call. The lio_listio() call allows multiple
asynchronous I/O operations to be submitted at a single time. The function takes as an
argument an array of pointers to aiocb structures. Each aiocb structure indicates the operation to
be performed (read or write) via the aio_lio_opcode field.

The address of the aiocb structure is used as a handle for retrieving the error status and return
status of the asynchronous operation while it is in progress.

The aiocb structure and the data buffers associated with the asynchronous I/O operation are
being used by the system for asynchronous I/O while, and only while, the error status of the
asynchronous operation is equal to [EINPROGRESS]. Applications shall not modify the aiocb
structure while the structure is being used by the system for asynchronous I/O.

The return status of the asynchronous operation is the number of bytes transferred by the I/O
operation. If the error status is set to indicate an error completion, then the return status is set to
the return value that the corresponding read(), write(), or fsync() call would have returned.
When the error status is not equal to [EINPROGRESS], the return status shall reflect the return
status of the corresponding synchronous operation.

2.8.3 Memory Management

2.8.3.1 Memory Locking

MLR Range memory locking operations are defined in terms of pages. Implementations may restrict
the size and alignment of range lockings to be on page-size boundaries. The page size, in bytes,
is the value of the configurable system variable {PAGESIZE}. If an implementation has no
restrictions on size or alignment, it may specify a 1-byte page size.

ML|MLR Memory locking guarantees the residence of portions of the address space. It is implementation-
defined whether locking memory guarantees fixed translation between virtual addresses (as
seen by the process) and physical addresses. Per-process memory locks are not inherited across a
fork(), and all memory locks owned by a process are unlocked upon exec or process termination.
Unmapping of an address range removes any memory locks established on that address range
by this process.

2.8.3.2 Memory Mapped Files

Range memory mapping operations are defined in terms of pages. Implementations may
restrict the size and alignment of range mappings to be on page-size boundaries. The page size,
in bytes, is the value of the configurable system variable {PAGESIZE}. If an implementation has
no restrictions on size or alignment, it may specify a 1-byte page size.

Memory mapped files provide a mechanism that allows a process to access files by directly

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 529

18783

18784

18785

18786

18787

18788

18789

18790

18791

18792

18793

18794

18795

18796

18797

18798

18799

18800

18801

18802

18803

18804

18805

18806

18807

18808

18809

18810

18811

18812

18813

18814

18815

18816

18817

18818

18819

18820

18821

18822

18823

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Realtime General Information

incorporating file data into its address space. Once a file is mapped into a process address space,
the data can be manipulated as memory. If more than one process maps a file, its contents are
shared among them. If the mappings allow shared write access, then data written into the
memory object through the address space of one process appears in the address spaces of all
processes that similarly map the same portion of the memory object.

SHM Shared memory objects are named regions of storage that may be independent of the file system
and can be mapped into the address space of one or more processes to allow them to share the
associated memory.

SHM An unlink() of a file or shm_unlink() of a shared memory object, while causing the removal of
the name, does not unmap any mappings established for the object. Once the name has been
removed, the contents of the memory object are preserved as long as it is referenced. The
memory object remains referenced as long as a process has the memory object open or has some
area of the memory object mapped.

2.8.3.3 Memory Protection

When an object is mapped, various application accesses to the mapped region may result in
signals. In this context, SIGBUS is used to indicate an error using the mapped object, and
SIGSEGV is used to indicate a protection violation or misuse of an address:

• A mapping may be restricted to disallow some types of access.

• Write attempts to memory that was mapped without write access, or any access to
memory mapped PROT_NONE, shall result in a SIGSEGV signal.

• References to unmapped addresses shall result in a SIGSEGV signal.

• Reference to whole pages within the mapping, but beyond the current length of the object,
shall result in a SIGBUS signal.

• The size of the object is unaffected by access beyond the end of the object (even if a
SIGBUS is not generated).

2.8.3.4 Typed Memory Objects

TYM The functionality described in this section shall be provided on implementations that support
the Typed Memory Objects option (and the rest of this section is not further shaded for this
option).

Implementations may support the Typed Memory Objects option independently of support for
memory mapped files or shared memory objects. Typed memory objects are implementation-
configurable named storage pools accessible from one or more processors in a system, each via
one or more ports, such as backplane buses, LANs, I/O channels, and so on. Each valid
combination of a storage pool and a port is identified through a name that is defined at system
configuration time, in an implementation-defined manner; the name may be independent of the
file system. Using this name, a typed memory object can be opened and mapped into process
address space. For a given storage pool and port, it is necessary to support both dynamic
allocation from the pool as well as mapping at an application-supplied offset within the pool;
when dynamic allocation has been performed, subsequent deallocation shall be supported.
Lastly, accessing typed memory objects from different ports requires a method for obtaining the
offset and length of contiguous storage of a region of typed memory (dynamically allocated or
not); this allows typed memory to be shared among processes and/or processors while being
accessed from the desired port.

530 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18824

18825

18826

18827

18828

18829

18830

18831

18832

18833

18834

18835

18836

18837

18838

18839

18840

18841

18842

18843

18844

18845

18846

18847

18848

18849

18850

18851

18852

18853

18854

18855

18856

18857

18858

18859

18860

18861

18862

18863

18864

18865

18866

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Realtime

2.8.4 Process Scheduling

PS The functionality described in this section shall be provided on implementations that support
the Process Scheduling option (and the rest of this section is not further shaded for this option).

Scheduling Policies

The scheduling semantics described in this volume of POSIX.1-2024 are defined in terms of a
conceptual model that contains a set of thread lists. No implementation structures are
necessarily implied by the use of this conceptual model. It is assumed that no time elapses
during operations described using this model, and therefore no simultaneous operations are
possible. This model discusses only processor scheduling for runnable threads, but it should be
noted that greatly enhanced predictability of realtime applications results if the sequencing of
other resources takes processor scheduling policy into account.

There is, conceptually, one thread list for each priority. A runnable thread shall be on the thread
list for that thread’s priority. Multiple scheduling policies shall be provided. Each non-empty
thread list is ordered, contains a head as one end of its order, and a tail as the other. The purpose
of a scheduling policy is to define the allowable operations on this set of lists (for example,
moving threads between and within lists).

The POSIX model treats a ``process’’ as an aggregation of system resources, including one or
more threads that may be scheduled by the operating system on the processor(s) it controls.
Although a process has its own set of scheduling attributes, these have an indirect effect (if any)
on the scheduling behavior of individual threads as described below.

Each thread shall be controlled by an associated scheduling policy and priority. These
parameters may be specified by explicit application execution of the pthread_setschedparam()
function. Additionally, the scheduling parameters of a thread (but not its scheduling policy) may
be changed by application execution of the pthread_setschedprio() function.

Each process shall be controlled by an associated scheduling policy and priority. These
parameters may be specified by explicit application execution of the sched_setscheduler() or
sched_setparam() functions.

The effect of the process scheduling attributes on individual threads in the process is dependent
on the scheduling contention scope of the threads (see Section 2.9.4, on page 540):

• For threads with system scheduling contention scope, the process scheduling attributes
shall have no effect on the scheduling attributes or behavior either of the thread or an
underlying kernel scheduling entity dedicated to that thread.

• For threads with process scheduling contention scope, the process scheduling attributes
shall have no effect on the scheduling attributes of the thread. However, any underlying
kernel scheduling entity used by these threads shall at all times behave as specified by the
scheduling attributes of the containing process, and this behavior may affect the
scheduling behavior of the process contention scope threads. For example, a process
contention scope thread with scheduling policy SCHED_FIFO and the system maximum
priority H (the value returned by sched_get_priority_max(SCHED_FIFO)) in a process with
scheduling policy SCHED_RR and system minimum priority L (the value returned by
sched_get_priority_min(SCHED_RR)) shall be subject to timeslicing and to preemption by
any thread with an effective priority higher than L.

Associated with each policy is a priority range. Each policy definition shall specify the minimum
priority range for that policy. The priority ranges for each policy may but need not overlap the
priority ranges of other policies.

A conforming implementation shall select the thread that is defined as being at the head of the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 531

18867

18868

18869

18870

18871

18872

18873

18874

18875

18876

18877

18878

18879

18880

18881

18882

18883

18884

18885

18886

18887

18888

18889

18890

18891

18892

18893

18894

18895

18896

18897

18898

18899

18900

18901

18902

18903

18904

18905

18906

18907

18908

18909

18910

18911

18912

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Realtime General Information

highest priority non-empty thread list to become a running thread, regardless of its associated
policy. This thread is then removed from its thread list.

Four scheduling policies are specifically required. Other implementation-defined scheduling
policies may be defined. The following symbols are defined in the Base Definitions volume of
POSIX.1-2024, <sched.h>:

SCHED_FIFO First in, first out (FIFO) scheduling policy.

SCHED_RR Round robin scheduling policy.

SS SCHED_SPORADIC Sporadic server scheduling policy.

SCHED_OTHER Another scheduling policy.

The values of these symbols shall be distinct.

SCHED_FIFO

Conforming implementations shall include a scheduling policy called the FIFO scheduling
policy.

Threads scheduled under this policy are chosen from a thread list that is ordered by the time its
threads have been on the list without being executed; generally, the head of the list is the thread
that has been on the list the longest time, and the tail is the thread that has been on the list the
shortest time.

Under the SCHED_FIFO policy, the modification of the definitional thread lists is as follows:

1. When a running thread becomes a preempted thread, it becomes the head of the thread
list for its priority.

2. When a blocked thread becomes a runnable thread, it becomes the tail of the thread list
for its priority.

3. When a running thread calls the sched_setscheduler() function, the process specified in the
function call is modified to the specified policy and the priority specified by the param
argument.

4. When a running thread calls the sched_setparam() function, the priority of the process
specified in the function call is modified to the priority specified by the param argument.

5. When a running thread calls the pthread_setschedparam() function, the thread specified in
the function call is modified to the specified policy and the priority specified by the param
argument.

6. When a running thread calls the pthread_setschedprio() function, the thread specified in the
function call is modified to the priority specified by the prio argument.

7. If a thread whose policy or priority has been modified other than by pthread_setschedprio()
is a running thread or is runnable, it then becomes the tail of the thread list for its new
priority.

8. If a thread whose priority has been modified by pthread_setschedprio() is a running thread
or is runnable, the effect on its position in the thread list depends on the direction of the
modification, as follows:

a. If the priority is raised, the thread becomes the tail of the thread list.

b. If the priority is unchanged, the thread does not change position in the thread list.

532 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18913

18914

18915

18916

18917

18918

18919

18920

18921

18922

18923

18924

18925

18926

18927

18928

18929

18930

18931

18932

18933

18934

18935

18936

18937

18938

18939

18940

18941

18942

18943

18944

18945

18946

18947

18948

18949

18950

18951

18952

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Realtime

c. If the priority is lowered, the thread becomes the head of the thread list.

9. When a running thread issues the sched_yield() or thrd_yield() function, the thread
becomes the tail of the thread list for its priority.

10. At no other time is the position of a thread with this scheduling policy within the thread
lists affected.

While a thread is executing at a temporarily elevated priority as a consequence of owning a
mutex initialized with the PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol
(see pthread_mutexattr_getprotocol()), the effects of the above requirements on thread priority
shall apply only to the thread’s normal priority, not to its elevated priority, and those of the
above requirements that describe the thread being placed on any thread list as a result of a
priority change shall not apply. Likewise, when such a thread reverts to its normal priority as a
consequence of unlocking such a mutex, those of the above requirements that describe the
thread being placed on any thread list as a result of a priority change shall not apply.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_max()
and sched_get_priority_min() functions when SCHED_FIFO is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 priorities for this
policy.

SCHED_RR

Conforming implementations shall include a scheduling policy called the ``round robin’’
scheduling policy. This policy shall be identical to the SCHED_FIFO policy with the additional
condition that when the implementation detects that a running thread has been executing as a
running thread for a time period of the length returned by the sched_rr_get_interval() function or
longer, the thread shall become the tail of its thread list and the head of that thread list shall be
removed and made a running thread.

The effect of this policy is to ensure that if there are multiple SCHED_RR threads at the same
priority, one of them does not monopolize the processor. An application should not rely only on
the use of SCHED_RR to ensure application progress among multiple threads if the application
includes threads using the SCHED_FIFO policy at the same or higher priority levels or
SCHED_RR threads at a higher priority level.

A thread under this policy that is preempted and subsequently resumes execution as a running
thread completes the unexpired portion of its round robin interval time period.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_max()
and sched_get_priority_min() functions when SCHED_RR is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 priorities for this
policy.

SCHED_SPORADIC

SS|TSP The functionality described in this section shall be provided on implementations that support
the Process Sporadic Server or Thread Sporadic Server options (and the rest of this section is not
further shaded for these options).

If _POSIX_SPORADIC_SERVER or _POSIX_THREAD_SPORADIC_SERVER is defined, the
implementation shall include a scheduling policy identified by the value SCHED_SPORADIC.

The sporadic server policy is based primarily on two time parameters: the replenishment period
and the available execution capacity. The replenishment period is given by the
sched_ss_repl_period member of the sched_param structure. The available execution capacity is
initialized to the value given by the sched_ss_init_budget member of the same parameter. The

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 533

18953

18954

18955

18956

18957

18958

18959

18960

18961

18962

18963

18964

18965

18966

18967

18968

18969

18970

18971

18972

18973

18974

18975

18976

18977

18978

18979

18980

18981

18982

18983

18984

18985

18986

18987

18988

18989

18990

18991

18992

18993

18994

18995

18996

18997

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Realtime General Information

sporadic server policy is identical to the SCHED_FIFO policy with some additional conditions
that cause the thread’s assigned priority to be switched between the values specified by the
sched_priority and sched_ss_low_priority members of the sched_param structure.

The priority assigned to a thread using the sporadic server scheduling policy is determined in
the following manner: if the available execution capacity is greater than zero and the number of
pending replenishment operations is strictly less than sched_ss_max_repl, the thread is assigned
the priority specified by sched_priority; otherwise, the assigned priority shall be
sched_ss_low_priority. If the value of sched_priority is less than or equal to the value of
sched_ss_low_priority, the results are undefined. When active, the thread shall belong to the
thread list corresponding to its assigned priority level, according to the mentioned priority
assignment. The modification of the available execution capacity and, consequently of the
assigned priority, is done as follows:

1. When the thread at the head of the sched_priority list becomes a running thread, its
execution time shall be limited to at most its available execution capacity, plus the
resolution of the execution time clock used for this scheduling policy. This resolution shall
be implementation-defined.

2. Each time the thread is inserted at the tail of the list associated with sched_priority—
because as a blocked thread it became runnable with priority sched_priority or because a
replenishment operation was performed—the time at which this operation is done is
posted as the activation_time.

3. When the running thread with assigned priority equal to sched_priority becomes a
preempted thread, it becomes the head of the thread list for its priority, and the execution
time consumed is subtracted from the available execution capacity. If the available
execution capacity would become negative by this operation, it shall be set to zero.

4. When the running thread with assigned priority equal to sched_priority becomes a blocked
thread, the execution time consumed is subtracted from the available execution capacity,
and a replenishment operation is scheduled, as described in 6 and 7. If the available
execution capacity would become negative by this operation, it shall be set to zero.

5. When the running thread with assigned priority equal to sched_priority reaches the limit
imposed on its execution time, it becomes the tail of the thread list for
sched_ss_low_priority, the execution time consumed is subtracted from the available
execution capacity (which becomes zero), and a replenishment operation is scheduled, as
described in 6 and 7.

6. Each time a replenishment operation is scheduled, the amount of execution capacity to be
replenished, replenish_amount, is set equal to the execution time consumed by the thread
since the activation_time. The replenishment is scheduled to occur at activation_time plus
sched_ss_repl_period. If the scheduled time obtained is before the current time, the
replenishment operation is carried out immediately. Several replenishment operations
can be pending at the same time, each of which shall be serviced at its respective
scheduled time. With the above rules, the number of replenishment operations
simultaneously pending for a given thread that is scheduled under the sporadic server
policy shall not be greater than sched_ss_max_repl.

7. A replenishment operation consists of adding the corresponding replenish_amount to the
available execution capacity at the scheduled time. If, as a consequence of this operation,
the execution capacity would become larger than sched_ss_initial_budget, it shall be
rounded down to a value equal to sched_ss_initial_budget. Additionally, if the thread was
runnable or running, and had assigned priority equal to sched_ss_low_priority, then it
becomes the tail of the thread list for sched_priority.

534 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18998

18999

19000

19001

19002

19003

19004

19005

19006

19007

19008

19009

19010

19011

19012

19013

19014

19015

19016

19017

19018

19019

19020

19021

19022

19023

19024

19025

19026

19027

19028

19029

19030

19031

19032

19033

19034

19035

19036

19037

19038

19039

19040

19041

19042

19043

19044

19045

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Realtime

Execution time is defined in XBD Section 3.90 (on page 44).

For this policy, changing the value of a CPU-time clock via clock_settime() shall have no effect on
its behavior.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_min()
and sched_get_priority_max() functions when SCHED_SPORADIC is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 distinct priorities for
this policy.

If the scheduling policy of the target process is either SCHED_FIFO or SCHED_RR, the
sched_ss_low_priority, sched_ss_repl_period, and sched_ss_init budget members of the param
argument shall have no effect on the scheduling behavior. If the scheduling policy of this process
is not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, the effects of these members are
implementation-defined; this case includes the SCHED_OTHER policy.

SCHED_OTHER

Conforming implementations shall include one scheduling policy identified as SCHED_OTHER
(which may execute identically with either the FIFO or round robin scheduling policy). The
effect of scheduling threads with the SCHED_OTHER policy in a system in which other threads

SS are executing under SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is implementation-
defined.

This policy is defined to allow strictly conforming applications to be able to indicate in a
portable manner that they no longer need a realtime scheduling policy.

For threads executing under this policy, the implementation shall use only priorities within the
range returned by the sched_get_priority_max() and sched_get_priority_min() functions when
SCHED_OTHER is provided as the parameter.

2.8.5 Clocks and Timers

The <time.h> header defines the types and manifest constants used by the timing facility.

Time Value Specification Structures

Many of the timing facility functions accept or return time value specifications. A time value
structure timespec specifies a single time value and includes at least the following members:

Member Type Member Name Description
time_t tv_sec Seconds.
long tv_nsec Nanoseconds.

The tv_nsec member is only valid if greater than or equal to zero, and less than the number of
nanoseconds in a second (1 000 million). The time interval described by this structure is (tv_sec *
109 + tv_nsec) nanoseconds.

A time value structure itimerspec specifies an initial timer value and a repetition interval for use
by the per-process timer functions. This structure includes at least the following members:

Member Type Member Name Description
struct timespec it_interval Timer period.
struct timespec it_value Timer expiration.

If the value described by it_value is non-zero, it indicates the time to or time of the next timer
expiration (for relative and absolute timer values, respectively). If the value described by it_value

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 535

19046

19047

19048

19049

19050

19051

19052

19053

19054

19055

19056

19057

19058

19059

19060

19061

19062

19063

19064

19065

19066

19067

19068

19069

19070

19071

19072

19073

19074

19075

19076

19077

19078

19079

19080

19081

19082

19083

19084

19085

19086

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Realtime General Information

is zero, the timer shall be disarmed.

If the value described by it_interval is non-zero, it specifies an interval which shall be used in
reloading the timer when it expires; that is, a periodic timer is specified. If the value described
by it_interval is zero, the timer is disarmed after its next expiration; that is, a one-shot timer is
specified.

Timer Event Notification Control Block

Per-process timers may be created that notify the process of timer expirations by queuing a
realtime extended signal. The sigevent structure, defined in the Base Definitions volume of
POSIX.1-2024, <signal.h>, is used in creating such a timer. The sigevent structure contains the
signal number and an application-specific data value which shall be used when notifying the
calling process of timer expiration events.

Manifest Constants

The following constants are defined in the Base Definitions volume of POSIX.1-2024, <time.h>:

CLOCK_REALTIME The identifier for the system-wide realtime clock.

TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated
with a timer.

CLOCK_MONOTONIC The identifier for the system-wide monotonic clock, which is defined
as a clock whose value cannot be set via clock_settime() and which
cannot have backward clock jumps. The maximum possible clock
jump is implementation-defined.

The maximum allowable resolution for CLOCK_REALTIME and CLOCK_MONOTONIC clocks
and all time services based on these clocks is represented by {_POSIX_CLOCKRES_MIN} and
shall be defined as 20 ms (1/50 of a second). Implementations may support smaller values of
resolution for these clocks to provide finer granularity time bases. The actual resolution
supported by an implementation for a specific clock is obtained using the clock_getres() function.
If the actual resolution supported for a time service based on one of these clocks differs from the
resolution supported for that clock, the implementation shall document this difference.

The minimum allowable maximum value for CLOCK_REALTIME and CLOCK_MONOTONIC
clocks and all absolute time services based on them is the same as that defined by the ISO C
standard for the time_t type. If the maximum value supported by a time service based on one of
these clocks differs from the maximum value supported by that clock, the implementation shall
document this difference.

Execution Time Monitoring

CPT If _POSIX_CPUTIME is defined, process CPU-time clocks shall be supported in addition to the
clocks described in Manifest Constants.

TCT If _POSIX_THREAD_CPUTIME is defined, thread CPU-time clocks shall be supported.

CPT|TCT CPU-time clocks measure execution or CPU time, which is defined in XBD Section 3.90 (on page
44). The mechanism used to measure execution time is described in XBD Section 4.14 (on page
99).

CPT If _POSIX_CPUTIME is defined, the following constant of the type clockid_t is defined in
<time.h>:

536 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19087

19088

19089

19090

19091

19092

19093

19094

19095

19096

19097

19098

19099

19100

19101

19102

19103

19104

19105

19106

19107

19108

19109

19110

19111

19112

19113

19114

19115

19116

19117

19118

19119

19120

19121

19122

19123

19124

19125

19126

19127

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Realtime

CLOCK_PROCESS_CPUTIME_ID
When this value of the type clockid_t is used in a clock() or timer*() function call, it is
interpreted as the identifier of the CPU-time clock associated with the process making the
function call.

TCT If _POSIX_THREAD_CPUTIME is defined, the following constant of the type clockid_t is
defined in <time.h>:

CLOCK_THREAD_CPUTIME_ID
When this value of the type clockid_t is used in a clock() or timer*() function call, it is
interpreted as the identifier of the CPU-time clock associated with the thread making the
function call.

2.9 Threads
This section defines functionality to support multiple flows of control, called ``threads’’, within a
process. For the definition of threads, see XBD Section 3.388 (on page 88).

The specific functional areas covered by threads and their scope include:

• Thread management: the creation, control, and termination of multiple flows of control in
the same process under the assumption of a common shared address space

• Synchronization primitives optimized for tightly coupled operation of multiple control
flows in a common, shared address space

2.9.1 Thread-Safety

All functions defined by this volume of POSIX.1-2024 shall be thread-safe, except that the
following functions8 need not be thread-safe.

8. The functions in the table are not shaded to denote applicable options. Individual reference pages should be consulted.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 537

19128

19129

19130

19131

19132

19133

19134

19135

19136

19137

19138

19139

19140

19141

19142

19143

19144

19145

19146

19147

19148

19149

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Threads General Information

asctime()
atomic_init()
catgets()
crypt()
ctime()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()
dbm_open()
dbm_store()
dlerror()
drand48()
encrypt()
endgrent()
endpwent()

endutxent()
getdate()
getgrent()
getgrgid()
getgrnam()
gethostent()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwuid()
getservbyname()
getservbyport()

getservent()
getutxent()
getutxid()
getutxline()
gmtime()
hcreate()
hdestroy()
hsearch()
inet_ntoa()
l64a()
localeconv()
localtime()
lrand48()
mblen()
mbtowc()
mrand48()
nftw()
nl_langinfo()
ptsname()

putenv()
pututxline()
rand()
setenv()
setgrent()
setkey()
setlocale()
setpwent()
setutxent()
srand()
strerror()
strsignal()
strtok()
ttyname()
unsetenv()
wctomb()

The ctermid() and tmpnam() functions need not be thread-safe if passed a null pointer argument.
The c16rtomb(), c32rtomb(), mbrlen(), mbrtoc16(), mbrtoc32(), mbrtowc(), mbsnrtowcs(),
mbsrtowcs(), wcrtomb(), wcsnrtombs(), and wcsrtombs() functions need not be thread-safe if
passed a null ps argument. The lgamma(), lgammaf(), and lgammal() functions shall be thread-

XSI safe except that they need not avoid data races when storing a value in the signgam variable.
The getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() functions need
not be thread-safe unless the invoking thread owns the (FILE *) object accessed by the call, as is
the case after a successful call to the flockfile() or ftrylockfile() functions. The readdir() function
need not be thread-safe if concurrent calls are made for the same directory stream.

Some functions that are not required to be thread-safe are nevertheless required to avoid data
races with either all or some other functions, as specified on their individual reference pages.

Implementations shall provide internal synchronization as necessary in order to satisfy thread-
safety requirements.

Since multi-threaded applications are not allowed to use the environ variable to access or modify
any environment variable while any other thread is concurrently modifying any environment
variable, the getenv() and secure_getenv() functions and any function dependent on any
environment variable are not thread-safe if another thread modifies the environment; see XSH
exec (on page 866).

2.9.2 Thread IDs

Although implementations may have thread IDs that are unique in a system, applications
should only assume that thread IDs are usable and unique within a single process. The effect of
calling any of the functions defined in this volume of POSIX.1-2024 and passing as an argument
the thread ID of a thread from another process is unspecified. The lifetime of a thread ID ends
after the later of thread termination (see Section 3.392, on page 89) and the point when the
thread is no longer joinable (see Section 3.183, on page 58). A conforming implementation is free
to reuse a thread ID after its lifetime has ended. If an application attempts to use a thread ID
whose lifetime has ended, the behavior is undefined.

If a thread is detached, its thread ID is invalid for use as an argument in a call to
pthread_detach(), pthread_join(), thrd_detach(), or thrd_join().

538 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19150

19151

19152

19153

19154

19155

19156

19157

19158

19159

19160

19161

19162

19163

19164

19165

19166

19167

19168

19169

19170

19171

19172

19173

19174

19175

19176

19177

19178

19179

19180

19181

19182

19183

19184

19185

19186

19187

19188

19189

19190

19191

19192

19193

19194

19195

19196

19197

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

2.9.3 Thread Mutexes

A thread that has blocked shall not prevent any unblocked thread that is eligible to use the same
processing resources from eventually making forward progress in its execution. Eligibility for
processing resources is determined by the scheduling policy.

A thread shall become the owner of a mutex, m, of type pthread_mutex_t when one of the
following occurs:

• It calls pthread_mutex_clocklock(), pthread_mutex_lock(), pthread_mutex_timedlock(), or
pthread_mutex_trylock() with m as the mutex argument and the call returns zero or
[EOWNERDEAD].

• It calls pthread_mutex_setprioceiling() with m as the mutex argument and the call returns
[EOWNERDEAD].

• It calls pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() with m as
the mutex argument and the call returns zero or certain error numbers (see
pthread_cond_clockwait()).

The thread shall remain the owner of m until one of the following occurs:

• It executes pthread_mutex_unlock() with m as the mutex argument

• It blocks in a call to pthread_cond_clockwait(), pthread_cond_timedwait(), or
pthread_cond_wait() with m as the mutex argument.

A thread shall become the owner of a mutex, m, of type mtx_t when one of the following occurs:

• It calls mtx_lock() with m as the mtx argument and the call returns thrd_success.

• It calls mtx_trylock() with m as the mtx argument and the call returns thrd_success.

• It calls mtx_timedlock() with m as the mtx argument and the call returns thrd_success.

• It calls cnd_wait() with m as the mtx argument and the call returns thrd_success.

• It calls cnd_timedwait() with m as the mtx argument and the call returns thrd_success or
thrd_timedout.

The thread shall remain the owner of m until one of the following occurs:

• It executes mtx_unlock() with m as the mtx argument.

• It blocks in a call to cnd_wait() with m as the mtx argument.

• It blocks in a call to cnd_timedwait() with m as the mtx argument.

The implementation shall behave as if at all times there is at most one owner of any mutex.

A thread that becomes the owner of a mutex is said to have ``acquired’’ the mutex and the mutex
is said to have become ``locked’’; when a thread gives up ownership of a mutex it is said to have
``released’’ the mutex and the mutex is said to have become ``unlocked’’.

A problem can occur if a process terminates while one of its threads holds a mutex lock.
Depending on the mutex type, it might be possible for another thread to unlock the mutex and
recover the state of the mutex. However, it is difficult to perform this recovery reliably.

Robust mutexes provide a means to enable the implementation to notify other threads in the
event of a process terminating while one of its threads holds a lock on a mutex of type
pthread_mutex_t. The next thread that acquires the mutex is notified about the termination by
the return value [EOWNERDEAD] from the locking function. The notified thread can then
attempt to recover the state protected by the mutex, and if successful mark the state protected by
the mutex as consistent by a call to pthread_mutex_consistent(). If the notified thread is unable to

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 539

19198

19199

19200

19201

19202

19203

19204

19205

19206

19207

19208

19209

19210

19211

19212

19213

19214

19215

19216

19217

19218

19219

19220

19221

19222

19223

19224

19225

19226

19227

19228

19229

19230

19231

19232

19233

19234

19235

19236

19237

19238

19239

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Threads General Information

recover the state, it can declare the state as not recoverable by a call to pthread_mutex_unlock()
without a prior call to pthread_mutex_consistent().

Whether or not the state protected by a mutex can be recovered is dependent solely on the
application using robust mutexes. The robust mutex support provided in the implementation
provides notification only that a mutex owner has terminated while holding a lock, or that the
state of the mutex is not recoverable.

2.9.4 Thread Scheduling

TPS The functionality described in this section shall be provided on implementations that support
the Thread Execution Scheduling option (and the rest of this section is not further shaded for
this option).

Thread Scheduling Attributes

In support of the scheduling function, threads have attributes which are accessed through the
pthread_attr_t thread creation attributes object.

The contentionscope attribute defines the scheduling contention scope of the thread to be either
PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM.

The inheritsched attribute specifies whether a newly created thread is to inherit the scheduling
attributes of the creating thread or to have its scheduling values set according to the other
scheduling attributes in the pthread_attr_t object.

The schedpolicy attribute defines the scheduling policy for the thread. The schedparam attribute
defines the scheduling parameters for the thread. The interaction of threads having different
policies within a process is described as part of the definition of those policies.

If the Thread Execution Scheduling option is defined, and the schedpolicy attribute specifies one
of the priority-based policies defined under this option, the schedparam attribute contains the
scheduling priority of the thread. A conforming implementation ensures that the priority value
in schedparam is in the range associated with the scheduling policy when the thread attributes
object is used to create a thread, or when the scheduling attributes of a thread are dynamically
modified. The meaning of the priority value in schedparam is the same as that of priority.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the schedparam attribute supports four
new members that are used for the sporadic server scheduling policy. These members are
sched_ss_low_priority, sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl. The
meaning of these attributes is the same as in the definitions that appear under Section 2.8.4 (on
page 531).

When a process is created, its single thread has a scheduling policy and associated attributes
equal to the policy and attributes of the process. The default scheduling contention scope value
is implementation-defined. The default values of other scheduling attributes are
implementation-defined.

540 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19240

19241

19242

19243

19244

19245

19246

19247

19248

19249

19250

19251

19252

19253

19254

19255

19256

19257

19258

19259

19260

19261

19262

19263

19264

19265

19266

19267

19268

19269

19270

19271

19272

19273

19274

19275

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

Thread Scheduling Contention Scope

The scheduling contention scope of a thread defines the set of threads with which the thread
competes for use of the processing resources. The scheduling operation selects at most one
thread to execute on each processor at any point in time and the thread’s scheduling attributes
(for example, priority), whether under process scheduling contention scope or system scheduling
contention scope, are the parameters used to determine the scheduling decision.

The scheduling contention scope, in the context of scheduling a mixed scope environment,
affects threads as follows:

• A thread created with PTHREAD_SCOPE_SYSTEM scheduling contention scope contends
for resources with all other threads in the same scheduling allocation domain relative to
their system scheduling attributes. The system scheduling attributes of a thread created
with PTHREAD_SCOPE_SYSTEM scheduling contention scope are the scheduling
attributes with which the thread was created. The system scheduling attributes of a thread
created with PTHREAD_SCOPE_PROCESS scheduling contention scope are the
implementation-defined mapping into system attribute space of the scheduling attributes
with which the thread was created.

• Threads created with PTHREAD_SCOPE_PROCESS scheduling contention scope contend
directly with other threads within their process that were created with
PTHREAD_SCOPE_PROCESS scheduling contention scope. The contention is resolved
based on the threads’ scheduling attributes and policies. It is unspecified how such threads
are scheduled relative to threads in other processes or threads with
PTHREAD_SCOPE_SYSTEM scheduling contention scope.

• Conforming implementations shall support the PTHREAD_SCOPE_PROCESS scheduling
contention scope, the PTHREAD_SCOPE_SYSTEM scheduling contention scope, or both.

Scheduling Allocation Domain

Implementations shall support scheduling allocation domains containing one or more
processors. It should be noted that the presence of multiple processors does not automatically
indicate a scheduling allocation domain size greater than one. Conforming implementations on
multi-processors may map all or any subset of the CPUs to one or multiple scheduling allocation
domains, and could define these scheduling allocation domains on a per-thread, per-process, or
per-system basis, depending on the types of applications intended to be supported by the
implementation. The scheduling allocation domain is independent of scheduling contention
scope, as the scheduling contention scope merely defines the set of threads with which a thread
contends for processor resources, while scheduling allocation domain defines the set of
processors for which it contends. The semantics of how this contention is resolved among
threads for processors is determined by the scheduling policies of the threads.

The choice of scheduling allocation domain size and the level of application control over
scheduling allocation domains is implementation-defined. Conforming implementations may
change the size of scheduling allocation domains and the binding of threads to scheduling
allocation domains at any time.

For application threads with scheduling allocation domains of size equal to one, the scheduling
rules defined for SCHED_FIFO and SCHED_RR shall be used; see Scheduling Policies (on page
531). All threads with system scheduling contention scope, regardless of the processes in which
they reside, compete for the processor according to their priorities. Threads with process
scheduling contention scope compete only with other threads with process scheduling
contention scope within their process.

For application threads with scheduling allocation domains of size greater than one, the rules

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 541

19276

19277

19278

19279

19280

19281

19282

19283

19284

19285

19286

19287

19288

19289

19290

19291

19292

19293

19294

19295

19296

19297

19298

19299

19300

19301

19302

19303

19304

19305

19306

19307

19308

19309

19310

19311

19312

19313

19314

19315

19316

19317

19318

19319

19320

19321

19322

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Threads General Information

TSP defined for SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC shall be used in an
implementation-defined manner. Each thread with system scheduling contention scope
competes for the processors in its scheduling allocation domain in an implementation-defined
manner according to its priority. Threads with process scheduling contention scope are
scheduled relative to other threads within the same scheduling contention scope in the process.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the rules defined for SCHED_SPORADIC
in Scheduling Policies (on page 531) shall be used in an implementation-defined manner for
application threads whose scheduling allocation domain size is greater than one.

Scheduling Documentation

If _POSIX_PRIORITY_SCHEDULING is defined, then any scheduling policies beyond
TSP SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as well as the effects of

the scheduling policies indicated by these other values, and the attributes required in order to
support such a policy, are implementation-defined. Furthermore, the implementation shall
document the effect of all processor scheduling allocation domain values supported for these
policies.

2.9.5 Thread Cancellation

The thread cancellation mechanism allows a thread to terminate the execution of any other
thread in the process, except for threads created using thrd_create(), in a controlled manner. The
target thread (that is, the one that is being canceled) is allowed to hold cancellation requests
pending in a number of ways and to perform application-specific cleanup processing when the
notice of cancellation is acted upon.

Cancellation is controlled by the cancellation control functions. Each thread maintains its own
cancelability state. Cancellation may only occur at cancellation points or when the thread is
asynchronously cancelable.

The thread cancellation mechanism described in this section depends upon programs having set
deferred cancelability state, which is specified as the default. Applications shall also carefully
follow static lexical scoping rules in their execution behavior. For example, use of setjmp(),
return, goto, and so on, to leave user-defined cancellation scopes without doing the necessary
scope pop operation results in undefined behavior.

Use of asynchronous cancelability while holding resources which potentially need to be released
may result in resource loss. Similarly, cancellation scopes may only be safely manipulated
(pushed and popped) when the thread is in the deferred or disabled cancelability states.

2.9.5.1 Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a cancellation
request. The thread may control cancellation in a number of ways.

Each thread maintains its own cancelability state, which may be encoded in two bits:

1. Cancelability-Enable: When cancelability is PTHREAD_CANCEL_DISABLE (as defined
in the Base Definitions volume of POSIX.1-2024, <pthread.h>), cancellation requests
against the target thread are held pending. By default, cancelability is set to
PTHREAD_CANCEL_ENABLE (as defined in <pthread.h>).

2. Cancelability Type: When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS (as defined in <pthread.h>), new or pending
cancellation requests may be acted upon at any time. When cancelability is enabled and

542 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19323

19324

19325

19326

19327

19328

19329

19330

19331

19332

19333

19334

19335

19336

19337

19338

19339

19340

19341

19342

19343

19344

19345

19346

19347

19348

19349

19350

19351

19352

19353

19354

19355

19356

19357

19358

19359

19360

19361

19362

19363

19364

19365

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

the cancelability type is PTHREAD_CANCEL_DEFERRED (as defined in <pthread.h>),
cancellation requests are held pending until a cancellation point (see below) is reached. If
cancelability is disabled, the setting of the cancelability type has no immediate effect as all
cancellation requests are held pending; however, once cancelability is enabled again the
new type is in effect. The cancelability type is PTHREAD_CANCEL_DEFERRED in all
newly created threads including the thread in which main() was first invoked.

2.9.5.2 Cancellation Points

Cancellation points shall occur when a thread is executing the following functions:

accept()
accept4()
aio_suspend()
clock_nanosleep()
close()
cnd_timedwait()
cnd_wait()
connect()
creat()
fcntl()†
fdatasync()
fsync()
lockf()††
mq_receive()
mq_send()
mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()

msync()
nanosleep()
open()
openat()
pause()
poll()
posix_close()
ppoll()
pread()
pselect()
pthread_cond_clockwait()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
pwrite()
read()
readv()
recv()

recvfrom()
recvmsg()
select()
send()
sendmsg()
sendto()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
tcdrain()
thrd_join()
thrd_sleep()
wait()
waitid()
waitpid()
write()
writev()

A cancellation point may also occur when a thread is executing the following functions:

† When the cmd argument is F_SETLKW or F_OFD_SETLKW.

†† When the function argument is F_LOCK.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 543

19366

19367

19368

19369

19370

19371

19372

19373

19374

19375

19376

19377

19378

19379

19380

19381

19382

19383

19384

19385

19386

19387

19388

19389

19390

19391

19392

19393

19394

19395

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Threads General Information

access()
bindtextdomain()
catclose()
catopen()
chmod()
chown()
closedir()
closelog()
ctermid()
dcgettext()
dcgettext_l()
dcngettext()
dcngettext_l()
dgettext()
dgettext_l()
dlclose()
dlopen()
dngettext()
dngettext_l()
dprintf()
endhostent()
endnetent()
endprotoent()

endservent()
faccessat()
fchmod()
fchmodat()
fchown()
fchownat()
fclose()
fcntl()†††
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fmtmsg()
fopen()
fpathconf()
fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()

freopen()
fscanf()
fseek()
fseeko()
fsetpos()
fstat()
fstatat()
ftell()
ftello()
futimens()
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc_unlocked()
getchar()
getchar_unlocked()
getcwd()
getdelim()
getgrgid_r()
getgrnam_r()
gethostid()

††† For any value of the cmd argument.

544 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19396

19397

19398

19399

19400

19401

19402

19403

19404

19405

19406

19407

19408

19409

19410

19411

19412

19413

19414

19415

19416

19417

19418

19419

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

gethostname()
getline()
getlogin_r()
getnameinfo()
getpwnam_r()
getpwuid_r()
gettext()
gettext_l()
getwc()
getwchar()
glob()
iconv_close()
iconv_open()
link()
linkat()
lio_listio()
localtime_r()
lockf()
lseek()
lstat()
mkdir()
mkdirat()
mkdtemp()
mkfifo()
mkfifoat()
mknod()
mknodat()
mkstemp()
mktime()
ngettext()
ngettext_l()
opendir()
openlog()
pathconf()
perror()
popen()
posix_devctl()

posix_fadvise()
posix_fallocate()
posix_getdents()
posix_madvise()
posix_openpt()
posix_spawn()
posix_spawnp()
posix_typed_mem_open()
printf()
psiginfo()
psignal()
pthread_rwlock_clockrdlock()
pthread_rwlock_clockwrlock()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_wrlock()
ptsname()
ptsname_r()
putc()
putc_unlocked()
putchar()
putchar_unlocked()
puts()
putwc()
putwchar()
readdir_r()
readlink()
readlinkat()
remove()
rename()
renameat()
rewind()
rewinddir()
scandir()
scanf()
seekdir()

sem_clockwait()
sem_timedwait()
sem_wait()
semop()
sethostent()
setnetent()
setprotoent()
setservent()
stat()
strerror_l()
strerror_r()
strftime()
strftime_l()
symlink()
symlinkat()
sync()
syslog()
tmpfile()
tmpnam()
ttyname_r()
tzset()
ungetc()
ungetwc()
unlink()
unlinkat()
utimensat()
utimes()
vdprintf()
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wcsftime()
wordexp()
wprintf()
wscanf()

In addition, a cancellation point may occur when a thread is executing any function that this
standard does not require to be thread-safe but the implementation documents as being thread-
safe. If a thread is cancelled while executing a non-thread-safe function, the behavior is
undefined.

An implementation shall not introduce cancellation points into any other functions specified in
this volume of POSIX.1-2024.

The side-effects of acting upon a cancellation request while suspended during a call of a function
are the same as the side-effects that may be seen in a single-threaded program when a call to a
function is interrupted by a signal and the given function returns [EINTR]. Any such side-
effects occur before any cancellation cleanup handlers are called. For functions that are explicitly
required not to return when interrupted (for example, pclose()), if a thread is canceled while
executing the function, the behavior is undefined.

Whenever a thread has cancelability enabled and a cancellation request has been made with that
thread as the target, and the thread then calls any function that is a cancellation point (such as

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 545

19420

19421

19422

19423

19424

19425

19426

19427

19428

19429

19430

19431

19432

19433

19434

19435

19436

19437

19438

19439

19440

19441

19442

19443

19444

19445

19446

19447

19448

19449

19450

19451

19452

19453

19454

19455

19456

19457

19458

19459

19460

19461

19462

19463

19464

19465

19466

19467

19468

19469

19470

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Threads General Information

pthread_testcancel() or read()), the cancellation request shall be acted upon before the function
returns. If a thread has cancelability enabled and a cancellation request is made with the thread
as a target while the thread is suspended at a cancellation point, the thread shall be awakened
and the cancellation request shall be acted upon. It is unspecified whether the cancellation
request is acted upon or whether the cancellation request remains pending and the thread
resumes normal execution if the thread is suspended at a cancellation point and either:

• The event for which it is waiting occurs

• A specified timeout expires

before the cancellation request is acted upon.

2.9.5.3 Thread Cancellation Cleanup Handlers

Each thread that was not created using thrd_create() maintains a list of cancellation cleanup
handlers. The programmer uses the pthread_cleanup_push() and pthread_cleanup_pop() functions
to place routines on and remove routines from this list.

When a cancellation request is acted upon, or when a thread calls pthread_exit(), the thread first
disables cancellation by setting its cancelability state to PTHREAD_CANCEL_DISABLE and its
cancelability type to PTHREAD_CANCEL_DEFERRED. The cancelability state shall remain set
to PTHREAD_CANCEL_DISABLE until the thread has terminated. The behavior is undefined if
a cancellation cleanup handler or thread-specific data destructor routine changes the
cancelability state to PTHREAD_CANCEL_ENABLE.

The routines in the thread’s list of cancellation cleanup handlers shall be invoked one by one in
LIFO sequence; that is, the last routine pushed onto the list (Last In) is the first to be invoked
(First Out). When the cancellation cleanup handler for a scope is invoked, the storage for that
scope remains valid. If the last cancellation cleanup handler returns, thread-specific data
destructors (if any) associated with thread-specific data keys for which the thread has non-
NULL values shall be run, in unspecified order, as described for pthread_key_create() and
tss_create().

After all cancellation cleanup handlers and thread-specific data destructors have returned,
thread execution is terminated. If the thread has terminated because of a call to pthread_exit(),
the value_ptr argument is made available to any threads joining with the target. If the thread has
terminated by acting on a cancellation request, a status of PTHREAD_CANCELED is made
available to any threads joining with the target. The symbolic constant PTHREAD_CANCELED
expands to a constant expression of type (void *) whose value matches no pointer to an object in
memory nor the value NULL.

A side-effect of acting upon a cancellation request while in a condition variable wait is that the
mutex is re-acquired before calling the first cancellation cleanup handler. In addition, the thread
is no longer considered to be waiting for the condition and the thread shall not have consumed
any pending condition signals on the condition.

A cancellation cleanup handler cannot exit via longjmp() or siglongjmp().

2.9.5.4 Async-Cancel Safety

The pthread_cancel(), pthread_setcancelstate(), and pthread_setcanceltype() functions are defined to
be async-cancel safe.

No other functions in this volume of POSIX.1-2024 are required to be async-cancel-safe.

If a thread has asynchronous cancellation enabled and is cancelled during execution of a

546 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19471

19472

19473

19474

19475

19476

19477

19478

19479

19480

19481

19482

19483

19484

19485

19486

19487

19488

19489

19490

19491

19492

19493

19494

19495

19496

19497

19498

19499

19500

19501

19502

19503

19504

19505

19506

19507

19508

19509

19510

19511

19512

19513

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

function that is not async-cancel-safe, the behavior is undefined.

If a thread has deferred cancellation enabled, a signal-catching function is called in that thread
during execution of a function that is not async-cancel-safe, and the signal-catching function
calls any function that is a cancellation point while a cancellation is pending for the thread,
without first disabling cancellation, the behavior is undefined.

2.9.6 Thread Read-Write Locks

Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have exclusive write access at any
given time. They are typically used to protect data that is read more frequently than it is
changed.

One or more readers acquire read access to the resource by performing a read lock operation on
the associated read-write lock. A writer acquires exclusive write access by performing a write
lock operation. Basically, all readers exclude any writers and a writer excludes all readers and
any other writers.

A thread that has blocked on a read-write lock (for example, has not yet returned from a
pthread_rwlock_rdlock() or pthread_rwlock_wrlock() call) shall not prevent any unblocked thread
that is eligible to use the same processing resources from eventually making forward progress in
its execution. Eligibility for processing resources shall be determined by the scheduling policy.

Read-write locks can be used to synchronize threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialized for this behavior.

2.9.7 Thread Interactions with File Operations

All of the following functions shall be atomic with respect to each other in the effects specified in
POSIX.1-2024 when they operate on files in the file hierarchy:

chmod()
chown()
creat()
fchmod()
fchmodat()
fchown()

fchownat()
fstat()
fstatat()
ftruncate()
futimens()
lchown()

link()
linkat()
lstat()
open()
openat()
readlink()

readlinkat()
rename()
renameat()
stat()
symlink()
symlinkat()

truncate()
unlink()
unlinkat()
utimensat()
utimes()

If two threads each call one of these functions, each call shall either see all of the specified effects
of the other call, or none of them.

Except where specified otherwise, all of the following functions shall be atomic with respect to
each other in the effects specified in POSIX.1-2024 when they operate on file descriptors that are
open, or being opened, to files in the file hierarchy:

close()
dup2()
dup3()
fcntl()

fstat()
fstatat()
ftruncate()
futimens()

lseek()
open()
openat()
pread()

read()
readv()
pwrite()
write()

writev()

If two threads each call one of these functions, each call shall either see all of the specified effects
of the other call, or none of them. The requirement on the close() function shall also apply
whenever a file descriptor is successfully closed, however caused (for example, as a consequence

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 547

19514

19515

19516

19517

19518

19519

19520

19521

19522

19523

19524

19525

19526

19527

19528

19529

19530

19531

19532

19533

19534

19535

19536

19537

19538

19539

19540

19541

19542

19543

19544

19545

19546

19547

19548

19549

19550

19551

19552

19553

19554

19555

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Threads General Information

of calling close(), calling dup2(), or of process termination).

2.9.8 Use of Application-Managed Thread Stacks

An ``application-managed thread stack’’ is a region of memory allocated by the application—for
example, memory returned by the malloc() or mmap() functions—and designated as a stack
through the act of passing the address and size of the stack, respectively, as the stackaddr and
stacksize arguments to pthread_attr_setstack(). Application-managed stacks allow the application
to precisely control the placement and size of a stack.

The application grants to the implementation permanent ownership of and control over the
application-managed stack when the attributes object in which the stack or stackaddr attribute has
been set is used, either by presenting that attribute’s object as the attr argument in a call to
pthread_create() that completes successfully, or by storing a pointer to the attributes object in the
sigev_notify_attributes member of a struct sigevent and passing that struct sigevent to a function
accepting such argument that completes successfully. The application may thereafter utilize the
memory within the stack only within the normal context of stack usage within or properly
synchronized with a thread that has been scheduled by the implementation with stack pointer
value(s) that are within the range of that stack. In particular, the region of memory cannot be
freed, nor can it be later specified as the stack for another thread.

When specifying an attributes object with an application-managed stack through the
sigev_notify_attributes member of a struct sigevent, the results are undefined if the requested
signal is generated multiple times (as for a repeating timer).

Until an attributes object in which the stack or stackaddr attribute has been set is used, the
application retains ownership of and control over the memory allocated to the stack. It may free
or reuse the memory as long as it either deletes the attributes object, or before using the
attributes object replaces the stack by making an additional call to pthread_attr_setstack(), that
was used originally to designate the stack. There is no mechanism to retract the reference to an
application-managed stack by an existing attributes object.

Once an attributes object with an application-managed stack has been used, that attributes object
cannot be used again by a subsequent call to pthread_create() or any function accepting a struct
sigevent with sigev_notify_attributes containing a pointer to the attributes object, without
designating an unused application-managed stack by making an additional call to
pthread_attr_setstack().

2.9.9 Synchronization Object Copies and Alternative Mappings

TSH For barriers, condition variables, mutexes, and read-write locks, if the process-shared attribute
is set to PTHREAD_PROCESS_PRIVATE, only the synchronization object at the address used to
initialize it can be used for performing synchronization. The effect of referring to another

TSH mapping of the same object when locking, unlocking, or destroying the object is undefined. If
the process-shared attribute is set to PTHREAD_PROCESS_SHARED, only the synchronization
object itself can be used for performing synchronization; however, it need not be referenced at
the address used to initalize it (that is, another mapping of the same object can be used). The
effect of referring to a copy of the object when locking, unlocking, or destroying it is undefined.

For spin locks, the above requirements shall apply as if spin locks have a process-shared
attribute that is set from the pshared argument to pthread_spin_init(). For semaphores, the above
requirements shall apply as if semaphores have a process-shared attribute that is set to
PTHREAD_PROCESS_PRIVATE if the pshared argument to sem_init() is zero and set to
PTHREAD_PROCESS_SHARED if pshared is non-zero.

548 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19556

19557

19558

19559

19560

19561

19562

19563

19564

19565

19566

19567

19568

19569

19570

19571

19572

19573

19574

19575

19576

19577

19578

19579

19580

19581

19582

19583

19584

19585

19586

19587

19588

19589

19590

19591

19592

19593

19594

19595

19596

19597

19598

19599

19600

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

For ISO C functions declared in <threads.h>, the above requirements shall apply as if condition
variables of type cnd_t and mutexes of type mtx_t have a process-shared attribute that is set to
PTHREAD_PROCESS_PRIVATE.

2.10 Sockets
A socket is an endpoint for communication using the facilities described in this section. A socket
is created with a specific socket type, described in Section 2.10.6 (on page 550), and is associated
with a specific protocol, detailed in Section 2.10.3. A socket is accessed via a file descriptor
obtained when the socket is created.

2.10.1 Address Families

All network protocols are associated with a specific address family. An address family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly, routing,
addressing, and basic transport. An address family is normally comprised of a number of
protocols, one per socket type. Each protocol is characterized by an abstract socket type. It is not
required that an address family support all socket types. An address family may contain
multiple protocols supporting the same socket abstraction.

Section 2.10.17 (on page 557), Section 2.10.19 (on page 558), and Section 2.10.20 (on page 558),
respectively, describe the use of sockets for local UNIX connections, for Internet protocols based
on IPv4, and for Internet protocols based on IPv6.

2.10.2 Addressing

An address family defines the format of a socket address. All network addresses are described
using a general structure, called a sockaddr, as defined in the Base Definitions volume of
POSIX.1-2024, <sys/socket.h>. However, each address family imposes finer and more specific
structure, generally defining a structure with fields specific to the address family. The field
sa_family in the sockaddr structure contains the address family identifier, specifying the format
of the sa_data area. The size of the sa_data area is unspecified.

2.10.3 Protocols

A protocol supports one of the socket abstractions detailed in Section 2.10.6 (on page 550).
Selecting a protocol involves specifying the address family, socket type, and protocol number to
the socket() function. Certain semantics of the basic socket abstractions are protocol-specific. All
protocols are expected to support the basic model for their particular socket type, but may, in
addition, provide non-standard facilities or extensions to a mechanism.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 549

19601

19602

19603

19604

19605

19606

19607

19608

19609

19610

19611

19612

19613

19614

19615

19616

19617

19618

19619

19620

19621

19622

19623

19624

19625

19626

19627

19628

19629

19630

19631

19632

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Sockets General Information

2.10.4 Routing

Sockets provides packet routing facilities. A routing information database is maintained, which
is used in selecting the appropriate network interface when transmitting packets.

2.10.5 Interfaces

Each network interface in a system corresponds to a path through which messages can be sent
and received. A network interface usually has a hardware device associated with it, though
certain interfaces such as the loopback interface, do not.

2.10.6 Socket Types

A socket is created with a specific type, which defines the communication semantics and which
allows the selection of an appropriate communication protocol. Four types are defined:

RS SOCK_DGRAM, SOCK_RAW, SOCK_SEQPACKET, and SOCK_STREAM. Implementations
may specify additional socket types.

The SOCK_STREAM socket type provides reliable, sequenced, full-duplex octet streams
between the socket and a peer to which the socket is connected. A socket of type
SOCK_STREAM needs to be in a connected state before any data can be sent or received. Record
boundaries are not maintained; data sent on a stream socket using output operations of one size
can be received using input operations of smaller or larger sizes without loss of data. Data may
be buffered; successful return from an output function does not imply that the data has been
delivered to the peer or even transmitted from the local system. If data cannot be successfully
transmitted within a given time then the connection is considered broken, and subsequent
operations shall fail. A SIGPIPE signal is raised if a thread attempts to send data on a broken
stream (one that is no longer connected), except that the signal is suppressed if the
MSG_NOSIGNAL flag is used in calls to send(), sendto(), and sendmsg(). Support for an out-of-
band data transmission facility is protocol-specific.

The SOCK_SEQPACKET socket type is similar to the SOCK_STREAM type, and is also
connection-oriented. The only difference between these types is that record boundaries are
maintained using the SOCK_SEQPACKET type. A record can be sent using one or more output
operations and received using one or more input operations, but a single operation never
transfers parts of more than one record. Record boundaries are visible to the receiver via the
MSG_EOR flag in the received message flags returned by the recvmsg() function. It is protocol-
specific whether a maximum record size is imposed.

The SOCK_DGRAM socket type supports connectionless data transfer which is not necessarily
acknowledged or reliable. Datagrams can be sent to the address specified (possibly multicast or
broadcast) in each output operation, and incoming datagrams can be received from multiple
sources. The source address of each datagram is available when receiving the datagram. An
application can also pre-specify a peer address, in which case calls to output functions that do
not specify a peer address shall send to the pre-specified peer. If a peer has been specified, only
datagrams from that peer shall be received. A datagram shall be sent in a single output
operation, and needs to be received in a single input operation. The maximum size of a
datagram is protocol-specific; with some protocols, the limit is implementation-defined. Output
datagrams may be buffered within the system; thus, a successful return from an output function
does not guarantee that a datagram is actually sent or received. However, implementations
should attempt to detect any errors possible before the return of an output function, reporting
any error by an unsuccessful return value.

550 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19633

19634

19635

19636

19637

19638

19639

19640

19641

19642

19643

19644

19645

19646

19647

19648

19649

19650

19651

19652

19653

19654

19655

19656

19657

19658

19659

19660

19661

19662

19663

19664

19665

19666

19667

19668

19669

19670

19671

19672

19673

19674

19675

19676

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Sockets

RS The SOCK_RAW socket type is similar to the SOCK_DGRAM type. It differs in that it is
normally used with communication providers that underlie those used for the other socket
types. For this reason, the creation of a socket with type SOCK_RAW shall require appropriate
privileges. The format of datagrams sent and received with this socket type generally include
specific protocol headers, and the formats are protocol-specific and implementation-defined.

2.10.7 Socket I/O Mode

The I/O mode of a socket is described by the O_NONBLOCK file status flag which pertains to
the open file description for the socket. This flag is initially off when a socket is created, but may
be set and cleared by the use of the F_SETFL command of the fcntl() function.

When the O_NONBLOCK flag is set, certain functions that would normally block until they are
complete shall return immediately.

The bind() function initiates an address assignment and shall return without blocking when
O_NONBLOCK is set; if the socket address cannot be assigned immediately, bind() shall return
the [EINPROGRESS] error to indicate that the assignment was initiated successfully, but that it
has not yet completed.

The connect() function initiates a connection and shall return without blocking when
O_NONBLOCK is set; it shall return the error [EINPROGRESS] to indicate that the connection
was initiated successfully, but that it has not yet completed.

Data transfer operations (the read(), write(), send(), and recv() functions) shall complete
immediately, transfer only as much as is available, and then return without blocking, or return
an error indicating that no transfer could be made without blocking.

2.10.8 Socket Owner

The owner of a socket is unset when a socket is created. The owner may be set to a process ID or
process group ID using the F_SETOWN command of the fcntl() function.

2.10.9 Socket Queue Limits

The transmit and receive queue sizes for a socket are set when the socket is created. The default
sizes used are both protocol-specific and implementation-defined. The sizes may be changed
using the setsockopt() function.

2.10.10 Pending Error

Errors may occur asynchronously, and be reported to the socket in response to input from the
network protocol. The socket stores the pending error to be reported to a user of the socket at the
next opportunity. The error is returned in response to a subsequent send(), recv(), or getsockopt()
operation on the socket, and the pending error is then cleared.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 551

19677

19678

19679

19680

19681

19682

19683

19684

19685

19686

19687

19688

19689

19690

19691

19692

19693

19694

19695

19696

19697

19698

19699

19700

19701

19702

19703

19704

19705

19706

19707

19708

19709

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Sockets General Information

2.10.11 Socket Receive Queue

A socket has a receive queue that buffers data when it is received by the system until it is
removed by a receive call. Depending on the type of the socket and the communication provider,
the receive queue may also contain ancillary data such as the addressing and other protocol data
associated with the normal data in the queue, and may contain out-of-band or expedited data.
The limit on the queue size includes any normal, out-of-band data, datagram source addresses,
and ancillary data in the queue. The description in this section applies to all sockets, even
though some elements cannot be present in some instances.

The contents of a receive buffer are logically structured as a series of data segments with
associated ancillary data and other information. A data segment may contain normal data or
out-of-band data, but never both. A data segment may complete a record if the protocol
supports records (always true for types SOCK_SEQPACKET and SOCK_DGRAM). A record
may be stored as more than one segment; the complete record might never be present in the
receive buffer at one time, as a portion might already have been returned to the application, and
another portion might not yet have been received from the communications provider. A data
segment may contain ancillary protocol data, which is logically associated with the segment.
Ancillary data is received as if it were queued along with the first normal data octet in the
segment (if any). A segment may contain ancillary data only, with no normal or out-of-band
data. For the purposes of this section, a datagram is considered to be a data segment that
terminates a record, and that includes a source address as a special type of ancillary data. Data
segments are placed into the queue as data is delivered to the socket by the protocol. Normal
data segments are placed at the end of the queue as they are delivered. If a new segment
contains the same type of data as the preceding segment and includes no ancillary data, and if
the preceding segment does not terminate a record, the segments are logically merged into a
single segment.

The receive queue is logically terminated if an end-of-file indication has been received or a
connection has been terminated. A segment shall be considered to be terminated if another
segment follows it in the queue, if the segment completes a record, or if an end-of-file or other
connection termination has been reported. The last segment in the receive queue shall also be
considered to be terminated while the socket has a pending error to be reported.

A receive operation shall never return data or ancillary data from more than one segment.

2.10.12 Socket Out-of-Band Data State

The handling of received out-of-band data is protocol-specific. Out-of-band data may be placed
in the socket receive queue, either at the end of the queue or before all normal data in the queue.
In this case, out-of-band data is returned to an application program by a normal receive call.
Out-of-band data may also be queued separately rather than being placed in the socket receive
queue, in which case it shall be returned only in response to a receive call that requests out-of-
band data. It is protocol-specific whether an out-of-band data mark is placed in the receive
queue to demarcate data preceding the out-of-band data and following the out-of-band data. An
out-of-band data mark is logically an empty data segment that cannot be merged with other
segments in the queue. An out-of-band data mark is never returned in response to an input
operation. The sockatmark() function can be used to test whether an out-of-band data mark is the
first element in the queue. If an out-of-band data mark is the first element in the queue when an
input function is called without the MSG_PEEK option, the mark is removed from the queue
and the following data (if any) is processed as if the mark had not been present.

552 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19710

19711

19712

19713

19714

19715

19716

19717

19718

19719

19720

19721

19722

19723

19724

19725

19726

19727

19728

19729

19730

19731

19732

19733

19734

19735

19736

19737

19738

19739

19740

19741

19742

19743

19744

19745

19746

19747

19748

19749

19750

19751

19752

19753

19754

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Sockets

2.10.13 Connection Indication Queue

Sockets that are used to accept incoming connections maintain a queue of outstanding
connection indications. This queue is a list of connections that are awaiting acceptance by the
application; see listen().

2.10.14 Signals

One category of event at the socket interface is the generation of signals. These signals report
protocol events or process errors relating to the state of the socket. The generation or delivery of
a signal does not change the state of the socket, although the generation of the signal may have
been caused by a state change.

The SIGPIPE signal shall be sent to a thread that attempts to send data on a socket that is no
longer able to send (one that is no longer connected), except that the signal is suppressed if the
MSG_NOSIGNAL flag is used in calls to send(), sendto(), and sendmsg(). Regardless of whether
the generation of the signal is suppressed, the send operation shall fail with the [EPIPE] error.

If a socket has an owner, the SIGURG signal is sent to the owner of the socket when it is notified
of expedited or out-of-band data. The socket state at this time is protocol-dependent, and the
status of the socket is specified in Section 2.10.17 (on page 557), Section 2.10.19 (on page 558),
and Section 2.10.20 (on page 558). Depending on the protocol, the expedited data may or may
not have arrived at the time of signal generation.

2.10.15 Asynchronous Errors

If any of the following conditions occur asynchronously for a socket, the corresponding value
listed below shall become the pending error for the socket:

[ECONNABORTED]
The connection was aborted locally.

[ECONNREFUSED]
For a connection-mode socket attempting a non-blocking connection, the attempt to connect
was forcefully rejected. For a connectionless-mode socket, an attempt to deliver a datagram
was forcefully rejected.

[ECONNRESET]
The peer has aborted the connection.

[EHOSTUNREACH]
The destination host is not reachable.

[EMSGSIZE]
For a connectionless-mode socket, the size of a previously sent datagram prevented
delivery.

[ENETDOWN]
The local network connection is not operational.

[ENETRESET]
The connection was aborted by the network.

[ENETUNREACH]
The destination network is not reachable.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 553

19755

19756

19757

19758

19759

19760

19761

19762

19763

19764

19765

19766

19767

19768

19769

19770

19771

19772

19773

19774

19775

19776

19777

19778

19779

19780

19781

19782

19783

19784

19785

19786

19787

19788

19789

19790

19791

19792

19793

19794

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Sockets General Information

2.10.16 Use of Options

There are a number of socket options which either specialize the behavior of a socket or provide
useful information. These options may be set at different protocol levels and are always present
at the uppermost ``socket’’ level.

Socket options are manipulated by two functions, getsockopt() and setsockopt(). These functions
allow an application program to customize the behavior and characteristics of a socket to
provide the desired effect.

All of the options usable with setsockopt() have defaults. For each option where a default value is
listed as implementation-defined, the implementation also controls whether a socket created by
accept() or accept4() starts with the option reset to the original default value, or inherited as the
value previously customized on the original listening socket. The type and meaning of these
values is defined by the protocol level to which they apply. Instead of using the default values,
an application program may choose to customize one or more of the options. However, in the
bulk of cases, the default values are sufficient for the application.

Some of the options are used to enable or disable certain behavior within the protocol modules
(for example, turn on debugging) while others may be used to set protocol-specific information
(for example, IP time-to-live on all the application’s outgoing packets). As each of the options is
introduced, its effect on the underlying protocol modules is described.

Table 2-1 shows the value for the socket level.

Table 2-1 Value of Level for Socket Options

Name Description
SOL_SOCKET Options are intended for the sockets level.

Table 2-2 (on page 555) lists those options present at the socket level; that is, when the level
parameter of the getsockopt() or setsockopt() function is SOL_SOCKET, the types of the option
value parameters associated with each option, and a brief synopsis of the meaning of the option
value parameter. Unless otherwise noted, each may be examined with getsockopt() and set with
setsockopt() on all types of socket. Options at other protocol levels vary in format and name.

554 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19795

19796

19797

19798

19799

19800

19801

19802

19803

19804

19805

19806

19807

19808

19809

19810

19811

19812

19813

19814

19815

19816

19817

19818

19819

19820

19821

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Sockets

Table 2-2 Socket-Level Options

Option Parameter Type Parameter Meaning
SO_ACCEPTCONN int Non-zero indicates that socket listening is

enabled (getsockopt() only).
SO_BROADCAST int Non-zero requests permission to transmit

broadcast datagrams (SOCK_DGRAM sockets
only).

SO_DEBUG int Non-zero requests debugging in underlying
protocol modules.

SO_DOMAIN int Identify socket domain (getsockopt() only).
SO_DONTROUTE int Non-zero requests bypass of normal routing;

route based on destination address only.
SO_ERROR int Requests and clears pending error information

on the socket (getsockopt() only).
SO_KEEPALIVE int Non-zero requests periodic transmission of

keepalive messages (protocol-specific).
SO_LINGER struct linger Specify actions to be taken for queued, unsent

data on close(): linger on/off and linger time in
seconds.

SO_OOBINLINE int Non-zero requests that out-of-band data be
placed into normal data input queue as received.

SO_PROTOCOL int Identify socket protocol (getsockopt() only).
SO_RCVBUF int Size of receive buffer (in bytes).
SO_RCVLOWAT int Minimum amount of data to return to

application for input operations (in bytes).
SO_RCVTIMEO struct timeval Timeout value for a socket receive operation.
SO_REUSEADDR int Non-zero requests reuse of local addresses in

bind() (protocol-specific).
SO_SNDBUF int Size of send buffer (in bytes).
SO_SNDLOWAT int Minimum amount of data to send for output

operations (in bytes).
SO_SNDTIMEO struct timeval Timeout value for a socket send operation.
SO_TYPE int Identify socket type (getsockopt() only).

The SO_ACCEPTCONN option is used only on getsockopt(). When this option is specified,
getsockopt() shall report whether socket listening is enabled for the socket. A value of zero shall
indicate that socket listening is disabled; non-zero that it is enabled. SO_ACCEPTCONN has no
default value.

The SO_BROADCAST option requests permission to send broadcast datagrams on the socket.
Support for SO_BROADCAST is protocol-specific. The default for SO_BROADCAST is that the
ability to send broadcast datagrams on a socket is disabled.

The SO_DEBUG option enables debugging in the underlying protocol modules. This can be
useful for tracing the behavior of the underlying protocol modules during normal system
operation. The semantics of the debug reports are implementation-defined. The default value for
SO_DEBUG is for debugging to be turned off.

The SO_DOMAIN option is used only on getsockopt(). When this option is specified,
getsockopt() shall return the domain of the socket (for example, AF_INET6). SO_DOMAIN has
no default value.

The SO_DONTROUTE option requests that outgoing messages bypass the standard routing

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 555

19822

19823

19824

19825

19826

19827

19828

19829

19830

19831

19832

19833

19834

19835

19836

19837

19838

19839

19840

19841

19842

19843

19844

19845

19846

19847

19848

19849

19850

19851

19852

19853

19854

19855

19856

19857

19858

19859

19860

19861

19862

19863

19864

19865

19866

19867

19868

19869

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Sockets General Information

facilities. The destination needs to be on a directly-connected network, and messages are
directed to the appropriate network interface according to the destination address. It is protocol-
specific whether this option has any effect and how the outgoing network interface is chosen.
Support for this option with each protocol is implementation-defined.

The SO_ERROR option is used only on getsockopt(). When this option is specified, getsockopt()
shall return any pending error on the socket and clear the error status. It shall return a value of 0
if there is no pending error. SO_ERROR may be used to check for asynchronous errors on
connected connectionless-mode sockets or for other types of asynchronous errors. SO_ERROR
has no default value.

The SO_KEEPALIVE option enables the periodic transmission of messages on a connected
socket. The behavior of this option is protocol-specific. On a connection-mode socket for which a
connection has been established, if SO_KEEPALIVE is enabled and the connected socket fails to
respond to the keep-alive messages, the connection shall be broken. The default value for
SO_KEEPALIVE is zero, specifying that this capability is turned off.

The SO_LINGER option controls the action of the interface when unsent messages are queued
on a socket and a close() is performed. The details of this option are protocol-specific. If
SO_LINGER is enabled, the system shall block the calling thread during close() until it can
transmit the data or until the end of the interval indicated by the l_linger member, whichever
comes first. If SO_LINGER is not specified, and close() is issued, the system handles the call in a
way that allows the calling thread to continue as quickly as possible. The default value for
SO_LINGER is zero, or off, for the l_onoff element of the option value and zero seconds for the
linger time specified by the l_linger element.

The SO_OOBINLINE option is valid only on protocols that support out-of-band data. The
SO_OOBINLINE option requests that out-of-band data be placed in the normal data input
queue as received; it is then accessible using the read() or recv() functions without the
MSG_OOB flag set. The default for SO_OOBINLINE is off; that is, for out-of-band data not to be
placed in the normal data input queue.

The SO_PROTOCOL option is used only on getsockopt(). When this option is specified,
getsockopt() shall return the socket protocol (for example, IPPROTO_TCP). SO_PROTOCOL has
no default value.

The SO_RCVBUF option requests that the buffer space allocated for receive operations on this
socket be set to the value, in bytes, of the option value. Applications may wish to increase buffer
size for high volume connections, or may decrease buffer size to limit the possible backlog of
incoming data. The default value for the SO_RCVBUF option value is implementation-defined,
and may vary by protocol.

The SO_RCVLOWAT option sets the minimum number of bytes to process for socket input
operations. In general, receive calls block until any (non-zero) amount of data is received, then
return the smaller of the amount available or the amount requested. The default value for
SO_RCVLOWAT is 1, and does not affect the general case. If SO_RCVLOWAT is set to a larger
value, blocking receive calls normally wait until they have received the smaller of the low water
mark value or the requested amount. Receive calls may still return less than the low water mark
if an error occurs, a signal is caught, or the type of data next in the receive queue is different
from that returned (for example, out-of-band data). As mentioned previously, the default value
for SO_RCVLOWAT is 1 byte. It is implementation-defined whether the SO_RCVLOWAT option
can be set.

The SO_RCVTIMEO option is an option to set a timeout value for input operations. It accepts a
timeval structure with the number of seconds and microseconds specifying the limit on how
long to wait for an input operation to complete. If a receive operation has blocked for this much
time without receiving additional data, it shall return with a partial count or errno shall be set to

556 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19870

19871

19872

19873

19874

19875

19876

19877

19878

19879

19880

19881

19882

19883

19884

19885

19886

19887

19888

19889

19890

19891

19892

19893

19894

19895

19896

19897

19898

19899

19900

19901

19902

19903

19904

19905

19906

19907

19908

19909

19910

19911

19912

19913

19914

19915

19916

19917

19918

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Sockets

[EAGAIN] or [EWOULDBLOCK] if no data were received. The default for this option is the
value zero, which indicates that a receive operation will not time out. It is implementation-
defined whether the SO_RCVTIMEO option can be set.

The SO_REUSEADDR option indicates that the rules used in validating addresses supplied in a
bind() should allow reuse of local addresses. Operation of this option is protocol-specific. The
default value for SO_REUSEADDR is off; that is, reuse of local addresses is not permitted.

The SO_SNDBUF option requests that the buffer space allocated for send operations on this
socket be set to the value, in bytes, of the option value. The default value for the SO_SNDBUF
option value is implementation-defined, and may vary by protocol.

The SO_SNDLOWAT option sets the minimum number of bytes to process for socket output
operations. Most output operations process all of the data supplied by the call, delivering data to
the protocol for transmission and blocking as necessary for flow control. Non-blocking output
operations process as much data as permitted subject to flow control without blocking, but
process no data if flow control does not allow the smaller of the send low water mark value or
the entire request to be processed. A select() operation testing the ability to write to a socket shall
return true only if the send low water mark could be processed. The default value for
SO_SNDLOWAT is implementation-defined and protocol-specific. It is implementation-defined
whether the SO_SNDLOWAT option can be set.

The SO_SNDTIMEO option is an option to set a timeout value for the amount of time that an
output function shall block because flow control prevents data from being sent. As noted in
Table 2-2 (on page 555), the option value is a timeval structure with the number of seconds and
microseconds specifying the limit on how long to wait for an output operation to complete. If a
send operation has blocked for this much time, it shall return with a partial count or errno set to
[EAGAIN] or [EWOULDBLOCK] if no data were sent. The default for this option is the value
zero, which indicates that a send operation will not time out. It is implementation-defined
whether the SO_SNDTIMEO option can be set.

The SO_TYPE option is used only on getsockopt(). When this option is specified, getsockopt()
shall return the type of the socket (for example, SOCK_STREAM). This option is useful to
servers that inherit sockets on start-up. SO_TYPE has no default value.

2.10.17 Use of Sockets for Local UNIX Connections

Support for UNIX domain sockets is mandatory.

UNIX domain sockets provide process-to-process communication in a single system.

2.10.17.1 Headers

The symbolic constant AF_UNIX defined in the <sys/socket.h> header is used to identify the
UNIX domain address family. The <sys/un.h> header contains other definitions used in
connection with UNIX domain sockets. See XBD Chapter 14 (on page 221).

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_un structure (see the <sys/un.h> header defined in XBD Chapter 14,
on page 221) and shall be aligned at an appropriate boundary so that pointers to it can be cast as
pointers to sockaddr_un structures and used to access the fields of those structures without
alignment problems. When a sockaddr_storage structure is cast as a sockaddr_un structure, the
ss_family field maps onto the sun_family field.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 557

19919

19920

19921

19922

19923

19924

19925

19926

19927

19928

19929

19930

19931

19932

19933

19934

19935

19936

19937

19938

19939

19940

19941

19942

19943

19944

19945

19946

19947

19948

19949

19950

19951

19952

19953

19954

19955

19956

19957

19958

19959

19960

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Sockets General Information

2.10.18 Use of Sockets over Internet Protocols

When a socket is created in the Internet family with a protocol value of zero, the implementation
shall use the protocol listed below for the type of socket created.

SOCK_STREAM IPPROTO_TCP.

SOCK_DGRAM IPPROTO_UDP.

RS SOCK_RAW IPPROTO_RAW.

SOCK_SEQPACKET Unspecified.

RS A raw interface to IP is available by creating an Internet socket of type SOCK_RAW. The default
protocol for type SOCK_RAW shall be identified in the IP header with the value
IPPROTO_RAW. Applications should not use the default protocol when creating a socket with
type SOCK_RAW, but should identify a specific protocol by value. The ICMP control protocol is
accessible from a raw socket by specifying a value of IPPROTO_ICMP for protocol.

2.10.19 Use of Sockets over Internet Protocols Based on IPv4

Support for sockets over Internet protocols based on IPv4 is mandatory. IPv4 is described in
RFC 791.

2.10.19.1 Headers

The symbolic constant AF_INET defined in the <sys/socket.h> header is used to identify the
IPv4 Internet address family. The <netinet/in.h> header contains other definitions used in
connection with IPv4 Internet sockets. See XBD Chapter 14 (on page 221).

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_in structure (see the <netinet/in.h> header defined in XBD Chapter
14, on page 221) and shall be aligned at an appropriate boundary so that pointers to it can be
cast as pointers to sockaddr_in structures and used to access the fields of those structures
without alignment problems. When a sockaddr_storage structure is cast as a sockaddr_in
structure, the ss_family field maps onto the sin_family field.

2.10.20 Use of Sockets over Internet Protocols Based on IPv6

IP6 This section describes extensions to support sockets over Internet protocols based on IPv6. The
functionality described in this section shall be provided on implementations that support the
IPV6 option (and the rest of this section is not further shaded for this option).

IPv6 is described in RFC 8200.

To enable smooth transition from IPv4 to IPv6, the features defined in this section may, in certain
circumstances, also be used in connection with IPv4; see Section 2.10.20.2 (on page 559).

2.10.20.1 Addressing

IPv6 overcomes the addressing limitations of earlier versions by using 128-bit addresses instead
of 32-bit addresses. The IPv6 address architecture is described in RFC 4291.

There are three kinds of IPv6 address:

558 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

19961

19962

19963

19964

19965

19966

19967

19968

19969

19970

19971

19972

19973

19974

19975

19976

19977

19978

19979

19980

19981

19982

19983

19984

19985

19986

19987

19988

19989

19990

19991

19992

19993

19994

19995

19996

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Sockets

Unicast
Identifies a single interface.

A unicast address can be global, link-local (designed for use on a single link), or site-local
(designed for systems not connected to the Internet). Link-local and site-local addresses
need not be globally unique.

Anycast
Identifies a set of interfaces such that a packet sent to the address can be delivered to any
member of the set.

An anycast address is similar to a unicast address; the nodes to which an anycast address is
assigned need to be explicitly configured to know that it is an anycast address.

Multicast
Identifies a set of interfaces such that a packet sent to the address should be delivered to
every member of the set.

An application can send multicast datagrams by simply specifying an IPv6 multicast
address in the address argument of sendto(). To receive multicast datagrams, an application
needs to join the multicast group (using setsockopt() with IPV6_JOIN_GROUP) and bind to
the socket the UDP port on which datagrams are to be received. Some applications should
also bind the multicast group address to the socket, to prevent other datagrams destined to
that port from being delivered to the socket.

A multicast address can be global, node-local, link-local, site-local, or organization-local.

The following special IPv6 addresses are defined:

Unspecified
An address that is not assigned to any interface and is used to indicate the absence of an
address.

Loopback
A unicast address that is not assigned to any interface and can be used by a node to send
packets to itself.

Two sets of IPv6 addresses are defined to correspond to IPv4 addresses:

IPv4-compatible addresses
These are assigned to nodes that support IPv6 and can be used when traffic is ``tunneled’’
through IPv4.

IPv4-mapped addresses
These are used to represent IPv4 addresses in IPv6 address format; see Section 2.10.20.2.

The unspecified address and the loopback address shall not be treated as IPv4-compatible
addresses.

2.10.20.2 Compatibility with IPv4

The API provides the ability for IPv6 applications to interoperate with applications using IPv4,
by using IPv4-mapped IPv6 addresses. These addresses can be generated automatically by the
getaddrinfo() function when the specified host has only IPv4 addresses.

Applications can use AF_INET6 sockets to open TCP connections to IPv4 nodes, or send UDP
packets to IPv4 nodes, by simply encoding the destination’s IPv4 address as an IPv4-mapped
IPv6 address, and passing that address, within a sockaddr_in6 structure, in the connect(),
sendto(), or sendmsg() function. When applications use AF_INET6 sockets to accept TCP
connections from IPv4 nodes, or receive UDP packets from IPv4 nodes, the system shall return

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 559

19997

19998

19999

20000

20001

20002

20003

20004

20005

20006

20007

20008

20009

20010

20011

20012

20013

20014

20015

20016

20017

20018

20019

20020

20021

20022

20023

20024

20025

20026

20027

20028

20029

20030

20031

20032

20033

20034

20035

20036

20037

20038

20039

20040

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Sockets General Information

the peer’s address to the application in the accept(), accept4(), recvfrom(), recvmsg(), or
getpeername() function using a sockaddr_in6 structure encoded this way. If a node has an IPv4
address, then the implementation shall allow applications to communicate using that address
via an AF_INET6 socket. In such a case, the address shall be represented at the API by the
corresponding IPv4-mapped IPv6 address. Also, the implementation may allow an AF_INET6
socket bound to in6addr_any to receive inbound connections and packets destined to one of the
node’s IPv4 addresses.

An application can use AF_INET6 sockets to bind to a node’s IPv4 address by specifying the
address as an IPv4-mapped IPv6 address in a sockaddr_in6 structure in the bind() function. For
an AF_INET6 socket bound to a node’s IPv4 address, the system shall return the address in the
getsockname() function as an IPv4-mapped IPv6 address in a sockaddr_in6 structure.

2.10.20.3 Interface Identification

Each local interface is assigned a unique positive integer as a numeric index. Indexes start at 1;
zero is not used. There may be gaps so that there is no current interface for a particular positive
index. Each interface also has a unique implementation-defined name.

2.10.20.4 Options

The following options apply at the IPPROTO_IPV6 level:

IPV6_JOIN_GROUP
When set via setsockopt(), it joins the application to a multicast group on an interface
(identified by its index) and addressed by a given multicast address, enabling packets sent
to that address to be read via the socket. If the interface index is specified as zero, the
system selects the interface (for example, by looking up the address in a routing table and
using the resulting interface).

An attempt to read this option using getsockopt() shall result in an [EOPNOTSUPP] error.

The parameter type of this option is a pointer to an ipv6_mreq structure.

IPV6_LEAVE_GROUP
When set via setsockopt(), it removes the application from the multicast group on an
interface (identified by its index) and addressed by a given multicast address.

An attempt to read this option using getsockopt() shall result in an [EOPNOTSUPP] error.

The parameter type of this option is a pointer to an ipv6_mreq structure.

IPV6_MULTICAST_HOPS
The value of this option is the hop limit for outgoing multicast IPv6 packets sent via the
socket. Its possible values are the same as those of IPV6_UNICAST_HOPS. If the
IPV6_MULTICAST_HOPS option is not set, a value of 1 is assumed. This option can be set
via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an int. (Default value: 1)

IPV6_MULTICAST_IF
The index of the interface to be used for outgoing multicast packets. It can be set via
setsockopt() and read via getsockopt(). If the interface index is specified as zero, the system
selects the interface (for example, by looking up the address in a routing table and using the
resulting interface).

The parameter type of this option is a pointer to an unsigned int. (Default value: 0)

560 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20041

20042

20043

20044

20045

20046

20047

20048

20049

20050

20051

20052

20053

20054

20055

20056

20057

20058

20059

20060

20061

20062

20063

20064

20065

20066

20067

20068

20069

20070

20071

20072

20073

20074

20075

20076

20077

20078

20079

20080

20081

20082

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Sockets

IPV6_MULTICAST_LOOP
This option controls whether outgoing multicast packets should be delivered back to the
local application when the sending interface is itself a member of the destination multicast
group. If it is set to 1 they are delivered. If it is set to 0 they are not. Other values result in an
[EINVAL] error. This option can be set via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an unsigned int which is used as a Boolean
value. (Default value: 1)

IPV6_UNICAST_HOPS
The value of this option is the hop limit for outgoing unicast IPv6 packets sent via the
socket. If the option is not set, or is set to −1, the system selects a default value. Attempts to
set a value less than −1 or greater than 255 shall result in an [EINVAL] error. This option can
be set via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an int. (Default value: Unspecified)

IPV6_V6ONLY
This socket option restricts AF_INET6 sockets to IPv6 communications only. AF_INET6
sockets may be used for both IPv4 and IPv6 communications. Some applications may want
to restrict their use of an AF_INET6 socket to IPv6 communications only. For these
applications, the IPv6_V6ONLY socket option is defined. When this option is turned on, the
socket can be used to send and receive IPv6 packets only. This is an IPPROTO_IPV6-level
option.

The parameter type of this option is a pointer to an int which is used as a Boolean value.
(Default value: 0)

An [EOPNOTSUPP] error shall result if IPV6_JOIN_GROUP or IPV6_LEAVE_GROUP is used
with getsockopt().

2.10.20.5 Headers

The symbolic constant AF_INET6 is defined in the <sys/socket.h> header to identify the IPv6
Internet address family. See XBD Chapter 14 (on page 221).

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_in6 structure (see the <netinet/in.h> header defined in XBD Chapter
14, on page 221) and shall be aligned at an appropriate boundary so that pointers to it can be
cast as pointers to sockaddr_in6 structures and used to access the fields of those structures
without alignment problems. When a sockaddr_storage structure is cast as a sockaddr_in6
structure, the ss_family field maps onto the sin6_family field.

The <netinet/in.h>, <arpa/inet.h>, and <netdb.h> headers contain other definitions used in
connection with IPv6 Internet sockets; see XBD Chapter 14 (on page 221).

2.11 Data Types

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 561

20083

20084

20085

20086

20087

20088

20089

20090

20091

20092

20093

20094

20095

20096

20097

20098

20099

20100

20101

20102

20103

20104

20105

20106

20107

20108

20109

20110

20111

20112

20113

20114

20115

20116

20117

20118

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Data Types General Information

2.11.1 Defined Types

All of the data types used by various functions are defined by the implementation. The
following table describes some of these types. Other types referenced in the description of a
function, not mentioned here, can be found in the appropriate header for that function.

Defined Type Description
cc_t Type used for terminal special characters.
clock_t Integer or real-floating type used for processor times, as defined in

the ISO C standard.
clockid_t Used for clock ID type in some timer functions.
dev_t Integer type used for device numbers.
DIR Type representing a directory stream.
div_t Structure type returned by the div() function.
FILE Structure containing information about a file.
glob_t Structure type used in pathname pattern matching.
fpos_t Type containing all information needed to specify uniquely every

position within a file.
gid_t Integer type used for group IDs.
iconv_t Type used for conversion descriptors.
id_t Integer type used as a general identifier; can be used to contain

at least the largest of a pid_t, uid_t, or gid_t.
ino_t Unsigned integer type used for file serial numbers.
key_t Arithmetic type used for XSI interprocess communication.
ldiv_t Structure type returned by the ldiv() function.
mode_t Integer type used for file attributes.
mqd_t Used for message queue descriptors.
nfds_t Integer type used for the number of file descriptors.
nlink_t Integer type used for link counts.
off_t Signed integer type used for file sizes.
pid_t Signed integer type used for process and process group IDs.
pthread_attr_t Used to identify a thread attribute object.
pthread_cond_t, cnd_t Used for condition variables.
pthread_condattr_t Used to identify a condition attribute object.
pthread_key_t, tss_t Used for thread-specific data keys.
pthread_mutex_t, mtx_t Used for mutexes.
pthread_mutexattr_t Used to identify a mutex attribute object.
pthread_once_t, once_flag Used for dynamic package initialization.
pthread_rwlock_t Used for read-write locks.
pthread_rwlockattr_t Used for read-write lock attributes.
pthread_t, thrd_t Used to identify a thread.
ptrdiff_t Signed integer type of the result of subtracting two pointers.
reclen_t Unsigned integer type used for directory entry lengths.
regex_t Structure type used in regular expression matching.
regmatch_t Structure type used in regular expression matching.
rlim_t Unsigned integer type used for limit values, to which objects of

type int and off_t can be cast without loss of value.
sem_t Type used in performing semaphore operations.
sig_atomic_t Possibly volatile-qualified integer type of an object that can be

accessed as an atomic entity, even in the presence of asynchronous
interrupts.

sigset_t Integer or structure type of an object used to represent sets

562 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20119

20120

20121

20122

20123

20124

20125

20126

20127

20128

20129

20130

20131

20132

20133

20134

20135

20136

20137

20138

20139

20140

20141

20142

20143

20144

20145

20146

20147

20148

20149

20150

20151

20152

20153

20154

20155

20156

20157

20158

20159

20160

20161

20162

20163

20164

20165

20166

20167

20168

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Data Types

Defined Type Description
of signals.

size_t Unsigned integer type used for size of objects.
speed_t Type used for terminal baud rates.
ssize_t Signed integer type used for a count of bytes or an error

indication.
suseconds_t Signed integer type used for time in microseconds.
tcflag_t Type used for terminal modes.
time_t Integer type used for time in seconds, as defined in the ISO C

standard.
timer_t Used for timer ID returned by the timer_create() function.
uid_t Integer type used for user IDs.
va_list Type used for traversing variable argument lists.
wchar_t Integer type whose range of values can represent distinct codes for

all members of the largest extended character set specified by the
supported locales.

wctype_t Scalar type which represents a character class descriptor.
wint_t Integer type capable of storing any valid value of wchar_t or

WEOF.
wordexp_t Structure type used in word expansion.

2.11.2 The char Type

The type char is defined as a single byte; see XBD Chapter 3 (on page 31) (Byte and Character).

2.12 Status Information
Status information is data associated with a process detailing a change in the state of the process.
It shall consist of:

• The state the process transitioned into (stopped, continued, or terminated)

• The information necessary to populate the siginfo_t structure provided by waitid()

• If the new state is terminated:

— The low-order 8 bits of the status argument that the process passed to _Exit(), _exit(),
or exit(), or the low-order 8 bits of the value the process returned from main()

Note that these 8 bits are part of the complete value that is used to set the si_status
member of the siginfo_t structure provided by waitid()

— Whether the process terminated due to the receipt of a signal that was not caught
and, if so, the number of the signal that caused the termination of the process

• If the new state is stopped:

— The number of the signal that caused the process to stop

A process might not have any status information (such as immediately after a process has
started).

Status information for a process shall be generated (made available to the parent process) when
the process stops, continues, or terminates except in the following case:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 563

20169

20170

20171

20172

20173

20174

20175

20176

20177

20178

20179

20180

20181

20182

20183

20184

20185

20186

20187

20188

20189

20190

20191

20192

20193

20194

20195

20196

20197

20198

20199

20200

20201

20202

20203

20204

20205

20206

20207

20208

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Status Information General Information

• If the parent process sets the action for the SIGCHLD signal to SIG_IGN, or if the parent
sets the SA_NOCLDWAIT flag for the SIGCHLD signal action, process termination shall
not generate new status information but shall cause any existing status information for the
process to be discarded.

If new status information is generated, and the process already had status information, the
existing status information shall be discarded and replaced with the new status information.

Only the process’ parent process can obtain the process’ status information. The parent obtains a
child’s status information by calling wait(), waitid(), or waitpid(). Except when waitid() is called
with the WNOWAIT flag set in the options argument, the status information obtained by a wait
function shall be consumed (discarded) by that wait function; no two calls to wait(), waitid()
(without WNOWAIT), or waitpid() shall obtain the same status information.

When status information becomes available to the parent process and more than one thread in
the parent process is waiting for the status information (blocked in a call to wait(), waitid(), or
waitpid() with arguments that would match the status information):

• If none of the matching threads is in a call to waitid() with the WNOWAIT flag set in the
options argument, the thread that obtains the status information is unspecified.

• Otherwise (at least one of the matching threads is in a call to waitid() with the WNOWAIT
flag set), the matching thread or threads that obtain the status information is unspecified
except that at least one of the matching threads shall obtain the status information and at
most one of the matching threads that are not calling waitid() with the WNOWAIT flag set
shall obtain it.

564 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20209

20210

20211

20212

20213

20214

20215

20216

20217

20218

20219

20220

20221

20222

20223

20224

20225

20226

20227

20228

20229

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 3

System Interfaces

This chapter describes the functions, macros, and external variables to support applications
portability at the C-language source level.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 565

20230

20231

20232

20233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

CMPLX() System Interfaces

NAME
CMPLX, CMPLXF, CMPLXL — make a complex value

SYNOPSIS
#include <complex.h>

double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);
long double complex CMPLXL(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The CMPLX macros shall expand to an expression of the specified complex type, with the real
part having the (converted) value of x and the imaginary part having the (converted) value of y.
The resulting expression shall be suitable for use as an initializer for an object with static or
thread storage duration, provided both arguments are likewise suitable.

RETURN VALUE
The CMPLX macros return the complex value x + i y (where i is the imaginary unit).

These macros shall behave as if the implementation supported imaginary types and the
definitions were:

#define CMPLX(x, y) ((double complex)((double)(x) + \
_Imaginary_I * (double)(y)))

#define CMPLXF(x, y) ((float complex)((float)(x) + \
_Imaginary_I * (float)(y)))

#define CMPLXL(x, y) ((long double complex)((long double)(x) + \
_Imaginary_I * (long double)(y)))

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <complex.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

566 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20234

20235

20236

20237

20238

20239

20240

20241

20242

20243

20244

20245

20246

20247

20248

20249

20250

20251

20252

20253

20254

20255

20256

20257

20258

20259

20260

20261

20262

20263

20264

20265

20266

20267

20268

20269

20270

20271

20272

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces FD_CLR()

NAME
FD_CLR — macros for synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

DESCRIPTION
Refer to pselect().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 567

20273

20274

20275

20276

20277

20278

20279

20280

20281

20282

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

_Exit() System Interfaces

NAME
_Exit, _exit — terminate a process

SYNOPSIS
#include <stdlib.h>

_Noreturn void _Exit(int status);

#include <unistd.h>

_Noreturn void _exit(int status);

DESCRIPTION
CX For _Exit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other value, though only
the least significant 8 bits (that is, status & 0377) shall be available from wait() and waitpid(); the
full value shall be available from waitid() and in the siginfo_t passed to a signal handler for
SIGCHLD.

CX The _Exit() and _exit() functions shall be functionally equivalent.

CX The _Exit() and _exit() functions shall not call functions registered with atexit() nor
CX at_quick_exit(), nor any registered signal handlers. Open streams shall not be flushed. Whether

open streams are closed (without flushing) is implementation-defined. Finally, the calling
process shall be terminated with the consequences described below.

Consequences of Process Termination

CX Process termination caused by any reason shall have the following consequences:

Note: These consequences are all extensions to the ISO C standard and are not further CX shaded.
However, functionality relating to the XSI option is shaded.

• All of the file descriptors, directory streams, conversion descriptors, and message catalog
descriptors open in the calling process shall be closed.

XSI • If the parent process of the calling process has set its SA_NOCLDWAIT flag or has set the
action for the SIGCHLD signal to SIG_IGN:

— The process’ status information (see Section 2.12, on page 563), if any, shall be
discarded.

— The lifetime of the calling process shall end immediately. If SA_NOCLDWAIT is set,
it is implementation-defined whether a SIGCHLD signal is sent to the parent process.

— If a thread in the parent process of the calling process is blocked in wait(), waitpid(),
or waitid(), and the parent process has no remaining child processes in the set of
waited-for children, the wait(), waitid(), or waitpid() function shall fail and set errno
to [ECHILD].

Otherwise:

— Status information (see Section 2.12, on page 563) shall be generated.

— The calling process shall be transformed into a zombie process. Its status information
shall be made available to the parent process until the process’ lifetime ends.

568 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20283

20284

20285

20286

20287

20288

20289

20290

20291

20292

20293

20294

20295

20296

20297

20298

20299

20300

20301

20302

20303

20304

20305

20306

20307

20308

20309

20310

20311

20312

20313

20314

20315

20316

20317

20318

20319

20320

20321

20322

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces _Exit()

— The process’ lifetime shall end once its parent obtains the process’ status information
via a currently-blocked or future call to wait(), waitid() (without WNOWAIT), or
waitpid().

— If one or more threads in the parent process of the calling process is blocked in a call
to wait(), waitid(), or waitpid() awaiting termination of the process, one (or, if any are
calling waitid() with WNOWAIT, possibly more) of these threads shall obtain the
process’ status information as specified in Section 2.12 (on page 563) and become
unblocked.

— A SIGCHLD shall be sent to the parent process.

• Termination of a process does not directly terminate its children. The sending of a
SIGHUP signal as described below indirectly terminates children in some circumstances.

• The parent process ID of all of the existing child processes and zombie processes of the
calling process shall be set to the process ID of an implementation-defined system process.
That is, these processes shall be inherited by a special system process.

XSI • Each attached shared-memory segment is detached and the value of shm_nattch (see
shmget()) in the data structure associated with its shared memory ID shall be decremented
by 1.

XSI • For each semaphore for which the calling process has set a semadj value (see semop()), that
value shall be added to the semval of the specified semaphore.

• If the process is a controlling process, the SIGHUP signal shall be sent to each process in
the foreground process group of the controlling terminal belonging to the calling process.

• If the process is a controlling process, the controlling terminal associated with the session
shall be disassociated from the session, allowing it to be acquired by a new controlling
process.

• If the exit of the process causes a process group to become orphaned, and if any member of
the newly-orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal shall be sent to each process in the newly-orphaned process group.

• All open named semaphores in the calling process shall be closed as if by appropriate calls
to sem_close(). All open unnamed semaphores in the calling process shall be destroyed as
if by appropriate calls to sem_destroy().

ML • Any memory locks established by the process via calls to mlockall() or mlock() shall be
removed. If locked pages in the address space of the calling process are also mapped into
the address spaces of other processes and are locked by those processes, the locks
established by the other processes shall be unaffected by the call by this process to _Exit()
or _exit().

• Memory mappings that were created in the process shall be unmapped before the process
is destroyed.

TYM • Any blocks of typed memory that were mapped in the calling process shall be unmapped,
as if munmap() was implicitly called to unmap them.

MSG • All open message queue descriptors in the calling process shall be closed as if by
appropriate calls to mq_close().

• Any outstanding cancelable asynchronous I/O operations may be canceled. Those
asynchronous I/O operations that are not canceled shall complete as if the _Exit() or
_exit() operation had not yet occurred, but any associated signal notifications shall be

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 569

20323

20324

20325

20326

20327

20328

20329

20330

20331

20332

20333

20334

20335

20336

20337

20338

20339

20340

20341

20342

20343

20344

20345

20346

20347

20348

20349

20350

20351

20352

20353

20354

20355

20356

20357

20358

20359

20360

20361

20362

20363

20364

20365

20366

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

_Exit() System Interfaces

suppressed. The _Exit() or _exit() operation may block awaiting such I/O completion.
Whether any I/O is canceled, and which I/O may be canceled upon _Exit() or _exit(), is
implementation-defined.

• Threads terminated by a call to _Exit() or _exit() shall not invoke their cancellation
cleanup handlers or per-thread data destructors.

RETURN VALUE
These functions do not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Normally applications should use exit() rather than _Exit() or _exit().

Exit statuses of 126 and greater are ambiguous in certain circumstances because they have
special meanings in the shell (see Section 2.8.2 (on page 2499) and the EXIT STATUS section of
sh).

RATIONALE

Process Termination

Early proposals drew a distinction between normal and abnormal process termination.
Abnormal termination was caused only by certain signals and resulted in implementation-
defined ``actions’’, as discussed below. Subsequent proposals distinguished three types of
termination: normal termination (as in the current specification), simple abnormal termination, and
abnormal termination with actions. Again the distinction between the two types of abnormal
termination was that they were caused by different signals and that implementation-defined
actions would result in the latter case. Given that these actions were completely implementation-
defined, the early proposals were only saying when the actions could occur and how their
occurrence could be detected, but not what they were. This was of little or no use to conforming
applications, and thus the distinction is not made in this volume of POSIX.1-2024.

The implementation-defined actions usually include, in most historical implementations, the
creation of a file named core in the current working directory of the process. This file contains an
image of the memory of the process, together with descriptive information about the process,
perhaps sufficient to reconstruct the state of the process at the receipt of the signal.

There is a potential security problem in creating a core file if the process was set-user-ID and the
current user is not the owner of the program, if the process was set-group-ID and none of the
user ’s groups match the group of the program, or if the user does not have permission to write
in the current directory. In this situation, an implementation either should not create a core file
or should make it unreadable by the user.

Despite the silence of this volume of POSIX.1-2024 on this feature, applications are advised not
to create files named core because of potential conflicts in many implementations. Some
implementations use a name other than core for the file; for example, by appending the process
ID to the filename.

570 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20367

20368

20369

20370

20371

20372

20373

20374

20375

20376

20377

20378

20379

20380

20381

20382

20383

20384

20385

20386

20387

20388

20389

20390

20391

20392

20393

20394

20395

20396

20397

20398

20399

20400

20401

20402

20403

20404

20405

20406

20407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces _Exit()

Terminating a Process

It is important that the consequences of process termination as described occur regardless of
whether the process called _exit() (perhaps indirectly through exit()) or instead was terminated
due to a signal or for some other reason. Note that in the specific case of exit() this means that
the status argument to exit() is treated in the same way as the status argument to _exit().

A language other than C may have other termination primitives than the C-language exit()
function, and programs written in such a language should use its native termination primitives,
but those should have as part of their function the behavior of _exit() as described.
Implementations in languages other than C are outside the scope of this version of this volume
of POSIX.1-2024, however.

As required by the ISO C standard, using return from main() has the same behavior (other than
with respect to language scope issues) as calling exit() with the returned value. Reaching the end
of the main() function has the same behavior as calling exit(0).

A value of zero (or EXIT_SUCCESS, which is required to be zero) for the argument status
conventionally indicates successful termination. This corresponds to the specification for exit()
in the ISO C standard. The convention is followed by utilities such as make and various shells,
which interpret a zero status from a child process as success. For this reason, applications should
not call exit(0) or _exit(0) when they terminate unsuccessfully; for example, in signal-catching
functions.

Historically, the implementation-defined process that inherits children whose parents have
terminated without waiting on them is called init and has a process ID of 1.

The sending of a SIGHUP to the foreground process group when a controlling process
terminates corresponds to somewhat different historical implementations. In System V, the
kernel sends a SIGHUP on termination of (essentially) a controlling process. In 4.2 BSD, the
kernel does not send SIGHUP in a case like this, but the termination of a controlling process is
usually noticed by a system daemon, which arranges to send a SIGHUP to the foreground
process group with the vhangup() function. However, in 4.2 BSD, due to the behavior of the
shells that support job control, the controlling process is usually a shell with no other processes
in its process group. Thus, a change to make _exit() behave this way in such systems should not
cause problems with existing applications.

The termination of a process may cause a process group to become orphaned in either of two
ways. The connection of a process group to its parent(s) outside of the group depends on both
the parents and their children. Thus, a process group may be orphaned by the termination of the
last connecting parent process outside of the group or by the termination of the last direct
descendant of the parent process(es). In either case, if the termination of a process causes a
process group to become orphaned, processes within the group are disconnected from their job
control shell, which no longer has any information on the existence of the process group.
Stopped processes within the group would languish forever. In order to avoid this problem,
newly orphaned process groups that contain stopped processes are sent a SIGHUP signal and a
SIGCONT signal to indicate that they have been disconnected from their session. The SIGHUP
signal causes the process group members to terminate unless they are catching or ignoring
SIGHUP. Under most circumstances, all of the members of the process group are stopped if any
of them are stopped.

The action of sending a SIGHUP and a SIGCONT signal to members of a newly orphaned
process group is similar to the action of 4.2 BSD, which sends SIGHUP and SIGCONT to each
stopped child of an exiting process. If such children exit in response to the SIGHUP, any
additional descendants receive similar treatment at that time. In this volume of POSIX.1-2024,
the signals are sent to the entire process group at the same time. Also, in this volume of

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 571

20408

20409

20410

20411

20412

20413

20414

20415

20416

20417

20418

20419

20420

20421

20422

20423

20424

20425

20426

20427

20428

20429

20430

20431

20432

20433

20434

20435

20436

20437

20438

20439

20440

20441

20442

20443

20444

20445

20446

20447

20448

20449

20450

20451

20452

20453

20454

20455

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

_Exit() System Interfaces

POSIX.1-2024, but not in 4.2 BSD, stopped processes may be orphaned, but may be members of a
process group that is not orphaned; therefore, the action taken at _exit() must consider processes
other than child processes.

It is possible for a process group to be orphaned by a call to setpgid() or setsid(), as well as by
process termination. This volume of POSIX.1-2024 does not require sending SIGHUP and
SIGCONT in those cases, because, unlike process termination, those cases are not caused
accidentally by applications that are unaware of job control. An implementation can choose to
send SIGHUP and SIGCONT in those cases as an extension; such an extension must be
documented as required in <signal.h>.

The ISO/IEC 9899: 1999 standard added the _Exit() function that results in immediate program
termination without triggering signals or atexit()-registered functions. In POSIX.1-2024, this is
equivalent to the _exit() function.

FUTURE DIRECTIONS
None.

SEE ALSO
at_quick_exit(), atexit(), exit(), mlock(), mlockall(), mq_close(), munmap(), quick_exit(), sem_close(),
semop(), setpgid(), setsid(), shmget(), wait(), waitid()

XBD <stdlib.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Interactions with the SA_NOCLDWAIT flag and SIGCHLD signal are further clarified.

The values of status from exit() are better described.

Issue 6
Extensions beyond the ISO C standard are marked.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for typed memory.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The _Exit() function is included.

• The DESCRIPTION is updated.

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

References to the wait3() function are removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/16 is applied, correcting grammar in the
DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #031 is applied, separating these functions from the
exit() function.

Austin Group Interpretation 1003.1-2001 #085 is applied, clarifying the text regarding flushing of
streams and closing of temporary files.

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, and

572 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20456

20457

20458

20459

20460

20461

20462

20463

20464

20465

20466

20467

20468

20469

20470

20471

20472

20473

20474

20475

20476

20477

20478

20479

20480

20481

20482

20483

20484

20485

20486

20487

20488

20489

20490

20491

20492

20493

20494

20495

20496

20497

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces _Exit()

Semaphores options is moved to the Base.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0033 [594] and XSH/TC2-2008/0034
[594,690] are applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement for unnamed semaphores to be
destroyed.

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1629 is applied, changing the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 573

20498

20499

20500

20501

20502

20503

20504

20505

20506

20507

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

_Fork() System Interfaces

NAME
_Fork — create a new process

SYNOPSIS
#include <unistd.h>

pid_t _Fork(void);

DESCRIPTION
Refer to fork().

574 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20508

20509

20510

20511

20512

20513

20514

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces a64l()

NAME
a64l, l64a — convert between a 32-bit integer and a radix-64 ASCII string

SYNOPSIS
XSI #include <stdlib.h>

long a64l(const char *s);
char *l64a(long value);

DESCRIPTION
These functions maintain numbers stored in radix-64 ASCII characters. This is a notation by
which 32-bit integers can be represented by up to six characters; each character represents a digit
in radix-64 notation. If the type long contains more than 32 bits, only the low-order 32 bits shall
be used for these operations.

The characters used to represent digits are '.' (dot) for 0, '/' for 1, '0' through '9' for [2,11],
'A' through 'Z' for [12,37], and 'a' through 'z' for [38,63].

The a64l() function shall take a pointer to a radix-64 representation, in which the first digit is the
least significant, and return the corresponding long value. If the string pointed to by s contains
more than six characters, a64l() shall use the first six. If the first six characters of the string
contain a null terminator, a64l() shall use only characters preceding the null terminator. The
a64l() function shall scan the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number. If the type long contains more than
32 bits, the resulting value is sign-extended. The behavior of a64l() is unspecified if s is a null
pointer or the string pointed to by s was not generated by a previous call to l64a().

The l64a() function shall take a long argument and return a pointer to the corresponding
radix-64 representation. The behavior of l64a() is unspecified if value is negative.

The value returned by l64a() may be a pointer into a static buffer. Subsequent calls to l64a() may
overwrite the buffer.

The l64a() function need not be thread-safe.

RETURN VALUE
Upon successful completion, a64l() shall return the long value resulting from conversion of the
input string. If a string pointed to by s is an empty string, a64l() shall return 0L.

The l64a() function shall return a pointer to the radix-64 representation. If value is 0L, l64a() shall
return a pointer to an empty string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If the type long contains more than 32 bits, the result of a64l(l64a(x)) is x in the low-order 32 bits.

RATIONALE
This is not the same encoding as used by either encoding variant of the uuencode utility.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 575

20515

20516

20517

20518

20519

20520

20521

20522

20523

20524

20525

20526

20527

20528

20529

20530

20531

20532

20533

20534

20535

20536

20537

20538

20539

20540

20541

20542

20543

20544

20545

20546

20547

20548

20549

20550

20551

20552

20553

20554

20555

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

a64l() System Interfaces

SEE ALSO
strtoul()

XBD <stdlib.h>

XCU uuencode

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that the l64a() function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

576 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20556

20557

20558

20559

20560

20561

20562

20563

20564

20565

20566

20567

20568

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces abort()

NAME
abort — generate an abnormal process abort

SYNOPSIS
#include <stdlib.h>

_Noreturn void abort(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The abort() function shall cause abnormal process termination to occur, unless a SIGABRT signal
that it generates is caught and the signal handler does not return.

CX The abnormal termination processing shall include the default actions defined for SIGABRT and
may include an attempt to effect fclose() on all open streams.

CX The SIGABRT signal shall be sent to the calling thread as if by means of raise() with the
CX argument SIGABRT. If this signal does not terminate the process (for example, if the signal is

caught and the handler returns), abort() may change the disposition of SIGABRT to SIG_DFL
and send the signal (in the same way) again. If a second signal is sent and it does not terminate
the process, the behavior is unspecified, except that the abort() call shall not return.

CX The status made available to wait(), waitid(), or waitpid() by abort() shall be that of a process
terminated by the SIGABRT signal. The abort() function shall override blocking or ignoring the
SIGABRT signal.

RETURN VALUE
The abort() function shall not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Catching the signal is intended to provide the application developer with a portable means to
abort processing, free from possible interference from any implementation-supplied functions.

RATIONALE
Historically, abort() has been implemented by calling other signal manipulation functions such
as raise(), sigaction(), and pthread_sigmask(). This means that its operation can be affected by
concurrent actions in other threads. For example, if abort() attempts to terminate the process by
calling sigaction() to change the disposition for SIGABRT to SIG_DFL and then calling raise(),
another thread could change the disposition in between those two calls, resulting in the process
not being terminated. If this happens, the only requirement is that abort() does not return. An
implementation could call those functions in a loop (which could in theory then execute
indefinitely), or could terminate the process by calling _exit() (which would ensure termination
but result in the wrong wait status). To avoid these issues, implementations are encouraged to
implement abort() in a manner such that its operation cannot be affected by concurrent actions
in other threads. For example, it could first halt the execution of all other threads, or it could
terminate the process using a ``terminate as if by a signal’’ system call instead of by raising (a
second) SIGABRT.

The ISO/IEC 9899: 1999 standard required (and the current standard still requires) the abort()
function to be async-signal-safe. Since POSIX.1-2024 defers to the ISO C standard, this required a

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 577

20569

20570

20571

20572

20573

20574

20575

20576

20577

20578

20579

20580

20581

20582

20583

20584

20585

20586

20587

20588

20589

20590

20591

20592

20593

20594

20595

20596

20597

20598

20599

20600

20601

20602

20603

20604

20605

20606

20607

20608

20609

20610

20611

20612

20613

20614

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

abort() System Interfaces

change to the DESCRIPTION from ``shall include the effect of fclose()’’ to ``may include an
attempt to effect fclose().’’

The revised wording permits some backwards-compatibility and avoids a potential deadlock
situation.

The Open Group Base Resolution bwg2002-003 is applied, removing the following XSI shaded
paragraph from the DESCRIPTION:

``On XSI-conformant systems, in addition the abnormal termination processing shall include the
effect of fclose() on message catalog descriptors.’’

There were several reasons to remove this paragraph:

• No special processing of open message catalogs needs to be performed prior to abnormal
process termination.

• The main reason to specifically mention that abort() includes the effect of fclose() on open
streams is to flush output queued on the stream. Message catalogs in this context are read-
only and, therefore, do not need to be flushed.

• The effect of fclose() on a message catalog descriptor is unspecified. Message catalog
descriptors are allowed, but not required to be implemented using a file descriptor, but
there is no mention in POSIX.1-2024 of a message catalog descriptor using a standard I/O
stream FILE object as would be expected by fclose().

FUTURE DIRECTIONS
A future version of this standard may require abort() to be implemented in a manner such that
its operation cannot be affected by concurrent actions in other threads.

SEE ALSO
exit(), kill(), raise(), signal(), wait(), waitid()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Changes are made to the DESCRIPTION for alignment with the ISO/IEC 9899: 1999 standard.

The Open Group Base Resolution bwg2002-003 is applied.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/10 is applied, changing the
DESCRIPTION of abnormal termination processing and adding to the RATIONALE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/9 is applied, changing ``implementation-
defined functions’’ to ``implementation-supplied functions’’ in the APPLICATION USAGE
section.

Issue 8
Austin Group Defect 906 is applied, clarifying how the behavior of abort() may be affected by
concurrent actions in other threads.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

578 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20615

20616

20617

20618

20619

20620

20621

20622

20623

20624

20625

20626

20627

20628

20629

20630

20631

20632

20633

20634

20635

20636

20637

20638

20639

20640

20641

20642

20643

20644

20645

20646

20647

20648

20649

20650

20651

20652

20653

20654

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces abs()

NAME
abs — return an integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs(int i);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The abs() function shall compute the absolute value of its integer operand, i. If the result cannot
be represented, the behavior is undefined.

RETURN VALUE
The abs() function shall return the absolute value of its integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Since POSIX.1 requires a two’s complement representation of int, the absolute value of the
negative integer with the largest magnitude {INT_MIN} is not representable, thus abs(INT_MIN)
is undefined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fabs(), labs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 8
Austin Group Defect 1108 is applied, changing the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 579

20655

20656

20657

20658

20659

20660

20661

20662

20663

20664

20665

20666

20667

20668

20669

20670

20671

20672

20673

20674

20675

20676

20677

20678

20679

20680

20681

20682

20683

20684

20685

20686

20687

20688

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

accept() System Interfaces

NAME
accept, accept4 — accept a new connection on a socket

SYNOPSIS
#include <sys/socket.h>

int accept(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

int accept4(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len, int flag);

DESCRIPTION
The accept() function shall extract the first connection on the queue of pending connections,
create a new socket with the same socket type protocol and address family as the specified
socket, and allocate a new file descriptor for that socket. The file descriptor shall be allocated as
described in Section 2.6 (on page 525).

The accept() function takes the following arguments:

socket Specifies a socket that was created with socket(), has been bound to an address
with bind(), and has issued a successful call to listen().

address Either a null pointer, or a pointer to a sockaddr structure where the address of
the connecting socket shall be returned.

address_len Either a null pointer, if address is a null pointer, or a pointer to a socklen_t
object which on input specifies the length of the supplied sockaddr structure,
and on output specifies the length of the address of the connecting socket.

If address is not a null pointer, the address of the peer for the accepted connection shall be stored
in the sockaddr structure pointed to by address, and the length of this address shall be stored in
the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
descriptor for the socket, accept() shall block until a connection is present. If the listen() queue is
empty of connection requests and O_NONBLOCK is set on the file descriptor for the socket,
accept() shall fail and set errno to [EAGAIN] or [EWOULDBLOCK].

The accepted socket cannot itself accept more connections. The original socket remains open and
can accept more connections.

If O_NONBLOCK is set on the file description for socket, it is implementation-defined whether
O_NONBLOCK will be set on the file description created by accept(). FD_CLOEXEC and
FD_CLOFORK for the new file descriptor shall be clear, regardless of how they are currently set
for socket.

It is implementation-defined which socket options, if any, on the accepted socket will have a
default value determined by a value previously customized by setsockopt() on socket, rather than
the default value used for other new sockets.

The accept4() function shall be equivalent to the accept() function, except that the state of
O_NONBLOCK on the new file description, and FD_CLOEXEC and FD_CLOFORK on the
returned file descriptor shall be determined solely by the flag argument, which can be
constructed from a bitwise-inclusive OR of flags from the following list:

580 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20689

20690

20691

20692

20693

20694

20695

20696

20697

20698

20699

20700

20701

20702

20703

20704

20705

20706

20707

20708

20709

20710

20711

20712

20713

20714

20715

20716

20717

20718

20719

20720

20721

20722

20723

20724

20725

20726

20727

20728

20729

20730

20731

20732

20733

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces accept()

SOCK_CLOEXEC Atomically set the FD_CLOEXEC flag on the new file descriptor.

SOCK_CLOFORK Atomically set the FD_CLOFORK flag on the new file descriptor.

SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the new file description.

Implementations may define additional flags.

RETURN VALUE
Upon successful completion, accept() and accept4() shall return the non-negative file descriptor
of the accepted socket. Otherwise, −1 shall be returned, errno shall be set to indicate the error,
and any object pointed to by address_len shall remain unchanged.

ERRORS
The accept() and accept4() functions shall fail if:

[EAGAIN] or [EWOULDBLOCK]
O_NONBLOCK is set for the socket file descriptor and no connections are
present to be accepted.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNABORTED]
A connection has been aborted.

[EINTR] The accept() function was interrupted by a signal that was caught before a
valid connection arrived.

[EINVAL] The socket is not accepting connections.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum number of file descriptors in the system are already open.

[ENOBUFS] No buffer space is available.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support accepting
connections.

The accept() and accept4() functions may fail if:

[EPROTO] A protocol error has occurred.

The accept4() function may fail if:

[EINVAL] The value of the flag argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
When a connection is available, select() indicates that the file descriptor for the socket is ready
for reading.

Many socket options are described as having implementation-defined default values, which
may differ according to the protocol in use by the socket. Existing practice differs on whether
socket options such as SO_SNDBUF that were customized on the original listening socket will
impact the corresponding option on the newly returned socket. Implementations are permitted
to allow inheritance of customized settings where it makes sense, although the most portable

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 581

20734

20735

20736

20737

20738

20739

20740

20741

20742

20743

20744

20745

20746

20747

20748

20749

20750

20751

20752

20753

20754

20755

20756

20757

20758

20759

20760

20761

20762

20763

20764

20765

20766

20767

20768

20769

20770

20771

20772

20773

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

accept() System Interfaces

approach for applications is to limit setsockopt() customizations to only the accepted socket.

For AF_UNIX sockets, it is recommended that address points to a buffer of length greater than
sizeof(struct sockaddr_un) which has been initialized with null bytes. That way, even if
the implementation supports the use of all bytes of sun_path without a terminating null byte, the
larger buffer guarantees that the sun_path member can then be passed to other interfaces that
expect a null-terminated string. If no truncation occurred based on the input value of address_len,
it is unspecified whether the returned address_len will be sizeof(struct sockaddr_un), or
merely a value at least as large as offsetof(struct sockaddr_un, sun_path) plus the
number of non-null bytes stored in sun_path.

RATIONALE
The SOCK_CLOEXEC and SOCK_CLOFORK flags of accept4() are necessary to avoid a data
race in multi-threaded applications. Without SOCK_CLOFORK, a file descriptor is leaked into a
child process created by one thread in the window between another thread creating a file
descriptor with accept() and then using fcntl() to set the FD_CLOFORK flag. Without
SOCK_CLOEXEC, a file descriptor intentionally inherited by child processes is similarly leaked
into an executed program if FD_CLOEXEC is not set atomically.

Two designs often used for network servers are multi-threaded servers with a pre-created pool
of worker threads, where the thread that accepts the connection request hands over the new file
descriptor to a worker thread for servicing, and pre-fork servers with a pre-created pool of
worker processes, where the process that accepts the connection request passes the new file
descriptor (for example via sendmsg()) to a worker process. In both of these designs, accept4()
should be used with the SOCK_CLOFORK flag set. Simpler designs are also sometimes used
that do not pre-create a pool. For a multi-threaded server that creates a thread to handle each
request, SOCK_CLOFORK should still be used. For a forking server that creates a child to
service each request, clearly SOCK_CLOFORK cannot be used if the child is to inherit the file
descriptor to be serviced, and therefore this type of server needs to use an alternative method of
indicating the end of communications, for example using shutdown(), to ensure the client sees
end-of-file, rather than just closing the socket. Such child processes should set FD_CLOFORK on
the inherited file descriptor before they attempt to start any additional child processes to avoid
leakage into those children.

The SOCK_NONBLOCK flag is for convenience in avoiding additional fcntl() calls, as well as
providing specific control over the O_NONBLOCK flag, since traditional implementations of
accept() differ on whether O_NONBLOCK is inherited from the socket argument.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 525), bind(), connect(), listen(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the accept() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ``may fail’’ [ENOBUFS]
and [ENOMEM] errors to become ``shall fail’’ errors.

582 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20774

20775

20776

20777

20778

20779

20780

20781

20782

20783

20784

20785

20786

20787

20788

20789

20790

20791

20792

20793

20794

20795

20796

20797

20798

20799

20800

20801

20802

20803

20804

20805

20806

20807

20808

20809

20810

20811

20812

20813

20814

20815

20816

20817

20818

20819

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces accept()

Functionality relating to XSI STREAMS is marked obsolescent.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0018 [464] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0035 [835] and XSH/TC2-2008/0036
[836] are applied.

Issue 8
Austin Group Defects 411 and 1318 are applied, adding accept4(), requiring FD_CLOEXEC and
FD_CLOFORK to be clear for the file descriptor returned by accept(), and clarifying the
requirements for O_NONBLOCK on the file description created by accept().

Austin Group Defect 561 is applied, adding a paragraph about sun_path to APPLICATION
USAGE.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1337 is applied, clarifying socket option default values.

Austin Group Defect 1565 is applied, changing the description of address_len.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 583

20820

20821

20822

20823

20824

20825

20826

20827

20828

20829

20830

20831

20832

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

access() System Interfaces

NAME
access, faccessat — determine accessibility of a file descriptor

SYNOPSIS
#include <unistd.h>

int access(const char *path, int amode);

OH #include <fcntl.h>

int faccessat(int fd, const char *path, int amode, int flag);

DESCRIPTION
The access() function shall check the file named by the pathname pointed to by the path
argument for accessibility according to the bit pattern contained in amode. The checks for
accessibility (including directory permissions checked during pathname resolution) shall be
performed using the real user ID in place of the effective user ID and the real group ID in place
of the effective group ID.

The value of amode is either the bitwise-inclusive OR of the access permissions to be checked
(R_OK, W_OK, X_OK) or the existence test (F_OK).

If any access permissions are checked, each shall be checked individually, as described in XBD
Section 4.7 (on page 97), except that where that description refers to execute permission for a
process with appropriate privileges, an implementation may indicate success for X_OK even if
execute permission is not granted to any user.

The faccessat() function, when called with a flag value of zero, shall be equivalent to the access()
function, except in the case where path specifies a relative path. In this case the file whose
accessibility is to be determined shall be located relative to the directory associated with the file
descriptor fd instead of the current working directory. If the access mode of the open file
description associated with the file descriptor is not O_SEARCH, the function shall check
whether directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the access mode is O_SEARCH, the function shall not perform
the check.

If faccessat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and, if flag is zero, the behavior shall be identical to a call to access().

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_EACCESS The checks for accessibility (including directory permissions checked during
pathname resolution) shall be performed using the effective user ID and
group ID instead of the real user ID and group ID as required in a call to
access().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Permission bits of the file mode do not permit the requested access, or search
permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

584 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20833

20834

20835

20836

20837

20838

20839

20840

20841

20842

20843

20844

20845

20846

20847

20848

20849

20850

20851

20852

20853

20854

20855

20856

20857

20858

20859

20860

20861

20862

20863

20864

20865

20866

20867

20868

20869

20870

20871

20872

20873

20874

20875

20876

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces access()

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

[EROFS] Write access is requested for a file on a read-only file system.

The faccessat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

[EINVAL] The value of the amode argument is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

The faccessat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

EXAMPLES

Testing for the Existence of a File

The following example tests whether a file named myfile exists in the /tmp directory.

#include <unistd.h>
...
int result;
const char *pathname = "/tmp/myfile";

result = access (pathname, F_OK);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 585

20877

20878

20879

20880

20881

20882

20883

20884

20885

20886

20887

20888

20889

20890

20891

20892

20893

20894

20895

20896

20897

20898

20899

20900

20901

20902

20903

20904

20905

20906

20907

20908

20909

20910

20911

20912

20913

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

access() System Interfaces

APPLICATION USAGE
Use of these functions is discouraged since by the time the returned information is acted upon, it
is out-of-date. (That is, acting upon the information always leads to a time-of-check-to-time-of-
use race condition.) An application should instead attempt the action itself and handle the
[EACCES] error that occurs if the file is not accessible (with a change of effective user and group
IDs beforehand, and perhaps a change back afterwards, in the case where access() or faccessat()
without AT_EACCES would have been used.)

Historically, one of the uses of access() was in set-user-ID root programs to check whether the
user running the program had access to a file. This relied on ``super-user ’’ privileges which were
granted based on the effective user ID being zero, so that when access() used the real user ID to
check accessibility those privileges were not taken into account. On newer systems where
privileges can be assigned which have no association with user or group IDs, if a program with
such privileges calls access(), the change of IDs has no effect on the privileges and therefore they
are taken into account in the accessibility checks. Thus, access() (and faccessat() with flag zero)
cannot be used for this historical purpose in such programs. Likewise, if a system provides any
additional or alternate file access control mechanisms that are not user ID-based, they will still
be taken into account.

If a relative pathname is used, no account is taken of whether the current directory (or the
directory associated with the file descriptor fd) is accessible via any absolute pathname.
Applications using access(), or faccessat() without AT_EACCES, may consequently act as if the
file would be accessible to a user with the real user ID and group ID of the process when such a
user would not in practice be able to access the file because access would be denied at some
point above the current directory (or the directory associated with the file descriptor fd) in the
file hierarchy.

If access() or faccessat() is used with W_OK to check for write access to a directory which has the
S_ISVTX bit set, a return value indicating the directory is writable can be misleading since some
operations on files in the directory would not be permitted based on the ownership of those files
(see XBD Section 4.5, on page 96).

Additional values of amode other than the set defined in the description may be valid; for
example, if a system has extended access controls.

The use of the AT_EACCESS value for flag enables functionality not available in access().

RATIONALE
In early proposals, some inadequacies in the access() function led to the creation of an eaccess()
function because:

1. Historical implementations of access() do not test file access correctly when the process’
real user ID is superuser. In particular, they always return zero when testing execute
permissions without regard to whether the file is executable.

2. The superuser has complete access to all files on a system. As a consequence, programs
started by the superuser and switched to the effective user ID with lesser privileges
cannot use access() to test their file access permissions.

However, the historical model of eaccess() does not resolve problem (1), so this volume of
POSIX.1-2024 now allows access() to behave in the desired way because several implementations
have corrected the problem. It was also argued that problem (2) is more easily solved by using
open(), chdir(), or one of the exec functions as appropriate and responding to the error, rather
than creating a new function that would not be as reliable. Therefore, eaccess() is not included in
this volume of POSIX.1-2024.

The sentence concerning appropriate privileges and execute permission bits reflects the two

586 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

20914

20915

20916

20917

20918

20919

20920

20921

20922

20923

20924

20925

20926

20927

20928

20929

20930

20931

20932

20933

20934

20935

20936

20937

20938

20939

20940

20941

20942

20943

20944

20945

20946

20947

20948

20949

20950

20951

20952

20953

20954

20955

20956

20957

20958

20959

20960

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces access()

possibilities implemented by historical implementations when checking superuser access for
X_OK.

New implementations are discouraged from returning X_OK unless at least one execution
permission bit is set.

The purpose of the faccessat() function is to enable the checking of the accessibility of files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to access(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the faccessat() function it
can be guaranteed that the file tested for accessibility is located relative to the desired directory.

FUTURE DIRECTIONS
These functions may be formally deprecated (for example, by shading them OB) in a future
version of this standard.

SEE ALSO
chmod(), fstatat()

XBD Section 4.7 (on page 97), <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.
The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretations 1003.1-2001 #046 and #143 are applied.

The faccessat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0019 [461], XSH/TC1-2008/0020 [324],
XSH/TC1-2008/0021 [278], XSH/TC1-2008/0022 [278], and XSH/TC1-2008/0023 [291] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0037 [873], XSH/TC2-2008/0038 [591],
XSH/TC2-2008/0039 [838], XSH/TC2-2008/0040 [817], XSH/TC2-2008/0041 [487],
XSH/TC2-2008/0042 [838], XSH/TC2-2008/0043 [817], and XSH/TC2-2008/0044 [838] are
applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 587

20961

20962

20963

20964

20965

20966

20967

20968

20969

20970

20971

20972

20973

20974

20975

20976

20977

20978

20979

20980

20981

20982

20983

20984

20985

20986

20987

20988

20989

20990

20991

20992

20993

20994

20995

20996

20997

20998

20999

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

acos() System Interfaces

NAME
acos, acosf, acosl — arc cosine functions

SYNOPSIS
#include <math.h>

double acos(double x);
float acosf(float x);
long double acosl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the principal value of the arc cosine of their argument x. The
value of x should be in the range [−1,1].

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc cosine of x, in the range [0,π]
radians.

MX For finite values of x not in the range [−1,1], a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is +1, +0 shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and is not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

588 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21000

21001

21002

21003

21004

21005

21006

21007

21008

21009

21010

21011

21012

21013

21014

21015

21016

21017

21018

21019

21020

21021

21022

21023

21024

21025

21026

21027

21028

21029

21030

21031

21032

21033

21034

21035

21036

21037

21038

21039

21040

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces acos()

SEE ALSO
cos(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The acosf() and acosl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0024 [320] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 589

21041

21042

21043

21044

21045

21046

21047

21048

21049

21050

21051

21052

21053

21054

21055

21056

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

acosh() System Interfaces

NAME
acosh, acoshf, acoshl — inverse hyperbolic cosine functions

SYNOPSIS
#include <math.h>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the inverse hyperbolic cosine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic cosine of their
argument.

MX For finite values of x < 1, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is +1, +0 shall be returned.

If x is +Inf, +Inf shall be returned.

If x is −Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and less than +1.0, or is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

590 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21057

21058

21059

21060

21061

21062

21063

21064

21065

21066

21067

21068

21069

21070

21071

21072

21073

21074

21075

21076

21077

21078

21079

21080

21081

21082

21083

21084

21085

21086

21087

21088

21089

21090

21091

21092

21093

21094

21095

21096

21097

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces acosh()

SEE ALSO
cosh(), feclearexcept(), fetestexcept()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The acosh() function is no longer marked as an extension.

The acoshf() and acoshl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0025 [320] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 591

21098

21099

21100

21101

21102

21103

21104

21105

21106

21107

21108

21109

21110

21111

21112

21113

21114

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

acosl() System Interfaces

NAME
acosl — arc cosine functions

SYNOPSIS
#include <math.h>

long double acosl(long double x);

DESCRIPTION
Refer to acos().

592 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21115

21116

21117

21118

21119

21120

21121

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_cancel()

NAME
aio_cancel — cancel an asynchronous I/O request

SYNOPSIS
#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

DESCRIPTION
The aio_cancel() function shall attempt to cancel one or more asynchronous I/O requests
currently outstanding against file descriptor fildes. The aiocbp argument points to the
asynchronous I/O control block for a particular request to be canceled. If aiocbp is NULL, then
all outstanding cancelable asynchronous I/O requests against fildes shall be canceled.

Normal asynchronous notification shall occur for asynchronous I/O operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process shall take place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status shall be set to
[ECANCELED] and the return status shall be −1. For requested operations that are not
successfully canceled, the aiocbp shall not be modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with which
the asynchronous operation was initiated, unspecified results occur.

Which operations are cancelable is implementation-defined.

RETURN VALUE
The aio_cancel() function shall return the value AIO_CANCELED if the requested operation(s)
were canceled. The value AIO_NOTCANCELED shall be returned if at least one of the
requested operation(s) cannot be canceled because it is in progress. In this case, the state of the
other operations, if any, referenced in the call to aio_cancel() is not indicated by the return value
of aio_cancel(). The application may determine the state of affairs for these operations by using
aio_error(). The value AIO_ALLDONE is returned if all of the operations have already
completed. Otherwise, the function shall return −1 and set errno to indicate the error.

ERRORS
The aio_cancel() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write()

XBD <aio.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 593

21122

21123

21124

21125

21126

21127

21128

21129

21130

21131

21132

21133

21134

21135

21136

21137

21138

21139

21140

21141

21142

21143

21144

21145

21146

21147

21148

21149

21150

21151

21152

21153

21154

21155

21156

21157

21158

21159

21160

21161

21162

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aio_cancel() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/10 is applied, removing the words ``to the
calling process’’ in the RETURN VALUE section. The term was unnecessary and precluded
threads.

Issue 7
The aio_cancel() function is moved from the Asynchronous Input and Output option to the Base.

594 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21163

21164

21165

21166

21167

21168

21169

21170

21171

21172

21173

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_error()

NAME
aio_error — retrieve errors status for an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

DESCRIPTION
The aio_error() function shall return the error status associated with the aiocb structure
referenced by the aiocbp argument. The error status for an asynchronous I/O operation is the

SIO errno value that would be set by the corresponding read(), write(), fdatasync(), or fsync()
operation. If the operation has not yet completed, then the error status shall be equal to
[EINPROGRESS].

If the aiocb structure pointed to by aiocbp is not associated with an operation that has been
scheduled, the results are undefined.

RETURN VALUE
If the asynchronous I/O operation has completed successfully, then 0 shall be returned. If the
asynchronous operation has completed unsuccessfully, then the error status, as described for

SIO read(), write(), fdatasync(), and fsync(), shall be returned. If the asynchronous I/O operation has
not yet completed, then [EINPROGRESS] shall be returned.

If the aio_error() function fails, it shall return −1 and set errno to indicate the error.

ERRORS
The aio_error() function may fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_fsync(), aio_read(), aio_return(), aio_write(), close(), exec , exit(), fork(), lio_listio(),
lseek(), read()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 595

21174

21175

21176

21177

21178

21179

21180

21181

21182

21183

21184

21185

21186

21187

21188

21189

21190

21191

21192

21193

21194

21195

21196

21197

21198

21199

21200

21201

21202

21203

21204

21205

21206

21207

21208

21209

21210

21211

21212

21213

21214

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aio_error() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #045 is applied.

SD5-XSH-ERN-148 is applied.

The aio_error() function is moved from the Asynchronous Input and Output option to the Base.

596 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21215

21216

21217

21218

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_fsync()

NAME
aio_fsync — asynchronous file synchronization

SYNOPSIS
FSC|SIO #include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

DESCRIPTION
The aio_fsync() function shall asynchronously perform a file synchronization operation, as
specified by the op argument, for I/O operations associated with the file indicated by the file
descriptor aio_fildes member of the aiocb structure referenced by the aiocbp argument and
queued at the time of the call to aio_fsync(). The function call shall return when the
synchronization request has been initiated or queued to the file or device (even when the data
cannot be synchronized immediately).

SIO If op is O_DSYNC, all currently queued I/O operations shall be completed as if by a call to
fdatasync(); that is, as defined for synchronized I/O data integrity completion.

FSC If op is O_SYNC, all currently queued I/O operations shall be completed as if by a call to fsync();
FSC SIO that is, as defined for synchronized I/O file integrity completion. If the aio_fsync() function

fails, or if the operation queued by aio_fsync() fails, then outstanding I/O operations are not
guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the call to
aio_fsync() that is guaranteed to be forced to the relevant completion state. The completion of
subsequent I/O on the file descriptor is not guaranteed to be completed in a synchronized
fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be used
as an argument to aio_error() and aio_return() in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. When the request is
queued, the error status for the operation is [EINPROGRESS]. When all data has been
successfully transferred, the error status shall be reset to reflect the success or failure of the
operation. If the operation does not complete successfully, the error status for the operation shall
be set to indicate the error. The aio_sigevent member determines the asynchronous notification to
occur as specified in Section 2.4.1 (on page 513) when all operations have achieved synchronized
I/O completion. All other members of the structure referenced by aiocbp are ignored. If the
control block referenced by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

If the aio_fsync() function fails or aiocbp indicates an error condition, data is not guaranteed to
have been successfully transferred.

RETURN VALUE
The aio_fsync() function shall return the value 0 if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_fsync() function shall fail if:

[EAGAIN] The requested asynchronous operation was not queued due to temporary
resource limitations.

[EBADF] The aio_fildes member of the aiocb structure referenced by the aiocbp argument
is not a valid file descriptor.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 597

21219

21220

21221

21222

21223

21224

21225

21226

21227

21228

21229

21230

21231

21232

21233

21234

21235

21236

21237

21238

21239

21240

21241

21242

21243

21244

21245

21246

21247

21248

21249

21250

21251

21252

21253

21254

21255

21256

21257

21258

21259

21260

21261

21262

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aio_fsync() System Interfaces

SIO [EINVAL] This implementation does not support synchronized I/O for this file.

FSC [EINVAL] The aio_fildes member of the aiocb structure refers to a file on which an fsync()
operation is not possible.

[EINVAL] A value of op other than O_DSYNC or O_SYNC was specified, or O_DSYNC
was specified and the implementation does not provide runtime support for
the Synchronized Input and Output option, or O_SYNC was specified and the
implementation does not provide runtime support for the File
Synchronization option.

In the event that any of the queued I/O operations fail, aio_fsync() shall return the error
condition defined for read() and write(). The error is returned in the error status for the
asynchronous operation, which can be retrieved using aio_error().

EXAMPLES
None.

APPLICATION USAGE
Note that even if the file descriptor is not open for writing, if there are any pending write
requests on the underlying file, then that I/O will be completed prior to the return of a call to
aio_error() or aio_return() indicating that the operation has completed.

See also the APPLICATION USAGE for fdatasync() and fsync().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_error(), aio_return(), fcntl(), fdatasync(), fsync(), open(), read(), write()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/11 is applied, removing the words ``to the
calling process’’ in the RETURN VALUE section. The term was unnecessary and precluded
threads.

Issue 7
The aio_fsync() function is moved from the Asynchronous Input and Output option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0026 [98] and XSH/TC1-2008/0027
[98] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0045 [671] is applied.

598 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21263

21264

21265

21266

21267

21268

21269

21270

21271

21272

21273

21274

21275

21276

21277

21278

21279

21280

21281

21282

21283

21284

21285

21286

21287

21288

21289

21290

21291

21292

21293

21294

21295

21296

21297

21298

21299

21300

21301

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_fsync()

Issue 8
Austin Group Defect 672 is applied, changing the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 599

21302

21303

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aio_read() System Interfaces

NAME
aio_read — asynchronous read from a file

SYNOPSIS
#include <aio.h>

int aio_read(struct aiocb *aiocbp);

DESCRIPTION
The aio_read() function shall read aiocbp−>aio_nbytes from the file associated with
aiocbp−>aio_fildes into the buffer pointed to by aiocbp−>aio_buf. The function call shall return
when the read request has been initiated or queued to the file or device (even when the data
cannot be delivered immediately).

PIO If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted
at a priority equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution
Scheduling is not supported, then the base scheduling priority is that of the calling process;

PIO TPS otherwise, the base scheduling priority is that of the calling thread.

The aiocbp value may be used as an argument to aio_error() and aio_return() in order to
determine the error status and return status, respectively, of the asynchronous operation while it
is proceeding. If an error condition is encountered during queuing, the function call shall return
without having initiated or queued the request. The requested operation takes place at the
absolute position in the file as given by aio_offset, as if lseek() were called immediately prior to
the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. After a
successful call to enqueue an asynchronous I/O operation, the value of the file offset for the file
is unspecified.

The aio_sigevent member specifies the notification which occurs when the request is completed.

The aiocbp−>aio_lio_opcode field shall be ignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp−>aio_buf or
the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

SIO If synchronized I/O is enabled on the file associated with aiocbp−>aio_fildes, the behavior of this
function shall be according to the definitions of synchronized I/O data integrity completion and
synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiocbp−>aio_fildes.

RETURN VALUE
The aio_read() function shall return the value zero if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_read() function shall fail if:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_read(), or asynchronously. If any of the conditions below are detected synchronously, the

600 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21304

21305

21306

21307

21308

21309

21310

21311

21312

21313

21314

21315

21316

21317

21318

21319

21320

21321

21322

21323

21324

21325

21326

21327

21328

21329

21330

21331

21332

21333

21334

21335

21336

21337

21338

21339

21340

21341

21342

21343

21344

21345

21346

21347

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_read()

aio_read() function shall return −1 and set errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation
is set to −1, and the error status of the asynchronous operation is set to the corresponding value.

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for reading.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid,
PIO aiocbp−>aio_reqprio is not a valid value, or aiocbp−>aio_nbytes is an invalid

value.

In the case that the aio_read() successfully queues the I/O operation but the operation is
subsequently canceled or encounters an error, the return status of the asynchronous operation is
one of the values normally returned by the read() function call. In addition, the error status of
the asynchronous operation is set to one of the error statuses normally set by the read() function
call, or one of the following values:

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for reading.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel() request.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid.

The following condition may be detected synchronously or asynchronously:

[EOVERFLOW] The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and the starting
offset in aiobcp−>aio_offset is before the end-of-file and is at or beyond the
offset maximum in the open file description associated with aiocbp−>aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), lio_listio(), aio_return(), aio_write(), close(), exec , exit(), fork(), lseek(),
read()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 601

21348

21349

21350

21351

21352

21353

21354

21355

21356

21357

21358

21359

21360

21361

21362

21363

21364

21365

21366

21367

21368

21369

21370

21371

21372

21373

21374

21375

21376

21377

21378

21379

21380

21381

21382

21383

21384

21385

21386

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aio_read() System Interfaces

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/12 is applied, rewording the
DESCRIPTION when prioritized I/O is supported to account for threads, and removing the
words ``to the calling process’’ in the RETURN VALUE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/13 is applied, updating the [EINVAL]
error, so that detection of an [EINVAL] error for an invalid value of aiocbp−>aio_reqprio is only
required if the Prioritized Input and Output option is supported.

Issue 7
Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_read() function is moved from the Asynchronous Input and Output option to the Base.

602 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21387

21388

21389

21390

21391

21392

21393

21394

21395

21396

21397

21398

21399

21400

21401

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_return()

NAME
aio_return — retrieve return status of an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

DESCRIPTION
The aio_return() function shall return the return status associated with the aiocb structure
referenced by the aiocbp argument. The return status for an asynchronous I/O operation is the
value that would be returned by the corresponding read(), write(), or fsync() function call. If the
error status for the operation is equal to [EINPROGRESS], then the return status for the
operation is undefined. The aio_return() function may be called exactly once to retrieve the
return status of a given asynchronous operation; thereafter, if the same aiocb structure is used in
a call to aio_return() or aio_error(), an error may be returned. When the aiocb structure referred
to by aiocbp is used to submit another asynchronous operation, then aio_return() may be
successfully used to retrieve the return status of that operation.

RETURN VALUE
If the asynchronous I/O operation has completed, then the return status, as described for read(),
write(), and fsync(), shall be returned. If the asynchronous I/O operation has not yet completed,
the results of aio_return() are undefined.

If the aio_return() function fails, it shall return −1 and set errno to indicate the error.

ERRORS
The aio_return() function may fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_write(), close(), exec , exit(), fork(), lio_listio(),
lseek(), read()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The [EINVAL] error condition is made optional. This is for consistency with the DESCRIPTION.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 603

21402

21403

21404

21405

21406

21407

21408

21409

21410

21411

21412

21413

21414

21415

21416

21417

21418

21419

21420

21421

21422

21423

21424

21425

21426

21427

21428

21429

21430

21431

21432

21433

21434

21435

21436

21437

21438

21439

21440

21441

21442

21443

21444

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aio_return() System Interfaces

Issue 7
SD5-XSH-ERN-148 is applied.

The aio_return() function is moved from the Asynchronous Input and Output option to the Base.

604 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21445

21446

21447

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_suspend()

NAME
aio_suspend — wait for an asynchronous I/O request

SYNOPSIS
#include <aio.h>

int aio_suspend(const struct aiocb *const list[], int nent,
const struct timespec *timeout);

DESCRIPTION
The aio_suspend() function shall suspend the calling thread until at least one of the asynchronous
I/O operations referenced by the list argument has completed, until a signal interrupts the
function, or, if timeout is not NULL, until the time interval specified by timeout has passed. If any
of the aiocb structures in the list correspond to completed asynchronous I/O operations (that is,
the error status for the operation is not equal to [EINPROGRESS]) at the time of the call, the
function shall return without suspending the calling thread. The list argument is an array of
pointers to asynchronous I/O control blocks. The nent argument indicates the number of
elements in the array. Each aiocb structure pointed to has been used in initiating an
asynchronous I/O request via aio_read(), aio_write(), or lio_listio(). This array may contain null
pointers, which are ignored. If this array contains pointers that refer to aiocb structures that have
not been used in submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of
the I/O operations referenced by list are completed, then aio_suspend() shall return with an error.
The clock that is used to measure this time interval shall be the CLOCK_MONOTONIC clock.

RETURN VALUE
If the aio_suspend() function returns after one or more asynchronous I/O operations have
completed, the function shall return zero. Otherwise, the function shall return a value of −1 and
set errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the associated
error and return status using aio_error() and aio_return(), respectively.

ERRORS
The aio_suspend() function shall fail if:

[EAGAIN] No asynchronous I/O indicated in the list referenced by list completed in the
time interval indicated by timeout.

[EINTR] A signal interrupted the aio_suspend() function. Note that, since each
asynchronous I/O operation may possibly provoke a signal when it
completes, this error return may be caused by the completion of one (or more)
of the very I/O operations being awaited.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 605

21448

21449

21450

21451

21452

21453

21454

21455

21456

21457

21458

21459

21460

21461

21462

21463

21464

21465

21466

21467

21468

21469

21470

21471

21472

21473

21474

21475

21476

21477

21478

21479

21480

21481

21482

21483

21484

21485

21486

21487

21488

21489

21490

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aio_suspend() System Interfaces

SEE ALSO
aio_read(), aio_write(), lio_listio()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that the
CLOCK_MONOTONIC clock, if supported, is used.

Issue 7
The aio_suspend() function is moved from the Asynchronous Input and Output option to the
Base.

Issue 8
Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

606 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21491

21492

21493

21494

21495

21496

21497

21498

21499

21500

21501

21502

21503

21504

21505

21506

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_write()

NAME
aio_write — asynchronous write to a file

SYNOPSIS
#include <aio.h>

int aio_write(struct aiocb *aiocbp);

DESCRIPTION
The aio_write() function shall write aiocbp−>aio_nbytes to the file associated with
aiocbp−>aio_fildes from the buffer pointed to by aiocbp−>aio_buf. The function shall return when
the write request has been initiated or, at a minimum, queued to the file or device.

PIO If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted
at a priority equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution
Scheduling is not supported, then the base scheduling priority is that of the calling process;

PIO TPS otherwise, the base scheduling priority is that of the calling thread.

The aiocbp argument may be used as an argument to aio_error() and aio_return() in order to
determine the error status and return status, respectively, of the asynchronous operation while it
is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp−>aio_buf or
the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation shall take
place at the absolute position in the file as given by aio_offset, as if lseek() were called
immediately prior to the operation with an offset equal to aio_offset and a whence equal to
SEEK_SET. If O_APPEND is set for the file descriptor, or if aio_fildes is associated with a device
that is incapable of seeking, write operations append to the file in the same order as the calls
were made, except under circumstances described in Section 2.8.2. After a successful call to
enqueue an asynchronous I/O operation, the value of the file offset for the file is unspecified.

The aio_sigevent member specifies the notification which occurs when the request is completed.

The aiocbp−>aio_lio_opcode field shall be ignored by aio_write().

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

SIO If synchronized I/O is enabled on the file associated with aiocbp−>aio_fildes, the behavior of this
function shall be according to the definitions of synchronized I/O data integrity completion, and
synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiocbp−>aio_fildes.

If the request would cause the file size to exceed the soft file size limit for the process and there
XSI is no room for any bytes to be written, the request shall fail and the implementation shall

generate a SIGXFSZ signal for the thread.

RETURN VALUE
The aio_write() function shall return the value zero if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 607

21507

21508

21509

21510

21511

21512

21513

21514

21515

21516

21517

21518

21519

21520

21521

21522

21523

21524

21525

21526

21527

21528

21529

21530

21531

21532

21533

21534

21535

21536

21537

21538

21539

21540

21541

21542

21543

21544

21545

21546

21547

21548

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aio_write() System Interfaces

ERRORS
The aio_write() function shall fail if:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_write(), or asynchronously. If any of the conditions below are detected synchronously, the
aio_write() function shall return −1 and set errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation
shall be set to −1, and the error status of the asynchronous operation is set to the corresponding
value.

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid,
PIO aiocbp−>aio_reqprio is not a valid value, or aiocbp−>aio_nbytes is an invalid

value.

In the case that the aio_write() successfully queues the I/O operation, the return status of the
asynchronous operation shall be one of the values normally returned by the write() function call.
If the operation is successfully queued but is subsequently canceled or encounters an error, the
error status for the asynchronous operation contains one of the values normally set by the
write() function call, or one of the following:

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel() request.

The following condition may be detected synchronously or asynchronously:

[EFBIG] The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and the starting
position is greater than or equal to the offset maximum in the open file
description associated with aiocbp−>aio_fildes.

[EFBIG] The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and there is no
room for any bytes to be written at the starting position without exceeding the

XSI file size limit for the process. A SIGXFSZ signal shall also be generated for
the thread.

[EFBIG] The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and there is no
room for any bytes to be written at the starting position without exceeding the
implementation-defined maximum file size.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

608 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21549

21550

21551

21552

21553

21554

21555

21556

21557

21558

21559

21560

21561

21562

21563

21564

21565

21566

21567

21568

21569

21570

21571

21572

21573

21574

21575

21576

21577

21578

21579

21580

21581

21582

21583

21584

21585

21586

21587

21588

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aio_write()

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.8.2 (on page 528), aio_cancel(), aio_error(), aio_read(), aio_return(), close(), exec , exit(),
fork(), lio_listio(), lseek(), write()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
past the offset maximum established in the open file description associated with
aiocbp−>aio_fildes.

• The [EFBIG] error is added as part of the large file support extensions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/14 is applied, rewording the
DESCRIPTION when prioritized I/O is supported to account for threads, and removing the
words ``to the calling process’’ in the RETURN VALUE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/15 is applied, updating the [EINVAL]
error, so that detection of an [EINVAL] error for an invalid value of aiocbp−>aio_reqprio is only
required if the Prioritized Input and Output option is supported.

Issue 7
Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_write() function is moved from the Asynchronous Input and Output option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0028 [317] is applied.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 609

21589

21590

21591

21592

21593

21594

21595

21596

21597

21598

21599

21600

21601

21602

21603

21604

21605

21606

21607

21608

21609

21610

21611

21612

21613

21614

21615

21616

21617

21618

21619

21620

21621

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

alarm() System Interfaces

NAME
alarm — schedule an alarm signal

SYNOPSIS
#include <unistd.h>

unsigned alarm(unsigned seconds);

DESCRIPTION
The alarm() function shall cause the system to generate a SIGALRM signal for the process after
the number of realtime seconds specified by seconds have elapsed. Processor scheduling delays
may prevent the process from handling the signal as soon as it is generated.

If seconds is 0, a pending alarm request, if any, is canceled.

Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner.
If the SIGALRM signal has not yet been generated, the call shall result in rescheduling the time
at which the SIGALRM signal is generated.

RETURN VALUE
If there is a previous alarm() request with time remaining, alarm() shall return a non-zero value
that is the number of seconds until the previous request would have generated a SIGALRM
signal. Otherwise, alarm() shall return 0.

ERRORS
The alarm() function is always successful, and no return value is reserved to indicate an error.

EXAMPLES
None.

APPLICATION USAGE
The fork() function clears pending alarms in the child process. A new process image created by
one of the exec functions inherits the time left to an alarm signal in the image of the old process.

Application developers should note that the type of the argument seconds and the return value of
alarm() is unsigned. That means that a Strictly Conforming POSIX System Interfaces
Application cannot pass a value greater than the minimum guaranteed value for {UINT_MAX},
which the ISO C standard sets as 65 535, and any application passing a larger value is restricting
its portability. A different type was considered, but historical implementations, including those
with a 16-bit int type, consistently use either unsigned or int.

Application developers should be aware of possible interactions when the same process uses
both the alarm() and sleep() functions.

RATIONALE
Many historical implementations (including Version 7 and System V) allow an alarm to occur up
to a second early. Other implementations allow alarms up to half a second or one clock tick
early or do not allow them to occur early at all. The latter is considered most appropriate, since it
gives the most predictable behavior, especially since the signal can always be delayed for an
indefinite amount of time due to scheduling. Applications can thus choose the seconds argument
as the minimum amount of time they wish to have elapse before the signal.

The term ``realtime’’ here and elsewhere (sleep(), times()) is intended to mean ``wall clock’’ time
as common English usage, and has nothing to do with ``realtime operating systems’’. It is in
contrast to virtual time, which could be misinterpreted if just time were used.

In some implementations, including 4.3 BSD, very large values of the seconds argument are
silently rounded down to an implementation-specific maximum value. This maximum is large
enough (to the order of several months) that the effect is not noticeable.

610 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21622

21623

21624

21625

21626

21627

21628

21629

21630

21631

21632

21633

21634

21635

21636

21637

21638

21639

21640

21641

21642

21643

21644

21645

21646

21647

21648

21649

21650

21651

21652

21653

21654

21655

21656

21657

21658

21659

21660

21661

21662

21663

21664

21665

21666

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces alarm()

There were two possible choices for alarm generation in multi-threaded applications: generation
for the calling thread or generation for the process. The first option would not have been
particularly useful since the alarm state is maintained on a per-process basis and the alarm that
is established by the last invocation of alarm() is the only one that would be active.

Furthermore, allowing generation of an asynchronous signal for a thread would have
introduced an exception to the overall signal model. This requires a compelling reason in order
to be justified.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fork(), pause(), sigaction(), sleep(), timer_create()

XBD <signal.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate that interactions with the setitimer(), ualarm(),
and usleep() functions are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/16 is applied, replacing ``an
implementation-defined maximum value’’ with ``an implementation-specific maximum value’’
in the RATIONALE.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 611

21667

21668

21669

21670

21671

21672

21673

21674

21675

21676

21677

21678

21679

21680

21681

21682

21683

21684

21685

21686

21687

21688

21689

21690

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

aligned_alloc() System Interfaces

NAME
aligned_alloc — allocate memory with a specified alignment

SYNOPSIS
#include <stdlib.h>

void *aligned_alloc(size_t alignment, size_t size);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The aligned_alloc() function shall allocate unused space for an object whose alignment is
specified by alignment, whose size in bytes is specified by size, and whose value is indeterminate.

The order and contiguity of storage allocated by successive calls to aligned_alloc() is unspecified.
Each such allocation shall yield a pointer to an object disjoint from any other object. The pointer
returned shall point to the start (lowest byte address) of the allocated space. If the value of
alignment is not a valid alignment supported by the implementation, a null pointer shall be
returned. If the space cannot be allocated, a null pointer shall be returned. If the size of the space
requested is 0, the behavior is implementation-defined: either a null pointer shall be returned to
indicate an error, or the behavior shall be as if the size were some non-zero value, except that the
behavior is undefined if the returned pointer is used to access an object.

For purposes of determining the existence of a data race, aligned_alloc() shall behave as though it
accessed only memory locations accessible through its arguments and not other static duration
storage. The function may, however, visibly modify the storage that it allocates. Calls to

ADV aligned_alloc(), calloc(), free(), malloc(), posix_memalign(),
CX reallocarray(), and realloc() that allocate or deallocate a particular region of memory shall occur

in a single total order (see Section 4.15.1, on page 100), and each such deallocation call shall
synchronize with the next allocation (if any) in this order.

RETURN VALUE
Upon successful completion, aligned_alloc() shall return a pointer to the allocated space; if size is
0, the application shall ensure that the pointer is not used to access an object.

CX Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The aligned_alloc() function shall fail if:

CX [EINVAL] The value of alignment is not a valid alignment supported by the
implementation.

CX [ENOMEM] Insufficient storage space is available.

The aligned_alloc() function may fail if:

CX [EINVAL] size is 0 and the implementation does not support 0 sized allocations.

612 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21691

21692

21693

21694

21695

21696

21697

21698

21699

21700

21701

21702

21703

21704

21705

21706

21707

21708

21709

21710

21711

21712

21713

21714

21715

21716

21717

21718

21719

21720

21721

21722

21723

21724

21725

21726

21727

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces aligned_alloc()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See the RATIONALE for malloc().

FUTURE DIRECTIONS
None.

SEE ALSO
calloc(), free(), getrlimit(), malloc(), posix_memalign(), realloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 613

21728

21729

21730

21731

21732

21733

21734

21735

21736

21737

21738

21739

21740

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

alphasort() System Interfaces

NAME
alphasort, scandir — scan a directory

SYNOPSIS
#include <dirent.h>

int alphasort(const struct dirent **d1, const struct dirent **d2);
int scandir(const char *dir, struct dirent ***namelist,

int (*sel)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
The alphasort() function can be used as the comparison function for the scandir() function to sort
the directory entries, d1 and d2, into alphabetical order. Sorting happens as if by calling the
strcoll() function on the d_name element of the dirent structures passed as the two parameters. If
the strcoll() function fails, the return value of alphasort() is unspecified.

The alphasort() function shall not change the setting of errno if successful. Since no return value
is reserved to indicate an error, an application wishing to check for error situations should set
errno to 0, then call alphasort(), then check errno.

The scandir() function shall scan the directory dir, calling the function referenced by sel on each
directory entry. Entries for which the function referenced by sel returns non-zero shall be stored
in strings allocated as if by a call to malloc(), and sorted as if by a call to qsort() with the
comparison function compar, except that compar need not provide total ordering. The strings are
collected in array namelist which shall be allocated as if by a call to malloc(). If sel is a null
pointer, all entries shall be selected. If the comparison function compar does not provide total
ordering, the order in which the directory entries are stored is unspecified.

RETURN VALUE
Upon successful completion, the alphasort() function shall return an integer greater than, equal
to, or less than 0, according to whether the name of the directory entry pointed to by d1 is
lexically greater than, equal to, or less than the directory pointed to by d2 when both are
interpreted as appropriate to the current locale. There is no return value reserved to indicate an
error.

Upon successful completion, the scandir() function shall return the number of entries in the
array and a pointer to the array through the parameter namelist. Otherwise, the scandir()
function shall return −1.

ERRORS
The scandir() function shall fail if:

[EACCES] Search permission is denied for the component of the path prefix of dir or read
permission is denied for dir.

[ELOOP] A loop exists in symbolic links encountered during resolution of the dir
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of dir does not name an existing directory or dir is an empty
string.

[ENOMEM] Insufficient storage space is available.

614 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21741

21742

21743

21744

21745

21746

21747

21748

21749

21750

21751

21752

21753

21754

21755

21756

21757

21758

21759

21760

21761

21762

21763

21764

21765

21766

21767

21768

21769

21770

21771

21772

21773

21774

21775

21776

21777

21778

21779

21780

21781

21782

21783

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces alphasort()

[ENOTDIR] A component of dir names an existing file that is neither a directory nor a
symbolic link to a directory.

[EOVERFLOW] One of the values to be returned or passed to a callback function cannot be
represented correctly.

The scandir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the dir argument.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

EXAMPLES
An example to print the files in the current directory:

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
...
struct dirent **namelist;
int i,n;

n = scandir(".", &namelist, 0, alphasort);
if (n < 0)

perror("scandir");
else {

for (i = 0; i < n; i++) {
printf("%s\n", namelist[i]->d_name);
free(namelist[i]);
}

}
free(namelist);

...

APPLICATION USAGE
If dir contains filenames that do not form character strings, or which contain characters outside
the domain of the collating sequence of the current locale, the alphasort() function need not
provide a total ordering. This condition is not possible if all filenames within the directory
consist only of characters from the portable filename character set.

The scandir() function may allocate dynamic storage during its operation. If scandir() is forcibly
terminated, such as by longjmp() or siglongjmp() being executed by the function pointed to by sel
or compar, or by an interrupt routine, scandir() does not have a chance to free that storage, so it
remains permanently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, then wait until scandir() returns to act on the interrupt.

For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For scandir(), this is namelist (including all of the
individual strings in namelist).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 615

21784

21785

21786

21787

21788

21789

21790

21791

21792

21793

21794

21795

21796

21797

21798

21799

21800

21801

21802

21803

21804

21805

21806

21807

21808

21809

21810

21811

21812

21813

21814

21815

21816

21817

21818

21819

21820

21821

21822

21823

21824

21825

21826

21827

21828

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

alphasort() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
qsort(), strcoll()

XBD <dirent.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0029 [324], XSH/TC1-2008/0030 [404],
XSH/TC1-2008/0031 [393], and XSH/TC1-2008/0032 [291] are applied.

616 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21829

21830

21831

21832

21833

21834

21835

21836

21837

21838

21839

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces asctime()

NAME
asctime — convert date and time to a string

SYNOPSIS
OB #include <time.h>

char *asctime(const struct tm *timeptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The asctime() function shall convert the broken-down time in the structure pointed to by timeptr
into a string in the form:

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm:

char *asctime(const struct tm *timeptr)
{

static char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

If any of the members of the broken-down time contain values that are outside their normal
ranges (see XBD <time.h>), the behavior of the asctime() function is undefined. Likewise, if the
calculated year exceeds four digits or is less than the year 1000, the behavior is undefined.

The tm structure is defined in the <time.h> header.

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions that return a pointer to one of these object types may overwrite the information in any
object of the same type pointed to by the value returned from any previous call to any of them.

The asctime() function need not be thread-safe; however, asctime() shall avoid data races with all
functions other than itself, ctime(), gmtime(), and localtime().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 617

21840

21841

21842

21843

21844

21845

21846

21847

21848

21849

21850

21851

21852

21853

21854

21855

21856

21857

21858

21859

21860

21861

21862

21863

21864

21865

21866

21867

21868

21869

21870

21871

21872

21873

21874

21875

21876

21877

21878

21879

21880

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

asctime() System Interfaces

RETURN VALUE
CX Upon successful completion, asctime() shall return a pointer to the string. If the function is

unsuccessful, it shall return NULL.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function is included only for compatibility with older implementations. It has undefined
behavior if the resulting string would be too long, so the use of this function should be
discouraged. On implementations that do not detect output string length overflow, it is possible
to overflow the output buffer in such a way as to cause applications to fail, or possible system
security violations. Also, this function does not support localized date and time formats. To
avoid these problems, applications should use strftime() to generate strings from broken-down
times.

Values for the broken-down time structure can be obtained by calling gmtime() or localtime().

RATIONALE
The standard developers decided to mark the asctime() function obsolescent even though it is in
the ISO C standard due to the possibility of buffer overflow. The ISO C standard also provides
the strftime() function which can be used to avoid these problems.

FUTURE DIRECTIONS
This function may be removed in a future version, but not until after it has been removed from
the ISO C standard.

SEE ALSO
clock(), ctime(), difftime(), futimens(), gmtime(), localtime(), mktime(), strftime(), strptime(), time()

XBD <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The asctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the asctime() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The asctime_r() function is marked as part of the Thread-Safe Functions option.

Extensions beyond the ISO C standard are marked.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The DESCRIPTION of asctime_r() is updated to describe the format of the string returned.

The restrict keyword is added to the asctime_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard

618 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21881

21882

21883

21884

21885

21886

21887

21888

21889

21890

21891

21892

21893

21894

21895

21896

21897

21898

21899

21900

21901

21902

21903

21904

21905

21906

21907

21908

21909

21910

21911

21912

21913

21914

21915

21916

21917

21918

21919

21920

21921

21922

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces asctime()

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/17 is applied, adding the CX extension in
the RETURN VALUE section requiring that if the asctime() function is unsuccessful it returns
NULL.

Issue 7
Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions obsolescent.

Austin Group Interpretation 1003.1-2001 #156 is applied.

The asctime_r() function is moved from the Thread-Safe Functions option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0033 [86,429] is applied.

Issue 8
Austin Group Defect 469 is applied, clarifying the conditions under which the behavior of
asctime() is undefined.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1330 is applied, changing the FUTURE DIRECTIONS section.

Austin Group Defect 1376 is applied, removing CX shading from some text derived from the
ISO C standard and updating it to match the ISO C standard.

Austin Group Defect 1410 is applied, removing the asctime_r() function.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 619

21923

21924

21925

21926

21927

21928

21929

21930

21931

21932

21933

21934

21935

21936

21937

21938

21939

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

asin() System Interfaces

NAME
asin, asinf, asinl — arc sine function

SYNOPSIS
#include <math.h>

double asin(double x);
float asinf(float x);
long double asinl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the principal value of the arc sine of their argument x. The value
of x should be in the range [−1,1].

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc sine of x, in the range
[−π/2,π/2] radians.

MX For finite values of x not in the range [−1,1], a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, asin(), asinf(), and asinl()

shall return an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and is not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

620 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21940

21941

21942

21943

21944

21945

21946

21947

21948

21949

21950

21951

21952

21953

21954

21955

21956

21957

21958

21959

21960

21961

21962

21963

21964

21965

21966

21967

21968

21969

21970

21971

21972

21973

21974

21975

21976

21977

21978

21979

21980

21981

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces asin()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), sin()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The asinf() and asinl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0034 [320] and XSH/TC1-2008/0035
[68] are applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 621

21982

21983

21984

21985

21986

21987

21988

21989

21990

21991

21992

21993

21994

21995

21996

21997

21998

21999

22000

22001

22002

22003

22004

22005

22006

22007

22008

22009

22010

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

asinh() System Interfaces

NAME
asinh, asinhf, asinhl — inverse hyperbolic sine functions

SYNOPSIS
#include <math.h>

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the inverse hyperbolic sine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic sine of their
argument.

MX If x is NaN, a NaN shall be returned.

If x is ±0, or ±Inf, x shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, asinh(), asinhf(), and asinhl()

shall return an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

622 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22011

22012

22013

22014

22015

22016

22017

22018

22019

22020

22021

22022

22023

22024

22025

22026

22027

22028

22029

22030

22031

22032

22033

22034

22035

22036

22037

22038

22039

22040

22041

22042

22043

22044

22045

22046

22047

22048

22049

22050

22051

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces asinh()

SEE ALSO
feclearexcept(), fetestexcept(), sinh()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The asinh() function is no longer marked as an extension.

The asinhf() and asinhl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0036 [68] is applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 623

22052

22053

22054

22055

22056

22057

22058

22059

22060

22061

22062

22063

22064

22065

22066

22067

22068

22069

22070

22071

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

asinl() System Interfaces

NAME
asinl — arc sine function

SYNOPSIS
#include <math.h>

long double asinl(long double x);

DESCRIPTION
Refer to asin().

624 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22072

22073

22074

22075

22076

22077

22078

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces asprintf()

NAME
asprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int asprintf(char **restrict ptr, const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 625

22079

22080

22081

22082

22083

22084

22085

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

assert() System Interfaces

NAME
assert — insert program diagnostics

SYNOPSIS
#include <assert.h>

void assert(scalar expression);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The assert() macro shall insert diagnostics into programs; it shall expand to a void expression.
When it is executed, if expression (which shall have a scalar type) is false (that is, compares equal
to 0), assert() shall write information about the particular call that failed on stderr and shall call
abort().

The information written about the call that failed shall include the text of the argument, the
name of the source file, the source file line number, and the name of the enclosing function; the
latter are, respectively, the values of the preprocessing macros _ _FILE_ _ and _ _LINE_ _ and of
the identifier _ _func_ _.

Forcing a definition of the name NDEBUG, either from the compiler command line or with the
preprocessor control statement #define NDEBUG ahead of the #include <assert.h> statement,
shall stop assertions from being compiled into the program.

RETURN VALUE
The assert() macro shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abort(), stdin

XBD <assert.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The prototype for the expression argument to assert() is changed from int to scalar for alignment
with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION of assert() is updated for alignment with the ISO/IEC 9899: 1999 standard.

626 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22086

22087

22088

22089

22090

22091

22092

22093

22094

22095

22096

22097

22098

22099

22100

22101

22102

22103

22104

22105

22106

22107

22108

22109

22110

22111

22112

22113

22114

22115

22116

22117

22118

22119

22120

22121

22122

22123

22124

22125

22126

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces at_quick_exit()

NAME
at_quick_exit — register a function to to be called from quick_exit()

SYNOPSIS
#include <stdlib.h>

int at_quick_exit(void (*func)(void));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The at_quick_exit() function shall register the function pointed to by func, to be called without
arguments should quick_exit() be called. It is unspecified whether a call to the at_quick_exit()
function that does not happen before the quick_exit() function is called will succeed.

At least 32 functions can be registered with at_quick_exit().

RETURN VALUE
Upon successful completion, at_quick_exit() shall return 0; otherwise, it shall return a non-zero
value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The at_quick_exit() function registrations are distinct from the atexit() registrations, so
applications might need to call both registration functions with the same argument.

The functions registered by a call to at_quick_exit() must return to ensure that all registered
functions are called.

The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of
functions that can be registered. There is no way for an application to tell how many functions
have already been registered with at_quick_exit().

Since the behavior is undefined if the quick_exit() function is called more than once, portable
applications calling at_quick_exit() must ensure that the quick_exit() function is not called when
the functions registered by the at_quick_exit() function are called.

If a function registered by the at_quick_exit() function is called and a portable application needs
to stop further quick_exit() processing, it must call the _exit() function or the _Exit() function or
one of the functions which cause abnormal process termination.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), exec , exit(), quick_exit(), sysconf()

XBD <stdlib.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 627

22127

22128

22129

22130

22131

22132

22133

22134

22135

22136

22137

22138

22139

22140

22141

22142

22143

22144

22145

22146

22147

22148

22149

22150

22151

22152

22153

22154

22155

22156

22157

22158

22159

22160

22161

22162

22163

22164

22165

22166

22167

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

at_quick_exit() System Interfaces

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

628 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22168

22169

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atan()

NAME
atan, atanf, atanl — arc tangent function

SYNOPSIS
#include <math.h>

double atan(double x);
float atanf(float x);
long double atanl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the principal value of the arc tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc tangent of x in the range
[−π/2,π/2] radians.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, ±π/2 shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, atan(), atanf(), and atanl()

shall return an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 629

22170

22171

22172

22173

22174

22175

22176

22177

22178

22179

22180

22181

22182

22183

22184

22185

22186

22187

22188

22189

22190

22191

22192

22193

22194

22195

22196

22197

22198

22199

22200

22201

22202

22203

22204

22205

22206

22207

22208

22209

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atan() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
atan2(), feclearexcept(), fetestexcept(), isnan(), tan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The atanf() and atanl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0037 [68] is applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

630 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22210

22211

22212

22213

22214

22215

22216

22217

22218

22219

22220

22221

22222

22223

22224

22225

22226

22227

22228

22229

22230

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atan2()

NAME
atan2, atan2f, atan2l — arc tangent functions

SYNOPSIS
#include <math.h>

double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the principal value of the arc tangent of y/x, using the signs of
both arguments to determine the quadrant of the return value.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc tangent of y/x in the range
[−π,π] radians.

If y is ±0 and x is < 0, ±π shall be returned.

If y is ±0 and x is > 0, ±0 shall be returned.

If y is < 0 and x is ±0, −π/2 shall be returned.

If y is > 0 and x is ±0, π/2 shall be returned.

If x is 0, a pole error shall not occur.

MX If either x or y is NaN, a NaN shall be returned.

If the correct value would cause underflow, a range error may occur, and atan(), atan2f(), and
atan2l() shall return an implementation-defined value no greater in magnitude than DBL_MIN,

MXX FLT_MIN, and LDBL_MIN, respectively. If the IEC 60559 Floating-Point option is supported,
y/x should be returned.

MX If y is ±0 and x is −0, ±π shall be returned.

If y is ±0 and x is +0, ±0 shall be returned.

For finite values of ±y > 0, if x is −Inf, ±π shall be returned.

For finite values of ±y > 0, if x is +Inf, ±0 shall be returned.

For finite values of x, if y is ±Inf, ±π/2 shall be returned.

If y is ±Inf and x is −Inf, ±3π/4 shall be returned.

If y is ±Inf and x is +Inf, ±π/4 shall be returned.

If both arguments are 0, a domain error shall not occur.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 631

22231

22232

22233

22234

22235

22236

22237

22238

22239

22240

22241

22242

22243

22244

22245

22246

22247

22248

22249

22250

22251

22252

22253

22254

22255

22256

22257

22258

22259

22260

22261

22262

22263

22264

22265

22266

22267

22268

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atan2() System Interfaces

ERRORS
These functions may fail if:

MX Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES

Converting Cartesian to Polar Coordinates System

The function below uses atan2() to convert a 2d vector expressed in cartesian coordinates (x,y) to
the polar coordinates (rho,theta). There are other ways to compute the angle theta, using asin()
acos(), or atan(). However, atan2() presents here two advantages:

• The angle’s quadrant is automatically determined.

• The singular cases (0,y) are taken into account.

Finally, this example uses hypot() rather than sqrt() since it is better for special cases; see hypot()
for more information.

#include <math.h>

void
cartesian_to_polar(const double x, const double y,

double *rho, double *theta
)

{
rho = hypot (x,y); / better than sqrt(x*x+y*y) */
*theta = atan2 (y,x);

}

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), asin(), atan(), feclearexcept(), fetestexcept(), hypot(), isnan(), sqrt(), tan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

632 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22269

22270

22271

22272

22273

22274

22275

22276

22277

22278

22279

22280

22281

22282

22283

22284

22285

22286

22287

22288

22289

22290

22291

22292

22293

22294

22295

22296

22297

22298

22299

22300

22301

22302

22303

22304

22305

22306

22307

22308

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atan2()

Issue 6
The atan2f() and atan2l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard, and the IEC 60559: 1989 standard
floating-point extensions over the ISO/IEC 9899: 1999 standard are marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/18 is applied, adding to the EXAMPLES
section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0038 [68,428] is applied.

Issue 8
Austin Group Defect 1178 is applied, removing MX shading from a paragraph in the RETURN
VALUE section and joining it with the following paragraph.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 633

22309

22310

22311

22312

22313

22314

22315

22316

22317

22318

22319

22320

22321

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atanf() System Interfaces

NAME
atanf — arc tangent function

SYNOPSIS
#include <math.h>

float atanf(float x);

DESCRIPTION
Refer to atan().

634 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22322

22323

22324

22325

22326

22327

22328

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atanh()

NAME
atanh, atanhf, atanhl — inverse hyperbolic tangent functions

SYNOPSIS
#include <math.h>

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the inverse hyperbolic tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic tangent of their
argument.

If x is ±1, a pole error shall occur, and atanh(), atanhf(), and atanhl() shall return the value of the
macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively, with the same sign as the
correct value of the function.

MX For finite |x|>1, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, atanh(), atanhf(), and atanhl()

shall return an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The x argument is ±1.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 635

22329

22330

22331

22332

22333

22334

22335

22336

22337

22338

22339

22340

22341

22342

22343

22344

22345

22346

22347

22348

22349

22350

22351

22352

22353

22354

22355

22356

22357

22358

22359

22360

22361

22362

22363

22364

22365

22366

22367

22368

22369

22370

22371

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atanh() System Interfaces

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), tanh()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The atanh() function is no longer marked as an extension.

The atanhf() and atanhl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0039 [320] and XSH/TC1-2008/0040
[680] are applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

636 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22372

22373

22374

22375

22376

22377

22378

22379

22380

22381

22382

22383

22384

22385

22386

22387

22388

22389

22390

22391

22392

22393

22394

22395

22396

22397

22398

22399

22400

22401

22402

22403

22404

22405

22406

22407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atanl()

NAME
atanl — arc tangent function

SYNOPSIS
#include <math.h>

long double atanl(long double x);

DESCRIPTION
Refer to atan().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 637

22408

22409

22410

22411

22412

22413

22414

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atexit() System Interfaces

NAME
atexit — register a function to be called from exit() or after return from main()

SYNOPSIS
#include <stdlib.h>

int atexit(void (*func)(void));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The atexit() function shall register the function pointed to by func, to be called without
arguments from exit(), or after return from the initial call to main(), or on the last thread
termination. If the exit() function is called, it is unspecified whether a call to the atexit() function
that does not happen before exit() is called will succeed.

At least 32 functions can be registered with atexit().

RETURN VALUE
Upon successful completion, atexit() shall return 0; otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atexit() function registrations are distinct from the at_quick_exit() registrations, so
applications might need to call both registration functions with the same argument.

The functions registered by a call to atexit() must return to ensure that all registered functions
are called.

The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of
functions that can be registered. There is no way for an application to tell how many functions
have already been registered with atexit().

Since the behavior is undefined if the exit() function is called more than once, portable
applications calling atexit() must ensure that the exit() function is not called when the functions
registered by the atexit() function are called.

If a function registered by the atexit() function is called and a portable application needs to stop
further exit() processing, it must call the _exit() function or the _Exit() function or one of the
functions which cause abnormal process termination.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
at_quick_exit(), exec , exit(), sysconf()

XBD <stdlib.h>

638 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22415

22416

22417

22418

22419

22420

22421

22422

22423

22424

22425

22426

22427

22428

22429

22430

22431

22432

22433

22434

22435

22436

22437

22438

22439

22440

22441

22442

22443

22444

22445

22446

22447

22448

22449

22450

22451

22452

22453

22454

22455

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atexit()

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/19 is applied, adding further clarification
to the APPLICATION USAGE section.

Issue 8
Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1646 is applied, removing redundant text relating to the exec family of
functions.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 639

22456

22457

22458

22459

22460

22461

22462

22463

22464

22465

22466

22467

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atof() System Interfaces

NAME
atof — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double atof(const char *str);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The call atof (str) shall be equivalent to:

strtod(str,(char **)NULL),

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
The atof() function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atof() function is subsumed by strtod() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtod() should be used because atof()
is not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

640 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22468

22469

22470

22471

22472

22473

22474

22475

22476

22477

22478

22479

22480

22481

22482

22483

22484

22485

22486

22487

22488

22489

22490

22491

22492

22493

22494

22495

22496

22497

22498

22499

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atoi()

NAME
atoi — convert a string to an integer

SYNOPSIS
#include <stdlib.h>

int atoi(const char *str);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The call atoi(str) shall be equivalent to:

(int) strtol(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
The atoi() function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES

Converting an Argument

The following example checks for proper usage of the program. If there is an argument and the
decimal conversion of this argument (obtained using atoi()) is greater than 0, then the program
has a valid number of minutes to wait for an event.

#include <stdlib.h>
#include <stdio.h>
...
int minutes_to_event;
...
if (argc < 2 || (minutes_to_event = atoi (argv[1])) <= 0) {

fprintf(stderr, "Usage: %s minutes\n", argv[0]); exit(1);
}
...

APPLICATION USAGE
The atoi() function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol() should be used because atoi() is
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol()

XBD <stdlib.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 641

22500

22501

22502

22503

22504

22505

22506

22507

22508

22509

22510

22511

22512

22513

22514

22515

22516

22517

22518

22519

22520

22521

22522

22523

22524

22525

22526

22527

22528

22529

22530

22531

22532

22533

22534

22535

22536

22537

22538

22539

22540

22541

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atoi() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 8
Austin Group Defect 1541 is applied, changing the EXAMPLES section.

642 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22542

22543

22544

22545

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atol()

NAME
atol, atoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long atol(const char *nptr);
long long atoll(const char *nptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Except as noted below, the call atol(nptr) shall be equivalent to:

strtol(nptr, (char **)NULL, 10)

Except as noted below, the call to atoll(nptr) shall be equivalent to:

strtoll(nptr, (char **)NULL, 10)

The handling of errors may differ. If the value cannot be represented, the behavior is undefined.

RETURN VALUE
These functions shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If the number is not known to be in range, strtol() or strtoll() should be used because atol() and
atoll() are not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The atoll() function is added for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-61 is applied, correcting the DESCRIPTION of atoll().

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0046 [892] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 643

22546

22547

22548

22549

22550

22551

22552

22553

22554

22555

22556

22557

22558

22559

22560

22561

22562

22563

22564

22565

22566

22567

22568

22569

22570

22571

22572

22573

22574

22575

22576

22577

22578

22579

22580

22581

22582

22583

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atomic_compare_exchange_strong() System Interfaces

NAME
atomic_compare_exchange_strong, atomic_compare_exchange_strong_explicit,
atomic_compare_exchange_weak, atomic_compare_exchange_weak_explicit — atomically
compare and exchange the values of two objects

SYNOPSIS
#include <stdatomic.h>

_Bool atomic_compare_exchange_strong(volatile A *object,
C *expected, C desired);

_Bool atomic_compare_exchange_strong_explicit(volatile A *object,
C *expected, C desired, memory_order success, memory_order failure);

_Bool atomic_compare_exchange_weak(volatile A *object,
C *expected, C desired);

_Bool atomic_compare_exchange_weak_explicit(volatile A *object,
C *expected, C desired, memory_order success, memory_order failure);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_compare_exchange_strong_explicit() generic function shall atomically compare the
contents of the memory pointed to by object for equality with that pointed to by expected, and if
true, shall replace the contents of the memory pointed to by object with desired, and if false, shall
update the contents of the memory pointed to by expected with that pointed to by object. This
operation shall be an atomic read-modify-write operation (see XBD Section 4.15.1, on page 100).
If the comparison is true, memory shall be affected according to the value of success, and if the
comparison is false, memory shall be affected according to the value of failure. The application
shall ensure that failure is not memory_order_release nor memory_order_acq_rel, and
shall ensure that failure is no stronger than success.

The atomic_compare_exchange_strong() generic function shall be equivalent to
atomic_compare_exchange_strong_explicit() called with success and failure both set to
memory_order_seq_cst.

The atomic_compare_exchange_weak_explicit() generic function shall be equivalent to
atomic_compare_exchange_strong_explicit(), except that the compare-and-exchange operation may
fail spuriously. That is, even when the contents of memory referred to by expected and object are
equal, it may return zero and store back to expected the same memory contents that were
originally there.

The atomic_compare_exchange_weak() generic function shall be equivalent to
atomic_compare_exchange_weak_explicit() called with success and failure both set to
memory_order_seq_cst.

RETURN VALUE
These generic functions shall return the result of the comparison.

ERRORS
No errors are defined.

644 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22584

22585

22586

22587

22588

22589

22590

22591

22592

22593

22594

22595

22596

22597

22598

22599

22600

22601

22602

22603

22604

22605

22606

22607

22608

22609

22610

22611

22612

22613

22614

22615

22616

22617

22618

22619

22620

22621

22622

22623

22624

22625

22626

22627

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atomic_compare_exchange_strong()

EXAMPLES
None.

APPLICATION USAGE
A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will be
in a loop. For example:

exp = atomic_load(&cur);
do {

des = function(exp);
} while (!atomic_compare_exchange_weak(&cur, &exp, des));

When a compare-and-exchange is in a loop, the weak version will yield better performance on
some platforms. When a weak compare-and-exchange would require a loop and a strong one
would not, the strong one is preferable.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 645

22628

22629

22630

22631

22632

22633

22634

22635

22636

22637

22638

22639

22640

22641

22642

22643

22644

22645

22646

22647

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atomic_exchange() System Interfaces

NAME
atomic_exchange, atomic_exchange_explicit — atomically exchange the value of an object

SYNOPSIS
#include <stdatomic.h>

C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *object, C desired,

memory_order order);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_exchange_explicit() generic function shall atomically replace the value pointed to by
object with desired. This operation shall be an atomic read-modify-write operation (see XBD
Section 4.15.1, on page 100). Memory shall be affected according to the value of order.

The atomic_exchange() generic function shall be equivalent to atomic_exchange_explicit() called
with order set to memory_order_seq_cst.

RETURN VALUE
These generic functions shall return the value pointed to by object immediately before the effects.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

646 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22648

22649

22650

22651

22652

22653

22654

22655

22656

22657

22658

22659

22660

22661

22662

22663

22664

22665

22666

22667

22668

22669

22670

22671

22672

22673

22674

22675

22676

22677

22678

22679

22680

22681

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atomic_fetch_add()

NAME
atomic_fetch_add, atomic_fetch_add_explicit, atomic_fetch_and, atomic_fetch_and_explicit,
atomic_fetch_or, atomic_fetch_or_explicit, atomic_fetch_sub, atomic_fetch_sub_explicit,
atomic_fetch_xor, atomic_fetch_xor_explicit — atomically replace the value of an object with the
result of a computation

SYNOPSIS
#include <stdatomic.h>

C atomic_fetch_add(volatile A *object, M operand);
C atomic_fetch_add_explicit(volatile A *object, M operand,

memory_order order);
C atomic_fetch_and(volatile A *object, M operand);
C atomic_fetch_and_explicit(volatile A *object, M operand,

memory_order order);
C atomic_fetch_or(volatile A *object, M operand);
C atomic_fetch_or_explicit(volatile A *object, M operand,

memory_order order);
C atomic_fetch_sub(volatile A *object, M operand);
C atomic_fetch_sub_explicit(volatile A *object, M operand,

memory_order order);
C atomic_fetch_xor(volatile A *object, M operand);
C atomic_fetch_xor_explicit(volatile A *object, M operand,

memory_order order);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_fetch_add_explicit() generic function shall atomically replace the value pointed to by
object with the result of adding operand to this value. This operation shall be an atomic read-
modify-write operation (see XBD Section 4.15.1, on page 100). Memory shall be affected
according to the value of order.

The atomic_fetch_add() generic function shall be equivalent to atomic_fetch_add_explicit() called
with order set to memory_order_seq_cst.

The other atomic_fetch_*() generic functions shall be equivalent to atomic_fetch_add_explicit() if
their name ends with explicit, or to atomic_fetch_add() if it does not, respectively, except that they
perform the computation indicated in their name, instead of addition:

sub subtraction

or bitwise inclusive OR

xor bitwise exclusive OR

and bitwise AND

For addition and subtraction, the application shall ensure that A is an atomic integer type or an
atomic pointer type and is not atomic_bool. For the other operations, the application shall
ensure that A is an atomic integer type and is not atomic_bool.

For signed integer types, the computation shall silently wrap around on overflow; there are no
undefined results. For pointer types, the result can be an undefined address, but the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 647

22682

22683

22684

22685

22686

22687

22688

22689

22690

22691

22692

22693

22694

22695

22696

22697

22698

22699

22700

22701

22702

22703

22704

22705

22706

22707

22708

22709

22710

22711

22712

22713

22714

22715

22716

22717

22718

22719

22720

22721

22722

22723

22724

22725

22726

22727

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atomic_fetch_add() System Interfaces

computations otherwise have no undefined behavior.

RETURN VALUE
These generic functions shall return the value pointed to by object immediately before the effects.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The operation of these generic functions is nearly equivalent to the operation of the
corresponding compound assignment operators +=, -=, etc. The only differences are that the
compound assignment operators are not guaranteed to operate atomically, and the value yielded
by a compound assignment operator is the updated value of the object, whereas the value
returned by these generic functions is the previous value of the atomic object.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

648 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22728

22729

22730

22731

22732

22733

22734

22735

22736

22737

22738

22739

22740

22741

22742

22743

22744

22745

22746

22747

22748

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atomic_flag_clear()

NAME
atomic_flag_clear, atomic_flag_clear_explicit — clear an atomic flag

SYNOPSIS
#include <stdatomic.h>

void atomic_flag_clear(volatile atomic_flag *object);
void atomic_flag_clear_explicit(volatile atomic_flag *object,

memory_order order);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_flag_clear_explicit() function shall atomically place the atomic flag pointed to by object
into the clear state. Memory shall be affected according to the value of order, which the
application shall ensure is not memory_order_acquire nor memory_order_acq_rel.

The atomic_flag_clear() function shall be equivalent to atomic_flag_clear_explicit() called with
order set to memory_order_seq_cst.

RETURN VALUE
These functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 649

22749

22750

22751

22752

22753

22754

22755

22756

22757

22758

22759

22760

22761

22762

22763

22764

22765

22766

22767

22768

22769

22770

22771

22772

22773

22774

22775

22776

22777

22778

22779

22780

22781

22782

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atomic_flag_test_and_set() System Interfaces

NAME
atomic_flag_test_and_set, atomic_flag_test_and_set_explicit — test and set an atomic flag

SYNOPSIS
#include <stdatomic.h>

_Bool atomic_flag_test_and_set(volatile atomic_flag *object);
_Bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object,

memory_order order);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_flag_test_and_set_explicit() function shall atomically place the atomic flag pointed to
by object into the set state and return the value corresponding to the immediately preceding
state. This operation shall be an atomic read-modify-write operation (see Section 4.15.1, on page
100). Memory shall be affected according to the value of order.

The atomic_flag_test_and_set() function shall be equivalent to atomic_flag_test_and_set_explicit()
called with order set to memory_order_seq_cst.

RETURN VALUE
These functions shall return the value that corresponds to the state of the atomic flag
immediately before the effects. The return value true shall correspond to the set state and the
return value false shall correspond to the clear state.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

650 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22783

22784

22785

22786

22787

22788

22789

22790

22791

22792

22793

22794

22795

22796

22797

22798

22799

22800

22801

22802

22803

22804

22805

22806

22807

22808

22809

22810

22811

22812

22813

22814

22815

22816

22817

22818

22819

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atomic_init()

NAME
atomic_init — initialize an atomic object

SYNOPSIS
#include <stdatomic.h>

void atomic_init(volatile A *obj, C value);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_init() generic function shall initialize the atomic object pointed to by obj to the value
value, while also initializing any additional state that the implementation might need to carry for
the atomic object.

Although this function initializes an atomic object, it does not avoid data races; concurrent
access to the variable being initialized, even via an atomic operation, constitutes a data race.

RETURN VALUE
The atomic_init() generic function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

atomic_int guide;
atomic_init(&guide, 42);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 651

22820

22821

22822

22823

22824

22825

22826

22827

22828

22829

22830

22831

22832

22833

22834

22835

22836

22837

22838

22839

22840

22841

22842

22843

22844

22845

22846

22847

22848

22849

22850

22851

22852

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atomic_is_lock_free() System Interfaces

NAME
atomic_is_lock_free — indicate whether or not atomic operations are lock-free

SYNOPSIS
#include <stdatomic.h>

_Bool atomic_is_lock_free(const volatile A *obj);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_is_lock_free() generic function shall indicate whether or not atomic operations on
objects of the type pointed to by obj are lock-free; obj can be a null pointer.

RETURN VALUE
The atomic_is_lock_free() generic function shall return a non-zero value if and only if atomic
operations on objects of the type pointed to by obj are lock-free. During the lifetime of the calling
process, the result of the lock-free query shall be consistent for all pointers of the same type.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Operations that are lock-free should also be address-free. That is, atomic operations on the same
memory location via two different addresses will communicate atomically. The implementation
should not depend on any per-process state. This restriction enables communication via memory
mapped into a process more than once and memory shared between two processes.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

652 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22853

22854

22855

22856

22857

22858

22859

22860

22861

22862

22863

22864

22865

22866

22867

22868

22869

22870

22871

22872

22873

22874

22875

22876

22877

22878

22879

22880

22881

22882

22883

22884

22885

22886

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atomic_load()

NAME
atomic_load, atomic_load_explicit — atomically obtain the value of an object

SYNOPSIS
#include <stdatomic.h>

C atomic_load(const volatile A *object);
C atomic_load_explicit(const volatile A *object, memory_order order);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_load_explicit() generic function shall atomically obtain the value pointed to by object.
Memory shall be affected according to the value of order, which the application shall ensure is
not memory_order_release nor memory_order_acq_rel.

The atomic_load() generic function shall be equivalent to atomic_load_explicit() called with order
set to memory_order_seq_cst.

RETURN VALUE
These generic functions shall return the value pointed to by object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 653

22887

22888

22889

22890

22891

22892

22893

22894

22895

22896

22897

22898

22899

22900

22901

22902

22903

22904

22905

22906

22907

22908

22909

22910

22911

22912

22913

22914

22915

22916

22917

22918

22919

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atomic_signal_fence() System Interfaces

NAME
atomic_signal_fence, atomic_thread_fence — fence operations

SYNOPSIS
#include <stdatomic.h>

void atomic_signal_fence(memory_order order);
void atomic_thread_fence(memory_order order);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_signal_fence() and atomic_thread_fence() functions provide synchronization primitives
called fences. Fences can have acquire semantics, release semantics, or both. A fence with acquire
semantics is called an acquire fence; a fence with release semantics is called a release fence.

A release fence A synchronizes with an acquire fence B if there exist atomic operations X and Y,
both operating on some atomic object M, such that A is sequenced before X, X modifies M, Y is
sequenced before B, and Y reads the value written by X or a value written by any side effect in
the hypothetical release sequence X would head if it were a release operation.

A release fence A synchronizes with an atomic operation B that performs an acquire operation
on an atomic object M if there exists an atomic operation X such that A is sequenced before X, X
modifies M, and B reads the value written by X or a value written by any side effect in the
hypothetical release sequence X would head if it were a release operation.

An atomic operation A that is a release operation on an atomic object M synchronizes with an
acquire fence B if there exists some atomic operation X on M such that X is sequenced before B
and reads the value written by A or a value written by any side effect in the release sequence
headed by A.

Depending on the value of order, the operation performed by atomic_thread_fence() shall:

• have no effects, if order is equal to memory_order_relaxed;

• be an acquire fence, if order is equal to memory_order_acquire or
memory_order_consume;

• be a release fence, if order is equal to memory_order_release;

• be both an acquire fence and a release fence, if order is equal to memory_order_acq_rel;

• be a sequentially consistent acquire and release fence, if order is equal to
memory_order_seq_cst.

The atomic_signal_fence() function shall be equivalent to atomic_thread_fence(), except that the
resulting ordering constraints shall be established only between a thread and a signal handler
executed in the same thread.

RETURN VALUE
These functions shall not return a value.

654 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22920

22921

22922

22923

22924

22925

22926

22927

22928

22929

22930

22931

22932

22933

22934

22935

22936

22937

22938

22939

22940

22941

22942

22943

22944

22945

22946

22947

22948

22949

22950

22951

22952

22953

22954

22955

22956

22957

22958

22959

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces atomic_signal_fence()

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atomic_signal_fence() function can be used to specify the order in which actions performed
by the thread become visible to the signal handler. Implementation reorderings of loads and
stores are inhibited in the same way as with atomic_thread_fence(), but the hardware fence
instructions that atomic_thread_fence() would have inserted are not emitted.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 655

22960

22961

22962

22963

22964

22965

22966

22967

22968

22969

22970

22971

22972

22973

22974

22975

22976

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

atomic_store() System Interfaces

NAME
atomic_store, atomic_store_explicit — atomically store a value in an object

SYNOPSIS
#include <stdatomic.h>

void atomic_store(volatile A *object, C desired);
void atomic_store_explicit(volatile A *object, C desired,

memory_order order);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_store_explicit() generic function shall atomically replace the value pointed to by object
with desired. Memory shall be affected according to the value of order, which the application
shall ensure is not memory_order_acquire, memory_order_consume, nor
memory_order_acq_rel.

The atomic_store() generic function shall be equivalent to atomic_store_explicit() called with order
set to memory_order_seq_cst.

RETURN VALUE
These generic functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

656 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22977

22978

22979

22980

22981

22982

22983

22984

22985

22986

22987

22988

22989

22990

22991

22992

22993

22994

22995

22996

22997

22998

22999

23000

23001

23002

23003

23004

23005

23006

23007

23008

23009

23010

23011

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces basename()

NAME
basename — return the last component of a pathname

SYNOPSIS
XSI #include <libgen.h>

char *basename(char *path);

DESCRIPTION
The basename() function shall take the pathname pointed to by path and return a pointer to the
final component of the pathname, deleting any trailing '/' characters.

If the string pointed to by path consists entirely of the '/' character, basename() shall return a
pointer to the string "/", except that if the string pointed to by path is exactly "//", it is
implementation-defined whether "/" or "//" is returned.

If path is a null pointer or points to an empty string, basename() shall return a pointer to the
string ".".

The basename() function may modify the string pointed to by path, and may return a pointer into
the input string. The returned pointer might be invalidated if the input string is subsequently
modified or freed. If path is a null pointer or points to an empty string, or if the string pointed to
by path consists entirely of the '/' character, the returned pointer may point to constant data
that cannot be modified.

RETURN VALUE
The basename() function shall return a pointer to the final component of path.

The basename() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES

Using basename()

The following program fragment returns a pointer to the value lib, which is the base name of
/usr/lib.

#include <libgen.h>
...
char name[] = "/usr/lib";
char *base;

base = basename(name);
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 657

23012

23013

23014

23015

23016

23017

23018

23019

23020

23021

23022

23023

23024

23025

23026

23027

23028

23029

23030

23031

23032

23033

23034

23035

23036

23037

23038

23039

23040

23041

23042

23043

23044

23045

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

basename() System Interfaces

Sample Input and Output Strings for the basename() and dirname() Functions and the
basename and dirname Utilities

basename() basename Output Output
and dirname() String String and dirname Written by Written by
Functions path Returned by Returned by Utilities basename dirname

Argument basename() dirname() string Operand Utility Utility
"usr" "usr" "." usr usr .

"usr/" "usr" "." usr/ usr .

"" "." "." empty string . or empty string .

"/" "/" "/" / / /

"//" "/" or "//" "/" or "//" // / or // / or //
(see note 1) (see note 1) (see note 1) (see note 1)

"///" "/" "/" or "///" /// / / or ///

"/usr/" "usr" "/" /usr/ usr /

"/usr/lib" "lib" "/usr" /usr/lib lib /usr

"//usr//lib//" "lib" "//usr" or //usr//lib// lib //usr or
"/usr" (see /usr (see
note 1) note 1)

"/home//dwc// "test" "/home//dwc" /home//dwc// test /home//dwc
test" or "/home/dwc" test or /home/dwc

"/home/.././ "test" "/home/../." /home/.././ test /home/../.
test" or "/home/.." test or /home/..

"/home/dwc/." "." "/home/dwc" /home/dwc/. . /home/dwc

Note

1. Whether leading // can be converted to / depends on the implementation-defined
behavior of // (see XBD Section 4.16 (on page 105); although the basename() and dirname()
functions, and basename and dirname utilities, do not themselves perform pathname
resolution, their results can be passed to a function or utility which does).

APPLICATION USAGE
Note that in some circumstances (in particular, when the returned string is required to be "/" or
"."), the returned pointer might point into constant data. Therefore, if the application needs to
modify the returned data, it should be copied first.

RATIONALE
Earlier versions of this standard seemed to allow thread-safe and non-thread-safe
implementations of basename() and dirname(), but did not allow implementations to return a
null pointer and require that errno be set when that happened. The standard now requires
thread-safe behavior for both of these functions and clearly states that they are always
successful.

FUTURE DIRECTIONS
None.

SEE ALSO
dirname()

XBD <libgen.h>

XCU basename

658 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23046

23047

23048

23049

23050

23051

23052

23053

23054

23055

23056

23057

23058

23059

23060

23061

23062

23063

23064

23065

23066

23067

23068

23069

23070

23071

23072

23073

23074

23075

23076

23077

23078

23079

23080

23081

23082

23083

23084

23085

23086

23087

23088

23089

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces basename()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/20 is applied, changing the
DESCRIPTION to make it clear that the string referenced is the string pointed to by path.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0041 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0047 [656], XSH/TC2-2008/0048 [928],
and XSH/TC2-2008/0049 [612] are applied.

Issue 8
Austin Group Defects 1064 and 1358 are applied, requiring basename() to be thread-safe and
allowing it to return a pointer to constant data under certain conditions.

Austin Group Defect 1073 is applied, changing the EXAMPLES section.

Austin Group Defect 1396 is applied, changing the EXAMPLES section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 659

23090

23091

23092

23093

23094

23095

23096

23097

23098

23099

23100

23101

23102

23103

23104

23105

23106

23107

23108

23109

23110

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

be16toh() System Interfaces

NAME
be16toh, be32toh, be64toh, htobe16, htobe32, htobe64, htole16, htole32, htole64, le16toh, le32toh,
le64toh — convert values between host and specified byte order

SYNOPSIS
#include <endian.h>

uint16_t be16toh(uint16_t big_endian_16bits);
uint32_t be32toh(uint32_t big_endian_32bits);
uint64_t be64toh(uint64_t big_endian_64bits);

uint16_t htobe16(uint16_t host_16bits);
uint32_t htobe32(uint32_t host_32bits);
uint64_t htobe64(uint64_t host_64bits);

uint16_t htole16(uint16_t host_16bits);
uint32_t htole32(uint32_t host_32bits);
uint64_t htole64(uint64_t host_64bits);

uint16_t le16toh(uint16_t little_endian_16bits);
uint32_t le32toh(uint32_t little_endian_32bits);
uint64_t le64toh(uint64_t little_endian_64bits);

DESCRIPTION
These functions shall convert integer values of various sizes between host representations and
representations in a specified order.

On some implementations, these functions are defined as macros.

A little-endian representation of an integer has the least significant byte stored as the first byte,
with the significance of the bytes increasing as the byte address increases. A big-endian
representation has the most significant byte as the first byte, with the significance of the bytes
reducing as the byte address increases.

Note: Network byte order is big-endian.

For example, the uint32_t value 0x01020304 is represented as the four bytes 0x04, 0x03, 0x02,
0x01 on a little-endian host, and as 0x01, 0x02, 0x03, 0x04 on a big-endian host.

For each of the sizes 16, 32 and 64, the htobeSIZE() function shall convert from whatever order
the host uses to big-endian representation, htoleSIZE() shall convert to little-endian
representation, beSIZEtoh() shall convert from big-endian to host order, and leSIZEtoh() shall
convert from little-endian to host order.

RETURN VALUE
These functions shall return an unsigned integer of the appropriate size and representation.

ERRORS
No errors are defined.

EXAMPLES

#include <endian.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

uint32_t val;

if (argc > 1) {

660 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23111

23112

23113

23114

23115

23116

23117

23118

23119

23120

23121

23122

23123

23124

23125

23126

23127

23128

23129

23130

23131

23132

23133

23134

23135

23136

23137

23138

23139

23140

23141

23142

23143

23144

23145

23146

23147

23148

23149

23150

23151

23152

23153

23154

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces be16toh()

val = (uint32_t)strtoul(argv[1], NULL, 0);
printf("Value: %08x\n", val);

printf("As bytes:\n");
union {

uint32_t asint;
unsigned char asbytes[sizeof(uint32_t)];

} u;
printf("Little endian: ");
u.asint = htole32(val);
for (int i = 0; i < sizeof(uint32_t); i++) {

printf("%02x ", u.asbytes[i]);
}
printf("\n");

printf("Big endian : ");
u.asint = htobe32(val);
for (int i = 0; i < sizeof(uint32_t); i++) {

printf("%02x ", u.asbytes[i]);
}
printf("\n");

}
return 0;

}

APPLICATION USAGE
Since network order is defined as big-endian, the following functions are equivalent if
<arpa/inet.h> is included:

<endian.h> <arpa/inet.h>
htobe32 htonl
htobe16 htons
be32toh ntohl
be16toh ntohs

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
htonl()

XBD <arpa/inet.h>, <endian.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 661

23155

23156

23157

23158

23159

23160

23161

23162

23163

23164

23165

23166

23167

23168

23169

23170

23171

23172

23173

23174

23175

23176

23177

23178

23179

23180

23181

23182

23183

23184

23185

23186

23187

23188

23189

23190

23191

23192

23193

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bind() System Interfaces

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address,
socklen_t address_len);

DESCRIPTION
The bind() function shall assign a local socket address address to a socket identified by descriptor
socket that has no local socket address assigned. Sockets created with the socket() function are
initially unnamed; they are identified only by their address family.

The bind() function takes the following arguments:

socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be bound to the
socket. The length and format of the address depend on the address family of
the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The socket specified by socket may require the process to have appropriate privileges to use the
bind() function.

If the address family of the socket is AF_UNIX, the application shall ensure that a null
terminator after the pathname is included in the sun_path member of address as a sockaddr_un
structure, and that address_len is at least offsetof(struct sockaddr_un, sun_path) +
1 plus the length of the pathname. If the pathname in the sun_path member of address names an
existing file, including a symbolic link, bind() shall treat the address as already in use; see
ERRORS below.

If the socket address cannot be assigned immediately and O_NONBLOCK is set for the file
descriptor for the socket, bind() shall fail and set errno to [EINPROGRESS], but the assignment
request shall not be aborted, and the assignment shall be completed asynchronously. Subsequent
calls to bind() for the same socket, before the assignment is completed, shall fail and set errno to
[EALREADY].

When the assignment has been performed asynchronously, pselect(), select(), poll(), and ppoll()
shall indicate that the file descriptor for the socket is ready for reading and writing.

RETURN VALUE
Upon successful completion, bind() shall return 0; otherwise, −1 shall be returned and errno set
to indicate the error.

ERRORS
The bind() function shall fail if:

[EADDRINUSE] The specified address is already in use.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EAFNOSUPPORT]
The specified address is not a valid address for the address family of the
specified socket.

662 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23194

23195

23196

23197

23198

23199

23200

23201

23202

23203

23204

23205

23206

23207

23208

23209

23210

23211

23212

23213

23214

23215

23216

23217

23218

23219

23220

23221

23222

23223

23224

23225

23226

23227

23228

23229

23230

23231

23232

23233

23234

23235

23236

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces bind()

[EALREADY] An assignment request is already in progress for the specified socket.

[EBADF] The socket argument is not a valid file descriptor.

[EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the assignment
cannot be immediately performed; the assignment shall be performed
asynchronously.

[EINVAL] The socket is already bound to an address, and the protocol does not support
binding to a new address; or the socket has been shut down.

[ENOBUFS] Insufficient resources were available to complete the call.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support binding to an address.

If the address family of the socket is AF_UNIX, then bind() shall fail if:

[EACCES] A component of the path prefix denies search permission, or the requested
name requires writing in a directory with a mode that denies write
permission.

[EDESTADDRREQ] or [EISDIR]
The address argument is a null pointer.

[EILSEQ] The last pathname component is not a portable filename, and cannot be
created in the target directory.

[EIO] An I/O error occurred.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in address.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix of the pathname in address does not name an
existing file or the pathname is an empty string.

[ENOENT] or [ENOTDIR]
The pathname in address contains at least one non-<slash> character and ends
with one or more trailing <slash> characters. If the pathname without the
trailing <slash> characters would name an existing file, an [ENOENT] error
shall not occur.

[ENOTDIR] A component of the path prefix of the pathname in address names an existing
file that is neither a directory nor a symbolic link to a directory, or the
pathname in address contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component
names an existing file that is neither a directory nor a symbolic link to a
directory.

[EROFS] The name would reside on a read-only file system.

The bind() function may fail if:

[EACCES] The specified address is protected and the current user does not have
permission to bind to it.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 663

23237

23238

23239

23240

23241

23242

23243

23244

23245

23246

23247

23248

23249

23250

23251

23252

23253

23254

23255

23256

23257

23258

23259

23260

23261

23262

23263

23264

23265

23266

23267

23268

23269

23270

23271

23272

23273

23274

23275

23276

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bind() System Interfaces

[EINVAL] The address_len argument is not a valid length for the address family.

[EISCONN] The socket is already connected.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in address.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES
The following code segment shows how to create a socket and bind it to a name in the AF_UNIX
domain.

#define MY_SOCK_PATH "/somepath"

int sfd;
struct sockaddr_un my_addr;

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == -1)

/* Handle error */;

memset(&my_addr, '\0', sizeof(struct sockaddr_un));
/* Clear structure */

my_addr.sun_family = AF_UNIX;
strncpy(my_addr.sun_path, MY_SOCK_PATH, sizeof(my_addr.sun_path) -1);

if (bind(sfd, (struct sockaddr *) &my_addr,
sizeof(struct sockaddr_un)) == -1)
/* Handle error */;

APPLICATION USAGE
An application program can retrieve the assigned socket name with the getsockname() function.

For AF_UNIX sockets, some implementations support an extension where address_len does not
have to include a null terminator for the pathname stored in sun_path, which in turn allows a
pathname to be one byte longer. However, such usage is not portable, and carries a risk of
accessing beyond the intended bounds of the pathname length.

RATIONALE
Implementations are encouraged to have bind() report an [EILSEQ] error if the last component
of the address to be bound to an AF_UNIX family socket contains any bytes that have the
encoded value of a <newline> character.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockname(), listen(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

664 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23277

23278

23279

23280

23281

23282

23283

23284

23285

23286

23287

23288

23289

23290

23291

23292

23293

23294

23295

23296

23297

23298

23299

23300

23301

23302

23303

23304

23305

23306

23307

23308

23309

23310

23311

23312

23313

23314

23315

23316

23317

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces bind()

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ``may fail’’ [ENOBUFS]
error to become a ``shall fail’’ error.

Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-185 is applied.

An example is added.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0042 [146], XSH/TC1-2008/0043 [146],
and XSH/TC1-2008/0044 [324] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0050 [822] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defects 293 and 1482 are applied, adding the [EILSEQ] error.

Austin Group Defect 561 is applied, changing the requirements for the sun_path member of the
sockaddr_un structure.

Austin Group Defect 1263 is applied, adding ppoll().

Austin Group Defect 1605 is applied, clarifying how the [EADDRINUSE] error applies to
AF_UNIX sockets.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 665

23318

23319

23320

23321

23322

23323

23324

23325

23326

23327

23328

23329

23330

23331

23332

23333

23334

23335

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bindtextdomain() System Interfaces

NAME
bindtextdomain, bind_textdomain_codeset, textdomain — text domain manipulation functions

SYNOPSIS
#include <libintl.h>

char *bindtextdomain(const char *domainname, const char *dirname);
char *bind_textdomain_codeset(const char *domainname,

const char *codeset);
char *textdomain(const char *domainname);

DESCRIPTION
The textdomain() function shall set or query the name of the current text domain of the calling
process. The application shall ensure that the domainname argument is either a null pointer
(when querying), an empty string, or a string that, when used by the gettext family of functions
to construct a pathname to a messages object, results in a valid pathname. For portable
applications, it should only contain characters from the portable filename character set.

The text domain setting made by the last successful call to textdomain() shall remain in effect
across subsequent calls to setlocale(), uselocale(), and the gettext family of functions.

Applications should not use text domains whose names begin with the strings "SYS_" or
"libc". These prefixes are reserved for implementation use.

The current setting of the text domain can be queried without affecting the current state of the
domain by calling textdomain() with domainname set to a null pointer. Calling textdomain() with a
domainname argument of an empty string shall set the text domain to the default domain,
"messages".

The bindtextdomain() function shall set or query the binding of a text domain to a dirname that is
used by the gettext family of functions to construct a pathname to a messages object in the text
domain:

• If domainname is a null pointer or an empty string, bindtextdomain() shall make no changes
and return a null pointer without changing errno.

• Otherwise, if dirname is a non-empty string:

— If domainname is not already bound, bindtextdomain() shall bind the text domain
specified by domainname to the pathname pointed to by dirname and return the bound
directory pathname on success or a null pointer on failure.

— If domainname is already bound, bindtextdomain() shall replace the existing binding
with the pathname pointed to by dirname and return the bound directory pathname
on success or a null pointer on failure. On failure, the existing binding shall remain
unchanged.

It is unspecified whether the bindtextdomain() function performs pathname resolution on
dirname, or whether that is done by the gettext family of functions.

• Otherwise, if dirname is a null pointer:

— If domainname is bound, the function shall return the bound directory pathname.

— If domainname is not bound, the function shall return the implementation-defined
default directory pathname used by the gettext family of functions.

• Otherwise, dirname is an empty string and the behavior is unspecified.

If a text domain is bound to a relative pathname and the current working directory is changed
after the binding is established, the pathnames used by the gettext family of functions to locate

666 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23336

23337

23338

23339

23340

23341

23342

23343

23344

23345

23346

23347

23348

23349

23350

23351

23352

23353

23354

23355

23356

23357

23358

23359

23360

23361

23362

23363

23364

23365

23366

23367

23368

23369

23370

23371

23372

23373

23374

23375

23376

23377

23378

23379

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces bindtextdomain()

messages objects for that text domain are unspecified.

The bind_textdomain_codeset() function shall set or query the binding of a text domain to the
output codeset used by the gettext family of functions for message strings retrieved from
messages objects for the text domain specified by domainname:

• If domainname is a null pointer or an empty string, bind_textdomain_codeset() shall make no
changes and return a null pointer without changing errno.

• Otherwise, if codeset is a non-empty string:

— If domainname is not already bound, bind_textdomain_codeset() shall bind the text
domain specified by domainname to the codeset pointed to by codeset and return the
newly bound codeset on success or a null pointer on failure.

— If domainname is already bound, bind_textdomain_codeset() shall replace the existing
binding with the codeset pointed to by codeset and return the newly bound codeset
on success or a null pointer on failure. On failure, the existing binding shall remain
unchanged.

The application shall ensure that the codeset argument, if non-empty, is a valid codeset
name that can be used as the tocode argument of the iconv_open() function, and that in the
codeset it specifies, the <NUL> character corresponds to a single null byte.

• Otherwise, if codeset is a null pointer:

— If domainname is bound, the function shall return the bound codeset.

— If domainname is not bound, the function shall return the implementation-defined
default codeset used by the gettext family of functions.

• Otherwise, codeset is an empty string and the behavior is unspecified.

If codeset is a null pointer and domainname is a non-empty string, bind_textdomain_codeset() shall
return the current codeset for the named domain, or a null pointer if a codeset has not yet been
set. The bind_textdomain_codeset() function can be called multiple times. If successfully called
multiple times with the same domainname argument, the last such call shall override the setting
made by the previous such call.

RETURN VALUE
The return value from a successful textdomain() call shall be a pointer to a string containing the
current setting of the text domain. If domainname is a null pointer, textdomain() shall return a
pointer to the string containing the current text domain. If textdomain() was not previously
called and domainname is a null string, the name of the default text domain shall be returned.
The name of the default text domain shall be the string "messages". If textdomain() fails, a null
pointer shall be returned and errno shall be set to indicate the error.

For bindtextdomain() return values see the DESCRIPTION. When bindtextdomain() is called with
a non-empty domainname and returns a null pointer, it shall set errno to indicate the error. When
bindtextdomain() returns a pathname for a bound text domain, the return value shall be a pointer
to a copy of the dirname string passed to the bindtextdomain() call that created the binding. The
returned string shall remain valid until the next successful call to bindtextdomain() with a non-
empty dirname and same domainname. The application shall ensure that it does not modify the
returned string.

A call to the bind_textdomain_codeset() function with a non-empty domainname argument shall
return one of the following:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 667

23380

23381

23382

23383

23384

23385

23386

23387

23388

23389

23390

23391

23392

23393

23394

23395

23396

23397

23398

23399

23400

23401

23402

23403

23404

23405

23406

23407

23408

23409

23410

23411

23412

23413

23414

23415

23416

23417

23418

23419

23420

23421

23422

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bindtextdomain() System Interfaces

• The currently bound codeset name for that text domain if codeset is a null pointer

• The newly bound codeset if codeset is non-empty

• A null pointer without changing errno if no codeset has yet been bound for that text
domain

The application shall ensure that it does not modify the returned string. A subsequent call to
bind_textdomain_codeset() with a non-empty domainname argument might invalidate the returned
pointer or overwrite the string content. The returned pointer might also be invalidated if the
calling thread is terminated. If bind_textdomain_codeset() fails, a null pointer shall be returned
and errno shall be set to indicate the error.

ERRORS
For the conditions under which bindtextdomain()—if it performs pathname resolution—fails and
may fail, refer to open().

In addition, the textdomain(), bindtextdomain(), and bind_textdomain_codeset() functions may fail
if:

[ENOMEM] Insufficient memory available.

EXAMPLES
See the examples for gettext .

APPLICATION USAGE
A text domainname is limited to {TEXTDOMAIN_MAX} bytes.

Application developers are responsible for ensuring that the text domain used is not used by
other applications. To minimize the chances of collision, developers can prefix text domains with
their company or application name (or both) and an underscore. For example, if your
application name was "foo" and you wanted to use the text domain "errors", you could
instead use the text domain "foo_errors". Note that if an application can be installed with a
configurable name, a text domain prefix based on the application name should change with the
application name.

Specifying a relative pathname to the bindtextdomain() function should be avoided, since it may
result in messages objects being searched for in a directory relative to the current working
directory of the calling process; if the process calls the chdir() function, the directory searched for
may also be changed.

Since pathname resolution of dirname might not be performed by bindtextdomain(), but could be
performed later by the gettext family of functions, and since the latter have no way to report an
error, applications should verify, using for example stat(), that the directory is accessible if this is
desired.

RATIONALE
Although the return type of these functions ought to be const char *, it is char * to match
historical practice.

Pathname resolution of the dirname argument passed to bindtextdomain() may be performed by
bindtextdomain() itself or by the gettext family of functions. If pathname resolution fails in one of
the gettext family of functions, it is neither allowed to modify errno nor to return an error, but if
pathname resolution fails in bindtextdomain(), it is required to report an error and set errno just
like open() does.

Historically, bindtextdomain() did not perform pathname resolution. However, the standard
developers decided to allow this as an option so that future implementations can, if desired,
open a file descriptor for that directory in bindtextdomain() and then use that file descriptor with

668 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23423

23424

23425

23426

23427

23428

23429

23430

23431

23432

23433

23434

23435

23436

23437

23438

23439

23440

23441

23442

23443

23444

23445

23446

23447

23448

23449

23450

23451

23452

23453

23454

23455

23456

23457

23458

23459

23460

23461

23462

23463

23464

23465

23466

23467

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces bindtextdomain()

openat() in the gettext family of functions.

The dirname parameter to bindtextdomain() may need to be copied to avoid the possibility of the
application releasing the memory used by the argument while the gettext family of functions
may still need to reference it.

When bindtextdomain() is called with a non-empty domainname and an empty dirname, historical
implementations of the gettext family of functions use the empty string for the dirname part of
the messages object pathname, resulting in an absolute pathname of the form
/localename/categoryname/textdomainname.mo. The standard developers did not believe this
behavior to be useful. Using the empty dirname case as a way to remove an existing binding
seemed to be a more useful behavior, and would be consistent with the behavior of textdomain().
However, because no historical implementations behave this way, the behavior is left
unspecified.

Some implementations set errno to [EAGAIN] to signal memory allocation failures that might
succeed if retried and [ENOMEM] for failures that are unlikely to ever succeed, for example due
to configured limits. Section 2.3 (on page 507) permits this behavior; when multiple error
conditions are simultaneously true there is no precedence between them.

FUTURE DIRECTIONS
A future version of this standard may require implementations to prefix implementation-
provided text domains with either "SYS_" or a prefix related to the implementor’s company
name to avoid namespace collisions.

A future version of this standard may require bindtextdomain() to remove any binding for
domainname when called with a non-empty domainname and an empty dirname.

SEE ALSO
gettext , iconv_open(), setlocale(), uselocale()

XBD <libintl.h>, <limits.h>

XCU msgfmt , xgettext

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 669

23468

23469

23470

23471

23472

23473

23474

23475

23476

23477

23478

23479

23480

23481

23482

23483

23484

23485

23486

23487

23488

23489

23490

23491

23492

23493

23494

23495

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bsearch() System Interfaces

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t nel,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The bsearch() function shall search an array of nel objects, the initial element of which is pointed
to by base, for an element that matches the object pointed to by key. The size of each element in
the array is specified by width. If the nel argument has the value zero, the comparison function
pointed to by compar shall not be called and no match shall be found.

The comparison function pointed to by compar shall be called with two arguments that point to
the key object and to an array element, in that order.

The application shall ensure that the comparison function pointed to by compar does not alter the
contents of the array. The implementation may reorder elements of the array between calls to the
comparison function, but shall not alter the contents of any individual element.

The implementation shall ensure that the first argument is always a pointer to the key.

When the same objects (consisting of width bytes, irrespective of their current positions in the
array) are passed more than once to the comparison function, the results shall be consistent with
one another. That is, the same object shall always compare the same way with the key.

The application shall ensure that the function returns an integer less than, equal to, or greater
than 0 if the key object is considered, respectively, to be less than, to match, or to be greater than
the array element. The application shall ensure that the array consists of all the elements that
compare less than, all the elements that compare equal to, and all the elements that compare
greater than the key object, in that order.

RETURN VALUE
The bsearch() function shall return a pointer to a matching member of the array, or a null pointer
if no match is found. If two or more members compare equal, which member is returned is
unspecified.

ERRORS
No errors are defined.

EXAMPLES
The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

The code fragment below reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define TABSIZE 1000

struct node { /* These are stored in the table. */

670 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23496

23497

23498

23499

23500

23501

23502

23503

23504

23505

23506

23507

23508

23509

23510

23511

23512

23513

23514

23515

23516

23517

23518

23519

23520

23521

23522

23523

23524

23525

23526

23527

23528

23529

23530

23531

23532

23533

23534

23535

23536

23537

23538

23539

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces bsearch()

char *string;
int length;

};
struct node table[TABSIZE]; /* Table to be searched. */

.

.

.
{

struct node *node_ptr, node;
/* Routine to compare 2 nodes. */
int node_compare(const void *, const void *);
.
.
.
while (scanf("%ms", &node.string) != EOF) {

node_ptr = (struct node *)bsearch((void *)(&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr->string, node_ptr->length);
} else {

(void)printf("not found: %s\n", node.string);
}
free(node.string);

}
}
/*

This routine compares two nodes based on an
alphabetical ordering of the string field.

*/
int
node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1)->string,
((const struct node *)node2)->string);

}

APPLICATION USAGE
The pointers to the key and the element at the base of the table should be of type pointer-to-
element.

The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

In practice, the array is usually sorted according to the comparison function.

RATIONALE
The requirement that the second argument (hereafter referred to as p) to the comparison function
is a pointer to an element of the array implies that for every call all of the following expressions
are non-zero:

((char *)p - (char *)base) % width == 0
(char *)p >= (char *)base

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 671

23540

23541

23542

23543

23544

23545

23546

23547

23548

23549

23550

23551

23552

23553

23554

23555

23556

23557

23558

23559

23560

23561

23562

23563

23564

23565

23566

23567

23568

23569

23570

23571

23572

23573

23574

23575

23576

23577

23578

23579

23580

23581

23582

23583

23584

23585

23586

23587

23588

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bsearch() System Interfaces

(char *)p < (char *)base + nel * width

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch(), qsort(), tdelete()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/11 is applied, adding to the
DESCRIPTION the last sentence of the first non-shaded paragraph, and the following three
paragraphs. The RATIONALE section is also updated. These changes are for alignment with the
ISO C standard.

Issue 7
The EXAMPLES section is revised.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0051 [756] is applied.

672 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23589

23590

23591

23592

23593

23594

23595

23596

23597

23598

23599

23600

23601

23602

23603

23604

23605

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces btowc()

NAME
btowc — single byte to wide character conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The btowc() function shall determine whether c constitutes a valid (one-byte) character in the
initial shift state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The btowc() function shall return WEOF if c has the value EOF or if (unsigned char) c does not
constitute a valid (one-byte) character in the initial shift state. Otherwise, it shall return the
wide-character representation of that character.

CX In the POSIX locale, btowc() shall not return WEOF if c has a value in the range 0 to 255
inclusive.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wctob()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0052 [663] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 673

23606

23607

23608

23609

23610

23611

23612

23613

23614

23615

23616

23617

23618

23619

23620

23621

23622

23623

23624

23625

23626

23627

23628

23629

23630

23631

23632

23633

23634

23635

23636

23637

23638

23639

23640

23641

23642

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

c16rtomb() System Interfaces

NAME
c16rtomb, c32rtomb — convert a Unicode character code to a character (restartable)

SYNOPSIS
#include <uchar.h>

size_t c16rtomb(char *restrict s, char16_t c16, mbstate_t *restrict ps);
size_t c32rtomb(char *restrict s, char32_t c32, mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If s is a null pointer, the c16rtomb() function shall be equivalent to the call:

c16rtomb(buf, L’\0’, ps)

where buf is an internal buffer.

If s is not a null pointer, the c16rtomb() function shall determine the number of bytes needed to
represent the character that corresponds to the wide character given by c16 (including any shift
sequences), and store the resulting bytes in the array whose first element is pointed to by s. At
most {MB_CUR_MAX} bytes shall be stored. If c16 is a null wide character, a null byte shall be
stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state
described shall be the initial conversion state.

If ps is a null pointer, the c16rtomb() function shall use its own internal mbstate_t object, which
shall be initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

The mbrtoc16() function shall not change the setting of errno if successful.

The c32rtomb() function shall behave the same way as c16rtomb() except that the second
parameter shall be an object of type char32_t instead of char16_t. References to c16 in the above
description shall apply as if they were c32 when they are being read as describing c32rtomb().

If called with a null ps argument, the c16rtomb() function need not be thread-safe; however, such
calls shall avoid data races with calls to c16rtomb() with a non-null argument and with calls to
all other functions.

If called with a null ps argument, the c32rtomb() function need not be thread-safe; however, such
calls shall avoid data races with calls to c32rtomb() with a non-null argument and with calls to
all other functions.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
c16rtomb() or c32rtomb() with a null pointer for ps.

RETURN VALUE
These functions shall return the number of bytes stored in the array object (including any shift
sequences). When c16 or c32 is not a valid wide character, an encoding error shall occur. In this
case, the function shall store the value of the macro [EILSEQ] in errno and shall return (size_t)−1;
the conversion state is unspecified.

674 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23643

23644

23645

23646

23647

23648

23649

23650

23651

23652

23653

23654

23655

23656

23657

23658

23659

23660

23661

23662

23663

23664

23665

23666

23667

23668

23669

23670

23671

23672

23673

23674

23675

23676

23677

23678

23679

23680

23681

23682

23683

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces c16rtomb()

ERRORS
These functions shall fail if:

[EILSEQ] An invalid wide-character code is detected.

These functions may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbrtoc16()

XBD <uchar.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 675

23684

23685

23686

23687

23688

23689

23690

23691

23692

23693

23694

23695

23696

23697

23698

23699

23700

23701

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cabs() System Interfaces

NAME
cabs, cabsf, cabsl — return a complex absolute value

SYNOPSIS
#include <complex.h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex absolute value (also called norm, modulus, or
magnitude) of z.

RETURN VALUE
These functions shall return the complex absolute value.

MXC cabs(x + iy), cabs(y + ix), and cabs(x − iy) shall return exactly the same value.

If z is ±0 ± i0, +0 shall be returned.

If the real or imaginary part of z is ±Inf, +Inf shall be returned, even if the other part is NaN.

If the real or imaginary part of z is NaN and the other part is not ±Inf, NaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

676 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23702

23703

23704

23705

23706

23707

23708

23709

23710

23711

23712

23713

23714

23715

23716

23717

23718

23719

23720

23721

23722

23723

23724

23725

23726

23727

23728

23729

23730

23731

23732

23733

23734

23735

23736

23737

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cacos()

NAME
cacos, cacosf, cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex arc cosine of z, with branch cuts outside the interval
[−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc cosine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [0, π] along the real axis.

MXC cacos(conj(z)), cacosf (conjf (z)), and cacosl(conjl(z)) shall return exactly the same value as
conj(cacos(z)), conjf (cacosf (z)), and conjl(cacosl(z)), respectively, including for the special values of
z below.

If z is ±0 + i0, π/2 − i0 shall be returned.

If z is ±0 + iNaN, π/2 + iNaN shall be returned.

If z is x + iInf where x is finite, π/2 − iInf shall be returned.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is −Inf + iy where y is positive-signed and finite, π − iInf shall be returned.

If z is +Inf + iy where y is positive-signed and finite, +0 − iInf shall be returned.

If z is −Inf + iInf, 3π/4 − iInf shall be returned.

If z is +Inf + iInf, π/4 − iInf shall be returned.

If z is ±Inf + iNaN, NaN ± iInf shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is NaN + iInf, NaN − iInf shall be returned.

If z is NaN + iNaN, NaN − iNaN shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 677

23738

23739

23740

23741

23742

23743

23744

23745

23746

23747

23748

23749

23750

23751

23752

23753

23754

23755

23756

23757

23758

23759

23760

23761

23762

23763

23764

23765

23766

23767

23768

23769

23770

23771

23772

23773

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cacos() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccos()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

678 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23774

23775

23776

23777

23778

23779

23780

23781

23782

23783

23784

23785

23786

23787

23788

23789

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cacosh()

NAME
cacosh, cacoshf, cacoshl — complex arc hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic cosine of z, with a branch cut at
values less than 1 along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic cosine value, in the range of a half-strip
of non-negative values along the real axis and in the interval [−iπ, +iπ] along the imaginary axis.

MXC cacosh(conj(z)), cacoshf (conjf (z)), and cacoshl(conjl(z)) shall return exactly the same value as
conj(cacosh(z)), conjf (cacoshf (z)), and conjl(cacoshl(z)), respectively, including for the special
values of z below.

If z is ±0 + i0, +0 + iπ/2 shall be returned.

If z is x + iInf where x is finite, +Inf + iπ/2 shall be returned.

If z is 0 + iNaN, NaN ± iπ/2 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is −Inf + iy where y is positive-signed and finite, +Inf + iπ shall be returned.

If z is +Inf + iy where y is positive-signed and finite, +Inf + i0 shall be returned.

If z is −Inf + iInf, +Inf + i3π/4 shall be returned.

If z is +Inf + iInf, +Inf + iπ/4 shall be returned.

If z is ±Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is NaN + iInf, +Inf + iNaN shall be returned.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 679

23790

23791

23792

23793

23794

23795

23796

23797

23798

23799

23800

23801

23802

23803

23804

23805

23806

23807

23808

23809

23810

23811

23812

23813

23814

23815

23816

23817

23818

23819

23820

23821

23822

23823

23824

23825

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cacosh() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccosh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

680 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23826

23827

23828

23829

23830

23831

23832

23833

23834

23835

23836

23837

23838

23839

23840

23841

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cacosl()

NAME
cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h>

long double complex cacosl(long double complex z);

DESCRIPTION
Refer to cacos().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 681

23842

23843

23844

23845

23846

23847

23848

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

call_once() System Interfaces

NAME
call_once — dynamic package initialization

SYNOPSIS
#include <threads.h>

void call_once(once_flag *flag, void (*init_routine)(void));
once_flag flag = ONCE_FLAG_INIT;

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The call_once() function shall use the once_flag pointed to by flag to ensure that init_routine is
called exactly once, the first time the call_once() function is called with that value of flag.
Completion of an effective call to the call_once() function shall synchronize with all subsequent
calls to the call_once() function with the same value of flag.

CX The call_once() function is not a cancellation point. However, if init_routine is a cancellation point
and is canceled, the effect on flag shall be as if call_once() was never called.

If the call to init_routine is terminated by a call to longjmp() or siglongjmp(), the behavior is
undefined.

The behavior of call_once() is undefined if flag has automatic storage duration or is not
initialized by ONCE_FLAG_INIT.

The call_once() function shall not be affected if the calling thread executes a signal handler
during the call.

RETURN VALUE
The call_once() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If init_routine recursively calls call_once() with the same flag, the recursive call will not call the
specified init_routine, and thus the specified init_routine will not complete, and thus the recursive
call to call_once() will not return. Use of longjmp() or siglongjmp() within an init_routine to jump
to a point outside of init_routine prevents init_routine from returning.

RATIONALE
For dynamic library initialization in a multi-threaded process, if an initialization flag is used the
flag needs to be protected against modification by multiple threads simultaneously calling into
the library. This can be done by using a statically-initialized mutex. However, the better solution
is to use call_once() or pthread_once() which are designed for exactly this purpose, for example:

#include <threads.h>
static once_flag random_is_initialized = ONCE_FLAG_INIT;
extern void initialize_random(void);

int random_function()
{

call_once(&random_is_initialized, initialize_random);
...

682 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23849

23850

23851

23852

23853

23854

23855

23856

23857

23858

23859

23860

23861

23862

23863

23864

23865

23866

23867

23868

23869

23870

23871

23872

23873

23874

23875

23876

23877

23878

23879

23880

23881

23882

23883

23884

23885

23886

23887

23888

23889

23890

23891

23892

23893

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces call_once()

/* Operations performed after initialization. */
}

The call_once() function is not affected by signal handlers for the reasons stated in XRAT Section
B.2.3 (on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_once()

XBD Section 4.15.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 683

23894

23895

23896

23897

23898

23899

23900

23901

23902

23903

23904

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

calloc() System Interfaces

NAME
calloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nelem, size_t elsize);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The calloc() function shall allocate unused space for an array of nelem elements each of whose
size in bytes is elsize. The space shall be initialized to all bits 0.

The order and contiguity of storage allocated by successive calls to calloc() is unspecified. The
pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to
a pointer to any type of object with a fundamental alignment requirement and then used to
access such an object or an array of such objects in the space allocated (until the space is
explicitly freed or reallocated). Each such allocation shall yield a pointer to an object disjoint
from any other object. The pointer returned shall point to the start (lowest byte address) of the
allocated space. If the space cannot be allocated, a null pointer shall be returned. If the size of the
space requested is 0, the behavior is implementation-defined: either a null pointer shall be
returned, or the behavior shall be as if the size were some non-zero value, except that the
behavior is undefined if the returned pointer is used to access an object.

For purposes of determining the existence of a data race, calloc() shall behave as though it
accessed only memory locations accessible through its arguments and not other static duration
storage. The function may, however, visibly modify the storage that it allocates. Calls to

ADV aligned_alloc(), calloc(), free(), malloc(), posix_memalign(),
CX reallocarray(), and realloc() that allocate or deallocate a particular region of memory shall occur

in a single total order (see Section 4.15.1, on page 100), and each such deallocation call shall
synchronize with the next allocation (if any) in this order.

RETURN VALUE
Upon successful completion, calloc() shall return a pointer to the allocated space; if either nelem
or elsize is 0, the application shall ensure that the pointer is not used to access an object.

CX Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The calloc() function shall fail if:

CX [ENOMEM] Insufficient memory is available, including the case when nelem * elsize would
overflow.

The calloc() function may fail if:

CX [EINVAL] nelem or elsize is 0 and the implementation does not support 0 sized
allocations.

684 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23905

23906

23907

23908

23909

23910

23911

23912

23913

23914

23915

23916

23917

23918

23919

23920

23921

23922

23923

23924

23925

23926

23927

23928

23929

23930

23931

23932

23933

23934

23935

23936

23937

23938

23939

23940

23941

23942

23943

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces calloc()

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

RATIONALE
See the RATIONALE for malloc().

FUTURE DIRECTIONS
None.

SEE ALSO
aligned_alloc(), free(), malloc(), realloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The setting of errno and the [ENOMEM] error condition are mandatory if an insufficient
memory condition occurs.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0053 [526] is applied.

Issue 8
Austin Group Defect 374 is applied, changing the RETURN VALUE and ERRORS sections in
relation to 0 sized allocations.

Austin Group Defect 1218 is applied, changing the [ENOMEM] error.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1387 is applied, changing the RATIONALE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 685

23944

23945

23946

23947

23948

23949

23950

23951

23952

23953

23954

23955

23956

23957

23958

23959

23960

23961

23962

23963

23964

23965

23966

23967

23968

23969

23970

23971

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

carg() System Interfaces

NAME
carg, cargf, cargl — complex argument functions

SYNOPSIS
#include <complex.h>

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the argument (also called phase angle) of z, with a branch cut
along the negative real axis.

RETURN VALUE
These functions shall return the value of the argument in the interval [−π, +π].

MXC If z is −0 ± i0, ±π shall be returned.

If z is +0 ± i0, ±0 shall be returned.

If z is x ± i0 where x is negative, ±π shall be returned.

If z is x ± i0 where x is positive, ±0 shall be returned.

If z is ±0 + iy where y is negative, −π/2 shall be returned.

If z is ±0 + iy where y is positive, π/2 shall be returned.

If z is −Inf ± iy where y is positive and finite, ±π shall be returned.

If z is +Inf ± iy where y is positive and finite, ±0 shall be returned.

If z is x ± iInf where x is finite, ±π/2 shall be returned.

If z is −Inf ± iInf, ±3π/4 shall be returned.

If z is +Inf ± iInf, ±π/4 shall be returned.

If the real or imaginary part of z is NaN, NaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

686 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

23972

23973

23974

23975

23976

23977

23978

23979

23980

23981

23982

23983

23984

23985

23986

23987

23988

23989

23990

23991

23992

23993

23994

23995

23996

23997

23998

23999

24000

24001

24002

24003

24004

24005

24006

24007

24008

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces carg()

SEE ALSO
cimag(), conj(), cproj()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 687

24009

24010

24011

24012

24013

24014

24015

24016

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

casin() System Interfaces

NAME
casin, casinf, casinl — complex arc sine functions

SYNOPSIS
#include <complex.h>

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex arc sine of z, with branch cuts outside the interval
[−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc sine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the real axis.

MXC casin(conj(iz)), casinf (conjf (iz)), and casinl(conjl(iz)) shall return exactly the same value as
conj(casin(iz)), conjf (casinf (iz)), and conjl(casinl(iz)), respectively, and casin(−iz), casinf (−iz), and
casinl(−iz) shall return exactly the same value as −casin(iz), −casinf (iz), and −casinl(iz),
respectively, including for the special values of iz below.

If iz is +0 + i0, −i (0 + i0) shall be returned.

If iz is x + iInf where x is positive-signed and finite, −i (+Inf + iπ/2) shall be returned.

If iz is x + iNaN where x is finite, −i (NaN + iNaN) shall be returned and the invalid floating-
point exception may be raised.

If iz is +Inf + iy where y is positive-signed and finite, −i (+Inf + i0) shall be returned.

If iz is +Inf + iInf, −i (+Inf + iπ/4) shall be returned.

If iz is +Inf + iNaN, −i (+Inf + iNaN) shall be returned.

If iz is NaN + i0, −i (NaN + i0) shall be returned.

If iz is NaN + iy where y is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is NaN + iInf, −i (±Inf + iNaN) shall be returned; the sign of the imaginary part of the result
is unspecified.

If iz is NaN + iNaN, −i (NaN + iNaN) shall be returned.

ERRORS
No errors are defined.

688 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24017

24018

24019

24020

24021

24022

24023

24024

24025

24026

24027

24028

24029

24030

24031

24032

24033

24034

24035

24036

24037

24038

24039

24040

24041

24042

24043

24044

24045

24046

24047

24048

24049

24050

24051

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces casin()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The MXC special cases for casin() are derived from those for casinh() by applying the formula
casin(z) = −i casinh(iz).

FUTURE DIRECTIONS
None.

SEE ALSO
casinh(), csin()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 689

24052

24053

24054

24055

24056

24057

24058

24059

24060

24061

24062

24063

24064

24065

24066

24067

24068

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

casinh() System Interfaces

NAME
casinh, casinhf, casinhl — complex arc hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic sine of z, with branch cuts outside the
interval [−i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic sine value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the
imaginary axis.

MXC casinh(conj(z)), casinhf (conjf (z)), and casinhl(conjl(z)) shall return exactly the same value as
conj(casinh(z)), conjf (casinhf (z)), and conjl(casinhl(z)), respectively, and casinh(−z), casinhf (−z), and
casinhl(−z) shall return exactly the same value as −casinh(z), −casinhf (z), and −casinhl(z),
respectively, including for the special values of z below.

If z is +0 + i0, 0 + i0 shall be returned.

If z is x + iInf where x is positive-signed and finite, +Inf + iπ/2 shall be returned.

If z is x + iNaN where x is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is +Inf + iy where y is positive-signed and finite, +Inf + i0 shall be returned.

If z is +Inf + iInf, +Inf + iπ/4 shall be returned.

If z is +Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + i0, NaN + i0 shall be returned.

If z is NaN + iy where y is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is NaN + iInf, ±Inf + iNaN shall be returned; the sign of the real part of the result is
unspecified.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

690 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24069

24070

24071

24072

24073

24074

24075

24076

24077

24078

24079

24080

24081

24082

24083

24084

24085

24086

24087

24088

24089

24090

24091

24092

24093

24094

24095

24096

24097

24098

24099

24100

24101

24102

24103

24104

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces casinh()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csinh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 691

24105

24106

24107

24108

24109

24110

24111

24112

24113

24114

24115

24116

24117

24118

24119

24120

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

casinl() System Interfaces

NAME
casinl — complex arc sine functions

SYNOPSIS
#include <complex.h>

long double complex casinl(long double complex z);

DESCRIPTION
Refer to casin().

692 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24121

24122

24123

24124

24125

24126

24127

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces catan()

NAME
catan, catanf, catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h>

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex arc tangent of z, with branch cuts outside the
interval [−i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the
real axis.

MXC catan(conj(iz)), catanf (conjf (iz)), and catanl(conjl(iz)) shall return exactly the same value as
conj(catan(iz)), conjf (catanf (iz)), and conjl(catanl(iz)), respectively, and catan(−iz), catanf (−iz), and
catanl(−iz) shall return exactly the same value as −catan(iz), −catanf (iz), and −catanl(iz),
respectively, including for the special values of iz below.

If iz is +0 + i0, −i (+0 + i0) shall be returned.

If iz is +0 + iNaN, −i (+0 + iNaN) shall be returned.

If iz is +1 + i0, −i (+Inf + i0) shall be returned and the divide-by-zero floating-point exception
shall be raised.

If iz is x + iInf where x is positive-signed and finite, −i (+0 + iπ/2) shall be returned.

If iz is x + iNaN where x is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is +Inf + iy where y is positive-signed and finite, −i (+0 + iπ/2) shall be returned.

If iz is +Inf + iInf, −i (+0 + iπ/2) shall be returned.

If iz is +Inf + iNaN, −i (+0 + iNaN) shall be returned.

If iz is NaN + iy where y is finite, −i (NaN + iNaN) shall be returned and the invalid floating-
point exception may be raised.

If iz is NaN + iInf, −i (±0 + iπ/2) shall be returned; the sign of the imaginary part of the result is
unspecified.

If iz is NaN + iNaN, −i (NaN + iNaN) shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 693

24128

24129

24130

24131

24132

24133

24134

24135

24136

24137

24138

24139

24140

24141

24142

24143

24144

24145

24146

24147

24148

24149

24150

24151

24152

24153

24154

24155

24156

24157

24158

24159

24160

24161

24162

24163

24164

24165

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

catan() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The MXC special cases for catan() are derived from those for catanh() by applying the formula
catan(z) = −i catanh(iz).

FUTURE DIRECTIONS
None.

SEE ALSO
catanh(), ctan()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

694 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24166

24167

24168

24169

24170

24171

24172

24173

24174

24175

24176

24177

24178

24179

24180

24181

24182

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces catanh()

NAME
catanh, catanhf, catanhl — complex arc hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic tangent of z, with branch cuts outside
the interval [−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic tangent value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the
imaginary axis.

MXC catanh(conj(z)), catanhf (conjf (z)), and catanhl(conjl(z)) shall return exactly the same value as
conj(catanh(z)), conjf (catanhf (z)), and conjl(catanhl(z)), respectively, and catanh(−z), catanhf (−z),
and catanhl(−z) shall return exactly the same value as −catanh(z), −catanhf (z), and −catanhl(z),
respectively, including for the special values of z below.

If z is +0 + i0, +0 + i0 shall be returned.

If z is +0 + iNaN, +0 + iNaN shall be returned.

If z is +1 + i0, +Inf + i0 shall be returned and the divide-by-zero floating-point exception shall be
raised.

If z is x + iInf where x is positive-signed and finite, +0 + iπ/2 shall be returned.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is +Inf + iy where y is positive-signed and finite, +0 + iπ/2 shall be returned.

If z is +Inf + iInf, +0 + iπ/2 shall be returned.

If z is +Inf + iNaN, +0 + iNaN shall be returned.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is NaN + iInf, ±0 + iπ/2 shall be returned; the sign of the real part of the result is unspecified.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 695

24183

24184

24185

24186

24187

24188

24189

24190

24191

24192

24193

24194

24195

24196

24197

24198

24199

24200

24201

24202

24203

24204

24205

24206

24207

24208

24209

24210

24211

24212

24213

24214

24215

24216

24217

24218

24219

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

catanh() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctanh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

696 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24220

24221

24222

24223

24224

24225

24226

24227

24228

24229

24230

24231

24232

24233

24234

24235

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces catanl()

NAME
catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h>

long double complex catanl(long double complex z);

DESCRIPTION
Refer to catan().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 697

24236

24237

24238

24239

24240

24241

24242

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

catclose() System Interfaces

NAME
catclose — close a message catalog descriptor

SYNOPSIS
#include <nl_types.h>

int catclose(nl_catd catd);

DESCRIPTION
The catclose() function shall close the message catalog identified by catd. If a file descriptor is
used to implement the type nl_catd, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, catclose() shall return 0; otherwise, −1 shall be returned, and errno
set to indicate the error.

ERRORS
The catclose() function may fail if:

[EBADF] The catalog descriptor is not valid.

[EINTR] The catclose() function was interrupted by a signal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catgets(), catopen()

XBD <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 7
The catclose() function is moved from the XSI option to the Base.

698 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24243

24244

24245

24246

24247

24248

24249

24250

24251

24252

24253

24254

24255

24256

24257

24258

24259

24260

24261

24262

24263

24264

24265

24266

24267

24268

24269

24270

24271

24272

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces catgets()

NAME
catgets — read a program message

SYNOPSIS
#include <nl_types.h>

char *catgets(nl_catd catd, int set_id, int msg_id, const char *s);

DESCRIPTION
The catgets() function shall attempt to read message msg_id, in set set_id, from the message
catalog identified by catd. The catd argument is a message catalog descriptor returned from an
earlier call to catopen(). The results are undefined if catd is not a value returned by catopen() for
a message catalog still open in the process. The s argument points to a default message string
which shall be returned by catgets() if it cannot retrieve the identified message.

The catgets() function need not be thread-safe.

RETURN VALUE
If the identified message is retrieved successfully, catgets() shall return a pointer to an internal
buffer area containing the null-terminated message string. If the call is unsuccessful for any
reason, s shall be returned and errno shall be set to indicate the error.

ERRORS
The catgets() function shall fail if:

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

[ENOMSG] The message identified by set_id and msg_id is not in the message catalog.

The catgets() function may fail if:

[EBADF] The catd argument is not a valid message catalog descriptor open for reading.

[EBADMSG] The message identified by set_id and msg_id in the specified message catalog
did not satisfy implementation-defined security criteria.

[EINVAL] The message catalog identified by catd is corrupted.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catopen()

XBD <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 699

24273

24274

24275

24276

24277

24278

24279

24280

24281

24282

24283

24284

24285

24286

24287

24288

24289

24290

24291

24292

24293

24294

24295

24296

24297

24298

24299

24300

24301

24302

24303

24304

24305

24306

24307

24308

24309

24310

24311

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

catgets() System Interfaces

Issue 5
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ``may fail’’ [EINTR] and
[ENOMSG] errors to become ``shall fail’’ errors, updating the RETURN VALUE section, and
updating the DESCRIPTION to note that: ``The results are undefined if catd is not a value
returned by catopen() for a message catalog still open in the process.’’

The catgets() function is moved from the XSI option to the Base.

700 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24312

24313

24314

24315

24316

24317

24318

24319

24320

24321

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces catopen()

NAME
catopen — open a message catalog

SYNOPSIS
#include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

DESCRIPTION
The catopen() function shall open a message catalog and return a message catalog descriptor.
The name argument specifies the name of the message catalog to be opened. If name contains a

XSI '/', then name specifies a pathname for the message catalog. Otherwise, the environment
variable NLSPATH is used with name substituted for the %N conversion specification (see XBD
Chapter 8, on page 167); if NLSPATH exists in the environment when the process starts, then if
the process has appropriate privileges, the behavior of catopen() is undefined. If NLSPATH does
not exist in the environment, or if a message catalog cannot be found in any of the components
specified by NLSPATH, then an implementation-defined default path shall be used. This default
may be affected by the setting of LC_MESSAGES if the value of oflag is NL_CAT_LOCALE, or

XSI the LANG environment variable if oflag is 0. When searching NLSPATH, catopen() shall ignore
any files it finds that are not valid message catalog files.

A message catalog descriptor shall remain valid in a process until that process closes it, or a
successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
category may invalidate existing open catalogs.

If a file descriptor is used to implement message catalog descriptors, the FD_CLOEXEC flag
shall be set; see <fcntl.h>.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the
catalog without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalog (see XBD
Section 8.2, on page 169).

RETURN VALUE
Upon successful completion, catopen() shall return a message catalog descriptor for use on
subsequent calls to catgets() and catclose(). Otherwise, catopen() shall return (nl_catd) −1 and set
errno to indicate the error.

ERRORS
The catopen() function may fail if:

[EACCES] Search permission is denied for the component of the path prefix of the
message catalog or read permission is denied for the message catalog.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

[ENOENT] The name argument contains a '/' and does not name an existing message
XSI catalog, the name argument does not contain a '/' and searching NLSPATH (if

set) and then the implementation-defined default path for a message catalog

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 701

24322

24323

24324

24325

24326

24327

24328

24329

24330

24331

24332

24333

24334

24335

24336

24337

24338

24339

24340

24341

24342

24343

24344

24345

24346

24347

24348

24349

24350

24351

24352

24353

24354

24355

24356

24357

24358

24359

24360

24361

24362

24363

24364

24365

24366

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

catopen() System Interfaces

with that name failed, one or more files exist but all are of an invalid format,
or the name argument points to an empty string.

[ENOMEM] Insufficient storage space is available.

[ENOTDIR] A component of the path prefix of the message catalog names an existing file
that is neither a directory nor a symbolic link to a directory, or the pathname
of the message catalog contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of catopen() use malloc() to allocate space for internal buffer areas. The
catopen() function may fail if there is insufficient storage space available to accommodate these
buffers.

Conforming applications must assume that message catalog descriptors are not valid after a call
to one of the exec functions.

Application developers should be aware that guidelines for the location of message catalogs
have not yet been developed. Therefore they should take care to avoid conflicting with catalogs
used by other applications and the standard utilities.

To be sure that messages produced by an application running with appropriate privileges cannot
be used by an attacker setting an unexpected value for NLSPATH in the environment to confuse
a system administrator, such applications should use pathnames containing a '/' to get defined
behavior when using catopen() to open a message catalog.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catgets()

XBD Chapter 8 (on page 167), <fcntl.h>, <nl_types.h>,

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The catopen() function is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0045 [324] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0054 [645], XSH/TC2-2008/0055 [497],
and XSH/TC2-2008/0056 [497] are applied.

702 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24367

24368

24369

24370

24371

24372

24373

24374

24375

24376

24377

24378

24379

24380

24381

24382

24383

24384

24385

24386

24387

24388

24389

24390

24391

24392

24393

24394

24395

24396

24397

24398

24399

24400

24401

24402

24403

24404

24405

24406

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces catopen()

Issue 8
Austin Group Defect 1122 is applied, clarifying that catopen() ignores files that are not valid
message catalog files when performing an NLSPATH search.

Austin Group Defect 1516 is applied, adding XSI shading to text relating to NLSPATH.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 703

24407

24408

24409

24410

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cbrt() System Interfaces

NAME
cbrt, cbrtf, cbrtl — cube root functions

SYNOPSIS
#include <math.h>

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the real cube root of their argument x.

RETURN VALUE
Upon successful completion, these functions shall return the cube root of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
For some applications, a true cube root function, which returns negative results for negative
arguments, is more appropriate than pow(x, 1.0/3.0), which returns a NaN for x less than 0.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The cbrt() function is no longer marked as an extension.

The cbrtf() and cbrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

704 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24411

24412

24413

24414

24415

24416

24417

24418

24419

24420

24421

24422

24423

24424

24425

24426

24427

24428

24429

24430

24431

24432

24433

24434

24435

24436

24437

24438

24439

24440

24441

24442

24443

24444

24445

24446

24447

24448

24449

24450

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ccos()

NAME
ccos, ccosf, ccosl — complex cosine functions

SYNOPSIS
#include <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex cosine of z.

RETURN VALUE
These functions shall return the complex cosine value.

MXC ccos(conj(iz)), ccosf (conjf (iz)), and ccosl(conjl(iz)) shall return exactly the same value as
conj(ccos(iz)), conjf (ccosf (iz)), and conjl(ccosl(iz)), respectively, and ccos(−iz), ccosf (−iz), and
ccosl(−iz) shall return exactly the same value as ccos(iz), ccosf (iz), and ccosl(iz), respectively,
including for the special values of iz below.

If iz is +0 + i0, 1 + i0 shall be returned.

If iz is +0 + iInf, NaN ± i0 shall be returned and the invalid floating-point exception shall be
raised; the sign of the imaginary part of the result is unspecified.

If iz is +0 + iNaN, NaN ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If iz is x + iInf where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception shall be raised.

If iz is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If iz is +Inf + i0, +Inf + i0 shall be returned.

If iz is +Inf + iy where y is non-zero and finite, +Inf (cos(y) + i sin(y)) shall be returned.

If iz is +Inf + iInf, ±Inf + iNaN shall be returned and the invalid floating-point exception shall be
raised; the sign of the real part of the result is unspecified.

If iz is +Inf + iNaN, +Inf + iNaN shall be returned.

If iz is NaN + i0, NaN ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If iz is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If iz is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 705

24451

24452

24453

24454

24455

24456

24457

24458

24459

24460

24461

24462

24463

24464

24465

24466

24467

24468

24469

24470

24471

24472

24473

24474

24475

24476

24477

24478

24479

24480

24481

24482

24483

24484

24485

24486

24487

24488

24489

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ccos() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The MXC special cases for ccos() are derived from those for ccosh() by applying the formula
ccos(z) = ccosh(iz).

FUTURE DIRECTIONS
None.

SEE ALSO
ccosh(), cacos()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

706 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24490

24491

24492

24493

24494

24495

24496

24497

24498

24499

24500

24501

24502

24503

24504

24505

24506

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ccosh()

NAME
ccosh, ccoshf, ccoshl — complex hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex hyperbolic cosine of z.

RETURN VALUE
These functions shall return the complex hyperbolic cosine value.

MXC ccosh(conj(z)), ccoshf (conjf (z)), and ccoshl(conjl(z)) shall return exactly the same value as
conj(ccosh(z)), conjf (ccoshf (z)), and conjl(ccoshl(z)), respectively, and ccosh(−z), ccoshf (−z), and
ccoshl(−z) shall return exactly the same value as ccosh(z), ccoshf (z), and ccoshl(z), respectively,
including for the special values of z below.

If z is +0 + i0, 1 + i0 shall be returned.

If z is +0 + iInf, NaN ± i0 shall be returned and the invalid floating-point exception shall be
raised; the sign of the imaginary part of the result is unspecified.

If z is +0 + iNaN, NaN ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is x + iInf where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception shall be raised.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is +Inf + i0, +Inf + i0 shall be returned.

If z is +Inf + iy where y is non-zero and finite, +Inf (cos(y) + i sin(y)) shall be returned.

If z is +Inf + iInf, ±Inf + iNaN shall be returned and the invalid floating-point exception shall be
raised; the sign of the real part of the result is unspecified.

If z is +Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + i0, NaN ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 707

24507

24508

24509

24510

24511

24512

24513

24514

24515

24516

24517

24518

24519

24520

24521

24522

24523

24524

24525

24526

24527

24528

24529

24530

24531

24532

24533

24534

24535

24536

24537

24538

24539

24540

24541

24542

24543

24544

24545

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ccosh() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacosh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

708 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24546

24547

24548

24549

24550

24551

24552

24553

24554

24555

24556

24557

24558

24559

24560

24561

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ccosl()

NAME
ccosl — complex cosine functions

SYNOPSIS
#include <complex.h>

long double complex ccosl(long double complex z);

DESCRIPTION
Refer to ccos().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 709

24562

24563

24564

24565

24566

24567

24568

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ceil() System Interfaces

NAME
ceil, ceilf, ceill — ceiling value function

SYNOPSIS
#include <math.h>

double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the smallest integral value not less than x.

MX These functions may raise the inexact floating-point exception for finite non-integer arguments.

RETURN VALUE
MX The returned value shall be independent of the current rounding direction mode and shall have

the same sign as x.

Upon successful completion, ceil(), ceilf(), and ceill() shall return the smallest integral value not
less than x, expressed as a type double, float, or long double, respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), floor(), isnan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

710 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24569

24570

24571

24572

24573

24574

24575

24576

24577

24578

24579

24580

24581

24582

24583

24584

24585

24586

24587

24588

24589

24590

24591

24592

24593

24594

24595

24596

24597

24598

24599

24600

24601

24602

24603

24604

24605

24606

24607

24608

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ceil()

Issue 6
The ceilf() and ceill() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0046 [346] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 711

24609

24610

24611

24612

24613

24614

24615

24616

24617

24618

24619

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cexp() System Interfaces

NAME
cexp, cexpf, cexpl — complex exponential functions

SYNOPSIS
#include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex exponent of z, defined as ez.

RETURN VALUE
These functions shall return the complex exponential value of z.

MXC cexp(conj(z)), cexpf (conjf (z)), and cexpl(conjl(z)) shall return exactly the same value as
conj(cexp(z)), conjf (cexpf (z)), and conjl(cexpl(z)), respectively, including for the special values of z
below.

If z is ±0 + i0, 1 + i0 shall be returned.

If z is x + iInf where x is finite, NaN + iNaN shall be returned and the invalid floating-point
exception shall be raised.

If z is x + iNaN where x is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is +Inf + i0, +Inf + i0 shall be returned.

If z is −Inf + iy where y is finite, +0 (cos(y) + i sin(y)) shall be returned.

If z is +Inf + iy where y is non-zero and finite, +Inf (cos(y) + i sin(y)) shall be returned.

If z is −Inf + iInf, ±0 ± i0 shall be returned; the signs of the real and imaginary parts of the result
are unspecified.

If z is +Inf + iInf, ±Inf + iNaN shall be returned and the invalid floating-point exception shall be
raised; the sign of the real part of the result is unspecified.

If z is −Inf + iNaN, ±0 ± i0 shall be returned; the signs of the real and imaginary parts of the
result are unspecified.

If z is +Inf + iNaN, ±Inf + iNaN shall be returned; the sign of the real part of the result is
unspecified.

If z is NaN + i0, NaN + i0 shall be returned.

If z is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

712 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24620

24621

24622

24623

24624

24625

24626

24627

24628

24629

24630

24631

24632

24633

24634

24635

24636

24637

24638

24639

24640

24641

24642

24643

24644

24645

24646

24647

24648

24649

24650

24651

24652

24653

24654

24655

24656

24657

24658

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cexp()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clog()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 713

24659

24660

24661

24662

24663

24664

24665

24666

24667

24668

24669

24670

24671

24672

24673

24674

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cfgetispeed() System Interfaces

NAME
cfgetispeed — get input baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);

DESCRIPTION
The cfgetispeed() function shall extract the input baud rate from the termios structure to which
the termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetispeed() shall return a value of type speed_t representing the
input baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ``baud’’ is used historically here, but is not technically correct. This is properly ``bits per
second’’, which may not be the same as baud. However, the term is used because of the
historical usage and understanding.

The cfgetospeed(), cfgetispeed(), cfsetospeed(), and cfsetispeed() functions do not take arguments as
numbers, but rather as symbolic names. There are two reasons for this:

1. Historically, numbers were not used because of the way the rate was stored in the data
structure. This is retained even though a function is now used.

2. More importantly, only a limited set of possible rates is at all portable, and this constrains
the application to that set.

There is nothing to prevent an implementation accepting as an extension a number (such as 126),
and since the encoding of the Bxxx symbols is not specified, this can be done to avoid
introducing ambiguity.

Setting the input baud rate to zero was a mechanism to allow for split baud rates. Clarifications
in this volume of POSIX.1-2024 have made it possible to determine whether split rates are
supported and to support them without having to treat zero as a special case. Since this
functionality is also confusing, it has been declared obsolescent. The 0 argument referred to is
the literal constant 0, not the symbolic constant B0. This volume of POSIX.1-2024 does not
preclude B0 from being defined as the value 0; in fact, implementations would likely benefit
from the two being equivalent. This volume of POSIX.1-2024 does not fully specify whether the
previous cfsetispeed() value is retained after a tcgetattr() as the actual value or as zero. Therefore,
conforming applications should always set both the input speed and output speed when setting
either.

In historical implementations, the baud rate information is traditionally kept in c_cflag.
Applications should be written to presume that this might be the case (and thus not blindly copy
c_cflag), but not to rely on it in case it is in some other field of the structure. Setting the c_cflag
field absolutely after setting a baud rate is a non-portable action because of this. In general, the

714 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24675

24676

24677

24678

24679

24680

24681

24682

24683

24684

24685

24686

24687

24688

24689

24690

24691

24692

24693

24694

24695

24696

24697

24698

24699

24700

24701

24702

24703

24704

24705

24706

24707

24708

24709

24710

24711

24712

24713

24714

24715

24716

24717

24718

24719

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cfgetispeed()

unused parts of the flag fields might be used by the implementation and should not be blindly
copied from the descriptions of one terminal device to another.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetospeed(), cfsetispeed(), cfsetospeed(), tcgetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 715

24720

24721

24722

24723

24724

24725

24726

24727

24728

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cfgetospeed() System Interfaces

NAME
cfgetospeed — get output baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetospeed(const struct termios *termios_p);

DESCRIPTION
The cfgetospeed() function shall extract the output baud rate from the termios structure to which
the termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetospeed() shall return a value of type speed_t representing the
output baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfsetispeed(), cfsetospeed(), tcgetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

716 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24729

24730

24731

24732

24733

24734

24735

24736

24737

24738

24739

24740

24741

24742

24743

24744

24745

24746

24747

24748

24749

24750

24751

24752

24753

24754

24755

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cfsetispeed()

NAME
cfsetispeed — set input baud rate

SYNOPSIS
#include <termios.h>

int cfsetispeed(struct termios *termios_p, speed_t speed);

DESCRIPTION
The cfsetispeed() function shall set the input baud rate stored in the structure pointed to by
termios_p to speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call
to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
baud rates not supported by the terminal device need not be detected until the tcsetattr()
function is called.

RETURN VALUE
Upon successful completion, cfsetispeed() shall return 0; otherwise, −1 shall be returned, and
errno may be set to indicate the error.

ERRORS
The cfsetispeed() function may fail if:

[EINVAL] The speed value is not a valid baud rate.

[EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetospeed(), tcsetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno and the [EINVAL] error conditions are added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 717

24756

24757

24758

24759

24760

24761

24762

24763

24764

24765

24766

24767

24768

24769

24770

24771

24772

24773

24774

24775

24776

24777

24778

24779

24780

24781

24782

24783

24784

24785

24786

24787

24788

24789

24790

24791

24792

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cfsetospeed() System Interfaces

NAME
cfsetospeed — set output baud rate

SYNOPSIS
#include <termios.h>

int cfsetospeed(struct termios *termios_p, speed_t speed);

DESCRIPTION
The cfsetospeed() function shall set the output baud rate stored in the structure pointed to by
termios_p to speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call
to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
baud rates not supported by the terminal device need not be detected until the tcsetattr()
function is called.

RETURN VALUE
Upon successful completion, cfsetospeed() shall return 0; otherwise, it shall return −1 and errno
may be set to indicate the error.

ERRORS
The cfsetospeed() function may fail if:

[EINVAL] The speed value is not a valid baud rate.

[EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetispeed(), tcsetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno and the [EINVAL] error conditions are added.

718 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24793

24794

24795

24796

24797

24798

24799

24800

24801

24802

24803

24804

24805

24806

24807

24808

24809

24810

24811

24812

24813

24814

24815

24816

24817

24818

24819

24820

24821

24822

24823

24824

24825

24826

24827

24828

24829

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces chdir()

NAME
chdir — change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);

DESCRIPTION
The chdir() function shall cause the directory named by the pathname pointed to by the path
argument to become the current working directory; that is, the starting point for path searches
for pathnames not beginning with '/'.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned, the current
working directory shall remain unchanged, and errno shall be set to indicate the error.

ERRORS
The chdir() function shall fail if:

[EACCES] Search permission is denied for any component of the pathname.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing directory or path is an empty
string.

[ENOTDIR] A component of the pathname names an existing file that is neither a directory
nor a symbolic link to a directory.

The chdir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Changing the Current Working Directory

The following example makes the value pointed to by directory, /tmp, the current working
directory.

#include <unistd.h>
...
char *directory = "/tmp";
int ret;

ret = chdir (directory);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 719

24830

24831

24832

24833

24834

24835

24836

24837

24838

24839

24840

24841

24842

24843

24844

24845

24846

24847

24848

24849

24850

24851

24852

24853

24854

24855

24856

24857

24858

24859

24860

24861

24862

24863

24864

24865

24866

24867

24868

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chdir() System Interfaces

APPLICATION USAGE
None.

RATIONALE
The chdir() function only affects the working directory of the current process.

FUTURE DIRECTIONS
None.

SEE ALSO
getcwd()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The APPLICATION USAGE section is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0047 [324] is applied.

720 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24869

24870

24871

24872

24873

24874

24875

24876

24877

24878

24879

24880

24881

24882

24883

24884

24885

24886

24887

24888

24889

24890

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces chmod()

NAME
chmod, fchmodat — change mode of a file

SYNOPSIS
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

OH #include <fcntl.h>

int fchmodat(int fd, const char *path, mode_t mode, int flag);

DESCRIPTION
XSI The chmod() function shall change S_ISUID, S_ISGID, S_ISVTX, and the file permission bits of

the file named by the pathname pointed to by the path argument to the corresponding bits in the
mode argument. If any bits that can be set in the st_mode value returned by lstat() or stat() but
cannot be changed using chmod(), such as the bits that are used to encode the file type, are set in
the mode argument, these read-only st_mode bits shall be ignored.

If the effective user ID of the process does not match the owner of the file and the process does
not have appropriate privileges, the chmod() function shall fail.

XSI S_ISUID, S_ISGID, S_ISVTX, and the file permission bits are described in <sys/stat.h>.

If the calling process does not have appropriate privileges, and if the group ID of the file does
not match the effective group ID or one of the supplementary group IDs and if the file is a
regular file, bit S_ISGID (set-group-ID on execution) in the file’s mode shall be cleared upon
successful return from chmod().

Additional implementation-defined restrictions may cause the S_ISUID and S_ISGID bits in
XSI mode to be ignored, and may cause the S_ISVTX bit in mode to be ignored for non-directory files.

Upon successful completion, chmod() shall mark for update the last file status change timestamp
of the file.

The fchmodat() function shall be equivalent to the chmod() function except in the case where path
specifies a relative path. In this case the file to be changed is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. If the access mode
of the open file description associated with the file descriptor is not O_SEARCH, the function
shall check whether directory searches are permitted using the current permissions of the
directory underlying the file descriptor. If the access mode is O_SEARCH, the function shall not
perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, then the mode of the symbolic link is changed.

If fchmodat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used. If also flag is zero, the behavior shall be identical to a call to chmod().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no change to the file mode occurs.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 721

24891

24892

24893

24894

24895

24896

24897

24898

24899

24900

24901

24902

24903

24904

24905

24906

24907

24908

24909

24910

24911

24912

24913

24914

24915

24916

24917

24918

24919

24920

24921

24922

24923

24924

24925

24926

24927

24928

24929

24930

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chmod() System Interfaces

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The named file resides on a read-only file system.

The fchmodat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

[EINTR] A signal was caught during execution of the function.

[EINVAL] The value of the mode argument, ignoring read-only st_mode bits (see the
DESCRIPTION), is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The fchmodat() function may fail if:

[EINVAL] The value of the flag argument is invalid.

[EOPNOTSUPP] The AT_SYMLINK_NOFOLLOW bit is set in the flag argument, path names a
symbolic link, and the system does not support changing the mode of a
symbolic link.

722 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24931

24932

24933

24934

24935

24936

24937

24938

24939

24940

24941

24942

24943

24944

24945

24946

24947

24948

24949

24950

24951

24952

24953

24954

24955

24956

24957

24958

24959

24960

24961

24962

24963

24964

24965

24966

24967

24968

24969

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces chmod()

EXAMPLES

Setting Read Permissions for User, Group, and Others

The following example sets read permissions for the owner, group, and others.

#include <sys/stat.h>

const char *path;
...
chmod(path, S_IRUSR|S_IRGRP|S_IROTH);

Setting Read, Write, and Execute Permissions for the Owner Only

The following example sets read, write, and execute permissions for the owner, and no
permissions for group and others.

#include <sys/stat.h>

const char *path;
...
chmod(path, S_IRWXU);

Setting Different Permissions for Owner, Group, and Other

The following example sets owner permissions for CHANGEFILE to read, write, and execute,
group permissions to read and execute, and other permissions to read.

#include <sys/stat.h>

#define CHANGEFILE "/etc/myfile"
...
chmod(CHANGEFILE, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH);

Modifying File Permissions

The following example adds group write permission to the existing permission bits for a file if
that bit is not already set.

#include <sys/stat.h>

struct stat sbuf;
...
if (stat(path, &sbuf) == 0 && (sbuf.st_mode & S_IWGRP) == 0)

chmod(path, sbuf.st_mode | S_IWGRP);

Setting and Checking File Permissions

The following example sets the file permission bits for a file named /home/cnd/mod1, then calls
the stat() function to verify the permissions.

#include <sys/types.h>
#include <sys/stat.h>

int status;
struct stat buffer
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 723

24970

24971

24972

24973

24974

24975

24976

24977

24978

24979

24980

24981

24982

24983

24984

24985

24986

24987

24988

24989

24990

24991

24992

24993

24994

24995

24996

24997

24998

24999

25000

25001

25002

25003

25004

25005

25006

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chmod() System Interfaces

chmod("/home/cnd/mod1", S_IRWXU|S_IRWXG|S_IROTH|S_IWOTH);
status = stat("/home/cnd/mod1", &buffer);

APPLICATION USAGE
In order to ensure that the S_ISUID and S_ISGID bits are set, an application requiring this
should use stat() after a successful chmod() to verify this.

Any file descriptors currently open by any process on the file could possibly become invalid if
the mode of the file is changed to a value which would deny access to that process. One
situation where this could occur is on a stateless file system. This behavior will not occur in a
conforming environment.

RATIONALE
This volume of POSIX.1-2024 specifies that the S_ISGID bit is cleared by chmod() on a regular file
under certain conditions. This is specified on the assumption that regular files may be executed,
and the system should prevent users from making executable setgid() files perform with
privileges that the caller does not have. On implementations that support execution of other file
types, the S_ISGID bit should be cleared for those file types under the same circumstances.

Implementations that use the S_ISUID bit to indicate some other function (for example,
mandatory record locking) on non-executable files need not clear this bit on writing. They
should clear the bit for executable files and any other cases where the bit grants special powers
to processes that change the file contents. Similar comments apply to the S_ISGID bit.

The purpose of the fchmodat() function is to enable changing the mode of files in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to chmod(), resulting in unspecified behavior.
By opening a file descriptor for the target directory and using the fchmodat() function it can be
guaranteed that the changed file is located relative to the desired directory. Some
implementations might allow changing the mode of symbolic links. This is not supported by the
interfaces in the POSIX specification. Systems with such support provide an interface named
lchmod(). To support such implementations fchmodat() has a flag parameter.

FUTURE DIRECTIONS
None.

SEE ALSO
access(), chown(), exec , fstatat(), fstatvfs(), mkdir(), mkfifo(), mknod(), open()

XBD <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EINVAL] and [EINTR] optional error conditions are added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

724 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25007

25008

25009

25010

25011

25012

25013

25014

25015

25016

25017

25018

25019

25020

25021

25022

25023

25024

25025

25026

25027

25028

25029

25030

25031

25032

25033

25034

25035

25036

25037

25038

25039

25040

25041

25042

25043

25044

25045

25046

25047

25048

25049

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces chmod()

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The fchmodat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0048 [300], XSH/TC1-2008/0049 [461],
XSH/TC1-2008/0050 [324], XSH/TC1-2008/0051 [278], and XSH/TC1-2008/0052 [278] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0057 [873], XSH/TC2-2008/0058 [591],
XSH/TC2-2008/0059 [817], XSH/TC2-2008/0060 [817], and XSH/TC2-2008/0061 [893] are
applied.

Issue 8
Austin Group Defect 1024 is applied, allowing the S_ISVTX bit to be ignored for non-directory
files.

Austin Group Defect 1283 is applied, clarifying that chmod() ignores read-only st_mode bits in the
mode argument.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 725

25050

25051

25052

25053

25054

25055

25056

25057

25058

25059

25060

25061

25062

25063

25064

25065

25066

25067

25068

25069

25070

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chown() System Interfaces

NAME
chown, fchownat — change owner and group of a file

SYNOPSIS
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

OH #include <fcntl.h>

int fchownat(int fd, const char *path, uid_t owner, gid_t group,
int flag);

DESCRIPTION
The chown() function shall change the user and group ownership of a file.

The path argument points to a pathname naming a file. The user ID and group ID of the named
file shall be set to the numeric values contained in owner and group, respectively.

Only processes with an effective user ID equal to the user ID of the file or with appropriate
privileges may change the ownership of a file. If _POSIX_CHOWN_RESTRICTED is in effect for
path:

• Changing the user ID is restricted to processes with appropriate privileges.

• Changing the group ID is permitted to a process with an effective user ID equal to the user
ID of the file, but without appropriate privileges, if and only if owner is equal to the file’s
user ID or (uid_t)−1 and group is equal either to the calling process’ effective group ID or to
one of its supplementary group IDs.

If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of
the file mode are set, and the process does not have appropriate privileges, the set-user-ID
(S_ISUID) and set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful
return from chown(). If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP,
or S_IXOTH bits of the file mode are set, and the process has appropriate privileges, it is
implementation-defined whether the set-user-ID and set-group-ID bits are altered. If the chown()
function is successfully invoked on a file that is not a regular file and one or more of the
S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, the set-user-ID and set-group-ID
bits may be cleared.

If owner or group is specified as (uid_t)−1 or (gid_t)−1, respectively, the corresponding ID of the
file shall not be changed.

Upon successful completion, chown() shall mark for update the last file status change timestamp
of the file, except that if owner is (uid_t)−1 and group is (gid_t)−1, the file status change
timestamp need not be marked for update.

The fchownat() function shall be equivalent to the chown() and lchown() functions except in the
case where path specifies a relative path. In this case the file to be changed is determined relative
to the directory associated with the file descriptor fd instead of the current working directory. If
the access mode of the open file description associated with the file descriptor is not
O_SEARCH, the function shall check whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the access mode is O_SEARCH, the
function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

726 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25071

25072

25073

25074

25075

25076

25077

25078

25079

25080

25081

25082

25083

25084

25085

25086

25087

25088

25089

25090

25091

25092

25093

25094

25095

25096

25097

25098

25099

25100

25101

25102

25103

25104

25105

25106

25107

25108

25109

25110

25111

25112

25113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces chown()

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, ownership of the symbolic link is changed.

If fchownat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to chown() or lchown()
respectively, depending on whether or not the AT_SYMLINK_NOFOLLOW bit is set in the flag
argument.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no changes are made in the user ID
and group ID of the file.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

[EPERM] The effective user ID does not match the owner of the file, or the calling
process does not have appropriate privileges and
_POSIX_CHOWN_RESTRICTED indicates that such privilege is required.

[EROFS] The named file resides on a read-only file system.

The fchownat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

[EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] The chown() function was interrupted by a signal which was caught.

[EINVAL] The owner or group ID supplied is not a value supported by the
implementation.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 727

25114

25115

25116

25117

25118

25119

25120

25121

25122

25123

25124

25125

25126

25127

25128

25129

25130

25131

25132

25133

25134

25135

25136

25137

25138

25139

25140

25141

25142

25143

25144

25145

25146

25147

25148

25149

25150

25151

25152

25153

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chown() System Interfaces

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The fchownat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

EXAMPLES
None.

APPLICATION USAGE
Although chown() can be used on some implementations by the file owner to change the owner
and group to any desired values, the only portable use of this function is to change the group of
a file to the effective GID of the calling process or to a member of its group set.

RATIONALE
System III and System V allow a user to give away files; that is, the owner of a file may change
its user ID to anything. This is a serious problem for implementations that are intended to meet
government security regulations. Version 7 and 4.3 BSD permit only the superuser to change the
user ID of a file. Some government agencies (usually not ones concerned directly with security)
find this limitation too confining. This volume of POSIX.1-2024 uses may to permit secure
implementations while not disallowing System V.

System III and System V allow the owner of a file to change the group ID to anything. Version 7
permits only the superuser to change the group ID of a file. 4.3 BSD permits the owner to
change the group ID of a file to its effective group ID or to any of the groups in the list of
supplementary group IDs, but to no others.

The POSIX.1-1990 standard requires that the chown() function invoked by a non-appropriate
privileged process clear the S_ISGID and the S_ISUID bits for regular files, and permits them to
be cleared for other types of files. This is so that changes in accessibility do not accidentally
cause files to become security holes. Unfortunately, requiring these bits to be cleared on non-
executable data files also clears the mandatory file locking bit (shared with S_ISGID), which is
an extension on many implementations (it first appeared in System V). These bits should only be
required to be cleared on regular files that have one or more of their execute bits set.

The purpose of the fchownat() function is to enable changing ownership of files in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to chown() or lchown(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and using the
fchownat() function it can be guaranteed that the changed file is located relative to the desired
directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), fpathconf(), lchown()

XBD <fcntl.h>, <sys/types.h>, <unistd.h>

728 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25154

25155

25156

25157

25158

25159

25160

25161

25162

25163

25164

25165

25166

25167

25168

25169

25170

25171

25172

25173

25174

25175

25176

25177

25178

25179

25180

25181

25182

25183

25184

25185

25186

25187

25188

25189

25190

25191

25192

25193

25194

25195

25196

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces chown()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The wording describing the optional dependency on _POSIX_CHOWN_RESTRICTED is
restored.

• The [EPERM] error is restored as an error dependent on _POSIX_CHOWN_RESTRICTED.
This is since its operand is a pathname and applications should be aware that the error
may not occur for that pathname if the file system does not support
_POSIX_CHOWN_RESTRICTED.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The value for owner of (uid_t)−1 allows the use of −1 by the owner of a file to change the
group ID only. A corresponding change is made for group.

• The [ELOOP] mandatory error condition is added.

• The [EIO] and [EINTR] optional error conditions are added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that the S_ISUID and S_ISGID bits do not need to be cleared when
the process has appropriate privileges.

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The fchownat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0053 [461], XSH/TC1-2008/0054 [324],
XSH/TC1-2008/0055 [278], and XSH/TC1-2008/0056 [278] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0062 [873], XSH/TC2-2008/0063 [591],
XSH/TC2-2008/0064 [485], XSH/TC2-2008/0065 [817], and XSH/TC2-2008/0066 [817] are
applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 729

25197

25198

25199

25200

25201

25202

25203

25204

25205

25206

25207

25208

25209

25210

25211

25212

25213

25214

25215

25216

25217

25218

25219

25220

25221

25222

25223

25224

25225

25226

25227

25228

25229

25230

25231

25232

25233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cimag() System Interfaces

NAME
cimag, cimagf, cimagl — complex imaginary functions

SYNOPSIS
#include <complex.h>

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the imaginary part of z.

RETURN VALUE
These functions shall return the imaginary part value (as a real).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For a variable z of complex type:

z == creal(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), conj(), cproj(), creal()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

730 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25234

25235

25236

25237

25238

25239

25240

25241

25242

25243

25244

25245

25246

25247

25248

25249

25250

25251

25252

25253

25254

25255

25256

25257

25258

25259

25260

25261

25262

25263

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces clearerr()

NAME
clearerr — clear indicators on a stream

SYNOPSIS
#include <stdio.h>

void clearerr(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The clearerr() function shall clear the end-of-file and error indicators for the stream to which
stream points.

CX The clearerr() function shall not change the setting of errno if stream is valid.

RETURN VALUE
The clearerr() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0057 [401] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 731

25264

25265

25266

25267

25268

25269

25270

25271

25272

25273

25274

25275

25276

25277

25278

25279

25280

25281

25282

25283

25284

25285

25286

25287

25288

25289

25290

25291

25292

25293

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

clock() System Interfaces

NAME
clock — report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The clock() function shall return the implementation’s best approximation to the processor time
used by the process since the beginning of an implementation-defined era related only to the
process invocation.

RETURN VALUE
To determine the time in seconds, the value returned by clock() should be divided by the value

XSI of the macro CLOCKS_PER_SEC. CLOCKS_PER_SEC is defined to be one million in <time.h>.
If the processor time used is not available or its value cannot be represented, the function shall
return the value (clock_t)−1.

ERRORS
The clock() function shall fail if:

CX [EOVERFLOW] The processor time used cannot be represented in an object of type clock_t.

EXAMPLES
None.

APPLICATION USAGE
In programming environments where clock_t is a 32-bit integer type and CLOCKS_PER_SEC is
one million, clock() will start failing in less than 36 minutes of processor time for signed clock_t,
or 72 minutes for unsigned clock_t. Applications intended to be portable to such environments
should use times() instead (or clock_gettime() with CLOCK_PROCESS_CPUTIME_ID, if
supported).

In order to measure the time spent in a program, clock() should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls. The value
returned by clock() is defined for compatibility across systems that have clocks with different
resolutions. The resolution on any particular system need not be to microsecond accuracy.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock_getres(), ctime(), difftime(), futimens(), gmtime(), localtime(), mktime(), strftime(),
strptime(), time(), times()

XBD <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

732 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25294

25295

25296

25297

25298

25299

25300

25301

25302

25303

25304

25305

25306

25307

25308

25309

25310

25311

25312

25313

25314

25315

25316

25317

25318

25319

25320

25321

25322

25323

25324

25325

25326

25327

25328

25329

25330

25331

25332

25333

25334

25335

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces clock()

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0067 [686] is applied.

Issue 8
Austin Group Defect 703 is applied, adding the [EOVERFLOW] error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 733

25336

25337

25338

25339

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

clock_getcpuclockid() System Interfaces

NAME
clock_getcpuclockid — access a process CPU-time clock (ADVANCED REALTIME)

SYNOPSIS
CPT #include <time.h>

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

DESCRIPTION
The clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of the process
specified by pid. If the process described by pid exists and the calling process has permission, the
clock ID of this clock shall be returned in clock_id.

If pid is zero, the clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of
the process making the call, in clock_id.

The conditions under which one process has permission to obtain the CPU-time clock ID of
other processes are implementation-defined.

RETURN VALUE
Upon successful completion, clock_getcpuclockid() shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The clock_getcpuclockid() function shall fail if:

[EPERM] The requesting process does not have permission to access the CPU-time clock
for the process.

The clock_getcpuclockid() function may fail if:

[ESRCH] No process can be found corresponding to the process specified by pid.

EXAMPLES
None.

APPLICATION USAGE
The clock_getcpuclockid() function is part of the Process CPU-Time Clocks option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_create()

XBD <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

734 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25340

25341

25342

25343

25344

25345

25346

25347

25348

25349

25350

25351

25352

25353

25354

25355

25356

25357

25358

25359

25360

25361

25362

25363

25364

25365

25366

25367

25368

25369

25370

25371

25372

25373

25374

25375

25376

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces clock_getres()

NAME
clock_getres, clock_gettime, clock_settime — clock and timer functions

SYNOPSIS
CX #include <time.h>

int clock_getres(clockid_t clock_id, struct timespec *res);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_settime(clockid_t clock_id, const struct timespec *tp);

DESCRIPTION
The clock_getres() function shall return the resolution of any clock. Clock resolutions are
implementation-defined and cannot be set by a process. If the argument res is not NULL, the
resolution of the specified clock shall be stored in the location pointed to by res. If res is NULL,
the clock resolution is not returned. If the time argument of clock_settime() is not a multiple of res,
then the value is truncated to a multiple of res.

The clock_gettime() function shall return the current value tp for the specified clock, clock_id.

The clock_settime() function shall set the specified clock, clock_id, to the value specified by tp.
Time values that are between two consecutive non-negative integer multiples of the resolution of
the specified clock shall be truncated down to the smaller multiple of the resolution.

A clock may be system-wide (that is, visible to all processes) or per-process (measuring time that
is meaningful only within a process). All implementations shall support a clock_id of
CLOCK_REALTIME as defined in <time.h>. This clock represents the clock measuring real time
for the system. For this clock, the values returned by clock_gettime() and specified by
clock_settime() represent the amount of time (in seconds and nanoseconds) since the Epoch. An
implementation may also support additional clocks. The interpretation of time values for these
clocks is unspecified.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
shall be used to determine the time of expiration for absolute time services based upon the
CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the
absolute time requested at the invocation of such a time service is before the new value of the
clock, the time service shall expire immediately as if the clock had reached the requested time
normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on
threads that are blocked waiting for a relative time service based upon this clock, including the
nanosleep() and thrd_sleep() functions; nor on the expiration of relative timers based upon this
clock. Consequently, these time services shall expire when the requested relative interval
elapses, independently of the new or old value of the clock.

All implementations shall support a clock_id of CLOCK_MONOTONIC defined in <time.h>.
This clock represents the monotonic clock for the system. For this clock, the value returned by
clock_gettime() represents the amount of time (in seconds and nanoseconds) since an unspecified
point in the past (for example, system start-up time, or the Epoch). This point does not change
after system start-up time. The value of the CLOCK_MONOTONIC clock cannot be set via
clock_settime(). This function shall fail if it is invoked with a clock_id argument of
CLOCK_MONOTONIC.

The effect of setting a clock via clock_settime() on armed per-process timers associated with a
clock other than CLOCK_REALTIME is implementation-defined.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
shall be used to determine the time at which the system shall awaken a thread blocked on an

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 735

25377

25378

25379

25380

25381

25382

25383

25384

25385

25386

25387

25388

25389

25390

25391

25392

25393

25394

25395

25396

25397

25398

25399

25400

25401

25402

25403

25404

25405

25406

25407

25408

25409

25410

25411

25412

25413

25414

25415

25416

25417

25418

25419

25420

25421

25422

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

clock_getres() System Interfaces

absolute clock_nanosleep() call based upon the CLOCK_REALTIME clock. If the absolute time
requested at the invocation of such a time service is before the new value of the clock, the call
shall return immediately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on any
thread that is blocked on a relative clock_nanosleep() call. Consequently, the call shall return
when the requested relative interval elapses, independently of the new or old value of the clock.

Appropriate privileges to set a particular clock are implementation-defined.

CPT If _POSIX_CPUTIME is defined, implementations shall support clock ID values obtained by
invoking clock_getcpuclockid(), which represent the CPU-time clock of a given process.
Implementations shall also support the special clockid_t value
CLOCK_PROCESS_CPUTIME_ID, which represents the CPU-time clock of the calling process
when invoking one of the clock_*() or timer_*() functions. For these clock IDs, the values
returned by clock_gettime() and specified by clock_settime() represent the amount of execution
time of the process associated with the clock. Changing the value of a CPU-time clock via
clock_settime() shall have no effect on the behavior of the sporadic server scheduling policy (see
Scheduling Policies).

TCT If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock ID values
obtained by invoking pthread_getcpuclockid(), which represent the CPU-time clock of a given
thread. Implementations shall also support the special clockid_t value
CLOCK_THREAD_CPUTIME_ID, which represents the CPU-time clock of the calling thread
when invoking one of the clock_*() or timer_*() functions. For these clock IDs, the values
returned by clock_gettime() and specified by clock_settime() shall represent the amount of
execution time of the thread associated with the clock. Changing the value of a CPU-time clock
via clock_settime() shall have no effect on the behavior of the sporadic server scheduling policy
(see Scheduling Policies).

RETURN VALUE
A return value of 0 shall indicate that the call succeeded. A return value of −1 shall indicate that
an error occurred, and errno shall be set to indicate the error.

ERRORS
The clock_getres(), clock_gettime(), and clock_settime() functions shall fail if:

[EINVAL] The clock_id argument does not specify a known clock.

The clock_gettime() function shall fail if:

[EOVERFLOW] The number of seconds will not fit in an object of type time_t.

The clock_settime() function shall fail if:

[EINVAL] The tp argument to clock_settime() is outside the range for the given clock ID.

[EINVAL] The tp argument specified a nanosecond value less than zero or greater than or
equal to 1 000 million.

[EINVAL] The value of the clock_id argument is CLOCK_MONOTONIC.

The clock_settime() function may fail if:

[EPERM] The requesting process does not have appropriate privileges to set the
specified clock.

736 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25423

25424

25425

25426

25427

25428

25429

25430

25431

25432

25433

25434

25435

25436

25437

25438

25439

25440

25441

25442

25443

25444

25445

25446

25447

25448

25449

25450

25451

25452

25453

25454

25455

25456

25457

25458

25459

25460

25461

25462

25463

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces clock_getres()

EXAMPLES
None.

APPLICATION USAGE
Note that the absolute value of the monotonic clock is meaningless (because its origin is
arbitrary), and thus there is no need to set it. Furthermore, realtime applications can rely on the
fact that the value of this clock is never set and, therefore, that time intervals measured with this
clock will not be affected by calls to clock_settime().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 531), clock_getcpuclockid(), clock_nanosleep(), ctime(), mq_receive(),
mq_send(), nanosleep(), pthread_mutex_clocklock(), sem_clockwait(), thrd_sleep(), time(),
timer_create(), timer_getoverrun()

XBD <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

The APPLICATION USAGE section is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added of the effect of resetting the clock resolution.

CPU-time clocks and the clock_getcpuclockid() function are added for alignment with IEEE Std
1003.1d-1999.

The following changes are added for alignment with IEEE Std 1003.1j-2000:

• The DESCRIPTION is updated as follows:

— The value returned by clock_gettime() for CLOCK_MONOTONIC is specified.

— The clock_settime() function failing for CLOCK_MONOTONIC is specified.

— The effects of clock_settime() on the clock_nanosleep() function with respect to
CLOCK_REALTIME are specified.

• An [EINVAL] error is added to the ERRORS section, indicating that clock_settime() fails for
CLOCK_MONOTONIC.

• The APPLICATION USAGE section notes that the CLOCK_MONOTONIC clock need not
and shall not be set by clock_settime() since the absolute value of the
CLOCK_MONOTONIC clock is meaningless.

• The clock_nanosleep(), mq_timedreceive(), mq_timedsend(), pthread_mutex_timedlock(),
sem_timedwait(), timer_create(), and timer_settime() functions are added to the SEE ALSO
section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 737

25464

25465

25466

25467

25468

25469

25470

25471

25472

25473

25474

25475

25476

25477

25478

25479

25480

25481

25482

25483

25484

25485

25486

25487

25488

25489

25490

25491

25492

25493

25494

25495

25496

25497

25498

25499

25500

25501

25502

25503

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

clock_getres() System Interfaces

Issue 7
Functionality relating to the Clock Selection option is moved to the Base.

The clock_getres(), clock_gettime(), and clock_settime() functions are moved from the Timers
option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0058 [106] is applied.

Issue 8
Austin Group Defect 1302 is applied, changing ``the nanosleep() function’’ to ``the nanosleep() and
thrd_sleep() functions’’.

Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

738 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25504

25505

25506

25507

25508

25509

25510

25511

25512

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces clock_nanosleep()

NAME
clock_nanosleep — high resolution sleep with specifiable clock

SYNOPSIS
CX #include <time.h>

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

DESCRIPTION
If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep() function shall
cause the current thread to be suspended from execution until either the time interval specified
by the rqtp argument has elapsed, or a signal is delivered to the calling thread and its action is to
invoke a signal-catching function, or the process is terminated. The clock used to measure the
time shall be the clock specified by clock_id.

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function shall
cause the current thread to be suspended from execution until either the time value of the clock
specified by clock_id reaches the absolute time specified by the rqtp argument, or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function, or the
process is terminated. If, at the time of the call, the time value specified by rqtp is less than or
equal to the time value of the specified clock, then clock_nanosleep() shall return immediately
and the calling process shall not be suspended.

The suspension time caused by this function may be longer than requested because the
argument value is rounded up to an integer multiple of the sleep resolution, or because of the
scheduling of other activity by the system. But, except for the case of being interrupted by a
signal, the suspension time for the relative clock_nanosleep() function (that is, with the
TIMER_ABSTIME flag not set) shall not be less than the time interval specified by rqtp, as
measured by the corresponding clock. The suspension for the absolute clock_nanosleep() function
(that is, with the TIMER_ABSTIME flag set) shall be in effect at least until the value of the
corresponding clock reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function shall have no effect on the action or blockage of any
signal.

The clock_nanosleep() function shall fail if the clock_id argument refers to the CPU-time clock of
the calling thread. It is unspecified whether clock_id values of other CPU-time clocks are allowed.

RETURN VALUE
If the clock_nanosleep() function returns because the requested time has elapsed, its return value
shall be zero.

If the clock_nanosleep() function returns because it has been interrupted by a signal, it shall
return the corresponding error value. For the relative clock_nanosleep() function, if the rmtp
argument is non-NULL, the timespec structure referenced by it shall be updated to contain the
amount of time remaining in the interval (the requested time minus the time actually slept). The
rqtp and rmtp arguments can point to the same object. If the rmtp argument is NULL, the
remaining time is not returned. The absolute clock_nanosleep() function has no effect on the
structure referenced by rmtp.

If clock_nanosleep() fails, it shall return the corresponding error value.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 739

25513

25514

25515

25516

25517

25518

25519

25520

25521

25522

25523

25524

25525

25526

25527

25528

25529

25530

25531

25532

25533

25534

25535

25536

25537

25538

25539

25540

25541

25542

25543

25544

25545

25546

25547

25548

25549

25550

25551

25552

25553

25554

25555

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

clock_nanosleep() System Interfaces

ERRORS
The clock_nanosleep() function shall fail if:

[EINTR] The clock_nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
or equal to 1 000 million; or the TIMER_ABSTIME flag was specified in flags
and the rqtp argument is outside the range for the clock specified by clock_id;
or the clock_id argument does not specify a known clock, or specifies the CPU-
time clock of the calling thread.

[ENOTSUP] The clock_id argument specifies a clock for which clock_nanosleep() is not
supported, such as a CPU-time clock.

EXAMPLES
None.

APPLICATION USAGE
Calling clock_nanosleep() with the value TIMER_ABSTIME not set in the flags argument and with
a clock_id of CLOCK_REALTIME is equivalent to calling nanosleep() with the same rqtp and rmtp
arguments.

RATIONALE
The nanosleep() function specifies that the system-wide clock CLOCK_REALTIME is used to
measure the elapsed time for this time service. However, with the introduction of the monotonic
clock CLOCK_MONOTONIC a new relative sleep function is needed to allow an application to
take advantage of the special characteristics of this clock.

There are many applications in which a process needs to be suspended and then activated
multiple times in a periodic way; for example, to poll the status of a non-interrupting device or
to refresh a display device. For these cases, it is known that precise periodic activation cannot be
achieved with a relative sleep() or nanosleep() function call. Suppose, for example, a periodic
process that is activated at time T0, executes for a while, and then wants to suspend itself until
time T0+T, the period being T. If this process wants to use the nanosleep() function, it must first
call clock_gettime() to get the current time, then calculate the difference between the current time
and T0+T and, finally, call nanosleep() using the computed interval. However, the process could
be preempted by a different process between the two function calls, and in this case the interval
computed would be wrong; the process would wake up later than desired. This problem would
not occur with the absolute clock_nanosleep() function, since only one function call would be
necessary to suspend the process until the desired time. In other cases, however, a relative sleep
is needed, and that is why both functionalities are required.

Although it is possible to implement periodic processes using the timers interface, this
implementation would require the use of signals, and the reservation of some signal numbers. In
this regard, the reasons for including an absolute version of the clock_nanosleep() function in
POSIX.1-2024 are the same as for the inclusion of the relative nanosleep().

It is also possible to implement precise periodic processes using pthread_cond_timedwait(), in
which an absolute timeout is specified that takes effect if the condition variable involved is never
signaled. However, the use of this interface is unnatural, and involves performing other
operations on mutexes and condition variables that imply an unnecessary overhead.
Furthermore, pthread_cond_timedwait() is not available in implementations that do not support
threads.

Although the interface of the relative and absolute versions of the new high resolution sleep
service is the same clock_nanosleep() function, the rmtp argument is only used in the relative
sleep. This argument is needed in the relative clock_nanosleep() function to reissue the function

740 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25556

25557

25558

25559

25560

25561

25562

25563

25564

25565

25566

25567

25568

25569

25570

25571

25572

25573

25574

25575

25576

25577

25578

25579

25580

25581

25582

25583

25584

25585

25586

25587

25588

25589

25590

25591

25592

25593

25594

25595

25596

25597

25598

25599

25600

25601

25602

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces clock_nanosleep()

call if it is interrupted by a signal, but it is not needed in the absolute clock_nanosleep() function
call; if the call is interrupted by a signal, the absolute clock_nanosleep() function can be invoked
again with the same rqtp argument used in the interrupted call.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), nanosleep(), pthread_cond_clockwait(), sleep()

XBD <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The clock_nanosleep() function is moved from the Clock Selection option to the Base.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0068 [909] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 741

25603

25604

25605

25606

25607

25608

25609

25610

25611

25612

25613

25614

25615

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

clock_settime() System Interfaces

NAME
clock_settime — clock and timer functions

SYNOPSIS
CX #include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

DESCRIPTION
Refer to clock_getres().

742 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25616

25617

25618

25619

25620

25621

25622

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces clog()

NAME
clog, clogf, clogl — complex natural logarithm functions

SYNOPSIS
#include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex natural (base e) logarithm of z, with a branch cut
along the negative real axis.

RETURN VALUE
These functions shall return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ, +iπ] along the imaginary
axis.

MXC clog(conj(z)), clogf (conjf (z)), and clogl(conjl(z)) shall return exactly the same value as conj(clog(z)),
conjf (clogf (z)), and conjl(clogl(z)), respectively, including for the special values of z below.

If z is −0 + i0, −Inf + iπ shall be returned and the divide-by-zero floating-point exception shall be
raised.

If z is +0 + i0, −Inf + i0 shall be returned and the divide-by-zero floating-point exception shall be
raised.

If z is x + iInf where x is finite, +Inf + iπ/2 shall be returned.

If z is x + iNaN where x is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is −Inf + iy where y is positive-signed and finite, +Inf + iπ shall be returned.

If z is +Inf + iy where y is positive-signed and finite, +Inf + i0 shall be returned.

If z is −Inf + iInf, +Inf + i3π/4 shall be returned.

If z is +Inf + iInf, +Inf + iπ/4 shall be returned.

If z is ±Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is NaN + iInf, +Inf + iNaN shall be returned.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 743

25623

25624

25625

25626

25627

25628

25629

25630

25631

25632

25633

25634

25635

25636

25637

25638

25639

25640

25641

25642

25643

25644

25645

25646

25647

25648

25649

25650

25651

25652

25653

25654

25655

25656

25657

25658

25659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

clog() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cexp()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

744 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25660

25661

25662

25663

25664

25665

25666

25667

25668

25669

25670

25671

25672

25673

25674

25675

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces close()

NAME
close, posix_close — close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fildes);
int posix_close(int fildes, int flag);

DESCRIPTION
The close() function shall deallocate the file descriptor indicated by fildes. To deallocate means to
make the file descriptor available for return by subsequent calls to open() or other functions that
allocate file descriptors. All process-owned file locks that the calling process owns on the file
associated with the file descriptor shall be unlocked.

If close() is interrupted by a signal that is to be caught, then it is unspecified whether it returns
−1 with errno set to [EINTR] and fildes remaining open, or returns −1 with errno set to
[EINPROGRESS] and fildes being closed, or returns 0 to indicate successful completion; except
that if POSIX_CLOSE_RESTART is defined as 0, then the option of returning −1 with errno set to
[EINTR] and fildes remaining open shall not occur. If close() returns −1 with errno set to [EINTR],
it is unspecified whether fildes can subsequently be passed to any function except close() or
posix_close() without error. For all other error situations (except for [EBADF] where fildes was
invalid), fildes shall be closed. If fildes was closed even though the close operation is incomplete,
the close operation shall continue asynchronously and the process shall have no further ability
to track the completion or final status of the close operation.

When all file descriptors associated with a pipe or FIFO special file are closed, any data
remaining in the pipe or FIFO shall be discarded.

When all file descriptors associated with an open file description have been closed, the open file
description shall be freed.

If the link count of the file is 0, when all file descriptors associated with the file are closed, the
space occupied by the file shall be freed and the file shall no longer be accessible.

XSI If fildes refers to the manager side of a pseudo-terminal, and this is the last close, a SIGHUP
signal shall be sent to the controlling process, if any, for which the subsidiary side of the pseudo-
terminal is the controlling terminal. It is unspecified whether closing the manager side of the
pseudo-terminal flushes all queued input and output.

When there is an outstanding cancelable asynchronous I/O operation against fildes when close()
is called, that I/O operation may be canceled. An I/O operation that is not canceled completes
as if the close() operation had not yet occurred. All operations that are not canceled shall
complete as if the close() blocked until the operations completed. The close() operation itself
need not block awaiting such I/O completion. Whether any I/O operation is canceled, and
which I/O operation may be canceled upon close(), is implementation-defined.

SHM If a memory mapped file or a shared memory object remains referenced at the last close (that is,
a process has it mapped), then the entire contents of the memory object shall persist until the

SHM memory object becomes unreferenced. If this is the last close of a memory mapped file or a
shared memory object and the close results in the memory object becoming unreferenced, and
the memory object has been unlinked, then the memory object shall be removed.

When all file descriptors associated with a socket have been closed, the socket shall be
destroyed. If the socket is in connection-mode, and the SO_LINGER option is set for the socket
with non-zero linger time, and the socket has untransmitted data, then close() shall block for up
to the current linger interval until all data is transmitted.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 745

25676

25677

25678

25679

25680

25681

25682

25683

25684

25685

25686

25687

25688

25689

25690

25691

25692

25693

25694

25695

25696

25697

25698

25699

25700

25701

25702

25703

25704

25705

25706

25707

25708

25709

25710

25711

25712

25713

25714

25715

25716

25717

25718

25719

25720

25721

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

close() System Interfaces

The posix_close() function shall be equivalent to the close() function, except with the
modifications based on the flag argument as described below. If flag is 0, then posix_close() shall
not return −1 with errno set to [EINTR], which implies that fildes will always be closed (except for
[EBADF], where fildes was invalid). If flag includes POSIX_CLOSE_RESTART and
POSIX_CLOSE_RESTART is defined as a non-zero value, and posix_close() is interrupted by a
signal that is to be caught, then posix_close() may return −1 with errno set to [EINTR], in which
case fildes shall be left open; however, it is unspecified whether fildes can subsequently be passed
to any function except close() or posix_close() without error. If flag is invalid, posix_close() may
fail with errno set to [EINVAL], but shall otherwise behave as if flag had been 0 and close fildes.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The close() and posix_close() functions shall fail if:

[EBADF] The fildes argument is not a open file descriptor.

[EINPROGRESS] The function was interrupted by a signal and fildes was closed but the close
operation is continuing asynchronously.

The close() and posix_close() functions may fail if:

[EINTR] The function was interrupted by a signal, POSIX_CLOSE_RESTART is defined
as non-zero, and (in the case of posix_close()) the flag argument included
POSIX_CLOSE_RESTART, in which case fildes is still open.

[EIO] An I/O error occurred while reading from or writing to the file system.

The posix_close() function may fail if:

[EINVAL] The value of the flag argument is invalid.

The close() and posix_close() functions shall not return an [EAGAIN] or [EWOULDBLOCK]
error. If POSIX_CLOSE_RESTART is zero, the close() function shall not return an [EINTR] error.
The posix_close() function shall not return an [EINTR] error unless flag includes a non-zero
POSIX_CLOSE_RESTART.

EXAMPLES

Reassigning a File Descriptor

The following example closes the file descriptor associated with standard output for the current
process, re-assigns standard output to a new file descriptor, and closes the original file descriptor
to clean up. This example assumes that the file descriptor 0 (which is the descriptor for standard
input) is not closed.

#include <unistd.h>
...
int pfd;
...
close(1);
dup(pfd);
close(pfd);
...

Incidentally, this is exactly what could be achieved using:

746 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25722

25723

25724

25725

25726

25727

25728

25729

25730

25731

25732

25733

25734

25735

25736

25737

25738

25739

25740

25741

25742

25743

25744

25745

25746

25747

25748

25749

25750

25751

25752

25753

25754

25755

25756

25757

25758

25759

25760

25761

25762

25763

25764

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces close()

dup2(pfd, 1);
close(pfd);

Closing a File Descriptor

In the following example, close() is used to close a file descriptor after an unsuccessful attempt is
made to associate that file descriptor with a stream.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd;
FILE *fpfd;
...
if ((fpfd = fdopen (pfd, "w")) == NULL) {

close(pfd);
unlink(LOCKFILE);
exit(1);

}
...

APPLICATION USAGE
An application that had used the stdio routine fopen() to open a file should use the
corresponding fclose() routine rather than close(). Once a file is closed, the file descriptor no
longer exists, since the integer corresponding to it no longer refers to a file.

Implementations may use file descriptors that must be inherited into child processes for the
child process to remain conforming, such as for message catalog or tracing purposes. Therefore,
an application that calls close() on an arbitrary integer risks non-conforming behavior, and
close() can only portably be used on file descriptor values that the application has obtained
through explicit actions, as well as the three file descriptors corresponding to the standard file
streams. In multi-threaded parent applications, the practice of calling close() in a loop after fork()
and before an exec call in order to avoid a race condition of leaking an unintended file descriptor
into a child process, is therefore unsafe, and the race should instead be combatted by opening all
file descriptors with the FD_CLOEXEC bit set unless the file descriptor is intended to be
inherited across exec.

Usage of close() on file descriptors STDIN_FILENO, STDOUT_FILENO, or STDERR_FILENO
should immediately be followed by an operation to reopen these file descriptors. Unexpected
behavior will result if any of these file descriptors is left in a closed state (for example, an
[EBADF] error from perror()) or if an unrelated open() or similar call later in the application
accidentally allocates a file to one of these well-known file descriptors. Furthermore, a close()
followed by a reopen operation (e.g., open(), dup(), etc.) is not atomic; dup2() should be used to
change standard file descriptors.

RATIONALE
The use of interruptible device close routines should be discouraged to avoid problems with the
implicit closes of file descriptors, such as by exec, process termination, or dup2(). This volume of
POSIX.1-2024 only intends to permit such behavior by specifying the [EINTR] error condition
for close() and posix_close() with non-zero POSIX_CLOSE_RESTART, to allow applications a
portable way to resume waiting for an event associated with the close operation (for example, a
tape drive rewinding) after receiving an interrupt. This standard also permits implementations

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 747

25765

25766

25767

25768

25769

25770

25771

25772

25773

25774

25775

25776

25777

25778

25779

25780

25781

25782

25783

25784

25785

25786

25787

25788

25789

25790

25791

25792

25793

25794

25795

25796

25797

25798

25799

25800

25801

25802

25803

25804

25805

25806

25807

25808

25809

25810

25811

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

close() System Interfaces

to define POSIX_CLOSE_RESTART to 0 if they do not choose to provide a way to restart an
interrupted close action. Although the file descriptor is left open on [EINTR], it might no longer
be usable; that is, passing it to any function except close() or posix_close() might result in an error
such as [EIO]. If an application must guarantee that data will not be lost, it is recommended that
the application use fsync() or fdatasync() prior to the close operation, rather than leaving the
close operation to deal with pending I/O and risk an interrupt.

Earlier versions of this standard left the state of fildes unspecified after errors such as [EINTR]
and [EIO]; and implementations differed on whether close() left fildes open after [EINTR]. This
was unsatisfactory once threads were introduced, since multi-threaded applications need to
know whether fildes has been closed. Applications cannot blindly call close() again, because if
fildes was closed by the first call another thread could have been allocated a file descriptor with
the same value as fildes, which must not be closed by the first thread. On the other hand, the
alternative of never retrying close() would lead to a file descriptor leak in implementations
where close() did not close fildes, although such a leak may be harmless if the process is about to
exit or the file descriptor is marked FD_CLOEXEC and the process is about to be replaced by
exec. This standard introduced posix_close() with a flag argument that allows a choice between
the two possible error behaviors, and leaves it unspecified which of the two behaviors is
implemented by close() (although it is guaranteed to be one of the two behaviors of posix_close(),
rather than leaving things completely unspecified as in earlier versions of the standard).

Note that the standard requires that close() and posix_close() must leave fildes open after [EINTR]
(in the cases where [EINTR] is permitted) and must close the file descriptor regardless of all
other errors (except [EBADF], where fildes is already invalid). In general, portable applications
should only retry a close() after checking for [EINTR] (and on implementations where
POSIX_CLOSE_RESTART is defined to be zero, this retry loop will be dead code), and risk a file
descriptor leak if a retry loop is not attempted. It should also be noted that [EINTR] is only
possible if close() can be interrupted; if no signal handlers are installed, then close() will not be
interrupted. Conversely, if a single-threaded application can guarantee that no file descriptors
are opened or closed in signal handlers, then a retry loop without checking for [EINTR] will be
harmless (since the retry will fail with [EBADF]), but guaranteeing that no external libraries
introduce the use of threading can be difficult. There are additional guarantees for applications
which will only ever be used on systems where POSIX_CLOSE_RESTART is defined as 0. These
observations should help in determining whether an application needs to have its close() calls
audited for replacement with posix_close().

It should also be noted that the requirement for posix_close() with a flag of 0 to always close fildes,
even if an error is reported, is similar to the requirements on fclose() to always release the
stream, even if an error is encountered while flushing data.

Implementations that previously always closed fildes can meet the new requirements by
translating [EINTR] to [EINPROGRESS] in close(); and may define POSIX_CLOSE_RESTART to
0 rather than having to add restart semantics. On the other hand, implementations that
previously left fildes open on [EINTR] can map that to posix_close() with
POSIX_CLOSE_RESTART, and must add the semantics of posix_close() when flag is 0; one
possibility is by calling the original close() implementation, checking for failure, and on [EINTR],
using actions similar to dup2() to replace the incomplete close operation with another file
descriptor that can be closed immediately by another call to the original close(), all before
returning to the application. Either way, close() should always map to one of the two behaviors
of posix_close(), and implementations are encouraged to keep the behavior of close() unchanged
so as not to break implementation-specific expectations of older applications that were relying
on behavior not specified by older versions of this standard.

The standard developers considered introducing a thread-local variable that close() would set to

748 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25812

25813

25814

25815

25816

25817

25818

25819

25820

25821

25822

25823

25824

25825

25826

25827

25828

25829

25830

25831

25832

25833

25834

25835

25836

25837

25838

25839

25840

25841

25842

25843

25844

25845

25846

25847

25848

25849

25850

25851

25852

25853

25854

25855

25856

25857

25858

25859

25860

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces close()

indicate whether it had closed fildes when returning −1. However, this was rejected in favor of
the simpler solution of tightening close() to guarantee that fildes is closed except for [EINTR],
and exposing a choice of whether to expect [EINTR] by adding posix_close(). Additionally, while
the name posix_close() is new to this standard, it is reminiscent of at least one implementation
that introduced an alternate system call named close_nocancel() in order to allow an application
to choose whether restart semantics were desired.

Another consideration was whether implementations might return [EAGAIN] as an extension
and whether close() should be required to leave the file descriptor open in this case, since
[EAGAIN] normally implies an operation should be retried. It seemed very unlikely that any
implementation would have a legitimate reason to return [EAGAIN] or [EWOULDBLOCK], and
therefore this requirement would mean applications have to include code for an error case that
will never be used. Therefore close() is now forbidden from returning [EAGAIN] and
[EWOULDBLOCK] errors.

Note that the requirement for close() on a socket to block for up to the current linger interval is
not conditional on the O_NONBLOCK setting.

The standard developers rejected a proposal to add closefrom() to the standard. Because the
standard permits implementations to use inherited file descriptors as a means of providing a
conforming environment for the child process, it is not possible to standardize an interface that
closes arbitrary file descriptors above a certain value while still guaranteeing a conforming
environment.

FUTURE DIRECTIONS
None.

SEE ALSO
dup(), exec , exit(), fclose(), fopen(), fork(), open(), perror(), unlink()

XBD <unistd.h>
CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Issue 6
The DESCRIPTION related to a STREAMS-based file or pseudo-terminal is marked as part of
the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] error condition is added as an optional error.

• The DESCRIPTION is updated to describe the state of the fildes file descriptor as
unspecified if an I/O error occurs and an [EIO] error condition is returned.

Text referring to sockets is added to the DESCRIPTION.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
shared memory objects and memory mapped files (and not typed memory objects) are the types
of memory objects to which the paragraph on last closes applies.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/12 is applied, correcting the XSH shaded
text relating to the manager side of a pseudo-terminal. The reason for the change is that the
behavior of pseudo-terminals and regular terminals should be as much alike as possible in this
case; the change achieves that and matches historical behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 749

25861

25862

25863

25864

25865

25866

25867

25868

25869

25870

25871

25872

25873

25874

25875

25876

25877

25878

25879

25880

25881

25882

25883

25884

25885

25886

25887

25888

25889

25890

25891

25892

25893

25894

25895

25896

25897

25898

25899

25900

25901

25902

25903

25904

25905

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

close() System Interfaces

Issue 7
Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Asynchronous Input and Output and Memory Mapped Files
options is moved to the Base.

Austin Group Interpretation 1003.1-2001 #139 is applied, clarifying that the requirement for
close() on a socket to block for up to the current linger interval is not conditional on the
O_NONBLOCK setting.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0059 [419], XSH/TC1-2008/0060 [149],
and XSH/TC1-2008/0061 [149] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0069 [555] is applied.

Issue 8
Austin Group Defect 529 is applied, adding the posix_close() function and changing
requirements for the close() function relating to [EINTR].

Austin Group Defect 768 is applied, adding OFD-owned file locks.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1466 is applied, changing the terminology used for pseudo-terminal
devices.

Austin Group Defect 1525 is applied, clarifying that a socket is not destroyed until all file
descriptors associated with it have been closed.

750 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25906

25907

25908

25909

25910

25911

25912

25913

25914

25915

25916

25917

25918

25919

25920

25921

25922

25923

25924

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces closedir()

NAME
closedir — close a directory stream

SYNOPSIS
#include <dirent.h>

int closedir(DIR *dirp);

DESCRIPTION
The closedir() function shall close the directory stream referred to by the argument dirp. Upon
return, the value of dirp may no longer point to an accessible object of the type DIR. If there is a
file descriptor associated with the stream (whether opened by opendir() or dirfd(), or passed to
fdopendir() when creating the stream), that file descriptor shall be closed by closedir().

RETURN VALUE
Upon successful completion, closedir() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The closedir() function may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

[EINTR] The closedir() function was interrupted by a signal.

EXAMPLES

Closing a Directory Stream

The following program fragment demonstrates how the closedir() function is used.

...
DIR *dir;
struct dirent *dp;

...
if ((dir = opendir (".")) == NULL) {

...
}

while ((dp = readdir (dir)) != NULL) {
...

}

closedir(dir);
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dirfd(), fdopendir()

XBD <dirent.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 751

25925

25926

25927

25928

25929

25930

25931

25932

25933

25934

25935

25936

25937

25938

25939

25940

25941

25942

25943

25944

25945

25946

25947

25948

25949

25950

25951

25952

25953

25954

25955

25956

25957

25958

25959

25960

25961

25962

25963

25964

25965

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

closedir() System Interfaces

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EINTR] error condition is added as an optional error condition.

Issue 8
Austin Group Defect 1360 is applied, clarifying that type DIR always has the ability to store a
file descriptor; what is optional is whether one is opened by opendir().

752 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25966

25967

25968

25969

25970

25971

25972

25973

25974

25975

25976

25977

25978

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces closelog()

NAME
closelog, openlog, setlogmask, syslog — control system log

SYNOPSIS
XSI #include <syslog.h>

void closelog(void);
void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);
void syslog(int priority, const char *message, ... /* arguments */);

DESCRIPTION
The syslog() function shall send a message to an implementation-defined logging facility, which
may log it in an implementation-defined system log, write it to the system console, forward it to
a list of users, or forward it to the logging facility on another host over the network. The logged
message shall include a message header and a message body. The message header contains at
least a timestamp and a tag string.

The message body is generated from the message and following arguments in the same manner
as if these were arguments to printf(), except that the additional conversion specification %m
shall be recognized; it shall convert no arguments, shall cause the output of the error message
string associated with the value of errno on entry to syslog(), and may be mixed with argument
specifications of the "%n$" form. If a complete conversion specification with the m conversion
specifier character is not just %m, the behavior is undefined. A trailing <newline> may be added
if needed.

Values of the priority argument are formed by OR’ing together a severity-level value and an
optional facility value. If no facility value is specified, the current default facility value is used.

Possible values of severity level include:

LOG_EMERG A panic condition.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted system
database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING
Warning messages.

LOG_NOTICE Conditions that are not error conditions, but that may require special
handling.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging a
program.

The facility indicates the application or system component generating the message. Possible
facility values include:

LOG_USER Messages generated by arbitrary processes. This is the default facility
identifier if none is specified.

LOG_LOCAL0 Reserved for local use.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 753

25979

25980

25981

25982

25983

25984

25985

25986

25987

25988

25989

25990

25991

25992

25993

25994

25995

25996

25997

25998

25999

26000

26001

26002

26003

26004

26005

26006

26007

26008

26009

26010

26011

26012

26013

26014

26015

26016

26017

26018

26019

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

closelog() System Interfaces

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

The openlog() function shall set process attributes that affect subsequent calls to syslog(). The
ident argument is a a pointer to a null-terminated identifier that shall be prepended (without the
null terminator) to every message. The application shall ensure that the string pointed to by ident
remains valid during the syslog() calls that will prepend this identifier; however, it is unspecified
whether changes made to the string will change the identifier prepended by later syslog() calls.
The logopt argument indicates logging options. Values for logopt are constructed by a bitwise-
inclusive OR of zero or more of the following:

LOG_PID Log the process ID with each message. This is useful for identifying specific
processes.

LOG_CONS Write messages to the system console if they cannot be sent to the logging
facility. The syslog() function ensures that the process does not acquire the
console as a controlling terminal in the process of writing the message.

LOG_NDELAY Open the connection to the logging facility immediately. Normally the open is
delayed until the first message is logged. This is useful for programs that need
to manage the order in which file descriptors are allocated.

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes that may have been created during the course
of logging the message. This option should be used by processes that enable
notification of child termination using SIGCHLD, since syslog() may
otherwise block waiting for a child whose exit status has already been
collected.

The facility argument encodes a default facility to be assigned to all messages that do not have an
explicit facility already encoded. The initial default facility is LOG_USER.

The openlog() and syslog() functions may allocate a file descriptor. It is not necessary to call
openlog() prior to calling syslog(). If a file descriptor is allocated, the FD_CLOEXEC flag shall be
set; see <fcntl.h>.

The closelog() function shall close any open file descriptors allocated by previous calls to
openlog() or syslog().

The setlogmask() function shall set the log priority mask for the current process to maskpri and
return the previous mask. If the maskpri argument is 0, the current log mask is not modified.
Calls by the current process to syslog() with a priority not set in maskpri shall be rejected. The
default log mask allows all priorities to be logged. A call to openlog() is not required prior to
calling setlogmask().

The LOG_MASK(pri) and LOG_UPTO(pri) macros can be used to ensure a value or range of
severity levels is properly encoded for the setlogmask() maskpri argument in a portable manner.
The masks produced by these macros can be OR’ed or AND’ed with other priority masks (for

754 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26020

26021

26022

26023

26024

26025

26026

26027

26028

26029

26030

26031

26032

26033

26034

26035

26036

26037

26038

26039

26040

26041

26042

26043

26044

26045

26046

26047

26048

26049

26050

26051

26052

26053

26054

26055

26056

26057

26058

26059

26060

26061

26062

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces closelog()

example,

LOG_UPTO(LOG_WARNING) | LOG_MASK(LOG_DEBUG)

and

LOG_UPTO(LOG_DEBUG) & ~((LOG_MASK(LOG_NOTICE) | LOG_MASK(LOG_INFO))

would produce the same priority mask).

Symbolic constants for use as values of the logopt, facility, priority, and maskpri arguments are
defined in the <syslog.h> header.

RETURN VALUE
The setlogmask() function shall return the previous log priority mask. The closelog(), openlog(),
and syslog() functions shall not return a value.

ERRORS
The openlog() and syslog() functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES

Using openlog()

The following example causes subsequent calls to syslog() to log the process ID with each
message, and to write messages to the system console if they cannot be sent to the logging
facility.

#include <syslog.h>

char *ident = "Process demo";
int logopt = LOG_PID | LOG_CONS;
int facility = LOG_USER;
...
openlog(ident, logopt, facility);

Using setlogmask()

The following example causes subsequent calls to syslog() to accept error messages, and to reject
all other messages.

#include <syslog.h>

int result;
int mask = LOG_MASK (LOG_ERR);
...
result = setlogmask(mask);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 755

26063

26064

26065

26066

26067

26068

26069

26070

26071

26072

26073

26074

26075

26076

26077

26078

26079

26080

26081

26082

26083

26084

26085

26086

26087

26088

26089

26090

26091

26092

26093

26094

26095

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

closelog() System Interfaces

Using syslog

The following example sends the message "This is a message" to the default logging
facility, marking the message as an error message generated by random processes.

#include <syslog.h>

char *message = "This is a message";
int priority = LOG_ERR | LOG_USER;
...
syslog(priority, message);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf()

XBD <fcntl.h>, <syslog.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/13 is applied, correcting the EXAMPLES
section.

Issue 8
Austin Group Defect 368 is applied, adding a requirement for FD_CLOEXEC to be set if a file
descriptor is allocated, and adding the [EMFILE] and [ENFILE] errors.

Austin Group Defect 1033 is applied, adding the LOG_UPTO macro.

Austin Group Defect 1244 is applied, clarifying the handling of the ident argument.

756 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26096

26097

26098

26099

26100

26101

26102

26103

26104

26105

26106

26107

26108

26109

26110

26111

26112

26113

26114

26115

26116

26117

26118

26119

26120

26121

26122

26123

26124

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cnd_broadcast()

NAME
cnd_broadcast, cnd_signal — broadcast or signal a condition

SYNOPSIS
#include <threads.h>

int cnd_broadcast(cnd_t *cond);
int cnd_signal(cnd_t *cond);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

CX The cnd_broadcast() function shall, as a single atomic operation, determine which threads, if
any, are blocked on the condition variable pointed to by cond and unblock all of these threads.

CX The cnd_signal() function shall, as a single atomic operation, determine which threads, if any,
are blocked on the condition variable pointed to by cond and unblock at least one of these
threads.

If these functions determine that there are no threads blocked on the condition variable pointed
to by cond, they shall have no effect and shall return thrd_success.

CX If more than one thread is blocked on a condition variable, the scheduling policy shall determine
the order in which threads are unblocked. When each thread unblocked as a result of a
cnd_broadcast() or cnd_signal() returns from its call to cnd_wait() or cnd_timedwait(), the thread
shall own the mutex with which it called cnd_wait() or cnd_timedwait(). The thread(s) that are
unblocked shall contend for the mutex according to the scheduling policy (if applicable), and as
if each had called mtx_lock().

The cnd_broadcast() and cnd_signal() functions can be called by a thread whether or not it
currently owns the mutex that threads calling cnd_wait() or cnd_timedwait() have associated
with the condition variable during their waits; however, if predictable scheduling behavior is
required, then that mutex shall be locked by the thread calling cnd_broadcast() or cnd_signal().

These functions shall not be affected if the calling thread executes a signal handler during the
call.

The behavior is undefined if the value specified by the cond argument to cnd_broadcast() or
cnd_signal() does not refer to an initialized condition variable.

RETURN VALUE
These functions shall return thrd_success on success, or thrd_error if the request could
not be honored.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
See the APPLICATION USAGE section for pthread_cond_broadcast(), substituting cnd_broadcast()
for pthread_cond_broadcast() and cnd_signal() for pthread_cond_signal().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 757

26125

26126

26127

26128

26129

26130

26131

26132

26133

26134

26135

26136

26137

26138

26139

26140

26141

26142

26143

26144

26145

26146

26147

26148

26149

26150

26151

26152

26153

26154

26155

26156

26157

26158

26159

26160

26161

26162

26163

26164

26165

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cnd_broadcast() System Interfaces

RATIONALE
As for pthread_cond_broadcast() and pthread_cond_signal(), spurious wakeups may occur with
cnd_broadcast() and cnd_signal(), necessitating that applications code a predicate-testing-loop
around the condition wait. (See the RATIONALE section for pthread_cond_broadcast().)

These functions are not affected by signal handlers for the reasons stated in XRAT Section B.2.3
(on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
cnd_destroy(), cnd_timedwait(), pthread_cond_broadcast()

XBD Section 4.15.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

758 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26166

26167

26168

26169

26170

26171

26172

26173

26174

26175

26176

26177

26178

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cnd_destroy()

NAME
cnd_destroy, cnd_init — destroy and initialize condition variables

SYNOPSIS
#include <threads.h>

void cnd_destroy(cnd_t *cond);
int cnd_init(cnd_t *cond);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The cnd_destroy() function shall release all resources used by the condition variable pointed to
by cond. It shall be safe to destroy an initialized condition variable upon which no threads are
currently blocked. Attempting to destroy a condition variable upon which other threads are
currently blocked results in undefined behavior. A destroyed condition variable object can be
reinitialized using cnd_init(); the results of otherwise referencing the object after it has been
destroyed are undefined. The behavior is undefined if the value specified by the cond argument
to cnd_destroy() does not refer to an initialized condition variable.

The cnd_init() function shall initialize a condition variable. If it succeeds it shall set the variable
pointed to by cond to a value that uniquely identifies the newly initialized condition variable.
Attempting to initialize an already initialized condition variable results in undefined behavior. A
thread that calls cnd_wait() on a newly initialized condition variable shall block.

CX See Section 2.9.9 (on page 548) for further requirements.

These functions shall not be affected if the calling thread executes a signal handler during the
call.

RETURN VALUE
The cnd_destroy() function shall not return a value.

The cnd_init() function shall return thrd_success on success, or thrd_nomem if no memory
could be allocated for the newly created condition variable, or thrd_error if the request could
not be honored.

ERRORS
See RETURN VALUE.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
These functions are not affected by signal handlers for the reasons stated in XRAT Section B.2.3
(on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
cnd_broadcast(), cnd_timedwait()

XBD <threads.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 759

26179

26180

26181

26182

26183

26184

26185

26186

26187

26188

26189

26190

26191

26192

26193

26194

26195

26196

26197

26198

26199

26200

26201

26202

26203

26204

26205

26206

26207

26208

26209

26210

26211

26212

26213

26214

26215

26216

26217

26218

26219

26220

26221

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cnd_destroy() System Interfaces

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

760 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26222

26223

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cnd_timedwait()

NAME
cnd_timedwait, cnd_wait — wait on a condition

SYNOPSIS
#include <threads.h>

int cnd_timedwait(cnd_t * restrict cond, mtx_t * restrict mtx,
const struct timespec * restrict ts);

int cnd_wait(cnd_t *cond, mtx_t *mtx);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The cnd_timedwait() function shall atomically unlock the mutex pointed to by mtx and block
until the condition variable pointed to by cond is signaled by a call to cnd_signal() or to
cnd_broadcast(), or until after the TIME_UTC-based calendar time pointed to by ts, or until it is
unblocked due to an unspecified reason.

The cnd_wait() function shall atomically unlock the mutex pointed to by mtx and block until the
condition variable pointed to by cond is signaled by a call to cnd_signal() or to cnd_broadcast(), or
until it is unblocked due to an unspecified reason.

CX Atomically here means ``atomically with respect to access by another thread to the mutex and
then the condition variable’’. That is, if another thread is able to acquire the mutex after the
about-to-block thread has released it, then a subsequent call to cnd_broadcast() or cnd_signal() in
that thread shall behave as if it were issued after the about-to-block thread has blocked.

When the calling thread becomes unblocked, these functions shall lock the mutex pointed to by
mtx before they return. The application shall ensure that the mutex pointed to by mtx is locked
by the calling thread before it calls these functions.

When using condition variables there is always a Boolean predicate involving shared variables
associated with each condition wait that is true if the thread should proceed. Spurious wakeups
from the cnd_timedwait() and cnd_wait() functions may occur. Since the return from
cnd_timedwait() or cnd_wait() does not imply anything about the value of this predicate, the
predicate should be re-evaluated upon such return.

When a thread waits on a condition variable, having specified a particular mutex to either the
cnd_timedwait() or the cnd_wait() operation, a dynamic binding is formed between that mutex
and condition variable that remains in effect as long as at least one thread is blocked on the
condition variable. During this time, the effect of an attempt by any thread to wait on that
condition variable using a different mutex is undefined. Once all waiting threads have been
unblocked (as by the cnd_broadcast() operation), the next wait operation on that condition
variable shall form a new dynamic binding with the mutex specified by that wait operation.
Even though the dynamic binding between condition variable and mutex might be removed or
replaced between the time a thread is unblocked from a wait on the condition variable and the
time that it returns to the caller or begins cancellation cleanup, the unblocked thread shall
always re-acquire the mutex specified in the condition wait operation call from which it is
returning.

CX A condition wait (whether timed or not) is a cancellation point. When the cancelability type of a
thread is set to PTHREAD_CANCEL_DEFERRED, a side-effect of acting upon a cancellation
request while in a condition wait is that the mutex is (in effect) re-acquired before calling the first
cancellation cleanup handler. The effect is as if the thread were unblocked, allowed to execute up
to the point of returning from the call to cnd_timedwait() or cnd_wait(), but at that point notices

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 761

26224

26225

26226

26227

26228

26229

26230

26231

26232

26233

26234

26235

26236

26237

26238

26239

26240

26241

26242

26243

26244

26245

26246

26247

26248

26249

26250

26251

26252

26253

26254

26255

26256

26257

26258

26259

26260

26261

26262

26263

26264

26265

26266

26267

26268

26269

26270

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cnd_timedwait() System Interfaces

the cancellation request and instead of returning to the caller of cnd_timedwait() or cnd_wait(),
starts the thread cancellation activities, which includes calling cancellation cleanup handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to
cnd_timedwait() or cnd_wait() shall not consume any condition signal that may be directed
concurrently at the condition variable if there are other threads blocked on the condition
variable.

When cnd_timedwait() times out, it shall nonetheless release and re-acquire the mutex referenced
by mtx, and may consume a condition signal directed concurrently at the condition variable.

CX These functions shall not be affected if the calling thread executes a signal handler during the
call, except that if a signal is delivered to a thread waiting for a condition variable, upon return
from the signal handler either the thread shall resume waiting for the condition variable as if it
was not interrupted, or it shall return thrd_success due to spurious wakeup.

The behavior is undefined if the value specified by the cond or mtx argument to these functions
does not refer to an initialized condition variable or an initialized mutex object, respectively.

RETURN VALUE
The cnd_timedwait() function shall return thrd_success upon success, or thrd_timedout if
the time specified in the call was reached without acquiring the requested resource, or
thrd_error if the request could not be honored.

The cnd_wait() function shall return thrd_success upon success or thrd_error if the
request could not be honored.

ERRORS
See RETURN VALUE.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
These functions are not affected by signal handlers (except as stated in the DESCRIPTION) for
the reasons stated in XRAT Section B.2.3 (on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
cnd_broadcast(), cnd_destroy(), timespec_get()

XBD Section 4.15.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

762 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26271

26272

26273

26274

26275

26276

26277

26278

26279

26280

26281

26282

26283

26284

26285

26286

26287

26288

26289

26290

26291

26292

26293

26294

26295

26296

26297

26298

26299

26300

26301

26302

26303

26304

26305

26306

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces confstr()

NAME
confstr — get configurable variables

SYNOPSIS
#include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

DESCRIPTION
The confstr() function shall return configuration-defined string values. Its use and purpose are
similar to sysconf(), but it is used where string values rather than numeric values are returned.

The name argument represents the system variable to be queried. The implementation shall
support the following name values, defined in <unistd.h>. It may support others:

_CS_PATH
_CS_POSIX_V8_ILP32_OFF32_CFLAGS
_CS_POSIX_V8_ILP32_OFF32_LDFLAGS
_CS_POSIX_V8_ILP32_OFF32_LIBS
_CS_POSIX_V8_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V8_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V8_ILP32_OFFBIG_LIBS
_CS_POSIX_V8_LP64_OFF64_CFLAGS
_CS_POSIX_V8_LP64_OFF64_LDFLAGS
_CS_POSIX_V8_LP64_OFF64_LIBS
_CS_POSIX_V8_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V8_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V8_LPBIG_OFFBIG_LIBS
_CS_POSIX_V8_THREADS_CFLAGS
_CS_POSIX_V8_THREADS_LDFLAGS
_CS_POSIX_V8_WIDTH_RESTRICTED_ENVS
_CS_V8_ENV

OB _CS_POSIX_V7_ILP32_OFF32_CFLAGS
_CS_POSIX_V7_ILP32_OFF32_LDFLAGS
_CS_POSIX_V7_ILP32_OFF32_LIBS
_CS_POSIX_V7_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LIBS
_CS_POSIX_V7_LP64_OFF64_CFLAGS
_CS_POSIX_V7_LP64_OFF64_LDFLAGS
_CS_POSIX_V7_LP64_OFF64_LIBS
_CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LIBS
_CS_POSIX_V7_THREADS_CFLAGS
_CS_POSIX_V7_THREADS_LDFLAGS
_CS_POSIX_V7_WIDTH_RESTRICTED_ENVS
_CS_V7_ENV

If len is not 0, and if name has a configuration-defined value, confstr() shall copy that value into
the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes,
including the terminating null, then confstr() shall truncate the string to len−1 bytes and null-
terminate the result. The application can detect that the string was truncated by comparing the
value returned by confstr() with len.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 763

26307

26308

26309

26310

26311

26312

26313

26314

26315

26316

26317

26318

26319

26320

26321

26322

26323

26324

26325

26326

26327

26328

26329

26330

26331

26332

26333

26334

26335

26336

26337

26338

26339

26340

26341

26342

26343

26344

26345

26346

26347

26348

26349

26350

26351

26352

26353

26354

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

confstr() System Interfaces

If len is 0 and buf is a null pointer, then confstr() shall still return the integer value as defined
below, but shall not return a string. If len is 0 but buf is not a null pointer, the result is
unspecified.

After a call to:

confstr(_CS_V8_ENV, buf, sizeof(buf))

the string stored in buf shall contain a <space>-separated list of the variable=value environment
variable pairs an implementation requires as part of specifying a conforming environment, as
described in the implementations’ conformance documentation.

If the implementation supports the POSIX shell option, the string stored in buf after a call to:

confstr(_CS_PATH, buf, sizeof(buf))

can be used as a value of the PA TH environment variable that accesses all of the standard
utilities of POSIX.1-2024, that are provided in a manner accessible via the exec family of
functions, if the return value is less than or equal to sizeof (buf).

RETURN VALUE
If name has a configuration-defined value, confstr() shall return the size of buffer that would be
needed to hold the entire configuration-defined value including the terminating null. If this
return value is greater than len, the string returned in buf is truncated.

If name is invalid, confstr() shall return 0 and set errno to indicate the error.

If name does not have a configuration-defined value, confstr() shall return 0 and leave errno
unchanged.

ERRORS
The confstr() function shall fail if:

[EINVAL] The value of the name argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
An application can distinguish between an invalid name parameter value and one that
corresponds to a configurable variable that has no configuration-defined value by checking if
errno is modified. This mirrors the behavior of sysconf().

The original need for this function was to provide a way of finding the configuration-defined
default value for the environment variable PA TH. Since PA TH can be modified by the user to
include directories that could contain utilities replacing the standard utilities in the Shell and
Utilities volume of POSIX.1-2024, applications need a way to determine the system-supplied
PA TH environment variable value that contains the correct search path for the standard utilities.

An application could use:

confstr(name, (char *)NULL, (size_t)0)

to find out how big a buffer is needed for the string value; use malloc() to allocate a buffer to
hold the string; and call confstr() again to get the string. Alternately, it could allocate a fixed,
static buffer that is big enough to hold most answers (perhaps 512 or 1 024 bytes), but then use
malloc() to allocate a larger buffer if it finds that this is too small.

764 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26355

26356

26357

26358

26359

26360

26361

26362

26363

26364

26365

26366

26367

26368

26369

26370

26371

26372

26373

26374

26375

26376

26377

26378

26379

26380

26381

26382

26383

26384

26385

26386

26387

26388

26389

26390

26391

26392

26393

26394

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces confstr()

RATIONALE
Application developers can normally determine any configuration variable by means of reading
from the stream opened by a call to:

popen("command -p getconf variable", "r");

The confstr() function with a name argument of _CS_PATH returns a string that can be used as a
PA TH environment variable setting that will reference the standard shell and utilities as
described in the Shell and Utilities volume of POSIX.1-2024.

The confstr() function copies the returned string into a buffer supplied by the application instead
of returning a pointer to a string. This allows a cleaner function in some implementations (such
as those with lightweight threads) and resolves questions about when the application must copy
the string returned.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fpathconf(), sysconf()

XBD <unistd.h>

XCU c17

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
A table indicating the permissible values of name is added to the DESCRIPTION. All those
marked EX are new in this version.

Issue 6
The Open Group Corrigendum U033/7 is applied. The return value for the case returning the
size of the buffer now explicitly states that this includes the terminating null.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated with new arguments which can be used to determine
configuration strings for C compiler flags, linker/loader flags, and libraries for each
different supported programming environment. This is a change to support data size
neutrality.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION is updated to include text describing how _CS_PATH can be used to
obtain a PA TH to access the standard utilities.

The macros associated with the c89 programming models are marked LEGACY and new
equivalent macros associated with c99 are introduced.

Issue 7
Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV variable.

Austin Group Interpretations 1003.1-2001 #166 is applied to permit an additional compiler flag
to enable threads.

The V6 variables for the supported programming environments are marked obsolescent.

The variables for the supported programming environments are updated to be V7.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 765

26395

26396

26397

26398

26399

26400

26401

26402

26403

26404

26405

26406

26407

26408

26409

26410

26411

26412

26413

26414

26415

26416

26417

26418

26419

26420

26421

26422

26423

26424

26425

26426

26427

26428

26429

26430

26431

26432

26433

26434

26435

26436

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

confstr() System Interfaces

The LEGACY variables and obsolescent values are removed.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0070 [810] and XSH/TC2-2008/0071
[911] are applied.

Issue 8
Austin Group Defect 1330 is applied, changing ``_V7_’’ to ``_V8_’’ and ``_V6_’’ to ``_V7_’’.

766 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26437

26438

26439

26440

26441

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces conj()

NAME
conj, conjf, conjl — complex conjugate functions

SYNOPSIS
#include <complex.h>

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex conjugate of z, by reversing the sign of its imaginary
part.

RETURN VALUE
These functions return the complex conjugate value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), cproj(), creal()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 767

26442

26443

26444

26445

26446

26447

26448

26449

26450

26451

26452

26453

26454

26455

26456

26457

26458

26459

26460

26461

26462

26463

26464

26465

26466

26467

26468

26469

26470

26471

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

connect() System Interfaces

NAME
connect — connect a socket

SYNOPSIS
#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address,
socklen_t address_len);

DESCRIPTION
The connect() function shall attempt to make a connection on a connection-mode socket or to set
or reset the peer address of a connectionless-mode socket. The function takes the following
arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length and
format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

If the address family of the socket is AF_UNIX, the application shall ensure that a null
terminator after the pathname is included in the sun_path member of address as a sockaddr_un
structure, and that address_len is at least offsetof(struct sockaddr_un, sun_path) +
1 plus the length of the pathname.

If the socket has not already been bound to a local address, connect() shall bind it to an address
which, unless the socket’s address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() shall set the socket’s peer address,
and no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
datagrams are sent on subsequent send() functions, and limits the remote sender for subsequent
recv() functions. If the sa_family member of address is AF_UNSPEC, the socket’s peer address
shall be reset. Note that despite no connection being made, the term ``connected’’ is used to
describe a connectionless-mode socket for which a peer address has been set.

If the initiating socket is connection-mode, then connect() shall attempt to establish a connection
to the address specified by the address argument. If the connection cannot be established
immediately and O_NONBLOCK is not set for the file descriptor for the socket, connect() shall
block for up to an unspecified timeout interval until the connection is established. If the timeout
interval expires before the connection is established, connect() shall fail and the connection
attempt shall be aborted. If connect() is interrupted by a signal that is caught while blocked
waiting to establish a connection, connect() shall fail and set errno to [EINTR], but the connection
request shall not be aborted, and the connection shall be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file
descriptor for the socket, connect() shall fail and set errno to [EINPROGRESS], but the connection
request shall not be aborted, and the connection shall be established asynchronously. Subsequent
calls to connect() for the same socket, before the connection is established, shall fail and set errno
to [EALREADY].

When the connection has been established asynchronously, pselect(), select(), poll(), and ppoll()
shall indicate that the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use the connect()
function.

768 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26472

26473

26474

26475

26476

26477

26478

26479

26480

26481

26482

26483

26484

26485

26486

26487

26488

26489

26490

26491

26492

26493

26494

26495

26496

26497

26498

26499

26500

26501

26502

26503

26504

26505

26506

26507

26508

26509

26510

26511

26512

26513

26514

26515

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces connect()

RETURN VALUE
Upon successful completion, connect() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The connect() function shall fail if:

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EAFNOSUPPORT]
The specified address is not a valid address for the address family of the
specified socket.

[EALREADY] A connection request is already in progress for the specified socket.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNREFUSED]
The target address was not listening for connections or refused the connection
request.

[EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the connection
cannot be immediately established; the connection shall be established
asynchronously.

[EINTR] The attempt to establish a connection was interrupted by delivery of a signal
that was caught; the connection shall be established asynchronously.

[EISCONN] The specified socket is connection-mode and is already connected.

[ENETUNREACH]
No route to the network is present.

[ENOTSOCK] The socket argument does not refer to a socket.

[EPROTOTYPE] The specified address has a different type than the socket bound to the
specified peer address.

[ETIMEDOUT] The attempt to connect timed out before a connection was made.

If the address family of the socket is AF_UNIX, then connect() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in address.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the pathname does not name an existing file or the pathname
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in address names an existing
file that is neither a directory nor a symbolic link to a directory, or the
pathname in address contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component
names an existing file that is neither a directory nor a symbolic link to a
directory.

The connect() function may fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 769

26516

26517

26518

26519

26520

26521

26522

26523

26524

26525

26526

26527

26528

26529

26530

26531

26532

26533

26534

26535

26536

26537

26538

26539

26540

26541

26542

26543

26544

26545

26546

26547

26548

26549

26550

26551

26552

26553

26554

26555

26556

26557

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

connect() System Interfaces

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

[EADDRINUSE] Attempt to establish a connection that uses addresses that are already in use.

[ECONNRESET] Remote host reset the connection request.

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

[EINVAL] The address_len argument is not a valid length for the address family; or
invalid address family in the sockaddr structure.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in address.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENOBUFS] No buffer space is available.

[EOPNOTSUPP] The socket is listening and cannot be connected.

EXAMPLES
None.

APPLICATION USAGE
If connect() fails, the state of the socket is unspecified. Conforming applications should close the
file descriptor and create a new socket before attempting to reconnect.

For AF_UNIX sockets, some implementations support an extension where address_len does not
have to include a null terminator for the pathname stored in sun_path, which in turn allows a
pathname to be one byte longer. However, such usage is not portable, and carries a risk of
accessing beyond the intended bounds of the pathname length.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), close(), getsockname(), poll(), pselect(), send(), shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #035 is applied, clarifying the description of connected
sockets.

Austin Group Interpretation 1003.1-2001 #143 is applied.

770 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26558

26559

26560

26561

26562

26563

26564

26565

26566

26567

26568

26569

26570

26571

26572

26573

26574

26575

26576

26577

26578

26579

26580

26581

26582

26583

26584

26585

26586

26587

26588

26589

26590

26591

26592

26593

26594

26595

26596

26597

26598

26599

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces connect()

Austin Group Interpretation 1003.1-2001 #188 is applied, changing the method used to reset a
peer address for a datagram socket.

SD5-XSH-ERN-185 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0062 [324] is applied.

Issue 8
Austin Group Defect 561 is applied, changing the requirements for the sun_path member of the
sockaddr_un structure.

Austin Group Defect 1263 is applied, adding ppoll().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 771

26600

26601

26602

26603

26604

26605

26606

26607

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

copysign() System Interfaces

NAME
copysign, copysignf, copysignl — number manipulation function

SYNOPSIS
#include <math.h>

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall produce a value with the magnitude of x and the sign of y. On
implementations that represent a signed zero but do not treat negative zero consistently in
arithmetic operations, these functions regard the sign of zero as positive.

RETURN VALUE
Upon successful completion, these functions shall return a value with the magnitude of x and
the sign of y.

MX The returned value shall be exact and shall be independent of the current rounding direction
mode.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

772 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26608

26609

26610

26611

26612

26613

26614

26615

26616

26617

26618

26619

26620

26621

26622

26623

26624

26625

26626

26627

26628

26629

26630

26631

26632

26633

26634

26635

26636

26637

26638

26639

26640

26641

26642

26643

26644

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cos()

NAME
cos, cosf, cosl — cosine function

SYNOPSIS
#include <math.h>

double cos(double x);
float cosf(float x);
long double cosl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the cosine of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the cosine of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, the value 1.0 shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES

Taking the Cosine of a 45-Degree Angle

#include <math.h>
...
double radians = 45 * M_PI / 180;
double result;
...
result = cos(radians);

APPLICATION USAGE
These functions may lose accuracy when their argument is near an odd multiple of π/2 or is far
from 0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 773

26645

26646

26647

26648

26649

26650

26651

26652

26653

26654

26655

26656

26657

26658

26659

26660

26661

26662

26663

26664

26665

26666

26667

26668

26669

26670

26671

26672

26673

26674

26675

26676

26677

26678

26679

26680

26681

26682

26683

26684

26685

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cos() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), feclearexcept(), fetestexcept(), isnan(), sin(), tan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The cosf() and cosl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0063 [320] is applied.

774 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26686

26687

26688

26689

26690

26691

26692

26693

26694

26695

26696

26697

26698

26699

26700

26701

26702

26703

26704

26705

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cosh()

NAME
cosh, coshf, coshl — hyperbolic cosine functions

SYNOPSIS
#include <math.h>

double cosh(double x);
float coshf(float x);
long double coshl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the hyperbolic cosine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error shall occur and cosh(), coshf(), and
coshl() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, the value 1.0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 775

26706

26707

26708

26709

26710

26711

26712

26713

26714

26715

26716

26717

26718

26719

26720

26721

26722

26723

26724

26725

26726

26727

26728

26729

26730

26731

26732

26733

26734

26735

26736

26737

26738

26739

26740

26741

26742

26743

26744

26745

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cosh() System Interfaces

SEE ALSO
acosh(), feclearexcept(), fetestexcept(), isnan(), sinh(), tanh()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The coshf() and coshl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0072 [630] is applied.

776 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26746

26747

26748

26749

26750

26751

26752

26753

26754

26755

26756

26757

26758

26759

26760

26761

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cosl()

NAME
cosl — cosine function

SYNOPSIS
#include <math.h>

long double cosl(long double x);

DESCRIPTION
Refer to cos().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 777

26762

26763

26764

26765

26766

26767

26768

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cpow() System Interfaces

NAME
cpow, cpowf, cpowl — complex power functions

SYNOPSIS
#include <complex.h>

double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,

long double complex y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex power function xy, with a branch cut for the first
parameter along the negative real axis.

MXC These functions shall raise floating-point exceptions if appropriate for the calculation of the parts
of the result, and may also raise spurious floating-point exceptions.

RETURN VALUE
These functions shall return the complex power function value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Permitting spurious floating-point exceptions allows cpow(z, c) to be implemented as
cexp(c clog(z)) without precluding implementations that treat special cases more carefully.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), csqrt()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

778 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26769

26770

26771

26772

26773

26774

26775

26776

26777

26778

26779

26780

26781

26782

26783

26784

26785

26786

26787

26788

26789

26790

26791

26792

26793

26794

26795

26796

26797

26798

26799

26800

26801

26802

26803

26804

26805

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces cproj()

NAME
cproj, cprojf, cprojl — complex projection functions

SYNOPSIS
#include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute a projection of z onto the Riemann sphere: z projects to z, except
that all complex infinities (even those with one infinite part and one NaN part) project to
positive infinity on the real axis. If z has an infinite part, then cproj(z) shall be equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

RETURN VALUE
These functions shall return the value of the projection onto the Riemann sphere.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Two topologies are commonly used in complex mathematics: the complex plane with its
continuum of infinities, and the Riemann sphere with its single infinity. The complex plane is
better suited for transcendental functions, the Riemann sphere for algebraic functions. The
complex types with their multiplicity of infinities provide a useful (though imperfect) model for
the complex plane. The cproj() function helps model the Riemann sphere by mapping all
infinities to one, and should be used just before any operation, especially comparisons, that
might give spurious results for any of the other infinities. Note that a complex value with one
infinite part and one NaN part is regarded as an infinity, not a NaN, because if one part is
infinite, the complex value is infinite independent of the value of the other part. For the same
reason, cabs() returns an infinity if its argument has an infinite part and a NaN part.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), creal()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 779

26806

26807

26808

26809

26810

26811

26812

26813

26814

26815

26816

26817

26818

26819

26820

26821

26822

26823

26824

26825

26826

26827

26828

26829

26830

26831

26832

26833

26834

26835

26836

26837

26838

26839

26840

26841

26842

26843

26844

26845

26846

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

creal() System Interfaces

NAME
creal, crealf, creall — complex real functions

SYNOPSIS
#include <complex.h>

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the real part of z.

RETURN VALUE
These functions shall return the real part value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For a variable z of type complex:

z == creal(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), cproj()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

780 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26847

26848

26849

26850

26851

26852

26853

26854

26855

26856

26857

26858

26859

26860

26861

26862

26863

26864

26865

26866

26867

26868

26869

26870

26871

26872

26873

26874

26875

26876

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces creat()

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
OH #include <sys/stat.h>

#include <fcntl.h>

int creat(const char *path, mode_t mode);

DESCRIPTION
The creat() function shall behave as if it is implemented as follows:

int creat(const char *path, mode_t mode)
{

return open(path, O_WRONLY|O_CREAT|O_TRUNC, mode);
}

RETURN VALUE
Refer to open().

ERRORS
Refer to open().

EXAMPLES

Creating a File

The following example creates the file /tmp/file with read and write permissions for the file
owner and read permission for group and others. The resulting file descriptor is assigned to the
fd variable.

#include <fcntl.h>
...
int fd;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *pathname = "/tmp/file";
...
fd = creat(pathname, mode);
...

APPLICATION USAGE
In multi-threaded applications, the creat() function can leak file descriptors into child processes.
Applications should instead use open() with the O_CLOEXEC and O_CLOFORK flags to avoid
the leak.

RATIONALE
The creat() function is redundant. Its services are also provided by the open() function. It has
been included primarily for historical purposes since many existing applications depend on it. It
is best considered a part of the C binding rather than a function that should be provided in other
languages.

FUTURE DIRECTIONS
None.

SEE ALSO
mknod(), open()

XBD <fcntl.h>, <sys/stat.h>, <sys/types.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 781

26877

26878

26879

26880

26881

26882

26883

26884

26885

26886

26887

26888

26889

26890

26891

26892

26893

26894

26895

26896

26897

26898

26899

26900

26901

26902

26903

26904

26905

26906

26907

26908

26909

26910

26911

26912

26913

26914

26915

26916

26917

26918

26919

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

creat() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Issue 7
SD5-XSH-ERN-186 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0064 [291] is applied.

Issue 8
Austin Group Defects 411 and 1318 are applied, changing the APPLICATION USAGE section.

782 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26920

26921

26922

26923

26924

26925

26926

26927

26928

26929

26930

26931

26932

26933

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces crypt()

NAME
crypt — password hashing function (CRYPT)

SYNOPSIS
XSI #include <unistd.h>

char *crypt(const char *key, const char *salt);

DESCRIPTION
The crypt() function hashes a password for storage in the user database. The algorithm is
implementation-defined.

The key argument points to a password to be hashed. The salt argument shall be a string of at
least two bytes in length not including the null character chosen from the set:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 . /

The first two bytes of this string may be used to perturb the encoding algorithm.

The return value of crypt() points to static data that is overwritten by each call.

The crypt() function need not be thread-safe.

RETURN VALUE
Upon successful completion, crypt() shall return a pointer to the hashed password; the first two
bytes of the returned value shall be those of the salt argument. Otherwise, it shall return a null
pointer and set errno to indicate the error.

ERRORS
The crypt() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES

Encoding Passwords

The following example finds a user database entry matching a particular user name and changes
the current password to a new password. The crypt() function generates an encoded version of
each password. The first call to crypt() produces an encoded version of the old password; that
encoded password is then compared to the password stored in the user database. The second
call to crypt() encodes the new password before it is stored.

The putpwent() function, used in the following example, is not part of POSIX.1-2024.

#include <unistd.h>
#include <pwd.h>
#include <string.h>
#include <stdio.h>
...
int valid_change;
int pfd; /* Integer for file descriptor returned by open(). */
FILE *fpfd; /* File pointer for use in putpwent(). */
struct passwd *p;
char user[100];
char oldpasswd[100];
char newpasswd[100];

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 783

26934

26935

26936

26937

26938

26939

26940

26941

26942

26943

26944

26945

26946

26947

26948

26949

26950

26951

26952

26953

26954

26955

26956

26957

26958

26959

26960

26961

26962

26963

26964

26965

26966

26967

26968

26969

26970

26971

26972

26973

26974

26975

26976

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

crypt() System Interfaces

char savepasswd[100];
...
valid_change = 0;
while ((p = getpwent()) != NULL) {

/* Change entry if found. */
if (strcmp(p->pw_name, user) == 0) {

if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd;
valid_change = 1;

}
else {

fprintf(stderr, "Old password is not valid\n");
}

}
/* Put passwd entry into ptmp. */
putpwent(p, fpfd);

}

APPLICATION USAGE
The values returned by this function need not be portable among XSI-conformant systems.

Several implementations offer extensions via characters outside of the set specified for the salt
argument for specifying alternative algorithms; while not portable, these extensions may offer
better security. The use of crypt() for anything other than password hashing is not
recommended.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
encrypt(), setkey()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-178 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0073 [899] is applied.

Issue 8
Austin Group Defect 1192 is applied, clarifying that crypt() is intended for password hashing,
not for general string encoding.

784 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

26977

26978

26979

26980

26981

26982

26983

26984

26985

26986

26987

26988

26989

26990

26991

26992

26993

26994

26995

26996

26997

26998

26999

27000

27001

27002

27003

27004

27005

27006

27007

27008

27009

27010

27011

27012

27013

27014

27015

27016

27017

27018

27019

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces csin()

NAME
csin, csinf, csinl — complex sine functions

SYNOPSIS
#include <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex sine of z.

RETURN VALUE
These functions shall return the complex sine value.

MXC csin(conj(iz)), csinf (conjf (iz)), and csinl(conjl(iz)) shall return exactly the same value as
conj(csin(iz)), conjf (csinf (iz)), and conjl(csinl(iz)), respectively, and csin(−iz), csinf (−iz), and
csinl(−iz) shall return exactly the same value as −csin(iz), −csinf (iz), and −csinl(iz), respectively,
including for the special values of iz below.

If iz is +0 + i0, −i (+0 + i0) shall be returned.

If iz is +0 + iInf, −i (±0 + iNaN) shall be returned and the invalid floating-point exception shall be
raised; the sign of the imaginary part of the result is unspecified.

If iz is +0 + iNaN, −i (±0 + iNaN) shall be returned; the sign of the imaginary part of the result is
unspecified.

If iz is x + iInf where x is positive and finite, −i (NaN + iNaN) shall be returned and the invalid
floating-point exception shall be raised.

If iz is x + iNaN where x is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is +Inf + i0, −i (+Inf + i0) shall be returned.

If iz is +Inf + iy where y is positive and finite, −iInf (cos(y) + i sin(y)) shall be returned.

If iz is +Inf + iInf, −i (±Inf + iNaN) shall be returned and the invalid floating-point exception
shall be raised; the sign of the imaginary part of the result is unspecified.

If iz is +Inf + iNaN, −i (±Inf + iNaN) shall be returned; the sign of the imaginary part of the
result is unspecified.

If iz is NaN + i0, −i (NaN + i0) shall be returned.

If iz is NaN + iy where y is any non-zero number, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is NaN + iNaN, −i (NaN + iNaN) shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 785

27020

27021

27022

27023

27024

27025

27026

27027

27028

27029

27030

27031

27032

27033

27034

27035

27036

27037

27038

27039

27040

27041

27042

27043

27044

27045

27046

27047

27048

27049

27050

27051

27052

27053

27054

27055

27056

27057

27058

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

csin() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The MXC special cases for csin() are derived from those for csinh() by applying the formula
csin(z) = −i csinh(iz).

FUTURE DIRECTIONS
None.

SEE ALSO
casin(), csinh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

786 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27059

27060

27061

27062

27063

27064

27065

27066

27067

27068

27069

27070

27071

27072

27073

27074

27075

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces csinh()

NAME
csinh, csinhf, csinhl — complex hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex hyperbolic sine of z.

RETURN VALUE
These functions shall return the complex hyperbolic sine value.

MXC csinh(conj(z)), csinhf (conjf (z)), and csinhl(conjl(z)) shall return exactly the same value as
conj(csinh(z)), conjf (csinhf (z)), and conjl(csinhl(z)), respectively, and csinh(−z), csinhf (−z), and
csinhl(−z) shall return exactly the same value as −csinh(z), −csinhf (z), and −csinhl(z), respectively,
including for the special values of z below.

If z is +0 + i0, +0 + i0 shall be returned.

If z is +0 + iInf, ±0 + iNaN shall be returned and the invalid floating-point exception shall be
raised; the sign of the real part of the result is unspecified.

If z is +0 + iNaN, ±0 + iNaN shall be returned; the sign of the real part of the result is
unspecified.

If z is x + iInf where x is positive and finite, NaN + iNaN shall be returned and the invalid
floating-point exception shall be raised.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is +Inf + i0, +Inf + i0 shall be returned.

If z is +Inf + iy where y is positive and finite, +Inf (cos(y) + i sin(y)) shall be returned.

If z is +Inf + iInf, ±Inf + iNaN shall be returned and the invalid floating-point exception shall be
raised; the sign of the real part of the result is unspecified.

If z is +Inf + iNaN, ±Inf + iNaN shall be returned; the sign of the real part of the result is
unspecified.

If z is NaN + i0, NaN + i0 shall be returned.

If z is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 787

27076

27077

27078

27079

27080

27081

27082

27083

27084

27085

27086

27087

27088

27089

27090

27091

27092

27093

27094

27095

27096

27097

27098

27099

27100

27101

27102

27103

27104

27105

27106

27107

27108

27109

27110

27111

27112

27113

27114

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

csinh() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
casinh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

788 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27115

27116

27117

27118

27119

27120

27121

27122

27123

27124

27125

27126

27127

27128

27129

27130

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces csinl()

NAME
csinl — complex sine functions

SYNOPSIS
#include <complex.h>

long double complex csinl(long double complex z);

DESCRIPTION
Refer to csin().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 789

27131

27132

27133

27134

27135

27136

27137

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

csqrt() System Interfaces

NAME
csqrt, csqrtf, csqrtl — complex square root functions

SYNOPSIS
#include <complex.h>

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex square root of z, with a branch cut along the negative
real axis.

RETURN VALUE
These functions shall return the complex square root value, in the range of the right half-plane
(including the imaginary axis).

MXC csqrt(conj(z)), csqrtf (conjf (z)), and csqrtl(conjl(z)) shall return exactly the same value as
conj(csqrt(z)), conjf (csqrtf (z)), and conjl(csqrtl(z)), respectively, including for the special values of
z below.

If z is ±0 + i0, +0 + i0 shall be returned.

If the imaginary part of z is Inf, +Inf + iInf, shall be returned.

If z is x + iNaN where x is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is −Inf + iy where y is positive-signed and finite, +0 + iInf shall be returned.

If z is +Inf + iy where y is positive-signed and finite, +Inf + i0 shall be returned.

If z is −Inf + iNaN, NaN ± iInf shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is +Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-point
exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

790 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27138

27139

27140

27141

27142

27143

27144

27145

27146

27147

27148

27149

27150

27151

27152

27153

27154

27155

27156

27157

27158

27159

27160

27161

27162

27163

27164

27165

27166

27167

27168

27169

27170

27171

27172

27173

27174

27175

27176

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces csqrt()

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), cpow()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 791

27177

27178

27179

27180

27181

27182

27183

27184

27185

27186

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ctan() System Interfaces

NAME
ctan, ctanf, ctanl — complex tangent functions

SYNOPSIS
#include <complex.h>

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex tangent of z.

RETURN VALUE
These functions shall return the complex tangent value.

MXC ctan(conj(iz)), ctanf (conjf (iz)), and ctanl(conjl(iz)) shall return exactly the same value as
conj(ctan(iz)), conjf (ctanf (iz)), and conjl(ctanl(iz)), respectively, and ctan(−iz), ctanf (−iz), and
ctanl(−iz) shall return exactly the same value as −ctan(iz), −ctanf (iz), and −ctanl(iz), respectively,
including for the special values of iz below.

If iz is +0 + i0, −i (+0 + i0) shall be returned.

If iz is 0 + iInf, −i (0 + iNaN) shall be returned and the invalid floating-point exception shall be
raised.

If iz is x + iInf where x is non-zero and finite, −i (NaN + iNaN) shall be returned and the invalid
floating-point exception shall be raised.

If iz is 0 + iNaN, −i (0 + iNaN) shall be returned.

If iz is x + iNaN where x is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is +Inf + iy where y is positive-signed and finite, −i (1 + i0 sin(2y)) shall be returned.

If iz is +Inf + iInf, −i (1 ± i0) shall be returned; the sign of the real part of the result is unspecified.

If iz is +Inf + iNaN, −i (1 ± i0) shall be returned; the sign of the real part of the result is
unspecified.

If iz is NaN + i0, −i (NaN + i0) shall be returned.

If iz is NaN + iy where y is any non-zero number, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is NaN + iNaN, −i (NaN + iNaN) shall be returned.

ERRORS
No errors are defined.

792 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27187

27188

27189

27190

27191

27192

27193

27194

27195

27196

27197

27198

27199

27200

27201

27202

27203

27204

27205

27206

27207

27208

27209

27210

27211

27212

27213

27214

27215

27216

27217

27218

27219

27220

27221

27222

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ctan()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The MXC special cases for ctan() are derived from those for ctanh() by applying the formula
ctan(z) = −i ctanh(iz).

FUTURE DIRECTIONS
None.

SEE ALSO
catan(), ctanh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 793

27223

27224

27225

27226

27227

27228

27229

27230

27231

27232

27233

27234

27235

27236

27237

27238

27239

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ctanh() System Interfaces

NAME
ctanh, ctanhf, ctanhl — complex hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complex hyperbolic tangent of z.

RETURN VALUE
These functions shall return the complex hyperbolic tangent value.

MXC ctanh(conj(z)), ctanhf (conjf (z)), and ctanhl(conjl(z)) shall return exactly the same value as
conj(ctanh(z)), conjf (ctanhf(z)), and conjl(ctanhl(z)), respectively, and ctanh(−z), ctanhf (−z), and
ctanhl(−z) shall return exactly the same value as −ctanh(z), −ctanhf (z), and −ctanhl(z),
respectively, including for the special values of z below.

If z is +0 + i0, +0 + i0 shall be returned.

If z is 0 + iInf, 0 + iNaN shall be returned and the invalid floating-point exception shall be raised.

If z is x + iInf where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception shall be raised.

If z is 0 + iNaN, 0 + iNaN shall be returned.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is +Inf + iy where y is positive-signed and finite, 1 + i0 sin(2y) shall be returned.

If z is +Inf + iInf, 1 ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is +Inf + iNaN, 1 ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is NaN + i0, NaN + i0 shall be returned.

If z is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.

ERRORS
No errors are defined.

794 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27240

27241

27242

27243

27244

27245

27246

27247

27248

27249

27250

27251

27252

27253

27254

27255

27256

27257

27258

27259

27260

27261

27262

27263

27264

27265

27266

27267

27268

27269

27270

27271

27272

27273

27274

27275

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ctanh()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catanh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 795

27276

27277

27278

27279

27280

27281

27282

27283

27284

27285

27286

27287

27288

27289

27290

27291

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ctanl() System Interfaces

NAME
ctanl — complex tangent functions

SYNOPSIS
#include <complex.h>

long double complex ctanl(long double complex z);

DESCRIPTION
Refer to ctan().

796 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27292

27293

27294

27295

27296

27297

27298

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ctermid()

NAME
ctermid — generate a pathname for the controlling terminal

SYNOPSIS
CX #include <stdio.h>

char *ctermid(char *s);

DESCRIPTION
The ctermid() function shall generate a string that, when used as a pathname, refers to the
current controlling terminal for the current process. If ctermid() returns a pathname, access to the
file is not guaranteed.

The ctermid() function need not be thread-safe if called with a NULL parameter.

RETURN VALUE
If s is a null pointer, the string shall be generated in an area that may be static, the address of
which shall be returned. The application shall not modify the string returned. The returned
pointer might be invalidated or the string content might be overwritten by a subsequent call to
ctermid(). The returned pointer might also be invalidated if the calling thread is terminated. If s
is not a null pointer, s is assumed to point to a character array of at least L_ctermid bytes; the
string is placed in this array and the value of s shall be returned. The symbolic constant
L_ctermid is defined in <stdio.h>, and shall have a value greater than 0.

The ctermid() function shall return an empty string if the pathname that would refer to the
controlling terminal cannot be determined, or if the function is unsuccessful.

ERRORS
No errors are defined.

EXAMPLES

Determining the Controlling Terminal for the Current Process

The following example returns a pointer to a string that identifies the controlling terminal for the
current process. The pathname for the terminal is stored in the array pointed to by the ptr
argument, which has a size of L_ctermid bytes, as indicated by the term argument.

#include <stdio.h>
...
char term[L_ctermid];
char *ptr;

ptr = ctermid(term);

APPLICATION USAGE
The difference between ctermid() and ttyname() is that ttyname() must be handed a file
descriptor and return a path of the terminal associated with that file descriptor, while ctermid()
returns a string (such as "/dev/tty") that refers to the current controlling terminal if used as a
pathname.

RATIONALE
L_ctermid must be defined appropriately for a given implementation and must be greater than
zero so that array declarations using it are accepted by the compiler. The value includes the
terminating null byte.

Conforming applications that use multiple threads cannot call ctermid() with NULL as the
parameter. If s is not NULL, the ctermid() function generates a string that, when used as a

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 797

27299

27300

27301

27302

27303

27304

27305

27306

27307

27308

27309

27310

27311

27312

27313

27314

27315

27316

27317

27318

27319

27320

27321

27322

27323

27324

27325

27326

27327

27328

27329

27330

27331

27332

27333

27334

27335

27336

27337

27338

27339

27340

27341

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ctermid() System Interfaces

pathname, refers to the current controlling terminal for the current process. If s is NULL, the
return value of ctermid() is undefined.

There is no additional burden on the programmer—changing to use a hypothetical thread-safe
version of ctermid() along with allocating a buffer is more of a burden than merely allocating a
buffer. Application code should not assume that the returned string is short, as some
implementations have more than two pathname components before reaching a logical device
name.

FUTURE DIRECTIONS
None.

SEE ALSO
ttyname()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, updating the RATIONALE.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0065 [75,428] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0074 [656] is applied.

798 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27342

27343

27344

27345

27346

27347

27348

27349

27350

27351

27352

27353

27354

27355

27356

27357

27358

27359

27360

27361

27362

27363

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ctime()

NAME
ctime — convert a time value to a date and time string

SYNOPSIS
OB #include <time.h>

char *ctime(const time_t *clock);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The ctime() function shall convert the time pointed to by clock, representing time in seconds
since the Epoch, to local time in the form of a string. It shall be equivalent to:

asctime(localtime(clock))

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of char. Execution of any of the functions
that return a pointer to one of these object types may overwrite the information in any object of
the same type pointed to by the value returned from any previous call to any of them.

The ctime() function need not be thread-safe; however, ctime() shall avoid data races with all
functions other than itself, asctime(), gmtime(), and localtime().

RETURN VALUE
The ctime() function shall return the pointer returned by asctime() with that broken-down time
as an argument.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function is included only for compatibility with older implementations. It has undefined
behavior if the resulting string would be too long, so the use of this function should be
discouraged. On implementations that do not detect output string length overflow, it is possible
to overflow the output buffer in such a way as to cause applications to fail, or possible system
security violations. Also, this function does not support localized date and time formats. To
avoid these problems, applications should use strftime() to generate strings from broken-down
times.

Values for the broken-down time structure can be obtained by calling gmtime() or localtime().

Attempts to use ctime() for times before the Epoch or for times beyond the year 9999 produce
undefined results. Refer to asctime() (on page 617).

RATIONALE
The standard developers decided to mark the ctime() function obsolescent even though it is in
the ISO C standard due to the possibility of buffer overflow. The ISO C standard also provides
the strftime() function which can be used to avoid these problems.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 799

27364

27365

27366

27367

27368

27369

27370

27371

27372

27373

27374

27375

27376

27377

27378

27379

27380

27381

27382

27383

27384

27385

27386

27387

27388

27389

27390

27391

27392

27393

27394

27395

27396

27397

27398

27399

27400

27401

27402

27403

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ctime() System Interfaces

FUTURE DIRECTIONS
This function may be removed in a future version, but not until after it has been removed from
the ISO C standard.

SEE ALSO
asctime(), clock(), difftime(), futimens(), gmtime(), localtime(), mktime(), strftime(), strptime(),
time()

XBD <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The ctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the ctime() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-25 is applied, updating the APPLICATION USAGE.

Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions obsolescent.

The ctime_r() function is moved from the Thread-Safe Functions option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0066 [321,428] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0075 [664] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1330 is applied, changing the FUTURE DIRECTIONS section.

Austin Group Defect 1376 is applied, removing CX shading from some text derived from the
ISO C standard and updating it to match the ISO C standard.

Austin Group Defect 1410 is applied, removing the ctime_r() function.

800 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27404

27405

27406

27407

27408

27409

27410

27411

27412

27413

27414

27415

27416

27417

27418

27419

27420

27421

27422

27423

27424

27425

27426

27427

27428

27429

27430

27431

27432

27433

27434

27435

27436

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces daylight

NAME
daylight — daylight saving time flag

SYNOPSIS
XSI #include <time.h>

extern int daylight;

DESCRIPTION
Refer to tzset().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 801

27437

27438

27439

27440

27441

27442

27443

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dbm_clearerr() System Interfaces

NAME
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey,
dbm_open, dbm_store — database functions

SYNOPSIS
XSI #include <ndbm.h>

int dbm_clearerr(DBM *db);
void dbm_close(DBM *db);
int dbm_delete(DBM *db, datum key);
int dbm_error(DBM *db);
datum dbm_fetch(DBM *db, datum key);
datum dbm_firstkey(DBM *db);
datum dbm_nextkey(DBM *db);
DBM *dbm_open(const char *file, int open_flags, mode_t file_mode);
int dbm_store(DBM *db, datum key, datum content, int store_mode);

DESCRIPTION
These functions create, access, and modify a database.

A datum consists of at least two members, dptr and dsize. The dptr member points to an object
that is dsize bytes in length. Arbitrary binary data, as well as character strings, may be stored in
the object pointed to by dptr.

A database shall be stored in one or two files. When one file is used, the name of the database
file shall be formed by appending the suffix .db to the file argument given to dbm_open(). When
two files are used, the names of the database files shall be formed by appending the suffixes .dir
and .pag respectively to the file argument.

The dbm_open() function shall open a database. The file argument to the function is the
pathname of the database. Values for the open_flags argument are constructed by a bitwise-
inclusive OR of flags from the following list, defined in <fcntl.h>. Applications shall specify
exactly one of the first three values (file access modes) below in the value of open_flags:

O_RDONLY Open the database, and the underlying file(s) used to store the database,
for reading only.

O_RDWR Open the database, and the underlying file(s) used to store the database,
for reading and writing.

O_WRONLY Open the database for writing only. The underlying file(s) used to store
the database shall be opened for reading and writing.

Any combination of the following can be used:

O_CLOEXEC If set, the FD_CLOEXEC flag for the new file descriptor(s) used to open
the underlying file(s) shall be set.

O_CREAT If the database exists, this flag has no effect except as noted under
O_EXCL below. Otherwise, the database shall be created; the user ID of
the underlying file(s) shall be set to the effective user ID of the process;
the group ID of the underlying file(s) shall be set to the group ID of the
file’s parent directory or to the effective group ID of the process.
Implementations shall provide a way to initialize the group ID to the
group ID of the parent directory. Implementations may, but need not,
provide an implementation-defined way to initialize the group ID to the
effective group ID of the calling process.

802 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27444

27445

27446

27447

27448

27449

27450

27451

27452

27453

27454

27455

27456

27457

27458

27459

27460

27461

27462

27463

27464

27465

27466

27467

27468

27469

27470

27471

27472

27473

27474

27475

27476

27477

27478

27479

27480

27481

27482

27483

27484

27485

27486

27487

27488

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dbm_clearerr()

SIO O_DSYNC Write I/O operations on the file(s) used to store the database shall
complete as defined by synchronized I/O data integrity completion.

O_EXCL If O_CREAT and O_EXCL are set, dbm_open() shall fail if the database
exists according to the following criteria. If the database is stored in a file
with a .db suffix, a check for the existence of the file and the creation of
the file if it does not exist shall be performed as a single atomic operation.
If the database is stored in files with .pag and .dir suffixes, this atomic
existence check and creation operation shall be performed for each file,
but it is unspecified which file is first. If the first file is successfully
created and the second file is found to exist, the first file should be
removed before dbm_open() returns.

If O_EXCL is set and O_CREAT is not set, the result is undefined.

SIO O_RSYNC Read I/O operations on the file(s) used to store the database shall
complete at the same level of integrity as specified by the O_DSYNC and
O_SYNC flags. If both O_DSYNC and O_RSYNC are set in oflag, all I/O
operations on the file(s) shall complete as defined by synchronized I/O
data integrity completion. If both O_SYNC and O_RSYNC are set in flags,
all I/O operations on the file(s) shall complete as defined by
synchronized I/O file integrity completion.

O_SYNC Write I/O operations on the file(s) used to store the database shall
complete as defined by synchronized I/O file integrity completion.

O_TRUNC If the database exists and is successfully opened O_RDWR or
O_WRONLY, it shall be emptied, and the mode and owner of the
underlying file(s) shall be unchanged. The result of using O_TRUNC
without either O_RDWR or O_WRONLY is undefined.

The behaviour of other flags described for the flags argument of open() is unspecified.

The file_mode argument has the same meaning as the third argument of open() and shall apply to
the underlying file(s) used to store the database.

The dbm_open() function need not accept pathnames longer than {PATH_MAX}−4 bytes
(including the terminating null), or pathnames with a last component longer than
{NAME_MAX}−4 bytes (excluding the terminating null).

The dbm_close() function shall close a database. The application shall ensure that argument db is
a pointer to a dbm structure that has been returned from a call to dbm_open().

These database functions shall support an internal block size large enough to support
key/content pairs of at least 1 023 bytes.

The dbm_fetch() function shall read a record from a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application to the value of the key that matches the key of
the record the program is fetching.

The dbm_store() function shall write a record to a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application to the value of the key that identifies (for
subsequent reading, writing, or deleting) the record the application is writing. The argument
content is a datum that has been initialized by the application to the value of the record the
program is writing. The argument store_mode controls whether dbm_store() replaces any pre-
existing record that has the same key that is specified by the key argument. The application shall

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 803

27489

27490

27491

27492

27493

27494

27495

27496

27497

27498

27499

27500

27501

27502

27503

27504

27505

27506

27507

27508

27509

27510

27511

27512

27513

27514

27515

27516

27517

27518

27519

27520

27521

27522

27523

27524

27525

27526

27527

27528

27529

27530

27531

27532

27533

27534

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dbm_clearerr() System Interfaces

set store_mode to either DBM_INSERT or DBM_REPLACE. If the database contains a record that
matches the key argument and store_mode is DBM_REPLACE, the existing record shall be
replaced with the new record. If the database contains a record that matches the key argument
and store_mode is DBM_INSERT, the existing record shall be left unchanged and the new record
ignored. If the database does not contain a record that matches the key argument and store_mode
is either DBM_INSERT or DBM_REPLACE, the new record shall be inserted in the database.

If the sum of a key/content pair exceeds the internal block size, the result is unspecified.
Moreover, the application shall ensure that all key/content pairs that hash together fit on a
single block. The dbm_store() function shall return an error in the event that a disk block fills
with inseparable data.

The dbm_delete() function shall delete a record and its key from the database. The argument db is
a pointer to a database structure that has been returned from a call to dbm_open(). The argument
key is a datum that has been initialized by the application to the value of the key that identifies
the record the program is deleting.

The dbm_firstkey() function shall return the first key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_nextkey() function shall return the next key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open(). The application
shall ensure that the dbm_firstkey() function is called before calling dbm_nextkey(). Subsequent
calls to dbm_nextkey() return the next key until all of the keys in the database have been
returned.

The dbm_error() function shall return the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_clearerr() function shall clear the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dptr pointers returned by these functions may point into static storage that may be changed
by subsequent calls.

These functions need not be thread-safe.

RETURN VALUE
The dbm_store() and dbm_delete() functions shall return 0 when they succeed and a negative
value when they fail.

The dbm_store() function shall return 1 if it is called with a flags value of DBM_INSERT and the
function finds an existing record with the same key.

The dbm_error() function shall return 0 if the error condition is not set and return a non-zero
value if the error condition is set.

The return value of dbm_clearerr() is unspecified.

The dbm_firstkey() and dbm_nextkey() functions shall return a key datum. When the end of the
database is reached, the dptr member of the key is a null pointer. If an error is detected, the dptr
member of the key shall be a null pointer and the error condition of the database shall be set.

The dbm_fetch() function shall return a content datum. If no record in the database matches the
key or if an error condition has been detected in the database, the dptr member of the content
shall be a null pointer.

The dbm_open() function shall return a pointer to a database structure. If an error is detected
during the operation, dbm_open() shall return a (DBM *)0.

804 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27535

27536

27537

27538

27539

27540

27541

27542

27543

27544

27545

27546

27547

27548

27549

27550

27551

27552

27553

27554

27555

27556

27557

27558

27559

27560

27561

27562

27563

27564

27565

27566

27567

27568

27569

27570

27571

27572

27573

27574

27575

27576

27577

27578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dbm_clearerr()

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following code can be used to traverse the database:

for(key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

The dbm_* functions provided in this library should not be confused in any way with those of a
general-purpose database management system. These functions do not provide for multiple
search keys per entry, they do not protect against multi-user access (in other words they do not
lock records or files), and they do not provide the many other useful database functions that are
found in more robust database management systems. Creating and updating databases by use of
these functions is relatively slow because of data copies that occur upon hash collisions. These
functions are useful for applications requiring fast lookup of relatively static information that is
to be indexed by a single key.

Note that a strictly conforming application is extremely limited by these functions: since there is
no way to determine that the keys in use do not all hash to the same value (although that would
be rare), a strictly conforming application cannot be guaranteed that it can store more than one
block’s worth of data in the database. As long as a key collision does not occur, additional data
may be stored, but because there is no way to determine whether an error is due to a key
collision or some other error condition (dbm_error() being effectively a Boolean), once an error is
detected, the application is effectively limited to guessing what the error might be if it wishes to
continue using these functions.

The dbm_delete() function need not physically reclaim file space, although it does make it
available for reuse by the database.

After calling dbm_store() or dbm_delete() during a pass through the keys by dbm_firstkey() and
dbm_nextkey(), the application should reset the database by calling dbm_firstkey() before again
calling dbm_nextkey(). The contents of these files are unspecified and may not be portable.

Applications should take care that database pathname arguments specified to dbm_open() are
not prefixes of unrelated files. This might be done, for example, by placing databases in a
separate directory.

Since some implementations use three characters for a suffix and others use four characters for a
suffix, applications should ensure that the maximum portable pathname length passed to
dbm_open() is no greater than {PATH_MAX}−4 bytes, with the last component of the pathname
no greater than {NAME_MAX}−4 bytes.

RATIONALE
Previously the standard required the database to be stored in two files, one file being a directory
containing a bitmap of keys and having .dir as its suffix. The second file containing all data and
having .pag as its suffix. This has been changed not to specify the use of the files and to allow
newer implementations of the Berkeley DB interface using a single file that have evolved while
remaining compatible with the application programming interface. The standard developers
considered removing the specific suffixes altogether but decided to retain them so as not to
pollute the application file name space more than necessary and to allow for portable backups of
the database.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 805

27579

27580

27581

27582

27583

27584

27585

27586

27587

27588

27589

27590

27591

27592

27593

27594

27595

27596

27597

27598

27599

27600

27601

27602

27603

27604

27605

27606

27607

27608

27609

27610

27611

27612

27613

27614

27615

27616

27617

27618

27619

27620

27621

27622

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dbm_clearerr() System Interfaces

FUTURE DIRECTIONS
A future revision of this standard may mandate the file removal that is currently recommended
(by the use of ``should’’) in the description of O_EXCL.

SEE ALSO
open()

XBD <fcntl.h>, <ndbm.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #042 is applied so that the DESCRIPTION permits
newer implementations of the Berkeley DB interface.

Austin Group Interpretation 1003.1-2001 #156 is applied.

Issue 8
Austin Group Defect 1057 is applied, clarifying how the O_ flags defined for use with open()
apply to dbm_open().

806 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27623

27624

27625

27626

27627

27628

27629

27630

27631

27632

27633

27634

27635

27636

27637

27638

27639

27640

27641

27642

27643

27644

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dcgettext()

NAME
dcgettext, dcgettext_l, dcngettext, dcngettext_l, dgettext, dgettext_l — message handling
functions

SYNOPSIS
#include <libintl.h>

char *dcgettext(const char *domainname, const char *msgid,
int category);

char *dcgettext_l(const char *domainname, const char *msgid,
int category, locale_t locale);

char *dcngettext(const char *domainname, const char *msgid,
const char *msgid_plural, unsigned long int n,
int category);

char *dcngettext_l(const char *domainname, const char *msgid,
const char *msgid_plural, unsigned long int n,
int category, locale_t locale);

char *dgettext(const char *domainname, const char *msgid);
char *dgettext_l(const char *domainname, const char *msgid,

locale_t locale);

DESCRIPTION
Refer to gettext .

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 807

27645

27646

27647

27648

27649

27650

27651

27652

27653

27654

27655

27656

27657

27658

27659

27660

27661

27662

27663

27664

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

difftime() System Interfaces

NAME
difftime — compute the difference between two calendar time values

SYNOPSIS
#include <time.h>

double difftime(time_t time1, time_t time0);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The difftime() function shall compute the difference between two calendar times (as returned by
time()): time1− time0.

RETURN VALUE
The difftime() function shall return the difference expressed in seconds as a type double.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), futimens(), gmtime(), localtime(), mktime(), strftime(), strptime(), time()

XBD <time.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

808 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27665

27666

27667

27668

27669

27670

27671

27672

27673

27674

27675

27676

27677

27678

27679

27680

27681

27682

27683

27684

27685

27686

27687

27688

27689

27690

27691

27692

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dirfd()

NAME
dirfd — extract the file descriptor used by a DIR stream

SYNOPSIS
#include <dirent.h>

int dirfd(DIR *dirp);

DESCRIPTION
If the directory stream referenced by dirp has an associated file descriptor, dirfd() shall return
that file descriptor. Otherwise, dirfd() shall open a new file description referring to the directory
associated with the directory stream as if by calling:

open(DirectoryName, O_RDONLY | O_DIRECTORY | O_CLOEXEC);

except that no pathname for use as DirectoryName need exist or be accessible. It shall then
associate the new file descriptor with the directory stream, and return that file descriptor.

Upon successful return from dirfd(), the file descriptor is under the control of the system, and if
any attempt is made to close the file descriptor, or to modify the state of the associated

XSI description, other than by means of closedir(), readdir(), readdir_r(), rewinddir(), or seekdir(), the
behavior is undefined. Upon calling closedir() the file descriptor shall be closed.

RETURN VALUE
Upon successful completion, the dirfd() function shall return an integer which contains a file
descriptor for the stream pointed to by dirp. Otherwise, it shall return −1 and shall set errno to
indicate the error.

ERRORS
The dirfd() function shall fail if:

[EMFILE] A new file descriptor is required and all file descriptors available to the
process are currently open.

[ENFILE] A new file descriptor is required and the maximum allowable number of files
is currently open in the system.

The dirfd() function may fail if:

[EINVAL] The dirp argument does not refer to a valid directory stream.

EXAMPLES
None.

APPLICATION USAGE
The dirfd() function is intended to be a mechanism by which an application may obtain a file
descriptor to use for the fchdir() function.

RATIONALE
This interface was introduced because the Base Definitions volume of POSIX.1-2024 does not
make public the DIR data structure. Applications tend to use the fchdir() function on the file
descriptor returned by this interface, and this has proven useful for security reasons; in
particular, it is a better technique than others where directory names might change.

On an implementation where reading from a directory stream does not use a file descriptor,
opendir() need not allocate one to be returned by dirfd(). The implementation can instead delay
the allocation of a suitable file descriptor until the first time dirfd() is called for the stream. A file
descriptor allocated by dirfd() must be closed by closedir().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 809

27693

27694

27695

27696

27697

27698

27699

27700

27701

27702

27703

27704

27705

27706

27707

27708

27709

27710

27711

27712

27713

27714

27715

27716

27717

27718

27719

27720

27721

27722

27723

27724

27725

27726

27727

27728

27729

27730

27731

27732

27733

27734

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dirfd() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), fchdir(), fdopendir(), fileno(), open(), readdir()

XBD <dirent.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0067 [422] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0076 [572] is applied.

Issue 8
Austin Group Defects 391 and 1359 are applied, changing the DESCRIPTION and RATIONALE
sections, and adding the [EMFILE] and [ENFILE] errors.

810 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27735

27736

27737

27738

27739

27740

27741

27742

27743

27744

27745

27746

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dirname()

NAME
dirname — report the parent directory name of a file pathname

SYNOPSIS
XSI #include <libgen.h>

char *dirname(char *path);

DESCRIPTION
The dirname() function shall take a pointer to a character string that contains a pathname, and
return a pointer to a string that is a pathname of the directory containing the entry of the final
pathname component. The dirname() function shall not perform pathname resolution; the result
shall not be affected by whether or not path exists or by its file type. Trailing '/' characters in
the pathname that are not also leading '/' characters shall not be counted as part of the
pathname.

If the pathname does not contain a '/', then dirname() shall return a pointer to the string ".".
If path is a null pointer or points to an empty string, dirname() shall return a pointer to the string
".".

It is unspecified whether redundant '/' characters and '.' pathname components in path are
removed after determining the pathname to output. However, ".." pathname components
occurring prior to the final component shall not be removed.

The dirname() function may modify the string pointed to by path, and may return a pointer into
the input string. The returned pointer might be invalidated if the input string is subsequently
modified or freed. If path does not contain a '/', is a null pointer, or points to an empty string
the returned pointer may point to constant data that cannot be modified.

RETURN VALUE
The dirname() function shall return a pointer to a string as described above.

The dirname() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
The following code fragment reads a pathname, changes the current working directory to the
parent directory, and opens the file.

char *path = NULL, *pathcopy;
size_t buflen = 0;
ssize_t linelen = 0;
int fd;

linelen = getline(&path, &buflen, stdin);

path[linelen-1] = 0;
pathcopy = strdup(path);
if (chdir(dirname(pathcopy)) < 0) {

...
}
if ((fd = open(basename(path), O_RDONLY)) >= 0) {

...
close (fd);

}

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 811

27747

27748

27749

27750

27751

27752

27753

27754

27755

27756

27757

27758

27759

27760

27761

27762

27763

27764

27765

27766

27767

27768

27769

27770

27771

27772

27773

27774

27775

27776

27777

27778

27779

27780

27781

27782

27783

27784

27785

27786

27787

27788

27789

27790

27791

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dirname() System Interfaces

...
free (pathcopy);
free (path);

The EXAMPLES section of the basename() function (see basename()) includes a table showing
examples of the results of processing several sample pathnames by the basename() and dirname()
functions and by the basename and dirname utilities.

APPLICATION USAGE
The dirname() and basename() functions together yield a complete pathname. The expression
dirname(path) obtains the pathname of the directory where basename(path) is found.

Since the meaning of the leading "//" is implementation-defined, dirname("//foo") may return
either "//" or "/" (but nothing else).

Note that in some circumstances, the returned pointer might point into constant data. Therefore,
if the application needs to modify the returned data, it should be copied first.

RATIONALE
An implementation should prefer the shortest output possible; however, this is not required, in
part because earlier versions of the standard did not mention whether elision of redundant
<slash> characters or dot (".") components was permitted. Removal of the dot-dot ("..")
pathname component is not permitted, because eliding it correctly would require performing
pathname resolution to ensure the resulting string would still point to the correct pathname if
the original string resolved as a pathname. On implementations where pathname "//" has an
implementation-defined meaning distinct from the pathname "/", the dirname of "//" will be
"//".

Earlier versions of this standard seemed to allow thread-safe and non-thread-safe
implementations of basename() and dirname(), but did not allow implementations to return a
null pointer and require that errno be set when that happened. The standard now requires
thread-safe behavior for both of these functions and clearly states that they are always
successful.

FUTURE DIRECTIONS
None.

SEE ALSO
basename()

XBD <libgen.h>

XCU basename , dirname

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The EXAMPLES section is revised.

812 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27792

27793

27794

27795

27796

27797

27798

27799

27800

27801

27802

27803

27804

27805

27806

27807

27808

27809

27810

27811

27812

27813

27814

27815

27816

27817

27818

27819

27820

27821

27822

27823

27824

27825

27826

27827

27828

27829

27830

27831

27832

27833

27834

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dirname()

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0068 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0077 [830], XSH/TC2-2008/0078 [612],
XSH/TC2-2008/0079 [830], XSH/TC2-2008/0080 [656], and XSH/TC2-2008/0081 [612] are
applied.

Issue 8
Austin Group Defect 1064 is applied, requiring dirname() to be thread-safe and allowing it to
return a pointer to constant data under certain conditions.

Austin Group Defect 1073 is applied, changing ``parent directory of that file’’ to ``directory
containing the entry of the final pathname component’’ and clarifying that redundant '/'
characters and '.' pathname components may be removed after determining the pathname to
output.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 813

27835

27836

27837

27838

27839

27840

27841

27842

27843

27844

27845

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

div() System Interfaces

NAME
div — compute the quotient and remainder of an integer division

SYNOPSIS
#include <stdlib.h>

div_t div(int numer, int denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The div() function shall compute the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the integer
of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behavior is undefined; otherwise, quot*denom+rem shall equal numer.

RETURN VALUE
The div() function shall return a structure of type div_t, comprising both the quotient and the
remainder. The structure includes the following members, in any order:

int quot; /* quotient */
int rem; /* remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ldiv()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

814 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27846

27847

27848

27849

27850

27851

27852

27853

27854

27855

27856

27857

27858

27859

27860

27861

27862

27863

27864

27865

27866

27867

27868

27869

27870

27871

27872

27873

27874

27875

27876

27877

27878

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dladdr()

NAME
dladdr — get information relating to an address

SYNOPSIS
#include <dlfcn.h>

int dladdr(const void *restrict addr, Dl_info_t *restrict dlip);

DESCRIPTION
The dladdr() function shall determine whether the address specified by addr is located within the
address range occupied by a mapped object. The mapped objects examined shall include any
executable object files that have previously been loaded by a call to dlopen() and for which
dlclose() has not subsequently been called, and any shared library files that were loaded as
dependencies of the executable file from which the current process image was loaded; they may
also include any executable object files that have previously been loaded by a call to dlopen()
and for which dlclose() has subsequently been called, the executable file from which the current
process image was loaded, and implementation-defined additional mapped objects (for
example, all regular files mapped using mmap() might be included). If the specified address is
within the mapped address range of one of these mapped objects and the object contains a
symbol table, the symbol table shall be searched for a symbol (a function identifier or a data
object identifier) that has the largest address less than or equal to the specified address.

If the address specified by addr is within the mapped address range of one of the examined
mapped objects, the structure pointed to by dlip shall be populated as follows:

• The value of the dli_fname member shall be set to point to the pathname of the mapped
object. (This might no longer resolve to the file that was mapped, for example if it was a
link that has subsequently been removed or renamed.)

• The value of the dli_fbase member shall be set to the base of the address range occupied by
the mapped object.

• The value of the dli_sname member shall be set to point to the name of the symbol that has
the largest address less than or equal to the specified address, or to a null pointer if no such
symbol was found.

• If dli_sname is set to a null pointer, the value of the dli_saddr member shall also be set to a
null pointer. Otherwise, if dli_sname names a function identifier, dli_saddr shall be set to the
address of the function converted from type pointer to function to type pointer to void;
otherwise, dli_saddr shall be set to the address of the data object named by dli_sname
converted from a pointer to the type of the data object to a pointer to void.

RETURN VALUE
Upon successful completion, a non-zero value shall be returned. If the specified address is not
located within the address range occupied by an examined mapped object, or if an error occurs,
zero shall be returned. More detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 815

27879

27880

27881

27882

27883

27884

27885

27886

27887

27888

27889

27890

27891

27892

27893

27894

27895

27896

27897

27898

27899

27900

27901

27902

27903

27904

27905

27906

27907

27908

27909

27910

27911

27912

27913

27914

27915

27916

27917

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dladdr() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The Dl_info_t members may point to addresses within the mapped object. These pointers can
become invalid if the object is unmapped (for example, loaded executable objects may be
unloaded by dlclose()).

If dli_sname names a function identifier, the value of dli_saddr can be converted back to type
pointer to function using a cast in the manner shown in the dlsym() EXAMPLES section. Note
that this conversion is not defined by the ISO C standard. This standard requires this conversion
to work correctly on conforming implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlopen(), dlsym()

XBD <dlfcn.h>

CHANGE HISTORY
First released in Issue 8.

816 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27918

27919

27920

27921

27922

27923

27924

27925

27926

27927

27928

27929

27930

27931

27932

27933

27934

27935

27936

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dlclose()

NAME
dlclose — close a symbol table handle

SYNOPSIS
#include <dlfcn.h>

int dlclose(void *handle);

DESCRIPTION
The dlclose() function shall inform the system that the symbol table handle specified by handle is
no longer needed by the application.

An application writer may use dlclose() to make a statement of intent on the part of the process,
but this statement does not create any requirement upon the implementation. When the symbol
table handle is closed, the implementation may unload the executable object files that were
loaded by dlopen() when the symbol table handle was opened and those that were loaded by
dlsym() when using the symbol table handle identified by handle.

Once a symbol table handle has been closed, an application should assume that any symbols
(function identifiers and data object identifiers) made visible using handle, are no longer
available to the process.

Although a dlclose() operation is not required to remove any functions or data objects from the
address space, neither is an implementation prohibited from doing so. The only restriction on
such a removal is that no function nor data object shall be removed to which references have
been relocated, until or unless all such references are removed. For instance, an executable object
file that had been loaded with a dlopen() operation specifying the RTLD_GLOBAL flag might
provide a target for dynamic relocations performed in the processing of other relocatable
objects—in such environments, an application may assume that no relocation, once made, shall
be undone or remade unless the executable object file containing the relocated object has itself
been removed.

RETURN VALUE
If the referenced symbol table handle was successfully closed, dlclose() shall return 0. If handle
does not refer to an open symbol table handle or if the symbol table handle could not be closed,
dlclose() shall return a non-zero value. More detailed diagnostic information shall be available
through dlerror().

ERRORS
No errors are defined.

EXAMPLES
The following example illustrates use of dlopen() and dlclose():

#include <dlfcn.h>
int eret;
void *mylib;
...
/* Open a dynamic library and then close it ... */
mylib = dlopen("mylib.so", RTLD_LOCAL | RTLD_LAZY);
...
eret = dlclose(mylib);
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 817

27937

27938

27939

27940

27941

27942

27943

27944

27945

27946

27947

27948

27949

27950

27951

27952

27953

27954

27955

27956

27957

27958

27959

27960

27961

27962

27963

27964

27965

27966

27967

27968

27969

27970

27971

27972

27973

27974

27975

27976

27977

27978

27979

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dlclose() System Interfaces

APPLICATION USAGE
A conforming application should employ a symbol table handle returned from a dlopen()
invocation only within a given scope bracketed by a dlopen() operation and the corresponding
dlclose() operation. Implementations are free to use reference counting or other techniques such
that multiple calls to dlopen() referencing the same executable object file may return a pointer to
the same data object as the symbol table handle.

Implementations are also free to re-use a handle. For these reasons, the value of a handle must
be treated as an opaque data type by the application, used only in calls to dlsym() and dlclose().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dladdr(), dlerror(), dlopen(), dlsym()

XBD <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The DESCRIPTION is updated to say that the referenced object is closed ``if this is the last
reference to it’’.

Issue 7
The dlopen() function is moved from the XSI option to Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0069 [74] is applied.

Issue 8
Austin Group Defect 993 is applied, adding dladdr() to the SEE ALSO section.

818 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

27980

27981

27982

27983

27984

27985

27986

27987

27988

27989

27990

27991

27992

27993

27994

27995

27996

27997

27998

27999

28000

28001

28002

28003

28004

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dlerror()

NAME
dlerror — get diagnostic information

SYNOPSIS
#include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
The dlerror() function shall return a null-terminated character string (with no trailing
<newline>) that describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of dlerror(), dlerror() shall return
NULL. Thus, invoking dlerror() a second time, immediately following a prior invocation, shall
result in NULL being returned.

It is implementation-defined whether or not the dlerror() function is thread-safe. A thread-safe
implementation shall return only errors that occur on the current thread.

RETURN VALUE
If successful, dlerror() shall return a null-terminated character string; otherwise, NULL shall be
returned.

The application shall not modify the string returned. The returned pointer might be invalidated
or the string content might be overwritten by a subsequent call to dlerror() in the same thread (if
dlerror() is thread-safe) or in any thread (if dlerror() is not thread-safe). The returned pointer
might also be invalidated if the calling thread is terminated.

ERRORS
No errors are defined.

EXAMPLES
The following example prints out the last dynamic linking error:

...
#include <dlfcn.h>

char *errstr;

errstr = dlerror();
if (errstr != NULL)

printf ("A dynamic linking error occurred: (%s)\n", errstr);
...

APPLICATION USAGE
Depending on the application environment with respect to asynchronous execution events, such
as signals or other asynchronous computation sharing the address space, conforming
applications should use a critical section to retrieve the error pointer and buffer.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dladdr(), dlclose(), dlopen(), dlsym()

XBD <dlfcn.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 819

28005

28006

28007

28008

28009

28010

28011

28012

28013

28014

28015

28016

28017

28018

28019

28020

28021

28022

28023

28024

28025

28026

28027

28028

28029

28030

28031

28032

28033

28034

28035

28036

28037

28038

28039

28040

28041

28042

28043

28044

28045

28046

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dlerror() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Issue 6
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The dlerror() function is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0070 [75], XSH/TC1-2008/0071 [97],
and XSH/TC1-2008/0072 [133] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0082 [656] is applied.

Issue 8
Austin Group Defect 993 is applied, adding dladdr() to the SEE ALSO section.

820 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28047

28048

28049

28050

28051

28052

28053

28054

28055

28056

28057

28058

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dlopen()

NAME
dlopen — open a symbol table handle

SYNOPSIS
#include <dlfcn.h>

void *dlopen(const char *file, int mode);

DESCRIPTION
The dlopen() function shall make the symbols (function identifiers and data object identifiers) in
the executable object file specified by file available to the calling program.

The class of executable object files eligible for this operation and the manner of their
construction are implementation-defined, though typically such files are shared libraries or
programs.

Implementations may permit the construction of embedded dependencies in executable object
files. In such cases, a dlopen() operation shall load those dependencies in addition to the
executable object file specified by file. Implementations may also impose specific constraints on
the construction of programs that can employ dlopen() and its related services.

A successful dlopen() shall return a symbol table handle which the caller may use on subsequent
calls to dlsym() and dlclose().

The value of this symbol table handle should not be interpreted in any way by the caller.

The file argument is used to construct a pathname to the executable object file. If file contains a
<slash> character, the file argument is used as the pathname for the file. Otherwise, file is used in
an implementation-defined manner to yield a pathname.

If file is a null pointer, dlopen() shall return a global symbol table handle for the currently
running process image. This symbol table handle shall provide access to the symbols from an
ordered set of executable object files consisting of the original program image file, any
executable object files loaded at program start-up as specified by that process file (for example,
shared libraries), and the set of executable object files loaded using dlopen() operations with the
RTLD_GLOBAL flag. As the latter set of executable object files can change during execution, the
set of symbols made available by this symbol table handle can also change dynamically.

Only a single copy of an executable object file shall be brought into the address space, even if
dlopen() is invoked multiple times in reference to the executable object file, and even if different
pathnames are used to reference the executable object file.

The mode parameter describes how dlopen() shall operate upon file with respect to the processing
of relocations and the scope of visibility of the symbols provided within file. When an
executable object file is brought into the address space of a process, it may contain references to
symbols whose addresses are not known until the executable object file is loaded.

These references shall be relocated before the symbols can be accessed. The mode parameter
governs when these relocations take place and may have the following values:

RTLD_LAZY Relocations shall be performed at an implementation-defined time, ranging
from the time of the dlopen() call until the first reference to a given symbol
occurs. Specifying RTLD_LAZY should improve performance on
implementations supporting dynamic symbol binding since a process might
not reference all of the symbols in an executable object file. And, for systems
supporting dynamic symbol resolution for normal process execution, this
behavior mimics the normal handling of process execution.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 821

28059

28060

28061

28062

28063

28064

28065

28066

28067

28068

28069

28070

28071

28072

28073

28074

28075

28076

28077

28078

28079

28080

28081

28082

28083

28084

28085

28086

28087

28088

28089

28090

28091

28092

28093

28094

28095

28096

28097

28098

28099

28100

28101

28102

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dlopen() System Interfaces

RTLD_NOW All necessary relocations shall be performed when the executable object file is
first loaded. This may waste some processing if relocations are performed for
symbols that are never referenced. This behavior may be useful for
applications that need to know that all symbols referenced during execution
will be available before dlopen() returns.

Any executable object file loaded by dlopen() that requires relocations against global symbols
can reference the symbols in the original process image file, any executable object files loaded at
program start-up, from the initial process image itself, from any other executable object file
included in the same dlopen() invocation, and any executable object files that were loaded in any
dlopen() invocation and which specified the RTLD_GLOBAL flag. To determine the scope of
visibility for the symbols loaded with a dlopen() invocation, the mode parameter should be a
bitwise-inclusive OR with one of the following values:

RTLD_GLOBAL The executable object file’s symbols shall be made available for relocation
processing of any other executable object file. In addition, symbol lookup
using dlopen(NULL,mode) and an associated dlsym() allows executable object
files loaded with this mode to be searched.

RTLD_LOCAL The executable object file’s symbols shall not be made available for relocation
processing of any other executable object file.

If neither RTLD_GLOBAL nor RTLD_LOCAL is specified, the default behavior is unspecified.

If an executable object file is specified in multiple dlopen() invocations, mode is interpreted at
each invocation.

If RTLD_NOW has been specified, all relocations shall have been completed rendering further
RTLD_NOW operations redundant and any further RTLD_LAZY operations irrelevant.

If RTLD_GLOBAL has been specified, the executable object file shall maintain the
RTLD_GLOBAL status regardless of any previous or future specification of RTLD_LOCAL, as
long as the executable object file remains in the address space (see dlclose()). If there was a
previous specification of RTLD_LOCAL, it is unspecified whether relocations after the new
specification of RTLD_GLOBAL are made as if the previous specification had been
RTLD_GLOBAL or as if the executable object file had not previously been loaded.

Symbols introduced into the process image through calls to dlopen() may be used in relocation
activities. Symbols so introduced may duplicate symbols already defined by the program or
previous dlopen() operations. To resolve the ambiguities such a situation might present, the
resolution of a symbol reference to symbol definition is based on a symbol resolution order. Two
such resolution orders are defined: load order and dependency order. Load order establishes an
ordering among symbol definitions, such that the first definition loaded (including definitions
from the process image file and any dependent executable object files loaded with it) has priority
over executable object files added later (by dlopen()). Load ordering is used in relocation
processing. Dependency ordering uses a breadth-first order starting with a given executable
object file, then all of its dependencies, then any dependents of those, iterating until all
dependencies are satisfied. With the exception of the global symbol table handle obtained via a
dlopen() operation with a null pointer as the file argument, dependency ordering is used by the
dlsym() function. Load ordering is used in dlsym() operations upon the global symbol table
handle.

When an executable object file is first made accessible via dlopen(), it and its dependent
executable object files are added in dependency order. Once all the executable object files are
added, relocations are performed using load order. Note that if an executable object file or its
dependencies had been previously loaded, the load and dependency orders may yield different

822 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28103

28104

28105

28106

28107

28108

28109

28110

28111

28112

28113

28114

28115

28116

28117

28118

28119

28120

28121

28122

28123

28124

28125

28126

28127

28128

28129

28130

28131

28132

28133

28134

28135

28136

28137

28138

28139

28140

28141

28142

28143

28144

28145

28146

28147

28148

28149

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dlopen()

resolutions.

The symbols introduced by dlopen() operations and available through dlsym() are at a minimum
those which are exported as identifiers of global scope by the executable object file. Typically,
such identifiers shall be those that were specified in (for example) C source code as having
extern linkage. The precise manner in which an implementation constructs the set of exported
symbols for an executable object file is implementation-defined.

RETURN VALUE
Upon successful completion, dlopen() shall return a symbol table handle. If file cannot be found,
cannot be opened for reading, is not of an appropriate executable object file format for
processing by dlopen(), or if an error occurs during the process of loading file or relocating its
symbolic references, dlopen() shall return a null pointer. More detailed diagnostic information
shall be available through dlerror().

ERRORS
No errors are defined.

EXAMPLES
Refer to dlsym().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dladdr(), dlclose(), dlerror(), dlsym()

XBD <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/21 is applied, changing the default
behavior in the DESCRIPTION when neither RTLD_GLOBAL nor RTLD_LOCAL are specified
from implementation-defined to unspecified.

Issue 7
The dlopen() function is moved from the XSI option to the Base.

The EXAMPLES section is updated to refer to dlsym().

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0073 [74] is applied.

Issue 8
Austin Group Defect 982 is applied, clarifying the requirements when changing from
RTLD_LOCAL to RTLD_GLOBAL.

Austin Group Defect 993 is applied, adding dladdr() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 823

28150

28151

28152

28153

28154

28155

28156

28157

28158

28159

28160

28161

28162

28163

28164

28165

28166

28167

28168

28169

28170

28171

28172

28173

28174

28175

28176

28177

28178

28179

28180

28181

28182

28183

28184

28185

28186

28187

28188

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dlsym() System Interfaces

NAME
dlsym — get the address of a symbol from a symbol table handle

SYNOPSIS
#include <dlfcn.h>

void *dlsym(void *restrict handle, const char *restrict name);

DESCRIPTION
The dlsym() function shall obtain the address of a symbol (a function identifier or a data object
identifier) defined in the symbol table identified by the handle argument. The handle argument is
a symbol table handle returned from a call to dlopen() (and which has not since been released by
a call to dlclose()), and name is the symbol’s name as a character string. The return value from
dlsym(), converted from type pointer to void to a pointer to the type of the named symbol, can
be used to call (in the case of a function) or access the contents of (in the case of a data object) the
named symbol.

The dlsym() function shall search for the named symbol in the symbol table referenced by handle.
If the symbol table was created with lazy loading (see RTLD_LAZY in dlopen()), load ordering
shall be used in dlsym() operations to relocate executable object files needed to resolve the
symbol. The symbol resolution algorithm used shall be dependency order as described in
dlopen().

The RTLD_DEFAULT and RTLD_NEXT symbolic constants (which may be defined in
<dlfcn.h>) are reserved for future use as special values that applications may be allowed to use
for handle.

RETURN VALUE
Upon successful completion, if name names a function identifier, dlsym() shall return the address
of the function converted from type pointer to function to type pointer to void; otherwise,
dlsym() shall return the address of the data object associated with the data object identifier
named by name converted from a pointer to the type of the data object to a pointer to void. If
handle does not refer to a valid symbol table handle or if the symbol named by name cannot be
found in the symbol table associated with handle, dlsym() shall return a null pointer.

More detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

EXAMPLES
The following example shows how dlopen() and dlsym() can be used to access either a function
or a data object. For simplicity, error checking has been omitted.

void *handle;
int (*fptr)(int), *iptr, result;
/* open the needed symbol table */
handle = dlopen("/usr/home/me/libfoo.so", RTLD_LOCAL | RTLD_LAZY);
/* find the address of the function my_function */
fptr = (int (*)(int))dlsym(handle, "my_function");
/* find the address of the data object my_object */
iptr = (int *)dlsym(handle, "my_OBJ");
/* invoke my_function, passing the value of my_OBJ as the parameter */
result = (*fptr)(*iptr);

824 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28189

28190

28191

28192

28193

28194

28195

28196

28197

28198

28199

28200

28201

28202

28203

28204

28205

28206

28207

28208

28209

28210

28211

28212

28213

28214

28215

28216

28217

28218

28219

28220

28221

28222

28223

28224

28225

28226

28227

28228

28229

28230

28231

28232

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dlsym()

APPLICATION USAGE
The following special purpose values for handle are reserved for future use and have the
indicated meanings:

RTLD_DEFAULT The identifier lookup happens in the normal global scope; that is, a search for
an identifier using handle would find the same definition as a direct use of this
identifier in the program code.

RTLD_NEXT Specifies the next executable object file after this one that defines name. This
one refers to the executable object file containing the invocation of dlsym().
The next executable object file is the one found upon the application of a load
order symbol resolution algorithm (see dlopen()). The next symbol is either
one of global scope (because it was introduced as part of the original process
image or because it was added with a dlopen() operation including the
RTLD_GLOBAL flag), or is in an executable object file that was included in the
same dlopen() operation that loaded this one.

The RTLD_NEXT flag is useful to navigate an intentionally created hierarchy of multiply-
defined symbols created through interposition. For example, if a program wished to create an
implementation of malloc() that embedded some statistics gathering about memory allocations,
such an implementation could use the real malloc() definition to perform the memory allocation
— and itself only embed the necessary logic to implement the statistics gathering function.

Note that conversion from a void * pointer to a function pointer as in:

fptr = (int (*)(int))dlsym(handle, "my_function");

is not defined by the ISO C standard. This standard requires this conversion to work correctly on
conforming implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dladdr(), dlclose(), dlerror(), dlopen()

XBD <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The restrict keyword is added to the dlsym() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The RTLD_DEFAULT and RTLD_NEXT flags are reserved for future use.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/14 is applied, correcting an example, and
adding text to the RATIONALE describing issues related to conversion of pointers to functions
and back again.

Issue 7
The dlsym() function is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0074 [74] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 825

28233

28234

28235

28236

28237

28238

28239

28240

28241

28242

28243

28244

28245

28246

28247

28248

28249

28250

28251

28252

28253

28254

28255

28256

28257

28258

28259

28260

28261

28262

28263

28264

28265

28266

28267

28268

28269

28270

28271

28272

28273

28274

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dlsym() System Interfaces

Issue 8
Austin Group Defect 993 is applied, adding dladdr() to the SEE ALSO section.

Austin Group Defect 1644 is applied, clarifying that the return value from dlsym() can be
converted from type pointer to void to a pointer to the type of the named symbol using any
valid conversion method, not just casting.

826 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28275

28276

28277

28278

28279

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dngettext()

NAME
dngettext, dngettext_l — message handling functions

SYNOPSIS
#include <libintl.h>

char *dngettext(const char *domainname, const char *msgid,
const char *msgid_plural, unsigned long int n);

char *dngettext_l(const char *domainname, const char *msgid,
const char *msgid_plural, unsigned long int n,
locale_t locale);

DESCRIPTION
Refer to gettext .

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 827

28280

28281

28282

28283

28284

28285

28286

28287

28288

28289

28290

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dprintf() System Interfaces

NAME
dprintf — print formatted output

SYNOPSIS
CX #include <stdio.h>

int dprintf(int fildes, const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

828 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28291

28292

28293

28294

28295

28296

28297

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces drand48()

NAME
drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, srand48 — generate
uniformly distributed pseudo-random numbers

SYNOPSIS
XSI #include <stdlib.h>

double drand48(void);
double erand48(unsigned short xsubi[3]);
long jrand48(unsigned short xsubi[3]);
void lcong48(unsigned short param[7]);
long lrand48(void);
long mrand48(void);
long nrand48(unsigned short xsubi[3]);
unsigned short *seed48(unsigned short seed16v[3]);
void srand48(long seedval);

DESCRIPTION
This family of functions shall generate pseudo-random numbers using a linear congruential
algorithm and 48-bit integer arithmetic.

The drand48() and erand48() functions shall return non-negative, double-precision, floating-
point values, uniformly distributed over the interval [0.0,1.0).

The lrand48() and nrand48() functions shall return non-negative, long integers, uniformly
distributed over the interval [0,231).

The mrand48() and jrand48() functions shall return signed long integers uniformly distributed
over the interval [−231,231).

The srand48(), seed48(), and lcong48() functions are initialization entry points, one of which
should be invoked before either drand48(), lrand48(), or mrand48() is called. (Although it is not
recommended practice, constant default initializer values shall be supplied automatically if
drand48(), lrand48(), or mrand48() is called without a prior call to an initialization entry point.)
The erand48(), nrand48(), and jrand48() functions do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi , according to the
linear congruential formula:

Xn+1 = (aXn + c)mod m n ≥ 0

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless lcong48() is invoked,
the multiplier value a and the addend value c are given by:

a = 5DEECE66D 16 = 273673163155 8

c = B 16 = 13 8

The value returned by any of the drand48(), erand48(), jrand48(), lrand48(), mrand48(), or
nrand48() functions is computed by first generating the next 48-bit Xi in the sequence. Xi is then
converted to the return value as follows:

• For drand48() and erand48() the value shall be 2−48 times Xi .

• For jrand48() and mrand48() the value shall be the largest integer not greater than 2−16

times Xi .

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 829

28298

28299

28300

28301

28302

28303

28304

28305

28306

28307

28308

28309

28310

28311

28312

28313

28314

28315

28316

28317

28318

28319

28320

28321

28322

28323

28324

28325

28326

28327

28328

28329

28330

28331

28332

28333

28334

28335

28336

28337

28338

28339

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

drand48() System Interfaces

• For lrand48() and nrand48() the value shall be the largest integer not greater than 2−17

times Xi .

The drand48(), lrand48(), and mrand48() functions store the last 48-bit Xi generated in an
internal buffer; that is why the application shall ensure that these are initialized prior to being
invoked. The erand48(), nrand48(), and jrand48() functions require the calling program to
provide storage for the successive Xi values in the array specified as an argument when the
functions are invoked. That is why these routines do not have to be initialized; the calling
program merely has to place the desired initial value of Xi into the array and pass it as an
argument. By using different arguments, erand48(), nrand48(), and jrand48() allow separate
modules of a large program to generate several independent streams of pseudo-random numbers;
that is, the sequence of numbers in each stream shall not depend upon how many times the
routines are called to generate numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of Xi to the low-order 32 bits
contained in its argument. The low-order 16 bits of Xi are set to the arbitrary value 330E16.

The initializer function seed48() sets the value of Xi to the 48-bit value specified in the argument
array. The low-order 16 bits of Xi are set to the low-order 16 bits of seed16v[0]. The mid-order 16
bits of Xi are set to the low-order 16 bits of seed16v[1]. The high-order 16 bits of Xi are set to the
low-order 16 bits of seed16v[2]. In addition, the previous value of Xi is copied into a 48-bit
internal buffer, used only by seed48(), and a pointer to this buffer is the value returned by
seed48(). This returned pointer, which can just be ignored if not needed, is useful if a program is
to be restarted from a given point at some future time—use the pointer to get at and store the
last Xi value, and then use this value to reinitialize via seed48() when the program is restarted.

The initializer function lcong48() allows the user to specify the initial Xi , the multiplier value a,
and the addend value c. Argument array elements param[0-2] specify Xi , param[3-5] specify the
multiplier a, and param[6] specifies the 16-bit addend c. After lcong48() is called, a subsequent
call to either srand48() or seed48() shall restore the standard multiplier and addend values, a and
c, specified above.

The drand48(), lrand48(), and mrand48() functions need not be thread-safe.

RETURN VALUE
As described in the DESCRIPTION above.

ERRORS
No errors are defined.

EXAMPLES
The following program tests that the required pseudo-random number generator is used by
these functions.

#include <assert.h>
#include <stdlib.h>

int main() {
{
unsigned short xsubi[3] = {37174, 64810, 11603};
double d = erand48(xsubi);
assert(d >= 0.896);
assert(d <= 0.897);
assert(xsubi[0] == 22537);
assert(xsubi[1] == 47966);
assert(xsubi[2] == 58735);
d = erand48(xsubi);

830 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28340

28341

28342

28343

28344

28345

28346

28347

28348

28349

28350

28351

28352

28353

28354

28355

28356

28357

28358

28359

28360

28361

28362

28363

28364

28365

28366

28367

28368

28369

28370

28371

28372

28373

28374

28375

28376

28377

28378

28379

28380

28381

28382

28383

28384

28385

28386

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces drand48()

assert(d >= 0.337);
assert(d <= 0.338);
assert(xsubi[0] == 37344);
assert(xsubi[1] == 32911);
assert(xsubi[2] == 22119);
d = erand48(xsubi);
assert(d >= 0.647);
assert(d <= 0.648);
assert(xsubi[0] == 23659);
assert(xsubi[1] == 29872);
assert(xsubi[2] == 42445);
d = erand48(xsubi);
assert(d >= 0.500);
assert(d <= 0.501);
assert(xsubi[0] == 31642);
assert(xsubi[1] == 7875);
assert(xsubi[2] == 32802);
d = erand48(xsubi);
assert(d >= 0.506);
assert(d <= 0.507);
assert(xsubi[0] == 64669);
assert(xsubi[1] == 14399);
assert(xsubi[2] == 33170);

}

{
unsigned short xsubi[3] = {25175, 11052, 45015};
assert(jrand48(xsubi) == 1699503220);
assert(xsubi[0] == 2326);
assert(xsubi[1] == 23668);
assert(xsubi[2] == 25932);
assert(jrand48(xsubi) == -992276007);
assert(xsubi[0] == 41577);
assert(xsubi[1] == 4569);
assert(xsubi[2] == 50395);
assert(jrand48(xsubi) == -19535776);
assert(xsubi[0] == 31936);
assert(xsubi[1] == 59488);
assert(xsubi[2] == 65237);
assert(jrand48(xsubi) == 79438377);
assert(xsubi[0] == 40395);
assert(xsubi[1] == 8745);
assert(xsubi[2] == 1212);
assert(jrand48(xsubi) == -1258917728);
assert(xsubi[0] == 37242);
assert(xsubi[1] == 28832);
assert(xsubi[2] == 46326);

}

{
unsigned short xsubi[3] = {546, 33817, 23389};
assert(nrand48(xsubi) == 914920692);
assert(xsubi[0] == 29829);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 831

28387

28388

28389

28390

28391

28392

28393

28394

28395

28396

28397

28398

28399

28400

28401

28402

28403

28404

28405

28406

28407

28408

28409

28410

28411

28412

28413

28414

28415

28416

28417

28418

28419

28420

28421

28422

28423

28424

28425

28426

28427

28428

28429

28430

28431

28432

28433

28434

28435

28436

28437

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

drand48() System Interfaces

assert(xsubi[1] == 10728);
assert(xsubi[2] == 27921);
assert(nrand48(xsubi) == 754104482);
assert(xsubi[0] == 6828);
assert(xsubi[1] == 28997);
assert(xsubi[2] == 23013);
assert(nrand48(xsubi) == 609453945);
assert(xsubi[0] == 58183);
assert(xsubi[1] == 3826);
assert(xsubi[2] == 18599);
assert(nrand48(xsubi) == 1878644360);
assert(xsubi[0] == 36678);
assert(xsubi[1] == 44304);
assert(xsubi[2] == 57331);
assert(nrand48(xsubi) == 2114923686);
assert(xsubi[0] == 58585);
assert(xsubi[1] == 22861);
assert(xsubi[2] == 64542);

}
}

APPLICATION USAGE
These functions should be avoided whenever non-trivial requirements (including safety) have to
be fulfilled, unless seeded using getentropy().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getentropy(), initstate(), rand()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the drand48(), lrand48(), and mrand48() functions need not be reentrant is
added to the DESCRIPTION.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0083 [743] is applied.

Issue 8
Austin Group Defect 1107 is applied, clarifying how the return value is calculated from Xi for
each function.

Austin Group Defect 1134 is applied, adding getentropy().

832 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28438

28439

28440

28441

28442

28443

28444

28445

28446

28447

28448

28449

28450

28451

28452

28453

28454

28455

28456

28457

28458

28459

28460

28461

28462

28463

28464

28465

28466

28467

28468

28469

28470

28471

28472

28473

28474

28475

28476

28477

28478

28479

28480

28481

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dup()

NAME
dup, dup2, dup3 — duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);
int dup3(int fildes, int fildes2, int flag);

DESCRIPTION
The dup() function provides an alternative interface to the service provided by fcntl() using the
F_DUPFD command. The call dup(fildes) shall be equivalent to:

fcntl(fildes, F_DUPFD, 0);

The dup2() function shall cause the file descriptor fildes2 to refer to the same open file
description as the file descriptor fildes and to share any locks, and shall return fildes2. If fildes2 is
already a valid open file descriptor, it shall be closed first, unless fildes is equal to fildes2 in which
case dup2() shall return fildes2 without closing it. If the close operation fails to close fildes2,
dup2() shall return −1 without changing the open file description to which fildes2 refers. If fildes
is not a valid file descriptor, dup2() shall return −1 and shall not close fildes2. If fildes2 is less than
0 or greater than or equal to {OPEN_MAX}, dup2() shall return −1 with errno set to [EBADF].

Upon successful completion, if fildes is not equal to fildes2, the FD_CLOEXEC and
FD_CLOFORK flags associated with fildes2 shall be cleared. If fildes is equal to fildes2, the
FD_CLOEXEC and FD_CLOFORK flags associated with fildes2 shall not be changed.

The dup3() function shall be equivalent to the dup2() function, except that it shall be an error if
fildes is equal to fildes2, and the state of FD_CLOEXEC and FD_CLOFORK on the fildes2 file
descriptor shall be determined solely by the flag argument, which can be constructed from a
bitwise-inclusive OR of flags from the following list:
O_CLOEXEC Atomically set the FD_CLOEXEC flag on fildes2.

O_CLOFORK Atomically set the FD_CLOFORK flag on fildes2.

TYM If fildes refers to a typed memory object, the result of the dup2() or dup3() functions is
unspecified.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, shall be returned;
otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The dup() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EMFILE] All file descriptors available to the process are currently open.

The dup2() and dup3() functions shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor or the argument fildes2 is
negative or greater than or equal to {OPEN_MAX}.

[EINTR] The function was interrupted by a signal.

The dup3() function shall fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 833

28482

28483

28484

28485

28486

28487

28488

28489

28490

28491

28492

28493

28494

28495

28496

28497

28498

28499

28500

28501

28502

28503

28504

28505

28506

28507

28508

28509

28510

28511

28512

28513

28514

28515

28516

28517

28518

28519

28520

28521

28522

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dup() System Interfaces

[EINVAL] The fildes and fildes2 arguments are equal.

The dup2() and dup3() functions may fail if:

[EIO] An I/O error occurred while attempting to close fildes2.

The dup3() function may fail if:

[EINVAL] The value of the flag argument is invalid.

EXAMPLES

Redirecting Standard Output to a File

The following example closes standard output for the current processes, re-assigns standard
output to go to the file referenced by pfd, and closes the original file descriptor to clean up.

#include <unistd.h>
...
int pfd;
...
close(1);
dup(pfd);
close(pfd);
...

Redirecting Error Messages

The following example redirects messages from stderr to stdout.

#include <unistd.h>
...
dup2(1, 2);
...

APPLICATION USAGE
Implementations may use file descriptors that must be inherited into child processes for the
child process to remain conforming, such as for message catalog or tracing purposes. Therefore,
an application that calls dup2() with an arbitrary integer for fildes2 risks non-conforming
behavior, and dup2() can only portably be used to overwrite file descriptor values that the
application has obtained through explicit actions, or for the three file descriptors corresponding
to the standard file streams. In order to avoid a race condition of leaking an unintended file
descriptor into a child process or executed program, an application should consider opening all
file descriptors with the FD_CLOFORK or FD_CLOEXEC flag, or both flags, set unless the file
descriptor is intended to be inherited by child processes or executed programs, respectively.

RATIONALE
The dup() function is redundant. Its services are also provided by the fcntl() function. It has been
included in this volume of POSIX.1-2024 primarily for historical reasons, since many existing
applications use it. On the other hand, the dup2() function provides unique services, as no other
interface is able to atomically replace an existing file descriptor.

The dup2() function is not marked obsolescent because it presents a type-safe version of
functionality provided in a type-unsafe version by fcntl(). It is used in the POSIX Ada binding.

The dup2() function is not intended for use in critical regions as a synchronization mechanism.

In the description of [EBADF], the case of fildes being out of range is covered by the given case of

834 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28523

28524

28525

28526

28527

28528

28529

28530

28531

28532

28533

28534

28535

28536

28537

28538

28539

28540

28541

28542

28543

28544

28545

28546

28547

28548

28549

28550

28551

28552

28553

28554

28555

28556

28557

28558

28559

28560

28561

28562

28563

28564

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces dup()

fildes not being valid. The descriptions for fildes and fildes2 are different because the only kind of
invalidity that is relevant for fildes2 is whether it is out of range; that is, it does not matter
whether fildes2 refers to an open file when the dup2() call is made.

The dup3() function with the O_CLOEXEC and O_CLOFORK flags is necessary to avoid a data
race in multi-threaded applications. Without O_CLOFORK, a file descriptor is leaked into a
child process created by one thread in the window between another thread creating a file
descriptor with dup2() and then using fcntl() to set the FD_CLOFORK flag. Without
O_CLOEXEC, a file descriptor intentionally inherited by child processes is similarly leaked into
an executed program if FD_CLOEXEC is not set atomically. The safe counterpart for avoiding
the same race with dup() is the use of the F_DUPFD_CLOFORK or F_DUPFD_CLOEXEC action
of the fcntl() function.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fcntl(), open()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
SD5-XSH-ERN-187 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0075 [149,428] and
XSH/TC1-2008/0076 [149] are applied.

Issue 8
Austin Group Defects 411, 1318, 1483, and 1577 are applied, adding dup3() and FD_CLOFORK.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 835

28565

28566

28567

28568

28569

28570

28571

28572

28573

28574

28575

28576

28577

28578

28579

28580

28581

28582

28583

28584

28585

28586

28587

28588

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

duplocale() System Interfaces

NAME
duplocale — duplicate a locale object

SYNOPSIS
CX #include <locale.h>

locale_t duplocale(locale_t locobj);

DESCRIPTION
The duplocale() function shall create a duplicate copy of the locale object referenced by the locobj
argument.

If the locobj argument is LC_GLOBAL_LOCALE, duplocale() shall create a new locale object
containing a copy of the global locale determined by the setlocale() function.

The behavior is undefined if the locobj argument is not a valid locale object handle.

RETURN VALUE
Upon successful completion, the duplocale() function shall return a handle for a new locale
object. Otherwise, duplocale() shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The duplocale() function shall fail if:

[ENOMEM] There is not enough memory available to create the locale object or load the
locale data.

EXAMPLES

Constructing an Altered Version of an Existing Locale Object

The following example shows a code fragment to create a slightly altered version of an existing
locale object. The function takes a locale object and a locale name and it replaces the LC_TIME
category data in the locale object with that from the named locale.

#include <locale.h>
...

locale_t
with_changed_lc_time (locale_t obj, const char *name)
{

locale_t retval = duplocale (obj);
if (retval != (locale_t) 0)
{

locale_t changed = newlocale (LC_TIME_MASK, name, retval);
if (changed == (locale_t) 0)

/* An error occurred. Free all allocated resources. */
freelocale (retval);

retval = changed;
}
return retval;

}

836 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28589

28590

28591

28592

28593

28594

28595

28596

28597

28598

28599

28600

28601

28602

28603

28604

28605

28606

28607

28608

28609

28610

28611

28612

28613

28614

28615

28616

28617

28618

28619

28620

28621

28622

28623

28624

28625

28626

28627

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces duplocale()

APPLICATION USAGE
The use of the duplocale() function is recommended for situations where a locale object is being
used in multiple places, and it is possible that the lifetime of the locale object might end before
all uses are finished. Another reason to duplicate a locale object is if a slightly modified form is
needed. This can be achieved by a call to newlocale() following the duplocale() call.

As with the newlocale() function, handles for locale objects created by the duplocale() function
should be released by a corresponding call to freelocale().

The duplocale() function can also be used in conjunction with uselocale((locale_t)0). This returns
the locale in effect for the calling thread, but can have the value LC_GLOBAL_LOCALE. Passing
LC_GLOBAL_LOCALE to functions such as isalnum_l() results in undefined behavior, but
applications can convert it into a usable locale object by using duplocale().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
freelocale(), newlocale(), uselocale()

XBD <locale.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0077 [283,301], XSH/TC1-2008/0078
[283], and XSH/TC1-2008/0079 [301] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0084 [753] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 837

28628

28629

28630

28631

28632

28633

28634

28635

28636

28637

28638

28639

28640

28641

28642

28643

28644

28645

28646

28647

28648

28649

28650

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

encrypt() System Interfaces

NAME
encrypt — encoding function (CRYPT)

SYNOPSIS
OB XSI #include <unistd.h>

void encrypt(char block[64], int edflag);

DESCRIPTION
The encrypt() function shall provide access to an implementation-defined encoding algorithm.
The key generated by setkey() is used to encrypt the string block with encrypt().

The block argument to encrypt() shall be an array of length 64 bytes containing only the bytes
with values of 0 and 1. The array is modified in place to a similar array using the key set by
setkey(). If edflag is 0, the argument is encoded. If edflag is 1, the argument may be decoded (see
the APPLICATION USAGE section); if the argument is not decoded, errno shall be set to
[ENOSYS].

The encrypt() function shall not change the setting of errno if successful. An application wishing
to check for error situations should set errno to 0 before calling encrypt(). If errno is non-zero on
return, an error has occurred.

The encrypt() function need not be thread-safe.

RETURN VALUE
The encrypt() function shall not return a value.

ERRORS
The encrypt() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
The encrypt() function historically used the DES block cipher, which is no longer considered
secure.

In some environments, decoding might not be implemented. This is related to some Government
restrictions on encryption and decryption routines. Historical practice has been to ship a
different version of the encryption library without the decryption feature in the routines
supplied. Thus the exported version of encrypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
The encrypt() function may be removed in a future version.

SEE ALSO
crypt(), setkey()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

838 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28651

28652

28653

28654

28655

28656

28657

28658

28659

28660

28661

28662

28663

28664

28665

28666

28667

28668

28669

28670

28671

28672

28673

28674

28675

28676

28677

28678

28679

28680

28681

28682

28683

28684

28685

28686

28687

28688

28689

28690

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces encrypt()

Issue 5
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0085 [899] is applied.

Issue 8
Austin Group Defect 1192 is applied, marking the encrypt() function as obsolescent.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 839

28691

28692

28693

28694

28695

28696

28697

28698

28699

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

endgrent() System Interfaces

NAME
endgrent, getgrent, setgrent — group database entry functions

SYNOPSIS
XSI #include <grp.h>

void endgrent(void);
struct group *getgrent(void);
void setgrent(void);

DESCRIPTION
The getgrent() function shall return a pointer to a structure containing the broken-out fields of an
entry in the group database. If the group database is not already open, getgrent() shall open it
and return a pointer to a group structure containing the first entry in the database. Thereafter, it
shall return a pointer to a group structure containing the next group structure in the group
database, so successive calls may be used to search the entire database.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the group database. In particular, the system
may deny the existence of some or all of the group database entries associated with groups other
than those groups associated with the caller and may omit users other than the caller from the
list of members of groups in database entries that are returned.

The setgrent() function shall rewind the group database so that the next getgrent() call returns
the first entry, allowing repeated searches.

The endgrent() function shall close the group database.

The setgrent() and endgrent() functions shall not change the setting of errno if successful.

On error, the setgrent() and endgrent() functions shall set errno to indicate the error.

Since no value is returned by the setgrent() and endgrent() functions, an application wishing to
check for error situations should set errno to 0, then call the function, then check errno.

These functions need not be thread-safe.

RETURN VALUE
On successful completion, getgrent() shall return a pointer to a group structure. On end-of-file,
getgrent() shall return a null pointer and shall not change the setting of errno. On error,
getgrent() shall return a null pointer and errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getgrgid(), getgrnam(), or getgrent(). The returned pointer, and pointers
within the structure, might also be invalidated if the calling thread is terminated.

ERRORS
These functions may fail if:

[EINTR] A signal was caught during the operation.

[EIO] An I/O error has occurred.

In addition, the getgrent() and setgrent() functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

840 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28700

28701

28702

28703

28704

28705

28706

28707

28708

28709

28710

28711

28712

28713

28714

28715

28716

28717

28718

28719

28720

28721

28722

28723

28724

28725

28726

28727

28728

28729

28730

28731

28732

28733

28734

28735

28736

28737

28738

28739

28740

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces endgrent()

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the group database, whether the database is a single file, or where in
the file system name space the database resides. Applications should use getgrnam() and
getgrgid() whenever possible because it avoids these dependencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endpwent(), getgrgid(), getgrnam(), getlogin()

XBD <grp.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0080 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0086 [493], XSH/TC2-2008/0087 [656],
and XSH/TC2-2008/0088 [493] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 841

28741

28742

28743

28744

28745

28746

28747

28748

28749

28750

28751

28752

28753

28754

28755

28756

28757

28758

28759

28760

28761

28762

28763

28764

28765

28766

28767

28768

28769

28770

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

endhostent() System Interfaces

NAME
endhostent, gethostent, sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

void endhostent(void);
struct hostent *gethostent(void);
void sethostent(int stayopen);

DESCRIPTION
These functions shall retrieve information about hosts. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

Note: In many cases this database is implemented by the Domain Name System, as documented in
RFC 1034, RFC 1035, and RFC 3596.

The sethostent() function shall open a connection to the database and set the next entry for
retrieval to the first entry in the database. If the stayopen argument is non-zero, the connection
shall not be closed by a call to gethostent(), and the implementation may maintain an open file
descriptor. If a file descriptor is opened, the FD_CLOEXEC flag shall be set; see <fcntl.h>.

The gethostent() function shall read the next entry in the database, opening and closing a
connection to the database as necessary.

Entries shall be returned in hostent structures.

The endhostent() function shall close the connection to the database, releasing any open file
descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, the gethostent() function shall return a pointer to a hostent
structure if the requested entry was found, and a null pointer if the end of the database was
reached or the requested entry was not found.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to gethostent(). The returned pointer, and pointers within the structure, might
also be invalidated if the calling thread is terminated.

ERRORS
The gethostent() and sethostent() functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

842 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28771

28772

28773

28774

28775

28776

28777

28778

28779

28780

28781

28782

28783

28784

28785

28786

28787

28788

28789

28790

28791

28792

28793

28794

28795

28796

28797

28798

28799

28800

28801

28802

28803

28804

28805

28806

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces endhostent()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endservent()

XBD <fcntl.h>, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0081 [75,428] and
XSH/TC1-2008/0082 [75] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0089 [656] is applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement for FD_CLOEXEC to be set if a file
descriptor is opened, and adding the [EMFILE] and [ENFILE] errors.

Austin Group Defect 1685 is applied, updating RFC references.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 843

28807

28808

28809

28810

28811

28812

28813

28814

28815

28816

28817

28818

28819

28820

28821

28822

28823

28824

28825

28826

28827

28828

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

endnetent() System Interfaces

NAME
endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions

SYNOPSIS
#include <netdb.h>

void endnetent(void);
struct netent *getnetbyaddr(uint32_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void);
void setnetent(int stayopen);

DESCRIPTION
These functions shall retrieve information about networks. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

The setnetent() function shall open and rewind the database. If the stayopen argument is non-
zero, the connection to the net database shall not be closed after each call to getnetent() (either
directly, or indirectly through one of the other getnet*() functions), and the implementation may
maintain an open file descriptor to the database. If a file descriptor is used, the FD_CLOEXEC
flag shall be set; see <fcntl.h>.

The getnetent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getnetbyaddr() function shall search the database from the beginning, and find the first entry
for which the address family specified by type matches the n_addrtype member and the network
number net matches the n_net member, opening and closing a connection to the database as
necessary. The net argument shall be the network number in host byte order.

The getnetbyname() function shall search the database from the beginning and find the first entry
for which the network name specified by name matches the n_name member, opening and
closing a connection to the database as necessary.

The getnetbyaddr(), getnetbyname(), and getnetent() functions shall each return a pointer to a
netent structure, the members of which shall contain the fields of an entry in the network
database.

The endnetent() function shall close the database, releasing any open file descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getnetbyaddr(), getnetbyname(), and getnetent() shall return a
pointer to a netent structure if the requested entry was found, and a null pointer if the end of the
database was reached or the requested entry was not found. Otherwise, a null pointer shall be
returned.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getnetbyaddr(), getnetbyname(), or getnetent(). The returned pointer, and
pointers within the structure, might also be invalidated if the calling thread is terminated.

844 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28829

28830

28831

28832

28833

28834

28835

28836

28837

28838

28839

28840

28841

28842

28843

28844

28845

28846

28847

28848

28849

28850

28851

28852

28853

28854

28855

28856

28857

28858

28859

28860

28861

28862

28863

28864

28865

28866

28867

28868

28869

28870

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces endnetent()

ERRORS
The getnetbyaddr(), getnetbyname(), getnetent(), and setnetent() functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <fcntl.h>, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0083 [75] and XSH/TC1-2008/0084
[75] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0090 [656] is applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement for FD_CLOEXEC to be set if a file
descriptor is used, and adding the [EMFILE] and [ENFILE] errors.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 845

28871

28872

28873

28874

28875

28876

28877

28878

28879

28880

28881

28882

28883

28884

28885

28886

28887

28888

28889

28890

28891

28892

28893

28894

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

endprotoent() System Interfaces

NAME
endprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent — network protocol
database functions

SYNOPSIS
#include <netdb.h>

void endprotoent(void);
struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);
void setprotoent(int stayopen);

DESCRIPTION
These functions shall retrieve information about protocols. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

The setprotoent() function shall open a connection to the database, and set the next entry to the
first entry. If the stayopen argument is non-zero, the connection to the network protocol database
shall not be closed after each call to getprotoent() (either directly, or indirectly through one of the
other getproto*() functions), and the implementation may maintain an open file descriptor for
the database. If a file descriptor is used, the FD_CLOEXEC flag shall be set; see <fcntl.h>.

The getprotobyname() function shall search the database from the beginning and find the first
entry for which the protocol name specified by name matches the p_name member, opening and
closing a connection to the database as necessary.

The getprotobynumber() function shall search the database from the beginning and find the first
entry for which the protocol number specified by proto matches the p_proto member, opening
and closing a connection to the database as necessary.

The getprotoent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getprotobyname(), getprotobynumber(), and getprotoent() functions shall each return a pointer
to a protoent structure, the members of which shall contain the fields of an entry in the network
protocol database.

The endprotoent() function shall close the connection to the database, releasing any open file
descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getprotobyname(), getprotobynumber(), and getprotoent() return a
pointer to a protoent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getprotobyname(), getprotobynumber(), or getprotoent(). The returned pointer,
and pointers within the structure, might also be invalidated if the calling thread is terminated.

846 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28895

28896

28897

28898

28899

28900

28901

28902

28903

28904

28905

28906

28907

28908

28909

28910

28911

28912

28913

28914

28915

28916

28917

28918

28919

28920

28921

28922

28923

28924

28925

28926

28927

28928

28929

28930

28931

28932

28933

28934

28935

28936

28937

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces endprotoent()

ERRORS
The getprotobyname(), getprotobynumber(), getprotoent(), and setprotoent() functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <fcntl.h>, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0085 [75] and XSH/TC1-2008/0086
[75] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0091 [656] is applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement for FD_CLOEXEC to be set if a file
descriptor is used, and adding the [EMFILE] and [ENFILE] errors.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 847

28938

28939

28940

28941

28942

28943

28944

28945

28946

28947

28948

28949

28950

28951

28952

28953

28954

28955

28956

28957

28958

28959

28960

28961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

endpwent() System Interfaces

NAME
endpwent, getpwent, setpwent — user database functions

SYNOPSIS
XSI #include <pwd.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

DESCRIPTION
These functions shall retrieve information about users.

The getpwent() function shall return a pointer to a structure containing the broken-out fields of
an entry in the user database. Each entry in the user database contains a passwd structure. If the
user database is not already open, getpwent() shall open it and return a pointer to a passwd
structure containing the first entry in the database. Thereafter, it shall return a pointer to a
passwd structure containing the next entry in the user database. Successive calls can be used to
search the entire user database.

If an end-of-file or an error is encountered on reading, getpwent() shall return a null pointer.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the user database. In particular, the system
may deny the existence of some or all of the user database entries associated with users other
than the caller.

The setpwent() function shall rewind the user database so that the next getpwent() call returns
the first entry, allowing repeated searches.

The endpwent() function shall close the user database.

The setpwent() and endpwent() functions shall not change the setting of errno if successful.

On error, the setpwent() and endpwent() functions shall set errno to indicate the error.

Since no value is returned by the setpwent() and endpwent() functions, an application wishing to
check for error situations should set errno to 0, then call the function, then check errno.

These functions need not be thread-safe.

RETURN VALUE
On successful completion, getpwent() shall return a pointer to a passwd structure. On end-of-
file, getpwent() shall return a null pointer and shall not change the setting of errno. On error,
getpwent() shall return a null pointer and errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getpwuid(), getpwnam(), or getpwent(). The returned pointer, and pointers
within the structure, might also be invalidated if the calling thread is terminated.

ERRORS
These functions may fail if:

[EINTR] A signal was caught during the operation.

[EIO] An I/O error has occurred.

In addition, getpwent() and setpwent() may fail if:

848 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

28962

28963

28964

28965

28966

28967

28968

28969

28970

28971

28972

28973

28974

28975

28976

28977

28978

28979

28980

28981

28982

28983

28984

28985

28986

28987

28988

28989

28990

28991

28992

28993

28994

28995

28996

28997

28998

28999

29000

29001

29002

29003

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces endpwent()

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES

Searching the User Database

The following example uses the getpwent() function to get successive entries in the user
database, returning a pointer to a passwd structure that contains information about each user.
The call to endpwent() closes the user database and cleans up.

#include <pwd.h>
#include <stdio.h>

void printname(uid_t uid)
{

struct passwd *pwd;

setpwent();
while((pwd = getpwent()) != NULL) {

if (pwd->pw_uid == uid) {
printf("name=%s\n",pwd->pw_name);
break;

}
}
endpwent();

}

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the password database, whether the database is a single file, or where
in the file system name space the database resides. Applications should use getpwuid()
whenever possible because it avoids these dependencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getlogin(), getpwnam(), getpwuid()

XBD <pwd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 849

29004

29005

29006

29007

29008

29009

29010

29011

29012

29013

29014

29015

29016

29017

29018

29019

29020

29021

29022

29023

29024

29025

29026

29027

29028

29029

29030

29031

29032

29033

29034

29035

29036

29037

29038

29039

29040

29041

29042

29043

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

endpwent() System Interfaces

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The EXAMPLES section is revised.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0087 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0092 [493], XSH/TC2-2008/0093 [656],
and XSH/TC2-2008/0094 [493] are applied.

850 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29044

29045

29046

29047

29048

29049

29050

29051

29052

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces endservent()

NAME
endservent, getservbyname, getservbyport, getservent, setservent — network services database
functions

SYNOPSIS
#include <netdb.h>

void endservent(void);
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);
void setservent(int stayopen);

DESCRIPTION
These functions shall retrieve information about network services. This information is
considered to be stored in a database that can be accessed sequentially or randomly. The
implementation of this database is unspecified.

The setservent() function shall open a connection to the database, and set the next entry to the
first entry. If the stayopen argument is non-zero, the net database shall not be closed after each
call to the getservent() function (either directly, or indirectly through one of the other getserv*()
functions), and the implementation may maintain an open file descriptor for the database. If a
file descriptor is used, the FD_CLOEXEC flag shall be set; see <fcntl.h>.

The getservent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getservbyname() function shall search the database from the beginning and find the first
entry for which the service name specified by name matches the s_name member and the protocol
name specified by proto matches the s_proto member, opening and closing a connection to the
database as necessary. If proto is a null pointer, any value of the s_proto member shall be
matched.

The getservbyport() function shall search the database from the beginning and find the first entry
for which the port specified by port matches the s_port member and the protocol name specified
by proto matches the s_proto member, opening and closing a connection to the database as
necessary. If proto is a null pointer, any value of the s_proto member shall be matched. The port
argument shall be a value obtained by converting a uint16_t in network byte order to int.

The getservbyname(), getservbyport(), and getservent() functions shall each return a pointer to a
servent structure, the members of which shall contain the fields of an entry in the network
services database.

The endservent() function shall close the database, releasing any open file descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getservbyname(), getservbyport(), and getservent() return a pointer to
a servent structure if the requested entry was found, and a null pointer if the end of the database
was reached or the requested entry was not found. Otherwise, a null pointer is returned.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getservbyname(), getservbyport(), or getservent(). The returned pointer, and
pointers within the structure, might also be invalidated if the calling thread is terminated.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 851

29053

29054

29055

29056

29057

29058

29059

29060

29061

29062

29063

29064

29065

29066

29067

29068

29069

29070

29071

29072

29073

29074

29075

29076

29077

29078

29079

29080

29081

29082

29083

29084

29085

29086

29087

29088

29089

29090

29091

29092

29093

29094

29095

29096

29097

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

endservent() System Interfaces

ERRORS
The getservbyname(), getservbyport(), getservent(), and setservent() functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
The port argument of getservbyport() need not be compatible with the port values of all address
families.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endprotoent(), htonl(), inet_addr()

XBD <fcntl.h>, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-14 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0088 [75] and XSH/TC1-2008/0089
[75] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0095 [656] is applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement for FD_CLOEXEC to be set if a file
descriptor is used, and adding the [EMFILE] and [ENFILE] errors.

852 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29098

29099

29100

29101

29102

29103

29104

29105

29106

29107

29108

29109

29110

29111

29112

29113

29114

29115

29116

29117

29118

29119

29120

29121

29122

29123

29124

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces endutxent()

NAME
endutxent, getutxent, getutxid, getutxline, pututxline, setutxent — user accounting database
functions

SYNOPSIS
XSI #include <utmpx.h>

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *id);
struct utmpx *getutxline(const struct utmpx *line);
struct utmpx *pututxline(const struct utmpx *utmpx);
void setutxent(void);

DESCRIPTION
These functions shall provide access to the user accounting database.

The getutxent() function shall read the next entry from the user accounting database. If the
database is not already open, it shall open it. If it reaches the end of the database, it shall fail.

The getutxid() function shall search forward from the current point in the database. If the
ut_type value of the utmpx structure pointed to by id is BOOT_TIME, OLD_TIME, or
NEW_TIME, then it shall stop when it finds an entry with a matching ut_type value. If the
ut_type value is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS,
then it shall stop when it finds an entry whose type is one of these four and whose ut_id member
matches the ut_id member of the utmpx structure pointed to by id. If the end of the database is
reached without a match, getutxid() shall fail.

The getutxline() function shall search forward from the current point in the database until it
finds an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line value
matching that in the utmpx structure pointed to by line. If the end of the database is reached
without a match, getutxline() shall fail.

The getutxid() or getutxline() function may cache data. For this reason, to use getutxline() to
search for multiple occurrences, the application shall zero out the static data after each success,
or getutxline() may return a pointer to the same utmpx structure.

There is one exception to the rule about clearing the structure before further reads are done. The
implicit read done by pututxline() (if it finds that it is not already at the correct place in the user
accounting database) shall not modify the static structure returned by getutxent(), getutxid(), or
getutxline(), if the application has modified this structure and passed the pointer back to
pututxline().

For all entries that match a request, the ut_type member indicates the type of the entry. Other
members of the entry shall contain meaningful data based on the value of the ut_type member as
follows:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 853

29125

29126

29127

29128

29129

29130

29131

29132

29133

29134

29135

29136

29137

29138

29139

29140

29141

29142

29143

29144

29145

29146

29147

29148

29149

29150

29151

29152

29153

29154

29155

29156

29157

29158

29159

29160

29161

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

endutxent() System Interfaces

ut_type Member Other Members with Meaningful Data
EMPTY No others
BOOT_TIME ut_tv
OLD_TIME ut_tv
NEW_TIME ut_tv
USER_PROCESS ut_id, ut_user (login name of the user), ut_line, ut_pid, ut_tv
INIT_PROCESS ut_id, ut_pid, ut_tv
LOGIN_PROCESS ut_id, ut_user (implementation-defined name of the login

process), ut_line, ut_pid, ut_tv
DEAD_PROCESS ut_id, ut_pid, ut_tv

An implementation that provides extended security controls may impose implementation-
defined restrictions on accessing the user accounting database. In particular, the system may
deny the existence of some or all of the user accounting database entries associated with users
other than the caller.

If the process has appropriate privileges, the pututxline() function shall write out the structure
into the user accounting database. It shall search for a record as if by getutxid() that satisfies the
request. If this search succeeds, then the entry shall be replaced. Otherwise, a new entry shall be
made at the end of the user accounting database.

The endutxent() function shall close the user accounting database.

The setutxent() function shall reset the input to the beginning of the database. This should be
done before each search for a new entry if it is desired that the entire database be examined.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getutxent(), getutxid(), and getutxline() shall return a pointer to a
utmpx structure containing a copy of the requested entry in the user accounting database.
Otherwise, a null pointer shall be returned.

The return value may point to a static area which is overwritten by a subsequent call to
getutxid() or getutxline().

Upon successful completion, pututxline() shall return a pointer to a utmpx structure containing a
copy of the entry added to the user accounting database. Otherwise, a null pointer shall be
returned.

The endutxent() and setutxent() functions shall not return a value.

ERRORS
No errors are defined for the endutxent(), getutxent(), getutxid(), getutxline(), and setutxent()
functions.

The pututxline() function may fail if:

[EPERM] The process does not have appropriate privileges.

854 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29162

29163

29164

29165

29166

29167

29168

29169

29170

29171

29172

29173

29174

29175

29176

29177

29178

29179

29180

29181

29182

29183

29184

29185

29186

29187

29188

29189

29190

29191

29192

29193

29194

29195

29196

29197

29198

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces endutxent()

EXAMPLES
None.

APPLICATION USAGE
The sizes of the arrays in the structure can be found using the sizeof operator.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <utmpx.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0090 [213,428] and
XSH/TC1-2008/0091 [213] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 855

29199

29200

29201

29202

29203

29204

29205

29206

29207

29208

29209

29210

29211

29212

29213

29214

29215

29216

29217

29218

29219

29220

29221

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

environ System Interfaces

NAME
environ — array of character pointers to the environment strings

SYNOPSIS
extern char **environ;

DESCRIPTION
Refer to exec and XBD Chapter 8 (on page 167).

856 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29222

29223

29224

29225

29226

29227

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces erand48()

NAME
erand48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS
XSI #include <stdlib.h>

double erand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 857

29228

29229

29230

29231

29232

29233

29234

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

erf() System Interfaces

NAME
erf, erff, erfl — error functions

SYNOPSIS
#include <math.h>

double erf(double x);
float erff(float x);
long double erfl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the error function of their argument x, defined as:

2

√⎯ ⎯π

x

0
∫ e−t2

dt

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the error function.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is ±Inf, ±1 shall be returned.

If the correct value would cause underflow, a range error may occur, and erf(), erff(), and erfl()
shall return an implementation-defined value no greater in magnitude than DBL_MIN,

MXX FLT_MIN, and LDBL_MIN, respectively. If the IEC 60559 Floating-Point option is supported,
2 * x/sqrt(π) should be returned.

ERRORS
These functions may fail if:

MX Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

858 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29235

29236

29237

29238

29239

29240

29241

29242

29243

29244

29245

29246

29247

29248

29249

29250

29251

29252

29253

29254

29255

29256

29257

29258

29259

29260

29261

29262

29263

29264

29265

29266

29267

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces erf()

EXAMPLES

Computing the Probability for a Normal Variate

This example shows how to use erf() to compute the probability that a normal variate assumes a
value in the range [x1,x2] with x1≤x2.

This example uses the constant M_SQRT1_2 which is part of the XSI option.

#include <math.h>

double
Phi(const double x1, const double x2)
{

return (erf(x2*M_SQRT1_2) - erf(x1*M_SQRT1_2)) / 2;
}

APPLICATION USAGE
Underflow occurs when |x| < DBL_MIN * (sqrt(π)/2).

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
erfc(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.23 (on page 109), <math.h>
CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The erf() function is no longer marked as an extension.

The erfc() function is split out onto its own reference page.

The erff() and erfl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/22 is applied, adding the example to the
EXAMPLES section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0092 [68] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 859

29268

29269

29270

29271

29272

29273

29274

29275

29276

29277

29278

29279

29280

29281

29282

29283

29284

29285

29286

29287

29288

29289

29290

29291

29292

29293

29294

29295

29296

29297

29298

29299

29300

29301

29302

29303

29304

29305

29306

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

erf() System Interfaces

Issue 8
Austin Group Defect 1178 is applied, joining two paragraphs in the RETURN VALUE section.

860 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29307

29308

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces erfc()

NAME
erfc, erfcf, erfcl — complementary error functions

SYNOPSIS
#include <math.h>

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the complementary error function 1.0 − erf (x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the complementary error
function.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and erfc(), erfcf(), and erfcl() shall return 0.0, or (if the IEC 60559 Floating-Point option is not

supported) an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, +1 shall be returned.

If x is −Inf, +2 shall be returned.

If x is +Inf, +0 shall be returned.

MXX If the correct value would cause underflow and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 861

29309

29310

29311

29312

29313

29314

29315

29316

29317

29318

29319

29320

29321

29322

29323

29324

29325

29326

29327

29328

29329

29330

29331

29332

29333

29334

29335

29336

29337

29338

29339

29340

29341

29342

29343

29344

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

erfc() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The erfc() function is provided because of the extreme loss of relative accuracy if erf (x) is called
for large x and the result subtracted from 1.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
erf(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The erfc() function is no longer marked as an extension.

These functions are split out from the erf() reference page.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0093 [68] and XSH/TC1-2008/0094
[68] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0096 [630] is applied.

862 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29345

29346

29347

29348

29349

29350

29351

29352

29353

29354

29355

29356

29357

29358

29359

29360

29361

29362

29363

29364

29365

29366

29367

29368

29369

29370

29371

29372

29373

29374

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces erff()

NAME
erff, erfl — error functions

SYNOPSIS
#include <math.h>

float erff(float x);
long double erfl(long double x);

DESCRIPTION
Refer to erf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 863

29375

29376

29377

29378

29379

29380

29381

29382

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

errno System Interfaces

NAME
errno — error return value

SYNOPSIS
#include <errno.h>

DESCRIPTION
The lvalue to which the macro errno expands is used by many functions to return error values.

Many functions provide an error number in errno, which has type int and is defined in
<errno.h>. The value of errno in the initial thread shall be zero at program startup (the initial
value of errno in other threads is an indeterminate value) and shall otherwise be defined only
after a call to a function for which it is explicitly stated to be set and until it is changed by the
next function call or if the application assigns it a value. The value of errno should only be
examined when it is indicated to be valid by a function’s return value. Applications shall obtain
the definition of errno by the inclusion of <errno.h>. No function in this volume of
POSIX.1-2024 shall set errno to 0. The setting of errno after a successful call to a function is
unspecified unless the description of that function specifies that errno shall not be modified.

If the macro definition is suppressed in order to access an actual object, or a program defines an
identifier with the name errno, the behavior is undefined.

The symbolic values stored in errno are documented in the ERRORS sections on all relevant
pages.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES
None.

APPLICATION USAGE
Previously both POSIX and X/Open documents were more restrictive than the ISO C standard
in that they required errno to be defined as an external variable, whereas the ISO C standard
required only that errno be defined as a modifiable lvalue with type int.

An application that needs to examine the value of errno to determine the error should set it to 0
before a function call, then inspect it before a subsequent function call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.3

XBD <errno.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The following sentence is deleted from the DESCRIPTION: ``The value of errno is 0 at program
start-up, but is never set to 0 by any XSI function’’.

864 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29383

29384

29385

29386

29387

29388

29389

29390

29391

29392

29393

29394

29395

29396

29397

29398

29399

29400

29401

29402

29403

29404

29405

29406

29407

29408

29409

29410

29411

29412

29413

29414

29415

29416

29417

29418

29419

29420

29421

29422

29423

29424

29425

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces errno

The DESCRIPTION also no longer states that conforming implementations may support the
declaration:

extern int errno;

Issue 6
Obsolescent text regarding defining errno as:

extern int errno

is removed.

Text regarding no function setting errno to zero to indicate an error is changed to no function
shall set errno to zero. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/23 is applied, adding text to the
DESCRIPTION stating that the setting of errno after a successful call to a function is unspecified
unless the description of the function requires that it will not be modified.

Issue 8
Austin Group Defect 1302 is applied, aligning this macro with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 865

29426

29427

29428

29429

29430

29431

29432

29433

29434

29435

29436

29437

29438

29439

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec System Interfaces

NAME
environ, execl, execle, execlp, execv, execve, execvp, fexecve — execute a file

SYNOPSIS
#include <unistd.h>

extern char **environ;
int execl(const char *path, const char *arg0, ... /*, (char *)0 */);
int execle(const char *path, const char *arg0, ... /*,

(char *)0, char *const envp[]*/);
int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);
int execv(const char *path, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);
int execvp(const char *file, char *const argv[]);
int fexecve(int fd, char *const argv[], char *const envp[]);

DESCRIPTION
The exec family of functions shall replace the current process image with a new process image.
The new image shall be constructed from a regular, executable file called the new process image
file. There shall be no return from a successful exec, because the calling process image is overlaid
by the new process image.

The fexecve() function shall be equivalent to the execve() function except that the file to be
executed is determined by the file descriptor fd instead of a pathname. The file offset of fd is
ignored.

When a C-language program is executed as a result of a call to one of the exec family of
functions, it shall be entered as a C-language function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable, which needs to be declared by the user if it is to
be used directly:

extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The argv
and environ arrays are each terminated by a null pointer. The null pointer terminating the argv
array is not counted in argc.

Applications can change the entire environment in a single operation by assigning the environ
variable to point to an array of character pointers to the new environment strings. After
assigning a new value to environ, applications should not rely on the new environment strings

XSI remaining part of the environment, as a call to getenv(), secure_getenv(), putenv(), setenv(),
unsetenv(), or any function that is dependent on an environment variable may, on noticing that
environ has changed, copy the environment strings to a new array and assign environ to point to
it.

Any application that directly modifies the pointers to which the environ variable points has
undefined behavior.

Conforming multi-threaded applications shall not use the environ variable to access or modify
any environment variable while any other thread is concurrently modifying any environment
variable. A call to any function dependent on any environment variable shall be considered a
use of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions shall be passed on to the
new process image in the corresponding main() arguments.

866 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29440

29441

29442

29443

29444

29445

29446

29447

29448

29449

29450

29451

29452

29453

29454

29455

29456

29457

29458

29459

29460

29461

29462

29463

29464

29465

29466

29467

29468

29469

29470

29471

29472

29473

29474

29475

29476

29477

29478

29479

29480

29481

29482

29483

29484

29485

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exec

For the execl(), execle(), execv(), and execve() functions, the argument path points to a pathname
that identifies the new process image file.

For the execlp() and execvp() functions, the argument file is used to construct a pathname that
identifies the new process image file. If the file argument contains a <slash> character, the file
argument shall be used as the pathname for this file. Otherwise, the path prefix for this file is
obtained by a search of the directories passed as the environment variable PA TH (see XBD
Chapter 8, on page 167). If this environment variable is not present, the results of the search are
implementation-defined.

There are two distinct ways in which the contents of the process image file may cause the
execution to fail, distinguished by the setting of errno to either [ENOEXEC] or [EINVAL] (see the
ERRORS section). In the cases where the other members of the exec family of functions would
fail and set errno to [ENOEXEC], the execlp() and execvp() functions shall execute a command
interpreter and the environment of the executed command shall be as if the process invoked the
sh utility using execl() as follows:

execl(<shell path>, <name>, file, <args>, (char *)0);

where <shell path> is an unspecified pathname for the sh utility, <name> is an unspecified string,
file is the process image file, and where <args> is zero or more parameters corresponding to any
initial non-null arguments passed after arg0 for execlp() or to any initial non-null members of
argv starting at argv[1] for execvp().

The arguments represented by arg0, . . . are pointers to null-terminated character strings. These
strings shall constitute the argument list available to the new process image. The list is
terminated by a null pointer. The argument arg0 should point to a filename string that is
associated with the process being started by one of the exec functions.

The argument argv is an array of character pointers to null-terminated strings. The application
shall ensure that the last member of this array is a null pointer. These strings shall constitute the
argument list available to the new process image. The value in argv[0] should point to a filename
string that is associated with the process being started by one of the exec functions.

The argument envp is an array of character pointers to null-terminated strings. These strings
shall constitute the environment for the new process image. The envp array is terminated by a
null pointer.

For those forms not containing an envp pointer (execl(), execv(), execlp(), and execvp()), the
environment for the new process image shall be taken from the external variable environ in the
calling process.

The number of bytes available for the new process’ combined argument and environment lists is
{ARG_MAX}. It is implementation-defined whether null terminators, pointers, and/or any
alignment bytes are included in this total.

File descriptors open in the calling process image shall remain open in the new process image,
except for those whose close-on-exec flag FD_CLOEXEC is set. For those file descriptors that
remain open, all attributes of the open file description shall remain unchanged and the
FD_CLOFORK file descriptor flag, if set, shall remain set. For any file descriptor that is closed
for this reason, process-owned file locks that the calling process owns on the file associated with
the file descriptor shall be unlocked as a result of the close, as described in close(). File locks that
are not unlocked by closing of file descriptors remain unchanged.

If file descriptor 0, 1, or 2 would otherwise be closed after a successful call to one of the exec
family of functions, implementations may open an unspecified file for the file descriptor in the
new process image. If a standard utility or a conforming application is executed with file

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 867

29486

29487

29488

29489

29490

29491

29492

29493

29494

29495

29496

29497

29498

29499

29500

29501

29502

29503

29504

29505

29506

29507

29508

29509

29510

29511

29512

29513

29514

29515

29516

29517

29518

29519

29520

29521

29522

29523

29524

29525

29526

29527

29528

29529

29530

29531

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec System Interfaces

descriptor 0 not open for reading or with file descriptor 1 or 2 not open for writing, the
environment in which the utility or application is executed shall be deemed non-conforming,
and consequently the utility or application might not behave as described in this standard.

Directory streams open in the calling process image shall be closed in the new process image.

The state of the floating-point environment in the initial thread of the new process image shall
be set to the default.

The state of conversion descriptors and message catalog descriptors in the new process image is
undefined.

For the new process image, the equivalent of:

setlocale(LC_ALL, "C")

shall be executed at start-up.

Signals set to the default action (SIG_DFL) in the calling process image shall be set to the default
action in the new process image. Except for SIGCHLD, signals set to be ignored (SIG_IGN) by
the calling process image shall be set to be ignored by the new process image. Signals set to be
caught by the calling process image shall be set to the default action in the new process image
(see <signal.h>).

If the SIGCHLD signal is set to be ignored by the calling process image, it is unspecified whether
the SIGCHLD signal is set to be ignored or to the default action in the new process image.

XSI After a successful call to any of the exec functions, alternate signal stacks are not preserved and
the SA_ONSTACK flag shall be cleared for all signals.

After a successful call to any of the exec functions, any functions previously registered by the
atexit(), at_quick_exit(), or pthread_atfork() functions are no longer registered.

XSI If the ST_NOSUID bit is set for the file system containing the new process image file, then the
effective user ID, effective group ID, saved set-user-ID, and saved set-group-ID are unchanged
in the new process image. Otherwise, if the set-user-ID mode bit of the new process image file is
set, the effective user ID of the new process image shall be set to the user ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image shall be set to the group ID of the new process
image file. The real user ID, real group ID, and supplementary group IDs of the new process
image shall remain the same as those of the calling process image. The effective user ID and
effective group ID of the new process image shall be saved (as the saved set-user-ID and the
saved set-group-ID) for use by setuid().

XSI Any shared memory segments attached to the calling process image shall not be attached to the
new process image.

Any named semaphores open in the calling process shall be closed as if by appropriate calls to
sem_close(). Any unnamed semaphores open in the calling process shall be destroyed as if by
calls to sem_destroy().

TYM Any blocks of typed memory that were mapped in the calling process are unmapped, as if
munmap() was implicitly called to unmap them.

ML Memory locks established by the calling process via calls to mlockall() or mlock() shall be
removed. If locked pages in the address space of the calling process are also mapped into the
address spaces of other processes and are locked by those processes, the locks established by the
other processes shall be unaffected by the call by this process to the exec function. If the exec
function fails, the effect on memory locks is unspecified.

868 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29532

29533

29534

29535

29536

29537

29538

29539

29540

29541

29542

29543

29544

29545

29546

29547

29548

29549

29550

29551

29552

29553

29554

29555

29556

29557

29558

29559

29560

29561

29562

29563

29564

29565

29566

29567

29568

29569

29570

29571

29572

29573

29574

29575

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exec

Memory mappings created in the process are unmapped before the address space is rebuilt for
the new process image.

SS When the calling process image does not use the SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC scheduling policies, the scheduling policy and parameters of the new
process image and the initial thread in that new process image are implementation-defined.

PS When the calling process image uses the SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC
scheduling policies, the process policy and scheduling parameter settings shall not be changed

TPS by a call to an exec function. The initial thread in the new process image shall inherit the process
scheduling policy and parameters. It shall have the default system contention scope, but shall
inherit its allocation domain from the calling process image.

Per-process timers created by the calling process shall be deleted before replacing the current
process image with the new process image.

MSG All open message queue descriptors in the calling process shall be closed, as described in
mq_close().

Any outstanding asynchronous I/O operations may be canceled. Those asynchronous I/O
operations that are not canceled shall complete as if the exec function had not yet occurred, but
any associated signal notifications shall be suppressed. It is unspecified whether the exec
function itself blocks awaiting such I/O completion. In no event, however, shall the new process
image created by the exec function be affected by the presence of outstanding asynchronous I/O
operations at the time the exec function is called. Whether any I/O is canceled, and which I/O
may be canceled upon exec, is implementation-defined.

CPT The new process image shall inherit the CPU-time clock of the calling process image. This
inheritance means that the process CPU-time clock of the process being exec-ed shall not be
reinitialized or altered as a result of the exec function other than to reflect the time spent by the
process executing the exec function itself.

TCT The initial value of the CPU-time clock of the initial thread of the new process image shall be set
to zero.

The thread ID of the initial thread in the new process image is unspecified.

The size and location of the stack on which the initial thread in the new process image runs is
unspecified.

The initial thread in the new process image shall have its cancellation type set to
PTHREAD_CANCEL_DEFERRED and its cancellation state set to
PTHREAD_CANCEL_ENABLED.

The initial thread in the new process image shall have all thread-specific data values set to
NULL and all thread-specific data keys shall be removed by the call to exec without running
destructors.

The initial thread in the new process image shall be joinable, as if created with the detachstate
attribute set to PTHREAD_CREATE_JOINABLE.

The new process shall inherit at least the following attributes from the calling process image:

XSI • Nice value (see nice())

XSI • semadj values (see semop())

• Process ID

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 869

29576

29577

29578

29579

29580

29581

29582

29583

29584

29585

29586

29587

29588

29589

29590

29591

29592

29593

29594

29595

29596

29597

29598

29599

29600

29601

29602

29603

29604

29605

29606

29607

29608

29609

29610

29611

29612

29613

29614

29615

29616

29617

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec System Interfaces

• Parent process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• Time left until an alarm clock signal (see alarm())

• Current working directory

• Root directory

• File mode creation mask (see umask())

• File size limit (see getrlimit() and setrlimit())

• Process signal mask (see pthread_sigmask())

• Pending signal (see sigpending())

• tms_utime, tms_stime, tms_cutime, and tms_cstime (see times())

• Resource limits

• Controlling terminal

The initial thread of the new process shall inherit at least the following attributes from the
calling thread:

• Signal mask (see sigprocmask() and pthread_sigmask())

• Pending signals (see sigpending())

All other process attributes defined in this volume of POSIX.1-2024 shall be inherited in the new
process image from the old process image. All other thread attributes defined in this volume of
POSIX.1-2024 shall be inherited in the initial thread in the new process image from the calling
thread in the old process image. The inheritance of process or thread attributes not defined by
this volume of POSIX.1-2024 is implementation-defined.

A call to any exec function from a process with more than one thread shall result in all threads
being terminated and the new executable image being loaded and executed. No destructor
functions or cleanup handlers shall be called.

Upon successful completion, the exec functions shall mark for update the last data access
timestamp of the file. If an exec function failed but was able to locate the process image file,
whether the last data access timestamp is marked for update is unspecified. Should the exec
function succeed, the process image file shall be considered to have been opened with open().
The corresponding close() shall be considered to occur at a time after this open, but before
process termination or successful completion of a subsequent call to one of the exec functions,
posix_spawn(), or posix_spawnp(). The argv[] and envp[] arrays of pointers and the strings to
which those arrays point shall not be modified by a call to one of the exec functions, except as a
consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the process’
corresponding hard and soft limits.

870 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29618

29619

29620

29621

29622

29623

29624

29625

29626

29627

29628

29629

29630

29631

29632

29633

29634

29635

29636

29637

29638

29639

29640

29641

29642

29643

29644

29645

29646

29647

29648

29649

29650

29651

29652

29653

29654

29655

29656

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exec

RETURN VALUE
If one of the exec functions returns to the calling process image, an error has occurred; the return
value shall be −1, and errno shall be set to indicate the error.

ERRORS
The exec functions shall fail if:

[E2BIG] The number of bytes used by the new process image’s argument list and
environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

[EACCES] The new process image file is not a regular file and the implementation does
not support execution of files of its type.

[EINVAL] The new process image file has appropriate privileges and has a recognized
executable binary format, but the system does not support execution of a file
with this format.

The exec functions, except for fexecve(), shall fail if:

[EACCES] Search permission is denied for a directory listed in the new process image
file’s path prefix, or the new process image file denies execution permission.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path or file
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path or file does not name an existing file or path or file is an
empty string.

[ENOTDIR] A component of the new process image file’s path prefix names an existing file
that is neither a directory nor a symbolic link to a directory, or the new process
image file’s pathname contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory.

The exec functions, except for execlp() and execvp(), shall fail if:

[ENOEXEC] The new process image file has the appropriate access permission but has an
unrecognized format.

The fexecve() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor open for executing.

The exec functions may fail if:

[ENOMEM] The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

The exec functions, except for fexecve(), may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path or file argument.

[ENAMETOOLONG]
The length of the path argument or the length of the pathname constructed
from the file argument exceeds {PATH_MAX}, or pathname resolution of a

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 871

29657

29658

29659

29660

29661

29662

29663

29664

29665

29666

29667

29668

29669

29670

29671

29672

29673

29674

29675

29676

29677

29678

29679

29680

29681

29682

29683

29684

29685

29686

29687

29688

29689

29690

29691

29692

29693

29694

29695

29696

29697

29698

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec System Interfaces

symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

EXAMPLES

Using execl()

The following example executes the ls command, specifying the pathname of the executable
(/bin/ls) and using arguments supplied directly to the command to produce single-column
output.

#include <unistd.h>

int ret;
...
ret = execl ("/bin/ls", "ls", "-1", (char *)0);

Using execle()

The following example is similar to Using execl(). In addition, it specifies the environment for
the new process image using the env argument.

#include <unistd.h>

int ret;
char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };
...
ret = execle ("/bin/ls", "ls", "-l", (char *)0, env);

Using execlp()

The following example searches for the location of the ls command among the directories
specified by the PA TH environment variable.

#include <unistd.h>

int ret;
...
ret = execlp ("ls", "ls", "-l", (char *)0);

Using execv()

The following example passes arguments to the ls command in the cmd array.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
...
ret = execv ("/bin/ls", cmd);

872 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29699

29700

29701

29702

29703

29704

29705

29706

29707

29708

29709

29710

29711

29712

29713

29714

29715

29716

29717

29718

29719

29720

29721

29722

29723

29724

29725

29726

29727

29728

29729

29730

29731

29732

29733

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exec

Using execve()

The following example passes arguments to the ls command in the cmd array, and specifies the
environment for the new process image using the env argument.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };
...
ret = execve ("/bin/ls", cmd, env);

Using execvp()

The following example searches for the location of the ls command among the directories
specified by the PA TH environment variable, and passes arguments to the ls command in the
cmd array.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
...
ret = execvp ("ls", cmd);

APPLICATION USAGE
As the state of conversion descriptors and message catalog descriptors in the new process image
is undefined, conforming applications should not rely on their use and should close them prior
to calling one of the exec functions.

Applications that require other than the default POSIX locale as the global locale in the new
process image should call setlocale() with the appropriate parameters.

When assigning a new value to the environ variable, applications should ensure that the
environment to which it will point contains at least the following:

1. Any implementation-defined variables required by the implementation to provide a
conforming environment. See the _CS_V8_ENV entry in <unistd.h> and confstr() for
details.

2. A value for PA TH which finds conforming versions of all standard utilities before any
other versions.

The same constraint applies to the envp array passed to execle() or execve(), in order to ensure
that the new process image is invoked in a conforming environment.

Applications should not execute programs with file descriptor 0 not open for reading or with file
descriptor 1 or 2 not open for writing, as this might cause the executed program to misbehave.
In order not to pass on these file descriptors to an executed program, applications should not
just close them but should reopen them on, for example, /dev/null. Some implementations may
reopen them automatically, but applications should not rely on this being done.

If an application wants to perform an integrity test of the file being executed before executing it,
the file will need to be opened with read permission to perform the integrity test.

Since execute permission is checked by fexecve(), the file description fd need not have been
opened with the O_EXEC flag. However, if the file to be executed denies read and write
permission for the process preparing to do the exec, the only way to provide the fd to fexecve()

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 873

29734

29735

29736

29737

29738

29739

29740

29741

29742

29743

29744

29745

29746

29747

29748

29749

29750

29751

29752

29753

29754

29755

29756

29757

29758

29759

29760

29761

29762

29763

29764

29765

29766

29767

29768

29769

29770

29771

29772

29773

29774

29775

29776

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec System Interfaces

will be to use the O_EXEC flag when opening fd. In this case, the application will not be able to
perform an integrity test since it will not be able to read the contents of the file.

Note that when a file descriptor is opened with O_RDONLY, O_RDWR, or O_WRONLY mode,
the file descriptor can be used to read, read and write, or write the file, respectively, even if the
mode of the file changes after the file was opened. Using the O_EXEC open mode is different;
fexecve() will ignore the mode that was used when the file descriptor was opened and the exec
will fail if the mode of the file associated with fd does not grant execute permission to the calling
process at the time fexecve() is called.

RATIONALE
Early proposals required that the value of argc passed to main() be ``one or greater ’’. This was
driven by the same requirement in drafts of the ISO C standard. In fact, historical
implementations have passed a value of zero when no arguments are supplied to the caller of
the exec functions. This requirement was removed from the ISO C standard and subsequently
removed from this volume of POSIX.1-2024 as well. The wording, in particular the use of the
word should, requires a Strictly Conforming POSIX Application to pass at least one argument to
the exec function, thus guaranteeing that argc be one or greater when invoked by such an
application. In fact, this is good practice, since many existing applications reference argv[0]
without first checking the value of argc.

The requirement on a Strictly Conforming POSIX Application also states that the value passed as
the first argument be a filename string associated with the process being started. Although some
existing applications pass a pathname rather than a filename string in some circumstances, a
filename string is more generally useful, since the common usage of argv[0] is in printing
diagnostics. In some cases the filename passed is not the actual filename of the file; for example,
many implementations of the login utility use a convention of prefixing a <hyphen-minus>
('-') to the actual filename, which indicates to the command interpreter being invoked that it is
a ``login shell’’.

Also, note that the test and [utilities require specific strings for the argv[0] argument to have
deterministic behavior across all implementations.

Historically, there have been two ways that implementations can exec shell scripts.

One common historical implementation is that the execl(), execv(), execle(), and execve()
functions return an [ENOEXEC] error for any file not recognizable as executable, including a
shell script. When the execlp() and execvp() functions encounter such a file, they assume the file
to be a shell script and invoke a known command interpreter to interpret such files. This is now
required by POSIX.1-2024. These implementations of execvp() and execlp() only give the
[ENOEXEC] error in the rare case of a problem with the command interpreter ’s executable file.
Because of these implementations, the [ENOEXEC] error is not mentioned for execlp() or
execvp(), although implementations can still give it.

Another way that some historical implementations handle shell scripts is by recognizing the first
two bytes of the file as the character string "#!" and using the remainder of the first line of the
file as the name of the command interpreter to execute.

One potential source of confusion noted by the standard developers is over how the contents of
a process image file affect the behavior of the exec family of functions. The following is a
description of the actions taken:

1. If the process image file is a valid executable (in a format that is executable and valid and
having appropriate privileges) for this system, then the system executes the file.

874 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29777

29778

29779

29780

29781

29782

29783

29784

29785

29786

29787

29788

29789

29790

29791

29792

29793

29794

29795

29796

29797

29798

29799

29800

29801

29802

29803

29804

29805

29806

29807

29808

29809

29810

29811

29812

29813

29814

29815

29816

29817

29818

29819

29820

29821

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exec

2. If the process image file has appropriate privileges and is in a format that is executable
but not valid for this system (such as a recognized binary for another architecture), then
this is an error and errno is set to [EINVAL] (see later RATIONALE on [EINVAL]).

3. If the process image file has appropriate privileges but is not otherwise recognized:

a. If this is a call to execlp() or execvp(), then they invoke a command interpreter
assuming that the process image file is a shell script.

b. If this is not a call to execlp() or execvp(), then an error occurs and errno is set to
[ENOEXEC].

Applications that do not require to access their arguments may use the form:

main(void)

as specified in the ISO C standard. However, the implementation will always provide the two
arguments argc and argv, even if they are not used.

Some implementations provide a third argument to main() called envp. This is defined as a
pointer to the environment. The ISO C standard specifies invoking main() with two arguments,
so implementations are required to support applications written this way. Since this volume of
POSIX.1-2024 defines the global variable environ, which is also provided by historical
implementations and can be used anywhere that envp could be used, there is no functional need
for the envp argument. Applications should use the getenv() function rather than accessing the
environment directly via either envp or environ. Implementations are required to support the
two-argument calling sequence, but this does not prohibit an implementation from supporting
envp as an optional third argument.

This volume of POSIX.1-2024 specifies that signals set to SIG_IGN remain set to SIG_IGN, and
that the new process image inherits the signal mask of the thread that called exec in the old
process image. This is consistent with historical implementations, and it permits some useful
functionality, such as the nohup command. However, it should be noted that many existing
applications wrongly assume that they start with certain signals set to the default action and/or
unblocked. In particular, applications written with a simpler signal model that does not include
blocking of signals, such as the one in the ISO C standard, may not behave properly if invoked
with some signals blocked. Therefore, it is best not to block or ignore signals across execs without
explicit reason to do so, and especially not to block signals across execs of arbitrary (not closely
cooperating) programs.

The exec functions always save the value of the effective user ID and effective group ID of the
process at the completion of the exec, whether or not the set-user-ID or the set-group-ID bit of
the process image file is set.

The statement about argv[] and envp[] being constants is included to make explicit to future
writers of language bindings that these objects are completely constant. Due to a limitation of
the ISO C standard, it is not possible to state that idea in standard C. Specifying two levels of
const−qualification for the argv[] and envp[] parameters for the exec functions may seem to be the
natural choice, given that these functions do not modify either the array of pointers or the
characters to which the function points, but this would disallow existing correct code. Instead,
only the array of pointers is noted as constant. The table of assignment compatibility for dst=src
derived from the ISO C standard summarizes the compatibility:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 875

29822

29823

29824

29825

29826

29827

29828

29829

29830

29831

29832

29833

29834

29835

29836

29837

29838

29839

29840

29841

29842

29843

29844

29845

29846

29847

29848

29849

29850

29851

29852

29853

29854

29855

29856

29857

29858

29859

29860

29861

29862

29863

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec System Interfaces

dst: char *[] const char *[] char *const[] const char *const[]
src:
char *[] VALID — VALID —
const char *[] — VALID — VALID
char * const [] — — VALID —
const char *const[] — — — VALID

Since all existing code has a source type matching the first row, the column that gives the most
valid combinations is the third column. The only other possibility is the fourth column, but
using it would require a cast on the argv or envp arguments. It is unfortunate that the fourth
column cannot be used, because the declaration a non-expert would naturally use would be that
in the second row.

The ISO C standard and this volume of POSIX.1-2024 do not conflict on the use of environ, but
some historical implementations of environ may cause a conflict. As long as environ is treated in
the same way as an entry point (for example, fork()), it conforms to both standards. A library can
contain fork(), but if there is a user-provided fork(), that fork() is given precedence and no
problem ensues. The situation is similar for environ: the definition in this volume of
POSIX.1-2024 is to be used if there is no user-provided environ to take precedence. At least three
implementations are known to exist that solve this problem.

[E2BIG] The limit {ARG_MAX} applies not just to the size of the argument list, but to
the sum of that and the size of the environment list.

[EFAULT] Some historical systems return [EFAULT] rather than [ENOEXEC] when the
new process image file is corrupted. They are non-conforming.

[EINVAL] This error condition was added to POSIX.1-2024 to allow an implementation
to detect executable files generated for different architectures, and indicate this
situation to the application. Historical implementations of shells, execvp(), and
execlp() that encounter an [ENOEXEC] error will execute a shell on the
assumption that the file is a shell script. This will not produce the desired
effect when the file is a valid executable for a different architecture. An
implementation may now choose to avoid this problem by returning
[EINVAL] when a valid executable for a different architecture is encountered.
Some historical implementations return [EINVAL] to indicate that the path
argument contains a character with the high order bit set. The standard
developers chose to deviate from historical practice for the following reasons:

1. The new utilization of [EINVAL] will provide some measure of utility
to the user community.

2. Historical use of [EINVAL] is not acceptable in an internationalized
operating environment.

[ENAMETOOLONG]
Since the file pathname may be constructed by taking elements in the PA TH
variable and putting them together with the filename, the
[ENAMETOOLONG] error condition could also be reached this way.

[ETXTBSY] System V returns this error when the executable file is currently open for
writing by some process. This volume of POSIX.1-2024 neither requires nor
prohibits this behavior.

Other systems (such as System V) may return [EINTR] from exec. This is not addressed by this
volume of POSIX.1-2024, but implementations may have a window between the call to exec and

876 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29864

29865

29866

29867

29868

29869

29870

29871

29872

29873

29874

29875

29876

29877

29878

29879

29880

29881

29882

29883

29884

29885

29886

29887

29888

29889

29890

29891

29892

29893

29894

29895

29896

29897

29898

29899

29900

29901

29902

29903

29904

29905

29906

29907

29908

29909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exec

the time that a signal could cause one of the exec calls to return with [EINTR].

An explicit statement regarding the floating-point environment (as defined in the <fenv.h>
header) was added to make it clear that the floating-point environment is set to its default when
a call to one of the exec functions succeeds. The requirements for inheritance or setting to the
default for other process and thread start-up functions is covered by more generic statements in
their descriptions and can be summarized as follows:

posix_spawn() Set to default.

fork() Inherit.

pthread_create() Inherit.

The purpose of the fexecve() function is to enable executing a file which has been verified to be
the intended file. It is possible to actively check the file by reading from the file descriptor and be
sure that the file is not exchanged for another between the reading and the execution.
Alternatively, a function like openat() can be used to open a file which has been found by
reading the content of a directory using readdir().

When execlp() or execvp() fall back to invoking sh because of an [ENOEXEC] condition, the
standard leaves the process name (what becomes argv[0] in the resulting sh process) unspecified.
Existing implementations vary on whether they pass a variation of "sh", or preserve the
original arg0. There are existing implementations of sh that behave differently depending on the
contents of argv[0], such that blindly passing the original arg0 on to the fallback execution can
fail to invoke a compliant shell environment. Because of the requirements on how sh handles its
command line arguments, the shell script will see $0 containing the pathname of the script
being executed, regardless of the value of argv[0].

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), atexit(), chmod(), close(), confstr(), exit(), fcntl(), fork(), fstatvfs(), getenv(), getrlimit(),
mknod(), mmap(), nice(), open(), posix_spawn(), pthread_atfork(), pthread_sigmask(), putenv(),
readdir(), semop(), setlocale(), shmat(), sigaction(), sigaltstack(), sigpending(), system(), times(),
umask()

XBD Chapter 8 (on page 167), <unistd.h>

XCU test

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 877

29910

29911

29912

29913

29914

29915

29916

29917

29918

29919

29920

29921

29922

29923

29924

29925

29926

29927

29928

29929

29930

29931

29932

29933

29934

29935

29936

29937

29938

29939

29940

29941

29942

29943

29944

29945

29946

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec System Interfaces

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, behavior is defined for when the process image file is not a valid
executable.

• In this version, _POSIX_SAVED_IDS is mandated, thus the effective user ID and effective
group ID of the new process image shall be saved (as the saved set-user-ID and the saved
set-group-ID) for use by the setuid() function.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [EINVAL] mandatory error condition is added.

• The [ELOOP] optional error condition is added.

The description of CPU-time clock semantics is added for alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for typed memory.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #132 is applied.

The DESCRIPTION is updated to make it explicit that the floating-point environment in the new
process image is set to the default.

The DESCRIPTION and RATIONALE are updated to include clarifications of how the contents
of a process image file affect the behavior of the exec functions.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/15 is applied, adding a new paragraph to
the DESCRIPTION and text to the end of the APPLICATION USAGE section. This change
addresses a security concern, where implementations may want to reopen file descriptors 0, 1,
and 2 for programs with the set-user-id or set-group-id file mode bits calling the exec family of
functions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/24 is applied, applying changes to the
DESCRIPTION, addressing which attributes are inherited by threads, and behavioral
requirements for threads attributes.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/25 is applied, updating text in the
RATIONALE from ``the process signal mask be unchanged across an exec’’ to ``the new process
image inherits the signal mask of the thread that called exec in the old process image’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #047 is applied, adding the description of _CS_V7_ENV
to the APPLICATION USAGE.

Austin Group Interpretation 1003.1-2001 #143 is applied.

The fexecve() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

878 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

29947

29948

29949

29950

29951

29952

29953

29954

29955

29956

29957

29958

29959

29960

29961

29962

29963

29964

29965

29966

29967

29968

29969

29970

29971

29972

29973

29974

29975

29976

29977

29978

29979

29980

29981

29982

29983

29984

29985

29986

29987

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exec

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, Threads,
and Timers options is moved to the Base.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0095 [386], XSH/TC1-2008/0096 [167],
XSH/TC1-2008/0097 [291], XSH/TC1-2008/0098 [173], XSH/TC1-2008/0099 [296],
XSH/TC1-2008/00100 [324], XSH/TC1-2008/00101 [296], XSH/TC1-2008/00102 [302],
XSH/TC1-2008/00103 [167], XSH/TC1-2008/00104 [173], and XSH/TC1-2008/00105 [291,429]
are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0097 [584], XSH/TC2-2008/0098 [898],
and XSH/TC2-2008/0099 [734] are applied.

Issue 8
Austin Group Defects 51 and 1669 are applied, moving the getrlimit() and setrlimit() functions
from the XSI option to the Base.

Austin Group Defect 368 is applied, adding a requirement for unnamed semaphores to be
destroyed.

Austin Group Defect 768 is applied, adding OFD-owned file locks.

Austin Group Defect 922 is applied, adding the secure_getenv() function.

Austin Group Defect 1284 is applied, changing ``checksum test’’ to ``integrity test’’ in the
APPLICATION USAGE section.

Austin Group Defect 1318 is applied, adding FD_CLOFORK.

Austin Group Defect 1330 is applied, removing obsolescent interfaces and changing ``_V7_’’ to
``_V8_’’.

Austin Group Defect 1435 is applied, adding function lists to the descriptions of the path and file
arguments.

Austin Group Defect 1645 is applied, making it unspecified what string is passed to the shell in
argv[0] when executed by execlp() or execvp().

Austin Group Defect 1646 is applied, adding at_quick_exit() to the list of registration functions
whose registrations are not inherited across exec.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 879

29988

29989

29990

29991

29992

29993

29994

29995

29996

29997

29998

29999

30000

30001

30002

30003

30004

30005

30006

30007

30008

30009

30010

30011

30012

30013

30014

30015

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exit() System Interfaces

NAME
exit — terminate a process

SYNOPSIS
#include <stdlib.h>

void exit(int status);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The exit() function shall cause normal process termination to occur. No functions registered by
the at_quick_exit() function shall be called. If a process calls the exit() function more than once,
or calls the quick_exit() function in addition to the exit() function, the behavior is undefined.

CX The value of status can be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other value, though only
the least significant 8 bits (that is, status & 0377) shall be available from wait() and waitpid(); the
full value shall be available from waitid() and in the siginfo_t passed to a signal handler for
SIGCHLD.

The exit() function shall first call all functions registered by atexit(), in the reverse order of their
registration, except that a function is called after any previously registered functions that had
already been called at the time it was registered. Each function is called as many times as it was
registered. If, during the call to any such function, a call to the longjmp() function is made that
would terminate the call to the registered function, the behavior is undefined.

If a function registered by a call to atexit() fails to return, the remaining registered functions shall
not be called and the rest of the exit() processing shall not be completed.

CX The exit() function shall then flush all open streams with unwritten buffered data. For each
stream which is the active handle to its underlying file descriptor, and for which the file is not
already at EOF and is capable of seeking, the file offset of the underlying open file description
shall be set to the file position of the stream. For each open stream, the exit() function shall
perform the equivalent of a close() on the file descriptor that is associated with the stream.

CX Finally, the process shall be terminated with the same consequences as described in
Consequences of Process Termination (on page 568).

RETURN VALUE
The exit() function does not return.

ERRORS
No errors are defined.

EXAMPLES
See APPLICATION USAGE.

APPLICATION USAGE
When a stream that has unwritten buffered data is flushed by exit() there is no way for the
calling process to discover whether or not exit() successfully wrote the data to the underlying
file descriptor. Therefore, it is strongly recommended that applications always ensure there is no
unwritten buffered data in any stream when calling exit(), or returning from the initial call to
main(), with a status value that indicates no errors occurred.

For example, the following code demonstrates one way to ensure that stdout has already been
successfully flushed before calling exit() with status 0. If the flush fails, the file descriptor
underlying stdout is closed so that exit() will not try to repeat the failed write operation. If the
flush succeeds, a final check with ferror() is performed to ensure that there were no write errors

880 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30016

30017

30018

30019

30020

30021

30022

30023

30024

30025

30026

30027

30028

30029

30030

30031

30032

30033

30034

30035

30036

30037

30038

30039

30040

30041

30042

30043

30044

30045

30046

30047

30048

30049

30050

30051

30052

30053

30054

30055

30056

30057

30058

30059

30060

30061

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exit()

during earlier flush operations (that were not handled at the time).

int status = 0;
if (fflush(stdout) != 0) {

perror("appname: standard output");
close(fileno(stdout));
status = 1;

}
else if (ferror(stdout)) {

fputs("appname: write error on standard output\n", stderr);
status = 1;

}
exit(status);

See also _Exit().

RATIONALE
See _Exit().

FUTURE DIRECTIONS
None.

SEE ALSO
_Exit(), at_quick_exit(), atexit(), exec , fflush(), longjmp(), quick_exit(), tmpfile(), wait(), waitid()

XBD <stdlib.h>

CHANGE HISTORY

Issue 7
Austin Group Interpretation 1003.1-2001 #031 is applied, separating the _Exit() and _exit()
functions from the exit() function.

Austin Group Interpretation 1003.1-2001 #085 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0100 [594] is applied.

Issue 8
Austin Group Defect 610 is applied, clarifying the effects of exit() on open streams.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1490 is applied, changing the EXAMPLES and APPLICATION USAGE
sections.

Austin Group Defect 1629 is applied, changing the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 881

30062

30063

30064

30065

30066

30067

30068

30069

30070

30071

30072

30073

30074

30075

30076

30077

30078

30079

30080

30081

30082

30083

30084

30085

30086

30087

30088

30089

30090

30091

30092

30093

30094

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exp() System Interfaces

NAME
exp, expf, expl — exponential function

SYNOPSIS
#include <math.h>

double exp(double x);
float expf(float x);
long double expl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the base-e exponential of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponential value of x.

If the correct value would cause overflow, a range error shall occur and exp(), expf(), and expl()
shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and exp(), expf(), and expl() shall return 0.0, or (if the IEC 60559 Floating-Point option is not

supported) an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, 1 shall be returned.

If x is −Inf, +0 shall be returned.

If x is +Inf, x shall be returned.

MXX If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

882 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30095

30096

30097

30098

30099

30100

30101

30102

30103

30104

30105

30106

30107

30108

30109

30110

30111

30112

30113

30114

30115

30116

30117

30118

30119

30120

30121

30122

30123

30124

30125

30126

30127

30128

30129

30130

30131

30132

30133

30134

30135

30136

30137

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exp()

EXAMPLES

Computing the Density of the Standard Normal Distribution

This function shows an implementation for the density of the standard normal distribution
using exp(). This example uses the constant M_PI which is part of the XSI option.

#include <math.h>

double
normal_density (double x)
{

return exp(-x*x/2) / sqrt (2*M_PI);
}

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), log()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The expf() and expl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/26 is applied, adding the example to the
EXAMPLES section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0106 [68] and XSH/TC1-2008/0107
[68] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0101 [630] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 883

30138

30139

30140

30141

30142

30143

30144

30145

30146

30147

30148

30149

30150

30151

30152

30153

30154

30155

30156

30157

30158

30159

30160

30161

30162

30163

30164

30165

30166

30167

30168

30169

30170

30171

30172

30173

30174

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exp2() System Interfaces

NAME
exp2, exp2f, exp2l — exponential base 2 functions

SYNOPSIS
#include <math.h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the base-2 exponential of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return 2x.

If the correct value would cause overflow, a range error shall occur and exp2(), exp2f(), and
exp2l() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and exp2(), exp2f(), and exp2l() shall return 0.0, or (if the IEC 60559 Floating-Point option is not

supported) an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, 1 shall be returned.

If x is −Inf, +0 shall be returned.

If x is +Inf, x shall be returned.

MXX If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow

884 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30175

30176

30177

30178

30179

30180

30181

30182

30183

30184

30185

30186

30187

30188

30189

30190

30191

30192

30193

30194

30195

30196

30197

30198

30199

30200

30201

30202

30203

30204

30205

30206

30207

30208

30209

30210

30211

30212

30213

30214

30215

30216

30217

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces exp2()

floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), log()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0108 [68] and XSH/TC1-2008/0109
[68] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0102 [630] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 885

30218

30219

30220

30221

30222

30223

30224

30225

30226

30227

30228

30229

30230

30231

30232

30233

30234

30235

30236

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

expm1() System Interfaces

NAME
expm1, expm1f, expm1l — compute exponential functions

SYNOPSIS
#include <math.h>

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute ex−1.0.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions return ex−1.0.

If the correct value would cause overflow, a range error shall occur and expm1(), expm1f(), and
expm1l() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is −Inf, −1 shall be returned.

If x is +Inf, x shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, expm1(), expm1f(), and

expm1l() shall return an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

886 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30237

30238

30239

30240

30241

30242

30243

30244

30245

30246

30247

30248

30249

30250

30251

30252

30253

30254

30255

30256

30257

30258

30259

30260

30261

30262

30263

30264

30265

30266

30267

30268

30269

30270

30271

30272

30273

30274

30275

30276

30277

30278

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces expm1()

EXAMPLES
None.

APPLICATION USAGE
The value of expm1(x) may be more accurate than exp(x)−1.0 for small values of x.

The expm1() and log1p() functions are useful for financial calculations of ((1+x)n−1)/x, namely:

expm1(n * log1p(x))/x

when x is very small (for example, when calculating small daily interest rates). These functions
also simplify writing accurate inverse hyperbolic functions.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), ilogb(), log1p()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The expm1f() and expm1l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The expm1() function is no longer marked as an extension.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0110 [68] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0103 [630] is applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 887

30279

30280

30281

30282

30283

30284

30285

30286

30287

30288

30289

30290

30291

30292

30293

30294

30295

30296

30297

30298

30299

30300

30301

30302

30303

30304

30305

30306

30307

30308

30309

30310

30311

30312

30313

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fabs() System Interfaces

NAME
fabs, fabsf, fabsl — absolute value function

SYNOPSIS
#include <math.h>

double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the absolute value of their argument x,|x|.

RETURN VALUE
Upon successful completion, these functions shall return the absolute value of x.

MX The returned value shall be exact and shall be independent of the current rounding direction
mode.

If x is NaN, a NaN shall be returned.

If x is ±0, +0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
No errors are defined.

EXAMPLES

Computing the 1-Norm of a Floating-Point Vector

This example shows the use of fabs() to compute the 1-norm of a vector defined as follows:

norm1(v) = |v[0]| + |v[1]| + ... + |v[n-1]|

where |x| denotes the absolute value of x, n denotes the vector’s dimension v[i] denotes the i-th
component of v (0≤i<n).

#include <math.h>

double
norm1(const double v[], const int n)
{

int i;
double n1_v; /* 1-norm of v */

n1_v = 0;
for (i=0; i<n; i++) {

n1_v += fabs (v[i]);
}

return n1_v;
}

888 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30314

30315

30316

30317

30318

30319

30320

30321

30322

30323

30324

30325

30326

30327

30328

30329

30330

30331

30332

30333

30334

30335

30336

30337

30338

30339

30340

30341

30342

30343

30344

30345

30346

30347

30348

30349

30350

30351

30352

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fabs()

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan()

XBD <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The fabsf() and fabsl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/27 is applied, adding the example to the
EXAMPLES section.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 889

30353

30354

30355

30356

30357

30358

30359

30360

30361

30362

30363

30364

30365

30366

30367

30368

30369

30370

30371

30372

30373

30374

30375

30376

30377

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

faccessat() System Interfaces

NAME
faccessat — determine accessibility of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int faccessat(int fd, const char *path, int amode, int flag);

DESCRIPTION
Refer to access().

890 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30378

30379

30380

30381

30382

30383

30384

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fchdir()

NAME
fchdir — change working directory

SYNOPSIS
#include <unistd.h>

int fchdir(int fildes);

DESCRIPTION
The fchdir() function shall be equivalent to chdir() except that the directory that is to be the new
current working directory is specified by the file descriptor fildes.

A conforming application can obtain a file descriptor for a file of type directory using open(),
provided that the file status flags and access modes do not contain O_WRONLY or O_RDWR.

RETURN VALUE
Upon successful completion, fchdir() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error. On failure the current working directory shall remain unchanged.

ERRORS
The fchdir() function shall fail if:

[EACCES] Search permission is denied for the directory referenced by fildes.

[EBADF] The fildes argument is not an open file descriptor.

[ENOTDIR] The open file descriptor fildes does not refer to a directory.

The fchdir() may fail if:

[EINTR] A signal was caught during the execution of fchdir().

[EIO] An I/O error occurred while reading from or writing to the file system.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chdir(), dirfd()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The fchdir() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 891

30385

30386

30387

30388

30389

30390

30391

30392

30393

30394

30395

30396

30397

30398

30399

30400

30401

30402

30403

30404

30405

30406

30407

30408

30409

30410

30411

30412

30413

30414

30415

30416

30417

30418

30419

30420

30421

30422

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fchmod() System Interfaces

NAME
fchmod — change mode of a file

SYNOPSIS
#include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

DESCRIPTION
The fchmod() function shall be equivalent to chmod() except that the file whose permissions are
changed is specified by the file descriptor fildes.

SHM If fildes references a shared memory object, the fchmod() function need only affect the S_IRUSR,
S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

TYM If fildes references a typed memory object, the behavior of fchmod() is unspecified.

If fildes refers to a socket, the behavior of fchmod() is unspecified.

RETURN VALUE
Upon successful completion, fchmod() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fchmod() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The file referred to by fildes resides on a read-only file system.

The fchmod() function may fail if:

XSI [EINTR] The fchmod() function was interrupted by a signal.

XSI [EINVAL] The value of the mode argument is invalid.

[EINVAL] The fildes argument refers to a pipe and the implementation disallows
execution of fchmod() on a pipe.

EXAMPLES

Changing the Current Permissions for a File

The following example shows how to change the permissions for a file named /home/cnd/mod1
so that the owner and group have read/write/execute permissions, but the world only has
read/write permissions.

#include <sys/stat.h>
#include <fcntl.h>

mode_t mode;
int fildes;
...
fildes = open("/home/cnd/mod1", O_RDWR);
fchmod(fildes, S_IRWXU | S_IRWXG | S_IROTH | S_IWOTH);

892 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30423

30424

30425

30426

30427

30428

30429

30430

30431

30432

30433

30434

30435

30436

30437

30438

30439

30440

30441

30442

30443

30444

30445

30446

30447

30448

30449

30450

30451

30452

30453

30454

30455

30456

30457

30458

30459

30460

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fchmod()

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), fcntl(), fstatat(), fstatvfs(), mknod(), open(), read(), write()

XBD <sys/stat.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with fchmod() in the POSIX
Realtime Extension. Specifically, the second paragraph of the DESCRIPTION is added and a
second instance of [EINVAL] is defined in the list of optional errors.

Issue 6
The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by stating that fchmod()
behavior is unspecified for typed memory objects.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 893

30461

30462

30463

30464

30465

30466

30467

30468

30469

30470

30471

30472

30473

30474

30475

30476

30477

30478

30479

30480

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fchmodat() System Interfaces

NAME
fchmodat — change mode of a file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int fchmodat(int fd, const char *path, mode_t mode, int flag);

DESCRIPTION
Refer to chmod().

894 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30481

30482

30483

30484

30485

30486

30487

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fchown()

NAME
fchown — change owner and group of a file

SYNOPSIS
#include <unistd.h>

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION
The fchown() function shall be equivalent to chown() except that the file whose owner and group
are changed is specified by the file descriptor fildes.

RETURN VALUE
Upon successful completion, fchown() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fchown() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EPERM] The effective user ID does not match the owner of the file or the process does
not have appropriate privileges and _POSIX_CHOWN_RESTRICTED
indicates that such privilege is required.

[EROFS] The file referred to by fildes resides on a read-only file system.

The fchown() function may fail if:

[EINVAL] The owner or group ID is not a value supported by the implementation. The
fildes argument refers to a pipe or socket and the implementation disallows
execution of fchown() on a pipe.

[EIO] A physical I/O error has occurred.

[EINTR] The fchown() function was interrupted by a signal which was caught.

EXAMPLES

Changing the Current Owner of a File

The following example shows how to change the owner of a file named /home/cnd/mod1 to
``jones’’ and the group to ``cnd’’.

The numeric value for the user ID is obtained by extracting the user ID from the user database
entry associated with ``jones’’. Similarly, the numeric value for the group ID is obtained by
extracting the group ID from the group database entry associated with ``cnd’’. This example
assumes the calling program has appropriate privileges.

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <pwd.h>
#include <grp.h>

struct passwd *pwd;
struct group *grp;
int fildes;
...
fildes = open("/home/cnd/mod1", O_RDWR);
pwd = getpwnam("jones");

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 895

30488

30489

30490

30491

30492

30493

30494

30495

30496

30497

30498

30499

30500

30501

30502

30503

30504

30505

30506

30507

30508

30509

30510

30511

30512

30513

30514

30515

30516

30517

30518

30519

30520

30521

30522

30523

30524

30525

30526

30527

30528

30529

30530

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fchown() System Interfaces

grp = getgrnam("cnd");
fchown(fildes, pwd->pw_uid, grp->gr_gid);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that a call to fchown() may not be allowed on a pipe.

The fchown() function is defined as mandatory.

Issue 7
Functionality relating to XSI STREAMS is marked obsolescent.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

896 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30531

30532

30533

30534

30535

30536

30537

30538

30539

30540

30541

30542

30543

30544

30545

30546

30547

30548

30549

30550

30551

30552

30553

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fchownat()

NAME
fchownat — change owner and group of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int fchownat(int fd, const char *path, uid_t owner, gid_t group,
int flag);

DESCRIPTION
Refer to chown().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 897

30554

30555

30556

30557

30558

30559

30560

30561

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fclose() System Interfaces

NAME
fclose — close a stream

SYNOPSIS
#include <stdio.h>

int fclose(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fclose() function shall cause the stream pointed to by stream to be flushed and the associated
file to be closed. Any unwritten buffered data for the stream shall be written to the file; any
unread buffered data shall be discarded. Whether or not the call succeeds, the stream shall be
disassociated from the file and any buffer set by the setbuf() or setvbuf() function shall be
disassociated from the stream. If the associated buffer was automatically allocated, it shall be
deallocated.

CX If the file is not already at EOF, and the file is one capable of seeking, the file offset of the
underlying open file description shall be set to the file position of the stream if the stream is the
active handle to the underlying file description.

The fclose() function shall mark for update the last data modification and last file status change
timestamps of the underlying file, if the stream was writable, and if buffered data remains that
has not yet been written to the file. The fclose() function shall perform the equivalent of a close()
on the file descriptor that is associated with the stream pointed to by stream.

After the call to fclose(), any use of stream results in undefined behavior.

RETURN VALUE
CX Upon successful completion, fclose() shall return 0; otherwise, it shall return EOF and set errno

to indicate the error.

ERRORS
The fclose() function shall fail if:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not valid.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

CX [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

XSI A SIGXFSZ signal shall also be generated for the thread.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The fclose() function was interrupted by a signal.

CX [EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the calling thread is not blocking
SIGTTOU, the process is not ignoring SIGTTOU, and the process group of the
process is orphaned. This error may also be returned under implementation-
defined conditions.

898 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30562

30563

30564

30565

30566

30567

30568

30569

30570

30571

30572

30573

30574

30575

30576

30577

30578

30579

30580

30581

30582

30583

30584

30585

30586

30587

30588

30589

30590

30591

30592

30593

30594

30595

30596

30597

30598

30599

30600

30601

30602

30603

30604

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fclose()

CX [ENOMEM] The underlying stream was created by open_memstream() or
open_wmemstream() and insufficient memory is available.

CX [ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen() function.

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fclose() function may fail if:

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
Since after the call to fclose() any use of stream results in undefined behavior, fclose() should not
be used on stdin, stdout, or stderr except immediately before process termination (see XBD
Section 3.287, on page 73), so as to avoid triggering undefined behavior in other standard
interfaces that rely on these streams. If there are any atexit() handlers registered by the
application, such a call to fclose() should not occur until the last handler is finishing. Once
fclose() has been used to close stdin, stdout, or stderr, there is no standard way to reopen any of
these streams.

Use of freopen() to change stdin, stdout, or stderr instead of closing them avoids the danger of a
file unexpectedly being opened as one of the special file descriptors STDIN_FILENO,
STDOUT_FILENO, or STDERR_FILENO at a later time in the application.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), atexit(), close(), fmemopen(), fopen(), freopen(), getrlimit(),
open_memstream()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EFBIG] error is added as part of the large file support extensions.

• The [ENXIO] optional error condition is added.

The DESCRIPTION is updated to note that the stream and any buffer are disassociated whether
or not the call succeeds. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/28 is applied, updating the [EAGAIN]

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 899

30605

30606

30607

30608

30609

30610

30611

30612

30613

30614

30615

30616

30617

30618

30619

30620

30621

30622

30623

30624

30625

30626

30627

30628

30629

30630

30631

30632

30633

30634

30635

30636

30637

30638

30639

30640

30641

30642

30643

30644

30645

30646

30647

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fclose() System Interfaces

error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction of file
descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from The Open
Group Technical Standard, 2006, Extended API Set Part 1.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0113 [87], XSH/TC1-2008/0114 [79],
and XSH/TC1-2008/0115 [14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0104 [555] is applied.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

900 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30648

30649

30650

30651

30652

30653

30654

30655

30656

30657

30658

30659

30660

30661

30662

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fcntl()

NAME
fcntl — file control

SYNOPSIS
#include <fcntl.h>

int fcntl(int fildes, int cmd, ...);

DESCRIPTION
The fcntl() function shall perform the operations described below on open files. The fildes
argument is a file descriptor.

The available values for cmd are defined in <fcntl.h> and are as follows:

F_DUPFD Return a new file descriptor which shall be allocated as described in
Section 2.6 (on page 525), except that it shall be the lowest numbered
available file descriptor greater than or equal to the third argument, arg,
taken as an integer of type int. The new file descriptor shall refer to the
same open file description as the original file descriptor, and shall share
any locks. The FD_CLOEXEC and FD_CLOFORK flags associated with
the new file descriptor shall be cleared.

F_DUPFD_CLOEXEC
Like F_DUPFD, but the FD_CLOEXEC flag associated with the new file
descriptor shall be set.

F_DUPFD_CLOFORK
Like F_DUPFD, but the FD_CLOFORK flag associated with the new file
descriptor shall be set.

F_GETFD Get the file descriptor flags defined in <fcntl.h> that are associated with
the file descriptor fildes. File descriptor flags are associated with a single
file descriptor and do not affect other file descriptors that refer to the
same file.

F_SETFD Set the file descriptor flags defined in <fcntl.h>, that are associated with
fildes, to the third argument, arg, taken as type int. If the FD_CLOEXEC
flag in the third argument is set, the file descriptor shall be closed upon

SPN successful execution of an exec family function and in the new process
image created by posix_spawn() or posix_spawnp(); otherwise, the file
descriptor shall remain open. If the FD_CLOFORK flag in the third
argument is set, the file descriptor shall not be inherited by any child
process created from a process that has the file descriptor open;
otherwise, the file descriptor shall be inherited.

F_GETFL Get the file status flags and file access modes, defined in <fcntl.h>, for the
file description associated with fildes. The file access modes can be
extracted from the return value using the mask O_ACCMODE, which is
defined in <fcntl.h>. File status flags and file access modes are associated
with the file description and do not affect other file descriptors that refer
to the same file with different open file descriptions. The flags returned
may include non-standard file status flags which the application did not
set, provided that these additional flags do not alter the behavior of a
conforming application.

F_SETFL Set the file status flags, defined in <fcntl.h>, for the file description
associated with fildes from the corresponding bits in the third argument,
arg, taken as type int. Bits corresponding to the file access mode and the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 901

30663

30664

30665

30666

30667

30668

30669

30670

30671

30672

30673

30674

30675

30676

30677

30678

30679

30680

30681

30682

30683

30684

30685

30686

30687

30688

30689

30690

30691

30692

30693

30694

30695

30696

30697

30698

30699

30700

30701

30702

30703

30704

30705

30706

30707

30708

30709

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fcntl() System Interfaces

file creation flags, as defined in <fcntl.h>, that are set in arg shall be
ignored. If any bits in arg other than those mentioned here are changed by
the application, the result is unspecified. If fildes does not support non-
blocking operations, it is unspecified whether the O_NONBLOCK flag
will be ignored.

F_GETOWN If fildes refers to a socket, get the process ID or process group ID specified
to receive SIGURG signals when out-of-band data is available. Positive
values shall indicate a process ID; negative values, other than −1, shall
indicate a process group ID; the value zero shall indicate that no SIGURG
signals are to be sent. If fildes does not refer to a socket, the results are
unspecified.

F_SETOWN If fildes refers to a socket, atomically set the process ID or process group
ID specified to receive SIGURG signals when out-of-band data is
available, using the value of the third argument, arg, taken as type int.
Positive values shall indicate a process ID; negative values, other than −1,
shall indicate a process group ID; the value zero shall indicate that no
SIGURG signals are to be sent. If fildes does not refer to a socket, the
results are unspecified.

F_GETOWN_EX If fildes refers to a socket, get the process ID or process group ID specified
to receive SIGURG signals when out-of-band data is available, by setting
the type and pid members of the f_owner_ex structure pointed to by the
third argument, arg. The value of type shall be F_OWNER_PID or
F_OWNER_PGRP to indicate that pid contains a process ID or a process
group ID, respectively. The value of pid shall be zero if no SIGURG signals
are to be sent. If fildes does not refer to a socket, the results are
unspecified.

F_SETOWN_EX If fildes refers to a socket, set the process ID or process group ID specified
to receive SIGURG signals when out-of-band data is available, using the
value of the third argument, arg, taken as type pointer to struct
f_owner_ex. The type and pid members of this structure shall be used as
follows:

• A pid value of zero shall indicate that no SIGURG signals are to be
sent.

• A type value of F_OWNER_PID and a positive pid value shall
indicate that SIGURG signals are to be sent to the process ID
specified in pid.

• A type value of F_OWNER_PGRP and a positive pid value shall
indicate that SIGURG signals are to be sent to the process group ID
specified in pid.

If fildes does not refer to a socket, the results are unspecified.

For F_SETOWN and F_SETOWN_EX, each time a SIGURG signal is sent to the specified process
or process group, permission checks equivalent to those performed by kill() shall be performed,
as if kill() were called by a process with the same real user ID, effective user ID, and privileges
that the process calling fcntl() has at the time of the call; if the kill() call would fail, no signal
shall be sent. These permission checks may also be performed by the fcntl() call. If the process
specified by arg later terminates, or the process group specified by arg later becomes empty,
while still being specified to receive SIGURG signals when out-of-band data is available from

902 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30710

30711

30712

30713

30714

30715

30716

30717

30718

30719

30720

30721

30722

30723

30724

30725

30726

30727

30728

30729

30730

30731

30732

30733

30734

30735

30736

30737

30738

30739

30740

30741

30742

30743

30744

30745

30746

30747

30748

30749

30750

30751

30752

30753

30754

30755

30756

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fcntl()

fildes, then no signals shall be sent to any subsequently created process that has the same process
ID or process group ID, regardless of permission; it is unspecified whether this is achieved by
the equivalent of a fcntl(fildes, F_SETOWN, 0) call at the time the process terminates or is waited
for or the process group becomes empty, or by other means.

The following values for cmd are available for advisory record locking. Record locking shall be
supported for regular files, and may be supported for other files.

F_GETLK Get any lock which blocks the process-owned file lock description
pointed to by the third argument, arg, taken as a pointer to type struct
flock, defined in <fcntl.h>. The information retrieved shall overwrite the
information passed to fcntl() in the structure flock. If no lock is found
that would prevent this lock from being created, then the structure shall
be left unchanged except for the lock type in l_type which shall be set to
F_UNLCK.

F_SETLK Set or clear a process-owned file lock according to the lock description
pointed to by the third argument, arg, taken as a pointer to type struct
flock, defined in <fcntl.h>. F_SETLK can establish shared (or read) locks
(F_RDLCK) or exclusive (or write) locks (F_WRLCK), as well as remove
either type of lock (F_UNLCK). F_RDLCK, F_WRLCK, and F_UNLCK are
defined in <fcntl.h>. If a shared or exclusive lock cannot be set, fcntl()
shall return immediately with a return value of −1.

F_SETLKW This command shall be equivalent to F_SETLK except that if a shared or
exclusive lock is blocked by other locks, the thread shall wait until the
request can be satisfied. If a signal that is to be caught is received while
fcntl() is waiting for a region, fcntl() shall be interrupted. Upon return
from the signal handler, fcntl() shall return −1 with errno set to [EINTR],
and the lock operation shall not be done.

F_OFD_GETLK Get any lock which blocks the OFD-owned file lock description pointed to
by the third argument, arg, taken as a pointer to type struct flock, defined
in <fcntl.h>; the application shall ensure that the l_pid member of the
structure pointed to by arg is set to 0 on input. The information retrieved
shall overwrite the information passed to fcntl() in the structure flock. If
no lock is found that would prevent this lock from being created, then the
structure shall be left unchanged except for the lock type in l_type which
shall be set to F_UNLCK.

F_OFD_SETLK Set or clear an OFD-owned file lock according to the lock description
pointed to by the third argument, arg, taken as a pointer to type struct
flock, defined in <fcntl.h>; the application shall ensure that the l_pid
member of the structure pointed to by arg is set to 0 on input.
F_OFD_SETLK can establish shared (or read) locks (F_RDLCK) or
exclusive (or write) locks (F_WRLCK), as well as remove either type of
lock (F_UNLCK). F_RDLCK, F_WRLCK, and F_UNLCK are defined in
<fcntl.h>. If a shared or exclusive lock cannot be set, fcntl() shall return
immediately with a return value of −1.

F_OFD_SETLKW This command shall be equivalent to F_OFD_SETLK except that if a
shared or exclusive lock is blocked by other locks, the thread shall wait
until the request can be satisfied. If a signal that is to be caught is received
while fcntl() is waiting for a region, fcntl() shall be interrupted. Upon
return from the signal handler, fcntl() shall return −1 with errno set to

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 903

30757

30758

30759

30760

30761

30762

30763

30764

30765

30766

30767

30768

30769

30770

30771

30772

30773

30774

30775

30776

30777

30778

30779

30780

30781

30782

30783

30784

30785

30786

30787

30788

30789

30790

30791

30792

30793

30794

30795

30796

30797

30798

30799

30800

30801

30802

30803

30804

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fcntl() System Interfaces

[EINTR], and the lock operation shall not be done.

Additional implementation-defined values for cmd may be defined in <fcntl.h>. Their names
shall start with F_.

When a shared lock is set on a segment of a file, other processes can set shared process-owned
locks, and other open file descriptions can be used to set shared OFD-owned locks, on that
segment or a portion of it. A shared process-owned lock shall prevent any other process from
setting an exclusive process-owned lock, and shall prevent any exclusive OFD-owned lock from
being set, on any portion of the protected area. A shared OFD-owned lock shall prevent any
other open file description from being used to set an exclusive OFD-owned lock, and shall
prevent any exclusive process-owned lock from being set, on any portion of the protected area.
A request for a shared lock shall fail if the file descriptor is not open for reading.

An exclusive process-owned lock shall prevent any other process from setting a shared or
exclusive process-owned lock, and shall prevent any shared or exclusive OFD-owned lock from
being set, on any portion of the protected area. An exclusive OFD-owned lock shall prevent any
other open file description from being used to set a shared or exclusive OFD-owned lock, and
shall prevent any shared or exclusive process-owned lock from being set, on any portion of the
protected area. A request for an exclusive lock shall fail if the file descriptor is not open for
writing.

The structure flock describes the type (l_type), starting offset (l_whence), relative offset (l_start),
size (l_len), and process ID (l_pid) of the segment of the file to be affected.

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END, to indicate that the relative
offset l_start bytes shall be measured from the start of the file, current position, or end of the file,
respectively. The value of l_len is the number of consecutive bytes to be locked. The value of l_len
may be negative (where the definition of off_t permits negative values of l_len). On input, the
l_pid field shall be ignored for F_GETLK, F_SETLK and F_SETLKW; the application shall ensure
that it is set to zero for F_OFD_GETLK, F_OFD_SETLK and F_OFD_SETLKW. It is set by
F_GETLK and F_OFD_GETLK when identifying a blocking lock. After a successful F_GETLK or
F_OFD_GETLK request, when a blocking lock is found, the values returned in the flock
structure shall be as follows:

l_type Type of blocking lock found.

l_whence SEEK_SET.

l_start Start of the blocking lock.

l_len Length of the blocking lock.

l_pid Process ID of the process that holds the blocking lock if the blocking lock is a
process-owned file lock, or (pid_t)−1 if the blocking lock is an OFD-owned file
lock.

If the command is F_SETLKW or F_OFD_SETLKW and the thread needs to wait for a blocking
lock to be released, then the range of bytes to be locked shall be determined before the fcntl()
function blocks. If the file size or file descriptor seek offset change while fcntl() is blocked, this
shall not affect the range of bytes locked.

If l_len is positive, the area affected shall start at l_start and end at l_start+l_len−1. If l_len is
negative, the area affected shall start at l_start+l_len and end at l_start−1. Locks may start and
extend beyond the current end of a file, but shall not extend before the beginning of the file. A
lock shall be set to extend to the largest possible value of the file offset for that file by setting
l_len to 0. If such a lock also has l_start set to 0 and l_whence is set to SEEK_SET, the whole file
shall be locked.

904 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30805

30806

30807

30808

30809

30810

30811

30812

30813

30814

30815

30816

30817

30818

30819

30820

30821

30822

30823

30824

30825

30826

30827

30828

30829

30830

30831

30832

30833

30834

30835

30836

30837

30838

30839

30840

30841

30842

30843

30844

30845

30846

30847

30848

30849

30850

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fcntl()

Each byte in the file can be locked either with one or more shared locks (F_RDLCK) or with one
exclusive lock (F_WRLCK).

Before a successful return from an F_SETLK or an F_SETLKW request when the calling process
has previously existing process-owned locks on bytes in the region specified by the request, the
previous shared or exclusive lock for each byte in the specified region shall be replaced by the
new shared or exclusive lock. An F_SETLK or an F_SETLKW request (respectively) shall fail or
block when another process has existing process-owned locks, or any open file description
(including the one associated with fildes) has existing OFD-owned locks, on bytes in the specified
region and any of those locks conflicts with the requested lock.

Before a successful return from an F_OFD_SETLK or an F_OFD_SETLKW request when the
open file description associated with fildes has previously existing OFD-owned locks on bytes in
the region specified by the request, the previous shared or exclusive lock for each byte in the
specified region shall be replaced by the new shared or exclusive lock. An F_OFD_SETLK or an
F_OFD_SETLKW request (respectively) shall fail or block when another open file description
has existing OFD-owned locks, or any process (including the calling process) has existing
process-owned locks, on bytes in the specified region and any of those locks conflicts with the
requested lock.

All process-owned locks associated with a file for a given process shall be removed when any
file descriptor for that file is closed by that process (even if via a different open file description)
or the process holding that file descriptor terminates. Process-owned locks shall not be inherited
by a child process.

All OFD-owned locks associated with a given open file description shall be removed when all
file descriptors associated with that open file description have been closed (either directly or as a
side-effect of, for example, process termination or FD_CLOEXEC). OFD-owned locks shall be
shared across all file descriptors that are associated with the owning open file description,
regardless of which process holds the file descriptor.

A potential for deadlock occurs if a process or thread controlling a locked region is put to sleep
by attempting to lock a region that has an existing conflicting lock. If the system detects that
sleeping until a locked region is unlocked would cause a deadlock, fcntl() shall fail with an
[EDEADLK] error. Deadlock detection may differ between process-owned locks and OFD-
owned locks.

XSI The interaction between fcntl() and lockf() locks is unspecified.

An unlock (F_UNLCK) request in which l_len is non-zero and the offset of the last byte of the
requested segment is the maximum value for an object of type off_t, when the process (for
F_SETLK and F_SETLKW) or open file description (for F_OFD_SETLK and F_OFD_SETLKW)
has an existing lock in which l_len is 0 and which includes the last byte of the requested
segment, shall be treated as a request to unlock from the start of the requested segment with an
l_len equal to 0. Otherwise, an unlock (F_UNLCK) request shall attempt to unlock only the
requested segment.

SHM When the file descriptor fildes refers to a shared memory object, the behavior of fcntl() shall be
the same as for a regular file except the effect of the following values for the argument cmd is
unspecified: F_SETFL, F_GETLK, F_SETLK, F_SETLKW, F_OFD_GETLK, F_OFD_SETLK, and
F_OFD_SETLKW.

TYM If fildes refers to a typed memory object, the result of the fcntl() function is unspecified.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 905

30851

30852

30853

30854

30855

30856

30857

30858

30859

30860

30861

30862

30863

30864

30865

30866

30867

30868

30869

30870

30871

30872

30873

30874

30875

30876

30877

30878

30879

30880

30881

30882

30883

30884

30885

30886

30887

30888

30889

30890

30891

30892

30893

30894

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fcntl() System Interfaces

RETURN VALUE
Upon successful completion, the value returned shall depend on cmd as follows:

F_DUPFD A new file descriptor.

F_DUPFD_CLOEXEC
A new file descriptor.

F_DUPFD_CLOFORK
A new file descriptor.

F_GETFD Value of flags defined in <fcntl.h>. The return value shall not be negative.

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes. The return value shall not be
negative.

F_SETFL Value other than −1.

F_GETLK Value other than −1.

F_SETLK Value other than −1.

F_SETLKW Value other than −1.

F_OFD_GETLK Value other than −1.

F_OFD_SETLK Value other than −1.

F_OFD_SETLKW
Value other than −1.

F_GETOWN Value of the socket owner process or process group; this shall not be −1.

F_SETOWN Value other than −1.

F_GETOWN_EX Value other than −1.

F_SETOWN_EX Value other than −1.

Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The fcntl() function shall fail if:

[EACCES] or [EAGAIN]
The cmd argument is F_SETLK, the type of lock (l_type) is a shared (F_RDLCK)
or exclusive (F_WRLCK) lock, and the requested lock cannot be set because it
is blocked by an existing lock on the file.

[EAGAIN] The cmd argument is F_OFD_SETLK, the type of lock (l_type) is a shared
(F_RDLCK) or exclusive (F_WRLCK) lock, and the requested lock cannot be
set because it is blocked by an existing lock on the file.

[EBADF] The fildes argument is not a valid open file descriptor; or the argument cmd is
F_SETLK, F_SETLKW, F_OFD_SETLK, or F_OFD_SETLKW, the type of lock,
l_type, is a shared lock (F_RDLCK), and fildes is not a valid file descriptor open
for reading, or the type of lock, l_type, is an exclusive lock (F_WRLCK), and
fildes is not a valid file descriptor open for writing.

906 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30895

30896

30897

30898

30899

30900

30901

30902

30903

30904

30905

30906

30907

30908

30909

30910

30911

30912

30913

30914

30915

30916

30917

30918

30919

30920

30921

30922

30923

30924

30925

30926

30927

30928

30929

30930

30931

30932

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fcntl()

[EINTR] The cmd argument is F_SETLKW or F_OFD_SETLKW and the function was
interrupted by a signal.

[EINVAL] The cmd argument is invalid; or the cmd argument is F_DUPFD,
F_DUPFD_CLOEXEC, or F_DUPFD_CLOFORK and arg is negative or is
greater than or equal to {OPEN_MAX}; or the cmd argument is
F_SETOWN_EX and the type member of the f_owner_ex structure pointed to
by arg is invalid, or the pid member is negative and the type member is
F_OWNER_PID or F_OWNER_PGRP; or the cmd argument is F_GETLK,
F_SETLK, F_SETLKW, F_OFD_GETLK, F_OFD_SETLK, or F_OFD_SETLKW
and the data pointed to by arg is not valid, or fildes refers to a file that does not
support locking.

[EMFILE] The argument cmd is F_DUPFD, F_DUPFD_CLOEXEC, or
F_DUPFD_CLOFORK and all file descriptors available to the process are
currently open, or no file descriptors greater than or equal to arg are available.

[ENOLCK] The argument cmd is F_SETLK, F_SETLKW, F_OFD_SETLK, or
F_OFD_SETLKW and satisfying the lock or unlock request would result in the
number of locked regions in the system exceeding a system-imposed limit.

[EOVERFLOW] One of the values to be returned cannot be represented correctly.

[EOVERFLOW] The cmd argument is F_GETLK, F_SETLK, F_SETLKW, F_OFD_GETLK,
F_OFD_SETLK, or F_OFD_SETLKW and the smallest or, if l_len is non-zero,
the largest offset of any byte in the requested segment cannot be represented
correctly in an object of type off_t.

[ESRCH] The cmd argument is F_SETOWN or F_SETOWN_EX and no process or
process group can be found corresponding to that specified by arg.

The fcntl() function may fail if:

[EDEADLK] The cmd argument is F_SETLKW or F_OFD_SETLKW, the type of lock (l_type)
is a shared (F_RDLCK) or exclusive (F_WRLCK) lock, the requested lock is
blocked by an existing lock on the file, and the system determines that waiting
for that lock to be released would cause a deadlock.

[EINVAL] The cmd argument is F_SETOWN and the value of arg is positive and is not
valid as a process ID or the value of arg is negative and its absolute value is
not valid as a process group ID; or the cmd argument is F_SETOWN_EX, the
value of the type member of the f_owner_ex structure pointed to by arg is
F_OWNER_PID, and the value of the pid member is not valid as a process ID;
or the cmd argument is F_SETOWN_EX, the value of the type member of the
f_owner_ex structure pointed to by arg is F_OWNER_PGRP, and the value of
the pid member is not valid as a process group ID.

[EPERM] The cmd argument is F_SETOWN or F_SETOWN_EX and the calling process
does not have permission to send a SIGURG signal to any process specified by
arg.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 907

30933

30934

30935

30936

30937

30938

30939

30940

30941

30942

30943

30944

30945

30946

30947

30948

30949

30950

30951

30952

30953

30954

30955

30956

30957

30958

30959

30960

30961

30962

30963

30964

30965

30966

30967

30968

30969

30970

30971

30972

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fcntl() System Interfaces

EXAMPLES

Locking and Unlocking a File

The following example demonstrates how to place a lock on bytes 100 to 109 of a file and then
later remove it. F_SETLK is used to perform a non-blocking lock request so that the process does
not have to wait if an incompatible lock is held by another process; instead the process can take
some other action.

#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

int fd;
struct flock fl;

fd = open("testfile", O_RDWR);
if (fd == -1)

/* Handle error */;

/* Make a non-blocking request to place a write lock
on bytes 100-109 of testfile */

fl.l_type = F_WRLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 100;
fl.l_len = 10;

if (fcntl(fd, F_SETLK, &fl) == -1) {
if (errno == EACCES || errno == EAGAIN) {

printf("Already locked by another process\n");

/* We cannot get the lock at the moment */

} else {
/* Handle unexpected error */;

}
} else { /* Lock was granted... */

/* Perform I/O on bytes 100 to 109 of file */

/* Unlock the locked bytes */

fl.l_type = F_UNLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 100;
fl.l_len = 10;
if (fcntl(fd, F_SETLK, &fl) == -1)

/* Handle error */;
}
exit(EXIT_SUCCESS);

} /* main */

908 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30973

30974

30975

30976

30977

30978

30979

30980

30981

30982

30983

30984

30985

30986

30987

30988

30989

30990

30991

30992

30993

30994

30995

30996

30997

30998

30999

31000

31001

31002

31003

31004

31005

31006

31007

31008

31009

31010

31011

31012

31013

31014

31015

31016

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fcntl()

Setting the Close-on-Exec Flag

The following example demonstrates how to set the close-on-exec flag for the file descriptor fd.

#include <unistd.h>
#include <fcntl.h>
...

int flags;

flags = fcntl(fd, F_GETFD);
if (flags == -1)

/* Handle error */;
flags |= FD_CLOEXEC;
if (fcntl(fd, F_SETFD, flags) == -1)

/* Handle error */;"

APPLICATION USAGE
The arg values to F_GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag values to allow
for future growth. Applications using these functions should do a read-modify-write operation
on them, rather than assuming that only the values defined by this volume of POSIX.1-2024 are
valid. It is a common error to forget this, particularly in the case of F_SETFD. Some
implementations set additional file status flags to advise the application of default behavior,
even though the application did not request these flags.

In order to set both FD_CLOEXEC and FD_CLOFORK when duplicating a file descriptor,
applications should use F_DUPFD_CLOFORK to obtain the new file descriptor with
FD_CLOFORK already set, and then use F_SETFD to set the FD_CLOEXEC flag on the new
descriptor. (The alternative of first using F_DUPFD_CLOEXEC and then setting FD_CLOFORK
with F_SETFD has a timing window where another thread could create a child process which
inherits the new descriptor because FD_CLOFORK has not yet been set.)

The FD_CLOFORK flag takes effect for all child processes, not just those created using fork() or
_Fork().

On implementations where process IDs can be greater than {INT_MAX}, F_SETOWN cannot be
used with process IDs greater than {INT_MAX} or process group IDs greater than {INT_MAX}+1
because the value is passed to fcntl() in an argument of type int. In this situation,
F_SETOWN_EX should be used instead.

Similarly, if a process ID greater than {INT_MAX} or a process group ID greater than
{INT_MAX}+1 has been set to receive SIGURG signals (using F_SETOWN_EX), F_GETOWN
cannot be used to obtain the value because fcntl() returns the value as type int and will thus
give an [EOVERFLOW] error for such values. F_GETOWN_EX should be used instead.

Note that the convention of negating a process group ID is only used with F_SETOWN and
F_GETOWN; the pid member of the f_owner_ex structure used with F_SETOWN_EX and
F_GETOWN_EX is not negated when it specifies a process group ID.

On systems which do not perform permission checks at the time of an fcntl() call with
F_SETOWN or F_SETOWN_EX, if the permission checks performed at the time the signal is sent
disallow sending the signal to any process, the process that called fcntl() has no way of
discovering that this has happened. A call to kill() with signal 0 can be used as a prior check of
permissions, although this is no guarantee that permission will be granted at the time a signal is
sent, since the target process(es) could change user IDs or privileges in the meantime.

Record-locking should not be used in combination with buffered standard I/O streams (see
Section 2.5, on page 521). Instead, non-buffered I/O should be used. Unexpected results may

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 909

31017

31018

31019

31020

31021

31022

31023

31024

31025

31026

31027

31028

31029

31030

31031

31032

31033

31034

31035

31036

31037

31038

31039

31040

31041

31042

31043

31044

31045

31046

31047

31048

31049

31050

31051

31052

31053

31054

31055

31056

31057

31058

31059

31060

31061

31062

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fcntl() System Interfaces

occur in processes that do buffering in the user address space. The process may later read/write
data which is/was locked. Functions that operate on standard I/O streams are the most
common source of such buffering.

RATIONALE
The ellipsis in the SYNOPSIS is the syntax specified by the ISO C standard for a variable number
of arguments. It is used because System V uses pointers for the implementation of file locking
functions.

This volume of POSIX.1-2024 permits concurrent read and write access to file data using the
fcntl() function; this is a change from the 1984 /usr/group standard and early proposals.
Without concurrency controls, this feature may not be fully utilized without occasional loss of
data.

Data losses occur in several ways. One case occurs when several processes try to update the
same record, without sequencing controls; several updates may occur in parallel and the last
writer ``wins’’. Another case is a bit-tree or other internal list-based database that is undergoing
reorganization. Without exclusive use to the tree segment by the updating process, other reading
processes chance getting lost in the database when the index blocks are split, condensed,
inserted, or deleted. While fcntl() is useful for many applications, it is not intended to be overly
general and does not handle the bit-tree example well.

This facility is only required for regular files because it is not appropriate for many devices such
as terminals and network connections.

Since fcntl() works with ``any file descriptor associated with that file, however it is obtained’’,
the file descriptor may have been inherited through a fork() or exec operation and thus may
affect a file that another process also has open.

The use of the open file description to identify what to lock requires extra calls and presents
problems if several processes are sharing an open file description, but there are too many
implementations of the existing mechanism for this volume of POSIX.1-2024 to use different
specifications.

Another consequence of this model is that closing any file descriptor for a given file (whether or
not it is the same open file description that created the lock) causes the locks on that file to be
relinquished for that process. Equivalently, any close for any file/process pair relinquishes the
locks owned on that file for that process. But note that while an open file description may be
shared through fork(), locks are not inherited through fork(). Yet locks may be inherited through
one of the exec functions.

The identification of a machine in a network environment is outside the scope of this volume of
POSIX.1-2024. Thus, an l_sysid member, such as found in System V, is not included in the locking
structure.

Changing of lock types can result in a previously locked region being split into smaller regions.

Mandatory locking was a major feature of the 1984 /usr/group standard.

For advisory file record locking to be effective, all processes that have access to a file must
cooperate and use the advisory mechanism before doing I/O on the file. Enforcement-mode
record locking is important when it cannot be assumed that all processes are cooperating. For
example, if one user uses an editor to update a file at the same time that a second user executes
another process that updates the same file and if only one of the two processes is using advisory
locking, the processes are not cooperating. Enforcement-mode record locking would protect
against accidental collisions.

Secondly, advisory record locking requires a process using locking to bracket each I/O operation

910 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31063

31064

31065

31066

31067

31068

31069

31070

31071

31072

31073

31074

31075

31076

31077

31078

31079

31080

31081

31082

31083

31084

31085

31086

31087

31088

31089

31090

31091

31092

31093

31094

31095

31096

31097

31098

31099

31100

31101

31102

31103

31104

31105

31106

31107

31108

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fcntl()

with lock (or test) and unlock operations. With enforcement-mode file and record locking, a
process can lock the file once and unlock when all I/O operations have been completed.
Enforcement-mode record locking provides a base that can be enhanced; for example, with
sharable locks. That is, the mechanism could be enhanced to allow a process to lock a file so
other processes could read it, but none of them could write it.

Mandatory locks were omitted for several reasons:

1. Mandatory lock setting was done by multiplexing the set-group-ID bit in most
implementations; this was confusing, at best.

2. The relationship to file truncation as supported in 4.2 BSD was not well specified.

3. Any publicly readable file could be locked by anyone. Many historical implementations
keep the password database in a publicly readable file. A malicious user could thus
prohibit logins. Another possibility would be to hold open a long-distance telephone line.

4. Some demand-paged historical implementations offer memory mapped files, and
enforcement cannot be done on that type of file.

Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a
timeout facility in applications requiring it. This is useful in deadlock detection. Since
implementation of full deadlock detection is not always feasible, the [EDEADLK] error was
made optional.

The F_SETOWN_EX and F_GETOWN_EX values for cmd and the associated f_owner_ex
structure were adopted from the GNU C library. In addition to the values F_OWNER_PID and
F_OWNER_PGRP for the type member, this also has F_OWNER_TID to specify that the pid
member contains a thread ID. However, this relies on thread IDs being representable in a pid_t
and so was not included in POSIX.1-2024. The aim of adding F_SETOWN_EX and
F_GETOWN_EX was to address the inability of F_SETOWN and F_GETOWN to handle process
IDs greater than {INT_MAX} and process group IDs greater than {INT_MAX}+1, and this need is
satisfied without including F_OWNER_TID.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), close(), exec , kill(), open(), sigaction()

XBD <fcntl.h>, <signal.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 911

31109

31110

31111

31112

31113

31114

31115

31116

31117

31118

31119

31120

31121

31122

31123

31124

31125

31126

31127

31128

31129

31130

31131

31132

31133

31134

31135

31136

31137

31138

31139

31140

31141

31142

31143

31144

31145

31146

31147

31148

31149

31150

31151

31152

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fcntl() System Interfaces

• In the DESCRIPTION, sentences describing behavior when l_len is negative are now
mandated, and the description of unlock (F_UNLOCK) when l_len is non-negative is
mandated.

• In the ERRORS section, the [EINVAL] error condition has the case mandated when the cmd
is invalid, and two [EOVERFLOW] error conditions are added.

The F_GETOWN and F_SETOWN values are added for sockets.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that the extent of the bytes locked is determined prior to the
blocking action.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
fcntl() results are unspecified for typed memory objects.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/29 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #150 is applied, clarifying the file status flags returned
when cmd is F_GETFL.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC flag.

The optional <unistd.h> header is removed from this function, since <fcntl.h> now defines
SEEK_SET, SEEK_CUR, and SEEK_END as part of the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0116 [141] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0105 [835], XSH/TC2-2008/0106 [677],
XSH/TC2-2008/0107 [484], XSH/TC2-2008/0108 [675], and XSH/TC2-2008/0109 [675,677] are
applied.

Issue 8
Austin Group Defect 695 is applied, adding an atomicity requirement to the F_SETOWN
operation.

Austin Group Defects 768 and 1671 are applied, adding OFD-owned file locks.

Austin Group Defect 1203 is applied, changing some wording in the RETURN VALUE section to
use ``shall’’.

Austin Group Defects 1274 and 1670 are applied, adding F_GETOWN_EX and F_SETOWN_EX.

Austin Group Defect 1318 is applied, adding FD_CLOFORK and F_DUPFD_CLOFORK.

912 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31153

31154

31155

31156

31157

31158

31159

31160

31161

31162

31163

31164

31165

31166

31167

31168

31169

31170

31171

31172

31173

31174

31175

31176

31177

31178

31179

31180

31181

31182

31183

31184

31185

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fdatasync()

NAME
fdatasync — synchronize the data of a file (REALTIME)

SYNOPSIS
SIO #include <unistd.h>

int fdatasync(int fildes);

DESCRIPTION
The fdatasync() function shall force all currently queued I/O operations associated with the file
indicated by file descriptor fildes to the synchronized I/O completion state.

The functionality shall be equivalent to fsync() with the symbol _POSIX_SYNCHRONIZED_IO
defined, with the exception that all I/O operations shall be completed as defined for
synchronized I/O data integrity completion.

RETURN VALUE
If successful, the fdatasync() function shall return the value 0; otherwise, the function shall return
the value −1 and set errno to indicate the error. If the fdatasync() function fails, outstanding I/O
operations are not guaranteed to have been completed.

ERRORS
The fdatasync() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] This implementation does not support synchronized I/O for this file.

In the event that any of the queued I/O operations fail, fdatasync() shall return the error
conditions defined for read() and write().

EXAMPLES
None.

APPLICATION USAGE
Note that even if the file descriptor is not open for writing, if there are any pending write
requests on the underlying file, then that I/O will be completed prior to the return of fdatasync().

An application that modifies a directory, for example, by creating a file in the directory, can
invoke fdatasync() on the directory to ensure that the directory’s entries are synchronized,
although for most applications this should not be necessary (see XBD Section 4.11, on page 98).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_fsync(), fcntl(), fsync(), open(), read(), write()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Synchronized Input and Output option.

The fdatasync() function is marked as part of the Synchronized Input and Output option.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 913

31186

31187

31188

31189

31190

31191

31192

31193

31194

31195

31196

31197

31198

31199

31200

31201

31202

31203

31204

31205

31206

31207

31208

31209

31210

31211

31212

31213

31214

31215

31216

31217

31218

31219

31220

31221

31222

31223

31224

31225

31226

31227

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fdatasync() System Interfaces

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0110 [501] is applied.

Issue 8
Austin Group Defect 672 is applied, changing the APPLICATION USAGE section.

914 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31228

31229

31230

31231

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fdim()

NAME
fdim, fdimf, fdiml — compute positive difference between two floating-point numbers

SYNOPSIS
#include <math.h>

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall determine the positive difference between their arguments. If x is greater
than y, x−y is returned. If x is less than or equal to y, +0 is returned.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the positive difference value.

If x−y is positive and overflows, a range error shall occur and fdim(), fdimf(), and fdiml() shall
return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If the correct value would cause underflow, a range error may occur, and fdim(), fdimf(), and
MXX fdiml() shall return the correct value, or (if the IEC 60559 Floating-Point option is not

supported) an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

MX If x or y is NaN, a NaN shall be returned.

ERRORS
The fdim() function shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

The fdim() function may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 915

31232

31233

31234

31235

31236

31237

31238

31239

31240

31241

31242

31243

31244

31245

31246

31247

31248

31249

31250

31251

31252

31253

31254

31255

31256

31257

31258

31259

31260

31261

31262

31263

31264

31265

31266

31267

31268

31269

31270

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fdim() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), fmax(), fmin()

Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0119 [68,428] and
XSH/TC1-2008/0120 [68,428] are applied.

916 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31271

31272

31273

31274

31275

31276

31277

31278

31279

31280

31281

31282

31283

31284

31285

31286

31287

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fdopen()

NAME
fdopen — associate a stream with a file descriptor

SYNOPSIS
CX #include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fdopen() function shall associate a stream with a file descriptor.

The mode argument points to a character string that is valid for fopen(). If the string begins with
one of the following characters, then the stream shall be associated with fildes as specified.
Otherwise, the behavior is undefined.

'r' If mode includes '+', the associated stream shall be open for update (reading and
writing); otherwise, the stream shall be open for reading only. If the open file description
referenced by fildes has O_APPEND set, it shall remain set.

'w' If mode includes '+', the associated stream shall be open for update (reading and
writing); otherwise, the stream shall be open for writing only. The file shall not be
truncated by the fdopen() call. If the open file description referenced by fildes has
O_APPEND set, it shall remain set.

'a' If mode includes '+', the associated stream shall be open for update (reading and
writing); otherwise, the stream shall be open for writing only. If the open file description
referenced by fildes has O_APPEND clear, it is unspecified whether O_APPEND is set by
the fdopen() call or remains clear.

The presence of 'x' in mode shall have no effect. The FD_CLOEXEC flag of fildes shall be
unchanged if 'e' is not present, and shall be set by the fdopen() call if 'e' is present.

Additional values for the mode argument may be supported by an implementation.

The application shall ensure that the mode of the stream as expressed by the mode argument is
allowed by the file access mode of the open file description to which fildes refers. The file
position indicator associated with the new stream is set to the position indicated by the file offset
associated with the file descriptor.

The error and end-of-file indicators for the stream shall be cleared. The fdopen() function may
cause the last data access timestamp of the underlying file to be marked for update.

SHM If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the fdopen() function is unspecified.

The fdopen() function shall preserve the offset maximum previously set for the open file
description corresponding to fildes.

RETURN VALUE
Upon successful completion, fdopen() shall return a pointer to a stream; otherwise, a null pointer
shall be returned and errno set to indicate the error.

ERRORS
The fdopen() function shall fail if:

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

The fdopen() function may fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 917

31288

31289

31290

31291

31292

31293

31294

31295

31296

31297

31298

31299

31300

31301

31302

31303

31304

31305

31306

31307

31308

31309

31310

31311

31312

31313

31314

31315

31316

31317

31318

31319

31320

31321

31322

31323

31324

31325

31326

31327

31328

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fdopen() System Interfaces

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The mode argument is not a valid mode.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[ENOMEM] Insufficient space to allocate a buffer.

EXAMPLES
None.

APPLICATION USAGE
File descriptors are obtained from calls like open(), dup(), creat(), or pipe(), which open files but
do not return streams.

RATIONALE
The file descriptor may have been obtained from open(), creat(), pipe(), dup(), fcntl(), or socket();
inherited through fork(), posix_spawn(), or exec; or perhaps obtained by other means.

The meanings of the mode arguments of fdopen() and fopen() differ. With fdopen(), write ('w')
mode cannot create or truncate a file, and append ('a') mode cannot create a file. Inclusion of a
'b' in the mode argument is allowed for consistency with fopen(); the 'b' has no effect on the
resulting stream. Implementations differ as to whether specifying append ('a') mode causes
the O_APPEND flag to be set if it was clear, but they are encouraged to do so. Since fdopen()
does not create a file, the 'x' mode modifier is silently ignored. The 'e' mode modifier is not
strictly necessary for fdopen(), since FD_CLOEXEC must not be changed when it is absent;
however, it is standardized here since that modifier is necessary to avoid a data race in multi-
threaded applications using freopen(), and consistency dictates that all functions accepting mode
strings should allow the same set of strings.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.1 (on page 522), fclose(), fmemopen(), fopen(), open(), open_memstream(),
posix_spawn(), socket()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the use and setting of the mode argument are changed to include
binary streams.

• In the DESCRIPTION, text is added for large file support to indicate setting of the offset
maximum in the open file description.

• All errors identified in the ERRORS section are added.

918 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31329

31330

31331

31332

31333

31334

31335

31336

31337

31338

31339

31340

31341

31342

31343

31344

31345

31346

31347

31348

31349

31350

31351

31352

31353

31354

31355

31356

31357

31358

31359

31360

31361

31362

31363

31364

31365

31366

31367

31368

31369

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fdopen()

• In the DESCRIPTION, text is added that the fdopen() function may cause st_atime to be
updated.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that it is the responsibility of the application to ensure that the mode
is compatible with the open file descriptor.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
fdopen() results are unspecified for typed memory objects.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/30 is applied, making corrections to the
RATIONALE.

Issue 7
SD5-XSH-ERN-149 is applied, adding the {STREAM_MAX} [EMFILE] error condition.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0121 [409] is applied.

Issue 8
Austin Group Defects 411 and 1526 are applied, changing the requirements for the mode
argument.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 919

31370

31371

31372

31373

31374

31375

31376

31377

31378

31379

31380

31381

31382

31383

31384

31385

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fdopendir() System Interfaces

NAME
fdopendir, opendir — open directory associated with file descriptor

SYNOPSIS
#include <dirent.h>

DIR *fdopendir(int fd);
DIR *opendir(const char *dirname);

DESCRIPTION
The fdopendir() function shall be equivalent to the opendir() function except that the directory is
specified by a file descriptor rather than by a name. The file offset associated with the file
descriptor at the time of the call determines which entries are returned.

Upon successful return from fdopendir(), the file descriptor is under the control of the system,
and if any attempt is made to close the file descriptor, or to modify the state of the associated

XSI description, other than by means of closedir(), readdir(), readdir_r(), rewinddir(), or seekdir(), the
behavior is undefined. Upon calling closedir() the file descriptor shall be closed.

It is unspecified whether the FD_CLOEXEC flag will be set on the file descriptor by a successful
call to fdopendir() if it was not previously set. However, the flag shall not be cleared if it was
previously set.

The opendir() function shall open a directory stream corresponding to the directory named by
the dirname argument. The directory stream shall be positioned at the first entry. If opendir()
opens a file descriptor for dirname to associate with the returned stream:

• The descriptor shall be allocated as if the O_DIRECTORY and O_CLOEXEC flags were
passed to open().

• The descriptor shall be subject to the limit of {OPEN_MAX} file descriptors available to the
process.

RETURN VALUE
Upon successful completion, these functions shall return a pointer to an object of type DIR.
Otherwise, these functions shall return a null pointer and set errno to indicate the error.

ERRORS
The fdopendir() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor open for reading.

[ENOTDIR] The descriptor fd is not associated with a directory.

The opendir() function shall fail if:

[EACCES] Search permission is denied for the component of the path prefix of dirname or
read permission is denied for dirname.

[ELOOP] A loop exists in symbolic links encountered during resolution of the dirname
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of dirname does not name an existing directory or dirname is an
empty string.

[ENOTDIR] A component of dirname names an existing file that is neither a directory nor a
symbolic link to a directory.

920 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31386

31387

31388

31389

31390

31391

31392

31393

31394

31395

31396

31397

31398

31399

31400

31401

31402

31403

31404

31405

31406

31407

31408

31409

31410

31411

31412

31413

31414

31415

31416

31417

31418

31419

31420

31421

31422

31423

31424

31425

31426

31427

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fdopendir()

The opendir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the dirname argument.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

EXAMPLES

Open a Directory Stream

The following program fragment demonstrates how the opendir() function is used.

#include <dirent.h>
...

DIR *dir;
struct dirent *dp;

...
if ((dir = opendir (".")) == NULL) {

perror ("Cannot open .");
exit (1);

}

while ((dp = readdir (dir)) != NULL) {
...
Find And Open a File

The following program searches through a given directory looking for files whose name does
not begin with a dot and whose size is larger than 1 MiB.

#include <stdio.h>
#include <dirent.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

struct stat statbuf;
DIR *d;
struct dirent *dp;
int dfd, ffd;

if ((d = fdopendir((dfd = open("./tmp", O_RDONLY)))) == NULL) {
fprintf(stderr, "Cannot open ./tmp directory\n");
exit(1);

}
while ((dp = readdir(d)) != NULL) {

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 921

31428

31429

31430

31431

31432

31433

31434

31435

31436

31437

31438

31439

31440

31441

31442

31443

31444

31445

31446

31447

31448

31449

31450

31451

31452

31453

31454

31455

31456

31457

31458

31459

31460

31461

31462

31463

31464

31465

31466

31467

31468

31469

31470

31471

31472

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fdopendir() System Interfaces

if (dp->d_name[0] == '.')
continue;

/* there is a possible race condition here as the file
* could be renamed between the readdir and the open */
if ((ffd = openat(dfd, dp->d_name, O_RDONLY)) == -1) {

perror(dp->d_name);
continue;

}
if (fstat(ffd, &statbuf) == 0 && statbuf.st_size > (1024*1024)) {

/* found it ... */
printf("%s: %jdK\n", dp->d_name,

(intmax_t)(statbuf.st_size / 1024));
}
close(ffd);

}
closedir(d); // note this implicitly closes dfd
return 0;

}

APPLICATION USAGE
The opendir() function should be used in conjunction with readdir(), closedir(), and rewinddir() to
examine the contents of the directory (see the EXAMPLES section in readdir()). This method is
recommended for portability.

RATIONALE
The purpose of the fdopendir() function is to enable opening files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to opendir(), resulting in unspecified behavior.

Based on historical implementations, the rules about file descriptors apply to directory streams
as well. However, this volume of POSIX.1-2024 does not mandate that opendir() opens a file
descriptor to associate with the stream; this may instead be done by the first call to dirfd(), thus
avoiding the need to allocate a file descriptor if dirfd() is never called. Once a file descriptor has
been associated with the stream, it is mandatory that closedir() deallocate the file descriptor. If
opendir() opens a file descriptor to associate with the stream, it behaves as if the O_CLOEXEC
flag for open() had been used, so that the FD_CLOEXEC flag is set for the file descriptor. If
fdopendir() is used to create a directory stream, it is unspecified whether the FD_CLOEXEC flag
on the file descriptor specified by the fd argument is set or left unchanged.

The directory entries for dot and dot-dot are optional. This volume of POSIX.1-2024 does not
provide a way to test a priori for their existence because an application that is portable must be
written to look for (and usually ignore) those entries. Writing code that presumes that they are
the first two entries does not always work, as many implementations permit them to be other
than the first two entries, with a ``normal’’ entry preceding them. There is negligible value in
providing a way to determine what the implementation does because the code to deal with dot
and dot-dot must be written in any case and because such a flag would add to the list of those
flags (which has proven in itself to be objectionable) and might be abused.

Since the structure and buffer allocation, if any, for directory operations are defined by the
implementation, this volume of POSIX.1-2024 imposes no portability requirements for erroneous
program constructs, erroneous data, or the use of unspecified values such as the use or
referencing of a dirp value or a dirent structure value after a directory stream has been closed or
after a fork() or one of the exec function calls.

922 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31473

31474

31475

31476

31477

31478

31479

31480

31481

31482

31483

31484

31485

31486

31487

31488

31489

31490

31491

31492

31493

31494

31495

31496

31497

31498

31499

31500

31501

31502

31503

31504

31505

31506

31507

31508

31509

31510

31511

31512

31513

31514

31515

31516

31517

31518

31519

31520

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fdopendir()

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), dirfd(), fstatat(), open(), posix_getdents(), readdir(), rewinddir(), symlink()

XBD <dirent.h>, <fcntl.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The fdopendir() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

An additional example is added.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0122 [422] and XSH/TC1-2008/0123
[324] are applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement for FD_CLOEXEC to be set by
opendir() if it associates a file descriptor with the returned stream.

Austin Group Defect 411 is applied, clarifying that FD_CLOEXEC is not cleared by fdopendir() if
it was previously set.

Austin Group Defect 697 is applied, adding posix_getdents() to the SEE ALSO section.

Austin Group Defect 1360 is applied, clarifying that type DIR always has the ability to store a
file descriptor; what is optional is whether one is opened by opendir().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 923

31521

31522

31523

31524

31525

31526

31527

31528

31529

31530

31531

31532

31533

31534

31535

31536

31537

31538

31539

31540

31541

31542

31543

31544

31545

31546

31547

31548

31549

31550

31551

31552

31553

31554

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

feclearexcept() System Interfaces

NAME
feclearexcept — clear floating-point exception

SYNOPSIS
#include <fenv.h>

int feclearexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The feclearexcept() function shall attempt to clear the supported floating-point exceptions
represented by excepts.

RETURN VALUE
If the argument is zero or if all the specified exceptions were successfully cleared, feclearexcept()
shall return zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetexceptflag(), feraiseexcept(), fetestexcept()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

924 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31555

31556

31557

31558

31559

31560

31561

31562

31563

31564

31565

31566

31567

31568

31569

31570

31571

31572

31573

31574

31575

31576

31577

31578

31579

31580

31581

31582

31583

31584

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fegetenv()

NAME
fegetenv, fesetenv — get and set current floating-point environment

SYNOPSIS
#include <fenv.h>

int fegetenv(fenv_t *envp);
int fesetenv(const fenv_t *envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fegetenv() function shall attempt to store the current floating-point environment in the object
pointed to by envp.

The fesetenv() function shall attempt to establish the floating-point environment represented by
the object pointed to by envp. The argument envp shall point to an object set by a call to
fegetenv() or feholdexcept(), or equal a floating-point environment macro. The fesetenv() function
does not raise floating-point exceptions, but only installs the state of the floating-point status
flags represented through its argument.

RETURN VALUE
If the representation was successfully stored, fegetenv() shall return zero. Otherwise, it shall
return a non-zero value. If the environment was successfully established, fesetenv() shall return
zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feholdexcept(), feupdateenv()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 925

31585

31586

31587

31588

31589

31590

31591

31592

31593

31594

31595

31596

31597

31598

31599

31600

31601

31602

31603

31604

31605

31606

31607

31608

31609

31610

31611

31612

31613

31614

31615

31616

31617

31618

31619

31620

31621

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fegetexceptflag() System Interfaces

NAME
fegetexceptflag, fesetexceptflag — get and set floating-point status flags

SYNOPSIS
#include <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);
int fesetexceptflag(const fexcept_t *flagp, int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fegetexceptflag() function shall attempt to store an implementation-defined representation of
the states of the floating-point status flags indicated by the argument excepts in the object
pointed to by the argument flagp.

The fesetexceptflag() function shall attempt to set the floating-point status flags indicated by the
argument excepts to the states stored in the object pointed to by flagp. The value pointed to by
flagp shall have been set by a previous call to fegetexceptflag() whose second argument
represented at least those floating-point exceptions represented by the argument excepts. This
function does not raise floating-point exceptions, but only sets the state of the flags.

RETURN VALUE
If the representation was successfully stored, fegetexceptflag() shall return zero. Otherwise, it
shall return a non-zero value. If the excepts argument is zero or if all the specified exceptions
were successfully set, fesetexceptflag() shall return zero. Otherwise, it shall return a non-zero
value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), feraiseexcept(), fetestexcept()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

926 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31622

31623

31624

31625

31626

31627

31628

31629

31630

31631

31632

31633

31634

31635

31636

31637

31638

31639

31640

31641

31642

31643

31644

31645

31646

31647

31648

31649

31650

31651

31652

31653

31654

31655

31656

31657

31658

31659

31660

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fegetround()

NAME
fegetround, fesetround — get and set current rounding direction

SYNOPSIS
#include <fenv.h>

int fegetround(void);
int fesetround(int round);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fegetround() function shall get the current rounding direction.

The fesetround() function shall establish the rounding direction represented by its argument
round. If the argument is not equal to the value of a rounding direction macro, the rounding
direction is not changed.

RETURN VALUE
The fegetround() function shall return the value of the rounding direction macro representing the
current rounding direction or a negative value if there is no such rounding direction macro or
the current rounding direction is not determinable.

The fesetround() function shall return a zero value if and only if the requested rounding direction
was established.

ERRORS
No errors are defined.

EXAMPLES
The following example saves, sets, and restores the rounding direction, reporting an error and
aborting if setting the rounding direction fails:

#include <fenv.h>
#include <assert.h>
void f(int round_dir)
{

#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
/* ... */
fesetround(save_round);
/* ... */

}

APPLICATION USAGE
None.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 927

31661

31662

31663

31664

31665

31666

31667

31668

31669

31670

31671

31672

31673

31674

31675

31676

31677

31678

31679

31680

31681

31682

31683

31684

31685

31686

31687

31688

31689

31690

31691

31692

31693

31694

31695

31696

31697

31698

31699

31700

31701

31702

31703

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fegetround() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

928 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31704

31705

31706

31707

31708

31709

31710

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces feholdexcept()

NAME
feholdexcept — save current floating-point environment

SYNOPSIS
#include <fenv.h>

int feholdexcept(fenv_t *envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The feholdexcept() function shall save the current floating-point environment in the object
pointed to by envp, clear the floating-point status flags, and then install a non-stop (continue on
floating-point exceptions) mode, if available, for all floating-point exceptions.

RETURN VALUE
The feholdexcept() function shall return zero if and only if non-stop floating-point exception
handling was successfully installed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The feholdexcept() function should be effective on typical IEC 60559: 1989 standard
implementations which have the default non-stop mode and at least one other mode for trap
handling or aborting. If the implementation provides only the non-stop mode, then installing the
non-stop mode is trivial.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetenv(), feupdateenv()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 929

31711

31712

31713

31714

31715

31716

31717

31718

31719

31720

31721

31722

31723

31724

31725

31726

31727

31728

31729

31730

31731

31732

31733

31734

31735

31736

31737

31738

31739

31740

31741

31742

31743

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

feof() System Interfaces

NAME
feof — test end-of-file indicator on a stream

SYNOPSIS
#include <stdio.h>

int feof(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The feof() function shall test the end-of-file indicator for the stream pointed to by stream.

CX The feof() function shall not change the setting of errno if stream is valid.

RETURN VALUE
The feof() function shall return non-zero if and only if the end-of-file indicator is set for stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), ferror(), fopen()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0124 [401] is applied.

930 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31744

31745

31746

31747

31748

31749

31750

31751

31752

31753

31754

31755

31756

31757

31758

31759

31760

31761

31762

31763

31764

31765

31766

31767

31768

31769

31770

31771

31772

31773

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces feraiseexcept()

NAME
feraiseexcept — raise floating-point exception

SYNOPSIS
#include <fenv.h>

int feraiseexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The feraiseexcept() function shall attempt to raise the supported floating-point exceptions
represented by the excepts argument. The order in which these floating-point exceptions are

MX raised is unspecified, except that if the excepts argument represents IEC 60559 valid coincident
floating-point exceptions for atomic operations (namely overflow and inexact, or underflow and
inexact), then overflow or underflow shall be raised before inexact. Whether the feraiseexcept()
function additionally raises the inexact floating-point exception whenever it raises the overflow
or underflow floating-point exception is implementation-defined.

RETURN VALUE
If the argument is zero or if all the specified exceptions were successfully raised, feraiseexcept()
shall return zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The effect is intended to be similar to that of floating-point exceptions raised by arithmetic
operations. Hence, enabled traps for floating-point exceptions raised by this function are taken.

RATIONALE
Raising overflow or underflow is allowed to also raise inexact because on some architectures the
only practical way to raise an exception is to execute an instruction that has the exception as a
side-effect. The function is not restricted to accept only valid coincident expressions for atomic
operations, so the function can be used to raise exceptions accrued over several operations.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fegetexceptflag(), fetestexcept()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0111 [543] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 931

31774

31775

31776

31777

31778

31779

31780

31781

31782

31783

31784

31785

31786

31787

31788

31789

31790

31791

31792

31793

31794

31795

31796

31797

31798

31799

31800

31801

31802

31803

31804

31805

31806

31807

31808

31809

31810

31811

31812

31813

31814

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ferror() System Interfaces

NAME
ferror — test error indicator on a stream

SYNOPSIS
#include <stdio.h>

int ferror(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The ferror() function shall test the error indicator for the stream pointed to by stream.

CX The ferror() function shall not change the setting of errno if stream is valid.

RETURN VALUE
The ferror() function shall return non-zero if and only if the error indicator is set for stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), feof(), fopen()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0125 [401] is applied.

932 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31815

31816

31817

31818

31819

31820

31821

31822

31823

31824

31825

31826

31827

31828

31829

31830

31831

31832

31833

31834

31835

31836

31837

31838

31839

31840

31841

31842

31843

31844

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fesetenv()

NAME
fesetenv — set current floating-point environment

SYNOPSIS
#include <fenv.h>

int fesetenv(const fenv_t *envp);

DESCRIPTION
Refer to fegetenv().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 933

31845

31846

31847

31848

31849

31850

31851

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fesetexceptflag() System Interfaces

NAME
fesetexceptflag — set floating-point status flags

SYNOPSIS
#include <fenv.h>

int fesetexceptflag(const fexcept_t *flagp, int excepts);

DESCRIPTION
Refer to fegetexceptflag().

934 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31852

31853

31854

31855

31856

31857

31858

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fesetround()

NAME
fesetround — set current rounding direction

SYNOPSIS
#include <fenv.h>

int fesetround(int round);

DESCRIPTION
Refer to fegetround().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 935

31859

31860

31861

31862

31863

31864

31865

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fetestexcept() System Interfaces

NAME
fetestexcept — test floating-point exception flags

SYNOPSIS
#include <fenv.h>

int fetestexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fetestexcept() function shall determine which of a specified subset of the floating-point
exception flags are currently set. The excepts argument specifies the floating-point status flags to
be queried.

RETURN VALUE
The fetestexcept() function shall return the value of the bitwise-inclusive OR of the floating-point
exception macros corresponding to the currently set floating-point exceptions included in
excepts.

ERRORS
No errors are defined.

EXAMPLES
The following example calls function f() if an invalid exception is set, and then function g() if an
overflow exception is set:

#include <fenv.h>
/* ... */
{

#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... */

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fegetexceptflag(), feraiseexcept()

XBD <fenv.h>

936 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31866

31867

31868

31869

31870

31871

31872

31873

31874

31875

31876

31877

31878

31879

31880

31881

31882

31883

31884

31885

31886

31887

31888

31889

31890

31891

31892

31893

31894

31895

31896

31897

31898

31899

31900

31901

31902

31903

31904

31905

31906

31907

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fetestexcept()

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 937

31908

31909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

feupdateenv() System Interfaces

NAME
feupdateenv — update floating-point environment

SYNOPSIS
#include <fenv.h>

int feupdateenv(const fenv_t *envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The feupdateenv() function shall attempt to save the currently raised floating-point exceptions in
its automatic storage, attempt to install the floating-point environment represented by the object
pointed to by envp, and then attempt to raise the saved floating-point exceptions. The argument
envp shall point to an object set by a call to feholdexcept() or fegetenv(), or equal a floating-point
environment macro.

RETURN VALUE
The feupdateenv() function shall return a zero value if and only if all the required actions were
successfully carried out.

ERRORS
No errors are defined.

EXAMPLES
The following example shows sample code to hide spurious underflow floating-point
exceptions:

#include <fenv.h>
double f(double x)
{

#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
feholdexcept(&save_env);
// compute result
if (/* test spurious underflow */)
feclearexcept(FE_UNDERFLOW);
feupdateenv(&save_env);
return result;

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetenv(), feholdexcept()

XBD <fenv.h>

938 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31910

31911

31912

31913

31914

31915

31916

31917

31918

31919

31920

31921

31922

31923

31924

31925

31926

31927

31928

31929

31930

31931

31932

31933

31934

31935

31936

31937

31938

31939

31940

31941

31942

31943

31944

31945

31946

31947

31948

31949

31950

31951

31952

31953

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces feupdateenv()

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 939

31954

31955

31956

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fexecve System Interfaces

NAME
fexecve — execute a file

SYNOPSIS
#include <unistd.h>

int fexecve(int fd, char *const argv[], char *const envp[]);

DESCRIPTION
Refer to exec .

940 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31957

31958

31959

31960

31961

31962

31963

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fflush()

NAME
fflush — flush a stream

SYNOPSIS
#include <stdio.h>

int fflush(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If stream points to an output stream or an update stream in which the most recent operation was
CX not input, fflush() shall cause any unwritten data for that stream to be written to the file, and the

last data modification and last file status change timestamps of the underlying file shall be
marked for update.

For a stream open for reading with an underlying file description, if the file is not already at
EOF, and the file is one capable of seeking, the file offset of the underlying open file description
shall be set to the file position of the stream, and any characters pushed back onto the stream by
ungetc() or ungetwc() that have not subsequently been read from the stream shall be discarded
(without further changing the file offset).

If stream is a null pointer, fflush() shall perform this flushing action on all streams for which the
behavior is defined above.

RETURN VALUE
Upon successful completion, fflush() shall return 0; otherwise, it shall set the error indicator for

CX the stream, return EOF, and set errno to indicate the error.

ERRORS
The fflush() function shall fail if:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not valid.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

CX [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

XSI A SIGXFSZ signal shall also be generated for the thread.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The fflush() function was interrupted by a signal.

CX [EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the calling thread is not blocking
SIGTTOU, the process is not ignoring SIGTTOU, and the process group of the
process is orphaned. This error may also be returned under implementation-
defined conditions.

CX [ENOMEM] The underlying stream was created by open_memstream() or
open_wmemstream() and insufficient memory is available.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 941

31964

31965

31966

31967

31968

31969

31970

31971

31972

31973

31974

31975

31976

31977

31978

31979

31980

31981

31982

31983

31984

31985

31986

31987

31988

31989

31990

31991

31992

31993

31994

31995

31996

31997

31998

31999

32000

32001

32002

32003

32004

32005

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fflush() System Interfaces

CX [ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen() function.

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fflush() function may fail if:

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES

Sending Prompts to Standard Output

The following example uses printf() calls to print a series of prompts for information the user
must enter from standard input. The fflush() calls force the output to standard output. The
fflush() function is used because standard output is usually buffered and the prompt may not
immediately be printed on the output or terminal. The getline() function calls read strings from
standard input and place the results in variables, for use later in the program.

char *user;
char *oldpasswd;
char *newpasswd;
ssize_t llen;
size_t blen;
struct termios term;
tcflag_t saveflag;

printf("User name: ");
fflush(stdout);
blen = 0;
llen = getline(&user, &blen, stdin);
user[llen-1] = 0;
tcgetattr(fileno(stdin), &term);
saveflag = term.c_lflag;
term.c_lflag &= ~ECHO;
tcsetattr(fileno(stdin), TCSANOW, &term);
printf("Old password: ");
fflush(stdout);
blen = 0;
llen = getline(&oldpasswd, &blen, stdin);
oldpasswd[llen-1] = 0;

printf("\nNew password: ");
fflush(stdout);
blen = 0;
llen = getline(&newpasswd, &blen, stdin);
newpasswd[llen-1] = 0;
term.c_lflag = saveflag;
tcsetattr(fileno(stdin), TCSANOW, &term);
free(user);
free(oldpasswd);
free(newpasswd);

942 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32006

32007

32008

32009

32010

32011

32012

32013

32014

32015

32016

32017

32018

32019

32020

32021

32022

32023

32024

32025

32026

32027

32028

32029

32030

32031

32032

32033

32034

32035

32036

32037

32038

32039

32040

32041

32042

32043

32044

32045

32046

32047

32048

32049

32050

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fflush()

APPLICATION USAGE
None.

RATIONALE
Data buffered by the system may make determining the validity of the position of the current
file descriptor impractical. Thus, enforcing the repositioning of the file descriptor after fflush()
on streams open for read() is not mandated by POSIX.1-2024.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fmemopen(), getrlimit(), open_memstream()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EFBIG] error is added as part of the large file support extensions.

• The [ENXIO] optional error condition is added.

The RETURN VALUE section is updated to note that the error indicator shall be set for the
stream. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/31 is applied, updating the [EAGAIN]
error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction of file
descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from The Open
Group Technical Standard, 2006, Extended API Set Part 1.

The EXAMPLES section is revised.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0126 [87], XSH/TC1-2008/0127 [79],
and XSH/TC1-2008/0128 [14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0112 [816] and XSH/TC2-2008/0113
[626] are applied.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 943

32051

32052

32053

32054

32055

32056

32057

32058

32059

32060

32061

32062

32063

32064

32065

32066

32067

32068

32069

32070

32071

32072

32073

32074

32075

32076

32077

32078

32079

32080

32081

32082

32083

32084

32085

32086

32087

32088

32089

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fflush() System Interfaces

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

944 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32090

32091

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ffs()

NAME
ffs, ffsl, ffsll — find first set bit

SYNOPSIS
XSI #include <strings.h>

int ffs(int i);
int ffsl(long i);
int ffsll(long long i);

DESCRIPTION
The ffs(), ffsl(), and ffsll() functions shall find the first bit set (beginning with the least significant
bit) in i, and return the index of that bit. Bits are numbered starting at one (the least significant
bit).

RETURN VALUE
The ffs(), ffsl(), and ffsll() functions shall return the index of the first bit set. If i is 0, then these
functions shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <strings.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 8
Austin Group Defect 617 is applied, adding ffsl() and ffsll().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 945

32092

32093

32094

32095

32096

32097

32098

32099

32100

32101

32102

32103

32104

32105

32106

32107

32108

32109

32110

32111

32112

32113

32114

32115

32116

32117

32118

32119

32120

32121

32122

32123

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fgetc() System Interfaces

NAME
fgetc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int fgetc(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If the end-of-file indicator for the input stream pointed to by stream is not set and a next byte is
present, the fgetc() function shall obtain the next byte as an unsigned char converted to an int,
from the input stream pointed to by stream, and advance the associated file position indicator for
the stream (if defined). Since fgetc() operates on bytes, reading a character consisting of multiple
bytes (or ``a multi-byte character’’) may require multiple calls to fgetc().

CX The fgetc() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), or scanf() using
stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, fgetc() shall return the next byte from the input stream pointed to
by stream. If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the
end-of-file indicator for the stream shall be set and fgetc() shall return EOF. If an error occurs, the

CX error indicator for the stream shall be set, fgetc() shall return EOF, and shall set errno to indicate
the error.

ERRORS
The fgetc() function shall fail if data needs to be read and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the fgetc() operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.

CX [EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the calling
thread is blocking SIGTTIN or the process is ignoring SIGTTIN or the process
group of the process is orphaned. This error may also be generated for
implementation-defined reasons.

CX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

The fgetc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

946 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32124

32125

32126

32127

32128

32129

32130

32131

32132

32133

32134

32135

32136

32137

32138

32139

32140

32141

32142

32143

32144

32145

32146

32147

32148

32149

32150

32151

32152

32153

32154

32155

32156

32157

32158

32159

32160

32161

32162

32163

32164

32165

32166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fgetc()

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by fgetc() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of
a variable of type char on widening to integer is implementation-defined.

The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), feof(), ferror(), fgets(), fread(), fscanf(), getchar(), getc(), ungetc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EOVERFLOW] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The DESCRIPTION is updated to clarify the behavior when the end-of-file indicator for the
input stream is not set.

• The RETURN VALUE section is updated to note that the error indicator shall be set for the
stream.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/32 is applied, updating the [EAGAIN]
error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of functions that mark
the last data access timestamp for update.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0129 [79] and XSH/TC1-2008/0130
[14] are applied.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1624 is applied, changing the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 947

32167

32168

32169

32170

32171

32172

32173

32174

32175

32176

32177

32178

32179

32180

32181

32182

32183

32184

32185

32186

32187

32188

32189

32190

32191

32192

32193

32194

32195

32196

32197

32198

32199

32200

32201

32202

32203

32204

32205

32206

32207

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fgetpos() System Interfaces

NAME
fgetpos — get current file position information

SYNOPSIS
#include <stdio.h>

int fgetpos(FILE *restrict stream, fpos_t *restrict pos);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fgetpos() function shall store the current values of the parse state (if any) and file position
indicator for the stream pointed to by stream in the object pointed to by pos. The value stored
contains unspecified information usable by fsetpos() for repositioning the stream to its position
at the time of the call to fgetpos().

The fgetpos() function shall not change the setting of errno if successful.

RETURN VALUE
Upon successful completion, fgetpos() shall return 0; otherwise, it shall return a non-zero value
and set errno to indicate the error.

ERRORS
The fgetpos() function shall fail if:

CX [EBADF] The file descriptor underlying stream is not valid.

CX [EOVERFLOW] The current value of the file position cannot be represented correctly in an
object of type fpos_t.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), ftell(), rewind(), ungetc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 5
Large File Summit extensions are added.

948 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32208

32209

32210

32211

32212

32213

32214

32215

32216

32217

32218

32219

32220

32221

32222

32223

32224

32225

32226

32227

32228

32229

32230

32231

32232

32233

32234

32235

32236

32237

32238

32239

32240

32241

32242

32243

32244

32245

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fgetpos()

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EBADF] and [ESPIPE] optional error conditions are added.

An additional [ESPIPE] error condition is added for sockets.

The prototype for fgetpos() is changed for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0131 [105], XSH/TC1-2008/0132 [122],
and XSH/TC1-2008/0133 [14] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 949

32246

32247

32248

32249

32250

32251

32252

32253

32254

32255

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fgets() System Interfaces

NAME
fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char *fgets(char *restrict s, int n, FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fgets() function shall read bytes from stream into the array pointed to by s until n−1 bytes are
read, or a <newline> is read and transferred to s, or an end-of-file condition is encountered. A
null byte shall be written immediately after the last byte read into the array. If the end-of-file
condition is encountered before any bytes are read, the contents of the array pointed to by s shall
not be changed.

CX The fgets() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), or scanf() using
stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, fgets() shall return s. If the stream is at end-of-file, the end-of-file
indicator for the stream shall be set and fgets() shall return a null pointer. If an error occurs, the

CX error indicator for the stream shall be set, fgets() shall return a null pointer, and shall set errno to
indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES

Reading Input

The following example uses fgets() to read lines of input. It assumes that the file it is reading is a
text file and that lines in this text file are no longer than 16384 (or {LINE_MAX} if it is less than
16384 on the implementation where it is running) bytes long. (Note that the standard utilities
have no line length limit if sysconf (_SC_LINE_MAX) returns −1 without setting errno. This
example assumes that sysconf (_SC_LINE_MAX) will not fail.)

#include <limits.h>
#include <stdio.h>
#include <unistd.h>
#define MYLIMIT 16384

char *line;
int line_max;
if (LINE_MAX >= MYLIMIT) {

// Use maximum line size of MYLIMIT. If LINE_MAX is
// bigger than our limit, sysconf() cannot report a
// smaller limit.
line_max = MYLIMIT;

} else {
long limit = sysconf(_SC_LINE_MAX);
line_max = (limit < 0 || limit > MYLIMIT) ? MYLIMIT : (int)limit;

950 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32256

32257

32258

32259

32260

32261

32262

32263

32264

32265

32266

32267

32268

32269

32270

32271

32272

32273

32274

32275

32276

32277

32278

32279

32280

32281

32282

32283

32284

32285

32286

32287

32288

32289

32290

32291

32292

32293

32294

32295

32296

32297

32298

32299

32300

32301

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fgets()

}

// line_max + 1 leaves room for the null byte added by fgets().
line = malloc(line_max + 1);
if (line == NULL) {

// out of space
...
return error;

}

while (fgets(line, line_max + 1, fp) != NULL) {
// Verify that a full line has been read ...
// If not, report an error or prepare to treat the
// next time through the loop as a read of a
// continuation of the current line.
...
// Process line ...
...

}
free(line);
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fgetc(), fopen(), fread(), fscanf(), getc(), getchar(), getdelim(), ungetc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The prototype for fgets() is changed for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of functions that mark
the last data access timestamp for update.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0134 [182] and XSH/TC1-2008/0135
[14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0114 [468] is applied.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1624 is applied, changing the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 951

32302

32303

32304

32305

32306

32307

32308

32309

32310

32311

32312

32313

32314

32315

32316

32317

32318

32319

32320

32321

32322

32323

32324

32325

32326

32327

32328

32329

32330

32331

32332

32333

32334

32335

32336

32337

32338

32339

32340

32341

32342

32343

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fgetwc() System Interfaces

NAME
fgetwc — get a wide-character code from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fgetwc(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fgetwc() function shall obtain the next character (if present) from the input stream pointed to
by stream, convert that to the corresponding wide-character code, and advance the associated file
position indicator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is unspecified.

CX The fgetwc() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetwc(), fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(), vwscanf(), or wscanf()
using stream that returns data not supplied by a prior call to ungetwc().

The fgetwc() function shall not change the setting of errno if successful.

RETURN VALUE
Upon successful completion, the fgetwc() function shall return the wide-character code of the
character read from the input stream pointed to by stream converted to a type wint_t. If the end-
of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file indicator for
the stream shall be set and fgetwc() shall return WEOF. If an error other than an encoding error

CX occurs, the error indicator for the stream shall be set, and fgetwc() shall return WEOF and shall
CX set errno to indicate the error. If an encoding error occurs, the error indicator for the stream shall

be set, and fgetwc() shall return WEOF and shall set errno to indicate the error.

ERRORS
The fgetwc() function shall fail if data needs to be read and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the fgetwc() operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.

[EILSEQ] The data obtained from the input stream does not form a valid character.

CX [EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the calling
thread is blocking SIGTTIN or the process is ignoring SIGTTIN or the process
group of the process is orphaned. This error may also be generated for
implementation-defined reasons.

CX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

952 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32344

32345

32346

32347

32348

32349

32350

32351

32352

32353

32354

32355

32356

32357

32358

32359

32360

32361

32362

32363

32364

32365

32366

32367

32368

32369

32370

32371

32372

32373

32374

32375

32376

32377

32378

32379

32380

32381

32382

32383

32384

32385

32386

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fgetwc()

The fgetwc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

RATIONALE
The requirement to set the error indicator when an encoding error occurs is shaded CX because
this is not required by the ISO C standard. However, the next revision of the ISO C standard is
expected to add this requirement.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), feof(), ferror(), fopen()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EOVERFLOW] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/33 is applied, updating the [EAGAIN]
error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN VALUE section.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0136 [105], XSH/TC1-2008/0137 [79],
and XSH/TC1-2008/0138 [14] are applied.

Issue 8
Austin Group Defect 1624 is applied, changing the RETURN VALUE and RATIONALE sections.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 953

32387

32388

32389

32390

32391

32392

32393

32394

32395

32396

32397

32398

32399

32400

32401

32402

32403

32404

32405

32406

32407

32408

32409

32410

32411

32412

32413

32414

32415

32416

32417

32418

32419

32420

32421

32422

32423

32424

32425

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fgetws() System Interfaces

NAME
fgetws — get a wide-character string from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wchar_t *fgetws(wchar_t *restrict ws, int n,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fgetws() function shall read characters from the stream, convert these to the corresponding
wide-character codes, place them in the wchar_t array pointed to by ws, until n−1 characters are
read, or a <newline> is read, converted, and transferred to ws, or an end-of-file condition is
encountered. The wide-character string, ws, shall then be terminated with a null wide-character
code.

If an error occurs, the resulting value of the file position indicator for the stream is unspecified.

CX The fgetws() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetwc(), fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(), vwscanf(), or wscanf()
using stream that returns data not supplied by a prior call to ungetwc().

RETURN VALUE
Upon successful completion, fgetws() shall return ws. If the end-of-file indicator for the stream is
set, or if the stream is at end-of-file, the end-of-file indicator for the stream shall be set and
fgetws() shall return a null pointer. If an error occurs, the error indicator for the stream shall be

CX set, and fgetws() shall return a null pointer and shall set errno to indicate the error.

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), fread()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

954 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32426

32427

32428

32429

32430

32431

32432

32433

32434

32435

32436

32437

32438

32439

32440

32441

32442

32443

32444

32445

32446

32447

32448

32449

32450

32451

32452

32453

32454

32455

32456

32457

32458

32459

32460

32461

32462

32463

32464

32465

32466

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fgetws()

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
Extensions beyond the ISO C standard are marked.

The prototype for fgetws() is changed for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN VALUE section.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0139 [14] is applied.

Issue 8
Austin Group Defect 1624 is applied, changing the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 955

32467

32468

32469

32470

32471

32472

32473

32474

32475

32476

32477

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fileno() System Interfaces

NAME
fileno — map a stream pointer to a file descriptor

SYNOPSIS
CX #include <stdio.h>

int fileno(FILE *stream);

DESCRIPTION
The fileno() function shall return the integer file descriptor associated with the stream pointed to
by stream.

RETURN VALUE
Upon successful completion, fileno() shall return the integer value of the file descriptor
associated with stream. Otherwise, the value −1 shall be returned and errno set to indicate the
error.

ERRORS
The fileno() function shall fail if:

[EBADF] The stream is not associated with a file.

The fileno() function may fail if:

[EBADF] The file descriptor underlying stream is not a valid file descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Without some specification of which file descriptors are associated with these streams, it is
impossible for an application to set up the streams for another application it starts with fork()
and exec. In particular, it would not be possible to write a portable version of the sh command
interpreter (although there may be other constraints that would prevent that portability).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.1 (on page 522), dirfd(), fdopen(), fopen(), stdin

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EBADF] optional error condition is added.

Issue 7
SD5-XBD-ERN-99 is applied, changing the definition of the [EBADF] error.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0115 [589] is applied.

956 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32478

32479

32480

32481

32482

32483

32484

32485

32486

32487

32488

32489

32490

32491

32492

32493

32494

32495

32496

32497

32498

32499

32500

32501

32502

32503

32504

32505

32506

32507

32508

32509

32510

32511

32512

32513

32514

32515

32516

32517

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces flockfile()

NAME
flockfile, ftrylockfile, funlockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

void flockfile(FILE *file);
int ftrylockfile(FILE *file);
void funlockfile(FILE *file);

DESCRIPTION
These functions shall provide for explicit application-level locking of the locks associated with
standard I/O streams (see Section 2.5, on page 521). These functions can be used by a thread to
delineate a sequence of I/O statements that are executed as a unit.

The flockfile() function shall acquire for a thread ownership of a (FILE *) object.

The ftrylockfile() function shall acquire for a thread ownership of a (FILE *) object if the object is
available; ftrylockfile() is a non-blocking version of flockfile().

The funlockfile() function shall relinquish the ownership granted to the thread. The behavior is
undefined if a thread other than the current owner calls the funlockfile() function.

The functions shall behave as if there is a lock count associated with each (FILE *) object. This
count is implicitly initialized to zero when the (FILE *) object is created. The (FILE *) object is
unlocked when the count is zero. When the count is positive, a single thread owns the (FILE *)
object. When the flockfile() function is called, if the count is zero or if the count is positive and
the caller owns the (FILE *) object, the count shall be incremented. Otherwise, the calling thread
shall be suspended, waiting for the count to return to zero. Each call to funlockfile() shall
decrement the count. This allows matching calls to flockfile() (or successful calls to ftrylockfile())
and funlockfile() to be nested.

RETURN VALUE
None for flockfile() and funlockfile().

The ftrylockfile() function shall return zero for success and non-zero to indicate that the lock
cannot be acquired.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

A call to exit() can block until locked streams are unlocked because a thread having ownership
of a (FILE*) object blocks all function calls that reference that (FILE*) object (except those with
names ending in _unlocked) from other threads, including calls to exit().

Note: a FILE lock is not a file lock (see XBD Section 3.143, on page 51).

RATIONALE
The flockfile() and funlockfile() functions provide an orthogonal mutual-exclusion lock for each
FILE. The ftrylockfile() function provides a non-blocking attempt to acquire a FILE lock,
analogous to pthread_mutex_trylock().

These locks behave as if they are the same as those used internally by stdio for thread-safety.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 957

32518

32519

32520

32521

32522

32523

32524

32525

32526

32527

32528

32529

32530

32531

32532

32533

32534

32535

32536

32537

32538

32539

32540

32541

32542

32543

32544

32545

32546

32547

32548

32549

32550

32551

32552

32553

32554

32555

32556

32557

32558

32559

32560

32561

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

flockfile() System Interfaces

This both provides thread-safety of these functions without requiring a second level of internal
locking and allows functions in stdio to be implemented in terms of other stdio functions.

Application developers and implementors should be aware that there are potential deadlock
problems on FILE objects. For example, the line-buffered flushing semantics of stdio (requested
via {_IOLBF}) require that certain input operations sometimes cause the buffered contents of
implementation-defined line-buffered output streams to be flushed. If two threads each hold the
lock on the other’s FILE, deadlock ensues. This type of deadlock can be avoided by acquiring
FILE locks in a consistent order. In particular, the line-buffered output stream deadlock can
typically be avoided by acquiring locks on input streams before locks on output streams if a
thread would be acquiring both.

In summary, threads sharing stdio streams with other threads can use flockfile() and funlockfile()
to cause sequences of I/O performed by a single thread to be kept bundled. The only case where
the use of flockfile() and funlockfile() is required is to provide a scope protecting uses of the
*_unlocked functions/macros. This moves the cost/performance tradeoff to the optimal point.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), getc_unlocked()

XBD Section 3.275 (on page 72), <stdio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
These functions are marked as part of the Thread-Safe Functions option.

Issue 7
The flockfile(), ftrylockfile(), and funlockfile() functions are moved from the Thread-Safe Functions
option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0140 [118] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0116 [611] is applied.

Issue 8
Austin Group Defect 1118 is applied, clarifying that a FILE lock is not a file lock.

Austin Group Defect 1302 is applied, replacing parts of the text with a reference to Section 2.5
(on page 521).

958 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32562

32563

32564

32565

32566

32567

32568

32569

32570

32571

32572

32573

32574

32575

32576

32577

32578

32579

32580

32581

32582

32583

32584

32585

32586

32587

32588

32589

32590

32591

32592

32593

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces floor()

NAME
floor, floorf, floorl — floor function

SYNOPSIS
#include <math.h>

double floor(double x);
float floorf(float x);
long double floorl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the largest integral value not greater than x.

MX These functions may raise the inexact floating-point exception for finite non-integer arguments.

RETURN VALUE
MX The returned value shall be independent of the current rounding direction mode and shall have

the same sign as x.

Upon successful completion, these functions shall return the largest integral value not greater
than x, expressed as a double, float, or long double, as appropriate for the return type of the
function.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions might not be expressible as an intmax_t. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ceil(), feclearexcept(), fetestexcept(), isnan()

Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 959

32594

32595

32596

32597

32598

32599

32600

32601

32602

32603

32604

32605

32606

32607

32608

32609

32610

32611

32612

32613

32614

32615

32616

32617

32618

32619

32620

32621

32622

32623

32624

32625

32626

32627

32628

32629

32630

32631

32632

32633

32634

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

floor() System Interfaces

Issue 6
The floorf() and floorl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0141 [346] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

960 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32635

32636

32637

32638

32639

32640

32641

32642

32643

32644

32645

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fma()

NAME
fma, fmaf, fmal — floating-point multiply-add

SYNOPSIS
#include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute (x * y) + z, rounded as one ternary operation: they shall compute
the value (as if) to infinite precision and round once to the result format, according to the
rounding mode characterized by the value of FLT_ROUNDS.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return (x * y) + z, rounded as one ternary
operation.

MX If the result overflows or underflows, a range error may occur. On systems that support the IEC
60559 Floating-Point option, if the result overflows a range error shall occur.

If x or y are NaN, a NaN shall be returned.

If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a
domain error shall occur, and either a NaN (if supported), or an implementation-defined value
shall be returned.

If one of x and y is infinite, the other is zero, and z is not a NaN, a domain error shall occur, and
either a NaN (if supported), or an implementation-defined value shall be returned.

If one of x and y is infinite, the other is zero, and z is a NaN, a NaN shall be returned and a
domain error may occur.

If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The value of x*y+z is invalid, or the value x*y is invalid and z is not a NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 961

32646

32647

32648

32649

32650

32651

32652

32653

32654

32655

32656

32657

32658

32659

32660

32661

32662

32663

32664

32665

32666

32667

32668

32669

32670

32671

32672

32673

32674

32675

32676

32677

32678

32679

32680

32681

32682

32683

32684

32685

32686

32687

32688

32689

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fma() System Interfaces

These functions may fail if:

MX Domain Error The value x*y is invalid and z is a NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
In many cases, clever use of floating (fused) multiply-add leads to much improved code; but its
unexpected use by the compiler can undermine carefully written code. The FP_CONTRACT
macro can be used to disallow use of floating multiply-add; and the fma() function guarantees
its use where desired. Many current machines provide hardware floating multiply-add
instructions; software implementation can be used for others.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #57 (SD5-XSH-ERN-69) is applied,
adding a ``may fail’’ range error for non-MX systems.

962 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32690

32691

32692

32693

32694

32695

32696

32697

32698

32699

32700

32701

32702

32703

32704

32705

32706

32707

32708

32709

32710

32711

32712

32713

32714

32715

32716

32717

32718

32719

32720

32721

32722

32723

32724

32725

32726

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fmax()

NAME
fmax, fmaxf, fmaxl — determine maximum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

MX These functions shall determine the maximum numeric value of their arguments. NaN
arguments shall be treated as missing data: if one argument is a NaN and the other numeric,
then these functions shall choose the numeric value.

RETURN VALUE
Upon successful completion, these functions shall return the maximum numeric value of their
arguments.

MX The returned value shall be exact and shall be independent of the current rounding direction
mode.

If just one argument is a NaN, the other argument shall be returned.

If x and y are NaN, a NaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdim(), fmin()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #007 is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 963

32727

32728

32729

32730

32731

32732

32733

32734

32735

32736

32737

32738

32739

32740

32741

32742

32743

32744

32745

32746

32747

32748

32749

32750

32751

32752

32753

32754

32755

32756

32757

32758

32759

32760

32761

32762

32763

32764

32765

32766

32767

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fmemopen() System Interfaces

NAME
fmemopen — open a memory buffer stream

SYNOPSIS
CX #include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t max_size,
const char *restrict mode);

DESCRIPTION
The fmemopen() function shall associate the buffer given by the buf and max_size arguments with
a stream. The buf argument shall be either a null pointer or point to a buffer that is at least
max_size bytes long.

The mode argument points to a string. If the string is one of the following, the stream shall be
opened in the indicated mode. Otherwise, the behavior is undefined.

r or rb Open the stream for reading.

w or wb Open the stream for writing.

a or ab Append; open the stream for writing.

r+ or rb+ or r+b Open the stream for update (reading and writing).

w+ or wb+ or w+b Open the stream for update (reading and writing).

a+ or ab+ or a+b Append; open the stream for update (reading and writing).

If the mode argument begins with 'w' and max_size is not zero, the buffer contents shall be
truncated by writing a null byte at the beginning. If the mode argument includes 'b', the results
are implementation-defined.

If a null pointer is specified as the buf argument, fmemopen() shall allocate max_size bytes of
memory as if by a call to malloc(). This buffer shall be automatically freed when the stream is
closed. Because this feature is only useful when the stream is opened for updating (because
there is no way to get a pointer to the buffer) the fmemopen() call may fail if the mode argument
does not include a '+'.

When a stream is opened for reading only and buf is not a null pointer, the buffer pointed to by
buf shall not be modified by any operation performed on the stream.

The stream shall maintain a current position in the buffer. This position shall be initially set to
either the beginning of the buffer (for r and w modes) or to the first null byte in the buffer (for a
modes). If no null byte is found in append mode, the initial position shall be set to one byte after
the end of the buffer.

If buf is a null pointer, the initial position shall always be set to the beginning of the buffer.

The stream shall also maintain the end position of the current buffer contents; use of fseek() or
fseeko() on the stream with SEEK_END shall seek relative to this end position. If mode starts
with 'r', the end position shall be set to the value given by the max_size argument and shall not
change. Otherwise, the stream is writable and the end position shall be variable; for modes w
and w+ the initial end position shall be zero and for modes a and a+ the initial end position shall
be:

• Zero, if buf is a null pointer

964 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32768

32769

32770

32771

32772

32773

32774

32775

32776

32777

32778

32779

32780

32781

32782

32783

32784

32785

32786

32787

32788

32789

32790

32791

32792

32793

32794

32795

32796

32797

32798

32799

32800

32801

32802

32803

32804

32805

32806

32807

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fmemopen()

• The position of the first null byte in the buffer, if one is found

• The value of the max_size argument, if buf is not a null pointer and no null byte is found

A read operation on the stream shall not advance the current buffer position beyond the current
buffer end position. Reaching the buffer end position in a read operation shall count as ``end-of-
file’’. Null bytes in the buffer shall have no special meaning for reads. The read operation shall
start at the current buffer position of the stream.

A write operation shall start either at the current position of the stream (if mode has not specified
'a' as the first character) or at the current end position of the stream (if mode had 'a' as the
first character). If the current position at the end of the write is larger than the current buffer end
position, the current buffer end position shall be set to the current position. A write operation on
the stream shall not advance the current buffer end position beyond the size given in the
max_size argument.

When a stream open for update (the mode argument includes '+') or for writing only is
successfully written and the write advances the current buffer end position, a null byte shall be
written at the new buffer end position if it fits.

An attempt to seek a memory buffer stream to a negative position or to a position larger than the
buffer size given in the max_size argument shall fail.

RETURN VALUE
Upon successful completion, fmemopen() shall return a pointer to the object controlling the
stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
The fmemopen() function shall fail if:

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

The fmemopen() function may fail if:

[EINVAL] The value of the mode argument is not valid.

[EINVAL] The buf argument is a null pointer and the mode argument does not include a
'+' character.

[EINVAL] The max_size argument specifies a buffer size of zero and the implementation
does not support this.

[ENOMEM] The buf argument is a null pointer and the allocation of a buffer of length
max_size has failed.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

EXAMPLES

#include <stdio.h>
#include <string.h>

static char buffer[] = "foobar";

int
main (void)
{

int ch;
FILE *stream;

stream = fmemopen(buffer, strlen (buffer), "r");

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 965

32808

32809

32810

32811

32812

32813

32814

32815

32816

32817

32818

32819

32820

32821

32822

32823

32824

32825

32826

32827

32828

32829

32830

32831

32832

32833

32834

32835

32836

32837

32838

32839

32840

32841

32842

32843

32844

32845

32846

32847

32848

32849

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fmemopen() System Interfaces

if (stream == NULL)
/* handle error */;

while ((ch = fgetc(stream)) != EOF)
printf("Got %c\n", ch);

fclose(stream);
return (0);

}

This program produces the following output:

Got f
Got o
Got o
Got b
Got a
Got r

APPLICATION USAGE
Implementations differ as regards how a 'b' in the mode argument affects the behavior. For
some the 'b' has no effect, as is required for fopen(); others distinguish between text and binary
modes.

Note that buf will not be null terminated if max_size bytes are written to the memory stream.
Applications wanting to guarantee that the buffer will be null terminated need to call
fmemopen() with max_size set to one byte smaller than the actual size of buf and set buf[max_size]
to a null byte.

This standard intentionally leaves the behavior of 'e' and 'x' in the mode argument undefined;
implementations might silently ignore them so that fmemopen() may accept the same mode
strings as fopen(), or may reject them as invalid.

RATIONALE
This interface has been introduced to eliminate many of the errors encountered in the
construction of strings, notably overflowing of strings. This interface prevents overflow.

FUTURE DIRECTIONS
A future version of this standard may require support of zero-length buffer streams explicitly.

SEE ALSO
fdopen(), fopen(), freopen(), fseek(), malloc(), open_memstream()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0142 [461], XSH/TC1-2008/0143 [396],
XSH/TC1-2008/0144 [396], XSH/TC1-2008/0145 [461], XSH/TC1-2008/0146 [461],
XSH/TC1-2008/0147 [461], XSH/TC1-2008/0148 [461], XSH/TC1-2008/0149 [461], and
XSH/TC1-2008/0150 [396] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0117 [587], XSH/TC2-2008/0118
[586,818], and XSH/TC2-2008/0119 [818] are applied.

966 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32850

32851

32852

32853

32854

32855

32856

32857

32858

32859

32860

32861

32862

32863

32864

32865

32866

32867

32868

32869

32870

32871

32872

32873

32874

32875

32876

32877

32878

32879

32880

32881

32882

32883

32884

32885

32886

32887

32888

32889

32890

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fmemopen()

Issue 8
Austin Group Defects 456 and 657 are applied, making the behavior implementation-defined
when the mode argument includes 'b'.

Austin Group Defect 1144 is applied, adding a requirement that operations on streams opened
for reading only do not modify the buffer pointed to by buf.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 967

32891

32892

32893

32894

32895

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fmin() System Interfaces

NAME
fmin, fminf, fminl — determine minimum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

MX These functions shall determine the minimum numeric value of their arguments. NaN
arguments shall be treated as missing data: if one argument is a NaN and the other numeric,
then these functions shall choose the numeric value.

RETURN VALUE
Upon successful completion, these functions shall return the minimum numeric value of their
arguments.

MX The returned value shall be exact and shall be independent of the current rounding direction
mode.

If just one argument is a NaN, the other argument shall be returned.

If x and y are NaN, a NaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdim(), fmax()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #008 is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

968 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32896

32897

32898

32899

32900

32901

32902

32903

32904

32905

32906

32907

32908

32909

32910

32911

32912

32913

32914

32915

32916

32917

32918

32919

32920

32921

32922

32923

32924

32925

32926

32927

32928

32929

32930

32931

32932

32933

32934

32935

32936

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fmod()

NAME
fmod, fmodf, fmodl — floating-point remainder value function

SYNOPSIS
#include <math.h>

double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall return the floating-point remainder of the division of x by y.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
These functions shall return the value x−i*y, for some integer i such that, if y is non-zero, the
result has the same sign as x and magnitude less than the magnitude of y.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and fmod(), modf(), and fmodl() shall return 0.0, or (if the IEC 60559 Floating-Point option is not

supported) an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

MX If x or y is NaN, a NaN shall be returned, and none of the conditions below shall be considered.

If y is zero, a domain error shall occur, and a NaN shall be returned.

If x is infinite, a domain error shall occur, and a NaN shall be returned.

If x is ±0 and y is not zero, ±0 shall be returned.

If x is not infinite and y is ±Inf, x shall be returned.

When subnormal results are supported, the returned value shall be exact and shall be
independent of the current rounding direction mode.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is infinite or y is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 969

32937

32938

32939

32940

32941

32942

32943

32944

32945

32946

32947

32948

32949

32950

32951

32952

32953

32954

32955

32956

32957

32958

32959

32960

32961

32962

32963

32964

32965

32966

32967

32968

32969

32970

32971

32972

32973

32974

32975

32976

32977

32978

32979

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fmod() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan()

Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The behavior for when the y argument is zero is now defined.

The fmodf() and fmodl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0151 [68], XSH/TC1-2008/0152 [320],
and XSH/TC1-2008/0153 [68] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0120 [605] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

970 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

32980

32981

32982

32983

32984

32985

32986

32987

32988

32989

32990

32991

32992

32993

32994

32995

32996

32997

32998

32999

33000

33001

33002

33003

33004

33005

33006

33007

33008

33009

33010

33011

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fmtmsg()

NAME
fmtmsg — display a message in the specified format on standard error and/or a system console

SYNOPSIS
XSI #include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

DESCRIPTION
The fmtmsg() function shall display messages in a specified format instead of the traditional
printf() function.

Based on a message’s classification component, fmtmsg() shall write a formatted message either
to standard error, to the console, or to both.

A formatted message consists of up to five components as defined below. The component
classification is not part of a message displayed to the user, but defines the source of the message
and directs the display of the formatted message.

classification Contains the sum of identifying values constructed from the constants defined
below. Any one identifier from a subclass may be used in combination with a
single identifier from a different subclass. Two or more identifiers from the
same subclass should not be used together, with the exception of identifiers
from the display subclass. (Both display subclass identifiers may be used so
that messages can be displayed to both standard error and the system
console.)

Major Classifications
Identifies the source of the condition. Identifiers are: MM_HARD
(hardware), MM_SOFT (software), and MM_FIRM (firmware).

Message Source Subclassifications
Identifies the type of software in which the problem is detected.
Identifiers are: MM_APPL (application), MM_UTIL (utility), and
MM_OPSYS (operating system).

Display Subclassifications
Indicates where the message is to be displayed. Identifiers are:
MM_PRINT to display the message on the standard error stream,
MM_CONSOLE to display the message on the system console. One or
both identifiers may be used.

Status Subclassifications
Indicates whether the application can recover from the condition.
Identifiers are: MM_RECOVER (recoverable) and MM_NRECOV (non-
recoverable).

An additional identifier, MM_NULLMC, indicates that no classification
component is supplied for the message.

label Identifies the source of the message. The format is two fields separated by a
<colon>. The first field is up to 10 bytes, the second is up to 14 bytes.

severity Indicates the seriousness of the condition. Identifiers for the levels of severity
are:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 971

33012

33013

33014

33015

33016

33017

33018

33019

33020

33021

33022

33023

33024

33025

33026

33027

33028

33029

33030

33031

33032

33033

33034

33035

33036

33037

33038

33039

33040

33041

33042

33043

33044

33045

33046

33047

33048

33049

33050

33051

33052

33053

33054

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fmtmsg() System Interfaces

MM_HALT Indicates that the application has encountered a severe fault
and is halting. Produces the string "HALT".

MM_ERROR Indicates that the application has detected a fault. Produces
the string "ERROR".

MM_WARNING Indicates a condition that is out of the ordinary, that might
be a problem, and should be watched. Produces the string
"WARNING".

MM_INFO Provides information about a condition that is not in error.
Produces the string "INFO".

MM_NOSEV Indicates that no severity level is supplied for the message.

text Describes the error condition that produced the message. The character string
is not limited to a specific size. If the character string is empty, then the text
produced is unspecified.

action Describes the first step to be taken in the error-recovery process. The fmtmsg()
function precedes the action string with the prefix: "TO FIX:". The action
string is not limited to a specific size.

tag An identifier that references on-line documentation for the message.
Suggested usage is that tag includes the label and a unique identifying number.
A sample tag is "XSI:cat:146".

The MSGVERB environment variable (for message verbosity) shall determine for fmtmsg()
which message components it is to select when writing messages to standard error. The value of
MSGVERB shall be a <colon>-separated list of optional keywords. Valid keywords are: label,
severity, text, action, and tag. If MSGVERB contains a keyword for a component and the
component’s value is not the component’s null value, fmtmsg() shall include that component in
the message when writing the message to standard error. If MSGVERB does not include a
keyword for a message component, that component shall not be included in the display of the
message. The keywords may appear in any order. If MSGVERB is not defined, if its value is the
null string, if its value is not of the correct format, or if it contains keywords other than the valid
ones listed above, fmtmsg() shall select all components.

MSGVERB shall determine which components are selected for display to standard error. All
message components shall be included in console messages.

RETURN VALUE
The fmtmsg() function shall return one of the following values:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on standard error, but
otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

ERRORS
None.

972 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33055

33056

33057

33058

33059

33060

33061

33062

33063

33064

33065

33066

33067

33068

33069

33070

33071

33072

33073

33074

33075

33076

33077

33078

33079

33080

33081

33082

33083

33084

33085

33086

33087

33088

33089

33090

33091

33092

33093

33094

33095

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fmtmsg()

EXAMPLES

1. The following example of fmtmsg():

fmtmsg(MM_PRINT, "XSI:cat", MM_ERROR, "illegal option",
"refer to cat in user's reference manual", "XSI:cat:001")

produces a complete message in the specified message format:

XSI:cat: ERROR: illegal option
TO FIX: refer to cat in user's reference manual XSI:cat:001

2. When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and Example 1 is used, fmtmsg() produces:

ERROR: illegal option
TO FIX: refer to cat in user's reference manual

APPLICATION USAGE
One or more message components may be systematically omitted from messages generated by
an application by using the null value of the argument for that component.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf()

XBD <fmtmsg.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 973

33096

33097

33098

33099

33100

33101

33102

33103

33104

33105

33106

33107

33108

33109

33110

33111

33112

33113

33114

33115

33116

33117

33118

33119

33120

33121

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fnmatch() System Interfaces

NAME
fnmatch — match a filename string or a pathname

SYNOPSIS
#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

DESCRIPTION
The fnmatch() function shall match patterns as described in XCU Section 2.14.1 (on page 2523)
and Section 2.14.2 (on page 2524). It checks the string specified by the string argument to see if it
matches the pattern specified by the pattern argument.

The flags argument shall modify the interpretation of pattern and string. It is the bitwise-
inclusive OR of zero or more of the flags defined in <fnmatch.h>. If the FNM_PATHNAME flag
is set in flags, then a <slash> character ('/') in string shall be explicitly matched by a <slash> in
pattern; it shall not be matched by either the <asterisk> or <question-mark> special characters,
nor by a bracket expression. If the FNM_PATHNAME flag is not set, the <slash> character shall
be treated as an ordinary character.

If FNM_NOESCAPE is not set in flags, a <backslash> character can be used as an escape
character as described in XCU Section 2.14.1 (on page 2523). If pattern ends with an unescaped
<backslash>, the behavior is unspecified. If FNM_NOESCAPE is set, a <backslash> character
shall be treated as an ordinary character.

If FNM_PERIOD is set in flags, then a leading <period> ('.') in string shall match a <period> in
pattern; as described by rule 2 in XCU Section 2.14.3 (on page 2525) where the location of
``leading’’ is indicated by the value of FNM_PATHNAME:

• If FNM_PATHNAME is set, a <period> is ``leading’’ if it is the first character in string or if
it immediately follows a <slash>.

• If FNM_PATHNAME is not set, a <period> is ``leading’’ only if it is the first character of
string.

If FNM_PERIOD is not set, then no special restrictions are placed on matching a period.

If FNM_CASEFOLD or FNM_IGNORECASE is set, string and pattern shall be compared in a
case-insensitive manner. See XBD Section 4.1 (on page 95).

RETURN VALUE
If string matches the pattern specified by pattern, then fnmatch() shall return 0. If there is no
match, fnmatch() shall return FNM_NOMATCH, which is defined in <fnmatch.h>. If an error
occurs, fnmatch() shall return another non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The fnmatch() function has two major uses. It could be used by an application or utility that
needs to read a directory and apply a pattern against each entry. The find utility is an example of
this. It can also be used by the pax utility to process its pattern operands, or by applications that
need to match strings in a similar manner.

The name fnmatch() is intended to imply filename match, rather than pathname match. The
default action of this function is to match filename strings, rather than pathnames, since it gives
no special significance to the <slash> character. With the FNM_PATHNAME flag, fnmatch() does

974 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33122

33123

33124

33125

33126

33127

33128

33129

33130

33131

33132

33133

33134

33135

33136

33137

33138

33139

33140

33141

33142

33143

33144

33145

33146

33147

33148

33149

33150

33151

33152

33153

33154

33155

33156

33157

33158

33159

33160

33161

33162

33163

33164

33165

33166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fnmatch()

match pathnames, but without tilde expansion, parameter expansion, or special treatment for a
<period> at the beginning of a filename.

RATIONALE
This function replaced the REG_FILENAME flag of regcomp() in early proposals of this volume
of POSIX.1-2024. It provides virtually the same functionality as the regcomp() and regexec()
functions using the REG_FILENAME and REG_FSLASH flags (the REG_FSLASH flag was
proposed for regcomp(), and would have had the opposite effect from FNM_PATHNAME), but
with a simpler function and less system overhead.

FUTURE DIRECTIONS
None.

SEE ALSO
glob(), wordexp()

XBD <fnmatch.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0154 [291] and XSH/TC1-2008/0155
[291] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0121 [806] is applied.

Issue 8
Austin Group Defect 1031 is applied, adding FNM_CASEFOLD and FNM_IGNORECASE.

Austin Group Defect 1287 is applied, changing the description of how <backslash> is handled (if
FNM_NOESCAPE is not set) to refer to XCU Section 2.14.1 (on page 2523).

Austin Group Defect 1444 is applied, correcting cross-references to wordexp().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 975

33167

33168

33169

33170

33171

33172

33173

33174

33175

33176

33177

33178

33179

33180

33181

33182

33183

33184

33185

33186

33187

33188

33189

33190

33191

33192

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fopen() System Interfaces

NAME
fopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *restrict pathname, const char *restrict mode);

DESCRIPTION
CX Except for the ``exclusive access’’ requirement (see below), the functionality described on this

reference page is aligned with the ISO C standard. Any other conflict between the requirements
described here and the ISO C standard is unintentional. This volume of POSIX.1-2024 defers to
the ISO C standard for all fopen() functionality except in relation to ``exclusive access’’.

The fopen() function shall open the file whose pathname is the string pointed to by pathname,
and associates a stream with it.

The mode argument points to a character string. The behavior is unspecified if any character
occurs more than once in the string. If the string begins with one of the following characters,
then the file shall be opened in the indicated mode. Otherwise, the behavior is undefined.

'r' Open file for reading.

'w' Tr uncate to zero length or create file for writing.

'a' Append; open or create file for writing at end-of-file.

CX The remainder of the string can contain any of the following characters, in any order, and
further affect how the file is opened:

CX 'b' This character shall have no effect, but is allowed for ISO C standard conformance.

CX 'e' The underlying file descriptor shall have the FD_CLOEXEC flag atomically set.

CX 'x' If the first character of mode is 'w' or 'a', then the function shall fail if the file already
exists, or cannot be created; if the file does not exist and can be created, it shall be created

CX with an implementation-defined form of exclusive (also known as non-shared) access,
CX if supported by the underlying file system, provided the resulting file permissions are the

same as they would be without the 'x' modifier. If the first character of mode is 'r', the
effect is implementation-defined.

Note: The ISO C standard requires exclusive access ``to the extent that the underlying file
system supports exclusive access’’, but does not define what it means by this. Taken at
face value—that systems must do whatever they are capable of, at the file system level,
in order to exclude access by others—this would require POSIX.1 systems to set the file
permissions in a way that prevents access by other users and groups. Consequently, this
volume of POSIX.1-2024 does not defer to the ISO C standard as regards the ``exclusive
access’’ requirement.

'+' The file shall be opened for update (both reading and writing), rather than just reading or
just writing.

Opening a file with read mode ('r' as the first character in the mode argument) shall fail if the
file does not exist or cannot be read.

Opening a file with append mode ('a' as the first character in the mode argument) shall cause
all subsequent writes to the file to be forced to the then current end-of-file, regardless of
intervening calls to fseek().

When a file is opened with update mode ('+' in the mode argument), both input and output can
be performed on the associated stream. However, the application shall ensure that output is not
directly followed by input without an intervening call to fflush() or to a file positioning function

976 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33193

33194

33195

33196

33197

33198

33199

33200

33201

33202

33203

33204

33205

33206

33207

33208

33209

33210

33211

33212

33213

33214

33215

33216

33217

33218

33219

33220

33221

33222

33223

33224

33225

33226

33227

33228

33229

33230

33231

33232

33233

33234

33235

33236

33237

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fopen()

(fseek(), fsetpos(), or rewind()), and input is not directly followed by output without an
intervening call to a file positioning function, unless the input operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream shall be cleared.

CX If the first character in mode is 'w' or 'a' and the file did not previously exist, upon successful
completion, fopen() shall mark for update the last data access, last data modification, and last file
status change timestamps of the file and the last file status change and last data modification
timestamps of the parent directory.

If the first character in mode is 'w' or 'a' and the file did not previously exist, the fopen()
function shall create a file as if it called the open() function with a value appropriate for the path
argument interpreted from pathname, a value for the oflag argument as specified below, and a
value of S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH for the third
argument.

If the first character in mode is 'w' and the file did previously exist, upon successful completion,
fopen() shall mark for update the last data modification and last file status change timestamps of
the file.

XSI After a successful call to the fopen() function, the orientation of the stream shall be cleared, the
encoding rule shall be cleared, and the associated mbstate_t object shall be set to describe an
initial conversion state.

CX The file descriptor associated with the opened stream shall be allocated and opened as if by a
call to open() using the following flags:

fopen() Mode fopen() Mode Initial open() Flags
First Character Includes '+'
'r' no O_RDONLY
'w' no O_WRONLY|O_CREAT|O_TRUNC
'a' no O_WRONLY|O_CREAT|O_APPEND
'r' yes O_RDWR
'w' yes O_RDWR|O_CREAT|O_TRUNC
'a' yes O_RDWR|O_CREAT|O_APPEND

If, and only if, the 'e' mode string character is specified, the O_CLOEXEC flag shall be OR’ed
into the initial open() flags specified in the above table.

If, and only if, the 'x' mode string character is specified together with either 'w' or 'a', the
O_EXCL flag shall be OR’ed into the initial open() flags specified in the above table.

If mode includes 'x' and the underlying file system supports exclusive access (see above)
enabled by the use of implementation-specific flags to open(), then the behavior shall be as if
those flags are also included.

When using mode strings specified by this standard, the implementation shall behave as if no
other flags had been passed to open().

RETURN VALUE
Upon successful completion, fopen() shall return a pointer to the object controlling the stream.

CX Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 977

33238

33239

33240

33241

33242

33243

33244

33245

33246

33247

33248

33249

33250

33251

33252

33253

33254

33255

33256

33257

33258

33259

33260

33261

33262

33263

33264

33265

33266

33267

33268

33269

33270

33271

33272

33273

33274

33275

33276

33277

33278

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fopen() System Interfaces

ERRORS
The fopen() function shall fail if:

CX [EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

CX [EEXIST] The mode argument begins with w or a and includes x, but the file already
exists.

CX [EILSEQ] The mode argument begins with w or a, the file did not previously exist, and
the last pathname component is not a portable filename and cannot be created
in the target directory.

CX [EINTR] A signal was caught during fopen().

CX [EISDIR] The named file is a directory and mode requires write access.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
argument.

CX [EMFILE] All file descriptors available to the process are currently open.

CX [EMFILE] {STREAM_MAX} streams are currently open in the calling process.

CX [ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOENT] The mode string begins with 'r' and a component of pathname does not name
an existing file, or mode begins with 'w' or 'a' and a component of the path
prefix of pathname does not name an existing file, or pathname is an empty
string.

CX [ENOENT] or [ENOTDIR]
The pathname argument contains at least one non-<slash> character and ends
with one or more trailing <slash> characters. If pathname without the trailing
<slash> characters would name an existing file, an [ENOENT] error shall not
occur.

CX [ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and the file was to be created.

CX [ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the pathname argument contains
at least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

CX [ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

CX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

978 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33279

33280

33281

33282

33283

33284

33285

33286

33287

33288

33289

33290

33291

33292

33293

33294

33295

33296

33297

33298

33299

33300

33301

33302

33303

33304

33305

33306

33307

33308

33309

33310

33311

33312

33313

33314

33315

33316

33317

33318

33319

33320

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fopen()

CX [EROFS] The named file resides on a read-only file system and mode requires write
access.

The fopen() function may fail if:

CX [EINVAL] The value of the mode argument is not valid.

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname argument.

CX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

CX [ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

CX [ENOMEM] Insufficient storage space is available.

CX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode
requires write access.

EXAMPLES

Opening a File

The following example tries to open the file named file for reading. The fopen() function returns
a file pointer that is used in subsequent fgets() and fclose() calls. If the program cannot open the
file, it just ignores it.

#include <stdio.h>
...
FILE *fp;
...
void rgrep(const char *file)
{
...

if ((fp = fopen(file, "r")) == NULL)
return;

...
}

APPLICATION USAGE
If an application needs to create a file in a way that fails if the file already exists, and either
requires that it does not have exclusive access to the file or does not need exclusive access, it
should use open() with the O_CREAT and O_EXCL flags instead of using fopen() with an 'x' in
the mode. A stream can then be created, if needed, by calling fdopen() on the file descriptor
returned by open().

RATIONALE
The 'e' mode character is provided as a convenience to avoid a data race in multi-threaded
applications. Without it, a file descriptor is leaked into a child process created by one thread in
the window between another thread creating a file descriptor with fopen() and then using
fileno() and fcntl() to set the FD_CLOEXEC flag. It is also possible to avoid the race by using
open() with O_CLOEXEC followed by fdopen(), however, there is no safe alternative for the
freopen() function, and consistency dictates that the 'e' modifier should be standardized for all
functions that accept mode strings.

The ISO C standard only recognizes the '+', 'b', and 'x' characters in certain positions of the
mode string, leaving other arrangements as unspecified, and only permits 'x' in mode strings

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 979

33321

33322

33323

33324

33325

33326

33327

33328

33329

33330

33331

33332

33333

33334

33335

33336

33337

33338

33339

33340

33341

33342

33343

33344

33345

33346

33347

33348

33349

33350

33351

33352

33353

33354

33355

33356

33357

33358

33359

33360

33361

33362

33363

33364

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fopen() System Interfaces

beginning with 'w'. This standard specifically requires support for all characters other than the
first in the mode string to be recognized in any order. Thus, "wxe" and "wex" behave the same,
and while "wx+" is unspecified in the ISO C standard, this standard requires it to have the same
behavior as "w+x". This standard also requires that 'x' work for mode strings beginning with
'a', as well as having implementation-defined behavior for mode strings beginning with 'r'.
Therefore, while open() has undefined behavior if O_EXCL is specified without O_CREAT, the
same is not true of fopen().

When 'x' is in mode, the ISO C standard requires that the file is created with exclusive access to
the extent that the underlying system supports exclusive access. Although POSIX.1 does not
specify any method of enabling exclusive access, it allows for the existence of an
implementation-specific flag, or flags, that enable it. Note that they should be file creation flags
if a file is being created, not file access mode flags (that is, ones that are included in
O_ACCMODE) or file status flags, so that they do not affect the value returned by fcntl() with
F_GETFL. On implementations that have such flags, if support for them is file system dependent
and exclusive access is requested when using fopen() to create a file on a file system that does
not support it, the flags must not be used if they would cause fopen() to fail.

Some implementations support mandatory file locking as a means of enabling exclusive access
to a file. Locks are set in the normal way, but instead of only preventing others from setting
conflicting locks they prevent others from accessing the contents of the locked part of the file in a
way that conflicts with the lock. However, unless the implementation has a way of setting a
whole-file write lock on file creation, this does not satisfy the requirement in the ISO C standard
that the file is ``created with exclusive access to the extent that the underlying system supports
exclusive access’’. (Having fopen() create the file and set a lock on the file as two separate
operations is not the same, and it would introduce a race condition whereby another process
could open the file and write to it (or set a lock) in between the two operations.) However, on all
implementations that support mandatory file locking, its use is discouraged; therefore, it is
recommended that implementations which support mandatory file locking do not add a means
of creating a file with a whole-file exclusive lock set, so that fopen() is not required to enable
mandatory file locking in order to conform to the ISO C standard. An implementation that has a
means of creating a file with a whole-file exclusive lock set would need to provide a way to
change the behavior of fopen() depending on whether the calling process is executing in a
POSIX.1 conforming environment or an ISO C conforming environment.

The typical implementation-defined behavior for mode "rx" is to ignore the 'x', but the
standard developers did not wish to mandate this behavior. For example, an implementation
could allow shared access for reading; that is, disallow a file that has been opened this way from
also being opened for writing.

Implementations are encouraged to have fopen() and freopen() report an [EILSEQ] error if mode
begins with 'w' or 'a', the file did not previously exist, and the last component of pathname
contains any bytes that have the encoded value of a <newline> character.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), creat(), fclose(), fdopen(), fmemopen(), freopen(), open_memstream()

XBD <stdio.h>

980 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33365

33366

33367

33368

33369

33370

33371

33372

33373

33374

33375

33376

33377

33378

33379

33380

33381

33382

33383

33384

33385

33386

33387

33388

33389

33390

33391

33392

33393

33394

33395

33396

33397

33398

33399

33400

33401

33402

33403

33404

33405

33406

33407

33408

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fopen()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ELOOP] mandatory error condition is added.

• The [EINVAL], [EMFILE], [ENAMETOOLONG], [ENOMEM], and [ETXTBSY] optional
error conditions are added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototype for fopen() is updated.

• The DESCRIPTION is updated to note that if the argument mode points to a string other
than those listed, then the behavior is undefined.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying the file creation mode.

Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements for the flags set
on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error condition from a
``may fail’’ to a ``shall fail’’.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0156 [291,433], XSH/TC1-2008/0157
[146,433], XSH/TC1-2008/0158 [324], and XSH/TC1-2008/0159 [14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0122 [822] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 293 is applied, adding the [EILSEQ] error.

Austin Group Defects 411 and 1524 are applied, adding the 'e' and 'x' mode string characters.

Austin Group Defect 1200 is applied, correcting the argument name in the [ELOOP] errors.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 981

33409

33410

33411

33412

33413

33414

33415

33416

33417

33418

33419

33420

33421

33422

33423

33424

33425

33426

33427

33428

33429

33430

33431

33432

33433

33434

33435

33436

33437

33438

33439

33440

33441

33442

33443

33444

33445

33446

33447

33448

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fopen() System Interfaces

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

982 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33449

33450

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fork()

NAME
fork — create a new process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);
pid_t _Fork(void);

DESCRIPTION
The fork() function shall create a new process. The new process (child process) shall be an exact
copy of the calling process (parent process) except as detailed below:

• The child process shall have a unique process ID.

• The child process ID also shall not match any active process group ID.

• The child process shall have a different parent process ID, which shall be the process ID of
the calling process.

• The child process shall have its own copy of the parent’s file descriptors, except for those
whose FD_CLOFORK flag is set (see fcntl()). Each of the child’s file descriptors shall refer
to the same open file description with the corresponding file descriptor of the parent.

• The child process shall have its own copy of the parent’s open directory streams. Each
open directory stream in the child process may share directory stream positioning with the
corresponding directory stream of the parent.

• The child process shall have its own copy of the parent’s message catalog descriptors.

• The child process values of tms_utime, tms_stime, tms_cutime, and tms_cstime shall be set to
0.

• The time left until an alarm clock signal shall be reset to zero, and the alarm, if any, shall be
canceled; see alarm().

XSI • All semadj values shall be cleared.

• Process-owned file locks set by the parent process shall not be inherited by the child
process.

• The set of signals pending for the child process shall be initialized to the empty set.

XSI • Interval timers shall be reset in the child process.

• Any semaphores that are open in the parent process shall also be open in the child process.

ML • The child process shall not inherit any address space memory locks established by the
parent process via calls to mlockall() or mlock().

• Memory mappings created in the parent shall be retained in the child process.
MAP_PRIVATE mappings inherited from the parent shall also be MAP_PRIVATE
mappings in the child, and any modifications to the data in these mappings made by the
parent prior to calling fork() shall be visible to the child. Any modifications to the data in
MAP_PRIVATE mappings made by the parent after fork() returns shall be visible only to
the parent. Modifications to the data in MAP_PRIVATE mappings made by the child shall
be visible only to the child.

PS • For the SCHED_FIFO and SCHED_RR scheduling policies, the child process shall inherit
the policy and priority settings of the parent process during a fork() function. For other
scheduling policies, the policy and priority settings on fork() are implementation-defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 983

33451

33452

33453

33454

33455

33456

33457

33458

33459

33460

33461

33462

33463

33464

33465

33466

33467

33468

33469

33470

33471

33472

33473

33474

33475

33476

33477

33478

33479

33480

33481

33482

33483

33484

33485

33486

33487

33488

33489

33490

33491

33492

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fork() System Interfaces

• Per-process timers created by the parent shall not be inherited by the child process.

MSG • The child process shall have its own copy of the message queue descriptors of the parent.
Each of the message descriptors of the child shall refer to the same open message queue
description as the corresponding message descriptor of the parent.

• No asynchronous input or asynchronous output operations shall be inherited by the child
process. Any use of asynchronous control blocks created by the parent produces undefined
behavior.

• A process shall be created with a single thread. If a multi-threaded process calls fork(), the
new process shall contain a replica of the calling thread and its entire address space,
possibly including the states of mutexes and other resources. Consequently, the application
shall ensure that the child process only executes async-signal-safe operations until such
time as one of the exec functions is successful.

• Any locks held by any thread in the calling process that have been set to be process-shared
shall not be held by the child process. For locks held by any thread in the calling process
that have not been set to be process-shared, any attempt by the child process to perform
any operation on the lock results in undefined behavior (regardless of whether the calling
process is single-threaded or multi-threaded).

CPT • The initial value of the CPU-time clock of the child process shall be set to zero.

TCT • The initial value of the CPU-time clock of the single thread of the child process shall be set
to zero.

All other process characteristics defined by POSIX.1-2024 shall be the same in the parent and
child processes. The inheritance of process characteristics not defined by POSIX.1-2024 is
unspecified by POSIX.1-2024.

After fork(), both the parent and the child processes shall be capable of executing independently
before either one terminates.

The _Fork() function shall be equivalent to fork(), except that fork handlers established by means
of the pthread_atfork() function shall not be called and _Fork() shall be async-signal-safe.

RETURN VALUE
Upon successful completion, fork() shall return 0 to the child process and shall return the
process ID of the child process to the parent process. Both processes shall continue to execute
from the fork() function. Otherwise, −1 shall be returned to the parent process, no child process
shall be created, and errno shall be set to indicate the error.

ERRORS
These functions shall fail if:

[EAGAIN] The system lacked the necessary resources to create another process, or the
system-imposed limit on the total number of processes under execution
system-wide or by a single user {CHILD_MAX} would be exceeded.

These functions may fail if:

[ENOMEM] Insufficient storage space is available.

984 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33493

33494

33495

33496

33497

33498

33499

33500

33501

33502

33503

33504

33505

33506

33507

33508

33509

33510

33511

33512

33513

33514

33515

33516

33517

33518

33519

33520

33521

33522

33523

33524

33525

33526

33527

33528

33529

33530

33531

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fork()

EXAMPLES
None.

APPLICATION USAGE
When a multi-threaded process calls fork() or _Fork(), there is no guarantee that thread-specific
memory, such as stacks or thread-local storage, associated with threads in the parent other than
the calling thread will still be available in the child. This is because threads in the parent other
than the calling thread do not exist in the child. Consequently, the implementation of fork() or
_Fork() could remove that memory from the address space in the child, or reuse it for other
purposes before returning or (in the case of fork()) calling any of the fork handlers registered by
pthread_atfork(). Therefore, applications should avoid using any pointers to thread-specific
memory in the child that were passed to the calling thread from other threads in the parent.

RATIONALE
Many historical implementations have timing windows where a signal sent to a process group
(for example, an interactive SIGINT) just prior to or during execution of fork() is delivered to the
parent following the fork() but not to the child because the fork() code clears the child’s set of
pending signals. This volume of POSIX.1-2024 does not require, or even permit, this behavior.
However, it is pragmatic to expect that problems of this nature may continue to exist in
implementations that appear to conform to this volume of POSIX.1-2024 and pass available
verification suites. This behavior is only a consequence of the implementation failing to make
the interval between signal generation and delivery totally invisible. From the application’s
perspective, a fork() call should appear atomic. A signal that is generated prior to the fork()
should be delivered prior to the fork(). A signal sent to the process group after the fork() should
be delivered to both parent and child. The implementation may actually initialize internal data
structures corresponding to the child’s set of pending signals to include signals sent to the
process group during the fork(). Since the fork() call can be considered as atomic from the
application’s perspective, the set would be initialized as empty and such signals would have
arrived after the fork(); see also <signal.h>.

One approach that has been suggested to address the problem of signal inheritance across fork()
is to add an [EINTR] error, which would be returned when a signal is detected during the call.
While this is preferable to losing signals, it was not considered an optimal solution. Although it
is not recommended for this purpose, such an error would be an allowable extension for an
implementation.

The [ENOMEM] error value is reserved for those implementations that detect and distinguish
such a condition. This condition occurs when an implementation detects that there is not enough
memory to create the process. This is intended to be returned when [EAGAIN] is inappropriate
because there can never be enough memory (either primary or secondary storage) to perform
the operation. Since fork() duplicates an existing process, this must be a condition where there is
sufficient memory for one such process, but not for two. Many historical implementations
actually return [ENOMEM] due to temporary lack of memory, a case that is not generally
distinct from [EAGAIN] from the perspective of a conforming application.

Part of the reason for including the optional error [ENOMEM] is because the SVID specifies it
and it should be reserved for the error condition specified there. The condition is not applicable
on many implementations.

IEEE Std 1003.1-1988 neglected to require concurrent execution of the parent and child of fork().
A system that single-threads processes was clearly not intended and is considered an
unacceptable ``toy implementation’’ of this volume of POSIX.1-2024. The only objection
anticipated to the phrase ``executing independently’’ is testability, but this assertion should be
testable. Such tests require that both the parent and child can block on a detectable action of the
other, such as a write to a pipe or a signal. An interactive exchange of such actions should be

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 985

33532

33533

33534

33535

33536

33537

33538

33539

33540

33541

33542

33543

33544

33545

33546

33547

33548

33549

33550

33551

33552

33553

33554

33555

33556

33557

33558

33559

33560

33561

33562

33563

33564

33565

33566

33567

33568

33569

33570

33571

33572

33573

33574

33575

33576

33577

33578

33579

33580

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fork() System Interfaces

possible for the system to conform to the intent of this volume of POSIX.1-2024.

The [EAGAIN] error exists to warn applications that such a condition might occur. Whether it
occurs or not is not in any practical sense under the control of the application because the
condition is usually a consequence of the user’s use of the system, not of the application’s code.
Thus, no application can or should rely upon its occurrence under any circumstances, nor
should the exact semantics of what concept of ``user ’’ is used be of concern to the application
developer. Validation writers should be cognizant of this limitation.

There are two reasons why POSIX programmers call fork(). One reason is to create a new thread
of control within the same program (which was originally only possible in POSIX by creating a
new process); the other is to create a new process running a different program. In the latter case,
the call to fork() is soon followed by a call to one of the exec functions.

The general problem with making fork() work in a multi-threaded world is what to do with all
of the threads. There are two alternatives. One is to copy all of the threads into the new process.
This causes the programmer or implementation to deal with threads that are suspended on
system calls or that might be about to execute system calls that should not be executed in the
new process. The other alternative is to copy only the thread that calls fork(). This creates the
difficulty that the state of process-local resources is usually held in process memory. If a thread
that is not calling fork() holds a resource, that resource is never released in the child process
because the thread whose job it is to release the resource does not exist in the child process.

When a programmer is writing a multi-threaded program, the first described use of fork(),
creating new threads in the same program, is provided by the pthread_create() function. The
fork() function is thus used only to run new programs, and the effects of calling functions that
require certain resources between the call to fork() and the call to an exec function are undefined.

The addition of the forkall() function to the standard was considered and rejected. The forkall()
function lets all the threads in the parent be duplicated in the child. This essentially duplicates
the state of the parent in the child. This allows threads in the child to continue processing and
allows locks and the state to be preserved without explicit pthread_atfork() code. The calling
process has to ensure that the threads processing state that is shared between the parent and
child (that is, file descriptors or MAP_SHARED memory) behaves properly after forkall(). For
example, if a thread is reading a file descriptor in the parent when forkall() is called, then two
threads (one in the parent and one in the child) are reading the file descriptor after the forkall().
If this is not desired behavior, the parent process has to synchronize with such threads before
calling forkall().

When forkall() is called, threads, other than the calling thread, that are in functions that can
return with an [EINTR] error may have those functions return [EINTR] if the implementation
cannot ensure that the function behaves correctly in the parent and child. In particular,
pthread_cond_clockwait(), pthread_cond_timedwait(), and pthread_cond_wait() need to return in
order to ensure that the condition has not changed. These functions can be awakened by a
spurious condition wakeup rather than returning [EINTR].

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fcntl(), pthread_atfork(), semop(), signal(), times()

XBD Section 4.15.2 (on page 104), <sys/types.h>, <unistd.h>

986 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33581

33582

33583

33584

33585

33586

33587

33588

33589

33590

33591

33592

33593

33594

33595

33596

33597

33598

33599

33600

33601

33602

33603

33604

33605

33606

33607

33608

33609

33610

33611

33612

33613

33614

33615

33616

33617

33618

33619

33620

33621

33622

33623

33624

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fork()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is changed for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of fork() on a pending alarm call in the child process is clarified.

The description of CPU-time clock semantics is added for alignment with IEEE Std 1003.1d-1999.

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/17 is applied, adding text to the
DESCRIPTION and RATIONALE relating to fork handlers registered by the pthread_atfork()
function and async-signal safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #080 is applied, clarifying the status of asynchronous
input and asynchronous output operations and asynchronous control lists in the DESCRIPTION.

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, Timers,
and Threads options is moved to the Base.

Functionality relating to message catalog descriptors is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0123 [858] is applied.

Issue 8
Austin Group Defects 62, 1361, and 1383 are applied, adding the _Fork() function and removing
the requirement for fork() to be async-signal-safe.

Austin Group Defect 768 is applied, adding OFD-owned file locks.

Austin Group Defect 1112 is applied, clarifying the requirements for a child of a multi-threaded
process and for process-shared and non-process-shared locks held by any thread in the calling
process.

Austin Group Defect 1114 is applied, changing the APPLICATION USAGE section.

Austin Group Defect 1216 is applied, adding pthread_cond_clockwait().

Austin Group Defect 1318 is applied, adding FD_CLOFORK.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 987

33625

33626

33627

33628

33629

33630

33631

33632

33633

33634

33635

33636

33637

33638

33639

33640

33641

33642

33643

33644

33645

33646

33647

33648

33649

33650

33651

33652

33653

33654

33655

33656

33657

33658

33659

33660

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fpathconf() System Interfaces

NAME
fpathconf, pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long fpathconf(int fildes, int name);
long pathconf(const char *path, int name);

DESCRIPTION
The fpathconf() and pathconf() functions shall determine the current value of a configurable limit
or option (variable) that is associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory.

For fpathconf(), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or directory.
Implementations shall support all of the variables listed in the following table and may support
others. The variables in the following table come from <limits.h> or <unistd.h> and the
symbolic constants, defined in <unistd.h>, are the corresponding values used for name.

Variable Value of name Requirements
{FILESIZEBITS} _PC_FILESIZEBITS 4, 7
{LINK_MAX} _PC_LINK_MAX 1
{MAX_CANON} _PC_MAX_CANON 2
{MAX_INPUT} _PC_MAX_INPUT 2
{NAME_MAX} _PC_NAME_MAX 3, 4
{PATH_MAX} _PC_PATH_MAX 4, 5
{PIPE_BUF} _PC_PIPE_BUF 6
{POSIX2_SYMLINKS} _PC_2_SYMLINKS 4
{POSIX_ALLOC_SIZE_MIN} _PC_ALLOC_SIZE_MIN 10
{POSIX_REC_INCR_XFER_SIZE} _PC_REC_INCR_XFER_SIZE 10
{POSIX_REC_MAX_XFER_SIZE} _PC_REC_MAX_XFER_SIZE 10
{POSIX_REC_MIN_XFER_SIZE} _PC_REC_MIN_XFER_SIZE 10
{POSIX_REC_XFER_ALIGN} _PC_REC_XFER_ALIGN 10
{SYMLINK_MAX} _PC_SYMLINK_MAX 4, 9
{TEXTDOMAIN_MAX} _PC_TEXTDOMAIN_MAX 3, 4
_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7
_POSIX_NO_TRUNC _PC_NO_TRUNC 3, 4
_POSIX_VDISABLE _PC_VDISABLE 2
_POSIX_ASYNC_IO _PC_ASYNC_IO 8
_POSIX_FALLOC _PC_FALLOC 8
_POSIX_PRIO_IO _PC_PRIO_IO 8
_POSIX_SYNC_IO _PC_SYNC_IO 8
_POSIX_TIMESTAMP_RESOLUTION _PC_TIMESTAMP_RESOLUTION 1

988 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33661

33662

33663

33664

33665

33666

33667

33668

33669

33670

33671

33672

33673

33674

33675

33676

33677

33678

33679

33680

33681

33682

33683

33684

33685

33686

33687

33688

33689

33690

33691

33692

33693

33694

33695

33696

33697

33698

33699

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fpathconf()

Requirements

1. If path or fildes refers to a directory, the value returned shall apply to the directory itself.

2. If path or fildes does not refer to a terminal file, it is unspecified whether an
implementation supports an association of the variable name with the specified file.

3. If path or fildes refers to a directory, the value returned shall apply to filenames within the
directory.

4. If path or fildes does not refer to a directory, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

5. If path or fildes refers to a directory, the value returned shall be the maximum length of a
relative pathname that would not cross any mount points when the specified directory is
the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned shall apply to
the referenced object. If path or fildes refers to a directory, the value returned shall apply to
any FIFO that exists or can be created within the directory. If path or fildes refers to any
other type of file, it is unspecified whether an implementation supports an association of
the variable name with the specified file.

7. If path or fildes refers to a directory, the value returned shall apply to any files, other than
directories, that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an implementation supports
an association of the variable name with the specified file.

9. If path or fildes refers to a directory, the value returned shall be the maximum length of the
string that a symbolic link in that directory can contain.

10. If path or fildes des does not refer to a regular file, it is unspecified whether an
implementation supports an association of the variable name with the specified file. If an
implementation supports such an association for other than a regular file, the value
returned is unspecified.

RETURN VALUE
If name is an invalid value, both pathconf() and fpathconf() shall return −1 and set errno to
indicate the error.

If the variable corresponding to name is described in <limits.h> as a maximum or minimum
value and the variable has no limit for the path or file descriptor, both pathconf() and fpathconf()
shall return −1 without changing errno. Note that indefinite limits do not imply infinite limits;
see <limits.h>.

If the implementation needs to use path to determine the value of name and the implementation
does not support the association of name with the file specified by path, or if the process did not
have appropriate privileges to query the file specified by path, or path does not exist, pathconf()
shall return −1 and set errno to indicate the error.

If the implementation needs to use fildes to determine the value of name and the implementation
does not support the association of name with the file specified by fildes, or if fildes is an invalid
file descriptor, fpathconf() shall return −1 and set errno to indicate the error.

Otherwise, pathconf() or fpathconf() shall return the current variable value for the file or
directory without changing errno. The value returned shall not be more restrictive than the
corresponding value available to the application when it was compiled with the
implementation’s <limits.h> or <unistd.h>.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 989

33700

33701

33702

33703

33704

33705

33706

33707

33708

33709

33710

33711

33712

33713

33714

33715

33716

33717

33718

33719

33720

33721

33722

33723

33724

33725

33726

33727

33728

33729

33730

33731

33732

33733

33734

33735

33736

33737

33738

33739

33740

33741

33742

33743

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fpathconf() System Interfaces

If the variable corresponding to name is dependent on an unsupported option, the results are
unspecified.

ERRORS
The pathconf() function shall fail if:

[EINVAL] The value of name is not valid.

[EOVERFLOW] The value of name is _PC_TIMESTAMP_RESOLUTION and the resolution is
larger than {LONG_MAX}.

The pathconf() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EINVAL] The implementation does not support an association of the variable name with
the specified file.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

The fpathconf() function shall fail if:

[EINVAL] The value of name is not valid.

[EOVERFLOW] The value of name is _PC_TIMESTAMP_RESOLUTION and the resolution is
larger than {LONG_MAX}.

The fpathconf() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The implementation does not support an association of the variable name with
the specified file.

990 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33744

33745

33746

33747

33748

33749

33750

33751

33752

33753

33754

33755

33756

33757

33758

33759

33760

33761

33762

33763

33764

33765

33766

33767

33768

33769

33770

33771

33772

33773

33774

33775

33776

33777

33778

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fpathconf()

EXAMPLES
None.

APPLICATION USAGE
Application developers should check whether an option, such as _POSIX_ADVISORY_INFO, is
supported prior to obtaining and using values for related variables such as
{POSIX_ALLOC_SIZE_MIN}.

RATIONALE
The pathconf() function was proposed immediately after the sysconf() function when it was
realized that some configurable values may differ across file system, directory, or device
boundaries.

For example, {NAME_MAX} frequently changes between System V and BSD-based file systems;
System V uses a maximum of 14, BSD 255. On an implementation that provides both types of file
systems, an application would be forced to limit all pathname components to 14 bytes, as this
would be the value specified in <limits.h> on such a system.

Therefore, various useful values can be queried on any pathname or file descriptor, assuming
that appropriate privileges are in place.

The value returned for the variable {PATH_MAX} indicates the longest relative pathname that
could be given if the specified directory is the current working directory of the process. A
process may not always be able to generate a name that long and use it if a subdirectory in the
pathname crosses into a more restrictive file system. Note that implementations are allowed to
accept pathnames longer than {PATH_MAX} bytes long, but are not allowed to return
pathnames longer than this unless the user specifies a larger buffer using a function that
provides a buffer size argument.

The value returned for the variable _POSIX_CHOWN_RESTRICTED also applies to directories
that do not have file systems mounted on them. The value may change when crossing a mount
point, so applications that need to know should check for each directory. (An even easier check
is to try the chown() function and look for an error in case it happens.)

Unlike the values returned by sysconf(), the pathname-oriented variables are potentially more
volatile and are not guaranteed to remain constant throughout the lifetime of the process. For
example, in between two calls to pathconf(), the file system in question may have been
unmounted and remounted with different characteristics.

Also note that most of the errors are optional. If one of the variables always has the same value
on an implementation, the implementation need not look at path or fildes to return that value and
is, therefore, not required to detect any of the errors except the meaning of [EINVAL] that
indicates that the value of name is not valid for that variable, and the [EOVERFLOW] error that
indicates the value to be returned is larger than {LONG_MAX}.

If the value of any of the limits is unspecified (logically infinite), they will not be defined in
<limits.h> and the pathconf() and fpathconf() functions return −1 without changing errno. This
can be distinguished from the case of giving an unrecognized name argument because errno is set
to [EINVAL] in this case.

Since −1 is a valid return value for the pathconf() and fpathconf() functions, applications should
set errno to zero before calling them and check errno only if the return value is −1.

For the case of {SYMLINK_MAX}, since both pathconf() and open() follow symbolic links, there
is no way that path or fildes could refer to a symbolic link.

It was the intention of IEEE Std 1003.1d-1999 that the following variables:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 991

33779

33780

33781

33782

33783

33784

33785

33786

33787

33788

33789

33790

33791

33792

33793

33794

33795

33796

33797

33798

33799

33800

33801

33802

33803

33804

33805

33806

33807

33808

33809

33810

33811

33812

33813

33814

33815

33816

33817

33818

33819

33820

33821

33822

33823

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fpathconf() System Interfaces

{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

only applied to regular files, but Note 10 also permits implementation of the advisory semantics
on other file types unique to an implementation (for example, a character special device).

The [EOVERFLOW] error for _PC_TIMESTAMP_RESOLUTION cannot occur on POSIX-
compliant file systems because POSIX requires a timestamp resolution no larger than one
second. Even on 32-bit systems, this can be represented without overflow.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), confstr(), sysconf()

XBD <limits.h>, <unistd.h>

XCU getconf

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to include {FILESIZEBITS}.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The _PC_SYMLINK_MAX entry is added to the table in the DESCRIPTION.

The following pathconf() variables and their associated names are added for alignment with
IEEE Std 1003.1d-1999:

{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/18 is applied, changing the fourth
paragraph of the DESCRIPTION and removing shading and margin markers from the table.
This change is needed since implementations are required to support all of these symbols.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/34 is applied, adding the table entry for
POSIX2_SYMLINKS in the DESCRIPTION.

992 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33824

33825

33826

33827

33828

33829

33830

33831

33832

33833

33834

33835

33836

33837

33838

33839

33840

33841

33842

33843

33844

33845

33846

33847

33848

33849

33850

33851

33852

33853

33854

33855

33856

33857

33858

33859

33860

33861

33862

33863

33864

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fpathconf()

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/35 is applied, updating the
DESCRIPTION and RATIONALE sections to clarify behavior for the following variables:

{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/36 is applied, updating the RETURN
VALUE and APPLICATION USAGE sections to state that the results are unspecified if a variable
is dependent on an unsupported option, and advising application developers to check for
supported options prior to obtaining and using such values.

Issue 7
Austin Group Interpretations 1003.1-2001 #143 and #160 are applied.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0160 [256,428], XSH/TC1-2008/0161
[256,428], and XSH/TC1-2008/0162 [324] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0124 [651] and XSH/TC2-2008/0125
[651] are applied.

Issue 8
Austin Group Defect 687 is applied, adding _POSIX_FALLOC and _PC_FALLOC.

Austin Group Defect 1122 is applied, adding {TEXTDOMAIN_MAX}.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 993

33865

33866

33867

33868

33869

33870

33871

33872

33873

33874

33875

33876

33877

33878

33879

33880

33881

33882

33883

33884

33885

33886

33887

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fpclassify() System Interfaces

NAME
fpclassify — classify real floating type

SYNOPSIS
#include <math.h>

int fpclassify(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fpclassify() macro shall classify its argument value as NaN, infinite, normal, subnormal,
zero, or into another implementation-defined category. First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then classification is based
on the type of the argument.

RETURN VALUE
The fpclassify() macro shall return the value of the number classification macro appropriate to
the value of its argument.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isfinite(), isinf(), isnan(), isnormal(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

994 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33888

33889

33890

33891

33892

33893

33894

33895

33896

33897

33898

33899

33900

33901

33902

33903

33904

33905

33906

33907

33908

33909

33910

33911

33912

33913

33914

33915

33916

33917

33918

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fprintf()

NAME
asprintf, dprintf, fprintf, printf, snprintf, sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

CX int asprintf(char **restrict ptr, const char *restrict format, ...);
int dprintf(int fildes, const char *restrict format, ...);
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int printf(const char *restrict format, ...);
int snprintf(char *restrict s, size_t n,

const char *restrict format, ...);
int sprintf(char *restrict s, const char *restrict format, ...);

DESCRIPTION
CX Except for asprintf(), dprintf(), and the behavior of the %lc conversion when passed a null wide

character, the functionality described on this reference page is aligned with the ISO C standard.
Any other conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard for all fprintf(),
printf(), snprintf(), and sprintf() functionality except in relation to the %lc conversion when
passed a null wide character.

The fprintf() function shall place output on the named output stream. The printf() function shall
place output on the standard output stream stdout. The sprintf() function shall place output
followed by the null byte, '\0', in consecutive bytes starting at *s; it is the user’s responsibility
to ensure that enough space is available.

CX The asprintf() function shall be equivalent to sprintf(), except that the output string shall be
written to dynamically allocated memory, allocated as if by a call to malloc(), of sufficient length
to hold the resulting string, including a terminating null byte. If the call to asprintf() is
successful, the address of this dynamically allocated string shall be stored in the location
referenced by ptr.

The dprintf() function shall be equivalent to the fprintf() function, except that dprintf() shall
write output to the file associated with the file descriptor specified by the fildes argument rather
than place output on a stream.

The snprintf() function shall be equivalent to sprintf(), with the addition of the n argument
which limits the number of bytes written to the buffer referred to by s. If n is zero, nothing shall
be written and s may be a null pointer. Otherwise, output bytes beyond the n-1st shall be
discarded instead of being written to the array, and a null byte is written at the end of the bytes
actually written into the array.

If copying takes place between objects that overlap as a result of a call to sprintf() or snprintf(),
the results are undefined.

Each of these functions converts, formats, and prints its arguments under control of the format.
The application shall ensure that the format is a character string, beginning and ending in its
initial shift state, if any. The format is composed of zero or more directives: ordinary characters,
which are simply copied to the output stream, and conversion specifications, each of which shall
result in the fetching of zero or more arguments. The results are undefined if there are
insufficient arguments for the format. If the format is exhausted while arguments remain, the
excess arguments shall be evaluated but are otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier character % (see below) is
replaced by the sequence "%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}],

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 995

33919

33920

33921

33922

33923

33924

33925

33926

33927

33928

33929

33930

33931

33932

33933

33934

33935

33936

33937

33938

33939

33940

33941

33942

33943

33944

33945

33946

33947

33948

33949

33950

33951

33952

33953

33954

33955

33956

33957

33958

33959

33960

33961

33962

33963

33964

33965

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fprintf() System Interfaces

giving the position of the argument in the argument list. This feature provides for the definition
of format strings that select arguments in an order appropriate to specific languages (see the
EXAMPLES section).

The format can contain either numbered argument conversion specifications (that is, those
introduced by "%n$" and optionally containing the "*m$" forms of field width and precision),
or unnumbered argument conversion specifications (that is, those introduced by the % character
and optionally containing the * form of field width and precision), but not both. The only
exception to this is that %% can be mixed with the "%n$" form. The results of mixing numbered
and unnumbered argument specifications in a format string are undefined. When numbered
argument specifications are used, specifying the Nth argument requires that all the leading
arguments, from the first to the (N−1)th, are specified in the format string.

In format strings containing the "%n$" form of conversion specification, numbered arguments
in the argument list can be referenced from the format string as many times as required.

In format strings containing the % form of conversion specification, each conversion specification
uses the first unused argument in the argument list.

CX All forms of the fprintf() functions allow for the insertion of a language-dependent radix
character in the output string. The radix character is defined in the current locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character shall default to a <period> ('.').

CX Each conversion specification is introduced by the '%' character or by the character sequence
"%n$", after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer bytes than the field
width, it shall be padded with <space> characters by default on the left; it shall be padded
on the right if the left-adjustment flag ('−'), described below, is given to the field width.

CX The field width takes the form of an <asterisk> ('*'), or in conversion specifications
introduced by "%n$" the "*m$" string, described below, or a decimal integer.

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversion specifiers; the number of digits to appear after the radix character for
the a, A, e, E, f, and F conversion specifiers; the maximum number of significant digits for
the g and G conversion specifiers; or the maximum number of bytes to be printed from a

XSI string in the s and S conversion specifiers. The precision takes the form of a <period>
CX ('.') followed either by an <asterisk> ('*'), or in conversion specifications introduced

by "%n$" the "*m$" string, described below, or an optional decimal digit string, where a
null digit string is treated as zero. If a precision appears with any other conversion
specifier, the behavior is undefined.

• An optional length modifier that specifies the size of the argument.

• A conversion specifier character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an <asterisk> ('*'). In this case an
argument of type int supplies the field width or precision. Applications shall ensure that
arguments specifying field width, or precision, or both appear in that order before the argument,
if any, to be converted. A negative field width is taken as a '−' flag followed by a positive field

CX width. A negative precision is taken as if the precision were omitted. In format strings
containing conversion specifications introduced by "%n$", in addition to being indicated by the
decimal digit string, a field width may be indicated by the sequence "*m$" and precision by the

996 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

33966

33967

33968

33969

33970

33971

33972

33973

33974

33975

33976

33977

33978

33979

33980

33981

33982

33983

33984

33985

33986

33987

33988

33989

33990

33991

33992

33993

33994

33995

33996

33997

33998

33999

34000

34001

34002

34003

34004

34005

34006

34007

34008

34009

34010

34011

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fprintf()

sequence ".*m$", where m is a decimal integer in the range [1,{NL_ARGMAX}] giving the
position in the argument list (after the format argument) of an integer argument containing the
field width or precision, for example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The flag characters and their meanings are:

CX ' (The <apostrophe>.) The integer portion of the result of a decimal conversion (%i, %d,
%u, %f, %F, %g, or %G) shall be formatted with thousands’ grouping characters. For
other conversions the behavior is undefined. The non-monetary grouping character is
used.

− The result of the conversion shall be left-justified within the field. The conversion is
right-justified if this flag is not specified.

+ The result of a signed conversion shall always begin with a sign ('+' or '−'). The
conversion shall begin with a sign only when a negative value is converted if this flag is
not specified.

<space> If the first character of a signed conversion is not a sign or if a signed conversion results
in no characters, a <space> shall be prefixed to the result. This means that if the
<space> and '+' flags both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it
shall increase the precision, if and only if necessary, to force the first digit of the result
to be a zero (if the value and precision are both 0, a single 0 is printed). For x or X
conversion specifiers, a non-zero result shall have 0x (or 0X) prefixed to it. For a, A, e,
E, f, F, g, and G conversion specifiers, the result shall always contain a radix character,
even if no digits follow the radix character. Without this flag, a radix character appears
in the result of these conversions only if a digit follows it. For g and G conversion
specifiers, trailing zeros shall not be removed from the result as they normally are. For
other conversion specifiers, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversion specifiers, leading zeros
(following any indication of sign or base) are used to pad to the field width rather than
performing space padding, except when converting an infinity or NaN. If the '0' and
'−' flags both appear, the '0' flag is ignored. For d, i, o, u, x, and X conversion

CX specifiers, if a precision is specified, the '0' flag shall be ignored. If the '0' and
<apostrophe> flags both appear, the grouping characters are inserted before zero
padding. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short or
unsigned short argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to short or unsigned short before
printing); or that a following n conversion specifier applies to a pointer to a short
argument.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 997

34012

34013

34014

34015

34016

34017

34018

34019

34020

34021

34022

34023

34024

34025

34026

34027

34028

34029

34030

34031

34032

34033

34034

34035

34036

34037

34038

34039

34040

34041

34042

34043

34044

34045

34046

34047

34048

34049

34050

34051

34052

34053

34054

34055

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fprintf() System Interfaces

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long or
unsigned long argument; that a following n conversion specifier applies to a pointer to
a long argument; that a following c conversion specifier applies to a wint_t argument;
that a following s conversion specifier applies to a pointer to a wchar_t argument; or
has no effect on a following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell)
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long
or unsigned long long argument; or that a following n conversion specifier applies to a
pointer to a long long argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to a size_t argument.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or
the corresponding unsigned type argument; or that a following n conversion specifier
applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long
double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i The int argument shall be converted to a signed decimal in the style "[−]dddd". The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it shall be expanded with leading zeros.
The default precision is 1. The result of converting zero with an explicit precision of
zero shall be no characters.

o The unsigned argument shall be converted to unsigned octal format in the style
"dddd". The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision is 1. The result of converting zero with an explicit precision
of zero shall be no characters.

u The unsigned argument shall be converted to unsigned decimal format in the style
"dddd". The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision is 1. The result of converting zero with an explicit precision
of zero shall be no characters.

x The unsigned argument shall be converted to unsigned hexadecimal format in the style
"dddd"; the letters "abcdef" are used. The precision specifies the minimum number
of digits to appear; if the value being converted can be represented in fewer digits, it
shall be expanded with leading zeros. The default precision is 1. The result of
converting zero with an explicit precision of zero shall be no characters.

X Equivalent to the x conversion specifier, except that letters "ABCDEF" are used instead
of "abcdef".

998 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34056

34057

34058

34059

34060

34061

34062

34063

34064

34065

34066

34067

34068

34069

34070

34071

34072

34073

34074

34075

34076

34077

34078

34079

34080

34081

34082

34083

34084

34085

34086

34087

34088

34089

34090

34091

34092

34093

34094

34095

34096

34097

34098

34099

34100

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fprintf()

f, F The double argument shall be converted to decimal notation in the style
"[−]ddd.ddd", where the number of digits after the radix character is equal to the
precision specification. If the precision is missing, it shall be taken as 6; if the precision
is explicitly zero and no '#' flag is present, no radix character shall appear. If a radix
character appears, at least one digit appears before it. The low-order digit shall be
rounded in an implementation-defined manner.

A double argument representing an infinity shall be converted in one of the styles
"[-]inf" or "[-]infinity"; which style is implementation-defined. A double
argument representing a NaN shall be converted in one of the styles "[−]nan(n-
char-sequence)" or "[-]nan"; which style, and the meaning of any n-char-
sequence, is implementation-defined. The F conversion specifier produces "INF",
"INFINITY", or "NAN" instead of "inf", "infinity", or "nan", respectively.

e, E The double argument shall be converted in the style "[−]d.ddde±dd", where there is
one digit before the radix character (which is non-zero if the argument is non-zero) and
the number of digits after it is equal to the precision; if the precision is missing, it shall
be taken as 6; if the precision is zero and no '#' flag is present, no radix character shall
appear. The low-order digit shall be rounded in an implementation-defined manner.
The E conversion specifier shall produce a number with 'E' instead of 'e'
introducing the exponent. The exponent shall always contain at least two digits. If the
value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

g, G The double argument representing a floating-point number shall be converted in the
style f or e (or in the style F or E in the case of a G conversion specifier), depending on
the value converted and the precision. Let P equal the precision if non-zero, 6 if the
precision is omitted, or 1 if the precision is zero. Then, if a conversion with style E
would have an exponent of X:

— If P>X≥−4, the conversion shall be with style f (or F) and precision P−(X+1).

— Otherwise, the conversion shall be with style e (or E) and precision P−1.

Finally, unless the '#' flag is used, any trailing zeros shall be removed from the
fractional portion of the result and the decimal-point character shall be removed if there
is no fractional portion remaining.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

a, A A double argument representing a floating-point number shall be converted in the
style "[−]0xh.hhhhp±d", where there is one hexadecimal digit (which shall be non-
zero if the argument is a normalized floating-point number and is otherwise
unspecified) before the decimal-point character and the number of hexadecimal digits
after it is equal to the precision; if the precision is missing and FLT_RADIX is a power
of 2, then the precision shall be sufficient for an exact representation of the value; if the
precision is missing and FLT_RADIX is not a power of 2, then the precision shall be
sufficient to distinguish values of type double, except that trailing zeros may be
omitted; if the precision is zero and the '#' flag is not specified, no decimal-point
character shall appear. The letters "abcdef" shall be used for a conversion and the
letters "ABCDEF" for A conversion. The A conversion specifier produces a number with
'X' and 'P' instead of 'x' and 'p'. The exponent shall always contain at least one
digit, and only as many more digits as necessary to represent the decimal exponent of

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 999

34101

34102

34103

34104

34105

34106

34107

34108

34109

34110

34111

34112

34113

34114

34115

34116

34117

34118

34119

34120

34121

34122

34123

34124

34125

34126

34127

34128

34129

34130

34131

34132

34133

34134

34135

34136

34137

34138

34139

34140

34141

34142

34143

34144

34145

34146

34147

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fprintf() System Interfaces

2. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

c The int argument shall be converted to an unsigned char, and the resulting byte shall
be written.

CX If an l (ell) qualifier is present, the wint_t argument shall be converted to a multi-byte
sequence as if by a call to wcrtomb() with a pointer to storage of at least MB_CUR_MAX
bytes, the wint_t argument converted to wchar_t, and an initial shift state, and the
resulting byte(s) written.

s The argument shall be a pointer to an array of char. Bytes from the array shall be
written up to (but not including) any terminating null byte. If the precision is specified,
no more than that many bytes shall be written. If the precision is not specified or is
greater than the size of the array, the application shall ensure that the array contains a
null byte.

If an l (ell) qualifier is present, the argument shall be a pointer to an array of type
wchar_t. Wide characters from the array shall be converted to characters (each as if by
a call to the wcrtomb() function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted) up to and
including a terminating null wide character. The resulting characters shall be written
up to (but not including) the terminating null character (byte). If no precision is
specified, the application shall ensure that the array contains a null wide character. If a
precision is specified, no more than that many characters (bytes) shall be written
(including shift sequences, if any), and the array shall contain a null wide character if,
to equal the character sequence length given by the precision, the function would need
to access a wide character one past the end of the array. In no case shall a partial
character be written.

p The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is written the number of bytes
written to the output so far by this call to one of the fprintf() functions. No argument is
converted.

XSI C Equivalent to lc.

XSI S Equivalent to ls.

% Write a '%' character; no argument shall be converted. The application shall ensure
that the complete conversion specification is %%.

If a conversion specification does not match one of the above forms, the behavior is undefined. If
any argument is not the correct type for the corresponding conversion specification, the
behavior is undefined.

In no case shall a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field shall be expanded to contain the conversion
result. Characters generated by fprintf() and printf() are printed as if fputc() had been called.

For the a and A conversion specifiers, if FLT_RADIX is a power of 2, the value shall be correctly
rounded to a hexadecimal floating number with the given precision.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly
representable in the given precision, the result should be one of the two adjacent numbers in

1000 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34148

34149

34150

34151

34152

34153

34154

34155

34156

34157

34158

34159

34160

34161

34162

34163

34164

34165

34166

34167

34168

34169

34170

34171

34172

34173

34174

34175

34176

34177

34178

34179

34180

34181

34182

34183

34184

34185

34186

34187

34188

34189

34190

34191

34192

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fprintf()

hexadecimal floating style with the given precision, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

For the e, E, f, F, g, and G conversion specifiers, if the number of significant decimal digits is at
most DECIMAL_DIG, then the result should be correctly rounded. If the number of significant
decimal digits is more than DECIMAL_DIG but the source value is exactly representable with
DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros.
Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy L <=
D <= U, with the extra stipulation that the error should have a correct sign for the current
rounding direction.

CX The last data modification and last file status change timestamps of the file shall be marked for
update:

1. Between the call to a successful execution of fprintf() or printf() and the next successful
completion of a call to fflush() or fclose() on the same stream or a call to exit() or abort()

2. Upon successful completion of a call to dprintf()

RETURN VALUE
CX Upon successful completion, the dprintf(), fprintf(), and printf() functions shall return the

number of bytes transmitted.

CX Upon successful completion, the asprintf() function shall return the number of bytes written to
the allocated string stored in the location referenced by ptr, excluding the terminating null byte.

Upon successful completion, the sprintf() function shall return the number of bytes written to s,
excluding the terminating null byte.

Upon successful completion, the snprintf() function shall return the number of bytes that would
be written to s had n been sufficiently large excluding the terminating null byte.

CX If an error was encountered, these functions shall return a negative value and set errno to
indicate the error. For asprintf(), if memory allocation was not possible, or if some other error
occurs, the function shall return a negative value, and the contents of the location referenced by
ptr are undefined, but shall not refer to allocated memory.

If the value of n is zero on a call to snprintf(), nothing shall be written, the number of bytes that
would have been written had n been sufficiently large excluding the terminating null shall be
returned, and s may be a null pointer.

ERRORS
CX For the conditions under which dprintf(), fprintf(), and printf() fail and may fail, refer to fputc()

or fputwc().

In addition, all forms of fprintf() shall fail if:

CX [EILSEQ] A wide-character code that does not correspond to a valid character has been
detected.

CX [EOVERFLOW] The value to be returned is greater than {INT_MAX}.

CX The asprintf() function shall fail if:

[ENOMEM] Insufficient storage space is available.

The dprintf() function may fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1001

34193

34194

34195

34196

34197

34198

34199

34200

34201

34202

34203

34204

34205

34206

34207

34208

34209

34210

34211

34212

34213

34214

34215

34216

34217

34218

34219

34220

34221

34222

34223

34224

34225

34226

34227

34228

34229

34230

34231

34232

34233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fprintf() System Interfaces

[EBADF] The fildes argument is not a valid file descriptor.

CX The dprintf(), fprintf(), and printf() functions may fail if:

CX [ENOMEM] Insufficient storage space is available.

EXAMPLES

Printing Language-Independent Date and Time

The following statement can be used to print date and time using a language-independent
format:

printf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the following string:

"%s, %s %d, %d:%.2d\n"

This example would produce the following message:

Sunday, July 3, 10:02

For German usage, format could be a pointer to the following string:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

This definition of format would produce the following message:

Sonntag, 3. Juli, 10:02

Printing File Information

The following example prints information about the type, permissions, and number of links of a
specific file in a directory.

The first two calls to printf() use data decoded from a previous stat() call. The user-defined
strperm() function shall return a string similar to the one at the beginning of the output for the
following command:

ls -l

The next call to printf() outputs the owner’s name if it is found using getpwuid(); the getpwuid()
function shall return a passwd structure from which the name of the user is extracted. If the user
name is not found, the program instead prints out the numeric value of the user ID.

The next call prints out the group name if it is found using getgrgid(); getgrgid() is very similar
to getpwuid() except that it shall return group information based on the group number. Once
again, if the group is not found, the program prints the numeric value of the group for the entry.

The final call to printf() prints the size of the file.

#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>
#include <grp.h>

char *strperm (mode_t);
...
struct stat statbuf;
struct passwd *pwd;

1002 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34234

34235

34236

34237

34238

34239

34240

34241

34242

34243

34244

34245

34246

34247

34248

34249

34250

34251

34252

34253

34254

34255

34256

34257

34258

34259

34260

34261

34262

34263

34264

34265

34266

34267

34268

34269

34270

34271

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fprintf()

struct group *grp;
...
printf("%10.10s", strperm (statbuf.st_mode));
printf("%4d", statbuf.st_nlink);

if ((pwd = getpwuid(statbuf.st_uid)) != NULL)
printf(" %-8.8s", pwd->pw_name);

else
printf(" %-8ld", (long) statbuf.st_uid);

if ((grp = getgrgid(statbuf.st_gid)) != NULL)
printf(" %-8.8s", grp->gr_name);

else
printf(" %-8ld", (long) statbuf.st_gid);

printf("%9jd", (intmax_t) statbuf.st_size);
...

Printing a Localized Date String

The following example gets a localized date string. The nl_langinfo() function shall return the
localized date string, which specifies the order and layout of the date. The strftime() function
takes this information and, using the tm structure for values, places the date and time
information into datestring. The printf() function then outputs datestring and the name of the
entry.

#include <stdio.h>
#include <time.h>
#include <langinfo.h>
...
struct dirent *dp;
struct tm *tm;
char datestring[256];
...
strftime(datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);
...

Printing Error Information

The following example uses fprintf() to write error information to standard error.

In the first group of calls, the program tries to open the password lock file named LOCKFILE. If
the file already exists, this is an error, as indicated by the O_EXCL flag on the open() function. If
the call fails, the program assumes that someone else is updating the password file, and the
program exits.

The next group of calls saves a new password file as the current password file by creating a link
between LOCKFILE and the new password file PASSWDFILE.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1003

34272

34273

34274

34275

34276

34277

34278

34279

34280

34281

34282

34283

34284

34285

34286

34287

34288

34289

34290

34291

34292

34293

34294

34295

34296

34297

34298

34299

34300

34301

34302

34303

34304

34305

34306

34307

34308

34309

34310

34311

34312

34313

34314

34315

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fprintf() System Interfaces

#include <unistd.h>
#include <string.h>
#include <errno.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
...
int pfd;
...
if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}
...
if (link(LOCKFILE,PASSWDFILE) == -1) {

fprintf(stderr, "Link error: %s\n", strerror(errno));
exit(1);

}
...

Printing Usage Information

The following example checks to make sure the program has the necessary arguments, and uses
fprintf() to print usage information if the expected number of arguments is not present.

#include <stdio.h>
#include <stdlib.h>
...
char *Options = "hdbtl";
...
if (argc < 2) {

fprintf(stderr, "Usage: %s -%s <file\n", argv[0], Options); exit(1);
}
...

Formatting a Decimal String

The following example prints a key and data pair on stdout. Note use of the <asterisk> ('*') in
the format string; this ensures the correct number of decimal places for the element based on the
number of elements requested.

#include <stdio.h>
...
long i;
char *keystr;
int elementlen, len;
...
while (len < elementlen) {
...

printf("%s Element%0*ld\n", keystr, elementlen, i);
...

1004 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34316

34317

34318

34319

34320

34321

34322

34323

34324

34325

34326

34327

34328

34329

34330

34331

34332

34333

34334

34335

34336

34337

34338

34339

34340

34341

34342

34343

34344

34345

34346

34347

34348

34349

34350

34351

34352

34353

34354

34355

34356

34357

34358

34359

34360

34361

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fprintf()

}

Creating a Pathname

The following example creates a pathname using information from a previous getpwnam()
function that returned the password database entry of the user.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
...
char *pathname;
struct passwd *pw;
size_t len;
...
// digits required for pid_t is number of bits times
// log2(10) = approx 10/33
len = strlen(pw->pw_dir) + 1 + 1+(sizeof(pid_t)*80+32)/33 +

sizeof ".out";
pathname = malloc(len);
if (pathname != NULL)
{

snprintf(pathname, len, "%s/%jd.out", pw->pw_dir,
(intmax_t)getpid());

...
}

Reporting an Event

The following example loops until an event has timed out. The pause() function waits forever
unless it receives a signal. The fprintf() statement should never occur due to the possible return
values of pause().

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
...
while (!event_complete) {
...

if (pause() != -1 || errno != EINTR)
fprintf(stderr, "pause: unknown error: %s\n", strerror(errno));

}
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1005

34362

34363

34364

34365

34366

34367

34368

34369

34370

34371

34372

34373

34374

34375

34376

34377

34378

34379

34380

34381

34382

34383

34384

34385

34386

34387

34388

34389

34390

34391

34392

34393

34394

34395

34396

34397

34398

34399

34400

34401

34402

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fprintf() System Interfaces

Printing Monetary Information

The following example uses strfmon() to convert a number and store it as a formatted monetary
string named convbuf . If the first number is printed, the program prints the format and the
description; otherwise, it just prints the number.

#include <monetary.h>
#include <stdio.h>
...
struct tblfmt {

char *format;
char *description;

};

struct tblfmt table[] = {
{ "%n", "default formatting" },
{ "%11n", "right align within an 11 character field" },
{ "%#5n", "aligned columns for values up to 99999" },
{ "%=*#5n", "specify a fill character" },
{ "%=0#5n", "fill characters do not use grouping" },
{ "%^#5n", "disable the grouping separator" },
{ "%^#5.0n", "round off to whole units" },
{ "%^#5.4n", "increase the precision" },
{ "%(#5n", "use an alternative pos/neg style" },
{ "%!(#5n", "disable the currency symbol" },

};
...
float input[3];
int i, j;
char convbuf[100];
...
strfmon(convbuf, sizeof(convbuf), table[i].format, input[j]);

if (j == 0) {
printf("%s%s%s\n", table[i].format,

convbuf, table[i].description);
}
else {

printf("%s\n", convbuf);
}
...

Printing Wide Characters

The following example prints a series of wide characters. Suppose that "L`@`" expands to three
bytes:

wchar_t wz [3] = L"@@"; // Zero-terminated
wchar_t wn [3] = L"@@@"; // Unterminated

fprintf (stdout,"%ls", wz); // Outputs 6 bytes
fprintf (stdout,"%ls", wn); // Undefined because wn has no terminator
fprintf (stdout,"%4ls", wz); // Outputs 3 bytes
fprintf (stdout,"%4ls", wn); // Outputs 3 bytes; no terminator needed
fprintf (stdout,"%9ls", wz); // Outputs 6 bytes

1006 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34403

34404

34405

34406

34407

34408

34409

34410

34411

34412

34413

34414

34415

34416

34417

34418

34419

34420

34421

34422

34423

34424

34425

34426

34427

34428

34429

34430

34431

34432

34433

34434

34435

34436

34437

34438

34439

34440

34441

34442

34443

34444

34445

34446

34447

34448

34449

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fprintf()

fprintf (stdout,"%9ls", wn); // Outputs 9 bytes; no terminator needed
fprintf (stdout,"%10ls", wz); // Outputs 6 bytes
fprintf (stdout,"%10ls", wn); // Undefined because wn has no terminator

In the last line of the example, after processing three characters, nine bytes have been output.
The fourth character must then be examined to determine whether it converts to one byte or
more. If it converts to more than one byte, the output is only nine bytes. Since there is no fourth
character in the array, the behavior is undefined.

APPLICATION USAGE
If the application calling fprintf() has any objects of type wint_t or wchar_t, it must also include
the <wchar.h> header to have these objects defined.

The space allocated by a successful call to asprintf() should be subsequently freed by a call to
free().

RATIONALE
If an implementation detects that there are insufficient arguments for the format, it is
recommended that the function should fail and report an [EINVAL] error.

The behavior specified for the %lc conversion differs slightly from the specification in the ISO C
standard, in that printing the null wide character produces a null byte instead of 0 bytes of
output as would be required by a strict reading of the ISO C standard’s direction to behave as if
applying the %ls specifier to a wchar_t array whose first element is the null wide character.
Requiring a multi-byte output for every possible wide character, including the null character,
matches historical practice, and provides consistency with %c in fprintf() and with both %c and
%lc in fwprintf(). It is anticipated that a future edition of the ISO C standard will change to
match the behavior specified here.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fputc(), fscanf(), setlocale(), strfmon(), strlcat(), wcrtomb(), wcslcat()

XBD Chapter 7 (on page 127), <inttypes.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the l (ell) qualifier can
now be used with c and s conversion specifiers.

The snprintf() function is new in Issue 5.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fprintf(), printf(), snprintf(), and sprintf() are updated, and the XSI
shading is removed from snprintf().

• The description of snprintf() is aligned with the ISO C standard. Note that this supersedes
the snprintf() description in The Open Group Base Resolution bwg98-006, which changed
the behavior from Issue 5.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1007

34450

34451

34452

34453

34454

34455

34456

34457

34458

34459

34460

34461

34462

34463

34464

34465

34466

34467

34468

34469

34470

34471

34472

34473

34474

34475

34476

34477

34478

34479

34480

34481

34482

34483

34484

34485

34486

34487

34488

34489

34490

34491

34492

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fprintf() System Interfaces

• The DESCRIPTION is updated.

The DESCRIPTION is updated to use the terms ``conversion specifier’’ and ``conversion
specification’’ consistently.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

An example of printing wide characters is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #161 is applied, updating the DESCRIPTION of the 0
flag.

Austin Group Interpretation 1003.1-2001 #170 is applied.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is applied,
revising the description of g and G.

SD5-XSH-ERN-174 is applied.

The dprintf() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Functionality relating to the %n$ form of conversion specification and the <apostrophe> flag is
moved from the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0163 [302], XSH/TC1-2008/0164 [316],
XSH/TC1-2008/0165 [316], XSH/TC1-2008/0166 [451,291], and XSH/TC1-2008/0167 [14] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0126 [894], XSH/TC2-2008/0127 [557],
and XSH/TC2-2008/0128 [936] are applied.

Issue 8
Austin Group Defect 986 is applied, adding strlcat() and wcslcat() to the SEE ALSO section.

Austin Group Defect 1020 is applied, clarifying that the snprintf() argument n limits the number
of bytes written to s; it is not necessarily the same as the size of s.

Austin Group Defect 1021 is applied, changing ``output error ’’ to ``error ’’ in the RETURN
VALUE section.

Austin Group Defect 1137 is applied, clarifying the use of "%n$" and "*m$" in conversion
specifications.

Austin Group Defect 1205 is applied, changing the description of the % conversion specifier.

Austin Group Defect 1219 is applied, removing the snprintf()-specific [EOVERFLOW] error.

Austin Group Defect 1496 is applied, adding the asprintf() function.

Austin Group Defect 1562 is applied, clarifying that it is the application’s responsibility to
ensure that the format is a character string, beginning and ending in its initial shift state, if any.

Austin Group Defect 1647 is applied, changing the description of the c conversion specifier and
updating the statement that this volume of POSIX.1-2024 defers to the ISO C standard so that it
excludes the %lc conversion when passed a null wide character.

1008 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34493

34494

34495

34496

34497

34498

34499

34500

34501

34502

34503

34504

34505

34506

34507

34508

34509

34510

34511

34512

34513

34514

34515

34516

34517

34518

34519

34520

34521

34522

34523

34524

34525

34526

34527

34528

34529

34530

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fputc()

NAME
fputc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int fputc(int c, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fputc() function shall write the byte specified by c (converted to an unsigned char) to the
output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and shall advance the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append mode, the byte
shall be appended to the output stream.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fputc() and the next successful completion of a call
to fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputc() shall return the value it has written. Otherwise, it shall

CX return EOF, the error indicator for the stream shall be set, and errno shall be set to indicate the
error.

ERRORS
The fputc() function shall fail if either the stream is unbuffered or the stream’s buffer needs to be
flushed, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
writing.

CX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size.

CX [EFBIG] An attempt was made to write to a file that exceeds the file size limit of the
process.

XSI A SIGXFSZ signal shall also be generated for the thread.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set,
the calling thread is not blocking SIGTTOU, the process is not ignoring
SIGTTOU, and the process group of the process is orphaned. This error may
also be returned under implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1009

34531

34532

34533

34534

34535

34536

34537

34538

34539

34540

34541

34542

34543

34544

34545

34546

34547

34548

34549

34550

34551

34552

34553

34554

34555

34556

34557

34558

34559

34560

34561

34562

34563

34564

34565

34566

34567

34568

34569

34570

34571

34572

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fputc() System Interfaces

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fputc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), ferror(), fopen(), getrlimit(), putc(), puts(), setbuf()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EFBIG] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/37 is applied, updating the [EAGAIN]
error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

Issue 7
Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0168 [79] and XSH/TC1-2008/0169
[14] are applied.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

1010 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34573

34574

34575

34576

34577

34578

34579

34580

34581

34582

34583

34584

34585

34586

34587

34588

34589

34590

34591

34592

34593

34594

34595

34596

34597

34598

34599

34600

34601

34602

34603

34604

34605

34606

34607

34608

34609

34610

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fputs()

NAME
fputs — put a string on a stream

SYNOPSIS
#include <stdio.h>

int fputs(const char *restrict s, FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fputs() function shall write the null-terminated string pointed to by s to the stream pointed
to by stream. The terminating null byte shall not be written.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fputs() and the next successful completion of a call
to fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputs() shall return a non-negative number. Otherwise, it shall

CX return EOF, set an error indicator for the stream, and set errno to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES

Printing to Standard Output

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using fputs(). It then prints the number of minutes to
an event for which it is waiting.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
fputs(asctime(localtime(&now)), stdout);
printf("There are still %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The puts() function appends a <newline> while fputs() does not.

This volume of POSIX.1-2024 requires that successful completion simply return a non-negative
integer. There are at least three known different implementation conventions for this
requirement:

• Return a constant value.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1011

34611

34612

34613

34614

34615

34616

34617

34618

34619

34620

34621

34622

34623

34624

34625

34626

34627

34628

34629

34630

34631

34632

34633

34634

34635

34636

34637

34638

34639

34640

34641

34642

34643

34644

34645

34646

34647

34648

34649

34650

34651

34652

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fputs() System Interfaces

• Return the last character written.

• Return the number of bytes written. Note that this implementation convention cannot be
adhered to for strings longer than {INT_MAX} bytes as the value would not be
representable in the return type of the function. For backwards-compatibility,
implementations can return the number of bytes for strings of up to {INT_MAX} bytes, and
return {INT_MAX} for all longer strings.

RATIONALE
The fputs() function is one whose source code was specified in the referenced The C Programming
Language. In the original edition, the function had no defined return value, yet many practical
implementations would, as a side-effect, return the value of the last character written as that was
the value remaining in the accumulator used as a return value. In the second edition of the book,
either the fixed value 0 or EOF would be returned depending upon the return value of ferror();
however, for compatibility with extant implementations, several implementations would, upon
success, return a positive value representing the last byte written.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), putc(), puts()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The fputs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.
Issue 7

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0170 [174,412], XSH/TC1-2008/0171
[412], and XSH/TC1-2008/0172 [14] are applied.

1012 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34653

34654

34655

34656

34657

34658

34659

34660

34661

34662

34663

34664

34665

34666

34667

34668

34669

34670

34671

34672

34673

34674

34675

34676

34677

34678

34679

34680

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fputwc()

NAME
fputwc — put a wide-character code on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fputwc() function shall write the character corresponding to the wide-character code wc to
the output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream. If an error occurs while writing the character, the shift state of
the output file is left in an undefined state.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fputwc() and the next successful completion of a call
to fflush() or fclose() on the same stream or a call to exit() or abort().

The fputwc() function shall not change the setting of errno if successful.

RETURN VALUE
CX Upon successful completion, fputwc() shall return wc. Otherwise, it shall return WEOF, errno

shall be set to indicate the error, and for errors other than [EILSEQ] the error indicator for the
CX stream shall be set; the error indicator for the stream shall also be set for [EILSEQ] errors.

ERRORS
The fputwc() function shall fail if either the stream is unbuffered or data in the stream’s buffer
needs to be written, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
writing.

CX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size.

CX [EFBIG] An attempt was made to write to a file that exceeds the file size limit of the
process.

XSI A SIGXFSZ signal shall also be generated for the thread.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

[EILSEQ] The wide-character code wc does not correspond to a valid character.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set,
the calling thread is not blocking SIGTTOU, the process is not ignoring
SIGTTOU, and the process group of the process is orphaned. This error may

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1013

34681

34682

34683

34684

34685

34686

34687

34688

34689

34690

34691

34692

34693

34694

34695

34696

34697

34698

34699

34700

34701

34702

34703

34704

34705

34706

34707

34708

34709

34710

34711

34712

34713

34714

34715

34716

34717

34718

34719

34720

34721

34722

34723

34724

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fputwc() System Interfaces

also be returned under implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fputwc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The requirement to set the error indicator for the stream on [EILSEQ] errors is CX shaded
because the ISO C standard does not require it to be set for fputwc() encoding errors, although it
does for fgetwc(). The next revision of the ISO C standard is expected to address this
inconsistency by requiring the error indicator for the stream to be set for fputwc() encoding
errors.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), ferror(), fopen(), getrlimit(), setbuf()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

The Optional Header (OH) marking is removed from <stdio.h>.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EFBIG] and [EIO] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/38 is applied, updating the [EAGAIN]
error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

1014 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34725

34726

34727

34728

34729

34730

34731

34732

34733

34734

34735

34736

34737

34738

34739

34740

34741

34742

34743

34744

34745

34746

34747

34748

34749

34750

34751

34752

34753

34754

34755

34756

34757

34758

34759

34760

34761

34762

34763

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fputwc()

Issue 7
Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0173 [105], XSH/TC1-2008/0174 [79],
and XSH/TC1-2008/0175 [14] are applied.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

Austin Group Defect 1769 is applied, changing the CX shading in the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1015

34764

34765

34766

34767

34768

34769

34770

34771

34772

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fputws() System Interfaces

NAME
fputws — put a wide-character string on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fputws(const wchar_t *restrict ws, FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fputws() function shall write a character string corresponding to the (null-terminated) wide-
character string pointed to by ws to the stream pointed to by stream. No character corresponding
to the terminating null wide-character code shall be written.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fputws() and the next successful completion of a call
to fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputws() shall return a non-negative number. Otherwise, it shall

CX return −1, set an error indicator for the stream, and set errno to indicate the error.

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
The fputws() function does not append a <newline>.

This volume of POSIX.1-2024 requires that successful completion simply return a non-negative
integer. There are at least three known different implementation conventions for this
requirement:

• Return a constant value.

• Return the last character written.

• Return the number of bytes written. Note that this implementation convention cannot be
adhered to for strings longer than {INT_MAX} bytes as the value would not be
representable in the return type of the function. For backwards-compatibility,
implementations can return the number of bytes for strings of up to {INT_MAX} bytes, and
return {INT_MAX} for all longer strings.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen()

XBD <stdio.h>, <wchar.h>

1016 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34773

34774

34775

34776

34777

34778

34779

34780

34781

34782

34783

34784

34785

34786

34787

34788

34789

34790

34791

34792

34793

34794

34795

34796

34797

34798

34799

34800

34801

34802

34803

34804

34805

34806

34807

34808

34809

34810

34811

34812

34813

34814

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fputws()

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
Extensions beyond the ISO C standard are marked.

The fputws() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0176 [412] and XSH/TC1-2008/0177
[14] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1017

34815

34816

34817

34818

34819

34820

34821

34822

34823

34824

34825

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fread() System Interfaces

NAME
fread — binary input

SYNOPSIS
#include <stdio.h>

size_t fread(void *restrict ptr, size_t size, size_t nitems,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fread() function shall read into the array pointed to by ptr up to nitems elements whose size
is specified by size in bytes, from the stream pointed to by stream. For each object, size calls shall
be made to the fgetc() function and the results stored, in the order read, in an array of unsigned
char exactly overlaying the object. The file position indicator for the stream (if defined) shall be
advanced by the number of bytes successfully read. If an error occurs, the resulting value of the
file position indicator for the stream is unspecified. If a partial element is read, its value is
unspecified.

CX The fread() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), or scanf() using
stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
The fread() function shall return the number of elements successfully read, which shall be less
than nitems only if an error or end-of-file is encountered, or size is zero. If size or nitems is 0,
fread() shall return 0 and the contents of the array and the state of the stream shall remain

CX unchanged. Otherwise, if an error occurs, the error indicator for the stream shall be set, and
errno shall be set to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES

Reading from a Stream

The following example transfers a single 100-byte fixed length record from the fp stream into the
array pointed to by buf .

#include <stdio.h>
...
size_t elements_read;
char buf[100];
FILE *fp;
...
elements_read = fread(buf, sizeof(buf), 1, fp);
...

If a read error occurs, elements_read will be zero but the number of bytes read from the stream
could be anything from zero to sizeof (buf)−1.

The following example reads multiple single-byte elements from the fp stream into the array
pointed to by buf .

1018 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34826

34827

34828

34829

34830

34831

34832

34833

34834

34835

34836

34837

34838

34839

34840

34841

34842

34843

34844

34845

34846

34847

34848

34849

34850

34851

34852

34853

34854

34855

34856

34857

34858

34859

34860

34861

34862

34863

34864

34865

34866

34867

34868

34869

34870

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fread()

#include <stdio.h>
...
size_t bytes_read;
char buf[100];
FILE *fp;
...
bytes_read = fread(buf, 1, sizeof(buf), fp);
...

If a read error occurs, bytes_read will contain the number of bytes read from the stream.

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

Because of possible differences in element length and byte ordering, files written using fwrite()
are application-dependent, and possibly cannot be read using fread() by a different application
or by the same application on a different processor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), feof(), ferror(), fgetc(), fopen(), fscanf(), getc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The fread() prototype is updated.

• The DESCRIPTION is updated to describe how the bytes from a call to fgetc() are stored.

Issue 7
Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0178 [232] and XSH/TC1-2008/0179
[14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0129 [926] is applied.

Issue 8
Austin Group Defect 1196 is applied, clarifying the RETURN VALUE section.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1624 is applied, changing the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1019

34871

34872

34873

34874

34875

34876

34877

34878

34879

34880

34881

34882

34883

34884

34885

34886

34887

34888

34889

34890

34891

34892

34893

34894

34895

34896

34897

34898

34899

34900

34901

34902

34903

34904

34905

34906

34907

34908

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

free() System Interfaces

NAME
free — free allocated memory

SYNOPSIS
#include <stdlib.h>

void free(void *ptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The free() function shall cause the space pointed to by ptr to be deallocated; that is, made
available for further allocation. If ptr is a null pointer, no action shall occur. Otherwise, if the
argument does not match a pointer earlier returned by aligned_alloc(), calloc(), malloc(),

ADV posix_memalign(), realloc(),
CX reallocarray(), or a function in POSIX.1-2024 that allocates memory as if by malloc(), or if the
CX space has been deallocated by a call to free(), reallocarray(), or realloc(), the behavior is

undefined.

Any use of a pointer that refers to freed space results in undefined behavior.

CX The free() function shall not modify errno if ptr is a null pointer or a pointer previously returned
as if by malloc() and not yet deallocated.

For purposes of determining the existence of a data race, free() shall behave as though it
accessed only memory locations accessible through its argument and not other static duration
storage. The function may, however, visibly modify the storage that it deallocates. Calls to

ADV aligned_alloc(), calloc(), free(), malloc(), posix_memalign(),
CX reallocarray(), and realloc() that allocate or deallocate a particular region of memory shall occur

in a single total order (see XBD Section 4.15.1, on page 100), and each such deallocation call shall
synchronize with the next allocation (if any) in this order.

RETURN VALUE
The free() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

Because the free() function does not modify errno for valid pointers, it is safe to use it in cleanup
code without corrupting earlier errors, such as in this example code:

// buf was obtained by malloc(buflen)
ret = write(fd, buf, buflen);
if (ret < 0) {

free(buf);
return ret;

}

However, earlier versions of this standard did not require this, and the same example had to be
written as:

// buf was obtained by malloc(buflen)

1020 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34909

34910

34911

34912

34913

34914

34915

34916

34917

34918

34919

34920

34921

34922

34923

34924

34925

34926

34927

34928

34929

34930

34931

34932

34933

34934

34935

34936

34937

34938

34939

34940

34941

34942

34943

34944

34945

34946

34947

34948

34949

34950

34951

34952

34953

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces free()

ret = write(fd, buf, buflen);
if (ret < 0) {

int save = errno;
free(buf);
errno = save;
return ret;

}

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aligned_alloc(), calloc(), malloc(), posix_memalign(), realloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Reference to the valloc() function is removed.

Issue 7
The DESCRIPTION is updated to clarify that if the pointer returned is not by a function that
allocates memory as if by malloc(), then the behavior is undefined.

Issue 8
Austin Group Defect 385 is applied, adding a requirement that free() does not modify errno
when passed a pointer to an object than can be freed.

Austin Group Defect 1218 is applied, adding reallocarray().

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1021

34954

34955

34956

34957

34958

34959

34960

34961

34962

34963

34964

34965

34966

34967

34968

34969

34970

34971

34972

34973

34974

34975

34976

34977

34978

34979

34980

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

freeaddrinfo() System Interfaces

NAME
freeaddrinfo, getaddrinfo — get address information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo *ai);
int getaddrinfo(const char *restrict nodename,

const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

DESCRIPTION
The freeaddrinfo() function shall free one or more addrinfo structures returned by getaddrinfo(),
along with any additional storage associated with those structures. If the ai_next field of the
structure is not null, the entire list of structures shall be freed. The freeaddrinfo() function shall
support the freeing of arbitrary sublists of an addrinfo list originally returned by getaddrinfo().
The freeaddrinfo() function shall not modify errno if ai is a sublist previously returned by
getaddrinfo() and not yet freed.

The getaddrinfo() function shall translate the name of a service location (for example, a host
name) and/or a service name and shall return a set of socket addresses and associated
information to be used in creating a socket with which to address the specified service.

Note: In many cases it is implemented by the Domain Name System, as documented in RFC 1034,
RFC 1035, and RFC 3596.

The freeaddrinfo() and getaddrinfo() functions shall be thread-safe.

The nodename and servname arguments are either null pointers or pointers to null-terminated
strings. One or both of these two arguments shall be supplied by the application as a non-null
pointer.

The format of a valid name depends on the address family or families. If a specific family is not
given and the name could be interpreted as valid within multiple supported families, the
implementation shall attempt to resolve the name in all supported families and, in absence of
errors, one or more results shall be returned.

If the nodename argument is not null, it can be a descriptive name or can be an address string. If
IP6 the specified address family is AF_INET, AF_INET6, or AF_UNSPEC, valid descriptive names

include host names. If the specified address family is AF_INET or AF_UNSPEC, address strings
using Internet standard dot notation as specified in inet_ntop() are valid.

IP6 If the specified address family is AF_INET6 or AF_UNSPEC, standard IPv6 text forms described
in inet_ntop() are valid.

If nodename is not null, the requested service location is named by nodename; otherwise, the
requested service location is local to the caller.

If servname is null, the call shall return network-level addresses for the specified nodename. If
servname is not null, it is a null-terminated character string identifying the requested service.
This can be either a descriptive name or a numeric representation suitable for use with the

IP6 address family or families. If the specified address family is AF_INET, AF_INET6, or
AF_UNSPEC, the service can be specified as a string specifying a decimal port number.

If the hints argument is not null, it refers to a structure containing input values that directs the
operation by providing options and by limiting the returned information to a specific socket
type, address family, and/or protocol, as described below. The application shall ensure that each

1022 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34981

34982

34983

34984

34985

34986

34987

34988

34989

34990

34991

34992

34993

34994

34995

34996

34997

34998

34999

35000

35001

35002

35003

35004

35005

35006

35007

35008

35009

35010

35011

35012

35013

35014

35015

35016

35017

35018

35019

35020

35021

35022

35023

35024

35025

35026

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces freeaddrinfo()

of the ai_addrlen, ai_addr, ai_canonname, and ai_next members, as well as each of the non-standard
additional members, if any, of this hints structure is initialized. If any of these members has a
value other than the value that would result from default initialization, the behavior is
implementation-defined. A value of AF_UNSPEC for ai_family means that the caller shall accept
any address family. A value of zero for ai_socktype means that the caller shall accept any socket
type. A value of zero for ai_protocol means that the caller shall accept any protocol. If hints is a
null pointer, the behavior shall be as if it referred to a structure containing the value zero for the
ai_flags, ai_socktype, and ai_protocol fields, and AF_UNSPEC for the ai_family field.

The ai_flags field to which the hints parameter points shall be set to zero or be the bitwise-
inclusive OR of one or more of the values AI_PASSIVE, AI_CANONNAME,
AI_NUMERICHOST, AI_NUMERICSERV, AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG.

If the AI_PASSIVE flag is specified, the returned address information shall be suitable for use in
binding a socket for accepting incoming connections for the specified service. In this case, if the
nodename argument is null, then the IP address portion of the socket address structure shall be
set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address. If the
AI_PASSIVE flag is not specified, the returned address information shall be suitable for a call to
connect() (for a connection-mode protocol) or for a call to connect(), sendto(), or sendmsg() (for a
connectionless protocol). In this case, if the nodename argument is null, then the IP address
portion of the socket address structure shall be set to the loopback address. The AI_PASSIVE
flag shall be ignored if the nodename argument is not null.

If the AI_CANONNAME flag is specified and the nodename argument is not null, the function
shall attempt to determine the canonical name corresponding to nodename (for example, if
nodename is an alias or shorthand notation for a complete name).

Note: Since different implementations use different conceptual models, the terms ``canonical name’’
and ``alias’’ cannot be precisely defined for the general case. However, Domain Name System
implementations are expected to interpret them as they are used in RFC 1034.

A numeric host address string is not a ``name’’, and thus does not have a ``canonical name’’
form; no address to host name translation is performed. See below for handling of the case
where a canonical name cannot be obtained.

If the AI_NUMERICHOST flag is specified, then a non-null nodename string supplied shall be a
numeric host address string. Otherwise, an [EAI_NONAME] error is returned. This flag shall
prevent any type of name resolution service (for example, the DNS) from being invoked.

If the AI_NUMERICSERV flag is specified, then a non-null servname string supplied shall be a
numeric port string. Otherwise, an [EAI_NONAME] error shall be returned. This flag shall
prevent any type of name resolution service (for example, NIS+) from being invoked.

IP6 By default, with an ai_family of AF_INET6, getaddrinfo() shall return only IPv6 addresses. If the
AI_V4MAPPED flag is specified along with an ai_family of AF_INET6, then getaddrinfo() shall
return IPv4-mapped IPv6 addresses on finding no matching IPv6 addresses. The
AI_V4MAPPED flag shall be ignored unless ai_family equals AF_INET6. If the AI_ALL flag is
used with the AI_V4MAPPED flag, then getaddrinfo() shall return all matching IPv6 and IPv4
addresses. The AI_ALL flag without the AI_V4MAPPED flag shall be ignored.

If the AI_ADDRCONFIG flag is specified, IPv4 addresses shall be returned only if an IPv4
IP6 address is configured on the local system, and IPv6 addresses shall be returned only if an IPv6

address is configured on the local system.

The ai_socktype field to which argument hints points specifies the socket type for the service, as
defined in Section 2.10.6 (on page 550). If a specific socket type is not given (for example, a
value of zero) and the service name could be interpreted as valid with multiple supported socket

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1023

35027

35028

35029

35030

35031

35032

35033

35034

35035

35036

35037

35038

35039

35040

35041

35042

35043

35044

35045

35046

35047

35048

35049

35050

35051

35052

35053

35054

35055

35056

35057

35058

35059

35060

35061

35062

35063

35064

35065

35066

35067

35068

35069

35070

35071

35072

35073

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

freeaddrinfo() System Interfaces

types, the implementation shall attempt to resolve the service name for all supported socket
types and, in the absence of errors, all possible results shall be returned. A non-zero socket type
value shall limit the returned information to values with the specified socket type.

If the ai_family field to which hints points has the value AF_UNSPEC, addresses shall be
returned for use with any address family that can be used with the specified nodename and/or
servname. Otherwise, addresses shall be returned for use only with the specified address family.
If ai_family is not AF_UNSPEC and ai_protocol is not zero, then addresses shall be returned for
use only with the specified address family and protocol; the value of ai_protocol shall be
interpreted as in a call to the socket() function with the corresponding values of ai_family and
ai_protocol.

RETURN VALUE
A zero return value for getaddrinfo() indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful return of getaddrinfo(), the location to which res points shall refer to a linked list
of addrinfo structures, each of which shall specify a socket address and information for use in
creating a socket with which to use that socket address. The list shall include at least one
addrinfo structure. The ai_next field of each structure contains a pointer to the next structure on
the list, or a null pointer if it is the last structure on the list. Each structure on the list shall
include values for use with a call to the socket() function, and a socket address for use with the
connect() function or, if the AI_PASSIVE flag was specified, for use with the bind() function. The
fields ai_family, ai_socktype, and ai_protocol shall be usable as the arguments to the socket()
function to create a socket suitable for use with the returned address. The fields ai_addr and
ai_addrlen are usable as the arguments to the connect() or bind() functions with such a socket,
according to the AI_PASSIVE flag.

If nodename is not null, and if requested by the AI_CANONNAME flag, the ai_canonname field of
the first returned addrinfo structure shall point to a null-terminated string containing the
canonical name corresponding to the input nodename; if the canonical name is not available, then
ai_canonname shall refer to the nodename argument or a string with the same contents. The
contents of the ai_flags field of the returned structures are undefined.

All fields in socket address structures returned by getaddrinfo() that are not filled in through an
explicit argument (for example, sin6_flowinfo) shall be set to zero.

Note: This makes it easier to compare socket address structures.

ERRORS
The getaddrinfo() function shall fail and return the corresponding error value if:

[EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags parameter had an invalid value.

[EAI_FAIL] A non-recoverable error occurred when attempting to resolve the name.

[EAI_FAMILY] The address family was not recognized.

[EAI_MEMORY] There was a memory allocation failure when trying to allocate storage for the
return value.

[EAI_NONAME] The name does not resolve for the supplied parameters.

Neither nodename nor servname were supplied. At least one of these shall be
supplied.

1024 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35074

35075

35076

35077

35078

35079

35080

35081

35082

35083

35084

35085

35086

35087

35088

35089

35090

35091

35092

35093

35094

35095

35096

35097

35098

35099

35100

35101

35102

35103

35104

35105

35106

35107

35108

35109

35110

35111

35112

35113

35114

35115

35116

35117

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces freeaddrinfo()

[EAI_SERVICE] The service passed was not recognized for the specified socket type.

[EAI_SOCKTYPE]
The intended socket type was not recognized.

[EAI_SYSTEM] A system error occurred; the error code can be found in errno.

EXAMPLES
The following (incomplete) program demonstrates the use of getaddrinfo() to obtain the socket
address structure(s) for the service named in the program’s command-line argument. The
program then loops through each of the address structures attempting to create and bind a
socket to the address, until it performs a successful bind().

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netdb.h>

int
main(int argc, char *argv[])
{

struct addrinfo *result, *rp;
int sfd, s;

if (argc != 2) {
fprintf(stderr, "Usage: %s port\n", argv[0]);
exit(EXIT_FAILURE);

}

struct addrinfo hints = {0};
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_PASSIVE;
hints.ai_protocol = 0;

s = getaddrinfo(NULL, argv[1], &hints, &result);
if (s != 0) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

/* getaddrinfo() returns a list of address structures.
Try each address until a successful bind().
If socket(2) (or bind(2)) fails, close the socket
and try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol);
if (sfd == -1)

continue;

if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
break; /* Success */

close(sfd);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1025

35118

35119

35120

35121

35122

35123

35124

35125

35126

35127

35128

35129

35130

35131

35132

35133

35134

35135

35136

35137

35138

35139

35140

35141

35142

35143

35144

35145

35146

35147

35148

35149

35150

35151

35152

35153

35154

35155

35156

35157

35158

35159

35160

35161

35162

35163

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

freeaddrinfo() System Interfaces

}

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not bind\n");
exit(EXIT_FAILURE);

}

freeaddrinfo(result); /* No longer needed */

/* ... use socket bound to sfd ... */
}

APPLICATION USAGE
If the caller handles only TCP and not UDP, for example, then the ai_protocol member of the hints
structure should be set to IPPROTO_TCP when getaddrinfo() is called.

If the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure
should be set to AF_INET when getaddrinfo() is called.

The hints structure can be initialized using memset(&hints, 0, sizeof hints) or by
default initialization (see the APPLICATION USAGE for XBD <netdb.h>).

The term ``canonical name’’ is misleading; it is taken from the Domain Name System (RFC 2181).
It should be noted that the canonical name is a result of alias processing, and not necessarily a
unique attribute of a host, address, or set of addresses. See RFC 2181 for more discussion of this
in the Domain Name System context.

The ai_socktype field pointed to by hints is just the socket type; not the socket type and flags that
can be specified when the socket is created. Passing in socket creation flags will cause a failure
with [EAI_SOCKTYPE].

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), endservent(), gai_strerror(), getnameinfo(), socket()

XBD <netdb.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getaddrinfo() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/19 is applied, adding three notes to the
DESCRIPTION and adding text to the APPLICATION USAGE related to the term ``canonical
name’’. A reference to RFC 2181 is also added to the Informative References.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/20 is applied, making changes for
alignment with IPv6. These include the following:

• Adding AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG to the allowed values for the
ai_flags field

• Adding a description of AI_ADDRCONFIG

1026 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35164

35165

35166

35167

35168

35169

35170

35171

35172

35173

35174

35175

35176

35177

35178

35179

35180

35181

35182

35183

35184

35185

35186

35187

35188

35189

35190

35191

35192

35193

35194

35195

35196

35197

35198

35199

35200

35201

35202

35203

35204

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces freeaddrinfo()

• Adding a description of the consequences of ignoring the AI_PASSIVE flag.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/39 is applied, changing ``corresponding
value’’ to ``corresponding error value’’ in the ERRORS section.

Issue 7
Austin Group Interpretation 1003.1-2001 #013 is applied.

Austin Group Interpretation 1003.1-2001 #146 is applied, updating the DESCRIPTION.

An example is added.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0130 [939], XSH/TC2-2008/0131 [979],
XSH/TC2-2008/0132 [918], and XSH/TC2-2008/0133 [934] are applied.

Issue 8
Austin Group Defect 385 is applied, adding a requirement that freeaddrinfo() does not modify
errno when passed a sublist that can be freed.

Austin Group Defect 411 is applied, changing the ``socket type’’ reference and adding a
paragraph about hints->ai_socktype to the APPLICATION USAGE section.

Austin Group Defect 940 is applied, changing text in the APPLICATION USAGE section relating
to initialization of the hints structure.

Austin Group Defect 1102 is applied, replacing a reference to the inet_addr() page with one to the
inet_ntop() page.

Austin Group Defect 1685 is applied, updating RFC references.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1027

35205

35206

35207

35208

35209

35210

35211

35212

35213

35214

35215

35216

35217

35218

35219

35220

35221

35222

35223

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

freelocale() System Interfaces

NAME
freelocale — free resources allocated for a locale object

SYNOPSIS
CX #include <locale.h>

void freelocale(locale_t locobj);

DESCRIPTION
The freelocale() function shall cause the resources allocated for a locale object returned by a call
to the newlocale() or duplocale() functions to be released. The freelocale() function shall not
modify errno if locobj is a locale object previously returned by newlocale() or duplocale() and not
yet released by freelocale() or newlocale().

The behavior is undefined if the locobj argument is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

Any use of a locale object that has been freed results in undefined behavior.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES

Freeing Up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1028 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35224

35225

35226

35227

35228

35229

35230

35231

35232

35233

35234

35235

35236

35237

35238

35239

35240

35241

35242

35243

35244

35245

35246

35247

35248

35249

35250

35251

35252

35253

35254

35255

35256

35257

35258

35259

35260

35261

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces freelocale()

SEE ALSO
duplocale(), getlocalename_l(), newlocale(), uselocale()

XBD <locale.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0180 [283] is applied.

Issue 8
Austin Group Defect 385 is applied, adding a requirement that freelocale() does not modify errno
when passed a locale object than can be freed.

Austin Group Defect 1220 is applied, adding getlocalename_l() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1029

35262

35263

35264

35265

35266

35267

35268

35269

35270

35271

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

freopen() System Interfaces

NAME
freopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *freopen(const char *restrict pathname, const char *restrict mode,
FILE *restrict stream);

DESCRIPTION
CX Except for the ``exclusive access’’ requirement (see fopen()), the functionality described on this

reference page is aligned with the ISO C standard. Any other conflict between the requirements
described here and the ISO C standard is unintentional. This volume of POSIX.1-2024 defers to
the ISO C standard for all freopen() functionality except in relation to ``exclusive access’’.

The freopen() function shall first attempt to flush the stream associated with stream as if by a call
to fflush(stream). Failure to flush the stream successfully shall be ignored. If pathname is not a
null pointer, freopen() shall close any file descriptor associated with stream. Failure to close the
file descriptor successfully shall be ignored. The error and end-of-file indicators for the stream
shall be cleared.

The freopen() function shall open the file whose pathname is the string pointed to by pathname
and associate the stream pointed to by stream with it. The mode argument shall be used just as in
fopen().

The original stream shall be closed regardless of whether the subsequent open succeeds.

If pathname is a null pointer, the freopen() function shall attempt to change the mode of the
stream to that specified by mode, as if the name of the file currently associated with the stream
had been used. In this case, the file descriptor associated with the stream need not be closed if
the call to freopen() succeeds. It is implementation-defined which changes of mode are permitted
(if any), and under what circumstances.

XSI After a successful call to the freopen() function, the orientation of the stream shall be cleared, the
encoding rule shall be cleared, and the associated mbstate_t object shall be set to describe an
initial conversion state.

CX If pathname is not a null pointer, or if pathname is a null pointer and the specified mode change
necessitates the file descriptor associated with the stream to be closed and reopened, the file
descriptor associated with the reopened stream shall be allocated and opened as if by a call to
open() with the flags specified for fopen() with the same mode argument.

RETURN VALUE
Upon successful completion, freopen() shall return the value of stream. Otherwise, a null pointer

CX shall be returned, and errno shall be set to indicate the error.

ERRORS
The freopen() function shall fail if:

CX [EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

CX [EBADF] The file descriptor underlying the stream is not a valid file descriptor when
pathname is a null pointer.

1030 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35272

35273

35274

35275

35276

35277

35278

35279

35280

35281

35282

35283

35284

35285

35286

35287

35288

35289

35290

35291

35292

35293

35294

35295

35296

35297

35298

35299

35300

35301

35302

35303

35304

35305

35306

35307

35308

35309

35310

35311

35312

35313

35314

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces freopen()

CX [EILSEQ] The mode argument begins with w or a, the file did not previously exist, and
the last pathname component is not a portable filename and cannot be created
in the target directory.

CX [EEXIST] The mode argument begins with w or a and includes x, but the file already
exists.

CX [EINTR] A signal was caught during freopen().

CX [EISDIR] The named file is a directory and mode requires write access.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
argument.

CX [EMFILE] All file descriptors available to the process are currently open.

CX [ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOENT] The mode string begins with 'r' and a component of pathname does not name
an existing file, or mode begins with 'w' or 'a' and a component of the path
prefix of pathname does not name an existing file, or pathname is an empty
string.

CX [ENOENT] or [ENOTDIR]
The pathname argument contains at least one non-<slash> character and ends
with one or more trailing <slash> characters. If pathname without the trailing
<slash> characters would name an existing file, an [ENOENT] error shall not
occur.

CX [ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

CX [ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the pathname argument contains
at least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

CX [ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

CX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

CX [EROFS] The named file resides on a read-only file system and mode requires write
access.

The freopen() function may fail if:

CX [EBADF] The mode with which the file descriptor underlying the stream was opened
does not support the requested mode when pathname is a null pointer.

CX [EINVAL] The value of the mode argument is not valid.

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname argument.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1031

35315

35316

35317

35318

35319

35320

35321

35322

35323

35324

35325

35326

35327

35328

35329

35330

35331

35332

35333

35334

35335

35336

35337

35338

35339

35340

35341

35342

35343

35344

35345

35346

35347

35348

35349

35350

35351

35352

35353

35354

35355

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

freopen() System Interfaces

CX [ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

CX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode
requires write access.

EXAMPLES

Directing Standard Output to a File

The following example logs all standard output to the /tmp/logfile file.

#include <stdio.h>
...
FILE *fp;
...
fp = freopen ("/tmp/logfile", "a+", stdout);
...

APPLICATION USAGE
The freopen() function is typically used to attach the pre-opened streams associated with stdin,
stdout, and stderr to other files.

Since implementations are not required to support any stream mode changes when the pathname
argument is NULL, portable applications cannot rely on the use of freopen() to change the stream
mode, and use of this feature is discouraged. The feature was originally added to the ISO C
standard in order to facilitate changing stdin and stdout to binary mode. Since a 'b' character in
the mode has no effect on POSIX systems, this use of the feature is unnecessary in POSIX
applications. However, even though the 'b' is ignored, a successful call to freopen(NULL, "wb",
stdout) does have an effect. In particular, for regular files it truncates the file and sets the file-
position indicator for the stream to the start of the file. It is possible that these side-effects are an
unintended consequence of the way the feature was specified in the ISO/IEC 9899: 1999
standard (and still is in the current standard), but unless or until the ISO C standard is changed,
applications which successfully call freopen(NULL, "wb", stdout) will behave in unexpected ways
on conforming systems in situations such as:

{ appl file1; appl file2; } > file3

which will result in file3 containing only the output from the second invocation of appl.

See also the APPLICATION USAGE for fopen().

RATIONALE
See the RATIONALE for fopen().

FUTURE DIRECTIONS
None.

1032 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35356

35357

35358

35359

35360

35361

35362

35363

35364

35365

35366

35367

35368

35369

35370

35371

35372

35373

35374

35375

35376

35377

35378

35379

35380

35381

35382

35383

35384

35385

35386

35387

35388

35389

35390

35391

35392

35393

35394

35395

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces freopen()

SEE ALSO
Section 2.5 (on page 521), fclose(), fdopen(), fflush(), fmemopen(), fopen(), mbsinit(), open(),
open_memstream()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that the orientation of the stream is cleared and the
conversion state of the stream is set to an initial conversion state by a successful call to the
freopen() function.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [EINVAL], [ENOMEM], [ENXIO], and [ETXTBSY] optional error conditions are added.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The freopen() prototype is updated.

• The DESCRIPTION is updated.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

The DESCRIPTION is updated regarding failure to close, changing the ``file’’ to ``file descriptor’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/40 is applied, adding the following
sentence to the DESCRIPTION: ``In this case, the file descriptor associated with the stream need
not be closed if the call to freopen() succeeds.’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/41 is applied, adding an mandatory
[EBADF] error, and an optional [EBADF] error to the ERRORS section.

Issue 7
Austin Group Interpretation 1003.1-2001 #043 is applied, clarifying that the freopen() function
allocates a file descriptor as per open().

Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements for the flags set
on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1033

35396

35397

35398

35399

35400

35401

35402

35403

35404

35405

35406

35407

35408

35409

35410

35411

35412

35413

35414

35415

35416

35417

35418

35419

35420

35421

35422

35423

35424

35425

35426

35427

35428

35429

35430

35431

35432

35433

35434

35435

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

freopen() System Interfaces

SD5-XSH-ERN-150 and SD5-XSH-ERN-219 are applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0181 [291,433], XSH/TC1-2008/0182
[146,433], XSH/TC1-2008/0183 [324], and XSH/TC1-2008/0184 [14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0134 [822] is applied.

Issue 8
Austin Group Defect 293 is applied, adding the [EILSEQ] error.

Austin Group Defect 411 is applied, adding the e and x mode string characters.

Austin Group Defect 1200 is applied, correcting the argument name in the [ELOOP] errors.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

1034 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35436

35437

35438

35439

35440

35441

35442

35443

35444

35445

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces frexp()

NAME
frexp, frexpf, frexpl — extract significand and exponent from a double precision number

SYNOPSIS
#include <math.h>

double frexp(double num, int *exp);
float frexpf(float num, int *exp);
long double frexpl(long double num, int *exp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall break a floating-point number num into a normalized fraction and an
integral power of 2. The integer exponent shall be stored in the int object pointed to by exp; if the
integer exponent is outside the range of int, the results are unspecified.

RETURN VALUE
For finite arguments, these functions shall return the value x, such that x has a magnitude in the
interval [½,1) or 0, and num equals x times 2 raised to the power *exp.

MX When the radix of the argument is a power of 2, the returned value shall be exact and shall be
independent of the current rounding direction mode.

If num is NaN, a NaN shall be returned, and the value of *exp is unspecified.

If num is ±0, ±0 shall be returned, and the value of *exp shall be 0.

If num is ±Inf, num shall be returned, and the value of *exp is unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), ldexp(), modf()

XBD <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1035

35446

35447

35448

35449

35450

35451

35452

35453

35454

35455

35456

35457

35458

35459

35460

35461

35462

35463

35464

35465

35466

35467

35468

35469

35470

35471

35472

35473

35474

35475

35476

35477

35478

35479

35480

35481

35482

35483

35484

35485

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

frexp() System Interfaces

Issue 6
The frexpf() and frexpl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1753 is applied, changing the NAME section.

1036 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35486

35487

35488

35489

35490

35491

35492

35493

35494

35495

35496

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fscanf()

NAME
fscanf, scanf, sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int fscanf(FILE *restrict stream, const char *restrict format, ...);
int scanf(const char *restrict format, ...);
int sscanf(const char *restrict s, const char *restrict format, ...);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fscanf() function shall read from the named input stream. The scanf() function shall read
from the standard input stream stdin. The sscanf() function shall read from the string s. Each
function reads bytes, interprets them according to a format, and stores the results in its
arguments. Each expects, as arguments, a control string format described below, and a set of
pointer arguments indicating where the converted input should be stored. The result is
undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments shall be evaluated but otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier character % (see below) is
replaced by the sequence "%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}].
This feature provides for the definition of format strings that select arguments in an order
appropriate to specific languages. In format strings containing the "%n$" form of conversion
specifications, it is unspecified whether numbered arguments in the argument list can be
referenced from the format string more than once.

The format can contain either form of a conversion specification—that is, % or "%n$"—but the
two forms cannot be mixed within a single format string. The only exception to this is that %% or
%* can be mixed with the "%n$" form. When numbered argument specifications are used,
specifying the Nth argument requires that all the leading arguments, from the first to the
(N−1)th, are pointers.

The fscanf() function in all its forms shall allow detection of a language-dependent radix
character in the input string. The radix character is defined in the current locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character shall default to a <period> ('.').

The application shall ensure that the format is a character string, beginning and ending in its
initial shift state, if any, composed of zero or more directives. Each directive is composed of one
of the following: one or more white-space bytes; an ordinary character (neither '%' nor a white-
space byte); or a conversion specification. Each conversion specification is introduced by the

CX character '%' or the character sequence "%n$", after which the following appear in sequence:

• An optional assignment-suppressing character '*'.

• An optional non-zero decimal integer that specifies the maximum field width.

CX • An optional assignment-allocation character 'm'.

• An option length modifier that specifies the size of the receiving object.

• A conversion specifier character that specifies the type of conversion to be applied. The valid
conversion specifiers are described below.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1037

35497

35498

35499

35500

35501

35502

35503

35504

35505

35506

35507

35508

35509

35510

35511

35512

35513

35514

35515

35516

35517

35518

35519

35520

35521

35522

35523

35524

35525

35526

35527

35528

35529

35530

35531

35532

35533

35534

35535

35536

35537

35538

35539

35540

35541

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fscanf() System Interfaces

The fscanf() functions shall execute each directive of the format in turn. When all directives have
been executed, or if a directive fails (as detailed below), the function shall return. Failures are
described as input failures (due to the unavailability of input bytes) or matching failures (due to
inappropriate input).

A directive composed of one or more white-space bytes shall be executed by reading input up to
the first non-white-space byte, which shall remain unread, or until no more bytes can be read.
The directive shall never fail.

A directive that is an ordinary character shall be executed as follows: the next byte shall be read
from the input and compared with the byte that comprises the directive; if the comparison
shows that they are not equivalent, the directive shall fail, and the differing and subsequent
bytes shall remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a
character from being read, the directive shall fail.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion character. A conversion specification shall be executed in
the following steps.

Input white-space bytes shall be skipped, unless the conversion specification includes a [, c, C,
or n conversion specifier.

An item shall be read from the input, unless the conversion specification includes an n
conversion specifier. An input item shall be defined as the longest sequence of input bytes (up to
any specified maximum field width, which may be measured in characters or bytes dependent
on the conversion specifier) which is an initial subsequence of a matching sequence. The first
byte, if any, after the input item shall remain unread. If the length of the input item is 0, the
execution of the conversion specification shall fail; this condition is a matching failure, unless
end-of-file, an encoding error, or a read error prevented input from the stream, in which case it is
an input failure.

Except in the case of a % conversion specifier, the input item (or, in the case of a %n conversion
specification, the count of input bytes) shall be converted to a type appropriate to the conversion
character. If the input item is not a matching sequence, the execution of the conversion
specification fails; this condition is a matching failure. Unless assignment suppression was
indicated by a '*', the result of the conversion shall be placed in the object pointed to by the
first argument following the format argument that has not already received a conversion result if

CX the conversion specification is introduced by %, or in the nth argument if introduced by the
character sequence "%n$". If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behavior is undefined.

CX The c, s, and [conversion specifiers shall accept an optional assignment-allocation character
'm', which shall cause a memory buffer to be allocated to hold the conversion results. If the
conversion specifier is s or [, the allocated buffer shall include space for a terminating null
character (or wide character). In such a case, the argument corresponding to the conversion
specifier should be a reference to a pointer variable that will receive a pointer to the allocated
buffer. The system shall allocate a buffer as if malloc() had been called. The application shall be
responsible for freeing the memory after usage. If there is insufficient memory to allocate a
buffer, the function shall set errno to [ENOMEM] and a conversion error shall result. If the
function returns EOF, any memory successfully allocated for parameters using assignment-
allocation character 'm' by this call shall be freed before the function returns.

1038 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35542

35543

35544

35545

35546

35547

35548

35549

35550

35551

35552

35553

35554

35555

35556

35557

35558

35559

35560

35561

35562

35563

35564

35565

35566

35567

35568

35569

35570

35571

35572

35573

35574

35575

35576

35577

35578

35579

35580

35581

35582

35583

35584

35585

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fscanf()

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following c, s, or [conversion specifier applies to an argument with type pointer to

CX wchar_t. If the 'm' assignment-allocation character is specified, the conversion
applies to an argument with the type pointer to a pointer to wchar_t.

ll (ell-ell)
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to ptrdiff_t or the corresponding unsigned type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of strtol() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of strtol() with 0 for the base argument. In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of strtoul() with the value 8 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of strtoul() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of strtoul() with the value 16 for the base argument. In
the absence of a size modifier, the application shall ensure that the corresponding

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1039

35586

35587

35588

35589

35590

35591

35592

35593

35594

35595

35596

35597

35598

35599

35600

35601

35602

35603

35604

35605

35606

35607

35608

35609

35610

35611

35612

35613

35614

35615

35616

35617

35618

35619

35620

35621

35622

35623

35624

35625

35626

35627

35628

35629

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fscanf() System Interfaces

argument is a pointer to unsigned.

a, e, f, g
Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of strtod(). In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
float.

If the fprintf() family of functions generates character string representations for infinity
and NaN (a symbolic entity encoded in floating-point format) to support
IEEE Std 754-1985, the fscanf() family of functions shall recognize them as input.

s Matches a sequence of bytes that are not white-space bytes. If the 'm' assignment-
allocation character is not specified, the application shall ensure that the corresponding
argument is a pointer to the initial byte of an array of char, signed char, or unsigned
char large enough to accept the sequence and a terminating null character code, which

CX shall be added automatically. Otherwise, the application shall ensure that the
corresponding argument is a pointer to a pointer to a char.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character shall be converted to a wide character as if by a call to
the mbrtowc() function, with the conversion state described by an mbstate_t object
initialized to zero before the first character is converted. If the 'm' assignment-
allocation character is not specified, the application shall ensure that the corresponding
argument is a pointer to an array of wchar_t large enough to accept the sequence and

CX the terminating null wide character, which shall be added automatically. Otherwise,
the application shall ensure that the corresponding argument is a pointer to a pointer to
a wchar_t.

[Matches a non-empty sequence of bytes from a set of expected bytes (the scanset). The
normal skip over white-space bytes shall be suppressed in this case. If the 'm'
assignment-allocation character is not specified, the application shall ensure that the
corresponding argument is a pointer to the initial byte of an array of char, signed char,
or unsigned char large enough to accept the sequence and a terminating null byte,

CX which shall be added automatically. Otherwise, the application shall ensure that the
corresponding argument is a pointer to a pointer to a char.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character in the sequence shall be converted to a wide character
as if by a call to the mbrtowc() function, with the conversion state described by an
mbstate_t object initialized to zero before the first character is converted. If the 'm'
assignment-allocation character is not specified, the application shall ensure that the
corresponding argument is a pointer to an array of wchar_t large enough to accept the
sequence and the terminating null wide character, which shall be added automatically.

CX Otherwise, the application shall ensure that the corresponding argument is a pointer to
a pointer to a wchar_t.

The conversion specification includes all subsequent bytes in the format string up to
and including the matching <right-square-bracket> (']'). The bytes between the
square brackets (the scanlist) comprise the scanset, unless the byte after the <left-
square-bracket> is a <circumflex> ('^'), in which case the scanset contains all bytes
that do not appear in the scanlist between the <circumflex> and the <right-square-
bracket>. If the conversion specification begins with "[]" or "[^]", the <right-
square-bracket> is included in the scanlist and the next <right-square-bracket> is the
matching <right-square-bracket> that ends the conversion specification; otherwise, the

1040 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35630

35631

35632

35633

35634

35635

35636

35637

35638

35639

35640

35641

35642

35643

35644

35645

35646

35647

35648

35649

35650

35651

35652

35653

35654

35655

35656

35657

35658

35659

35660

35661

35662

35663

35664

35665

35666

35667

35668

35669

35670

35671

35672

35673

35674

35675

35676

35677

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fscanf()

first <right-square-bracket> is the one that ends the conversion specification. If a '−' is
in the scanlist and is not the first character, nor the second where the first character is a
'^', nor the last character, the behavior is implementation-defined.

c Matches a sequence of bytes of the number specified by the field width (1 if no field
width is present in the conversion specification). No null byte is added. The normal
skip over white-space bytes shall be suppressed in this case. If the 'm' assignment-
allocation character is not specified, the application shall ensure that the corresponding
argument is a pointer to the initial byte of an array of char, signed char, or unsigned

CX char large enough to accept the sequence. Otherwise, the application shall ensure that
the corresponding argument is a pointer to a pointer to a char.

If an l (ell) qualifier is present, the input shall be a sequence of characters that begins in
the initial shift state. Each character in the sequence is converted to a wide character as
if by a call to the mbrtowc() function, with the conversion state described by an
mbstate_t object initialized to zero before the first character is converted. No null wide
character is added. If the 'm' assignment-allocation character is not specified, the
application shall ensure that the corresponding argument is a pointer to an array of

CX wchar_t large enough to accept the resulting sequence of wide characters. Otherwise,
the application shall ensure that the corresponding argument is a pointer to a pointer to
a wchar_t.

p Matches an implementation-defined set of sequences, which shall be the same as the set
of sequences that is produced by the %p conversion specification of the corresponding
fprintf() functions. The application shall ensure that the corresponding argument is a
pointer to a pointer to void. The interpretation of the input item is implementation-
defined. If the input item is a value converted earlier during the same program
execution, the pointer that results shall compare equal to that value; otherwise, the
behavior of the %p conversion specification is undefined.

n No input is consumed. The application shall ensure that the corresponding argument is
a pointer to the integer into which shall be written the number of bytes read from the
input so far by this call to the fscanf() functions. Execution of a %n conversion
specification shall not increment the assignment count returned at the completion of
execution of the function. No argument shall be converted, but one shall be consumed.
If the conversion specification includes an assignment-suppressing character or a field
width, the behavior is undefined.

XSI C Equivalent to lc.

XSI S Equivalent to ls.

% Matches a single '%' character; no conversion or assignment occurs. The complete
conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers A, E, F, G, and X are also valid and shall be equivalent to a, e, f, g, and
x, respectively.

If end-of-file is encountered during input, conversion shall be terminated. If end-of-file occurs
before any bytes matching the current conversion specification (except for %n) have been read
(other than leading white-space bytes, where permitted), execution of the current conversion
specification shall terminate with an input failure. Otherwise, unless execution of the current
conversion specification is terminated with a matching failure, execution of the following
conversion specification (if any) shall be terminated with an input failure.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1041

35678

35679

35680

35681

35682

35683

35684

35685

35686

35687

35688

35689

35690

35691

35692

35693

35694

35695

35696

35697

35698

35699

35700

35701

35702

35703

35704

35705

35706

35707

35708

35709

35710

35711

35712

35713

35714

35715

35716

35717

35718

35719

35720

35721

35722

35723

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fscanf() System Interfaces

Reaching the end of the string in sscanf() shall be equivalent to encountering end-of-file for
fscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white-space bytes (including <newline> characters) shall be left unread unless
matched by a conversion specification. The success of literal matches and suppressed
assignments is only directly determinable via the %n conversion specification.

CX The fscanf() and scanf() functions may mark the last data access timestamp of the file associated
with stream for update. The last data access timestamp shall be marked for update by the first
successful execution of fgetc(), fgets(), fread(), getc(), getchar(), getdelim(), getline(), fscanf(), or
scanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, these functions shall return the number of successfully matched
and assigned input items; this number can be zero in the event of an early matching failure. If
the input ends before the first conversion (if any) has completed, and without a matching failure
having occurred, EOF shall be returned. If an error occurs before the first conversion (if any) has

CX completed, and without a matching failure having occurred, EOF shall be returned and errno
shall be set to indicate the error. If an error occurs, the error indicator for the stream shall be set.

ERRORS
For the conditions under which the fscanf() functions fail and may fail, refer to fgetc() or
fgetwc().

In addition, the fscanf() function shall fail if:

CX [EILSEQ] Input byte sequence does not form a valid character.

[ENOMEM] Insufficient storage space is available.

In addition, the fscanf() function may fail if:
CX [EINVAL] There are insufficient arguments.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 Hamster

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string
"Hamster".

The call:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skips 0123, and places the string "56\0" in name. The next call to
getchar() shall return the character 'a'.

1042 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35724

35725

35726

35727

35728

35729

35730

35731

35732

35733

35734

35735

35736

35737

35738

35739

35740

35741

35742

35743

35744

35745

35746

35747

35748

35749

35750

35751

35752

35753

35754

35755

35756

35757

35758

35759

35760

35761

35762

35763

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fscanf()

Reading Data into an Array

The following call uses fscanf() to read three floating-point numbers from standard input into
the input array.

float input[3]; fscanf (stdin, "%f %f %f", input, input+1, input+2);

APPLICATION USAGE
If the application calling fscanf() has any objects of type wint_t or wchar_t, it must also include
the <wchar.h> header to have these objects defined.

For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For fscanf(), this is memory allocated via use of
the 'm' assignment-allocation character.

RATIONALE
The set of characters allowed in a scanset is limited to single-byte characters. In other similar
places, multi-byte characters have been permitted, but for alignment with the ISO C standard, it
has not been done here. Applications needing this could use the corresponding wide-character
functions to achieve the desired results.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fprintf(), getc(), setlocale(), strtod(), strtol(), strtoul(), wcrtomb()

XBD Chapter 7 (on page 127), <inttypes.h>, <langinfo.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the l (ell) qualifier is
now defined for the c, s, and [conversion specifiers.

The DESCRIPTION is updated to indicate that if infinity and NaN can be generated by the
fprintf() family of functions, then they are recognized by the fscanf() family.

Issue 6
The Open Group Corrigenda U021/7 and U028/10 are applied. These correct several
occurrences of ``characters’’ in the text which have been replaced with the term ``bytes’’.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fscanf(), scanf(), and sscanf() are updated.

• The DESCRIPTION is updated.

• The hh, ll, j, t, and z length modifiers are added.

• The a, A, and F conversion characters are added.

The DESCRIPTION is updated to use the terms ``conversion specifier’’ and ``conversion
specification’’ consistently.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1043

35764

35765

35766

35767

35768

35769

35770

35771

35772

35773

35774

35775

35776

35777

35778

35779

35780

35781

35782

35783

35784

35785

35786

35787

35788

35789

35790

35791

35792

35793

35794

35795

35796

35797

35798

35799

35800

35801

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fscanf() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

SD5-XSH-ERN-9 is applied, correcting fscanf() to scanf() in the DESCRIPTION.

SD5-XSH-ERN-132 is applied, adding the assignment-allocation character 'm'.

Functionality relating to the %n$ form of conversion specification is moved from the XSI option
to the Base.

Changes are made related to support for finegrained timestamps.

The APPLICATION USAGE section is updated to clarify that memory is allocated as if by
malloc().

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0185 [302], XSH/TC1-2008/0186 [90],
and XSH/TC1-2008/0187 [14] are applied. XSH/TC1-2008/0186 [90] changes the second
sentence in the RETURN VALUE section to align with expected wording changes in the next
revision of the ISO C standard.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0135 [936] is applied.

Issue 8
Austin Group Defect 1163 is applied, clarifying the handling of white space in the format string.

Austin Group Defect 1173 is applied, clarifying the description of the assignment-allocation
character 'm'.

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1375 is applied, changing ``terminating null character’’ to ``terminating null
character (or wide character)’’.

Austin Group Defect 1562 is applied, clarifying that it is the application’s responsibility to
ensure that the format is a character string, beginning and ending in its initial shift state, if any.

Austin Group Defect 1624 is applied, changing the RETURN VALUE section.

1044 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35802

35803

35804

35805

35806

35807

35808

35809

35810

35811

35812

35813

35814

35815

35816

35817

35818

35819

35820

35821

35822

35823

35824

35825

35826

35827

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fseek()

NAME
fseek, fseeko — reposition a file-position indicator in a stream

SYNOPSIS
#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);
CX int fseeko(FILE *stream, off_t offset, int whence);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fseek() function shall set the file-position indicator for the stream pointed to by stream. If a
read or write error occurs, the error indicator for the stream shall be set and fseek() fails.

CX The new position, measured in bytes from the beginning of the file, except in the case of streams
opened with open_wmemstream() for which the position shall be measured in wide characters,
shall be obtained by adding offset to the position specified by whence. The specified point is the
beginning of the file for SEEK_SET, the current value of the file-position indicator for
SEEK_CUR, or end-of-file for SEEK_END.

If the stream is to be used with wide-character input/output functions, the application shall
ensure that offset is either 0 or a value returned by an earlier call to ftell() on the same stream and
whence is SEEK_SET.

A successful call to fseek() shall clear the end-of-file indicator for the stream and undo any effects
of ungetc() and ungetwc() on the same stream. After an fseek() call, the next operation on an
update stream may be either input or output.

CX If the most recent operation, other than ftell(), on a given stream is fflush(), the file offset in the
underlying open file description shall be adjusted to reflect the location specified by fseek().

The fseek() function shall allow the file-position indicator to be set beyond the end of existing
data in the file. If data is later written at this point, subsequent reads of data in the gap shall
return bytes with the value 0 until data is actually written into the gap.

The behavior of fseek() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

If the stream has an underlying file description and is writable, and buffered data had not been
written to the underlying file, fseek() shall cause the unwritten data to be written to the file and
shall mark the last data modification and last file status change timestamps of the file for update.
If the stream was created by fmemopen(), open_memstream(), or open_wmemstream() and the
stream is writable, and if the stream is buffered and data in the stream’s buffer has not been
written to the underlying memory buffer, fseek() shall cause the unwritten data to be written to
the underlying memory buffer.

In a locale with state-dependent encoding, whether fseek() restores the stream’s shift state is
implementation-defined.

The fseeko() function shall be equivalent to the fseek() function except that the offset argument is
of type off_t.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1045

35828

35829

35830

35831

35832

35833

35834

35835

35836

35837

35838

35839

35840

35841

35842

35843

35844

35845

35846

35847

35848

35849

35850

35851

35852

35853

35854

35855

35856

35857

35858

35859

35860

35861

35862

35863

35864

35865

35866

35867

35868

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fseek() System Interfaces

RETURN VALUE
CX The fseek() and fseeko() functions shall return 0 if they succeed.

CX Otherwise, they shall return −1 and set errno to indicate the error.

ERRORS
CXCX The fseek() and fseeko() functions shall fail if, either the stream is unbuffered or the stream’s

buffer needed to be flushed, and the call to fseek() or fseeko() causes an underlying lseek() or
write() to be invoked, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write operation.

CX [EBADF] The file descriptor underlying the stream file is not open for writing or the
stream’s buffer needed to be flushed and the file is not open.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

CX [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

XSI A SIGXFSZ signal shall also be generated for the thread.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EINVAL] The whence argument is invalid, the resulting file-position indicator would be
set to a negative value, or the stream was created by fmemopen() and the
resulting file-position indicator would be beyond the end of the underlying
memory buffer.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to perform a write() to its controlling terminal,
TOSTOP is set, the calling thread is not blocking SIGTTOU, the process is not
ignoring SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.

CX [ENOMEM] The stream was created by open_memstream() or open_wmemstream() and
insufficient memory is available.

CX [ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen() function.

CX [EOVERFLOW] For fseek(), the resulting file offset would be a value which cannot be
represented correctly in an object of type long.

CX [EOVERFLOW] For fseeko(), the resulting file offset would be a value which cannot be
represented correctly in an object of type off_t.

CX [EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading
by any process; a SIGPIPE signal shall also be sent to the thread.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

CX The fseek() and fseeko() functions may fail if:

1046 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35869

35870

35871

35872

35873

35874

35875

35876

35877

35878

35879

35880

35881

35882

35883

35884

35885

35886

35887

35888

35889

35890

35891

35892

35893

35894

35895

35896

35897

35898

35899

35900

35901

35902

35903

35904

35905

35906

35907

35908

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fseek()

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
When the stream was created by fmemopen(), fseek() fails if an attempt is made to seek beyond
the end of the underlying memory buffer. This is different than fseek() on a file when a file size
limit is in effect because the size specified to fmemopen() is a fixed, absolute limit whereas a file
size limit is artificial and can be changed. With a file size limit, it is possible to seek past the
limit, then raise the limit and successfully write at the new position; there is no equivalent
possibility with the buffer size specified to fmemopen().

See also the rationale for ftell().

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), fmemopen(), fsetpos(), ftell(), getrlimit(), lseek(),
open_memstream(), rewind(), ungetc(), write()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The fseeko() function is added.

• The [EFBIG], [EOVERFLOW], and [ENXIO] mandatory error conditions are added.

The following change is incorporated for alignment with the FIPS requirements:

• The [EINTR] error is no longer an indication that the implementation does not report
partial transfers.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The DESCRIPTION is updated to explicitly state that fseek() sets the file-position indicator, and
then on error the error indicator is set and fseek() fails. This is for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/42 is applied, updating the [EAGAIN]
error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1047

35909

35910

35911

35912

35913

35914

35915

35916

35917

35918

35919

35920

35921

35922

35923

35924

35925

35926

35927

35928

35929

35930

35931

35932

35933

35934

35935

35936

35937

35938

35939

35940

35941

35942

35943

35944

35945

35946

35947

35948

35949

35950

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fseek() System Interfaces

Issue 7
Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0188 [79], XSH/TC1-2008/0189 [122],
XSH/TC1-2008/0190 [225], and XSH/TC1-2008/0191 [14] are applied.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1027 is applied, specifying that for streams opened with
open_wmemstream() the position is measured in wide characters, not bytes.

Austin Group Defect 1225 is applied, clarifying the behavior for memory streams.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

1048 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35951

35952

35953

35954

35955

35956

35957

35958

35959

35960

35961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fsetpos()

NAME
fsetpos — set current file position

SYNOPSIS
#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fsetpos() function shall set the mbstate_t object (if any) and file position indicator for the
stream pointed to by stream according to the value of the object pointed to by pos, which the
application shall ensure is a value obtained from an earlier call to fgetpos() on the same stream. If
a read or write error occurs, the error indicator for the stream shall be set and fsetpos() fails.

A successful call to the fsetpos() function shall undo any effects of the ungetc() function on the
stream, clear the end-of-file indicator for the stream, and then establish the new parse state and
position. After a successful fsetpos() call, the next operation on an update stream can be either
input or output.

CX The behavior of fsetpos() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

If the stream has an underlying file description and is writable, and buffered data has not been
written to the underlying file, fsetpos() shall cause the unwritten data to be written to the file and
shall mark the last data modification and last file status change timestamps of the file for update.

If the stream was created by fmemopen(), open_memstream(), or open_wmemstream() and the
stream is writable, and if the stream is buffered and data in the stream’s buffer has not been
written to the underlying memory buffer, fsetpos() shall cause the unwritten data to be written to
the underlying memory buffer.

The fsetpos() function shall not change the setting of errno if successful.

RETURN VALUE
The fsetpos() function shall return 0 if it succeeds; otherwise, it shall return a non-zero value and
set errno to indicate the error.

ERRORS
CX The fsetpos() function shall fail if, either the stream is unbuffered or the stream’s buffer needed to

be flushed, and the call to fsetpos() causes an underlying lseek() or write() to be invoked, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write operation.

CX [EBADF] The file descriptor underlying the stream file is not open for writing or the
stream’s buffer needed to be flushed and the file is not open.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

CX [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

XSI A SIGXFSZ signal shall also be generated for the thread.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1049

35962

35963

35964

35965

35966

35967

35968

35969

35970

35971

35972

35973

35974

35975

35976

35977

35978

35979

35980

35981

35982

35983

35984

35985

35986

35987

35988

35989

35990

35991

35992

35993

35994

35995

35996

35997

35998

35999

36000

36001

36002

36003

36004

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fsetpos() System Interfaces

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to perform a write() to its controlling terminal,
TOSTOP is set, the calling thread is not blocking SIGTTOU, the process is not
ignoring SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.

CX [ENOMEM] The stream was created by open_memstream() or open_wmemstream() and
insufficient memory is available.

CX [ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen() function.

CX [EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading
by any process; a SIGPIPE signal shall also be sent to the thread.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

The fsetpos() function may fail if:

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The ERRORS section does not include an [EINVAL] error equivalent to the one for fseek()
because applications are required to obtain the fpos_t value using fgetpos(), in which case the
file position to be set will always be valid. Directly manipulating the fpos_t object to set a
position results in undefined behavior. However, if an implementation detects that the
requested file position would be a negative value, or would be beyond the end of the underlying
memory buffer of a stream that was created by fmemopen(), it is recommended that fsetpos()
returns a non-zero value and sets errno to [EINVAL].

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), fmemopen(), ftell(), lseek(), open_memstream(), rewind(),
ungetc(), write()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The DESCRIPTION is updated to clarify that the error indicator is set for the stream on a read or
write error. This is for alignment with the ISO/IEC 9899: 1999 standard.

1050 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36005

36006

36007

36008

36009

36010

36011

36012

36013

36014

36015

36016

36017

36018

36019

36020

36021

36022

36023

36024

36025

36026

36027

36028

36029

36030

36031

36032

36033

36034

36035

36036

36037

36038

36039

36040

36041

36042

36043

36044

36045

36046

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fsetpos()

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/21 is applied, deleting an erroneous
[EINVAL] error case from the ERRORS section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/43 is applied, updating the [EAGAIN]
error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

Issue 7
SD5-XSH-ERN-220 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0192 [105], XSH/TC1-2008/0193 [79],
XSH/TC1-2008/0194 [225], XSH/TC1-2008/0195 [450], XSH/TC1-2008/0196 [450], and
XSH/TC1-2008/0197 [14] are applied.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1225 is applied, aligning the CX requirements with fseek().

Austin Group Defect 1249 is applied, correcting some text mismatches with the ISO C standard.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1051

36047

36048

36049

36050

36051

36052

36053

36054

36055

36056

36057

36058

36059

36060

36061

36062

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fstat() System Interfaces

NAME
fstat — get file status

SYNOPSIS
#include <sys/stat.h>

int fstat(int fildes, struct stat *buf);

DESCRIPTION
The fstat() function shall obtain information about an open file associated with the file
descriptor fildes, and shall write it to the area pointed to by buf .

SHM If fildes references a shared memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

TYM If fildes references a typed memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

The buf argument is a pointer to a stat structure, as defined in <sys/stat.h>, into which
information is placed concerning the file.

For all other file types defined in this volume of POSIX.1-2024, the structure members st_mode,
st_ino, st_dev, st_uid, st_gid, st_atim, st_ctim, and st_mtim shall have meaningful values and the
value of the st_nlink member shall be set to the number of links to the file.

An implementation that provides additional or alternative file access control mechanisms may,
under implementation-defined conditions, cause fstat() to fail.

The fstat() function shall update any time-related fields (as described in XBD Section 4.12, on
page 98), before writing into the stat structure.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The fstat() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EIO] An I/O error occurred while reading from the file system.

[EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf .

The fstat() function may fail if:

[EOVERFLOW] One of the values is too large to store into the structure pointed to by the buf
argument.

1052 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36063

36064

36065

36066

36067

36068

36069

36070

36071

36072

36073

36074

36075

36076

36077

36078

36079

36080

36081

36082

36083

36084

36085

36086

36087

36088

36089

36090

36091

36092

36093

36094

36095

36096

36097

36098

36099

36100

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fstat()

EXAMPLES

Obtaining File Status Information

The following example shows how to obtain file status information for a file named
/home/cnd/mod1. The structure variable buffer is defined for the stat structure. The
/home/cnd/mod1 file is opened with read/write privileges and is passed to the open file
descriptor fildes.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

struct stat buffer;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = fstat(fildes, &buffer);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fstatat()

XBD Section 4.12 (on page 98), <sys/stat.h>, <sys/types.h>
CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EIO] mandatory error condition is added.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [EOVERFLOW] optional error condition is added.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
shared memory object semantics apply to typed memory objects.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1053

36101

36102

36103

36104

36105

36106

36107

36108

36109

36110

36111

36112

36113

36114

36115

36116

36117

36118

36119

36120

36121

36122

36123

36124

36125

36126

36127

36128

36129

36130

36131

36132

36133

36134

36135

36136

36137

36138

36139

36140

36141

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fstat() System Interfaces

Issue 7
XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file types st_nlink
applies.

Changes are made related to support for finegrained timestamps.

1054 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36142

36143

36144

36145

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fstatat()

NAME
fstatat, lstat, stat — get file status

SYNOPSIS
OH #include <fcntl.h>

#include <sys/stat.h>

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);

int lstat(const char *restrict path, struct stat *restrict buf);
int stat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
The stat() function shall obtain information about the named file and write it to the area pointed
to by the buf argument. The path argument points to a pathname naming a file. Read, write, or
execute permission of the named file is not required. An implementation that provides
additional or alternate file access control mechanisms may, under implementation-defined
conditions, cause stat() to fail. In particular, the system may deny the existence of the file
specified by path.

If the named file is a symbolic link, the stat() function shall continue pathname resolution using
the contents of the symbolic link, and shall return information pertaining to the resulting file if
the file exists.

The buf argument is a pointer to a stat structure, as defined in the <sys/stat.h> header, into
which information is placed concerning the file.

The stat() function shall update any time-related fields (as described in XBD Section 4.12, on
page 98), before writing into the stat structure.

SHM If the named file is a shared memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

TYM If the named file is a typed memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

For all other file types defined in this volume of POSIX.1-2024, the structure members st_mode,
st_ino, st_dev, st_uid, st_gid, st_atim, st_ctim, and st_mtim shall have meaningful values and the
value of the member st_nlink shall be set to the number of hard links to the file.

The lstat() function shall be equivalent to stat(), except when path refers to a symbolic link. In
that case lstat() shall return information about the link, while stat() shall return information
about the file the link references.

For symbolic links, the st_mode member shall contain meaningful information when used with
the file type macros. The file mode bits in st_mode are unspecified. The structure members st_ino,
st_dev, st_uid, st_gid, st_atim, st_ctim, and st_mtim shall have meaningful values and the value of
the st_nlink member shall be set to the number of hard links to the symbolic link. The value of
the st_size member shall be set to the length of the pathname contained in the symbolic link not
including any terminating null byte.

The fstatat() function shall be equivalent to the stat() or lstat() function, depending on the value
of flag (see below), except in the case where path specifies a relative path. In this case the status
shall be retrieved from a file relative to the directory associated with the file descriptor fd instead

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1055

36146

36147

36148

36149

36150

36151

36152

36153

36154

36155

36156

36157

36158

36159

36160

36161

36162

36163

36164

36165

36166

36167

36168

36169

36170

36171

36172

36173

36174

36175

36176

36177

36178

36179

36180

36181

36182

36183

36184

36185

36186

36187

36188

36189

36190

36191

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fstatat() System Interfaces

of the current working directory. If the access mode of the open file description associated with
the file descriptor is not O_SEARCH, the function shall check whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the
access mode is O_SEARCH, the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, the status of the symbolic link is returned.

If fstatat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to stat() or lstat() respectively,
depending on whether or not the AT_SYMLINK_NOFOLLOW bit is set in flag.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EIO] An error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

[EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf .

The fstatat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

1056 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36192

36193

36194

36195

36196

36197

36198

36199

36200

36201

36202

36203

36204

36205

36206

36207

36208

36209

36210

36211

36212

36213

36214

36215

36216

36217

36218

36219

36220

36221

36222

36223

36224

36225

36226

36227

36228

36229

36230

36231

36232

36233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fstatat()

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[EOVERFLOW] A value to be stored would overflow one of the members of the stat structure.

The fstatat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

EXAMPLES

Obtaining File Status Information

The following example shows how to obtain file status information for a file named
/home/cnd/mod1. The structure variable buffer is defined for the stat structure.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

struct stat buffer;
int status;
...
status = stat("/home/cnd/mod1", &buffer);

Getting Directory Information

The following example fragment gets status information for each entry in a directory. The call to
the stat() function stores file information in the stat structure pointed to by statbuf . The lines
that follow the stat() call format the fields in the stat structure for presentation to the user of the
program.

#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <pwd.h>
#include <grp.h>
#include <time.h>
#include <locale.h>
#include <langinfo.h>
#include <stdio.h>
#include <stdint.h>

struct dirent *dp;
struct stat statbuf;
struct passwd *pwd;
struct group *grp;
struct tm *tm;
char datestring[256];
...
/* Loop through directory entries. */
while ((dp = readdir(dir)) != NULL) {

/* Get entry's information. */
if (stat(dp->d_name, &statbuf) == -1)

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1057

36234

36235

36236

36237

36238

36239

36240

36241

36242

36243

36244

36245

36246

36247

36248

36249

36250

36251

36252

36253

36254

36255

36256

36257

36258

36259

36260

36261

36262

36263

36264

36265

36266

36267

36268

36269

36270

36271

36272

36273

36274

36275

36276

36277

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fstatat() System Interfaces

continue;

/* Print out type, permissions, and number of links. */
printf("%10.10s", mode_string(statbuf.st_mode));
printf(" %4ju", (uintmax_t)statbuf.st_nlink);

/* Print out owner's name if it is found using getpwuid(). */
if ((pwd = getpwuid(statbuf.st_uid)) != NULL)

printf(" %-8.8s", pwd->pw_name);
else

printf(" %-8ju", (uintmax_t)statbuf.st_uid);

/* Print out group name if it is found using getgrgid(). */
if ((grp = getgrgid(statbuf.st_gid)) != NULL)

printf(" %-8.8s", grp->gr_name);
else

printf(" %-8ju", (uintmax_t)statbuf.st_gid);

/* Print size of file. */
printf(" %9jd", (intmax_t)statbuf.st_size);

tm = localtime(&statbuf.st_mtime);

/* Get localized date string. */
strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);
}

Obtaining Symbolic Link Status Information

The following example shows how to obtain status information for a symbolic link named
/modules/pass1. The structure variable buffer is defined for the stat structure. If the path
argument specified the pathname for the file pointed to by the symbolic link (/home/cnd/mod1),
the results of calling the function would be the same as those returned by a call to the stat()
function.

#include <sys/stat.h>

struct stat buffer;
int status;
...
status = lstat("/modules/pass1", &buffer);

APPLICATION USAGE
None.

RATIONALE
The intent of the paragraph describing ``additional or alternate file access control mechanisms’’
is to allow a secure implementation where a process with a label that does not dominate the
file’s label cannot perform a stat() function. This is not related to read permission; a process with
a label that dominates the file’s label does not need read permission. An implementation that
supports write-up operations could fail fstat() function calls even though it has a valid file
descriptor open for writing.

The purpose of the fstatat() function is to obtain the status of files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to stat(), resulting in unspecified behavior. By opening a

1058 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36278

36279

36280

36281

36282

36283

36284

36285

36286

36287

36288

36289

36290

36291

36292

36293

36294

36295

36296

36297

36298

36299

36300

36301

36302

36303

36304

36305

36306

36307

36308

36309

36310

36311

36312

36313

36314

36315

36316

36317

36318

36319

36320

36321

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fstatat()

file descriptor for the target directory and using the fstatat() function it can be guaranteed that
the file for which status is returned is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
access(), chmod(), fdopendir(), fstat(), mknod(), readlink(), symlink()

XBD Section 4.12 (on page 98), <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [ENAMETOOLONG] and the second [EOVERFLOW] optional error conditions are
added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Details are added regarding the treatment of symbolic links.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the stat() prototype for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file types st_nlink
applies.

The fstatat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

The lstat() function is now required to return meaningful data for symbolic links in all stat
structure fields, except for the permission bits of st_mode.

Changes are made to allow a directory to be opened for searching.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1059

36322

36323

36324

36325

36326

36327

36328

36329

36330

36331

36332

36333

36334

36335

36336

36337

36338

36339

36340

36341

36342

36343

36344

36345

36346

36347

36348

36349

36350

36351

36352

36353

36354

36355

36356

36357

36358

36359

36360

36361

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fstatat() System Interfaces

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0198 [461], XSH/TC1-2008/0199 [324],
XSH/TC1-2008/0200 [278], XSH/TC1-2008/0201 [278], and XSH/TC1-2008/0202 [291] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0136 [591], XSH/TC2-2008/0137 [817],
XSH/TC2-2008/0138 [817], and XSH/TC2-2008/0139 [889] are applied.

Issue 8
Austin Group Defect 1380 is applied, changing text using the term ``link’’ in line with its
updated definition.

Austin Group Defect 1409 is applied, changing the EXAMPLES section.

1060 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36362

36363

36364

36365

36366

36367

36368

36369

36370

36371

36372

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fstatvfs()

NAME
fstatvfs, statvfs — get file system information

SYNOPSIS
#include <sys/statvfs.h>

int fstatvfs(int fildes, struct statvfs *buf);
int statvfs(const char *restrict path, struct statvfs *restrict buf);

DESCRIPTION
The fstatvfs() function shall obtain information about the file system containing the file
referenced by fildes.

The statvfs() function shall obtain information about the file system containing the file named by
path.

For both functions, the buf argument is a pointer to a statvfs structure that shall be filled. Read,
write, or execute permission of the named file is not required.

The following flags can be returned in the f_flag member:

ST_RDONLY Read-only file system.

ST_NOSUID Setuid/setgid bits ignored by exec.

It is unspecified whether all members of the statvfs structure have meaningful values on all file
systems.

RETURN VALUE
Upon successful completion, statvfs() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fstatvfs() and statvfs() functions shall fail if:
[EIO] An I/O error occurred while reading the file system.

[EINTR] A signal was caught during execution of the function.

[EOVERFLOW] One of the values to be returned cannot be represented correctly in the
structure pointed to by buf .

The fstatvfs() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

The statvfs() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1061

36373

36374

36375

36376

36377

36378

36379

36380

36381

36382

36383

36384

36385

36386

36387

36388

36389

36390

36391

36392

36393

36394

36395

36396

36397

36398

36399

36400

36401

36402

36403

36404

36405

36406

36407

36408

36409

36410

36411

36412

36413

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fstatvfs() System Interfaces

The statvfs() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Obtaining File System Information Using fstatvfs()

The following example shows how to obtain file system information for the file system upon
which the file named /home/cnd/mod1 resides, using the fstatvfs() function. The
/home/cnd/mod1 file is opened with read/write privileges and the open file descriptor is passed
to the fstatvfs() function.

#include <sys/statvfs.h>
#include <fcntl.h>

struct statvfs buffer;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = fstatvfs(fildes, &buffer);

Obtaining File System Information Using statvfs()

The following example shows how to obtain file system information for the file system upon
which the file named /home/cnd/mod1 resides, using the statvfs() function.

#include <sys/statvfs.h>

struct statvfs buffer;
int status;
...
status = statvfs("/home/cnd/mod1", &buffer);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), dup(), exec , fcntl(), futimens(), link(), mknod(), open(), pipe(), read(),
time(), unlink(), write()

XBD <sys/statvfs.h>

1062 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36414

36415

36416

36417

36418

36419

36420

36421

36422

36423

36424

36425

36426

36427

36428

36429

36430

36431

36432

36433

36434

36435

36436

36437

36438

36439

36440

36441

36442

36443

36444

36445

36446

36447

36448

36449

36450

36451

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fstatvfs()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the statvfs() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-68 is applied, correcting the EXAMPLES section.

The fstatvfs() and statvfs() functions are moved from the XSI option to the Base.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0203 [324] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1063

36452

36453

36454

36455

36456

36457

36458

36459

36460

36461

36462

36463

36464

36465

36466

36467

36468

36469

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fsync() System Interfaces

NAME
fsync — synchronize changes to a file

SYNOPSIS
FSC #include <unistd.h>

int fsync(int fildes);

DESCRIPTION
The fsync() function shall request that all data for the open file descriptor named by fildes is to be
transferred to the storage device associated with the file described by fildes. The nature of the
transfer is implementation-defined. The fsync() function shall not return until the system has
completed that action or until an error is detected.

SIO If _POSIX_SYNCHRONIZED_IO is defined, the fsync() function shall force all currently queued
I/O operations associated with the file indicated by file descriptor fildes to the synchronized I/O
completion state. All I/O operations shall be completed as defined for synchronized I/O file
integrity completion.

RETURN VALUE
Upon successful completion, fsync() shall return 0. Otherwise, −1 shall be returned and errno set
to indicate the error. If the fsync() function fails, outstanding I/O operations are not guaranteed
to have been completed.

ERRORS
The fsync() function shall fail if:

[EBADF] The fildes argument is not a valid descriptor.

[EINTR] The fsync() function was interrupted by a signal.

[EINVAL] The fildes argument does not refer to a file on which this operation is possible.

[EIO] An I/O error occurred while reading from or writing to the file system.

In the event that any of the queued I/O operations fail, fsync() shall return the error conditions
defined for read() and write().

EXAMPLES
None.

APPLICATION USAGE
The fsync() function should be used by programs which require modifications to a file to be
completed before continuing; for example, a program which contains a simple transaction
facility might use it to ensure that all modifications to a file or files caused by a transaction are
recorded.

An application that modifies a directory, for example, by creating a file in the directory, can
invoke fsync() on the directory to ensure that the directory’s entries and file attributes are
synchronized. For most applications, synchronizing the directory’s entries should not be
necessary (see XBD Section 4.11, on page 98).

RATIONALE
The fsync() function is intended to force a physical write of data from the buffer cache, and to
assure that after a system crash or other failure that all data up to the time of the fsync() call is
recorded on the disk. Since the concepts of ``buffer cache’’, ``system crash’’, ``physical write’’, and
``non-volatile storage’’ are not defined here, the wording has to be more abstract.

If _POSIX_SYNCHRONIZED_IO is not defined, the wording relies heavily on the conformance

1064 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36470

36471

36472

36473

36474

36475

36476

36477

36478

36479

36480

36481

36482

36483

36484

36485

36486

36487

36488

36489

36490

36491

36492

36493

36494

36495

36496

36497

36498

36499

36500

36501

36502

36503

36504

36505

36506

36507

36508

36509

36510

36511

36512

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fsync()

document to tell the user what can be expected from the system. It is explicitly intended that a
null implementation is permitted. This could be valid in the case where the system cannot assure
non-volatile storage under any circumstances or when the system is highly fault-tolerant and the
functionality is not required. In the middle ground between these extremes, fsync() might or
might not actually cause data to be written where it is safe from a power failure. The
conformance document should identify at least that one configuration exists (and how to obtain
that configuration) where this can be assured for at least some files that the user can select to use
for critical data. It is not intended that an exhaustive list is required, but rather sufficient
information is provided so that if critical data needs to be saved, the user can determine how the
system is to be configured to allow the data to be written to non-volatile storage.

It is reasonable to assert that the key aspects of fsync() are unreasonable to test in a test suite.
That does not make the function any less valuable, just more difficult to test. A formal
conformance test should probably force a system crash (power shutdown) during the test for
this condition, but it needs to be done in such a way that automated testing does not require this
to be done except when a formal record of the results is being made. It would also not be
unreasonable to omit testing for fsync(), allowing it to be treated as a quality-of-implementation
issue.

FUTURE DIRECTIONS
None.

SEE ALSO
sync()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
Aligned with fsync() in the POSIX Realtime Extension. Specifically, the DESCRIPTION and
RETURN VALUE sections are much expanded, and the ERRORS section is updated to indicate
that fsync() can return the error conditions defined for read() and write().

Issue 6
This function is marked as part of the File Synchronization option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] and [EIO] mandatory error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/44 is applied, applying an editorial
rewording of the DESCRIPTION. No change in meaning is intended.

Issue 8
Austin Group Defect 672 is applied, changing the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1065

36513

36514

36515

36516

36517

36518

36519

36520

36521

36522

36523

36524

36525

36526

36527

36528

36529

36530

36531

36532

36533

36534

36535

36536

36537

36538

36539

36540

36541

36542

36543

36544

36545

36546

36547

36548

36549

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ftell() System Interfaces

NAME
ftell, ftello — return a file offset in a stream

SYNOPSIS
#include <stdio.h>

long ftell(FILE *stream);
CX off_t ftello(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The ftell() function shall obtain the current value of the file-position indicator for the stream
pointed to by stream.

The ftell() function shall not change the setting of errno if successful.

CX The ftello() function shall be equivalent to ftell(), except that the return value is of type off_t and
the ftello() function may change the setting of errno if successful.

RETURN VALUE
CX Upon successful completion, ftell() and ftello() shall return the current value of the file-position
CX indicator for the stream measured in bytes from the beginning of the file, except in the case of

streams opened with open_wmemstream() for which the position shall be measured in wide
characters.

Otherwise, ftell() and ftello() shall return −1, and set errno to indicate the error.

ERRORS
CX The ftell() and ftello() functions shall fail if:
CX [EBADF] The file descriptor underlying stream is not an open file descriptor.

CX [EOVERFLOW] For ftell(), the current file offset cannot be represented correctly in an object of
type long.

CX [EOVERFLOW] For ftello(), the current file offset cannot be represented correctly in an object
of type off_t.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
For all streams other than those opened by open_wmemstream(), ftell() and fseek() operate on
byte offsets. The behavior with open_wmemstream() streams is intentionally different—ftell() and
fseek() operate on wide character offsets. This is because those streams are unique in that the
backing storage is not a multibyte representation but a wide character array, and it is useful to be
able to use the output of ftell() to index into that array.

1066 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36550

36551

36552

36553

36554

36555

36556

36557

36558

36559

36560

36561

36562

36563

36564

36565

36566

36567

36568

36569

36570

36571

36572

36573

36574

36575

36576

36577

36578

36579

36580

36581

36582

36583

36584

36585

36586

36587

36588

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ftell()

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fgetpos(), fopen(), fseek(), lseek(), open_memstream()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The ftello() function is added.

• The [EOVERFLOW] error conditions are added.

An additional [ESPIPE] error condition is added for sockets.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0204 [105], XSH/TC1-2008/0205 [421],
XSH/TC1-2008/0206 [122], XSH/TC1-2008/0207 [122], and XSH/TC1-2008/0208 [14] are
applied.

Issue 8
Austin Group Defect 1027 is applied, specifying that for streams opened with
open_wmemstream() the position is measured in wide characters, not bytes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1067

36589

36590

36591

36592

36593

36594

36595

36596

36597

36598

36599

36600

36601

36602

36603

36604

36605

36606

36607

36608

36609

36610

36611

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ftok() System Interfaces

NAME
ftok — generate an IPC key

SYNOPSIS
XSI #include <sys/ipc.h>

key_t ftok(const char *path, int id);

DESCRIPTION
The ftok() function shall return a key based on path and id that is usable in subsequent calls to
msgget(), semget(), and shmget(). The application shall ensure that the path argument is the
pathname of an existing file that the process is able to stat(), with the exception that if stat()
would fail with [EOVERFLOW] due to file size, ftok() shall still succeed.

The ftok() function shall return the same key value for all paths that name the same file, when
called with the same id value, and should return different key values when called with different
id values or with paths that name different files existing on the same file system at the same
time. It is unspecified whether ftok() shall return the same key value when called again after the
file named by path is removed and recreated with the same name.

Only the low-order 8-bits of id are significant. The behavior of ftok() is unspecified if these bits
are 0.

RETURN VALUE
Upon successful completion, ftok() shall return a key. Otherwise, ftok() shall return (key_t)−1
and set errno to indicate the error.

ERRORS
The ftok() function shall fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EIO] An error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

The ftok() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

1068 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36612

36613

36614

36615

36616

36617

36618

36619

36620

36621

36622

36623

36624

36625

36626

36627

36628

36629

36630

36631

36632

36633

36634

36635

36636

36637

36638

36639

36640

36641

36642

36643

36644

36645

36646

36647

36648

36649

36650

36651

36652

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ftok()

EXAMPLES

Getting an IPC Key

The following example gets a key based on the pathname /tmp and the ID value a. It also
assigns the value of the resulting key to the semkey variable so that it will be available to a later
call to semget(), msgget(), or shmget().

#include <sys/ipc.h>
...
key_t semkey;

if ((semkey = ftok("/tmp", 'a')) == (key_t) -1) {
perror("IPC error: ftok"); exit(1);

}

APPLICATION USAGE
For maximum portability, id should be a single-byte character.

Applications should not assume that the resulting key value is unique.

RATIONALE
None.

FUTURE DIRECTIONS
Future versions of this standard may add new interfaces to provide unique keys.

SEE ALSO
msgget(), semget(), shmget()

XBD <sys/ipc.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0209 [343], XSH/TC1-2008/0210 [366],
XSH/TC1-2008/0211 [343], XSH/TC1-2008/0212 [324], XSH/TC1-2008/0213 [366],
XSH/TC1-2008/0214 [366], XSH/TC1-2008/0215 [366], and XSH/TC1-2008/0216 [366] are
applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1069

36653

36654

36655

36656

36657

36658

36659

36660

36661

36662

36663

36664

36665

36666

36667

36668

36669

36670

36671

36672

36673

36674

36675

36676

36677

36678

36679

36680

36681

36682

36683

36684

36685

36686

36687

36688

36689

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ftruncate() System Interfaces

NAME
ftruncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int ftruncate(int fildes, off_t length);

DESCRIPTION
If fildes is not a valid file descriptor open for writing, the ftruncate() function shall fail.

If fildes refers to a regular file, the ftruncate() function shall cause the size of the file to be
truncated to length. If the size of the file previously exceeded length, the extra data shall no
longer be available to reads on the file. If the file previously was smaller than this size,
ftruncate() shall increase the size of the file. If the file size is increased, the extended area shall
appear as if it were zero-filled. The value of the seek pointer shall not be modified by a call to
ftruncate().

Upon successful completion, if fildes refers to a regular file, ftruncate() shall mark for update the
last data modification and last file status change timestamps of the file and the S_ISUID and
S_ISGID bits of the file mode may be cleared. If the ftruncate() function is unsuccessful, the file is
unaffected.

If the request would cause the file size to exceed the soft file size limit for the process, the
XSI request shall fail and the implementation shall generate a SIGXFSZ signal for the thread.

If fildes is a file descriptor open for writing and refers to a file that is neither a regular file nor a
shared memory object, the result is unspecified.

SHM If fildes refers to a shared memory object, ftruncate() shall set the size of the shared memory
object to length.

SHM If the effect of ftruncate() is to decrease the size of a memory mapped file or a shared memory
object and whole pages beyond the new end were previously mapped, then the whole pages
beyond the new end shall be discarded.

References to discarded pages shall result in the generation of a SIGBUS signal.

If the effect of ftruncate() is to increase the size of a memory object, it is unspecified whether the
contents of any mapped pages between the old end-of-file and the new are flushed to the
underlying object.

RETURN VALUE
Upon successful completion, ftruncate() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The ftruncate() function shall fail if:

[EBADF] or [EINVAL]
The fildes argument is not a file descriptor open for writing.

[EFBIG] or [EINVAL]
The length argument is greater than the maximum file size.

XSI [EFBIG] The length argument exceeds the file size limit of the process. A SIGXFSZ
signal shall also be generated for the thread.

[EFBIG] The file is a regular file and length is greater than the offset maximum
established in the open file description associated with fildes.

1070 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36690

36691

36692

36693

36694

36695

36696

36697

36698

36699

36700

36701

36702

36703

36704

36705

36706

36707

36708

36709

36710

36711

36712

36713

36714

36715

36716

36717

36718

36719

36720

36721

36722

36723

36724

36725

36726

36727

36728

36729

36730

36731

36732

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ftruncate()

[EINTR] A signal was caught during execution.

[EINVAL] The length argument is less than 0 or the fildes argument refers to a file on
which this operation is not possible (for example, a pipe, FIFO or socket).

[EIO] An I/O error occurred while reading from or writing to a file system.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), truncate()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with ftruncate() in the POSIX
Realtime Extension. Specifically, the DESCRIPTION is extensively reworded and [EROFS] is
added to the list of mandatory errors that can be returned by ftruncate().

Large File Summit extensions are added.

Issue 6
The truncate() function is split out into a separate reference page.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is changed to indicate that if the file size is changed, and if the file is a
regular file, the S_ISUID and S_ISGID bits in the file mode may be cleared.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION text is updated.

XSI-conformant systems are required to increase the size of the file if the file was previously
smaller than the size requested.

Issue 7
Austin Group Interpretation 1003.1-2001 #056 is applied, revising the ERRORS section (although
the [EINVAL] ``may fail’’ error was subsequently removed during review of the XSI option).

Functionality relating to the Memory Protection and Memory Mapped Files options is moved to
the Base.

The DESCRIPTION is updated so that a call to ftruncate() when the file is smaller than the size
requested will increase the size of the file. Previously, non-XSI-conforming implementations
were allowed to increase the size of the file or fail.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1071

36733

36734

36735

36736

36737

36738

36739

36740

36741

36742

36743

36744

36745

36746

36747

36748

36749

36750

36751

36752

36753

36754

36755

36756

36757

36758

36759

36760

36761

36762

36763

36764

36765

36766

36767

36768

36769

36770

36771

36772

36773

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ftruncate() System Interfaces

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1169 is applied, removing a redundant statement that ftruncate() fails if
fildes refers to a directory.

Austin Group Defect 1381 is applied, adding a second condition to the [EINVAL] error and
rearranging the ERRORS section into alphabetical order.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

1072 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36774

36775

36776

36777

36778

36779

36780

36781

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ftrylockfile()

NAME
ftrylockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

int ftrylockfile(FILE *file);

DESCRIPTION
Refer to flockfile().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1073

36782

36783

36784

36785

36786

36787

36788

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

funlockfile() System Interfaces

NAME
funlockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

void funlockfile(FILE *file);

DESCRIPTION
Refer to flockfile().

1074 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36789

36790

36791

36792

36793

36794

36795

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces futimens()

NAME
futimens, utimensat, utimes — set file access and modification times

SYNOPSIS
#include <sys/stat.h>

int futimens(int fd, const struct timespec times[2]);

OH #include <fcntl.h>

int utimensat(int fd, const char *path, const struct timespec times[2],
int flag);

XSI #include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

DESCRIPTION
The futimens() and utimensat() functions shall set the access and modification times of a file to
the values of the times argument. The futimens() function changes the times of the file associated
with the file descriptor fd. The utimensat() function changes the times of the file pointed to by
the path argument, relative to the directory associated with the file descriptor fd. Both functions
allow time specifications accurate to the nanosecond.

For futimens() and utimensat(), the times argument is an array of two timespec structures. The
first array member represents the date and time of last access, and the second member
represents the date and time of last modification. The times in the timespec structure are
measured in seconds and nanoseconds since the Epoch. The file’s relevant timestamp shall be set
to the greatest value supported by the file system that is not greater than the specified time.

If the tv_nsec field of a timespec structure has the special value UTIME_NOW, the file’s relevant
timestamp shall be set to the greatest value supported by the file system that is not greater than
the current time. If the tv_nsec field has the special value UTIME_OMIT, the file’s relevant
timestamp shall not be changed. In either case, the tv_sec field shall be ignored.

If the times argument is a null pointer, both the access and modification timestamps shall be set
to the greatest value supported by the file system that is not greater than the current time. If
utimensat() is passed a relative path in the path argument, the file to be used shall be relative to
the directory associated with the file descriptor fd instead of the current working directory. If the
access mode of the open file description associated with the file descriptor is not O_SEARCH,
the function shall check whether directory searches are permitted using the current permissions
of the directory underlying the file descriptor. If the access mode is O_SEARCH, the function
shall not perform the check.

If utimensat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used.

Only a process with the effective user ID equal to the user ID of the file, or with write access to
the file, or with appropriate privileges may use futimens() or utimensat() with a null pointer as
the times argument or with both tv_nsec fields set to the special value UTIME_NOW. Only a
process with the effective user ID equal to the user ID of the file or with appropriate privileges
may use futimens() or utimensat() with a non-null times argument that does not have both
tv_nsec fields set to UTIME_NOW and does not have both tv_nsec fields set to UTIME_OMIT. If
both tv_nsec fields are set to UTIME_OMIT, no ownership or permissions check shall be
performed for the file, but other error conditions may still be detected (including [EACCES]
errors related to the path prefix).

Values for the flag argument of utimensat() are constructed by a bitwise-inclusive OR of flags

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1075

36796

36797

36798

36799

36800

36801

36802

36803

36804

36805

36806

36807

36808

36809

36810

36811

36812

36813

36814

36815

36816

36817

36818

36819

36820

36821

36822

36823

36824

36825

36826

36827

36828

36829

36830

36831

36832

36833

36834

36835

36836

36837

36838

36839

36840

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

futimens() System Interfaces

from the following list, defined in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, then the access and modification times of the symbolic link
are changed.

Upon successful completion, futimens() and utimensat() shall mark the last file status change
timestamp for update, with the exception that if both tv_nsec fields are set to UTIME_OMIT, the
file status change timestamp need not be marked for update.

The utimes() function shall be equivalent to the utimensat() function with the special value
AT_FDCWD as the fd argument and the flag argument set to zero, except that the times argument
is a timeval structure rather than a timespec structure, and accuracy is only to the microsecond,
not nanosecond, and rounding towards the nearest second may occur.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the file times shall not be affected.

ERRORS
The utimes() function shall fail, the futimens() and utimensat() functions shall fail in the case that
the times argument does not have both tv_nsec fields set to UTIME_OMIT, and the futimens() and
utimensat() functions may fail in the case that the times argument has both tv_nsec fields set to
UTIME_OMIT, if:

[EACCES] The times argument is a null pointer, or both tv_nsec values are UTIME_NOW,
and the effective user ID of the process does not match the owner of the file
and write access is denied.

[EINVAL] Either of the times argument structures specified a tv_nsec value that was
neither UTIME_NOW nor UTIME_OMIT, and was a value less than zero or
greater than or equal to 1 000 million.

[EINVAL] A new file timestamp would be a value whose tv_sec component is not a value
supported by the file system.

[EPERM] The times argument is not a null pointer, does not have both tv_nsec fields set
to UTIME_NOW, does not have both tv_nsec fields set to UTIME_OMIT, the
calling process’ effective user ID does not match the owner of the file, and the
calling process does not have appropriate privileges.

[EROFS] The file system containing the file is read-only.

The futimens() function shall fail in the case that the times argument does not have both tv_nsec
fields set to UTIME_OMIT, and may fail in the case that the times argument has both tv_nsec
fields set to UTIME_OMIT, if:

[EBADF] The fd argument is not a valid file descriptor.

The utimensat() function shall fail in the case that the times argument does not have both tv_nsec
fields set to UTIME_OMIT, and may fail in the case that the times argument has both tv_nsec
fields set to UTIME_OMIT, if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

1076 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36841

36842

36843

36844

36845

36846

36847

36848

36849

36850

36851

36852

36853

36854

36855

36856

36857

36858

36859

36860

36861

36862

36863

36864

36865

36866

36867

36868

36869

36870

36871

36872

36873

36874

36875

36876

36877

36878

36879

36880

36881

36882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces futimens()

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

The utimes() function shall fail, the utimensat() function shall fail in the case that the times
argument does not have both tv_nsec fields set to UTIME_OMIT, and the utimensat() function
may fail in the case that the times argument has both tv_nsec fields set to UTIME_OMIT, if:

[EACCES] Search permission is denied by a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

The utimensat() and utimes() functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The utimensat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The purpose of the utimensat() function is to set the access and modification time of files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to utimes(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the utimensat() function
it can be guaranteed that the changed file is located relative to the desired directory.

The standard developers considered including a special case for the permissions required by
utimensat() when one tv_nsec field is UTIME_NOW and the other is UTIME_OMIT. One
possibility would be to include this case in with the cases where times is a null pointer or both
fields are UTIME_NOW, where the call is allowed if the process has write permission for the file.
However, associating write permission with an update to just the last data access timestamp
(which is normally updated by read()) did not seem appropriate. The other possibility would be
to specify that this one case is allowed if the process has read permission, but this was felt to be

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1077

36883

36884

36885

36886

36887

36888

36889

36890

36891

36892

36893

36894

36895

36896

36897

36898

36899

36900

36901

36902

36903

36904

36905

36906

36907

36908

36909

36910

36911

36912

36913

36914

36915

36916

36917

36918

36919

36920

36921

36922

36923

36924

36925

36926

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

futimens() System Interfaces

too great a departure from the utime() and utimes() functions on which utimensat() is based. If
an application needs to set the last data access timestamp to the current time for a file on which
it has read permission but is not the owner, it can do so by opening the file, reading one or more
bytes (or reading a directory entry, if the file is a directory), and then closing it.

FUTURE DIRECTIONS
None.

SEE ALSO
read()

XBD <fcntl.h>, <sys/stat.h>, <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
This function is marked LEGACY.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The LEGACY marking is removed.

The utimensat() function (renamed from futimesat()) is added from The Open Group Technical
Standard, 2006, Extended API Set Part 2, and changed to allow modifying a symbolic link by
adding a flag argument.

The futimens() function is added.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0220 [63,428], XSH/TC1-2008/0221
[278], XSH/TC1-2008/0222 [324], XSH/TC1-2008/0223 [306], and XSH/TC1-2008/0224 [278] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0140 [591], XSH/TC2-2008/0141 [817],
XSH/TC2-2008/0142 [485], and XSH/TC2-2008/0143 [817] are applied.

Issue 8
Austin Group Defect 1280 is applied, changing the ERRORS section.

1078 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

36927

36928

36929

36930

36931

36932

36933

36934

36935

36936

36937

36938

36939

36940

36941

36942

36943

36944

36945

36946

36947

36948

36949

36950

36951

36952

36953

36954

36955

36956

36957

36958

36959

36960

36961

36962

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwide()

NAME
fwide — set stream orientation

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwide(FILE *stream, int mode);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fwide() function shall determine the orientation of the stream pointed to by stream. If mode is
greater than zero, the function first attempts to make the stream wide-oriented. If mode is less
than zero, the function first attempts to make the stream byte-oriented. Otherwise, mode is zero
and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide() shall not change it.

CX The fwide() function shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call fwide(), then check errno, and if it is non-zero, assume
an error has occurred.

RETURN VALUE
The fwide() function shall return a value greater than zero if, after the call, the stream has wide-
orientation, a value less than zero if the stream has byte-orientation, or zero if the stream has no
orientation.

ERRORS
The fwide() function may fail if:

CX [EBADF] The stream argument is not a valid stream.

EXAMPLES
None.

APPLICATION USAGE
A call to fwide() with mode set to zero can be used to determine the current orientation of a
stream.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1079

36963

36964

36965

36966

36967

36968

36969

36970

36971

36972

36973

36974

36975

36976

36977

36978

36979

36980

36981

36982

36983

36984

36985

36986

36987

36988

36989

36990

36991

36992

36993

36994

36995

36996

36997

36998

36999

37000

37001

37002

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwide() System Interfaces

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0225 [272] is applied.

1080 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37003

37004

37005

37006

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwprintf()

NAME
fwprintf, swprintf, wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwprintf(FILE *restrict stream, const wchar_t *restrict format, ...);
int swprintf(wchar_t *restrict ws, size_t n,

const wchar_t *restrict format, ...);
int wprintf(const wchar_t *restrict format, ...);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fwprintf() function shall place output on the named output stream. The wprintf() function
shall place output on the standard output stream stdout. The swprintf() function shall place
output followed by the null wide character in consecutive wide characters starting at *ws; no
more than n wide characters shall be written, including a terminating null wide character, which
is always added (unless n is zero).

Each of these functions shall convert, format, and print its arguments under control of the format
wide-character string. The format is composed of zero or more directives: ordinary wide-characters,
which are simply copied to the output stream, and conversion specifications, each of which results
in the fetching of zero or more arguments. The results are undefined if there are insufficient
arguments for the format. If the format is exhausted while arguments remain, the excess
arguments are evaluated but are otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier wide character % (see below)
is replaced by the sequence "%n$", where n is a decimal integer in the range
[1,{NL_ARGMAX}], giving the position of the argument in the argument list. This feature
provides for the definition of format wide-character strings that select arguments in an order
appropriate to specific languages (see the EXAMPLES section).

The format can contain either numbered argument conversion specifications (that is, those
introduced by "%n$" and optionally containing the "*m$" forms of field width and precision),
or unnumbered argument conversion specifications (that is, those introduced by the % character
and optionally containing the * form of field width and precision), but not both. The only
exception to this is that %% can be mixed with the "%n$" form. The results of mixing numbered
and unnumbered argument specifications in a format wide-character string are undefined. When
numbered argument specifications are used, specifying the Nth argument requires that all the
leading arguments, from the first to the (N−1)th, are specified in the format wide-character string.

In format wide-character strings containing the "%n$" form of conversion specification,
numbered arguments in the argument list can be referenced from the format wide-character
string as many times as required.

In format wide-character strings containing the % form of conversion specification, each
argument in the argument list shall be used exactly once. It is unspecified whether an encoding
error occurs if the format string contains wchar_t values that do not correspond to members of
the character set of the current locale and the specified semantics do not require that value to be
processed by wcrtomb().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1081

37007

37008

37009

37010

37011

37012

37013

37014

37015

37016

37017

37018

37019

37020

37021

37022

37023

37024

37025

37026

37027

37028

37029

37030

37031

37032

37033

37034

37035

37036

37037

37038

37039

37040

37041

37042

37043

37044

37045

37046

37047

37048

37049

37050

37051

37052

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwprintf() System Interfaces

CX All forms of the fwprintf() function allow for the insertion of a locale-dependent radix character
in the output string, output as a wide-character value. The radix character is defined in the
current locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the radix
character is not defined, the radix character shall default to a <period> ('.').

CX Each conversion specification is introduced by the '%' wide character or by the wide-character
sequence "%n$", after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer wide characters than
the field width, it shall be padded with <space> characters by default on the left; it shall be
padded on the right, if the left-adjustment flag ('−'), described below, is given to the field

CX width. The field width takes the form of an <asterisk> ('*'), or in conversion
specifications introduced by "%n$" the "*m$" string, described below, or a decimal
integer.

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversion specifiers; the number of digits to appear after the radix character for
the a, A, e, E, f, and F conversion specifiers; the maximum number of significant digits for
the g and G conversion specifiers; or the maximum number of wide characters to be
printed from a string in the s conversion specifiers. The precision takes the form of a

CX <period> ('.') followed either by an <asterisk> ('*'), or in conversion specifications
introduced by "%n$" the "*m$" string, described below, or an optional decimal digit
string, where a null digit string is treated as 0. If a precision appears with any other
conversion wide character, the behavior is undefined.

• An optional length modifier that specifies the size of the argument.

• A conversion specifier wide character that indicates the type of conversion to be applied.
A field width, or precision, or both, may be indicated by an <asterisk> ('*'). In this case an
argument of type int supplies the field width or precision. Applications shall ensure that
arguments specifying field width, or precision, or both appear in that order before the argument,
if any, to be converted. A negative field width is taken as a '−' flag followed by a positive field

CX width. A negative precision is taken as if the precision were omitted. In format wide-character
strings containing conversion specifications introduced by "%n$", in addition to being indicated
by the decimal digit string, a field width may be indicated by the sequence "*m$" and precision
by the sequence ".*m$", where m is a decimal integer in the range [1,{NL_ARGMAX}] giving
the position in the argument list (after the format argument) of an integer argument containing
the field width or precision, for example:

wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The flag wide characters and their meanings are:

CX ' (The <apostrophe>.) The integer portion of the result of a decimal conversion (%i, %d,
%u, %f, %F, %g, or %G) shall be formatted with thousands’ grouping wide characters. For
other conversions, the behavior is undefined. The numeric grouping wide character is
used.

− The result of the conversion shall be left-justified within the field. The conversion shall
be right-justified if this flag is not specified.

+ The result of a signed conversion shall always begin with a sign ('+' or '−'). The
conversion shall begin with a sign only when a negative value is converted if this flag is
not specified.

1082 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37053

37054

37055

37056

37057

37058

37059

37060

37061

37062

37063

37064

37065

37066

37067

37068

37069

37070

37071

37072

37073

37074

37075

37076

37077

37078

37079

37080

37081

37082

37083

37084

37085

37086

37087

37088

37089

37090

37091

37092

37093

37094

37095

37096

37097

37098

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwprintf()

<space> If the first wide character of a signed conversion is not a sign, or if a signed conversion
results in no wide characters, a <space> shall be prefixed to the result. This means that
if the <space> and '+' flags both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it
shall increase the precision, if and only if necessary, to force the first digit of the result
to be zero (if the value and precision are both 0, a single 0 is printed). For x or X
conversion specifiers, a non-zero result shall have 0x (or 0X) prefixed to it. For a, A, e,
E, f, F, g, and G conversion specifiers, the result shall always contain a radix character,
even if no digits follow it. Without this flag, a radix character appears in the result of
these conversions only if a digit follows it. For g and G conversion specifiers, trailing
zeros shall not be removed from the result as they normally are. For other conversion
specifiers, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversion specifiers, leading zeros
(following any indication of sign or base) are used to pad to the field width rather than
performing space padding, except when converting an infinity or NaN. If the '0' and
'−' flags both appear, the '0' flag shall be ignored. For d, i, o, u, x, and X conversion

CX specifiers, if a precision is specified, the '0' flag shall be ignored. If the '0' and
<apostrophe> flags both appear, the grouping wide characters are inserted before zero
padding. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short or
unsigned short argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to short or unsigned short before
printing); or that a following n conversion specifier applies to a pointer to a short
argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long or
unsigned long argument; that a following n conversion specifier applies to a pointer to
a long argument; that a following c conversion specifier applies to a wint_t argument;
that a following s conversion specifier applies to a pointer to a wchar_t argument; or
has no effect on a following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell)
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long
or unsigned long long argument; or that a following n conversion specifier applies to a
pointer to a long long argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to a size_t argument.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1083

37099

37100

37101

37102

37103

37104

37105

37106

37107

37108

37109

37110

37111

37112

37113

37114

37115

37116

37117

37118

37119

37120

37121

37122

37123

37124

37125

37126

37127

37128

37129

37130

37131

37132

37133

37134

37135

37136

37137

37138

37139

37140

37141

37142

37143

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwprintf() System Interfaces

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or
the corresponding unsigned type argument; or that a following n conversion specifier
applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long
double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i The int argument shall be converted to a signed decimal in the style "[−]dddd". The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it shall be expanded with leading zeros.
The default precision shall be 1. The result of converting zero with an explicit precision
of zero shall be no wide characters.

o The unsigned argument shall be converted to unsigned octal format in the style
"dddd". The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision shall be 1. The result of converting zero with an explicit
precision of zero shall be no wide characters.

u The unsigned argument shall be converted to unsigned decimal format in the style
"dddd". The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision shall be 1. The result of converting zero with an explicit
precision of zero shall be no wide characters.

x The unsigned argument shall be converted to unsigned hexadecimal format in the style
"dddd"; the letters "abcdef" are used. The precision specifies the minimum number
of digits to appear; if the value being converted can be represented in fewer digits, it
shall be expanded with leading zeros. The default precision shall be 1. The result of
converting zero with an explicit precision of zero shall be no wide characters.

X Equivalent to the x conversion specifier, except that letters "ABCDEF" are used instead
of "abcdef".

f, F The double argument shall be converted to decimal notation in the style
"[−]ddd.ddd", where the number of digits after the radix character shall be equal to
the precision specification. If the precision is missing, it shall be taken as 6; if the
precision is explicitly zero and no '#' flag is present, no radix character shall appear. If
a radix character appears, at least one digit shall appear before it. The value shall be
rounded in an implementation-defined manner to the appropriate number of digits.

A double argument representing an infinity shall be converted in one of the styles
"[-]inf" or "[-]infinity"; which style is implementation-defined. A double
argument representing a NaN shall be converted in one of the styles "[-]nan" or
"[−]nan(n-char-sequence)"; which style, and the meaning of any n-char-sequence,
is implementation-defined. The F conversion specifier produces "INF", "INFINITY",
or "NAN" instead of "inf", "infinity", or "nan", respectively.

e, E The double argument shall be converted in the style "[−]d.ddde±dd", where there
shall be one digit before the radix character (which is non-zero if the argument is non-
zero) and the number of digits after it shall be equal to the precision; if the precision is
missing, it shall be taken as 6; if the precision is zero and no '#' flag is present, no

1084 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37144

37145

37146

37147

37148

37149

37150

37151

37152

37153

37154

37155

37156

37157

37158

37159

37160

37161

37162

37163

37164

37165

37166

37167

37168

37169

37170

37171

37172

37173

37174

37175

37176

37177

37178

37179

37180

37181

37182

37183

37184

37185

37186

37187

37188

37189

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwprintf()

radix character shall appear. The value shall be rounded in an implementation-defined
manner to the appropriate number of digits. The E conversion wide character shall
produce a number with 'E' instead of 'e' introducing the exponent. The exponent
shall always contain at least two digits. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

g, G The double argument representing a floating-point number shall be converted in the
style f or e (or in the style F or E in the case of a G conversion specifier), depending on
the value converted and the precision. Let P equal the precision if non-zero, 6 if the
precision is omitted, or 1 if the precision is zero. Then, if a conversion with style E
would have an exponent of X:

— If P>X≥−4, the conversion shall be with style f (or F) and precision P−(X+1).

— Otherwise, the conversion shall be with style e (or E) and precision P−1.

Finally, unless the '#' flag is used, any trailing zeros shall be removed from the
fractional portion of the result and the decimal-point character shall be removed if there
is no fractional portion remaining.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

a, A A double argument representing a floating-point number shall be converted in the
style "[−]0xh.hhhhp±d", where there shall be one hexadecimal digit (which is non-
zero if the argument is a normalized floating-point number and is otherwise
unspecified) before the decimal-point wide character and the number of hexadecimal
digits after it shall be equal to the precision; if the precision is missing and FLT_RADIX
is a power of 2, then the precision shall be sufficient for an exact representation of the
value; if the precision is missing and FLT_RADIX is not a power of 2, then the precision
shall be sufficient to distinguish values of type double, except that trailing zeros may
be omitted; if the precision is zero and the '#' flag is not specified, no decimal-point
wide character shall appear. The letters "abcdef" are used for a conversion and the
letters "ABCDEF" for A conversion. The A conversion specifier produces a number with
'X' and 'P' instead of 'x' and 'p'. The exponent shall always contain at least one
digit, and only as many more digits as necessary to represent the decimal exponent of
2. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

c If no l (ell) qualifier is present, the int argument shall be converted to a wide character
as if by calling the btowc() function and the resulting wide character shall be written.
Otherwise, the wint_t argument shall be converted to wchar_t, and written.

s If no l (ell) qualifier is present, the application shall ensure that the argument is a
pointer to a character array containing a character sequence beginning in the initial
shift state. Characters from the array shall be converted as if by repeated calls to the
mbrtowc() function, with the conversion state described by an mbstate_t object
initialized to zero before the first character is converted, and written up to (but not
including) the terminating null wide character. If the precision is specified, no more
than that many wide characters shall be written. If the precision is not specified, or is
greater than the size of the array, the application shall ensure that the array contains a
null wide character.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1085

37190

37191

37192

37193

37194

37195

37196

37197

37198

37199

37200

37201

37202

37203

37204

37205

37206

37207

37208

37209

37210

37211

37212

37213

37214

37215

37216

37217

37218

37219

37220

37221

37222

37223

37224

37225

37226

37227

37228

37229

37230

37231

37232

37233

37234

37235

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwprintf() System Interfaces

If an l (ell) qualifier is present, the application shall ensure that the argument is a
pointer to an array of type wchar_t. Wide characters from the array shall be written up
to (but not including) a terminating null wide character. If no precision is specified, or
is greater than the size of the array, the application shall ensure that the array contains a
null wide character. If a precision is specified, no more than that many wide characters
shall be written.

p The application shall ensure that the argument is a pointer to void. The value of the
pointer shall be converted to a sequence of printable wide characters in an
implementation-defined manner.

n The application shall ensure that the argument is a pointer to an integer into which is
written the number of wide characters written to the output so far by this call to one of
the fwprintf() functions. No argument shall be converted, but one shall be consumed. If
the conversion specification includes any flags, a field width, or a precision, the
behavior is undefined.

XSI C Equivalent to lc.

XSI S Equivalent to ls.

% Write a '%' wide character; no argument shall be converted. The application shall
ensure that the complete conversion specification is %%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field shall be expanded to contain the conversion
result. Characters generated by fwprintf() and wprintf() shall be printed as if fputwc() had been
called.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly
representable in the given precision, the result should be one of the two adjacent numbers in
hexadecimal floating style with the given precision, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

For e, E, f, F, g, and G conversion specifiers, if the number of significant decimal digits is at
most DECIMAL_DIG, then the result should be correctly rounded. If the number of significant
decimal digits is more than DECIMAL_DIG but the source value is exactly representable with
DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros.
Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy L <=
D <= U, with the extra stipulation that the error should have a correct sign for the current
rounding direction.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the call to a successful execution of fwprintf() or wprintf() and the next
successful completion of a call to fflush() or fclose() on the same stream, or a call to exit() or
abort().

RETURN VALUE
Upon successful completion, these functions shall return the number of wide characters
transmitted, excluding the terminating null wide character in the case of swprintf(), or a negative

CX value if an error was encountered, and set errno to indicate the error.

If n or more wide characters were requested to be written, swprintf() shall return a negative
CX value, and set errno to indicate the error.

1086 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37236

37237

37238

37239

37240

37241

37242

37243

37244

37245

37246

37247

37248

37249

37250

37251

37252

37253

37254

37255

37256

37257

37258

37259

37260

37261

37262

37263

37264

37265

37266

37267

37268

37269

37270

37271

37272

37273

37274

37275

37276

37277

37278

37279

37280

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwprintf()

ERRORS
For the conditions under which fwprintf() and wprintf() fail and may fail, refer to fputwc().

In addition, all forms of fwprintf() shall fail if:

CX [EILSEQ] A wide-character code that does not correspond to a valid character has been
detected.

CX [EOVERFLOW] The value to be returned is greater than {INT_MAX}.

In addition, fwprintf() and wprintf() may fail if:

CX [ENOMEM] Insufficient storage space is available.

The swprintf() shall fail if:

CX [EOVERFLOW] The number of wide characters requested to be written was n or more.

EXAMPLES
To print the language-independent date and time format, the following statement could be used:

wprintf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

L"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that there are insufficient arguments for the format, it is
recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), btowc(), fputwc(), fwscanf(), mbrtowc(), setlocale()

XBD Chapter 7 (on page 127), <inttypes.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The Open Group Corrigendum U040/1 is applied to the RETURN VALUE section, describing
the case if n or more wide characters are requested to be written using swprintf().

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1087

37281

37282

37283

37284

37285

37286

37287

37288

37289

37290

37291

37292

37293

37294

37295

37296

37297

37298

37299

37300

37301

37302

37303

37304

37305

37306

37307

37308

37309

37310

37311

37312

37313

37314

37315

37316

37317

37318

37319

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwprintf() System Interfaces

• The prototypes for fwprintf(), swprintf(), and wprintf() are updated.

• The DESCRIPTION is updated.

• The hh, ll, j, t, and z length modifiers are added.

• The a, A, and F conversion characters are added.

• XSI shading is removed from the description of character string representations of infinity
and NaN floating-point values.

The DESCRIPTION is updated to use the terms ``conversion specifier’’ and ``conversion
specification’’ consistently.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Issue 7
Austin Group Interpretation 1003.1-2001 #161 is applied, updating the DESCRIPTION of the 0
flag.

Austin Group Interpretation 1003.1-2001 #170 is applied.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is applied,
revising the description of g and G.

Functionality relating to the "%n$" form of conversion specification and the <apostrophe> flag
is moved from the XSI option to the Base.

The [EOVERFLOW] error is added for swprintf().

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0226 [302] and XSH/TC1-2008/0227
[14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0144 [73], XSH/TC2-2008/0145 [894],
XSH/TC2-2008/0146 [557], and XSH/TC2-2008/0147 [936] are applied.

Issue 8
Austin Group Defect 1021 is applied, changing ``output error ’’ to ``error ’’ in the RETURN
VALUE section and changing the requirements for [EOVERFLOW].

Austin Group Defect 1137 is applied, clarifying the use of "%n$" and "*m$" in conversion
specifications.

Austin Group Defect 1205 is applied, changing the description of the % conversion specifier.

Austin Group Defect 1219 is applied, changing the swprintf()-specific [EOVERFLOW] error.

1088 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37320

37321

37322

37323

37324

37325

37326

37327

37328

37329

37330

37331

37332

37333

37334

37335

37336

37337

37338

37339

37340

37341

37342

37343

37344

37345

37346

37347

37348

37349

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwrite()

NAME
fwrite — binary output

SYNOPSIS
#include <stdio.h>

size_t fwrite(const void *restrict ptr, size_t size, size_t nitems,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fwrite() function shall write, from the array pointed to by ptr, up to nitems elements whose
size is specified by size, to the stream pointed to by stream. For each object, size calls shall be
made to the fputc() function, taking the values (in order) from an array of unsigned char exactly
overlaying the object. The file-position indicator for the stream (if defined) shall be advanced by
the number of bytes successfully written. If an error occurs, the resulting value of the file-
position indicator for the stream is unspecified.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fwrite() and the next successful completion of a call
to fflush() or fclose() on the same stream, or a call to exit() or abort().

RETURN VALUE
The fwrite() function shall return the number of elements successfully written, which shall be
less than nitems only if a write error is encountered. If size or nitems is 0, fwrite() shall return 0
and the state of the stream remains unchanged. Otherwise, if a write error occurs, the error

CX indicator for the stream shall be set, and errno shall be set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Because of possible differences in element length and byte ordering, files written using fwrite()
are application-dependent, and possibly cannot be read using fread() by a different application
or by the same application on a different processor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), ferror(), fopen(), fprintf(), putc(), puts(), write()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1089

37350

37351

37352

37353

37354

37355

37356

37357

37358

37359

37360

37361

37362

37363

37364

37365

37366

37367

37368

37369

37370

37371

37372

37373

37374

37375

37376

37377

37378

37379

37380

37381

37382

37383

37384

37385

37386

37387

37388

37389

37390

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwrite() System Interfaces

Issue 6
Extensions beyond the ISO C standard are marked.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The fwrite() prototype is updated.

• The DESCRIPTION is updated to clarify how the data is written out using fputc().

Issue 7
Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0228 [14] is applied.

Issue 8
Austin Group Defect 1196 is applied, clarifying the RETURN VALUE section.

1090 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37391

37392

37393

37394

37395

37396

37397

37398

37399

37400

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwscanf()

NAME
fwscanf, swscanf, wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwscanf(FILE *restrict stream, const wchar_t *restrict format, ...);
int swscanf(const wchar_t *restrict ws,

const wchar_t *restrict format, ...);
int wscanf(const wchar_t *restrict format, ...);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The fwscanf() function shall read from the named input stream. The wscanf() function shall read
from the standard input stream stdin. The swscanf() function shall read from the wide-character
string ws. Each function reads wide characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control wide-character string format
described below, and a set of pointer arguments indicating where the converted input should be
stored. The result is undefined if there are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments are evaluated but are otherwise
ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier wide character % (see below)
is replaced by the sequence "%n$", where n is a decimal integer in the range
[1,{NL_ARGMAX}]. This feature provides for the definition of format wide-character strings that
select arguments in an order appropriate to specific languages. In format wide-character strings
containing the "%n$" form of conversion specifications, it is unspecified whether numbered
arguments in the argument list can be referenced from the format wide-character string more
than once.

The format can contain either form of a conversion specification—that is, % or "%n$"— but the
two forms cannot normally be mixed within a single format wide-character string. The only
exception to this is that %% or %* can be mixed with the "%n$" form. When numbered argument
specifications are used, specifying the Nth argument requires that all the leading arguments,
from the first to the (N−1)th, are pointers.

The fwscanf() function in all its forms allows for detection of a language-dependent radix
character in the input string, encoded as a wide-character value. The radix character is defined
in the current locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character shall default to a <period> ('.').

The format is a wide-character string composed of zero or more directives. Each directive is
composed of one of the following: one or more white-space wide characters; an ordinary wide
character (neither '%' nor a white-space wide character); or a conversion specification. It is
unspecified whether an encoding error occurs if the format string contains wchar_t values that
do not correspond to members of the character set of the current locale and the specified
semantics do not require that value to be processed by wcrtomb().

CX Each conversion specification is introduced by the '%' or by the character sequence "%n$",
after which the following appear in sequence:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1091

37401

37402

37403

37404

37405

37406

37407

37408

37409

37410

37411

37412

37413

37414

37415

37416

37417

37418

37419

37420

37421

37422

37423

37424

37425

37426

37427

37428

37429

37430

37431

37432

37433

37434

37435

37436

37437

37438

37439

37440

37441

37442

37443

37444

37445

37446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwscanf() System Interfaces

• An optional assignment-suppressing character '*'.

• An optional non-zero decimal integer that specifies the maximum field width.

CX • An optional assignment-allocation character 'm'.

• An optional length modifier that specifies the size of the receiving object.

• A conversion specifier wide character that specifies the type of conversion to be applied.
The valid conversion specifiers are described below.

The fwscanf() functions shall execute each directive of the format in turn. When all directives
have been executed, or if a directive fails (as detailed below), the function shall return. Failures
are described as input failures (due to the unavailability of input bytes) or matching failures
(due to inappropriate input).

A directive composed of one or more white-space wide characters shall be executed by reading
input up to the first wide character that is not a white-space wide character, which shall remain
unread, or until no more wide characters can be read. The directive shall never fail.

A directive that is an ordinary wide character shall be executed as follows. The next wide
character is read from the input and compared with the wide character that comprises the
directive; if the comparison shows that they are not equivalent, the directive shall fail, and the
differing and subsequent wide characters remain unread. Similarly, if end-of-file, an encoding
error, or a read error prevents a wide character from being read, the directive shall fail.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion wide character. A conversion specification is executed in
the following steps.

Input white-space wide characters shall be skipped, unless the conversion specification includes
a [, c, or n conversion specifier.

An item shall be read from the input, unless the conversion specification includes an n
conversion specifier wide character. An input item is defined as the longest sequence of input
wide characters, not exceeding any specified field width, which is an initial subsequence of a
matching sequence. The first wide character, if any, after the input item shall remain unread. If
the length of the input item is zero, the execution of the conversion specification shall fail; this
condition is a matching failure, unless end-of-file, an encoding error, or a read error prevented
input from the stream, in which case it is an input failure.

Except in the case of a % conversion specifier, the input item (or, in the case of a %n conversion
specification, the count of input wide characters) shall be converted to a type appropriate to the
conversion wide character. If the input item is not a matching sequence, the execution of the
conversion specification shall fail; this condition is a matching failure. Unless assignment
suppression was indicated by a '*', the result of the conversion shall be placed in the object
pointed to by the first argument following the format argument that has not already received a

CX conversion result if the conversion specification is introduced by %, or in the nth argument if
introduced by the wide-character sequence "%n$". If this object does not have an appropriate
type, or if the result of the conversion cannot be represented in the space provided, the behavior
is undefined.

CX The c, s, and [conversion specifiers shall accept an optional assignment-allocation character
'm', which shall cause a memory buffer to be allocated to hold the conversion results. If the
conversion specifier is s or [, the allocated buffer shall include space for a terminating null
character (or wide character). In such a case, the argument corresponding to the conversion
specifier should be a reference to a pointer value that will receive a pointer to the allocated
buffer. The system shall allocate a buffer as if malloc() had been called. The application shall be

1092 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37447

37448

37449

37450

37451

37452

37453

37454

37455

37456

37457

37458

37459

37460

37461

37462

37463

37464

37465

37466

37467

37468

37469

37470

37471

37472

37473

37474

37475

37476

37477

37478

37479

37480

37481

37482

37483

37484

37485

37486

37487

37488

37489

37490

37491

37492

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwscanf()

responsible for freeing the memory after usage. If there is insufficient memory to allocate a
buffer, the function shall set errno to [ENOMEM] and a conversion error shall result. If the
function returns EOF, any memory successfully allocated for parameters using assignment-
allocation character 'm' by this call shall be freed before the function returns.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following c, s, or [conversion specifier applies to an argument with type pointer to

CX wchar_t. If the 'm' assignment-allocation character is specified, the conversion
applies to an argument with the type pointer to a pointer to wchar_t.

ll (ell-ell)
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to ptrdiff_t or the corresponding unsigned type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion specifier wide characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of wcstol() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of wcstol() with 0 for the base argument. In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of wcstoul() with the value 8 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of wcstoul() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1093

37493

37494

37495

37496

37497

37498

37499

37500

37501

37502

37503

37504

37505

37506

37507

37508

37509

37510

37511

37512

37513

37514

37515

37516

37517

37518

37519

37520

37521

37522

37523

37524

37525

37526

37527

37528

37529

37530

37531

37532

37533

37534

37535

37536

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwscanf() System Interfaces

pointer to unsigned.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of wcstoul() with the value 16 for the base argument.
In the absence of a size modifier, the application shall ensure that the corresponding
argument is a pointer to unsigned.

a, e, f, g
Matches an optionally signed floating-point number, infinity, or NaN whose format is
the same as expected for the subject sequence of wcstod(). In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
float.

If the fwprintf() family of functions generates character string representations for
infinity and NaN (a symbolic entity encoded in floating-point format) to support
IEEE Std 754-1985, the fwscanf() family of functions shall recognize them as input.

s Matches a sequence of non-white-space wide characters. If no l (ell) qualifier is present,
characters from the input field shall be converted as if by repeated calls to the
wcrtomb() function, with the conversion state described by an mbstate_t object
initialized to zero before the first wide character is converted. If the 'm' assignment-
allocation character is not specified, the application shall ensure that the corresponding
argument is a pointer to a character array large enough to accept the sequence and the

CX terminating null character, which shall be added automatically. Otherwise, the
application shall ensure that the corresponding argument is a pointer to a pointer to a
char.

If the l (ell) qualifier is present and the 'm' assignment-allocation character is not
specified, the application shall ensure that the corresponding argument is a pointer to
an array of wchar_t large enough to accept the sequence and the terminating null wide

CX character, which shall be added automatically. If the l (ell) qualifier is present and the
'm' assignment-allocation character is present, the application shall ensure that the
corresponding argument is a pointer to a pointer to a wchar_t.

[Matches a non-empty sequence of wide characters from a set of expected wide
characters (the scanset). If no l (ell) qualifier is present, wide characters from the input
field shall be converted as if by repeated calls to the wcrtomb() function, with the
conversion state described by an mbstate_t object initialized to zero before the first
wide character is converted. If the 'm' assignment-allocation character is not specified,
the application shall ensure that the corresponding argument is a pointer to a character
array large enough to accept the sequence and the terminating null character, which

CX shall be added automatically. Otherwise, the application shall ensure that the
corresponding argument is a pointer to a pointer to a char.

If an l (ell) qualifier is present and the 'm' assignment-allocation character is not
specified, the application shall ensure that the corresponding argument is a pointer to
an array of wchar_t large enough to accept the sequence and the terminating null wide

CX character. If an l (ell) qualifier is present and the 'm' assignment-allocation character
is specified, the application shall ensure that the corresponding argument is a pointer to
a pointer to a wchar_t.

The conversion specification includes all subsequent wide characters in the format
string up to and including the matching <right-square-bracket> (']'). The wide
characters between the square brackets (the scanlist) comprise the scanset, unless the
wide character after the <left-square-bracket> is a <circumflex> ('^'), in which case
the scanset contains all wide characters that do not appear in the scanlist between the

1094 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37537

37538

37539

37540

37541

37542

37543

37544

37545

37546

37547

37548

37549

37550

37551

37552

37553

37554

37555

37556

37557

37558

37559

37560

37561

37562

37563

37564

37565

37566

37567

37568

37569

37570

37571

37572

37573

37574

37575

37576

37577

37578

37579

37580

37581

37582

37583

37584

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwscanf()

<circumflex> and the <right-square-bracket>. If the conversion specification begins
with "[]" or "[^]", the <right-square-bracket> is included in the scanlist and the
next <right-square-bracket> is the matching <right-square-bracket> that ends the
conversion specification; otherwise, the first <right-square-bracket> is the one that ends
the conversion specification. If a '−' is in the scanlist and is not the first wide character,
nor the second where the first wide character is a '^', nor the last wide character, the
behavior is implementation-defined.

c Matches a sequence of wide characters of exactly the number specified by the field
width (1 if no field width is present in the conversion specification).

If no l (ell) length modifier is present, characters from the input field shall be converted
as if by repeated calls to the wcrtomb() function, with the conversion state described by
an mbstate_t object initialized to zero before the first wide character is converted. No
null character is added. If the 'm' assignment-allocation character is not specified, the
application shall ensure that the corresponding argument is a pointer to the initial

CX element of a character array large enough to accept the sequence. Otherwise, the
application shall ensure that the corresponding argument is a pointer to a pointer to a
char.

No null wide character is added. If an l (ell) length modifier is present and the 'm'
assignment-allocation character is not specified, the application shall ensure that the
corresponding argument shall be a pointer to the initial element of an array of wchar_t

CX large enough to accept the sequence. If an l (ell) qualifier is present and the 'm'
assignment-allocation character is specified, the application shall ensure that the
corresponding argument is a pointer to a pointer to a wchar_t.

p Matches an implementation-defined set of sequences, which shall be the same as the set
of sequences that is produced by the %p conversion specification of the corresponding
fwprintf() functions. The application shall ensure that the corresponding argument is a
pointer to a pointer to void. The interpretation of the input item is implementation-
defined. If the input item is a value converted earlier during the same program
execution, the pointer that results shall compare equal to that value; otherwise, the
behavior of the %p conversion is undefined.

n No input is consumed. The application shall ensure that the corresponding argument is
a pointer to the integer into which is to be written the number of wide characters read
from the input so far by this call to the fwscanf() functions. Execution of a %n
conversion specification shall not increment the assignment count returned at the
completion of execution of the function. No argument shall be converted, but one shall
be consumed. If the conversion specification includes an assignment-suppressing wide
character or a field width, the behavior is undefined.

XSI C Equivalent to lc.

XSI S Equivalent to ls.

% Matches a single '%' wide character; no conversion or assignment shall occur. The
complete conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers A, E, F, G, and X are also valid and shall be equivalent to, respectively,
a, e, f, g, and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any wide characters matching the current conversion specification (except for %n) have been

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1095

37585

37586

37587

37588

37589

37590

37591

37592

37593

37594

37595

37596

37597

37598

37599

37600

37601

37602

37603

37604

37605

37606

37607

37608

37609

37610

37611

37612

37613

37614

37615

37616

37617

37618

37619

37620

37621

37622

37623

37624

37625

37626

37627

37628

37629

37630

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwscanf() System Interfaces

read (other than leading white-space wide characters, where permitted), execution of the current
conversion specification shall terminate with an input failure. Otherwise, unless execution of
the current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if any) shall be terminated with an input failure.

Reaching the end of the string in swscanf() shall be equivalent to encountering end-of-file for
fwscanf().

If conversion terminates on a conflicting input, the offending input shall be left unread in the
input. Any trailing white-space wide characters (including <newline>) shall be left unread
unless matched by a conversion specification. The success of literal matches and suppressed
assignments is only directly determinable via the %n conversion specification.

CX The fwscanf() and wscanf() functions may mark the last data access timestamp of the file
associated with stream for update. The last data access timestamp shall be marked for update by
the first successful execution of fgetwc(), fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(),
vwscanf(), or wscanf() using stream that returns data not supplied by a prior call to ungetwc().

RETURN VALUE
Upon successful completion, these functions shall return the number of successfully matched
and assigned input items; this number can be zero in the event of an early matching failure. If
the input ends before the first conversion (if any) has completed, and without a matching failure
having occurred, EOF shall be returned. If an error occurs before the first conversion (if any) has

CX completed, and without a matching failure having occurred, EOF shall be returned and errno
shall be set to indicate the error. If a read error occurs, the error indicator for the stream shall be
set.

ERRORS
For the conditions under which the fwscanf() functions shall fail and may fail, refer to fgetwc().

In addition, the fwscanf() function shall fail if:
CX [EILSEQ] Input byte sequence does not form a valid character.

[ENOMEM] Insufficient storage space is available.

In addition, the fwscanf() function may fail if:

CX [EINVAL] There are insufficient arguments.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 Hamster

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string
"Hamster".

The call:

int i; float x; char name[50];
(void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

1096 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37631

37632

37633

37634

37635

37636

37637

37638

37639

37640

37641

37642

37643

37644

37645

37646

37647

37648

37649

37650

37651

37652

37653

37654

37655

37656

37657

37658

37659

37660

37661

37662

37663

37664

37665

37666

37667

37668

37669

37670

37671

37672

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces fwscanf()

assigns 56 to i, 789.0 to x, skips 0123, and places the string "56\0" in name. The next call to
getchar() shall return the character 'a'.

APPLICATION USAGE
In format strings containing the '%' form of conversion specifications, each argument in the
argument list is used exactly once.

For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For fwscanf(), this is memory allocated via use of
the 'm' assignment-allocation character.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), getwc(), fwprintf(), setlocale(), wcstod(), wcstol(), wcstoul(), wcrtomb()

XBD Chapter 7 (on page 127), <inttypes.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fwscanf() and swscanf() are updated.

• The DESCRIPTION is updated.

• The hh, ll, j, t, and z length modifiers are added.

• The a, A, and F conversion characters are added.

The DESCRIPTION is updated to use the terms ``conversion specifier’’ and ``conversion
specification’’ consistently.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

SD5-XSH-ERN-132 is applied, adding the assignment-allocation character 'm'.

Functionality relating to the "%n$" form of conversion specification is moved from the XSI
option to the Base.

Changes are made related to support for finegrained timestamps.

The APPLICATION USAGE section is updated to clarify that memory is allocated as if by
malloc().

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0229 [302] and XSH/TC1-2008/0230
[14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0148 [73], XSH/TC2-2008/0149 [823],
and XSH/TC2-2008/0150 [936] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1097

37673

37674

37675

37676

37677

37678

37679

37680

37681

37682

37683

37684

37685

37686

37687

37688

37689

37690

37691

37692

37693

37694

37695

37696

37697

37698

37699

37700

37701

37702

37703

37704

37705

37706

37707

37708

37709

37710

37711

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fwscanf() System Interfaces

Issue 8
Austin Group Defect 1163 is applied, clarifying the handling of white space in the format string.

Austin Group Defect 1173 is applied, clarifying the description of the assignment-allocation
character 'm'.

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1375 is applied, changing ``terminating null wide character’’ to
``terminating null character (or wide character)’’ and changing the first occurrence of wchar_t in
the descriptions of the s and [conversion specifiers to char.

1098 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37712

37713

37714

37715

37716

37717

37718

37719

37720

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces gai_strerror()

NAME
gai_strerror — address and name information error description

SYNOPSIS
#include <netdb.h>

const char *gai_strerror(int ecode);

DESCRIPTION
The gai_strerror() function shall return a text string describing an error value for the getaddrinfo()
and getnameinfo() functions listed in the <netdb.h> header.

When the ecode argument is one of the following values listed in the <netdb.h> header:

[EAI_AGAIN]
[EAI_BADFLAGS]
[EAI_FAIL]
[EAI_FAMILY]
[EAI_MEMORY]

[EAI_NONAME]
[EAI_OVERFLOW]
[EAI_SERVICE]
[EAI_SOCKTYPE]
[EAI_SYSTEM]

the function return value shall point to a string describing the error. If the argument is not one
of those values, the function shall return a pointer to a string whose contents indicate an
unknown error.

RETURN VALUE
Upon successful completion, gai_strerror() shall return a pointer to an implementation-defined
string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
freeaddrinfo()

XBD <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Open Group Base Resolution bwg2001-009 is applied, which changes the return type from
char * to const char *. This is for coordination with the IPnG Working Group.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/22 is applied, adding the
[EAI_OVERFLOW] error code.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1099

37721

37722

37723

37724

37725

37726

37727

37728

37729

37730

37731

37732

37733

37734

37735

37736

37737

37738

37739

37740

37741

37742

37743

37744

37745

37746

37747

37748

37749

37750

37751

37752

37753

37754

37755

37756

37757

37758

37759

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getaddrinfo() System Interfaces

NAME
getaddrinfo — get address information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict nodename,
const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

DESCRIPTION
Refer to freeaddrinfo().

1100 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37760

37761

37762

37763

37764

37765

37766

37767

37768

37769

37770

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getc()

NAME
getc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int getc(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The getc() function shall be equivalent to fgetc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side-
effects.

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getc() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of
a variable of type char on widening to integer is implementation-defined.

Since it may be implemented as a macro, getc() may treat incorrectly a stream argument with
side-effects. In particular, getc(* f ++) does not necessarily work as expected. Therefore, use of this
function should be preceded by "#undef getc" in such situations; fgetc() could also be used.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fgetc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0231 [14] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1101

37771

37772

37773

37774

37775

37776

37777

37778

37779

37780

37781

37782

37783

37784

37785

37786

37787

37788

37789

37790

37791

37792

37793

37794

37795

37796

37797

37798

37799

37800

37801

37802

37803

37804

37805

37806

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getc_unlocked() System Interfaces

NAME
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked — stdio with explicit client
locking

SYNOPSIS
CX #include <stdio.h>

int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);

DESCRIPTION
Versions of the functions getc(), getchar(), putc(), and putchar() respectively named
getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() shall be provided
which are functionally equivalent to the original versions, with the exception that they are not
required to be implemented in a fully thread-safe manner. They shall be thread-safe when used
within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). These functions can
safely be used in a multi-threaded program if and only if they are called while the invoking
thread owns the (FILE *) object, as is the case after a successful call to the flockfile() or
ftrylockfile() functions.

If getc_unlocked() or putc_unlocked() are implemented as macros they may evaluate stream more
than once, so the stream argument should never be an expression with side-effects.

RETURN VALUE
See getc(), getchar(), putc(), and putchar().

ERRORS
See getc(), getchar(), putc(), and putchar().

EXAMPLES
None.

APPLICATION USAGE
Since they may be implemented as macros, getc_unlocked() and putc_unlocked() may treat
incorrectly a stream argument with side-effects. In particular, getc_unlocked(*f++) and
putc_unlocked(c,*f++) do not necessarily work as expected. Therefore, use of these functions in
such situations should be preceded by the following statement as appropriate:

#undef getc_unlocked
#undef putc_unlocked

RATIONALE
Some I/O functions are typically implemented as macros for performance reasons (for example,
putc() and getc()). For safety, they need to be synchronized, but it is often too expensive to
synchronize on every character. Nevertheless, it was felt that the safety concerns were more
important; consequently, the getc(), getchar(), putc(), and putchar() functions are required to be
thread-safe. However, unlocked versions are also provided with names that clearly indicate the
unsafe nature of their operation but can be used to exploit their higher performance. These
unlocked versions can be safely used only within explicitly locked program regions, using
exported locking primitives. In particular, a sequence such as:

flockfile(fileptr);
putc_unlocked('1', fileptr);
putc_unlocked('\n', fileptr);
fprintf(fileptr, "Line 2\n");

1102 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37807

37808

37809

37810

37811

37812

37813

37814

37815

37816

37817

37818

37819

37820

37821

37822

37823

37824

37825

37826

37827

37828

37829

37830

37831

37832

37833

37834

37835

37836

37837

37838

37839

37840

37841

37842

37843

37844

37845

37846

37847

37848

37849

37850

37851

37852

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getc_unlocked()

funlockfile(fileptr);

is permissible, and results in the text sequence:

1
Line 2

being printed without being interspersed with output from other threads.

It would be wrong to have the standard names such as getc(), putc(), and so on, map to the
``faster, but unsafe’’ rather than the ``slower, but safe’’ versions. In either case, you would still
want to inspect all uses of getc(), putc(), and so on, by hand when converting existing code.
Choosing the safe bindings as the default, at least, results in correct code and maintains the
``atomicity at the function’’ invariant. To do otherwise would introduce gratuitous
synchronization errors into converted code. Other routines that modify the stdio (FILE *)
structures or buffers are also safely synchronized.

Note that there is no need for functions of the form getc_locked(), putc_locked(), and so on, since
this is the functionality of getc(), putc(), et al. It would be inappropriate to use a feature test
macro to switch a macro definition of getc() between getc_locked() and getc_unlocked(), since the
ISO C standard requires an actual function to exist, a function whose behavior could not be
changed by the feature test macro. Also, providing both the xxx_locked() and xxx_unlocked()
forms leads to the confusion of whether the suffix describes the behavior of the function or the
circumstances under which it should be used.

Three additional routines, flockfile(), ftrylockfile(), and funlockfile() (which may be macros), are
provided to allow the user to delineate a sequence of I/O statements that are executed
synchronously.

The ungetc() function is infrequently called relative to the other functions/macros so no
unlocked variation is needed.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), flockfile(), getc(), getchar(), putc(), putchar()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
These functions are marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U030/2 is applied, adding APPLICATION USAGE describing
how applications should be written to avoid the case when the functions are implemented as
macros.

Issue 7
The getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() functions are
moved from the Thread-Safe Functions option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0232 [395], XSH/TC1-2008/0233 [395],
XSH/TC1-2008/0234 [395], and XSH/TC1-2008/0235 [14] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0151 [826] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1103

37853

37854

37855

37856

37857

37858

37859

37860

37861

37862

37863

37864

37865

37866

37867

37868

37869

37870

37871

37872

37873

37874

37875

37876

37877

37878

37879

37880

37881

37882

37883

37884

37885

37886

37887

37888

37889

37890

37891

37892

37893

37894

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getchar() System Interfaces

NAME
getchar — get a byte from a stdin stream

SYNOPSIS
#include <stdio.h>

int getchar(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The getchar() function shall be equivalent to getc(stdin).

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getchar() is stored into a variable of type char and then
compared against the integer constant EOF, the comparison may never succeed, because sign-
extension of a variable of type char on widening to integer is implementation-defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), getc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0236 [14] is applied.

1104 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37895

37896

37897

37898

37899

37900

37901

37902

37903

37904

37905

37906

37907

37908

37909

37910

37911

37912

37913

37914

37915

37916

37917

37918

37919

37920

37921

37922

37923

37924

37925

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getchar_unlocked()

NAME
getchar_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int getchar_unlocked(void);

DESCRIPTION
Refer to getc_unlocked().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1105

37926

37927

37928

37929

37930

37931

37932

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getcwd() System Interfaces

NAME
getcwd — get the pathname of the current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char *buf, size_t size);

DESCRIPTION
The getcwd() function shall place an absolute pathname of the current working directory in the
array pointed to by buf, and return buf. The pathname shall contain no components that are dot
or dot-dot, or are symbolic links.

If there are multiple pathnames that getcwd() could place in the array pointed to by buf, one
beginning with a single <slash> character and one or more beginning with two <slash>
characters, then getcwd() shall place the pathname beginning with a single <slash> character in
the array. The pathname shall not contain any unnecessary <slash> characters after the leading
one or two <slash> characters.

The size argument is the size in bytes of the character array pointed to by the buf argument. If buf
is a null pointer, the behavior of getcwd() is unspecified.

RETURN VALUE
Upon successful completion, getcwd() shall return the buf argument. Otherwise, getcwd() shall
return a null pointer and set errno to indicate the error. The contents of the array pointed to by
buf are then undefined.

ERRORS
The getcwd() function shall fail if:

[EINVAL] The size argument is 0.

[ERANGE] The size argument is greater than 0, but is smaller than the length of the string
+1.

The getcwd() function may fail if:

[EACCES] Search permission was denied for the current directory, or read or search
permission was denied for a directory above the current directory in the file
hierarchy.

[ENOMEM] Insufficient storage space is available.

EXAMPLES
The following example uses {PATH_MAX} as the initial buffer size (unless it is indeterminate or
very large), and calls getcwd() with progressively larger buffers until it does not give an
[ERANGE] error.

#include <stdlib.h>
#include <errno.h>
#include <unistd.h>

...

long path_max;
size_t size;
char *buf;
char *ptr;

path_max = pathconf(".", _PC_PATH_MAX);
if (path_max == -1)

1106 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37933

37934

37935

37936

37937

37938

37939

37940

37941

37942

37943

37944

37945

37946

37947

37948

37949

37950

37951

37952

37953

37954

37955

37956

37957

37958

37959

37960

37961

37962

37963

37964

37965

37966

37967

37968

37969

37970

37971

37972

37973

37974

37975

37976

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getcwd()

size = 1024;
else if (path_max > 10240)

size = 10240;
else

size = path_max;

for (buf = ptr = NULL; ptr == NULL; size *= 2)
{

if ((buf = realloc(buf, size)) == NULL)
{

... handle error ...
}

ptr = getcwd(buf, size);
if (ptr == NULL && errno != ERANGE)
{

... handle error ...
}

}
...
free (buf);

APPLICATION USAGE
If the pathname obtained from getcwd() is longer than {PATH_MAX} bytes, it could produce an
[ENAMETOOLONG] error if passed to chdir(). Therefore, in order to return to that directory it
may be necessary to break the pathname into sections shorter than {PATH_MAX} bytes and call
chdir() on each section in turn (the first section being an absolute pathname and subsequent
sections being relative pathnames). A simpler way to handle saving and restoring the working
directory when it may be deeper than {PATH_MAX} bytes in the file hierarchy is to use a file
descriptor and fchdir(), rather than getcwd() and chdir(). However, the two methods do have
some differences. The fchdir() approach causes the program to restore a working directory even
if it has been renamed in the meantime, whereas the chdir() approach restores to a directory with
the same name as the original, even if the directories were renamed in the meantime. Since the
fchdir() approach does not access parent directories, it can succeed when getcwd() would fail
due to permissions problems. In applications conforming to earlier versions of this standard, it
was not possible to use the fchdir() approach when the working directory is searchable but not
readable, as the only way to open a directory was with O_RDONLY, whereas the getcwd()
approach can succeed in this case.

RATIONALE
Having getcwd() take no arguments and instead use the malloc() function to produce space for
the returned argument was considered. The advantage is that getcwd() knows how big the
working directory pathname is and can allocate an appropriate amount of space. But the
programmer would have to use the free() function to free the resulting object, or each use of
getcwd() would further reduce the available memory. Finally, getcwd() is taken from the SVID
where it has the two arguments used in this volume of POSIX.1-2024.

The older function getwd() was rejected for use in this context because it had only a buffer
argument and no size argument, and thus had no way to prevent overwriting the buffer, except
to depend on the programmer to provide a large enough buffer.

On some implementations, if buf is a null pointer, getcwd() may obtain size bytes of memory
using malloc(). In this case, the pointer returned by getcwd() may be used as the argument in a
subsequent call to free(). Invoking getcwd() with buf as a null pointer is not recommended in
conforming applications.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1107

37977

37978

37979

37980

37981

37982

37983

37984

37985

37986

37987

37988

37989

37990

37991

37992

37993

37994

37995

37996

37997

37998

37999

38000

38001

38002

38003

38004

38005

38006

38007

38008

38009

38010

38011

38012

38013

38014

38015

38016

38017

38018

38019

38020

38021

38022

38023

38024

38025

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getcwd() System Interfaces

Earlier implementations of getcwd() sometimes generated pathnames like
"../../../subdirname" internally, using them to explore the path of ancestor directories
back to the root. If one of these internal pathnames exceeded {PATH_MAX} in length, the
implementation could fail with errno set to [ENAMETOOLONG]. This is no longer allowed.

If a program is operating in a directory where some (grand)parent directory does not permit
reading, getcwd() may fail, as in most implementations it must read the directory to determine
the name of the file. This can occur if search, but not read, permission is granted in an
intermediate directory, or if the program is placed in that directory by some more privileged
process (for example, login). Including the [EACCES] error condition makes the reporting of the
error consistent and warns the application developer that getcwd() can fail for reasons beyond
the control of the application developer or user. Some implementations can avoid this
occurrence (for example, by implementing getcwd() using pwd, where pwd is a set-user-root
process), thus the error was made optional. Since this volume of POSIX.1-2024 permits the
addition of other errors, this would be a common addition and yet one that applications could
not be expected to deal with without this addition.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ENOMEM] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #140 is applied, changing the text for consistency with
the pwd utility, adding text to address the case where the current directory is deeper in the file
hierarchy than {PATH_MAX} bytes, and adding the requirements relating to pathnames
beginning with two <slash> characters.

1108 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38026

38027

38028

38029

38030

38031

38032

38033

38034

38035

38036

38037

38038

38039

38040

38041

38042

38043

38044

38045

38046

38047

38048

38049

38050

38051

38052

38053

38054

38055

38056

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getdate()

NAME
getdate — convert user format date and time

SYNOPSIS
XSI #include <time.h>

struct tm *getdate(const char *string);

DESCRIPTION
The getdate() function shall convert a string representation of a date or time into a broken-down
time.

The external variable or macro getdate_err, which has type int, is used by getdate() to return error
values. It is unspecified whether getdate_err is a macro or an identifier declared with external
linkage, and whether or not it is a modifiable lvalue. If a macro definition is suppressed in order
to access an actual object, or a program defines an identifier with the name getdate_err, the
behavior is undefined.

Templates are used to parse and interpret the input string. The templates are contained in a text
file identified by the environment variable DATEMSK. The DATEMSK variable should be set to
indicate the full pathname of the file that contains the templates. The first line in the template
that matches the input specification is used for interpretation and conversion into the internal
time format.

The following conversion specifications shall be supported:

%% Equivalent to %.

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Locale’s appropriate date and time representation.

%C Century number [00,99]; leading zeros are permitted but not required.

%d Day of month [01,31]; the leading 0 is optional.

%D Date as %m/%d/%y.

%e Equivalent to %d.

%h Abbreviated month name.

%H Hour [00,23].

%I Hour [01,12].

%m Month number [01,12].

%M Minute [00,59].

%n Equivalent to <newline>.

%p Locale’s equivalent of either AM or PM.

%r The locale’s appropriate representation of time in 12-hour clock notation, if the 12-hour
format is supported in the locale (see XBD Section 7.3.5, on page 152). In the POSIX
locale, this shall be equivalent to %I:%M:%S %p.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1109

38057

38058

38059

38060

38061

38062

38063

38064

38065

38066

38067

38068

38069

38070

38071

38072

38073

38074

38075

38076

38077

38078

38079

38080

38081

38082

38083

38084

38085

38086

38087

38088

38089

38090

38091

38092

38093

38094

38095

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getdate() System Interfaces

%R Time as %H:%M.

%S Seconds [00,60]. The range goes to 60 (rather than stopping at 59) to allow positive leap
seconds to be expressed. Since leap seconds cannot be predicted by any algorithm, leap
second data has to come from some external source.

%t Equivalent to <tab>.

%T Time as %H:%M:%S.

%w Weekday number (Sunday = [0,6]).

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century. When a century is not otherwise specified, values in the range
[69,99] shall refer to years 1969 to 1999 inclusive, and values in the range [00,68] shall
refer to years 2000 to 2068 inclusive.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

%Y Year as "ccyy" (for example, 2001).

%Z Timezone name or no characters if no timezone exists. If the timezone supplied by %Z is
not the timezone that getdate() expects, an invalid input specification error shall result.
The getdate() function calculates an expected timezone based on information supplied
to the function (such as the hour, day, and month).

The match between the template and input specification performed by getdate() shall be case-
insensitive.

The month and weekday names can consist of any combination of upper and lowercase letters.
The process can request that the input date or time specification be in a specific language by
setting the LC_TIME category (see setlocale()).

Leading zeros are not necessary for the descriptors that allow leading zeros. However, at most
two digits are allowed for those descriptors, including leading zeros. Extra white space in either
the template file or in string shall be ignored.

The results are undefined if the conversion specifications %c, %x, and %X include unsupported
conversion specifications.

The following rules apply for converting the input specification into the internal format:

• If %Z is being scanned, then getdate() shall initialize the broken-down time to be the current
time in the scanned timezone. Otherwise, it shall initialize the broken-down time based on
the current local time as if localtime() had been called.

• If only the weekday is given, the day chosen shall be the day, starting with today and
moving into the future, which first matches the named day.

• If only the month (and no year) is given, the month chosen shall be the month, starting
with the current month and moving into the future, which first matches the named month.
The first day of the month shall be assumed if no day is given.

• If no hour, minute, and second are given, the current hour, minute, and second shall be
assumed.

1110 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38096

38097

38098

38099

38100

38101

38102

38103

38104

38105

38106

38107

38108

38109

38110

38111

38112

38113

38114

38115

38116

38117

38118

38119

38120

38121

38122

38123

38124

38125

38126

38127

38128

38129

38130

38131

38132

38133

38134

38135

38136

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getdate()

• If no date is given, the hour chosen shall be the hour, starting with the current hour and
moving into the future, which first matches the named hour.

If a conversion specification in the DATEMSK file does not correspond to one of the conversion
specifications above, the behavior is unspecified.

The getdate() function need not be thread-safe.

RETURN VALUE
Upon successful completion, getdate() shall return a pointer to a struct tm. Otherwise, it shall
return a null pointer and set getdate_err to indicate the error.

ERRORS
The getdate() function shall fail in the following cases, setting getdate_err to the value shown in
the list below. Any changes to errno are unspecified.

1. The DATEMSK environment variable is null or undefined.

2. The template file cannot be opened for reading.

3. Failed to get file status information.

4. The template file is not a regular file.

5. An I/O error is encountered while reading the template file.

6. Memory allocation failed (not enough memory available).

7. There is no line in the template that matches the input.

8. Invalid input specification. For example, February 31; or a time is specified that cannot be
represented in a time_t (representing the time in seconds since the Epoch).

EXAMPLES

1. The following example shows the possible contents of a template:

%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

2. The following are examples of valid input specifications for the template in Example 1:

getdate("10/1/87 4 PM");
getdate("Friday");
getdate("Friday September 18, 1987, 10:30:30");
getdate("24,9,1986 10:30");
getdate("at monday the 1st of december in 1986");
getdate("run job at 3 PM, december 2nd");

If the LC_TIME category is set to a German locale that includes freitag as a weekday name
and oktober as a month name, the following would be valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr");

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1111

38137

38138

38139

38140

38141

38142

38143

38144

38145

38146

38147

38148

38149

38150

38151

38152

38153

38154

38155

38156

38157

38158

38159

38160

38161

38162

38163

38164

38165

38166

38167

38168

38169

38170

38171

38172

38173

38174

38175

38176

38177

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getdate() System Interfaces

3. The following example shows how local date and time specification can be defined in the
template:

Invocation Line in Template
getdate("11/27/86") %m/%d/%y
getdate("27.11.86") %d.%m.%y
getdate("86-11-27") %y-%m-%d
getdate("Friday 12:00:00") %A %H:%M:%S

4. The following examples help to illustrate the above rules assuming that the current date
is Mon Sep 22 12:19:47 EDT 1986 and the LC_TIME category is set to the default C or
POSIX locale:

Input Line in Template Date
Mon %a Mon Sep 22 12:19:47 EDT 1986
Sun %a Sun Sep 28 12:19:47 EDT 1986
Fri %a Fri Sep 26 12:19:47 EDT 1986
September %B Mon Sep 1 12:19:47 EDT 1986
January %B Thu Jan 1 12:19:47 EST 1987
December %B Mon Dec 1 12:19:47 EST 1986
Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986
Jan Fri %b %a Fri Jan 2 12:19:47 EST 1987
Dec Mon %b %a Mon Dec 1 12:19:47 EST 1986
Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EST 1989
Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986
Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987
10:30 %H:%M Tue Sep 23 10:30:00 EDT 1986
13:30 %H:%M Mon Sep 22 13:30:00 EDT 1986

APPLICATION USAGE
Although historical versions of getdate() did not require that <time.h> declare the external
variable getdate_err, this volume of POSIX.1-2024 does require it. The standard developers
encourage applications to remove declarations of getdate_err and instead incorporate the
declaration by including <time.h>.

Applications should use %Y (4-digit years) in preference to %y (2-digit years).

RATIONALE
In standard locales, the conversion specifications %c, %x, and %X do not include unsupported
conversion specifiers and so the text regarding results being undefined is not a problem in that
case.

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), localtime(), setlocale(), strftime(), times()

XBD <time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

1112 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38178

38179

38180

38181

38182

38183

38184

38185

38186

38187

38188

38189

38190

38191

38192

38193

38194

38195

38196

38197

38198

38199

38200

38201

38202

38203

38204

38205

38206

38207

38208

38209

38210

38211

38212

38213

38214

38215

38216

38217

38218

38219

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getdate()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last paragraph of the DESCRIPTION is added.

The %C conversion specification is added, and the exact meaning of the %y conversion
specification is clarified in the DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

The %R conversion specification is changed to follow historical practice.

Issue 6
The DESCRIPTION is updated to refer to ``seconds since the Epoch’’ rather than ``seconds since
00:00:00 UTC (Coordinated Universal Time), January 1 1970’’ for consistency with other time
functions.

The description of %S is updated so that the valid range is [00,60] rather than [00,61].

The DESCRIPTION is updated to refer to conversion specifications instead of field descriptors
for consistency with other functions.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The description of the getdate_err value is expanded.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0152 [796] is applied.

Issue 8
Austin Group Defect 1307 is applied, changing the %r conversion in relation to locales that do
not support the 12-hour clock format.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1113

38220

38221

38222

38223

38224

38225

38226

38227

38228

38229

38230

38231

38232

38233

38234

38235

38236

38237

38238

38239

38240

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getdelim() System Interfaces

NAME
getdelim, getline — read a delimited record from stream

SYNOPSIS
CX #include <stdio.h>

ssize_t getdelim(char **restrict lineptr, size_t *restrict n,
int delimiter, FILE *restrict stream);

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

DESCRIPTION
The getdelim() function shall read from stream until it encounters a character matching the
delimiter character. The delimiter argument is an int, the value of which the application shall
ensure is a character representable as an unsigned char of equal value that terminates the read
process. If the delimiter argument has any other value, the behavior is undefined.

The application shall ensure that *lineptr is a valid argument that could be passed to the free()
function. If *n is non-zero, the application shall ensure that *lineptr either points to an object of
size at least *n bytes, or is a null pointer.

If *lineptr is a null pointer or if the object pointed to by *lineptr is of insufficient size, an object
shall be allocated as if by malloc() or the object shall be reallocated as if by realloc(), respectively,
such that the object is large enough to hold the characters to be written to it, including the
terminating NUL, and *n shall be set to the new size. If the object was allocated, or if the
reallocation operation moved the object, *lineptr shall be updated to point to the new object or
new location. The characters read, including any delimiter, shall be stored in the object, and a
terminating NUL added when the delimiter or end-of-file is encountered.

The getline() function shall be equivalent to the getdelim() function with the delimiter character
equal to the <newline> character.

The getdelim() and getline() functions may mark the last data access timestamp of the file
associated with stream for update. The last data access timestamp shall be marked for update by
the first successful execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(),
getline(), or scanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, the getline() and getdelim() functions shall return the number of
bytes written into the buffer, including the delimiter character if one was encountered before
EOF, but excluding the terminating NUL character. If the end-of-file indicator for the stream is
set, or if no characters were read and the stream is at end-of-file, the end-of-file indicator for the
stream shall be set and the function shall return −1. If an error occurs, the error indicator for the
stream shall be set, and the function shall return −1 and set errno to indicate the error.

ERRORS
For the conditions under which the getdelim() and getline() functions shall fail and may fail, refer
to fgetc().

In addition, these functions shall fail if:

[EINVAL] lineptr or n is a null pointer.

[ENOMEM] Insufficient memory is available.

1114 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38241

38242

38243

38244

38245

38246

38247

38248

38249

38250

38251

38252

38253

38254

38255

38256

38257

38258

38259

38260

38261

38262

38263

38264

38265

38266

38267

38268

38269

38270

38271

38272

38273

38274

38275

38276

38277

38278

38279

38280

38281

38282

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getdelim()

These functions may fail if:

[EOVERFLOW] The number of bytes to be written into the buffer, including the delimiter
character (if encountered), would exceed {SSIZE_MAX}.

EXAMPLES

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
char *line = NULL;
size_t len = 0;
ssize_t read;
fp = fopen("/etc/motd", "r");
if (fp == NULL)

exit(1);
while ((read = getline(&line, &len, fp)) != -1) {

printf("Retrieved line of length %zu :\n", read);
printf("%s", line);

}
if (ferror(fp)) {

/* handle error */
}
free(line);
fclose(fp);
return 0;

}
APPLICATION USAGE

Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start
parsing a file.

The ferror() or feof() functions should be used to distinguish between an error condition and an
end-of-file condition.

Although a null terminator is always supplied after the line, note that strlen(*lineptr) will be
smaller than the return value if the line contains embedded NUL characters.

RATIONALE
These functions are widely used to solve the problem that the fgets() function has with long
lines. The functions automatically enlarge the target buffers if needed. These are especially
useful since they reduce code needed for applications.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fgetc(), fgets(), free(), malloc(), realloc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0237 [14] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1115

38283

38284

38285

38286

38287

38288

38289

38290

38291

38292

38293

38294

38295

38296

38297

38298

38299

38300

38301

38302

38303

38304

38305

38306

38307

38308

38309

38310

38311

38312

38313

38314

38315

38316

38317

38318

38319

38320

38321

38322

38323

38324

38325

38326

38327

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getdelim() System Interfaces

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0153 [569], XSH/TC2-2008/0154 [571],
and XSH/TC2-2008/0155 [570] are applied.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1621 is applied, changing ``NUL terminator’’ to ``null terminator’’.

1116 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38328

38329

38330

38331

38332

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getegid()

NAME
getegid — get the effective group ID

SYNOPSIS
#include <unistd.h>

gid_t getegid(void);

DESCRIPTION
The getegid() function shall return the effective group ID of the calling process. The getegid()
function shall not modify errno.

RETURN VALUE
The getegid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In a conforming environment, getegid() will always succeed. It is possible for implementations to
provide an extension where a process in a non-conforming environment will not be associated
with a user or group ID. It is recommended that such implementations return (gid_t)−1 and set
errno to indicate such an environment; doing so does not violate this standard, since such an
environment is already an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0156 [511] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1117

38333

38334

38335

38336

38337

38338

38339

38340

38341

38342

38343

38344

38345

38346

38347

38348

38349

38350

38351

38352

38353

38354

38355

38356

38357

38358

38359

38360

38361

38362

38363

38364

38365

38366

38367

38368

38369

38370

38371

38372

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getegid() System Interfaces

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

1118 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38373

38374

38375

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getentropy()

NAME
getentropy — fill a buffer with random bytes

SYNOPSIS
#include <unistd.h>

int getentropy(void *buffer, size_t length);

DESCRIPTION
The getentropy() function shall write length bytes of data starting at the location pointed to by
buffer. The output shall be unpredictable high quality random data, generated by a
cryptographically secure pseudo-random number generator. The maximum permitted value for
the length argument is given by the {GETENTROPY_MAX} symbolic constant defined in
<limits.h>.

A successful call to getentropy() shall always provide the requested number of bytes of entropy.

RETURN VALUE
Upon successful completion, getentropy() shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
The getentropy() function shall fail if:

[EINVAL] The value of length is greater than {GETENTROPY_MAX}.

The getentropy() function may fail if:

[ENOSYS] The system does not provide the necessary source of entropy.

EXAMPLES
None.

APPLICATION USAGE
The intended use of this function is to create a seed for other pseudo-random number
generators.

RATIONALE
The getentropy() function is not a cancellation point. (See Section 2.9.5.2 (on page 543).)

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), initstate(), rand()

XBD <limits.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1119

38376

38377

38378

38379

38380

38381

38382

38383

38384

38385

38386

38387

38388

38389

38390

38391

38392

38393

38394

38395

38396

38397

38398

38399

38400

38401

38402

38403

38404

38405

38406

38407

38408

38409

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getenv() System Interfaces

NAME
getenv, secure_getenv — get value of an environment variable

SYNOPSIS
#include <stdlib.h>

char *getenv(const char *name);
CX char *secure_getenv(const char *name);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The getenv() function shall search the environment of the calling process (see XBD Chapter 8, on
page 167) for the environment variable name if it exists and return a pointer to the value of the
environment variable. If the specified environment variable cannot be found, a null pointer shall
be returned. The application shall ensure that it does not modify the string pointed to by the

CX getenv() function, unless it is part of a modifiable object previously placed in the environment
by assigning a new value to environ

XSI or by using putenv().

CX The pointer returned by getenv() shall point to a string within the environment data pointed to
by environ.

Note: This requirement is an extension to the ISO C standard, which allows getenv() to copy the data
to an internal buffer.

The secure_getenv() function shall be equivalent to getenv(), except that it shall return a null
pointer if the calling process does not meet all of the following security criteria:

1. The effective user ID and real user ID of the calling process were equal during program
startup.

2. The effective group ID and real group ID of the calling process were equal during
program startup.

3. Additional implementation-defined security criteria.

RETURN VALUE
Upon successful completion, getenv() shall return a pointer to a string containing the value for
the specified name. If the specified name cannot be found in the environment of the calling
process, a null pointer shall be returned.

CX Upon successful completion, secure_getenv() shall return a pointer to a string containing the
value for the specified name. If the specified name cannot be found in the environment of the
calling process, or the calling process does not meet the security criteria listed in DESCRIPTION,
a null pointer shall be returned.

ERRORS
No errors are defined.

1120 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38410

38411

38412

38413

38414

38415

38416

38417

38418

38419

38420

38421

38422

38423

38424

38425

38426

38427

38428

38429

38430

38431

38432

38433

38434

38435

38436

38437

38438

38439

38440

38441

38442

38443

38444

38445

38446

38447

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getenv()

EXAMPLES

Getting the Value of an Environment Variable

The following example gets the value of the HOME environment variable.

#include <stdlib.h>
...
const char *name = "HOME";
char *value;

value = getenv(name);

APPLICATION USAGE
None.

RATIONALE
The clearenv() function was considered but rejected. The putenv() function has now been
included for alignment with the Single UNIX Specification.

Some earlier versions of this standard did not require getenv() to be thread-safe because it was
allowed to return a value pointing to an internal buffer. However, this behavior allowed by the
ISO C standard is no longer allowed by POSIX.1. POSIX.1 requires the environment data to be
available through environ[], so there is no reason why getenv() can’t return a pointer to the actual
data instead of a copy. Therefore getenv() is now required to be thread-safe (except when
another thread modifies the environment).

Conforming applications are required not to directly modify the pointers to which environ
points, but to use only the setenv(), unsetenv(), and putenv() functions, or assignment to environ
itself, to manipulate the process environment. This constraint allows the implementation to
properly manage the memory it allocates. This enables the implementation to free any space it
has allocated to strings (and perhaps the pointers to them) stored in environ when unsetenv() is
called. A C runtime start-up procedure (that which invokes main() and perhaps initializes
environ) can also initialize a flag indicating that none of the environment has yet been copied to
allocated storage, or that the separate table has not yet been initialized. If the application
switches to a complete new environment by assigning a new value to environ, this can be
detected by getenv(), setenv(), unsetenv(), or putenv() and the implementation can at that point
reinitialize based on the new environment. (This may include copying the environment strings
into a new array and assigning environ to point to it.)

In fact, for higher performance of getenv(), implementations that do not provide putenv() could
also maintain a separate copy of the environment in a data structure that could be searched
much more quickly (such as an indexed hash table, or a binary tree), and update both it and the
linear list at environ when setenv() or unsetenv() is invoked. On implementations that do provide
putenv(), such a copy might still be worthwhile but would need to allow for the fact that
applications can directly modify the content of environment strings added with putenv(). For
example, if an environment string found by searching the copy is one that was added using
putenv(), the implementation would need to check that the string in environ still has the same
name (and value, if the copy includes values), and whenever searching the copy produces no
match the implementation would then need to search each environment string in environ that
was added using putenv() in case any of them have changed their names and now match. Thus,
each use of putenv() to add to the environment would reduce the speed advantage of having the
copy.

Performance of getenv() can be important for applications which have large numbers of
environment variables. Typically, applications like this use the environment as a resource

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1121

38448

38449

38450

38451

38452

38453

38454

38455

38456

38457

38458

38459

38460

38461

38462

38463

38464

38465

38466

38467

38468

38469

38470

38471

38472

38473

38474

38475

38476

38477

38478

38479

38480

38481

38482

38483

38484

38485

38486

38487

38488

38489

38490

38491

38492

38493

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getenv() System Interfaces

database of user-configurable parameters. The fact that these variables are in the user’s shell
environment usually means that any other program that uses environment variables (such as ls,
which attempts to use COLUMNS), or really almost any utility (LANG, LC_ALL, and so on) is
similarly slowed down by the linear search through the variables.

An implementation that maintains separate data structures, or even one that manages the
memory it consumes, is not currently required as it was thought it would reduce consensus
among implementors who do not want to change their historical implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , putenv(), setenv(), unsetenv()

XBD Chapter 8 (on page 167), <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• References added to the new setenv() and unsetenv() functions.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #062 is applied, clarifying that a call to putenv() may
also cause the string to be overwritten.

Austin Group Interpretation 1003.1-2001 #148 is applied, adding the FUTURE DIRECTIONS.

Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0238 [75,428], XSH/TC1-2008/0239
[167], and XSH/TC1-2008/0240 [167] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0157 [656] is applied.

Issue 8
Austin Group Defects 188 and 1394 are applied, changing getenv() to be thread-safe.

Austin Group Defect 922 is applied, adding the secure_getenv() function.

1122 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38494

38495

38496

38497

38498

38499

38500

38501

38502

38503

38504

38505

38506

38507

38508

38509

38510

38511

38512

38513

38514

38515

38516

38517

38518

38519

38520

38521

38522

38523

38524

38525

38526

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces geteuid()

NAME
geteuid — get the effective user ID

SYNOPSIS
#include <unistd.h>

uid_t geteuid(void);

DESCRIPTION
The geteuid() function shall return the effective user ID of the calling process. The geteuid()
function shall not modify errno.

RETURN VALUE
The geteuid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In a conforming environment, geteuid() will always succeed. It is possible for implementations
to provide an extension where a process in a non-conforming environment will not be associated
with a user or group ID. It is recommended that such implementations return (uid_t)−1 and set
errno to indicate such an environment; doing so does not violate this standard, since such an
environment is already an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0158 [511] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1123

38527

38528

38529

38530

38531

38532

38533

38534

38535

38536

38537

38538

38539

38540

38541

38542

38543

38544

38545

38546

38547

38548

38549

38550

38551

38552

38553

38554

38555

38556

38557

38558

38559

38560

38561

38562

38563

38564

38565

38566

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

geteuid() System Interfaces

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

1124 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38567

38568

38569

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getgid()

NAME
getgid — get the real group ID

SYNOPSIS
#include <unistd.h>

gid_t getgid(void);

DESCRIPTION
The getgid() function shall return the real group ID of the calling process. The getgid() function
shall not modify errno.

RETURN VALUE
The getgid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In a conforming environment, getgid() will always succeed. It is possible for implementations to
provide an extension where a process in a non-conforming environment will not be associated
with a user or group ID. It is recommended that such implementations return (gid_t)−1 and set
errno to indicate such an environment; doing so does not violate this standard, since such an
environment is already an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0159 [511] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1125

38570

38571

38572

38573

38574

38575

38576

38577

38578

38579

38580

38581

38582

38583

38584

38585

38586

38587

38588

38589

38590

38591

38592

38593

38594

38595

38596

38597

38598

38599

38600

38601

38602

38603

38604

38605

38606

38607

38608

38609

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getgid() System Interfaces

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

1126 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38610

38611

38612

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getgrent()

NAME
getgrent — get the group database entry

SYNOPSIS
XSI #include <grp.h>

struct group *getgrent(void);

DESCRIPTION
Refer to endgrent().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1127

38613

38614

38615

38616

38617

38618

38619

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getgrgid() System Interfaces

NAME
getgrgid, getgrgid_r — get group database entry for a group ID

SYNOPSIS
#include <grp.h>

struct group *getgrgid(gid_t gid);
int getgrgid_r(gid_t gid, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

DESCRIPTION
The getgrgid() function shall search the group database for an entry with a matching gid.

The getgrgid() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling getgrgid().
If getgrgid() returns a null pointer and errno is set to non-zero, an error occurred.

The getgrgid_r() function shall update the group structure pointed to by grp and store a pointer
to that structure at the location pointed to by result. The structure shall contain an entry from
the group database with a matching gid. Storage referenced by the group structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. A call to
sysconf (_SC_GETGR_R_SIZE_MAX) returns either −1 without changing errno or an initial value
suggested for the size of this buffer. A null pointer shall be returned at the location pointed to
by result on error or if the requested entry is not found.

RETURN VALUE
Upon successful completion, getgrgid() shall return a pointer to a struct group with the structure
defined in <grp.h> with a matching entry if one is found. The getgrgid() function shall return a
null pointer if either the requested entry was not found, or an error occurred. If the requested
entry was not found, errno shall not be changed. On error, errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getgrent(), getgrgid(), or getgrnam(). The returned pointer, and pointers
within the structure, might also be invalidated if the calling thread is terminated.

If successful, the getgrgid_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The getgrgid() and getgrgid_r() functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrgid().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getgrgid_r() function shall fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

1128 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38620

38621

38622

38623

38624

38625

38626

38627

38628

38629

38630

38631

38632

38633

38634

38635

38636

38637

38638

38639

38640

38641

38642

38643

38644

38645

38646

38647

38648

38649

38650

38651

38652

38653

38654

38655

38656

38657

38658

38659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getgrgid()

EXAMPLES
Note that sysconf (_SC_GETGR_R_SIZE_MAX) may return −1 if there is no hard limit on the size
of the buffer needed to store all the groups returned. This example shows how an application
can allocate a buffer of sufficient size to work with getgrid_r().

long int initlen = sysconf(_SC_GETGR_R_SIZE_MAX);
size_t len;
if (initlen == -1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct group result;
struct group *resultp;
char *buffer = malloc(len);
if (buffer == NULL)

...handle error...
int e;
while ((e = getgrgid_r(42, &result, buffer, len, &resultp)) == ERANGE)

{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer == NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Finding an Entry in the Group Database

The following example uses getgrgid() to search the group database for a group ID that was
previously stored in a stat structure, then prints out the group name if it is found. If the group is
not found, the program prints the numeric value of the group for the entry.

#include <sys/types.h>
#include <grp.h>
#include <stdio.h>
...
struct stat statbuf;
struct group *grp;
...
if ((grp = getgrgid(statbuf.st_gid)) != NULL)

printf(" %-8.8s", grp->gr_name);
else

printf(" %-8d", statbuf.st_gid);
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1129

38660

38661

38662

38663

38664

38665

38666

38667

38668

38669

38670

38671

38672

38673

38674

38675

38676

38677

38678

38679

38680

38681

38682

38683

38684

38685

38686

38687

38688

38689

38690

38691

38692

38693

38694

38695

38696

38697

38698

38699

38700

38701

38702

38703

38704

38705

38706

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getgrgid() System Interfaces

APPLICATION USAGE
The getgrgid_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1
from sysconf() indicating that there is no maximum for _SC_GETGR_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrnam(), sysconf()

XBD <grp.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getgrgid_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getgrgid() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getgrgid_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the gid.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied.

1130 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38707

38708

38709

38710

38711

38712

38713

38714

38715

38716

38717

38718

38719

38720

38721

38722

38723

38724

38725

38726

38727

38728

38729

38730

38731

38732

38733

38734

38735

38736

38737

38738

38739

38740

38741

38742

38743

38744

38745

38746

38747

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getgrgid()

The getgrgid_r() function is moved from the Thread-Safe Functions option to the Base.

A minor addition is made to the EXAMPLES section, reminding the application developer to
free memory allocated as if by malloc().

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0241 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0160 [808], XSH/TC2-2008/0161 [808],
XSH/TC2-2008/0162 [656], and XSH/TC2-2008/0163 [808] are applied.

Issue 8
Austin Group Defect 398 is applied, changing the [ERANGE] error from ``may fail’’ to ``shall
fail’’.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1131

38748

38749

38750

38751

38752

38753

38754

38755

38756

38757

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getgrnam() System Interfaces

NAME
getgrnam, getgrnam_r — search group database for a name

SYNOPSIS
#include <grp.h>

struct group *getgrnam(const char *name);
int getgrnam_r(const char *name, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

DESCRIPTION
The getgrnam() function shall search the group database for an entry with a matching name.

The getgrnam() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling getgrnam().
If getgrnam() returns a null pointer and errno is set to non-zero, an error occurred.

The getgrnam_r() function shall update the group structure pointed to by grp and store a pointer
to that structure at the location pointed to by result. The structure shall contain an entry from
the group database with a matching name. Storage referenced by the group structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. A call to
sysconf (_SC_GETGR_R_SIZE_MAX) returns either −1 without changing errno or an initial value
suggested for the size of this buffer. A null pointer is returned at the location pointed to by result
on error or if the requested entry is not found.

RETURN VALUE
The getgrnam() function shall return a pointer to a struct group with the structure defined in
<grp.h> with a matching entry if one is found. The getgrnam() function shall return a null
pointer if either the requested entry was not found, or an error occurred. If the requested entry
was not found, errno shall not be changed. On error, errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getgrent(), getgrgid(), or getgrnam(). The returned pointer, and pointers
within the structure, might also be invalidated if the calling thread is terminated.

The getgrnam_r() function shall return zero on success or if the requested entry was not found
and no error has occurred. If any error has occurred, an error number shall be returned to
indicate the error.

ERRORS
The getgrnam() and getgrnam_r() functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrnam().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getgrnam_r() function shall fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

1132 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38758

38759

38760

38761

38762

38763

38764

38765

38766

38767

38768

38769

38770

38771

38772

38773

38774

38775

38776

38777

38778

38779

38780

38781

38782

38783

38784

38785

38786

38787

38788

38789

38790

38791

38792

38793

38794

38795

38796

38797

38798

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getgrnam()

EXAMPLES
Note that sysconf (_SC_GETGR_R_SIZE_MAX) may return −1 if there is no hard limit on the size
of the buffer needed to store all the groups returned. This example shows how an application
can allocate a buffer of sufficient size to work with getgrnam_r().

long int initlen = sysconf(_SC_GETGR_R_SIZE_MAX);
size_t len;
if (initlen == -1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct group result;
struct group *resultp;
char *buffer = malloc(len);
if (buffer == NULL)

...handle error...
int e;
while ((e = getgrnam_r("somegroup", &result, buffer, len, &resultp))

== ERANGE)
{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer == NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

APPLICATION USAGE
The getgrnam_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1
from sysconf() indicating that there is no maximum for _SC_GETGR_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrgid(), sysconf()

XBD <grp.h>, <sys/types.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1133

38799

38800

38801

38802

38803

38804

38805

38806

38807

38808

38809

38810

38811

38812

38813

38814

38815

38816

38817

38818

38819

38820

38821

38822

38823

38824

38825

38826

38827

38828

38829

38830

38831

38832

38833

38834

38835

38836

38837

38838

38839

38840

38841

38842

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getgrnam() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getgrnam_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getgrnam() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getgrnam_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
Austin Group Interpretation 1003.1-2001 #081 is applied, clarifying the RETURN VALUE section.

Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied.

The getgrnam_r() function is moved from the Thread-Safe Functions option to the Base.

A minor addition is made to the EXAMPLES section, reminding the application developer to
free memory allocated as if by malloc().

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0242 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0164 [808], XSH/TC2-2008/0165 [808],
XSH/TC2-2008/0166 [656], and XSH/TC2-2008/0167 [808] are applied.

Issue 8
Austin Group Defect 398 is applied, changing the [ERANGE] error from ``may fail’’ to ``shall
fail’’.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

1134 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38843

38844

38845

38846

38847

38848

38849

38850

38851

38852

38853

38854

38855

38856

38857

38858

38859

38860

38861

38862

38863

38864

38865

38866

38867

38868

38869

38870

38871

38872

38873

38874

38875

38876

38877

38878

38879

38880

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getgroups()

NAME
getgroups — get supplementary group IDs

SYNOPSIS
#include <unistd.h>

int getgroups(int gidsetsize, gid_t grouplist[]);

DESCRIPTION
The getgroups() function shall fill in the array grouplist with the current supplementary group
IDs of the calling process. It is implementation-defined whether getgroups() also returns the
effective group ID in the grouplist array.

The gidsetsize argument specifies the number of elements in the array grouplist. The actual
number of group IDs stored in the array shall be returned. The values of array entries with
indices greater than or equal to the value returned are undefined.

If gidsetsize is 0, getgroups() shall return the number of group IDs that it would otherwise return
without modifying the array pointed to by grouplist.

If the effective group ID of the process is returned with the supplementary group IDs, the value
returned shall always be greater than or equal to one and less than or equal to the value of
{NGROUPS_MAX}+1.

RETURN VALUE
Upon successful completion, the number of supplementary group IDs shall be returned. A
return value of −1 indicates failure and errno shall be set to indicate the error.

ERRORS
The getgroups() function shall fail if:

[EINVAL] The gidsetsize argument is non-zero and less than the number of group IDs
that would have been returned.

EXAMPLES

Getting the Supplementary Group IDs of the Calling Process

The following example places the current supplementary group IDs of the calling process into
the group array.

#include <sys/types.h>
#include <unistd.h>
...
gid_t *group;
int ngroups;
long ngroups_max;

ngroups_max = sysconf(_SC_NGROUPS_MAX) + 1;
group = (gid_t *)malloc(ngroups_max *sizeof(gid_t));

ngroups = getgroups(ngroups_max, group);

APPLICATION USAGE
None.

RATIONALE
The related function setgroups() is a privileged operation and therefore is not covered by this
volume of POSIX.1-2024.

As implied by the definition of supplementary groups, the effective group ID may appear in the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1135

38881

38882

38883

38884

38885

38886

38887

38888

38889

38890

38891

38892

38893

38894

38895

38896

38897

38898

38899

38900

38901

38902

38903

38904

38905

38906

38907

38908

38909

38910

38911

38912

38913

38914

38915

38916

38917

38918

38919

38920

38921

38922

38923

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getgroups() System Interfaces

array returned by getgroups() or it may be returned only by getegid(). Duplication may exist, but
the application needs to call getegid() to be sure of getting all of the information. Various
implementation variations and administrative sequences cause the set of groups appearing in
the result of getgroups() to vary in order and as to whether the effective group ID is included,
even when the set of groups is the same (in the mathematical sense of ``set’’). (The history of a
process and its parents could affect the details of the result.)

Application developers should note that {NGROUPS_MAX} is not necessarily a constant on all
implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), setgid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• A return value of 0 is not permitted, because {NGROUPS_MAX} cannot be 0. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added that the effective group ID may be included in the supplementary
group list.

Issue 8
Austin Group Defect 1400 is applied, changing the EXAMPLES section.

1136 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38924

38925

38926

38927

38928

38929

38930

38931

38932

38933

38934

38935

38936

38937

38938

38939

38940

38941

38942

38943

38944

38945

38946

38947

38948

38949

38950

38951

38952

38953

38954

38955

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces gethostent()

NAME
gethostent — network host database functions

SYNOPSIS
#include <netdb.h>

struct hostent *gethostent(void);

DESCRIPTION
Refer to endhostent().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1137

38956

38957

38958

38959

38960

38961

38962

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gethostid() System Interfaces

NAME
gethostid — get an identifier for the current host

SYNOPSIS
XSI #include <unistd.h>

long gethostid(void);

DESCRIPTION
The gethostid() function shall retrieve a 32-bit identifier for the current host.

RETURN VALUE
Upon successful completion, gethostid() shall return an identifier for the current host.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This volume of POSIX.1-2024 does not define the domain in which the return value is unique.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
initstate()

XBD <unistd.h>
CHANGE HISTORY

First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

1138 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

38963

38964

38965

38966

38967

38968

38969

38970

38971

38972

38973

38974

38975

38976

38977

38978

38979

38980

38981

38982

38983

38984

38985

38986

38987

38988

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces gethostname()

NAME
gethostname — get name of current host

SYNOPSIS
#include <unistd.h>

int gethostname(char *name, size_t namelen);

DESCRIPTION
The gethostname() function shall return the standard host name for the current machine. The
namelen argument shall specify the size of the array pointed to by the name argument. The
returned name shall be null-terminated, except that if namelen is an insufficient length to hold
the host name, then the returned name shall be truncated and it is unspecified whether the
returned name is null-terminated.

Host names are limited to {HOST_NAME_MAX} bytes.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
gethostid(), uname()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Open Group Base Resolution bwg2001-008 is applied, changing the namelen parameter from
socklen_t to size_t.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1139

38989

38990

38991

38992

38993

38994

38995

38996

38997

38998

38999

39000

39001

39002

39003

39004

39005

39006

39007

39008

39009

39010

39011

39012

39013

39014

39015

39016

39017

39018

39019

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getline() System Interfaces

NAME
getline — read a delimited record from stream

SYNOPSIS
CX #include <stdio.h>

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

DESCRIPTION
Refer to getdelim().

1140 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39020

39021

39022

39023

39024

39025

39026

39027

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getlocalename_l()

NAME
getlocalename_l — get a locale name from a locale object

SYNOPSIS
CX #include <locale.h>

const char *getlocalename_l(int category, locale_t locobj);

DESCRIPTION
If category is not LC_ALL, the getlocalename_l() function shall return the locale name for the
given locale category of the locale object locobj, or of the global locale if locobj is the special locale
object LC_GLOBAL_LOCALE.

If category is LC_ALL, the getlocalename_l() function shall return a string that encodes the locale
settings for all locale categories of the locale object locobj, or of the global locale if locobj is the
special locale object LC_GLOBAL_LOCALE, in the same form as is returned by setlocale(). The
string returned is such that a subsequent call to setlocale(), from the same process, with a pointer
to that string as locale and the LC_ALL category shall set the global locale to the same locale for
each category as was present in the queried object.

If the value of the category argument is neither LC_ALL nor a supported locale category value
(see setlocale()), getlocalename_l() shall fail.

The behavior is undefined if the locobj argument is neither the special locale object
LC_GLOBAL_LOCALE nor a valid locale object handle.

RETURN VALUE
Upon successful completion, getlocalename_l() shall return a pointer to a string; otherwise, a null
pointer shall be returned.

If locobj is LC_GLOBAL_LOCALE, the returned string pointer might be invalidated or the string
content might be overwritten by a subsequent call in the same thread to getlocalename_l() with
LC_GLOBAL_LOCALE; the returned string pointer might also be invalidated if the calling
thread is terminated. Otherwise, the returned string pointer and content shall remain valid until
the locale object locobj is used in a call to freelocale() or as the base argument in a successful call to
newlocale().

ERRORS
No errors are defined.

EXAMPLES

Determining the locale name for a category of the current locale

The following example shows how to obtain the locale name for the LC_NUMERIC category of
the current thread-local locale, or of the global locale if no thread-local locale is in use.

#include <locale.h>
...
const char *name;
locale_t loc = uselocale(NULL);
name = getlocalename_l(LC_NUMERIC, loc);

APPLICATION USAGE
In addition to the caveats regarding validity of the returned string pointer in RETURN VALUE,
the content of the string returned when category is LC_ALL is only required to be valid for the
life of the process, so is not intended for storage or sharing between processes. As the internal
format of the string is implementation-specific, there is nothing preventing a subsequent run of

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1141

39028

39029

39030

39031

39032

39033

39034

39035

39036

39037

39038

39039

39040

39041

39042

39043

39044

39045

39046

39047

39048

39049

39050

39051

39052

39053

39054

39055

39056

39057

39058

39059

39060

39061

39062

39063

39064

39065

39066

39067

39068

39069

39070

39071

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getlocalename_l() System Interfaces

an application from being presented a different format, for example if the implementation is
updated.

RATIONALE
Historical versions of getlocalename_l() did not handle the special locale object
LC_GLOBAL_LOCALE, requiring that applications used setlocale(category, NULL) to query the
global locale if uselocale(NULL) returned LC_GLOBAL_LOCALE. However, since setlocale() is
not required to be thread-safe (even when the only concurrent calls are ones that query the
locale), this method was problematic for multi-threaded processes. This standard requires that
getlocalename_l(category, LC_GLOBAL_LOCALE) queries the global locale in a thread-safe
manner, for example by returning a pointer to a thread-local internal buffer instead of a process-
wide internal buffer.

FUTURE DIRECTIONS
None.

SEE ALSO
freelocale(), newlocale(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>

CHANGE HISTORY
First released in Issue 8.

1142 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39072

39073

39074

39075

39076

39077

39078

39079

39080

39081

39082

39083

39084

39085

39086

39087

39088

39089

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getlogin()

NAME
getlogin, getlogin_r — get login name

SYNOPSIS
#include <unistd.h>

char *getlogin(void);
int getlogin_r(char *name, size_t namesize);

DESCRIPTION
The getlogin() function shall return a pointer to a string containing the user name associated by
the login activity with the controlling terminal of the current process. If getlogin() returns a non-
null pointer, then that pointer points to the name that the user logged in under, even if there are
several login names with the same user ID.

The getlogin() function need not be thread-safe.

The getlogin_r() function shall put the name associated by the login activity with the controlling
terminal of the current process in the character array pointed to by name. The array is namesize
characters long and should have space for the name and the terminating null character. The
maximum size of the login name is {LOGIN_NAME_MAX}.

If getlogin_r() is successful, name points to the name the user used at login, even if there are
several login names with the same user ID.

The getlogin() and getlogin_r() functions may make use of file descriptors 0, 1, and 2 to find the
controlling terminal of the current process, examining each in turn until the terminal is found. If
in this case none of these three file descriptors is open to the controlling terminal, these functions
may fail. The method used to find the terminal associated with a file descriptor may depend on
the file descriptor being open to the actual terminal device, not /dev/tty.

RETURN VALUE
Upon successful completion, getlogin() shall return a pointer to the login name or a null pointer
if the user’s login name cannot be found. Otherwise, it shall return a null pointer and set errno to
indicate the error.

The application shall not modify the string returned. The returned pointer might be invalidated
or the string content might be overwritten by a subsequent call to getlogin(). The returned
pointer and the string content might also be invalidated if the calling thread is terminated.

If successful, the getlogin_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENOTTY] None of the file descriptors 0, 1, or 2 is open to the controlling terminal of the
current process.

[ENXIO] The calling process has no controlling terminal.

The getlogin_r() function shall fail if:

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1143

39090

39091

39092

39093

39094

39095

39096

39097

39098

39099

39100

39101

39102

39103

39104

39105

39106

39107

39108

39109

39110

39111

39112

39113

39114

39115

39116

39117

39118

39119

39120

39121

39122

39123

39124

39125

39126

39127

39128

39129

39130

39131

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getlogin() System Interfaces

EXAMPLES

Getting the User Login Name

The following example calls the getlogin() function to obtain the name of the user associated
with the calling process, and passes this information to the getpwnam() function to get the
associated user database information.

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
...
char *lgn;
struct passwd *pw;
...
if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {

fprintf(stderr, "Get of user information failed.\n"); exit(1);
}

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) shall
return the name associated with the effective user ID of the process; getlogin() shall return the
name associated with the current login activity; and getpwuid(getuid()) shall return the name
associated with the real user ID of the process.

The getlogin_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
The getlogin() function returns a pointer to the user’s login name. The same user ID may be
shared by several login names. If it is desired to get the user database entry that is used during
login, the result of getlogin() should be used to provide the argument to the getpwnam()
function. (This might be used to determine the user’s login shell, particularly where a single user
has multiple login shells with distinct login names, but the same user ID.)

The information provided by the cuserid() function, which was originally defined in the
POSIX.1-1988 standard and subsequently removed, can be obtained by the following:

getpwuid(geteuid())

while the information provided by historical implementations of cuserid() can be obtained by:

getpwuid(getuid())

The thread-safe version of this function places the user name in a user-supplied buffer and
returns a non-zero value if it fails. The non-thread-safe version may return the name in a static
data area that may be overwritten by each call.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwnam(), getpwuid(), geteuid(), getuid()

XBD <limits.h>, <unistd.h>

1144 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39132

39133

39134

39135

39136

39137

39138

39139

39140

39141

39142

39143

39144

39145

39146

39147

39148

39149

39150

39151

39152

39153

39154

39155

39156

39157

39158

39159

39160

39161

39162

39163

39164

39165

39166

39167

39168

39169

39170

39171

39172

39173

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getlogin()

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getlogin_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getlogin() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getlogin_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EMFILE], [ENFILE], and [ENXIO] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The getlogin_r() function is moved from the Thread-Safe Functions option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0243 [172], XSH/TC1-2008/0244 [75],
and XSH/TC1-2008/0245 [172] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0168 [656] is applied.

Issue 8
Austin Group Defect 398 is applied, changing the [ERANGE] error from ``may fail’’ to ``shall
fail’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1145

39174

39175

39176

39177

39178

39179

39180

39181

39182

39183

39184

39185

39186

39187

39188

39189

39190

39191

39192

39193

39194

39195

39196

39197

39198

39199

39200

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getnameinfo() System Interfaces

NAME
getnameinfo — get name information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict sa, socklen_t salen,
char *restrict node, socklen_t nodelen, char *restrict service,
socklen_t servicelen, int flags);

DESCRIPTION
The getnameinfo() function shall translate a socket address to a node name and service location,
all of which are defined as in freeaddrinfo().

The sa argument points to a socket address structure to be translated. The salen argument
contains the length of the address pointed to by sa.

IP6 If the socket address structure contains an IPv4-mapped IPv6 address or an IPv4-compatible
IPv6 address, the implementation shall extract the embedded IPv4 address and lookup the node
name for that IPv4 address.

If the address is the IPv6 unspecified address ("::"), a lookup shall not be performed and the
behavior shall be the same as when the node’s name cannot be located.

If the node argument is non-NULL and the nodelen argument is non-zero, then the node argument
points to a buffer able to contain up to nodelen bytes that receives the node name as a null-
terminated string. If the node argument is NULL or the nodelen argument is zero, the node name
shall not be returned. If the node’s name cannot be located, the numeric form of the address
contained in the socket address structure pointed to by the sa argument is returned instead of its
name.

If the service argument is non-NULL and the servicelen argument is non-zero, then the service
argument points to a buffer able to contain up to servicelen bytes that receives the service name
as a null-terminated string. If the service argument is NULL or the servicelen argument is zero,
the service name shall not be returned. If the service’s name cannot be located, the numeric form
of the service address (for example, its port number) shall be returned instead of its name.

The flags argument is a flag that changes the default actions of the function. By default the fully-
qualified domain name (FQDN) for the host shall be returned, but:

• If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN shall be
returned for local hosts.

• If the flag bit NI_NUMERICHOST is set, the numeric form of the address contained in the
socket address structure pointed to by the sa argument shall be returned instead of its
name.

• If the flag bit NI_NAMEREQD is set, an error shall be returned if the host’s name cannot
be located.

• If the flag bit NI_NUMERICSERV is set, the numeric form of the service address shall be
returned (for example, its port number) instead of its name.

• If the flag bit NI_NUMERICSCOPE is set, the numeric form of the scope identifier shall be
returned (for example, interface index) instead of its name. This flag shall be ignored if the
sa argument is not an IPv6 address.

1146 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39201

39202

39203

39204

39205

39206

39207

39208

39209

39210

39211

39212

39213

39214

39215

39216

39217

39218

39219

39220

39221

39222

39223

39224

39225

39226

39227

39228

39229

39230

39231

39232

39233

39234

39235

39236

39237

39238

39239

39240

39241

39242

39243

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getnameinfo()

• If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service
(SOCK_DGRAM). The default behavior shall assume that the service is a stream service
(SOCK_STREAM).

Notes:

1. The two NI_NUMERICxxx flags are required to support the −n flag that many
commands provide.

2. The NI_DGRAM flag is required for the few AF_INET and AF_INET6 port numbers (for
example, [512,514]) that represent different services for UDP and TCP.

The getnameinfo() function shall be thread-safe.

RETURN VALUE
A zero return value for getnameinfo() indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful completion, getnameinfo() shall return the node and service names, if requested,
in the buffers provided. The returned names are always null-terminated strings.

ERRORS
The getnameinfo() function shall fail and return the corresponding value if:

[EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags had an invalid value.

[EAI_FAIL] A non-recoverable error occurred.

[EAI_FAMILY] The address family was not recognized or the address length was invalid for
the specified family.

[EAI_MEMORY] There was a memory allocation failure.

[EAI_NONAME] The name does not resolve for the supplied parameters.

NI_NAMEREQD is set and the host’s name cannot be located, or both
nodename and servname were null.

[EAI_OVERFLOW]
An argument buffer overflowed. The buffer pointed to by the node argument
or the service argument was too small.

[EAI_SYSTEM] A system error occurred. The error code can be found in errno.

EXAMPLES
None.

APPLICATION USAGE
If the returned values are to be used as part of any further name resolution (for example, passed
to getaddrinfo()), applications should provide buffers large enough to store any result possible on
the system.

Given the IPv4-mapped IPv6 address "::ffff:1.2.3.4", the implementation performs a
lookup as if the socket address structure contains the IPv4 address "1.2.3.4".

The IPv6 unspecified address ("::") and the IPv6 loopback address ("::1") are not
IPv4-compatible addresses.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1147

39244

39245

39246

39247

39248

39249

39250

39251

39252

39253

39254

39255

39256

39257

39258

39259

39260

39261

39262

39263

39264

39265

39266

39267

39268

39269

39270

39271

39272

39273

39274

39275

39276

39277

39278

39279

39280

39281

39282

39283

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getnameinfo() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endservent(), freeaddrinfo(), gai_strerror(), inet_ntop(), socket()

XBD <netdb.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getnameinfo() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/23 is applied, making various changes in
the SYNOPSIS and DESCRIPTION for alignment with IPv6.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/24 is applied, adding the
[EAI_OVERFLOW] error to the ERRORS section.

Issue 7
SD5-XSH-ERN-127 is applied, clarifying the behavior if the address is the IPv6 unspecified
address.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0246 [284] and XSH/TC1-2008/0247
[285] are applied.

1148 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39284

39285

39286

39287

39288

39289

39290

39291

39292

39293

39294

39295

39296

39297

39298

39299

39300

39301

39302

39303

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getnetbyaddr()

NAME
getnetbyaddr, getnetbyname, getnetent — network database functions

SYNOPSIS
#include <netdb.h>

struct netent *getnetbyaddr(uint32_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void);

DESCRIPTION
Refer to endnetent().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1149

39304

39305

39306

39307

39308

39309

39310

39311

39312

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getopt() System Interfaces

NAME
getopt, optarg, opterr, optind, optopt — command option parsing

SYNOPSIS
#include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int opterr, optind, optopt;

DESCRIPTION
The getopt() function is a command-line parser that shall follow Utility Syntax Guidelines 3, 4, 5,
6, 7, 9, and 10 in XBD Section 12.2 (on page 215).

The parameters argc and argv are the argument count and argument array as passed to main()
(see exec()). The argument optstring is a string of recognized option characters; if a character is
followed by a <colon>, the option takes an argument. All option characters allowed by Utility
Syntax Guideline 3 are allowed in optstring. The optstring argument can optionally start with a
<plus-sign> ('+'), which shall have no effect on behavior in a conforming environment. If a
<plus-sign> occurs anywhere besides the first character of optstring, the behavior is unspecified.
The implementation may accept other characters as an extension.

The variable optind is the index of the next element of the argv[] vector to be processed. It shall
be initialized to 1 by the system, and getopt() shall update it when it finishes with each element
of argv[]. If the application sets optind to zero before calling getopt(), the behavior is unspecified.
When an element of argv[] contains multiple option characters, it is unspecified how getopt()
determines which options have already been processed.

The getopt() function shall return the next option character (if one is found) from argv that
matches a character in optstring (excluding an optional leading <plus-sign>), if there is one that
matches. If the option takes an argument, getopt() shall set the variable optarg to point to the
option-argument as follows:

1. If the option was the last character in the string pointed to by an element of argv, then
optarg shall contain the next element of argv, and optind shall be incremented by 2. If the
resulting value of optind is greater than argc, this indicates a missing option-argument,
and getopt() shall return an error indication.

2. Otherwise, optarg shall point to the string following the option character in that element
of argv, and optind shall be incremented by 1.

If, when getopt() is called, any of the following is true:

argv[optind] is a null pointer
*argv[optind] is not the character '-'
argv[optind] points to the string "-"

getopt() shall return −1 without changing optind. If:

argv[optind] points to the string "--"

getopt() shall return −1 after incrementing optind.

If getopt() encounters a <colon> as an option character, or an option character that is not
contained in optstring after an optional leading <plus-sign>, it shall return the <question-mark>
('?') character. If it detects a missing option-argument, it shall return the <colon> character
(':') if the first character of optstring after an optional <plus-sign> was a <colon>, or a
<question-mark> character ('?') otherwise. In either case, getopt() shall set the variable optopt to
the option character that caused the error. If the application has not set the variable opterr to 0,

1150 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39313

39314

39315

39316

39317

39318

39319

39320

39321

39322

39323

39324

39325

39326

39327

39328

39329

39330

39331

39332

39333

39334

39335

39336

39337

39338

39339

39340

39341

39342

39343

39344

39345

39346

39347

39348

39349

39350

39351

39352

39353

39354

39355

39356

39357

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getopt()

and the first character of optstring after an optional <plus-sign> is not a <colon>, getopt() shall
also print a diagnostic message to stderr in the format specified for the getopts utility, unless the
stderr stream has wide orientation, in which case the behavior is undefined.

The getopt() function need not be thread-safe.

RETURN VALUE
The getopt() function shall return the next option character specified on the command line.

A <colon> (':') shall be returned if getopt() detects a missing argument and the first character
of optstring after an optional <plus-sign> was a <colon> (':').

A <question-mark> ('?') shall be returned if getopt() encounters a <colon> as an option
character, encounters an option character not in optstring, or detects a missing argument and the
first character of optstring after an optional <plus-sign> was not a <colon> (':').

Otherwise, getopt() shall return −1 when all command line options are parsed.

ERRORS
If the application has not set the variable opterr to 0, the first character of optstring is not a
<colon>, and a write error occurs while getopt() is printing a diagnostic message to stderr, then
the error indicator for stderr shall be set; but getopt() shall still succeed and the value of errno
after getopt() is unspecified.

EXAMPLES

Parsing Command Line Options

The following code fragment shows how you might process the arguments for a utility that can
take the mutually-exclusive options a and b and the options f and o, both of which require
arguments:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int c;
int bflg = 0, aflg = 0, errflg = 0;
char *ifile;
char *ofile;
. . .
while ((c = getopt(argc, argv, ":abf:o:")) != -1) {

switch(c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bflg++;

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1151

39358

39359

39360

39361

39362

39363

39364

39365

39366

39367

39368

39369

39370

39371

39372

39373

39374

39375

39376

39377

39378

39379

39380

39381

39382

39383

39384

39385

39386

39387

39388

39389

39390

39391

39392

39393

39394

39395

39396

39397

39398

39399

39400

39401

39402

39403

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getopt() System Interfaces

break;
case 'f':

ifile = optarg;
break;

case 'o':
ofile = optarg;
break;

case ':': /* -f or -o without operand */
fprintf(stderr,

"Option -%c requires an operand\n", optopt);
errflg++;
break;

case '?':
fprintf(stderr,

"Unrecognized option: '-%c'\n", optopt);
errflg++;

}
}
if (errflg) {

fprintf(stderr, "usage: . . . ");
exit(2);

}
for (; optind < argc; optind++) {

if (access(argv[optind], R_OK)) {
. . .

}
}

}
This code accepts any of the following as equivalent:

cmd -ao arg path path
cmd -a -o arg path path
cmd -o arg -a path path
cmd -a -o arg -- path path
cmd -a -oarg path path
cmd -aoarg path path

Selecting Options from the Command Line

The following example selects the type of database routines the user wants to use based on the
Options argument.

#include <unistd.h>
#include <string.h>
...
const char *Options = "hdbtl";
...
int dbtype, c;
char *st;
...
dbtype = 0;
while ((c = getopt(argc, argv, Options)) != -1) {

if ((st = strchr(Options, c)) != NULL) {

1152 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39404

39405

39406

39407

39408

39409

39410

39411

39412

39413

39414

39415

39416

39417

39418

39419

39420

39421

39422

39423

39424

39425

39426

39427

39428

39429

39430

39431

39432

39433

39434

39435

39436

39437

39438

39439

39440

39441

39442

39443

39444

39445

39446

39447

39448

39449

39450

39451

39452

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getopt()

dbtype = st - Options;
break;

}
}

APPLICATION USAGE
The getopt() function is only required to support option characters included in Utility Syntax
Guideline 3. Many historical implementations of getopt() support other characters as options.
This is an allowed extension, but applications that use extensions are not maximally portable.
Note that support for multi-byte option characters is only possible when such characters can be
represented as type int.

Applications which use wide-character output functions with stderr should ensure that any calls
to getopt() do not write to stderr, either by setting opterr to 0 or by ensuring the first character of
optstring is always a <colon>.

While ferror(stderr) may be used to detect failures to write a diagnostic to stderr when getopt()
returns '?', the value of errno is unspecified in such a condition. Applications desiring more
control over handling write failures should set opterr to 0 and independently perform output to
stderr, rather than relying on getopt() to do the output.

RATIONALE
The optopt variable represents historical practice and allows the application to obtain the identity
of the invalid option.

The description has been written to make it clear that getopt(), like the getopts utility, deals with
option-arguments whether separated from the option by <blank> characters or not. Note that
the requirements on getopt() and getopts are more stringent than the Utility Syntax Guidelines.

The getopt() function shall return −1, rather than EOF, so that <stdio.h> is not required.

The special significance of a <colon> as the first character of optstring makes getopt() consistent
with the getopts utility. It allows an application to make a distinction between a missing
argument and an incorrect option letter without having to examine the option letter. It is true
that a missing argument can only be detected in one case, but that is a case that has to be
considered.

In some non-conforming environments, the use of a leading <plus-sign> in optstring forces
getopt() to behave in a conforming way, when it would otherwise have non-conforming
behavior. Its use has been standardized to allow applications to be written that can guarantee
behavior consistent with this specification even in an otherwise non-conforming environment. If
both <plus-sign> and <colon> are used at the beginning of optstring, the <plus-sign> must be
first.

Note that the use of a leading <plus-sign> in optstring is only standardized for getopt(). Use of a
<plus-sign> is intentionally left unspecified for the getopts utility, where historical
implementations did not require a leading <plus-sign> for conforming behavior, and because
some historical getopts implementations used a leading <plus-sign> for a different extension.

FUTURE DIRECTIONS
None.

SEE ALSO
exec

XBD Section 12.2 (on page 215), <unistd.h>

XCU getopts

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1153

39453

39454

39455

39456

39457

39458

39459

39460

39461

39462

39463

39464

39465

39466

39467

39468

39469

39470

39471

39472

39473

39474

39475

39476

39477

39478

39479

39480

39481

39482

39483

39484

39485

39486

39487

39488

39489

39490

39491

39492

39493

39494

39495

39496

39497

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getopt() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the getopt() function need not be reentrant is added to the DESCRIPTION.

Issue 6
IEEE PASC Interpretation 1003.2 #150 is applied.

Austin Group Interpretation 1003.1-2001 #156 is applied.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0248 [318], XSH/TC1-2008/0249 [460],
XSH/TC1-2008/0250 [189], XSH/TC1-2008/0251 [189], XSH/TC1-2008/0252 [189], and
XSH/TC1-2008/0253 [460] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0169 [608] is applied.

Issue 8
Austin Group Defect 191 is applied, allowing a leading <plus-sign> in optstring.

Austin Group Defect 1179 is applied, adding some missing '}' characters at the end of the
example code.

Austin Group Defect 1523 is applied, clarifying the conditions under which getopt() returns −1
without changing optind.

1154 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39498

39499

39500

39501

39502

39503

39504

39505

39506

39507

39508

39509

39510

39511

39512

39513

39514

39515

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpeername()

NAME
getpeername — get the name of the peer socket

SYNOPSIS
#include <sys/socket.h>

int getpeername(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The getpeername() function shall retrieve the peer address of the specified socket, store this
address in the sockaddr structure pointed to by the address argument, and store the length of this
address in the object pointed to by the address_len argument.

The address_len argument points to a socklen_t object which on input specifies the length of the
supplied sockaddr structure, and on output specifies the length of the peer address. If the actual
length of the address is greater than the length of the supplied sockaddr structure, the stored
address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The getpeername() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The socket has been shut down.

[ENOTCONN] The socket is not connected or otherwise has not had the peer pre-specified.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The operation is not supported for the socket protocol.

The getpeername() function may fail if:

[ENOBUFS] Insufficient resources were available in the system to complete the call.

EXAMPLES
None.

APPLICATION USAGE
For AF_UNIX sockets, it is recommended that address points to a buffer of length greater than
sizeof(struct sockaddr_un) which has been initialized with null bytes. That way, even if
the implementation supports the use of all bytes of sun_path without a terminating null byte, the
larger buffer guarantees that the sun_path member can then be passed to other interfaces that
expect a null-terminated string. If no truncation occurred based on the input value of address_len,
it is unspecified whether the returned address_len will be sizeof(struct sockaddr_un), or
merely a value at least as large as offsetof(struct sockaddr_un, sun_path) plus the
number of non-null bytes stored in sun_path.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1155

39516

39517

39518

39519

39520

39521

39522

39523

39524

39525

39526

39527

39528

39529

39530

39531

39532

39533

39534

39535

39536

39537

39538

39539

39540

39541

39542

39543

39544

39545

39546

39547

39548

39549

39550

39551

39552

39553

39554

39555

39556

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getpeername() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), getsockname(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getpeername() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0254 [464] is applied.

Issue 8
Austin Group Defect 561 is applied, adding a paragraph about sun_path to APPLICATION
USAGE.

Austin Group Defect 1565 is applied, changing the description of address_len.

1156 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39557

39558

39559

39560

39561

39562

39563

39564

39565

39566

39567

39568

39569

39570

39571

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpgid()

NAME
getpgid — get the process group ID for a process

SYNOPSIS
#include <unistd.h>

pid_t getpgid(pid_t pid);

DESCRIPTION
The getpgid() function shall return the process group ID of the process whose process ID is equal
to pid. If pid is equal to 0, getpgid() shall return the process group ID of the calling process.

RETURN VALUE
Upon successful completion, getpgid() shall return a process group ID. Otherwise, it shall return
(pid_t)−1 and set errno to indicate the error.

ERRORS
The getpgid() function shall fail if:

[EPERM] The process whose process ID is equal to pid is not in the same session as the
calling process, and the implementation does not allow access to the process
group ID of that process from the calling process.

[ESRCH] There is no process with a process ID equal to pid.

The getpgid() function may fail if:

[EINVAL] The value of the pid argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgrp(), getpid(), getsid(), setpgid(), setsid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The getpgid() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1157

39572

39573

39574

39575

39576

39577

39578

39579

39580

39581

39582

39583

39584

39585

39586

39587

39588

39589

39590

39591

39592

39593

39594

39595

39596

39597

39598

39599

39600

39601

39602

39603

39604

39605

39606

39607

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getpgrp() System Interfaces

NAME
getpgrp — get the process group ID of the calling process

SYNOPSIS
#include <unistd.h>

pid_t getpgrp(void);

DESCRIPTION
The getpgrp() function shall return the process group ID of the calling process.

RETURN VALUE
The getpgrp() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
4.3 BSD provides a getpgrp() function that returns the process group ID for a specified process.
Although this function supports job control, all known job control shells always specify the
calling process with this function. Thus, the simpler System V getpgrp() suffices, and the added
complexity of the 4.3 BSD getpgrp() is provided by the getpgid() function.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgid(), getpid(), getppid(), kill(), setpgid(), setsid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Issue 8
Austin Group Defect 1245 is applied, changing the RATIONALE section.

1158 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39608

39609

39610

39611

39612

39613

39614

39615

39616

39617

39618

39619

39620

39621

39622

39623

39624

39625

39626

39627

39628

39629

39630

39631

39632

39633

39634

39635

39636

39637

39638

39639

39640

39641

39642

39643

39644

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpid()

NAME
getpid — get the process ID

SYNOPSIS
#include <unistd.h>

pid_t getpid(void);

DESCRIPTION
The getpid() function shall return the process ID of the calling process.

RETURN VALUE
The getpid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgrp(), getppid(), kill(), mkdtemp(), setpgid(), setsid()

XBD <sys/types.h>, <unistd.h>
CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1159

39645

39646

39647

39648

39649

39650

39651

39652

39653

39654

39655

39656

39657

39658

39659

39660

39661

39662

39663

39664

39665

39666

39667

39668

39669

39670

39671

39672

39673

39674

39675

39676

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getppid() System Interfaces

NAME
getppid — get the parent process ID

SYNOPSIS
#include <unistd.h>

pid_t getppid(void);

DESCRIPTION
The getppid() function shall return the parent process ID of the calling process.

RETURN VALUE
The getppid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgid(), getpgrp(), getpid(), kill(), setpgid(), setsid()

XBD <sys/types.h>, <unistd.h>
CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1160 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39677

39678

39679

39680

39681

39682

39683

39684

39685

39686

39687

39688

39689

39690

39691

39692

39693

39694

39695

39696

39697

39698

39699

39700

39701

39702

39703

39704

39705

39706

39707

39708

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpriority()

NAME
getpriority, setpriority — get and set the nice value

SYNOPSIS
XSI #include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);

DESCRIPTION
The getpriority() function shall obtain the nice value of a process, process group, or user. The
setpriority() function shall set the nice value of a process, process group, or user to
value+{NZERO}.

Target processes are specified by the values of the which and who arguments. The which
argument may be one of the following values: PRIO_PROCESS, PRIO_PGRP, or PRIO_USER,
indicating that the who argument is to be interpreted as a process ID, a process group ID, or an
effective user ID, respectively. A 0 value for the who argument specifies the current process,
process group, or user.

The nice value set with setpriority() shall be applied to the process. If the process is multi-
threaded, the nice value shall affect all system scope threads in the process.

If more than one process is specified, getpriority() shall return value {NZERO} less than the
lowest nice value pertaining to any of the specified processes, and setpriority() shall set the nice
values of all of the specified processes to value+{NZERO}.

The default nice value is {NZERO}; lower nice values shall cause more favorable scheduling.
While the range of valid nice values is [0,{NZERO}*2−1], implementations may enforce more
restrictive limits. If value+{NZERO} is less than the system’s lowest supported nice value,
setpriority() shall set the nice value to the lowest supported value; if value+{NZERO} is greater
than the system’s highest supported nice value, setpriority() shall set the nice value to the
highest supported value.

Only a process with appropriate privileges can lower its nice value.

PS|TPS Any processes or threads using SCHED_FIFO or SCHED_RR shall be unaffected by a call to
setpriority(). This is not considered an error. A process which subsequently reverts to
SCHED_OTHER need not have its priority affected by such a setpriority() call.

The effect of changing the nice value may vary depending on the process-scheduling algorithm
in effect.

Since getpriority() can return the value −1 upon successful completion, it is necessary to set errno
to 0 prior to a call to getpriority(). If getpriority() returns the value −1, then errno can be checked
to see if an error occurred or if the value is a legitimate nice value.

RETURN VALUE
Upon successful completion, getpriority() shall return an integer in the range −{NZERO} to
{NZERO}−1. Otherwise, −1 shall be returned and errno set to indicate the error.

Upon successful completion, setpriority() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1161

39709

39710

39711

39712

39713

39714

39715

39716

39717

39718

39719

39720

39721

39722

39723

39724

39725

39726

39727

39728

39729

39730

39731

39732

39733

39734

39735

39736

39737

39738

39739

39740

39741

39742

39743

39744

39745

39746

39747

39748

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getpriority() System Interfaces

ERRORS
The getpriority() and setpriority() functions shall fail if:

[ESRCH] No process could be located using the which and who argument values
specified.

[EINVAL] The value of the which argument was not recognized, or the value of the who
argument is not a valid process ID, process group ID, or user ID.

In addition, setpriority() may fail if:

[EPERM] A process was located, but neither the real nor effective user ID of the
executing process match the effective user ID of the process whose nice value
is being changed.

[EACCES] A request was made to change the nice value to a lower numeric value and the
current process does not have appropriate privileges.

EXAMPLES

Using getpriority()

The following example returns the current scheduling priority for the process ID returned by the
call to getpid().

#include <sys/resource.h>
...
int which = PRIO_PROCESS;
id_t pid;
int ret;

pid = getpid();
ret = getpriority(which, pid);

Using setpriority()

The following example sets the priority for the current process ID to −20.

#include <sys/resource.h>
...
int which = PRIO_PROCESS;
id_t pid;
int priority = -20;
int ret;

pid = getpid();
ret = setpriority(which, pid, priority);

APPLICATION USAGE
The getpriority() and setpriority() functions work with an offset nice value (nice value
−{NZERO}). The nice value is in the range [0,2*{NZERO} −1], while the return value for
getpriority() and the third parameter for setpriority() are in the range [−{NZERO},{NZERO} −1].

RATIONALE
None.

1162 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39749

39750

39751

39752

39753

39754

39755

39756

39757

39758

39759

39760

39761

39762

39763

39764

39765

39766

39767

39768

39769

39770

39771

39772

39773

39774

39775

39776

39777

39778

39779

39780

39781

39782

39783

39784

39785

39786

39787

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpriority()

FUTURE DIRECTIONS
None.

SEE ALSO
nice(), sched_get_priority_max(), sched_setscheduler()

XBD <sys/resource.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is reworded in terms of the nice value rather than priority to avoid confusion
with functionality in the POSIX Realtime Extension.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1163

39788

39789

39790

39791

39792

39793

39794

39795

39796

39797

39798

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getprotobyname() System Interfaces

NAME
getprotobyname, getprotobynumber, getprotoent — network protocol database functions

SYNOPSIS
#include <netdb.h>

struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);

DESCRIPTION
Refer to endprotoent().

1164 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39799

39800

39801

39802

39803

39804

39805

39806

39807

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpwent()

NAME
getpwent — get user database entry

SYNOPSIS
XSI #include <pwd.h>

struct passwd *getpwent(void);

DESCRIPTION
Refer to endpwent().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1165

39808

39809

39810

39811

39812

39813

39814

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getpwnam() System Interfaces

NAME
getpwnam, getpwnam_r — search user database for a name

SYNOPSIS
#include <pwd.h>

struct passwd *getpwnam(const char *name);
int getpwnam_r(const char *name, struct passwd *pwd, char *buffer,

size_t bufsize, struct passwd **result);

DESCRIPTION
The getpwnam() function shall search the user database for an entry with a matching name.

The getpwnam() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling
getpwnam(). If getpwnam() returns a null pointer and errno is non-zero, an error occurred.

The getpwnam_r() function shall update the passwd structure pointed to by pwd and store a
pointer to that structure at the location pointed to by result. The structure shall contain an entry
from the user database with a matching name. Storage referenced by the structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. A call to
sysconf (_SC_GETPW_R_SIZE_MAX) returns either −1 without changing errno or an initial value
suggested for the size of this buffer. A null pointer shall be returned at the location pointed to
by result on error or if the requested entry is not found.

RETURN VALUE
The getpwnam() function shall return a pointer to a struct passwd with the structure as defined
in <pwd.h> with a matching entry if found. A null pointer shall be returned if the requested
entry is not found, or an error occurs. If the requested entry was not found, errno shall not be
changed. On error, errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getpwent(), getpwnam(), or getpwuid(). The returned pointer, and pointers
within the structure, might also be invalidated if the calling thread is terminated.

The getpwnam_r() function shall return zero on success or if the requested entry was not found
and no error has occurred. If an error has occurred, an error number shall be returned to indicate
the error.

ERRORS
These functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwnam().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getpwnam_r() function shall fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

1166 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39815

39816

39817

39818

39819

39820

39821

39822

39823

39824

39825

39826

39827

39828

39829

39830

39831

39832

39833

39834

39835

39836

39837

39838

39839

39840

39841

39842

39843

39844

39845

39846

39847

39848

39849

39850

39851

39852

39853

39854

39855

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpwnam()

EXAMPLES
Note that sysconf (_SC_GETPW_R_SIZE_MAX) may return −1 if there is no hard limit on the size
of the buffer needed to store all the groups returned. This example shows how an application
can allocate a buffer of sufficient size to work with getpwnam_r().

long int initlen = sysconf(_SC_GETPW_R_SIZE_MAX);
size_t len;
if (initlen == -1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct passwd result;
struct passwd *resultp;
char *buffer = malloc(len);
if (buffer == NULL)

...handle error...
int e;
while ((e = getpwnam_r("someuser", &result, buffer, len, &resultp))

== ERANGE)
{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer == NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Getting an Entry for the Login Name

The following example uses the getlogin() function to return the name of the user who logged in;
this information is passed to the getpwnam() function to get the user database entry for that user.

#include <sys/types.h>
#include <pwd.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
...
char *lgn;
struct passwd *pw;
...
if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {

fprintf(stderr, "Get of user information failed.\n"); exit(1);
}
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1167

39856

39857

39858

39859

39860

39861

39862

39863

39864

39865

39866

39867

39868

39869

39870

39871

39872

39873

39874

39875

39876

39877

39878

39879

39880

39881

39882

39883

39884

39885

39886

39887

39888

39889

39890

39891

39892

39893

39894

39895

39896

39897

39898

39899

39900

39901

39902

39903

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getpwnam() System Interfaces

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin() returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated
with the real user ID of the process.

The getpwnam_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1
from sysconf() indicating that there is no maximum for _SC_GETPW_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwuid(), sysconf()

XBD <pwd.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getpwnam_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getpwnam() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getpwnam_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the name.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EMFILE], [ENFILE], and [ENXIO] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

1168 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39904

39905

39906

39907

39908

39909

39910

39911

39912

39913

39914

39915

39916

39917

39918

39919

39920

39921

39922

39923

39924

39925

39926

39927

39928

39929

39930

39931

39932

39933

39934

39935

39936

39937

39938

39939

39940

39941

39942

39943

39944

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpwnam()

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied.

The getpwnam_r() function is moved from the Thread-Safe Functions option to the Base.

A minor addition is made to the EXAMPLES section, reminding the application developer to
free memory allocated as if by malloc().

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0255 [75,428] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0170 [808] and XSH/TC2-2008/0171
[656] are applied.

Issue 8
Austin Group Defect 398 is applied, changing the [ERANGE] error from ``may fail’’ to ``shall
fail’’.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1169

39945

39946

39947

39948

39949

39950

39951

39952

39953

39954

39955

39956

39957

39958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getpwuid() System Interfaces

NAME
getpwuid, getpwuid_r — search user database for a user ID

SYNOPSIS
#include <pwd.h>

struct passwd *getpwuid(uid_t uid);
int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,

size_t bufsize, struct passwd **result);

DESCRIPTION
The getpwuid() function shall search the user database for an entry with a matching uid.

The getpwuid() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling getpwuid().
If getpwuid() returns a null pointer and errno is set to non-zero, an error occurred.

The getpwuid_r() function shall update the passwd structure pointed to by pwd and store a
pointer to that structure at the location pointed to by result. The structure shall contain an entry
from the user database with a matching uid. Storage referenced by the structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. A call to
sysconf (_SC_GETPW_R_SIZE_MAX) returns either −1 without changing errno or an initial value
suggested for the size of this buffer. A null pointer shall be returned at the location pointed to
by result on error or if the requested entry is not found.

RETURN VALUE
The getpwuid() function shall return a pointer to a struct passwd with the structure as defined in
<pwd.h> with a matching entry if found. A null pointer shall be returned if the requested entry
is not found, or an error occurs. If the requested entry was not found, errno shall not be changed.
On error, errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the
structure, might be invalidated or the structure or the storage areas might be overwritten by a
subsequent call to getpwent(), getpwnam(), or getpwuid(). The returned pointer, and pointers
within the structure, might also be invalidated if the calling thread is terminated.

If successful, the getpwuid_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwuid().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getpwuid_r() function shall fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

1170 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

39959

39960

39961

39962

39963

39964

39965

39966

39967

39968

39969

39970

39971

39972

39973

39974

39975

39976

39977

39978

39979

39980

39981

39982

39983

39984

39985

39986

39987

39988

39989

39990

39991

39992

39993

39994

39995

39996

39997

39998

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpwuid()

EXAMPLES
Note that sysconf (_SC_GETPW_R_SIZE_MAX) may return −1 if there is no hard limit on the size
of the buffer needed to store all the groups returned. This example shows how an application
can allocate a buffer of sufficient size to work with getpwuid_r().

long int initlen = sysconf(_SC_GETPW_R_SIZE_MAX);
size_t len;
if (initlen == -1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct passwd result;
struct passwd *resultp;
char *buffer = malloc(len);
if (buffer == NULL)

...handle error...
int e;
while ((e = getpwuid_r(42, &result, buffer, len, &resultp)) == ERANGE)

{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer == NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Getting an Entry for the Root User

The following example gets the user database entry for the user with user ID 0 (root).

#include <sys/types.h>
#include <pwd.h>
...
uid_t id = 0;
struct passwd *pwd;

pwd = getpwuid(id);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1171

39999

40000

40001

40002

40003

40004

40005

40006

40007

40008

40009

40010

40011

40012

40013

40014

40015

40016

40017

40018

40019

40020

40021

40022

40023

40024

40025

40026

40027

40028

40029

40030

40031

40032

40033

40034

40035

40036

40037

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getpwuid() System Interfaces

Finding the Name for the Effective User ID

The following example defines pws as a pointer to a structure of type passwd, which is used to
store the structure pointer returned by the call to the getpwuid() function. The geteuid() function
shall return the effective user ID of the calling process; this is used as the search criteria for the
getpwuid() function. The call to getpwuid() shall return a pointer to the structure containing that
user ID value.

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
...
struct passwd *pws;
pws = getpwuid(geteuid());

Finding an Entry in the User Database

The following example uses getpwuid() to search the user database for a user ID that was
previously stored in a stat structure, then prints out the user name if it is found. If the user is not
found, the program prints the numeric value of the user ID for the entry.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
...
struct stat statbuf;
struct passwd *pwd;
...
if ((pwd = getpwuid(statbuf.st_uid)) != NULL)

printf(" %-8.8s", pwd->pw_name);
else

printf(" %-8d", statbuf.st_uid);

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin() returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated
with the real user ID of the process.

The getpwuid_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1
from sysconf() indicating that there is no maximum for _SC_GETPW_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwnam(), geteuid(), getuid(), getlogin(), sysconf()

XBD <pwd.h>, <sys/types.h>

1172 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40038

40039

40040

40041

40042

40043

40044

40045

40046

40047

40048

40049

40050

40051

40052

40053

40054

40055

40056

40057

40058

40059

40060

40061

40062

40063

40064

40065

40066

40067

40068

40069

40070

40071

40072

40073

40074

40075

40076

40077

40078

40079

40080

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getpwuid()

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getpwuid_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getpwuid() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getpwuid_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the uid.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied.

The getpwuid_r() function is moved from the Thread-Safe Functions option to the Base.

A minor addition is made to the EXAMPLES section, reminding the application developer to
free memory allocated as if by malloc().

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0256 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0172 [808] and XSH/TC2-2008/0173
[656] are applied.

Issue 8
Austin Group Defect 398 is applied, changing the [ERANGE] error from ``may fail’’ to ``shall
fail’’.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1173

40081

40082

40083

40084

40085

40086

40087

40088

40089

40090

40091

40092

40093

40094

40095

40096

40097

40098

40099

40100

40101

40102

40103

40104

40105

40106

40107

40108

40109

40110

40111

40112

40113

40114

40115

40116

40117

40118

40119

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getresgid() System Interfaces

NAME
getresgid — get real group ID, effective group ID, and saved set-group-ID

SYNOPSIS
XSI #include <unistd.h>

int getresgid(gid_t *restrict rgid, gid_t *restrict egid,
gid_t *restrict sgid);

DESCRIPTION
The getresgid() function shall store the real group ID, effective group ID, and saved set-group-ID
of the calling process in the locations pointed to by the arguments rgid, egid, and sgid,
respectively.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 8.

1174 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40120

40121

40122

40123

40124

40125

40126

40127

40128

40129

40130

40131

40132

40133

40134

40135

40136

40137

40138

40139

40140

40141

40142

40143

40144

40145

40146

40147

40148

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getresuid()

NAME
getresuid — get real user ID, effective user ID, and saved set-user-ID

SYNOPSIS
XSI #include <unistd.h>

int getresuid(uid_t *restrict ruid, uid_t *restrict euid,
uid_t *restrict suid);

DESCRIPTION
The getresuid() function shall store the real user ID, effective user ID, and saved set-user-ID of
the calling process in the locations pointed to by the arguments ruid, euid, and suid, respectively.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresgid(), getuid(), setegid(), seteuid(), setgid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1175

40149

40150

40151

40152

40153

40154

40155

40156

40157

40158

40159

40160

40161

40162

40163

40164

40165

40166

40167

40168

40169

40170

40171

40172

40173

40174

40175

40176

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getrlimit() System Interfaces

NAME
getrlimit, setrlimit — control maximum resource consumption

SYNOPSIS
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);
int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
The getrlimit() function shall get, and the setrlimit() function shall set, limits on the consumption
of a variety of resources.

Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated upon as
well as a resource limit. A resource limit is represented by an rlimit structure. The rlim_cur
member specifies the current or soft limit and the rlim_max member specifies the maximum or
hard limit. Soft limits can be changed by a process to any value that is less than or equal to the
hard limit. A process can (irreversibly) lower its hard limit to any value that is greater than or
equal to the soft limit. Only a process with appropriate privileges can raise a hard limit. Both
hard and soft limits can be changed in a single call to setrlimit() subject to the constraints
described above.

The value RLIM_INFINITY, defined in <sys/resource.h>, shall be considered to be larger than
any other limit value. If a call to getrlimit() returns RLIM_INFINITY for a resource, it means the
implementation shall not enforce limits on that resource. Specifying RLIM_INFINITY as any
resource limit value on a successful call to setrlimit() shall inhibit enforcement of that resource
limit.

The following resources are defined:

RLIMIT_CORE This is the maximum size of a file containing a core image, in bytes, that
can be created by a process. A limit of 0 shall prevent the creation of such
a file. If this limit is exceeded, the writing of a file containing a core image
shall terminate at this size. Note that the production of such a file may be
one of the implementation-defined actions for abnormal termination.

XSI RLIMIT_CPU This is the maximum amount of CPU time, in seconds, used by a process.
If this limit is exceeded, SIGXCPU shall be generated for the process. If
the process is catching or ignoring SIGXCPU, or all threads belonging to
that process are blocking SIGXCPU, the behavior is unspecified.

RLIMIT_DATA This is the maximum size of a data segment of the process, in bytes. If
this limit is exceeded, the malloc() function shall fail with errno set to
[ENOMEM].

RLIMIT_FSIZE This is the maximum size of a file, in bytes, that can be created by a
process. If a write or truncate operation would cause this limit to be

XSI exceeded, a SIGXFSZ shall be generated for the thread; if the thread is
blocking, or the process is catching or ignoring SIGXFSZ, the operation
shall fail with an [EFBIG] error.

RLIMIT_NOFILE This is a number one greater than the maximum value that the system
shall assign to a newly-created descriptor. If this limit is exceeded,
functions that allocate a file descriptor shall fail with errno set to
[EMFILE]. This limit constrains the number of file descriptors that a
process can allocate.

1176 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40177

40178

40179

40180

40181

40182

40183

40184

40185

40186

40187

40188

40189

40190

40191

40192

40193

40194

40195

40196

40197

40198

40199

40200

40201

40202

40203

40204

40205

40206

40207

40208

40209

40210

40211

40212

40213

40214

40215

40216

40217

40218

40219

40220

40221

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getrlimit()

RLIMIT_STACK This is the maximum size of the initial thread’s stack, in bytes. The
implementation does not automatically grow the stack beyond this limit.
If this limit is exceeded, SIGSEGV shall be generated for the thread. If the
thread is blocking SIGSEGV, or the process is ignoring or catching
SIGSEGV and has not made arrangements to use an alternate stack, the
disposition of SIGSEGV shall be set to SIG_DFL before it is generated.

RLIMIT_AS This is the maximum size of total available memory of the process, in
bytes. If this limit is exceeded, the malloc() and mmap() functions shall fail
with errno set to [ENOMEM]. In addition, the automatic stack growth
fails with the effects outlined above.

When using the getrlimit() function, if a resource limit can be represented correctly in an object
of type rlim_t, then its representation is returned; otherwise, if the value of the resource limit is
equal to that of the corresponding saved hard limit, the value returned shall be
RLIM_SAVED_MAX; otherwise, the value returned shall be RLIM_SAVED_CUR.

When using the setrlimit() function, if the requested new limit is RLIM_INFINITY, the new limit
shall be ``no limit’’; otherwise, if the requested new limit is RLIM_SAVED_MAX, the new limit
shall be the corresponding saved hard limit; otherwise, if the requested new limit is
RLIM_SAVED_CUR, the new limit shall be the corresponding saved soft limit; otherwise, the
new limit shall be the requested value. In addition, if the corresponding saved limit can be
represented correctly in an object of type rlim_t then it shall be overwritten with the new limit.

The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified unless
a previous call to getrlimit() returned that value as the soft or hard limit for the corresponding
resource limit.

The determination of whether a limit can be correctly represented in an object of type rlim_t is
implementation-defined. For example, some implementations permit a limit whose value is
greater than RLIM_INFINITY and others do not.

The exec family of functions shall cause resource limits to be saved.

RETURN VALUE
Upon successful completion, getrlimit() and setrlimit() shall return 0. Otherwise, these functions
shall return −1 and set errno to indicate the error.

ERRORS
The getrlimit() and setrlimit() functions shall fail if:

[EINVAL] An invalid resource was specified; or in a setrlimit() call, the new rlim_cur
exceeds the new rlim_max.

[EPERM] The limit specified to setrlimit() would have raised the maximum limit value,
and the calling process does not have appropriate privileges.

The setrlimit() function may fail if:

[EINVAL] The limit specified cannot be lowered because current usage is already higher
than the limit.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1177

40222

40223

40224

40225

40226

40227

40228

40229

40230

40231

40232

40233

40234

40235

40236

40237

40238

40239

40240

40241

40242

40243

40244

40245

40246

40247

40248

40249

40250

40251

40252

40253

40254

40255

40256

40257

40258

40259

40260

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getrlimit() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the value
of {_POSIX_OPEN_MAX} from <limits.h>, unexpected behavior may occur.

If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the
highest currently open file descriptor +1, unexpected behavior may occur.

RATIONALE
These functions were previously part of the XSI option and have been moved to the Base so that
portable shells, and other utilities that need to relay the wait status of a child process to a parent,
can terminate themselves with the same signal that terminated the child but without
overwriting a core image created by the child (through setting RLIMIT_CORE to zero, which
disables core image creation). The RLIMIT_CPU and RLIMIT_FSIZE limits remain in the XSI
option because they relate to other XSI functionality (SIGXCPU and SIGXFSZ).

It should be noted that RLIMIT_STACK applies ``at least’’ to the stack of the initial thread in the
process, and not to the sum of all the stacks in the process, as that would be very limiting unless
the value is so big as to provide no value at all with a single thread.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), malloc(), open(), sigaltstack(), sysconf()

XBD <sys/resource.h>

XCU ulimit

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

An APPLICATION USAGE section is added.

Large File Summit extensions are added.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/25 is applied, changing wording for
RLIMIT_NOFILE in the DESCRIPTION related to functions that allocate a file descriptor failing
with [EMFILE]. Text is added to the APPLICATION USAGE section noting the consequences of
a process attempting to set the hard or soft limit for RLIMIT_NOFILE less than the highest
currently open file descriptor +1.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/46 is applied, updating the definition of
RLIMIT_STACK in the DESCRIPTION from ``the maximum size of a process stack’’ to ``the
maximum size of the initial thread’s stack’’. Text is added to the RATIONALE section.

Issue 8
Austin Group Defects 51 and 1669 are applied, moving the getrlimit() and setrlimit() functions,
excluding the RLIMIT_CPU limit, from the XSI option to the Base.

Austin Group Defect 1141 is applied, changing the description of RLIMIT_CORE.

Austin Group Defect 1416 is applied, changing some uses of ``may’’ to ``can’’ and one to ``shall’’.

1178 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40261

40262

40263

40264

40265

40266

40267

40268

40269

40270

40271

40272

40273

40274

40275

40276

40277

40278

40279

40280

40281

40282

40283

40284

40285

40286

40287

40288

40289

40290

40291

40292

40293

40294

40295

40296

40297

40298

40299

40300

40301

40302

40303

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getrlimit()

Austin Group Defect 1418 is applied, changing the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1179

40304

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getrusage() System Interfaces

NAME
getrusage — get information about resource utilization

SYNOPSIS
XSI #include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

DESCRIPTION
The getrusage() function shall provide measures of the resources used by the current process or
its terminated and waited-for child processes. If the value of the who argument is
RUSAGE_SELF, information shall be returned about resources used by the current process. If the
value of the who argument is RUSAGE_CHILDREN, information shall be returned about
resources used by the children of the current process that have terminated and been waited-for
and their children that have terminated and been waited-for, recursively. If the child is never
waited for (for example, if the parent has SA_NOCLDWAIT set or sets SIGCHLD to SIG_IGN),
the resource information for the child process is discarded and not included in the resource
information provided by getrusage().

The r_usage argument is a pointer to an object of type struct rusage in which the returned
information is stored.

RETURN VALUE
Upon successful completion, getrusage() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The getrusage() function shall fail if:

[EINVAL] The value of the who argument is not valid.

EXAMPLES

Using getrusage()

The following example returns information about the resources used by the current process.

#include <sys/resource.h>
...
int who = RUSAGE_SELF;
struct rusage usage;
int ret;

ret = getrusage(who, &usage);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), sigaction(), time(), times(), wait()

XBD <sys/resource.h>

1180 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40305

40306

40307

40308

40309

40310

40311

40312

40313

40314

40315

40316

40317

40318

40319

40320

40321

40322

40323

40324

40325

40326

40327

40328

40329

40330

40331

40332

40333

40334

40335

40336

40337

40338

40339

40340

40341

40342

40343

40344

40345

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getrusage()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 8
Austin Group Defect 1336 is applied, clarifying the requirements when the who argument is
RUSAGE_CHILDREN.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1181

40346

40347

40348

40349

40350

40351

40352

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getservbyname() System Interfaces

NAME
getservbyname, getservbyport, getservent — network services database functions

SYNOPSIS
#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);

DESCRIPTION
Refer to endservent().

1182 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40353

40354

40355

40356

40357

40358

40359

40360

40361

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getsid()

NAME
getsid — get the process group ID of a session leader

SYNOPSIS
#include <unistd.h>

pid_t getsid(pid_t pid);

DESCRIPTION
The getsid() function shall obtain the process group ID of the process that is the session leader of
the process specified by pid. If pid is (pid_t)0, it specifies the calling process.

RETURN VALUE
Upon successful completion, getsid() shall return the process group ID of the session leader of
the specified process. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The getsid() function shall fail if:

[EPERM] The process specified by pid is not in the same session as the calling process,
and the implementation does not allow access to the process group ID of the
session leader of that process from the calling process.

[ESRCH] There is no process with a process ID equal to pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpid(), getpgid(), setpgid(), setsid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The getsid() function is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0258 [421] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1183

40362

40363

40364

40365

40366

40367

40368

40369

40370

40371

40372

40373

40374

40375

40376

40377

40378

40379

40380

40381

40382

40383

40384

40385

40386

40387

40388

40389

40390

40391

40392

40393

40394

40395

40396

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getsockname() System Interfaces

NAME
getsockname — get the socket name

SYNOPSIS
#include <sys/socket.h>

int getsockname(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The getsockname() function shall retrieve the locally-bound name of the specified socket, store
this address in the sockaddr structure pointed to by the address argument, and store the length of
this address in the object pointed to by the address_len argument.

The address_len argument points to a socklen_t object which on input specifies the length of the
supplied sockaddr structure, and on output specifies the length of the socket address. If the
actual length of the address is greater than the length of the supplied sockaddr structure, the
stored address shall be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed to by
address is unspecified.

RETURN VALUE
Upon successful completion, 0 shall be returned, the address argument shall point to the address
of the socket, and the address_len argument shall point to the length of the address. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The getsockname() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The operation is not supported for this socket’s protocol.

The getsockname() function may fail if:

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources were available in the system to complete the function.

EXAMPLES
None.

APPLICATION USAGE
For AF_UNIX sockets, it is recommended that address points to a buffer of length greater than
sizeof(struct sockaddr_un) which has been initialized with null bytes. That way, even if
the implementation supports the use of all bytes of sun_path without a terminating null byte, the
larger buffer guarantees that the sun_path member can then be passed to other interfaces that
expect a null-terminated string. If no truncation occurred based on the input value of address_len,
it is unspecified whether the returned address_len will be sizeof(struct sockaddr_un), or
merely a value at least as large as offsetof(struct sockaddr_un, sun_path) plus the
number of non-null bytes stored in sun_path.

RATIONALE
None.

1184 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40397

40398

40399

40400

40401

40402

40403

40404

40405

40406

40407

40408

40409

40410

40411

40412

40413

40414

40415

40416

40417

40418

40419

40420

40421

40422

40423

40424

40425

40426

40427

40428

40429

40430

40431

40432

40433

40434

40435

40436

40437

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getsockname()

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), getpeername(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getsockname() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0259 [464] is applied.

Issue 8
Austin Group Defect 561 is applied, adding a paragraph about sun_path to APPLICATION
USAGE.

Austin Group Defect 1565 is applied, changing the description of address_len.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1185

40438

40439

40440

40441

40442

40443

40444

40445

40446

40447

40448

40449

40450

40451

40452

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getsockopt() System Interfaces

NAME
getsockopt — get the socket options

SYNOPSIS
#include <sys/socket.h>

int getsockopt(int socket, int level, int option_name,
void *restrict option_value, socklen_t *restrict option_len);

DESCRIPTION
The getsockopt() function manipulates options associated with a socket.

The getsockopt() function shall retrieve the value for the option specified by the option_name
argument for the socket specified by the socket argument. If the size of the option value is greater
than option_len, the value stored in the object pointed to by the option_value argument shall be
silently truncated. Otherwise, the object pointed to by the option_len argument shall be modified
to indicate the actual length of the value.

The level argument specifies the protocol level at which the option resides. To retrieve options at
the socket level, specify the level argument as SOL_SOCKET. To retrieve options at other levels,
supply the appropriate level identifier for the protocol controlling the option. For example, to
indicate that an option is interpreted by the TCP (Transmission Control Protocol), set level to
IPPROTO_TCP as defined in the <netinet/in.h> header.

The socket in use may require the process to have appropriate privileges to use the getsockopt()
function.

The option_name argument specifies a single option to be retrieved. It can be one of the socket-
level options defined in <sys/socket.h> and described in Section 2.10.16 (on page 554).

RETURN VALUE
Upon successful completion, getsockopt() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The getsockopt() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The specified option is invalid at the specified socket level.

[ENOPROTOOPT]
The option is not supported by the protocol.

[ENOTSOCK] The socket argument does not refer to a socket.

The getsockopt() function may fail if:

[EACCES] The calling process does not have appropriate privileges.

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources are available in the system to complete the function.

1186 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40453

40454

40455

40456

40457

40458

40459

40460

40461

40462

40463

40464

40465

40466

40467

40468

40469

40470

40471

40472

40473

40474

40475

40476

40477

40478

40479

40480

40481

40482

40483

40484

40485

40486

40487

40488

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getsockopt()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10.16 (on page 554), bind(), close(), endprotoent(), setsockopt(), socket()

XBD <sys/socket.h>, <netinet/in.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getsockopt() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/47 is applied, updating the description of
SO_LINGER in the DESCRIPTION so that it blocks the calling thread rather than the process.

Issue 7
Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to socket options
that is now in Section 2.10.16 (on page 554).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1187

40489

40490

40491

40492

40493

40494

40495

40496

40497

40498

40499

40500

40501

40502

40503

40504

40505

40506

40507

40508

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getsubopt() System Interfaces

NAME
getsubopt — parse suboption arguments from a string

SYNOPSIS
CX #include <stdlib.h>

int getsubopt(char **restrict optionp,
char * const *restrict keylistp, char **restrict valuep);

DESCRIPTION
The getsubopt() function shall parse suboption arguments in a flag argument. Such options often
result from the use of getopt().

The getsubopt() argument optionp is a pointer to a pointer to the option argument string. The
suboption arguments shall be separated by <comma> characters and each may consist of either
a single token, or a token-value pair separated by an <equals-sign>.

The keylistp argument shall be a pointer to a vector of strings. The end of the vector is identified
by a null pointer. Each entry in the vector is one of the possible tokens that might be found in
*optionp. Since <comma> characters delimit suboption arguments in optionp, they should not
appear in any of the strings pointed to by keylistp. Similarly, because an <equals-sign> separates
a token from its value, the application should not include an <equals-sign> in any of the strings
pointed to by keylistp. The getsubopt() function shall not modify the keylistp vector.

The valuep argument is the address of a value string pointer.

If a <comma> appears in optionp, it shall be interpreted as a suboption separator. After <comma>
characters have been processed, if there are one or more <equals-sign> characters in a suboption
string, the first <equals-sign> in any suboption string shall be interpreted as a separator between
a token and a value. Subsequent <equals-sign> characters in a suboption string shall be
interpreted as part of the value.

If the string at *optionp contains only one suboption argument (equivalently, no <comma>
characters), getsubopt() shall update *optionp to point to the null character at the end of the
string. Otherwise, it shall isolate the suboption argument by replacing the <comma> separator
with a null character, and shall update *optionp to point to the start of the next suboption
argument. If the suboption argument has an associated value (equivalently, contains an <equals-
sign>), getsubopt() shall update *valuep to point to the value’s first character. Otherwise, it shall
set *valuep to a null pointer. The calling application may use this information to determine
whether the presence or absence of a value for the suboption is an error.

Additionally, when getsubopt() fails to match the suboption argument with a token in the keylistp
array, the calling application should decide if this is an error, or if the unrecognized option
should be processed in another way.

RETURN VALUE
The getsubopt() function shall return the index of the matched token string, or −1 if no token
strings were matched.

ERRORS
No errors are defined.

1188 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40509

40510

40511

40512

40513

40514

40515

40516

40517

40518

40519

40520

40521

40522

40523

40524

40525

40526

40527

40528

40529

40530

40531

40532

40533

40534

40535

40536

40537

40538

40539

40540

40541

40542

40543

40544

40545

40546

40547

40548

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getsubopt()

EXAMPLES

Parsing Suboptions

The following example uses the getsubopt() function to parse a value argument in the optarg
external variable returned by a call to getopt().

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int do_all;
const char *type;
int read_size;
int write_size;
int read_only;

enum
{

RO_OPTION = 0,
RW_OPTION,
READ_SIZE_OPTION,
WRITE_SIZE_OPTION

};

const char *mount_opts[] =
{

[RO_OPTION] = "ro",
[RW_OPTION] = "rw",
[READ_SIZE_OPTION] = "rsize",
[WRITE_SIZE_OPTION] = "wsize",
NULL

};

int
main(int argc, char *argv[])
{

char *subopts, *value;
int opt;

while ((opt = getopt(argc, argv, "at:o:")) != -1)
switch(opt)

{
case 'a':

do_all = 1;
break;

case 't':
type = optarg;
break;

case 'o':
subopts = optarg;
while (*subopts != ' ')
{

char *saved = subopts;
switch(getsubopt(&subopts, (char **)mount_opts,

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1189

40549

40550

40551

40552

40553

40554

40555

40556

40557

40558

40559

40560

40561

40562

40563

40564

40565

40566

40567

40568

40569

40570

40571

40572

40573

40574

40575

40576

40577

40578

40579

40580

40581

40582

40583

40584

40585

40586

40587

40588

40589

40590

40591

40592

40593

40594

40595

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getsubopt() System Interfaces

&value))
{
case RO_OPTION:

read_only = 1;
break;

case RW_OPTION:
read_only = 0;
break;

case READ_SIZE_OPTION:
if (value == NULL)

abort();
read_size = atoi(value);
break;

case WRITE_SIZE_OPTION:
if (value == NULL)

abort();
write_size = atoi(value);
break;

default:
/* Unknown suboption. */
printf("Unknown suboption `%s'\n", saved);
abort();

}
}
break;

default:
abort();

}
/* Do the real work. */

return 0;
}

If the above example is invoked with:

program -o ro,rsize=512

then after option parsing, the variable do_all will be 0, type will be a null pointer, read_size will be
512, write_size will be 0, and read_only will be 1. If it is invoked with:

program -o oops

it will print:

"Unknown suboption `oops'"

before aborting.

APPLICATION USAGE
The value of *valuep when getsubopt() returns −1 is unspecified. Historical implementations
provide various incompatible extensions to allow an application to access the suboption text that
was not found in the keylistp array.

1190 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40596

40597

40598

40599

40600

40601

40602

40603

40604

40605

40606

40607

40608

40609

40610

40611

40612

40613

40614

40615

40616

40617

40618

40619

40620

40621

40622

40623

40624

40625

40626

40627

40628

40629

40630

40631

40632

40633

40634

40635

40636

40637

40638

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getsubopt()

RATIONALE
The keylistp argument of getsubopt() is typed as char * const * to match historical practice.
However, the standard is clear that implementations will not modify either the array or the
strings contained in the array, as if the argument had been typed const char * const *.

FUTURE DIRECTIONS
None.

SEE ALSO
getopt()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/26 is applied, correcting an editorial error
in the SYNOPSIS.

Issue 7
The getsubopt() function is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0260 [196], XSH/TC1-2008/0261 [196],
XSH/TC1-2008/0262 [196], XSH/TC1-2008/0263 [196], XSH/TC1-2008/0264 [196],
XSH/TC1-2008/0265 [196], XSH/TC1-2008/0266 [196], XSH/TC1-2008/0267 [196],
XSH/TC1-2008/0268 [196], and XSH/TC1-2008/0269 [196] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0174 [791] is applied.

Issue 8
Austin Group Defect 444 is applied, adding the restrict keyword to the getsubopt() prototype.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1191

40639

40640

40641

40642

40643

40644

40645

40646

40647

40648

40649

40650

40651

40652

40653

40654

40655

40656

40657

40658

40659

40660

40661

40662

40663

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gettext System Interfaces

NAME
dgettext, dgettext_l, dcgettext, dcgettext_l, gettext, gettext_l, ngettext, ngettext_l, dngettext,
dngettext_l, dcngettext, dcngettext_l — message handling functions

SYNOPSIS
#include <libintl.h>

char *dgettext(const char *domainname, const char *msgid);
char *dgettext_l(const char *domainname, const char *msgid,

locale_t locale);
char *dcgettext(const char *domainname, const char *msgid,

int category);
char *dcgettext_l(const char *domainname, const char *msgid,

int category, locale_t locale);
char *dngettext(const char *domainname, const char *msgid,

const char *msgid_plural, unsigned long int n);
char *dngettext_l(const char *domainname, const char *msgid,

const char *msgid_plural, unsigned long int n,
locale_t locale);

char *dcngettext(const char *domainname, const char *msgid,
const char *msgid_plural, unsigned long int n,
int category);

char *dcngettext_l(const char *domainname, const char *msgid,
const char *msgid_plural, unsigned long int n,
int category, locale_t locale);

char *gettext(const char *msgid);
char *gettext_l(const char *msgid, locale_t locale);
char *ngettext(const char *msgid, const char *msgid_plural,

unsigned long int n);
char *ngettext_l(const char *msgid, const char *msgid_plural,

unsigned long int n, locale_t locale);

DESCRIPTION
The gettext() function shall:

• attempt to locate a suitable messages object (described in detail below) for the
LC_MESSAGES category in the current locale, and for the current text domain (see
bindtextdomain()), containing the string identified by msgid,

• retrieve the string identified by msgid from the messages object,

• convert the string to the output codeset if necessary (described in detail below), and

• return the result.

If the locale name in effect is "POSIX" or "C" (i.e. the name associated with the LC_MESSAGES
locale category in the current locale), or if no suitable messages object exists, or if no string
identified by msgid exists in the messages object, or if an error occurs, msgid shall be returned.

The dgettext() function shall be equivalent to gettext(), except domainname shall be used instead
of the current text domain to locate the messages object.

The dcgettext() function shall be equivalent to dgettext(), except the locale category identified by
category shall be used instead of LC_MESSAGES.

The ngettext() function shall be equivalent to gettext(), except:

1192 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40664

40665

40666

40667

40668

40669

40670

40671

40672

40673

40674

40675

40676

40677

40678

40679

40680

40681

40682

40683

40684

40685

40686

40687

40688

40689

40690

40691

40692

40693

40694

40695

40696

40697

40698

40699

40700

40701

40702

40703

40704

40705

40706

40707

40708

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces gettext

• The string to retrieve shall be identified by a combination of msgid and n (see msgfmt).

• If the locale name in effect is "POSIX" or "C", or if no suitable messages object exists, or if
no string identified by the combination of msgid and n exists in the messages object, or if an
error occurs, the return value shall be msgid if n is 1, otherwise msgid_plural.

The dngettext() function shall be equivalent to ngettext(), except domainname shall be used
instead of the current text domain to locate the messages object.

The dcngettext() function shall be equivalent to dngettext(), except the locale category identified
by category shall be used instead of LC_MESSAGES.

The *_l() functions shall be equivalent to their counterparts without the _l suffix, except locale
shall be used instead of the current locale. If locale is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle, the behavior is undefined.

The application shall ensure that the msgid and msgid_plural arguments are strings. If either
msgid or msgid_plural is an empty string, or contains characters not in the portable character set,
the results are unspecified. If the category argument is LC_ALL, the results are unspecified.

The location of the messages object shall be determined according to the following criteria,
stopping when the first messages object is found:

XSI 1. If the NLSPATH environment variable is set to a non-empty string, an NLSPATH search
shall be performed as described in XBD Section 8.2 (on page 169). If NLSPATH identifies
more than one template to use, each template in turn shall be used until a valid messages
object is found.

2. If the LANGUAGE environment variable is set to a non-empty string, a LANGUAGE
search shall be performed as described below. If LANGUAGE identifies more than one
directory to search, each directory shall be searched until a valid messages object is found.

3. A single-locale search shall be performed as described below.

XSI For the NLSPATH search and the single-locale search, the single locale name used to locate the
messages object shall be the locale name associated with the selected locale category from the
current locale, or the provided locale object if calling one of the *_l() functions; additional
searches of locale names without .codeset (if present), without _territory (if present), and without
@modifier (if present) may be performed.

For the LANGUAGE search, the value of the LANGUAGE environment variable shall be a list of
one or more locale names separated by a <colon> (':') character. Each locale name shall be
tried in the specified order. If a messages object for the locale does not exist, or cannot be
opened, or is unsuitable for implementation-defined reasons (such as security), the next locale
name (if any) shall be tried. If:

• a messages object for the locale can be opened but cannot be processed without error, or

• the messages object does not contain a string identified by msgid, or msgid and n for the
ngettext functions,

it is unspecified whether the next locale name (if any) is tried. In all other cases, the messages
object for the locale shall be used.

For each locale name in LANGUAGE, or if LANGUAGE is not set or is empty, or no suitable
messages object is found in processing LANGUAGE, the pathname used to locate the messages
object shall be dirname/localename/categoryname/textdomainname.mo, where:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1193

40709

40710

40711

40712

40713

40714

40715

40716

40717

40718

40719

40720

40721

40722

40723

40724

40725

40726

40727

40728

40729

40730

40731

40732

40733

40734

40735

40736

40737

40738

40739

40740

40741

40742

40743

40744

40745

40746

40747

40748

40749

40750

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gettext System Interfaces

• The dirname part is the dirname argument of the most recent successful call to
bindtextdomain() that had textdomainname as the domainname argument; any trailing <slash>
characters in dirname shall be discarded. If a successful call to bindtextdomain() has not
been made for textdomainname, an implementation-defined default directory shall be used.

• For the LANGUAGE search, the localename part is each locale name from LANGUAGE in
turn; if a locale name has the format language[_territory][.codeset][@modifier], additional
searches of locale names without .codeset (if present), without _territory (if present), and
without @modifier (if present) may be performed; if .codeset is not present, additional
searches of locale names with an added .codeset may be performed. For the single-locale
search, the localename part is the name of the current locale, or the locale specified in an
*_l() function call, for the category named by categoryname. Spellings of codeset names are
not standardized, and implementations may attempt to use different commonly known
spellings, for example "utf8" and "UTF-8".

• The categoryname part is the string "LC_MESSAGES" if gettext(), dgettext(), ngettext(), or
dngettext() is called, or the locale category name corresponding to the category argument to
dcgettext() or dcngettext(). Likewise for the *_l() variants of all these functions.

• For gettext(), gettext_l(), ngettext(), and ngettext_l(), the textdomainname part is the text
domain set by the last successful call to textdomain(). For dgettext(), dcgettext(),
dngettext(), dcngettext(), and the *_l() variants of these functions, textdomainname is the text
domain specified by the domainname argument. The domainname argument shall be
equivalent in syntax and meaning to the domainname argument to textdomain(), except that
the selection of the text domain shall affect only the dgettext(), dcgettext(), dngettext(), and
dcngettext() function calls and their *_l() variants. If the domainname argument is a null
pointer, the text domain set by the last successful call to textdomain() shall be used. For all
of these functions, if a successful call to textdomain() has not been made the default text
domain "messages" shall be used.

Resolution of the messages object pathname shall be performed the first time one of the gettext
family of functions is called for a given combination of dirname, localename, categoryname, and
textdomainname. It is unspecified whether the pathname is re-resolved if the combination has
been used before in a call to one of the gettext family of functions. If bindtextdomain() performs
pathname resolution of its dirname argument, only the part of the messages object pathname
after dirname shall be resolved by the gettext family of functions.

When one of the gettext family of functions returns a message string that was found in a
messages object, it shall convert the codeset of the message string to the output codeset if a
codeset is specified in the messages object (see msgfmt) and the output codeset is not the same as
that codeset. If a successful call to bind_textdomain_codeset() has been made with the text domain
of the messages object as the domainname argument and a non-null codeset argument, the output
codeset shall be the codeset argument from the most recent such call. Otherwise, the output
codeset shall be the codeset of characters in the current locale, or the provided locale object if
calling one of the *_l() functions, as specified by the LC_CTYPE category of the locale. The
conversion shall be performed as if by a call to iconv() using a conversion descriptor returned by
iconv_open(<output codeset>, <messages object codeset>), except that if the return value of iconv()
would be greater than zero, the non-identical conversions performed by the gettext family of
functions need not be the same as those that such an iconv() call would perform. If an error
prevents the codeset conversion from being performed, the gettext family of functions shall
behave as if no message string was found in the messages object. If at least one non-identical
conversion is performed that results in a fallback character (one that does not provide any
information about the character it was converted from, for example, a <question-mark> or
``replacement-character ’’), the gettext family of functions may behave as if no message string was

1194 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40751

40752

40753

40754

40755

40756

40757

40758

40759

40760

40761

40762

40763

40764

40765

40766

40767

40768

40769

40770

40771

40772

40773

40774

40775

40776

40777

40778

40779

40780

40781

40782

40783

40784

40785

40786

40787

40788

40789

40790

40791

40792

40793

40794

40795

40796

40797

40798

40799

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces gettext

found in the messages object.

RETURN VALUE
The gettext(), gettext_l(), dgettext(), dgettext_l(), dcgettext(), and dcgettext_l() functions shall
return the message string described in DESCRIPTION if successful. Otherwise, they shall return
msgid.

The ngettext(), ngettext_l(), dngettext(), dngettext_l(), dcngettext(), and dcngettext_l() functions
shall return the message string described in DESCRIPTION if successful. Otherwise, msgid shall
be returned if n is equal to 1, or msgid_plural if n is not equal to 1.

The application shall ensure that it does not modify the returned string. A subsequent call to a
gettext family function shall not overwrite or invalidate the returned string. The returned string
may be invalidated by a subsequent call to bind_textdomain_codeset(), bindtextdomain(),
setlocale(), or textdomain() in the same process, except for calls that only query values. The
returned string shall not be invalidated by a subsequent call to uselocale().

ERRORS
The gettext family of functions shall not modify errno. If an error occurs these functions shall
return a string as described in RETURN VALUE.

EXAMPLES
The example code below assumes the following:

• The implementation-defined default directory is /system/gettextlib.

• The following locales are available on the target system: en_US, en_GB, de_DE. The
codeset used for all of these locales is UTF-8.

• The en_AU locale is not available on the target system.

• The target system supports conversion from ISO/IEC 8859-1 to UTF-8.

• The codeset used for the POSIX locale is ASCII.

• The target system does not support conversion from ISO/IEC 8859-1 to ASCII.

Furthermore, the following .mo files (and only the following .mo files) are installed:

• /system/gettextlib/en_US/LC_MESSAGES/mail.mo

• /messagecatalogs/example/en_US/LC_MESSAGES/mail.mo

These are compiled from a portable messages object source file (dot-po file) with the following
ISO/IEC 8859-1 encoded contents (see the EXTENDED DESCRIPTION of the msgfmt utility for a
description of the dot-po file format):

msgid ""
msgstr ""
"Content-Type: text/plain; charset=ISO_8859-1\n"
"Plural-Forms: nplurals=4; plural= n==1?0: (n>1&&n<10)?1: (n==0)?2:3;\n"
msgid "recipient"
msgid_plural "recipients"
msgstr[0] "1 recipient"
msgstr[1] "2 to 9 recipients"
msgstr[2] "no recipients"
msgstr[3] "more than 9 recipients"

/system/gettextlib/de_DE/LC_MESSAGES/mail.mo is compiled from a dot-po file with the
following ISO/IEC 8859-1 encoded contents:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1195

40800

40801

40802

40803

40804

40805

40806

40807

40808

40809

40810

40811

40812

40813

40814

40815

40816

40817

40818

40819

40820

40821

40822

40823

40824

40825

40826

40827

40828

40829

40830

40831

40832

40833

40834

40835

40836

40837

40838

40839

40840

40841

40842

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gettext System Interfaces

msgid ""
msgstr ""
"Content-Type: text/plain; charset=ISO_8859-1\n"
"Plural-Forms: nplurals=4; plural= n==1?0: (n>1&&n<5)?1: (n==0)?2:3;\n"
msgid "recipient"
msgid_plural "recipients"
msgstr[0] "1 Empfänger"
msgstr[1] "2 bis 4 Empfänger"
msgstr[2] "keine Empfänger"
msgstr[3] "mehr als 4 Empfänger"

/messagecatalogs/example/en_GB/LC_MESSAGES/mail.mo is compiled from a dot-po file
with the following ISO/IEC 8859-1 encoded contents:

msgid ""
msgstr ""
"Content-Type: text/plain; charset=ISO_8859-1\n"
"Plural-Forms: nplurals=4; plural= n==1?0: (n>1&&n<5)?1: (n==0)?2:3;\n"
msgid "recipient"
msgid_plural "recipients"
msgstr[0] "1 recipient"
msgstr[1] "2 to 4 recipients"
msgstr[2] "no recipients"
msgstr[3] "5 or more recipients"

/messagecatalogs/example2/en_US/LC_MESSAGES/othermail.mo is not a suitable messages
object file or is a suitable messages object file that does not contain the msgid "recipient".

The following example demonstrates the interactions between bindtextdomain(),
bind_textdomain_codeset(), textdomain(), and the gettext family of functions.

unsigned long n_recipients;
// strdup() is used to prevent default_domain from being invalidated by
// a future call to bindtextdomain()
const char *default_domain = strdup(bindtextdomain("mail", NULL));
setlocale(LC_MESSAGES, "POSIX");
setlocale(LC_CTYPE, "POSIX");

n_recipients = 1;
// The following outputs "recipient" with the same encoding as the
// "recipient" argument to ngettext():
printf("%s\n", ngettext("recipient", "recipients", n_recipients));

n_recipients = 3;
// The following outputs "recipients" with the same encoding as the
// "recipients" argument to ngettext():
printf("%s\n", ngettext("recipient", "recipients", n_recipients));

setlocale(LC_MESSAGES, "en_US");
setlocale(LC_CTYPE, "en_US");
textdomain("mail");

n_recipients = 1;
// The following outputs "1 recipient", encoded in UTF-8:
printf("%s\n", ngettext("recipient", "recipients", n_recipients));

n_recipients = 3;

1196 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40843

40844

40845

40846

40847

40848

40849

40850

40851

40852

40853

40854

40855

40856

40857

40858

40859

40860

40861

40862

40863

40864

40865

40866

40867

40868

40869

40870

40871

40872

40873

40874

40875

40876

40877

40878

40879

40880

40881

40882

40883

40884

40885

40886

40887

40888

40889

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces gettext

// The following outputs "2 to 9 recipients", encoded in UTF-8:
printf("%s\n", ngettext("recipient", "recipients", n_recipients));

setlocale(LC_MESSAGES, "en_GB");
setlocale(LC_CTYPE, "en_GB");
bindtextdomain("mail", "/messagecatalogs/example/");

n_recipients = 3;
// The following outputs "2 to 4 recipients", encoded in UTF-8:
printf("%s\n", ngettext("recipient", "recipients", n_recipients));

setlocale(LC_MESSAGES, "en_US");
setlocale(LC_CTYPE, "en_US");
textdomain("othermail");
bindtextdomain("othermail", "/messagecatalogs/example2/");

n_recipients = 3;
// The following outputs "recipients" with the same encoding as the
// "recipients" argument to ngettext():
printf("%s\n", ngettext("recipient", "recipients", n_recipients));

// Because there is no locale named en_AU on the system, en_US is used:
setenv("LANGUAGE", "en_AU:en_US:en_GB", 1);
setlocale(LC_MESSAGES, "");
setlocale(LC_CTYPE, "");
bindtextdomain("mail", default_domain);

// The following outputs "2 to 9 recipients", encoded in UTF-8:
printf("%s\n", dngettext("mail", "recipient", "recipients", 3));

textdomain("mail");
bind_textdomain_codeset("mail", "UTF-8");
setlocale(LC_MESSAGES, "de_DE");
setlocale(LC_CTYPE, "de_DE");
// Clear the LANGUAGE environment variable, otherwise it would take
// precedence over the locale set above, and en_US would continue to
// be used.
setenv("LANGUAGE", "", 1);

n_recipients = 1;
// The following outputs "1 Empfänger", encoded in UTF-8:
printf("%s\n", ngettext("recipient", "recipients", n_recipients));

bind_textdomain_codeset("mail", "ASCII");
setlocale(LC_CTYPE, "POSIX");

n_recipients = 1;
// The following outputs "recipient" with the same encoding as the
// "recipient" argument to ngettext() - remember, the system is assumed
// to not support conversion from ISO/IEC 8859-1 to ASCII:
printf("%s\n", ngettext("recipient", "recipients", n_recipients));

free(default_domain);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1197

40890

40891

40892

40893

40894

40895

40896

40897

40898

40899

40900

40901

40902

40903

40904

40905

40906

40907

40908

40909

40910

40911

40912

40913

40914

40915

40916

40917

40918

40919

40920

40921

40922

40923

40924

40925

40926

40927

40928

40929

40930

40931

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gettext System Interfaces

APPLICATION USAGE
These functions do not impose a limit on message length. Note that translated strings typically
have a different length than the input strings, possibly much longer, and applications using
these translations in formatted text (for example, aligned columns for a table) should take that
into account.

The dcgettext(), dcgettext_l(), dcngettext(), and dcngettext_l() functions are useful to retrieve
locale-specific strings for a category other than LC_MESSAGES. For example, they can be used
to obtain a time format string from the LC_TIME category; because the locale setting of LC_TIME
and LC_MESSAGES can be different, using the other gettext family functions in such a case
might cause an undesired result. All of the functions in the gettext family of functions, except
dcgettext(), dcgettext_l(), dcngettext(), and dcngettext_l(), search for messages objects only in the
LC_MESSAGES category.

Implementations typically, but are not required to, mmap() the messages object file the first time
one of the gettext family of functions is called, and keep that map in place until it is no longer
expected to be used. For example, a successful call to bindtextdomain() will typically cause the
next call to one of the gettext family of functions to munmap() the previous file and mmap() the
new file. Applications should not rely on this behavior, however: the implementation is allowed
to cache previously used maps, or not use mmap() at all and reopen the file each time one of the
gettext family of functions is called.

The msgid and msgid_plural arguments are typically in (US) English. The arguments are always
used in the POSIX or C locale, and when a gettext family function encounters an error, so they
should not be abstract message identifiers (for example, "message 123") and they should only
use characters in the portable character set (to avoid outputting byte sequences that are not valid
characters in the current output codeset). If the xgettext utility is used to extract the msgid and
msgid_plural arguments from C source files into a template dot-po file, the arguments must be
string literals in order for the resulting file to be useful to translators.

The strings returned by the gettext family of functions are not guaranteed to contain only
characters that are valid in the current output codeset. In particular, byte sequences that do not
form valid characters can occur when:

• The msgid or msgid_plural arguments use characters outside the portable character set.

• The messages object file does not specify a character set and uses characters outside the
portable character set.

The strings returned by the gettext family of functions are guaranteed to remain valid until
invalidated as described in the RETURN VALUE section. This includes strings that are created
by codeset conversion; those strings are freed by the implementation, not the application. Thus,
it is safe to call gettext family functions multiple times in situations such as:

printf("%s %s\n", gettext("foo"), gettext("bar"));

RATIONALE
Although the return type of these functions ought to be const char *, it is char * to match
historical practice.

The gettext family of functions is frequently used in reporting errors. In fact, it is possible to have
an application that attempts to create an error message that combines a translated string via
gettext() with an error string provided by strerror(). The standard requires that the gettext family
of functions does not modify errno, so that an application need not worry about complications of
providing sequencing points to capture a stable value of errno prior to the translation of the error
message, and so that the user will still get a somewhat useful string (even if it is the untranslated
original string) on any failure.

1198 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40932

40933

40934

40935

40936

40937

40938

40939

40940

40941

40942

40943

40944

40945

40946

40947

40948

40949

40950

40951

40952

40953

40954

40955

40956

40957

40958

40959

40960

40961

40962

40963

40964

40965

40966

40967

40968

40969

40970

40971

40972

40973

40974

40975

40976

40977

40978

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces gettext

There are no wide character equivalents for these functions; historically no implementation is
known to exist, and the multi-byte message returned from these functions can, in most instances,
be converted to wide characters by the application if desired.

Some historical gettext implementations returned the translated string from the messages object
without codeset conversion if iconv_open() fails. This is considered to be a bug in those
implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
bindtextdomain(), catopen(), iconv(), setlocale(), uselocale()

XBD <libintl.h>, <limits.h>

XCU gettext , msgfmt , xgettext

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1199

40979

40980

40981

40982

40983

40984

40985

40986

40987

40988

40989

40990

40991

40992

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getuid() System Interfaces

NAME
getuid — get a real user ID

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);

DESCRIPTION
The getuid() function shall return the real user ID of the calling process. The getuid() function
shall not modify errno.

RETURN VALUE
The getuid() function shall always be successful and no return value is reserved to indicate the
error.

ERRORS
No errors are defined.

EXAMPLES

Setting the Effective User ID to the Real User ID

The following example sets the effective user ID of the calling process to the real user ID.

#include <unistd.h>
...
seteuid(getuid());

APPLICATION USAGE
None.

RATIONALE
In a conforming environment, getuid() will always succeed. It is possible for implementations to
provide an extension where a process in a non-conforming environment will not be associated
with a user or group ID. It is recommended that such implementations return (uid_t)−1 and set
errno to indicate such an environment; doing so does not violate this standard, since such an
environment is already an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getgid(), getresgid(), getresuid(), setegid(), seteuid(), setgid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1200 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

40993

40994

40995

40996

40997

40998

40999

41000

41001

41002

41003

41004

41005

41006

41007

41008

41009

41010

41011

41012

41013

41014

41015

41016

41017

41018

41019

41020

41021

41022

41023

41024

41025

41026

41027

41028

41029

41030

41031

41032

41033

41034

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getuid()

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0175 [511] and XSH/TC2-2008/0176
[897] are applied.

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1201

41035

41036

41037

41038

41039

41040

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getutxent() System Interfaces

NAME
getutxent, getutxid, getutxline — get user accounting database entries

SYNOPSIS
XSI #include <utmpx.h>

struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *id);
struct utmpx *getutxline(const struct utmpx *line);

DESCRIPTION
Refer to endutxent().

1202 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41041

41042

41043

41044

41045

41046

41047

41048

41049

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces getwc()

NAME
getwc — get a wide character from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t getwc(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The getwc() function shall be equivalent to fgetwc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side-
effects.

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, getwc() may treat incorrectly a stream argument with
side-effects. In particular, getwc(*f++) does not necessarily work as expected. Therefore, use of
this function is not recommended; fgetwc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fgetwc()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0270 [14] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1203

41050

41051

41052

41053

41054

41055

41056

41057

41058

41059

41060

41061

41062

41063

41064

41065

41066

41067

41068

41069

41070

41071

41072

41073

41074

41075

41076

41077

41078

41079

41080

41081

41082

41083

41084

41085

41086

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getwchar() System Interfaces

NAME
getwchar — get a wide character from a stdin stream

SYNOPSIS
#include <wchar.h>

wint_t getwchar(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The getwchar() function shall be equivalent to getwc(stdin).

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
If the wint_t value returned by getwchar() is stored into a variable of type wchar_t and then
compared against the wint_t macro WEOF, the result may be incorrect. Only the wint_t type is
guaranteed to be able to represent any wide character and WEOF.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fgetwc(), getwc()

XBD <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0271 [14] is applied.

1204 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41087

41088

41089

41090

41091

41092

41093

41094

41095

41096

41097

41098

41099

41100

41101

41102

41103

41104

41105

41106

41107

41108

41109

41110

41111

41112

41113

41114

41115

41116

41117

41118

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces glob()

NAME
glob, globfree — generate pathnames matching a pattern

SYNOPSIS
#include <glob.h>

int glob(const char *restrict pattern, int flags,
int(*errfunc)(const char *epath, int eerrno),
glob_t *restrict pglob);

void globfree(glob_t *pglob);

DESCRIPTION
The glob() function is a pathname generator that shall implement the rules defined in XCU
Section 2.14 (on page 2523), with optional support for rule 3 in XCU Section 2.14.3 (on page
2525).

The structure type glob_t is defined in <glob.h> and includes at least the following members:

Member Type Member Name Description
size_t gl_pathc Count of paths matched by pattern.
char ** gl_pathv Pointer to a list of matched pathnames.
size_t gl_offs Slots to reserve at the beginning of

gl_pathv.

The argument pattern is a pointer to a pathname pattern to be expanded. The glob() function
shall match all accessible pathnames against this pattern and develop a list of all pathnames that
match. In order to have access to a pathname, glob() requires search permission on every
component of a path except the last, and read permission on each directory of any filename
component of pattern that contains any of the following special characters: '*', '?', and '['.

The glob() function shall store the number of matched pathnames into pglob−>gl_pathc and a
pointer to a list of pointers to pathnames into pglob−>gl_pathv. The pathnames shall be in sort
order as defined by the current setting of the LC_COLLATE category; see XBD Section 7.3.2 (on
page 139). The first pointer after the last pathname shall be a null pointer. If the pattern does not
match any pathnames, the returned number of matched paths is set to 0, and the contents of
pglob−>gl_pathv are implementation-defined.

It is the caller’s responsibility to create the structure pointed to by pglob. The glob() function
shall allocate other space as needed, including the memory pointed to by gl_pathv. The globfree()
function shall free any space associated with pglob from a previous call to glob(). The globfree()
function shall not modify errno if pglob was previously used by glob() and not yet freed.

The flags argument is used to control the behavior of glob(). The value of flags is a bitwise-
inclusive OR of zero or more of the following constants, which are defined in <glob.h>:

GLOB_APPEND Append pathnames generated to the ones from a previous call to glob().

GLOB_DOOFFS Make use of pglob−>gl_offs. If this flag is set, pglob−>gl_offs is used to
specify how many null pointers to add to the beginning of
pglob−>gl_pathv. In other words, pglob−>gl_pathv shall point to
pglob−>gl_offs null pointers, followed by pglob−>gl_pathc pathname
pointers, followed by a null pointer.

GLOB_ERR Cause glob() to return when an attempt to open or search a pathname as a
directory, or an attempt to read an opened directory, fails because of an
error condition that is related to file system contents and prevents glob()
from expanding the pattern. If this flag is not set, glob() shall not treat
such conditions as an error, and shall continue to look for matches. Other

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1205

41119

41120

41121

41122

41123

41124

41125

41126

41127

41128

41129

41130

41131

41132

41133

41134

41135

41136

41137

41138

41139

41140

41141

41142

41143

41144

41145

41146

41147

41148

41149

41150

41151

41152

41153

41154

41155

41156

41157

41158

41159

41160

41161

41162

41163

41164

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

glob() System Interfaces

error conditions may also be treated the same way as error conditions that
are related to file system contents.

GLOB_MARK For each pathname that matches pattern and is determined to be a
directory after pathname resolution, process the pathname so the result is
as if the following steps are applied in order:

1. If the pathname is <slash>, do not modify the pathname and skip
the remaining steps.

2. If the pathname is <slash><slash> and the implementation handles
pathname resolution of a pathname starting with exactly two
successive <slash> characters differently than it handles a
pathname starting with only a single <slash>, do not modify the
pathname and skip the remaining steps.

3. If the pathname does not end with a <slash>, append a <slash> to
the pathname and skip the remaining steps.

4. A <slash> may be appended to the pathname.

5. If there are multiple <slash> characters at the end of the pathname,
all but one of those trailing <slash> characters may be removed
from the pathname.

GLOB_NOCHECK Supports rule 3 in XCU Section 2.14.3 (on page 2525). If pattern does not
match any pathname, then glob() shall return a list consisting of only
pattern, and the number of matched pathnames is 1.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Ordinarily, glob() sorts the matching pathnames according to the current
setting of the LC_COLLATE category; see XBD Section 7.3.2 (on page 139).
When this flag is used, the order of pathnames returned is unspecified.

The GLOB_APPEND flag can be used to append a new set of pathnames to those found in a
previous call to glob(). The following rules apply to applications when two or more calls to
glob() are made with the same value of pglob and without intervening calls to globfree():

1. The first such call shall not set GLOB_APPEND. All subsequent calls shall set it.

2. All the calls shall set GLOB_DOOFFS, or all shall not set it.

3. After the second call, pglob−>gl_pathv points to a list containing the following:

a. Zero or more null pointers, as specified by GLOB_DOOFFS and pglob−>gl_offs.

b. Pointers to the pathnames that were in the pglob−>gl_pathv list before the call, in
the same order as before.

c. Pointers to the new pathnames generated by the second call, in the specified order.

4. The count returned in pglob−>gl_pathc shall be the total number of pathnames from the
two calls.

5. The application can change any of the fields after a call to glob(). If it does, the
application shall reset them to the original value before a subsequent call, using the same
pglob value, to globfree() or glob() with the GLOB_APPEND flag.

If errfunc is not a null pointer and, during the search, an attempt to open or search a pathname as
a directory, or an attempt to read an opened directory, fails because of an error condition that

1206 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41165

41166

41167

41168

41169

41170

41171

41172

41173

41174

41175

41176

41177

41178

41179

41180

41181

41182

41183

41184

41185

41186

41187

41188

41189

41190

41191

41192

41193

41194

41195

41196

41197

41198

41199

41200

41201

41202

41203

41204

41205

41206

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces glob()

prevents glob() from expanding the pattern, glob() calls (*errfunc()) with two arguments:

1. The epath argument is a pointer to the path that failed.

2. The eerrno argument is the value of errno from the failure, as set by opendir(), readdir(), or
stat(). (Other values may be used to report other errors not explicitly documented for
those functions.)

If (*errfunc()) is called and returns non-zero, or, optionally, if errfunc is a null pointer and the
attempt failed because of an error condition that is not related to file system contents, or if the
GLOB_ERR flag is set in flags, glob() shall stop the scan and return GLOB_ABORTED after
setting gl_pathc and gl_pathv in pglob to reflect the paths already scanned. If GLOB_ERR is not set
and either errfunc is a null pointer or (*errfunc()) returns 0, the error shall be ignored.

The set of error conditions that are considered to prevent glob() from expanding the pattern shall
include [EACCES], [ENAMETOOLONG], and [ELOOP]. It is implementation-defined what
other error conditions are included in the set.

The glob() function shall not fail because of large files.

RETURN VALUE
Upon successful completion, glob() shall return 0. The argument pglob−>gl_pathc shall return the
number of matched pathnames and the argument pglob−>gl_pathv shall contain a pointer to a
null-terminated list of matched and sorted pathnames. However, if pglob−>gl_pathc is 0, the
content of pglob−>gl_pathv is undefined.

The globfree() function shall not return a value.

If glob() terminates due to an error, it shall return one of the non-zero constants defined in
<glob.h>. The arguments pglob−>gl_pathc and pglob−>gl_pathv are still set as defined above.

ERRORS
The glob() function shall fail and return the corresponding value if:

GLOB_ABORTED The scan was stopped because (*errfunc()) was called and returned non-
zero, or, optionally, errfunc was a null pointer and an attempt to open,
read, or search a directory failed because of an error condition that is not
related to file system contents, or GLOB_ERR was set.

GLOB_NOMATCH The pattern does not match any existing pathname, and
GLOB_NOCHECK was not set in flags.

GLOB_NOSPACE An attempt to allocate memory failed.

EXAMPLES
One use of the GLOB_DOOFFS flag is by applications that build an argument list for use with
execv(), execve(), or execvp(). Suppose, for example, that an application wants to do the
equivalent of:

ls -ld -- *.c

but for some reason:

system("ls -ld -- *.c")

is not acceptable. The application could obtain the same result (except for error handling,
omitted here for simplicity) using the sequence:

globbuf.gl_offs = 3;
glob("*.c", GLOB_DOOFFS|GLOB_NOCHECK, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls"; // to establish the initial arguments

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1207

41207

41208

41209

41210

41211

41212

41213

41214

41215

41216

41217

41218

41219

41220

41221

41222

41223

41224

41225

41226

41227

41228

41229

41230

41231

41232

41233

41234

41235

41236

41237

41238

41239

41240

41241

41242

41243

41244

41245

41246

41247

41248

41249

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

glob() System Interfaces

globbuf.gl_pathv[1] = "-ld"; // that sh -c "ls -ld --" would
globbuf.gl_pathv[2] = "--"; // produce for both examples
execvp("ls", &globbuf.gl_pathv[0]);

Using the same example:

ls -ld -- *.c *.h

could be simulated using GLOB_APPEND as follows:

globbuf.gl_offs = 3;
glob("*.c", GLOB_DOOFFS|GLOB_NOCHECK, NULL, &globbuf);
glob("*.h", GLOB_DOOFFS|GLOB_NOCHECK|GLOB_APPEND, NULL, &globbuf);
...

APPLICATION USAGE
This function is not provided for the purpose of enabling utilities to perform pathname
expansion on their arguments, as this operation is performed by the shell, and utilities are
explicitly not expected to redo this. Instead, it is provided for applications that need to do
pathname expansion on strings obtained from other sources, such as a pattern typed by a user or
read from a file.

If a utility needs to see if a pathname matches a given pattern, it can use fnmatch().

Note that gl_pathc and gl_pathv have meaning even if glob() fails. This allows glob() to report
partial results in the event of an error. However, if gl_pathc is 0, gl_pathv is unspecified even if
glob() did not return an error.

The GLOB_NOCHECK option could be used when an application wants to expand a pathname
if wildcards are specified, but wants to treat the pattern as just a string otherwise. The sh utility
might use this for option-arguments, for example.

The new pathnames generated by a subsequent call with GLOB_APPEND are not sorted
together with the previous pathnames. This mirrors the way that the shell handles pathname
expansion when multiple expansions are done on a command line.

It is recommended that (*errfunc()) should always return a non-zero value if the eerrno
parameter indicates an error condition that is not related to file system contents. See XRAT
Section C.2.14.3 (on page 3911) for information about which error conditions are related to file
system contents.

Applications that need tilde and parameter expansion should use wordexp().

RATIONALE
It was claimed that the GLOB_DOOFFS flag is unnecessary because it could be simulated using:

new = (char **)malloc((n + pglob->gl_pathc + 1)
* sizeof(char *));

(void) memcpy(new+n, pglob->gl_pathv,
pglob->gl_pathc * sizeof(char *));

(void) memset(new, 0, n * sizeof(char *));
free(pglob->gl_pathv);
pglob->gl_pathv = new;

However, this assumes that the memory pointed to by gl_pathv is a block that was separately
created using malloc(). This is not necessarily the case. An application should make no
assumptions about how the memory referenced by fields in pglob was allocated. It might have
been obtained from malloc() in a large chunk and then carved up within glob(), or it might have
been created using a different memory allocator. It is not the intent of the standard developers to

1208 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41250

41251

41252

41253

41254

41255

41256

41257

41258

41259

41260

41261

41262

41263

41264

41265

41266

41267

41268

41269

41270

41271

41272

41273

41274

41275

41276

41277

41278

41279

41280

41281

41282

41283

41284

41285

41286

41287

41288

41289

41290

41291

41292

41293

41294

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces glob()

specify or imply how the memory used by glob() is managed.

The GLOB_APPEND flag would be used when an application wants to expand several different
patterns into a single list.

Earlier versions of this standard defined the behavior associated with the flag GLOB_MARK as:
``Each pathname that is a directory that matches pattern shall have a <slash> appended.’’ This
was undesirable if the matched pathname was <slash> or if the matched pathname was
<slash><slash> and the implementation treats a leading <slash><slash> differently than it treats
a pathname with a single leading <slash>. Only a few implementations were known to conform
to this requirement (maybe only one) and there was a lot of variation in the way other
implementations behaved. The current wording allows many of the alternative behaviors that
were observed, except that the pathnames "/" and "//" (if it is treated differently than "/")
must not be modified.

Implementations should consider the following much simpler requirement (which is allowed by
the current standard) when processing the GLOB_MARK flag: ``Each pathname that matches
pattern, is determined to be a directory after pathname resolution, and does not end with a
<slash> shall have a <slash> appended.’’

Implementations differ as to which error conditions they consider prevent glob() from
expanding the pattern. The standard requires that [EACCES], [ENAMETOOLONG], and
[ELOOP] are included because in these cases the expansion could succeed if performed with a
different effective user or group ID, or with an alternative pathname (shorter than
{PATH_MAX}, or traversing fewer symbolic links).

Implementations are encouraged to call (*errfunc()) for all error conditions that are related to file
system contents which occur when attempting to open or search a pathname as a directory or
attempting to read an opened directory. The appropriate way to handle such errors varies
according to the provenance of the pattern and what the application will do with the resulting
pathnames, and should therefore be for the application to decide. For example, given the pattern
"non-existing/*", some applications may want glob() to succeed and return an empty list
because there are no existing files that match the pattern, but for others that would not be
appropriate, such as if an application asks the user to name a directory containing files to be
processed and the user makes a typing mistake when responding; the application will want to
alert the user to the mistake instead of behaving as if the user had named an empty directory. If
(*errfunc()) is called for [ENOENT] errors, the first application can ignore them in that function,
but if (*errfunc()) is not called, the second application cannot achieve what it wants using glob().
Similar reasoning applies for the pattern "regular_file/*" and [ENOTDIR] errors.

FUTURE DIRECTIONS
A future version of this standard may require that (*errfunc()) is called for all error conditions
that are related to file system contents which occur when attempting to open or search a
pathname as a directory or attempting to read an opened directory.

SEE ALSO
exec , fdopendir(), fnmatch(), fstatat(), readdir(), wordexp()

XBD Section 7.3.2 (on page 139), <glob.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1209

41295

41296

41297

41298

41299

41300

41301

41302

41303

41304

41305

41306

41307

41308

41309

41310

41311

41312

41313

41314

41315

41316

41317

41318

41319

41320

41321

41322

41323

41324

41325

41326

41327

41328

41329

41330

41331

41332

41333

41334

41335

41336

41337

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

glob() System Interfaces

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the glob() prototype for alignment with the ISO/IEC 9899: 1999
standard.

Issue 8
Austin Group Defect 385 is applied, adding a requirement that globfree() does not modify errno
when passed a pointer to a glob_t that can be freed.

Austin Group Defect 1255 is applied, changing the EXAMPLES section.

Austin Group Defects 1273 and 1275 are applied, clarifying how errors are treated when
attempting to open or search a pathname as a directory or attempting to read an opened
directory.

Austin Group Defect 1300 is applied, changing the description of GLOB_MARK.

Austin Group Defect 1444 is applied, correcting cross-references to wordexp().

1210 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41338

41339

41340

41341

41342

41343

41344

41345

41346

41347

41348

41349

41350

41351

41352

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces gmtime()

NAME
gmtime, gmtime_r — convert a time value to a broken-down UTC time

SYNOPSIS
#include <time.h>

struct tm *gmtime(const time_t *timer);
CX struct tm *gmtime_r(const time_t *restrict timer,

struct tm *restrict result);

DESCRIPTION
CX For gmtime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The gmtime() function shall convert the time in seconds since the Epoch pointed to by timer into
a broken-down time, expressed as Coordinated Universal Time (UTC).

CX The relationship between a time in seconds since the Epoch used as an argument to gmtime()
and the tm structure (defined in the <time.h> header) is that the result shall be as specified in
the expression given in the definition of seconds since the Epoch (see XBD Section 4.19, on page
107), where the names in the structure and in the expression correspond.

The same relationship shall apply for gmtime_r().

The gmtime() function need not be thread-safe; however, gmtime() shall avoid data races with all
functions other than itself, asctime(), ctime(), and localtime().

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions that return a pointer to one of these object types may overwrite the information in any
object of the same type pointed to by the value returned from any previous call to any of them.

CX The gmtime_r() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time expressed as Coordinated Universal Time (UTC). The broken-down
time is stored in the structure referred to by result. The gmtime_r() function shall also return the
address of the same structure.

RETURN VALUE
Upon successful completion, the gmtime() function shall return a pointer to a struct tm. If an

CX error is detected, gmtime() shall return a null pointer and set errno to indicate the error.

Upon successful completion, gmtime_r() shall return the address of the structure pointed to by
the argument result. The structure’s tm_zone member shall be set to a pointer to the string
"UTC", which shall have static storage duration. If an error is detected, gmtime_r() shall return a
null pointer and set errno to indicate the error.

ERRORS
CX The gmtime() and gmtime_r() functions shall fail if:

CX [EOVERFLOW] The result cannot be represented.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1211

41353

41354

41355

41356

41357

41358

41359

41360

41361

41362

41363

41364

41365

41366

41367

41368

41369

41370

41371

41372

41373

41374

41375

41376

41377

41378

41379

41380

41381

41382

41383

41384

41385

41386

41387

41388

41389

41390

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gmtime() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The gmtime_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), futimens(), localtime(), mktime(), strftime(), strptime(), time()

XBD Section 4.19 (on page 107), <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the gmtime() function need not be reentrant is added to the
DESCRIPTION.

The gmtime_r() function is included for alignment with the POSIX Threads Extension.

Issue 6
The gmtime_r() function is marked as part of the Thread-Safe Functions option.

Extensions beyond the ISO C standard are marked.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the gmtime_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/27 is applied, adding the [EOVERFLOW]
error.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/48 is applied, updating the error handling
for gmtime_r().

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The gmtime_r() function is moved from the Thread-Safe Functions option to the Base.

Issue 8
Austin Group Defect 1302 is applied, aligning the gmtime() function with the
ISO/IEC 9899: 2018 standard.

Austin Group Defect 1376 is applied, removing CX shading from some text derived from the
ISO C standard and updating it to match the ISO C standard.

Austin Group Defect 1533 is applied, adding tm_gmtoff and tm_zone to the tm structure.

1212 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41391

41392

41393

41394

41395

41396

41397

41398

41399

41400

41401

41402

41403

41404

41405

41406

41407

41408

41409

41410

41411

41412

41413

41414

41415

41416

41417

41418

41419

41420

41421

41422

41423

41424

41425

41426

41427

41428

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces grantpt()

NAME
grantpt — grant access to the subsidiary pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

int grantpt(int fildes);

DESCRIPTION
The grantpt() function shall change the mode and ownership of the subsidiary pseudo-terminal
device associated with its manager pseudo-terminal counterpart. The fildes argument is a file
descriptor that refers to a manager pseudo-terminal device. The user ID of the subsidiary shall
be set to the real UID of the calling process and the group ID shall be set to an unspecified group
ID. The permission mode of the subsidiary pseudo-terminal shall be set to readable and writable
by the owner, and writable by the group.

The behavior of the grantpt() function is unspecified if the application has installed a signal
handler to catch SIGCHLD signals.

RETURN VALUE
Upon successful completion, grantpt() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The grantpt() function may fail if:

[EACCES] The corresponding subsidiary pseudo-terminal device could not be accessed.

[EBADF] The fildes argument is not a valid open file descriptor.

[EINVAL] The fildes argument is not associated with a manager pseudo-terminal device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See the RATIONALE section for posix_openpt().

FUTURE DIRECTIONS
None.

SEE ALSO
open(), posix_openpt(), ptsname(), unlockpt()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1213

41429

41430

41431

41432

41433

41434

41435

41436

41437

41438

41439

41440

41441

41442

41443

41444

41445

41446

41447

41448

41449

41450

41451

41452

41453

41454

41455

41456

41457

41458

41459

41460

41461

41462

41463

41464

41465

41466

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

grantpt() System Interfaces

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0272 [96] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0177 [506] is applied.

Issue 8
Austin Group Defect 1466 is applied, changing the terminology used for pseudo-terminal
devices.

1214 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41467

41468

41469

41470

41471

41472

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces hcreate()

NAME
hcreate, hdestroy, hsearch — manage hash search table

SYNOPSIS
XSI #include <search.h>

int hcreate(size_t nel);
void hdestroy(void);
ENTRY *hsearch(ENTRY item, ACTION action);

DESCRIPTION
The hcreate(), hdestroy(), and hsearch() functions shall manage hash search tables.

The hcreate() function shall allocate sufficient space for the table, and the application shall
ensure it is called before hsearch() is used. The nel argument is an estimate of the maximum
number of entries that the table shall contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically favorable circumstances.

The hdestroy() function shall dispose of the search table, and may be followed by another call to
hcreate(). After the call to hdestroy(), the data can no longer be considered accessible.

The hsearch() function is a hash-table search routine. It shall return a pointer into a hash table
indicating the location at which an entry can be found. The item argument is a structure of type
ENTRY (defined in the <search.h> header) containing two pointers: item.key points to the
comparison key (a char *), and item.data (a void *) points to any other data to be associated with
that key. The comparison function used by hsearch() is strcmp(). The action argument is a
member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a null pointer.

These functions need not be thread-safe.

RETURN VALUE
The hcreate() function shall return 0 if it cannot allocate sufficient space for the table; otherwise,
it shall return non-zero.

The hdestroy() function shall not return a value.

The hsearch() function shall return a null pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

ERRORS
The hcreate() and hsearch() functions may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES
The following example reads in strings followed by two numbers and stores them in a hash
table, discarding duplicates. It then reads in strings and finds the matching entry in the hash
table and prints it out.

#include <stdio.h>
#include <search.h>
#include <string.h>

struct info { /* This is the info stored in the table */
int age, room; /* other than the key. */

};

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1215

41473

41474

41475

41476

41477

41478

41479

41480

41481

41482

41483

41484

41485

41486

41487

41488

41489

41490

41491

41492

41493

41494

41495

41496

41497

41498

41499

41500

41501

41502

41503

41504

41505

41506

41507

41508

41509

41510

41511

41512

41513

41514

41515

41516

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

hcreate() System Interfaces

#define NUM_EMPL 5000 /* # of elements in search table. */

int main(void)
{

char string_space[NUM_EMPL*20]; /* Space to store strings. */
struct info info_space[NUM_EMPL]; /* Space to store employee info. */
char *str_ptr = string_space; /* Next space in string_space. */
struct info *info_ptr = info_space;

/* Next space in info_space. */
ENTRY item;
ENTRY *found_item; /* Name to look for in table. */
char name_to_find[30];

int i = 0;

/* Create table; no error checking is performed. */
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr->age,

&info_ptr->room) != EOF && i++ < NUM_EMPL) {

/* Put information in structure, and structure in item. */
item.key = str_ptr;
item.data = info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;

/* Put item into table. */
(void) hsearch(item, ENTER);

}

/* Access table. */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {

/* If item is in the table. */
(void)printf("found %s, age = %d, room = %d\n",

found_item->key,
((struct info *)found_item->data)->age,
((struct info *)found_item->data)->room);

} else
(void)printf("no such employee %s\n", name_to_find);

}
return 0;

}

APPLICATION USAGE
The hcreate() and hsearch() functions may use malloc() to allocate space.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1216 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41517

41518

41519

41520

41521

41522

41523

41524

41525

41526

41527

41528

41529

41530

41531

41532

41533

41534

41535

41536

41537

41538

41539

41540

41541

41542

41543

41544

41545

41546

41547

41548

41549

41550

41551

41552

41553

41554

41555

41556

41557

41558

41559

41560

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces hcreate()

SEE ALSO
bsearch(), lsearch(), malloc(), strcmp(), tdelete()

XBD <search.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1217

41561

41562

41563

41564

41565

41566

41567

41568

41569

41570

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

htobe16() System Interfaces

NAME
htobe16, htobe32, htobe64, htole16, htole32, htole64 — convert values between host and
specified byte order

SYNOPSIS
#include <endian.h>

uint16_t htobe16(uint16_t host_16bits);
uint32_t htobe32(uint32_t host_32bits);
uint64_t htobe64(uint64_t host_64bits);
uint16_t htole16(uint16_t host_16bits);
uint32_t htole32(uint32_t host_32bits);
uint64_t htole64(uint64_t host_64bits);

DESCRIPTION
Refer to be16toh().

1218 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41571

41572

41573

41574

41575

41576

41577

41578

41579

41580

41581

41582

41583

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces htonl()

NAME
htonl, htons, ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
These functions shall convert 16-bit and 32-bit quantities between network byte order and host
byte order.

On some implementations, these functions are defined as macros.

The uint32_t and uint16_t types are defined in <inttypes.h>.

RETURN VALUE
The htonl() and htons() functions shall return the argument value converted from host to
network byte order.

The ntohl() and ntohs() functions shall return the argument value converted from network to
host byte order.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are most often used in conjunction with IPv4 addresses and ports as returned by
gethostent() and getservent().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
be16toh(), endhostent(), endservent()

XBD <arpa/inet.h>, <endian.h>, <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 8
Austin Group Defect 162 is applied, adding be16toh() and <endian.h> to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1219

41584

41585

41586

41587

41588

41589

41590

41591

41592

41593

41594

41595

41596

41597

41598

41599

41600

41601

41602

41603

41604

41605

41606

41607

41608

41609

41610

41611

41612

41613

41614

41615

41616

41617

41618

41619

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

hypot() System Interfaces

NAME
hypot, hypotf, hypotl — Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the value of the square root of x2+y2 without undue overflow or
underflow.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the length of the hypotenuse of a right-
angled triangle with sides of length x and y.

If the correct value would cause overflow, a range error shall occur and hypot(), hypotf(), and
hypotl() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x or y is ±Inf, +Inf shall be returned (even if one of x or y is NaN).

If x or y is NaN, and the other is not ±Inf, a NaN shall be returned.

MXX If both arguments are subnormal and the correct result is subnormal, a range error may occur
and the correct result shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

1220 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41620

41621

41622

41623

41624

41625

41626

41627

41628

41629

41630

41631

41632

41633

41634

41635

41636

41637

41638

41639

41640

41641

41642

41643

41644

41645

41646

41647

41648

41649

41650

41651

41652

41653

41654

41655

41656

41657

41658

41659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces hypot()

EXAMPLES
See the EXAMPLES section in atan2().

APPLICATION USAGE
hypot(x,y), hypot(y,x), and hypot(x, −y) are equivalent.

hypot(x, ±0) is equivalent to fabs(x).

Underflow only happens when both x and y are subnormal and the (inexact) result is also
subnormal.

These functions take precautions against overflow during intermediate steps of the computation.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan2(), feclearexcept(), fetestexcept(), isnan(), sqrt()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The hypot() function is no longer marked as an extension.

The hypotf() and hypotl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/49 is applied, updating the EXAMPLES
section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0273 [68] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1221

41660

41661

41662

41663

41664

41665

41666

41667

41668

41669

41670

41671

41672

41673

41674

41675

41676

41677

41678

41679

41680

41681

41682

41683

41684

41685

41686

41687

41688

41689

41690

41691

41692

41693

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iconv() System Interfaces

NAME
iconv — codeset conversion function

SYNOPSIS
#include <iconv.h>

size_t iconv(iconv_t cd, char **restrict inbuf,
size_t *restrict inbytesleft, char **restrict outbuf,
size_t *restrict outbytesleft);

DESCRIPTION
The iconv() function shall convert the sequence of characters from one codeset, in the array
specified by inbuf , into a sequence of corresponding characters in another codeset, in the array
specified by outbuf . The codesets are those specified in the iconv_open() call that returned the
conversion descriptor, cd. The inbuf argument points to a variable that points to the first
character in the input buffer and inbytesleft indicates the number of bytes to the end of the buffer
to be converted. The outbuf argument points to a variable that points to the first available byte in
the output buffer and outbytesleft indicates the number of the available bytes to the end of the
buffer.

For state-dependent encodings, the conversion descriptor cd is placed into its initial shift state by
a call for which inbuf is a null pointer, or for which inbuf points to a null pointer. When iconv() is
called in this way, and if outbuf is not a null pointer or a pointer to a null pointer, and outbytesleft
points to a positive value, iconv() shall place, into the output buffer, the byte sequence to change
the output buffer to its initial shift state. If the output buffer is not large enough to hold the
entire reset sequence, iconv() shall fail and set errno to [E2BIG]. Subsequent calls with inbuf as
other than a null pointer or a pointer to a null pointer cause the conversion to take place from
the current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character or shift sequence in the input
codeset:

• If the //IGNORE indicator suffix was specified when the conversion descriptor cd was
opened and the byte sequence is immediately followed by a valid character or shift
sequence, the sequence of bytes shall be discarded and conversion shall continue from the
immediately following valid character or shift sequence. This shall not be treated as an
error.

• If the //IGNORE indicator suffix was not specified when the conversion descriptor cd was
opened, conversion shall stop after the previous successfully converted character or shift
sequence.

If the input buffer ends with an incomplete character or shift sequence, conversion shall stop
after the previous successfully converted bytes. If the output buffer is not large enough to hold
the entire converted input, conversion shall stop just prior to the input bytes that would cause
the output buffer to overflow. The variable pointed to by inbuf shall be updated to point to the
byte following the last byte successfully used in the conversion. The value pointed to by
inbytesleft shall be decremented to reflect the number of bytes still not converted in the input
buffer. The variable pointed to by outbuf shall be updated to point to the byte following the last
byte of converted output data. The value pointed to by outbytesleft shall be decremented to
reflect the number of bytes still available in the output buffer. For state-dependent encodings,
the conversion descriptor shall be updated to reflect the shift state in effect at the end of the last
successfully converted byte sequence.

If iconv() encounters a character in the input buffer that is valid, but for which an identical
character does not exist in the output codeset:

1222 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41694

41695

41696

41697

41698

41699

41700

41701

41702

41703

41704

41705

41706

41707

41708

41709

41710

41711

41712

41713

41714

41715

41716

41717

41718

41719

41720

41721

41722

41723

41724

41725

41726

41727

41728

41729

41730

41731

41732

41733

41734

41735

41736

41737

41738

41739

41740

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iconv()

• If either the //IGNORE or the //NON_IDENTICAL_DISCARD indicator suffix was
specified when the conversion descriptor cd was opened, the character shall be discarded
but shall still be counted in the return value of the iconv() call.

• If the //TRANSLIT indicator suffix was specified when the conversion descriptor cd was
opened, an implementation-defined transliteration shall be performed, if possible, to
convert the character into one or more characters of the output codeset that best resemble
the input character. The character shall be counted as one character in the return value of
the iconv() call, regardless of the number of output characters.

• If no indicator suffix was specified when the conversion descriptor cd was opened, or the
//TRANSLIT indicator suffix was specified but no transliteration of the character is
possible, iconv() shall perform an implementation-defined conversion on the character and
it shall be counted in the return value of the iconv() call.

RETURN VALUE
The iconv() function shall update the variables pointed to by the arguments to reflect the extent
of the conversion and shall return the number of input characters that could not be converted to
an identical output character. If the entire string in the input buffer is converted, except for any
byte sequences discarded as a result of the //IGNORE indicator suffix, the value pointed to by
inbytesleft shall be 0. If the input conversion is stopped due to any conditions mentioned above,
the value pointed to by inbytesleft shall be non-zero and errno shall be set to indicate the
condition. If an error occurs, iconv() shall return (size_t)−1 and set errno to indicate the error.

ERRORS
The iconv() function shall fail if:

[EILSEQ] Input conversion stopped due to an input byte that does not belong to the
input codeset.

[E2BIG] Input conversion stopped due to lack of space in the output buffer.

[EINVAL] Input conversion stopped due to an incomplete character or shift sequence at
the end of the input buffer.

The iconv() function may fail if:

[EBADF] The cd argument is not a valid open conversion descriptor.

EXAMPLES
None.

APPLICATION USAGE
The inbuf argument indirectly points to the memory area which contains the conversion input
data. The outbuf argument indirectly points to the memory area which is to contain the result of
the conversion. The objects indirectly pointed to by inbuf and outbuf are not restricted to
containing data that is directly representable in the ISO C standard language char data type. The
type of inbuf and outbuf , char **, does not imply that the objects pointed to are interpreted as
null-terminated C strings or arrays of characters. Any interpretation of a byte sequence that
represents a character in a given character set encoding scheme is done internally within the
codeset converters. For example, the area pointed to indirectly by inbuf and/or outbuf can
contain all zero octets that are not interpreted as string terminators but as coded character data
according to the respective codeset encoding scheme. The type of the data (char, short, long, and
so on) read or stored in the objects is not specified, but may be inferred for both the input and
output data by the converters determined by the fromcode and tocode arguments of iconv_open().

Regardless of the data type inferred by the converter, the size of the remaining space in both
input and output objects (the intbytesleft and outbytesleft arguments) is always measured in bytes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1223

41741

41742

41743

41744

41745

41746

41747

41748

41749

41750

41751

41752

41753

41754

41755

41756

41757

41758

41759

41760

41761

41762

41763

41764

41765

41766

41767

41768

41769

41770

41771

41772

41773

41774

41775

41776

41777

41778

41779

41780

41781

41782

41783

41784

41785

41786

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iconv() System Interfaces

For implementations that support the conversion of state-dependent encodings, the conversion
descriptor must be able to accurately reflect the shift-state in effect at the end of the last
successful conversion. It is not required that the conversion descriptor itself be updated, which
would require it to be a pointer type. Thus, implementations are free to implement the
descriptor as a handle (other than a pointer type) by which the conversion information can be
accessed and updated.

It is the responsibility of the application to ensure that, if the output codeset has a locking-shift
encoding, the output buffer is returned to its initial shift state when conversion is completed.
This can be accomplished by calling iconv() with inbuf as a null pointer, or with inbuf pointing to
a null pointer, before calling iconv_close(). Since the standard does not provide a way to query
whether a codeset has a locking-shift encoding, it is recommended that applications always call
iconv() in this way before calling iconv_close().

When the //IGNORE indicator suffix was used to open the conversion descriptor, iconv() does
not provide any indication of whether any invalid input byte sequences were discarded.
Applications which need to detect the discarding of invalid input byte sequences can open the
conversion descriptor without using //IGNORE and then call iconv() in a loop such that if it
returns an [EILSEQ] error, the application increments the variable pointed to by inbuf and
decrements the variable pointed to by inbytesleft before the next call. This technique can also be
used by applications which need to use //TRANSLIT but also discard invalid input byte
sequences.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv_open(), iconv_close(), mbsrtowcs()

XBD <iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Issue 6
The SYNOPSIS has been corrected to align with the <iconv.h> reference page.

The restrict keyword is added to the iconv() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The iconv() function is moved from the XSI option to the Base.

Issue 8
Austin Group Defect 1007 is applied, adding support for indicator suffixes in the tocode
argument to iconv_open().

Austin Group Defect 1008 is applied, adding a paragraph about locking-shift encodings to the
APPLICATION USAGE section.

Austin Group Defect 1438 is applied, changing ``valid character in the specified codeset’’ to
``valid character in the specified input codeset’’.

1224 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41787

41788

41789

41790

41791

41792

41793

41794

41795

41796

41797

41798

41799

41800

41801

41802

41803

41804

41805

41806

41807

41808

41809

41810

41811

41812

41813

41814

41815

41816

41817

41818

41819

41820

41821

41822

41823

41824

41825

41826

41827

41828

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iconv_close()

NAME
iconv_close — codeset conversion deallocation function

SYNOPSIS
#include <iconv.h>

int iconv_close(iconv_t cd);

DESCRIPTION
The iconv_close() function shall deallocate the conversion descriptor cd and all other associated
resources allocated by iconv_open().

If a file descriptor is used to implement the type iconv_t, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The iconv_close() function may fail if:

[EBADF] The conversion descriptor is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), iconv_open()

XBD <iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Issue 7
The iconv_close() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1225

41829

41830

41831

41832

41833

41834

41835

41836

41837

41838

41839

41840

41841

41842

41843

41844

41845

41846

41847

41848

41849

41850

41851

41852

41853

41854

41855

41856

41857

41858

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iconv_open() System Interfaces

NAME
iconv_open — codeset conversion allocation function

SYNOPSIS
#include <iconv.h>

iconv_t iconv_open(const char *tocode, const char *fromcode);

DESCRIPTION
The iconv_open() function shall return a conversion descriptor that describes a conversion from
the codeset specified by the string pointed to by the fromcode argument to the codeset specified
by the string pointed to by the tocode argument. For state-dependent encodings, the conversion
descriptor shall be in a codeset-dependent initial shift state, ready for immediate use with
iconv().

The codeset names that can be specified in fromcode and tocode and their permitted combinations
are implementation-defined. Any one of the following indicator suffixes can be appended to the
codeset name in tocode:

//IGNORE Discard input bytes that do not form a valid character or shift sequence, and
discard input characters for which an identical character does not exist in the
output codeset.

//NON_IDENTICAL_DISCARD
Discard input characters for which an identical character does not exist in the
output codeset.

//TRANSLIT Transliterate input characters for which an identical character does not exist in
the output codeset into one or more characters of the output codeset that best
resemble the input character.

See the description of iconv() for details of how these indicator suffixes alter the conversion
performed by iconv(). Additional implementation-defined indicator suffixes may be supported.

A conversion descriptor shall remain valid until it is closed by iconv_close() or an implicit close.

If a file descriptor is used to implement conversion descriptors, the FD_CLOEXEC flag shall be
set; see <fcntl.h>.

RETURN VALUE
Upon successful completion, iconv_open() shall return a conversion descriptor for use on
subsequent calls to iconv(). Otherwise, iconv_open() shall return (iconv_t)−1 and set errno to
indicate the error.

ERRORS
The iconv_open() function may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] Too many files are currently open in the system.

[ENOMEM] Insufficient storage space is available.

[EINVAL] Conversion from the codeset specified in fromcode to the codeset specified in
tocode is not supported by the implementation, or the codeset name in tocode is
followed by an indicator suffix that is unrecognized or not supported.

1226 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41859

41860

41861

41862

41863

41864

41865

41866

41867

41868

41869

41870

41871

41872

41873

41874

41875

41876

41877

41878

41879

41880

41881

41882

41883

41884

41885

41886

41887

41888

41889

41890

41891

41892

41893

41894

41895

41896

41897

41898

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iconv_open()

EXAMPLES
None.

APPLICATION USAGE
Some implementations of iconv_open() use malloc() to allocate space for internal buffer areas.
The iconv_open() function may fail if there is insufficient storage space to accommodate these
buffers.

Conforming applications must assume that conversion descriptors are not valid after a call to
one of the exec functions.

Application developers should consult the system documentation to determine the supported
codesets and their naming schemes.

Some implementations of iconv_open() allow appending multiple indicator suffixes to the
codeset name in tocode, and some allow appending an indicator suffix (or suffixes) in both
fromcode and tocode. Portable applications should append at most one indicator suffix, and
append it only in tocode.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), iconv_close()

XBD <fcntl.h>, <iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The iconv_open() function is moved from the XSI option to the Base.

Issue 8
Austin Group Defect 1007 is applied, adding support for indicator suffixes in the tocode
argument to iconv_open().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1227

41899

41900

41901

41902

41903

41904

41905

41906

41907

41908

41909

41910

41911

41912

41913

41914

41915

41916

41917

41918

41919

41920

41921

41922

41923

41924

41925

41926

41927

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

if_freenameindex() System Interfaces

NAME
if_freenameindex — free memory allocated by if_nameindex

SYNOPSIS
#include <net/if.h>

void if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION
The if_freenameindex() function shall free the memory allocated by if_nameindex(). The ptr
argument shall be a pointer that was returned by if_nameindex(). After if_freenameindex() has
been called, the application shall not use the array of which ptr is the address. The
if_freenameindex() function shall not modify errno if ptr was previously returned by
if_nameindex() and not yet freed.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_indextoname(), if_nameindex(), if_nametoindex(), setsockopt()

XBD <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 8
Austin Group Defect 385 is applied, adding a requirement that if_freenameindex() does not
modify errno when passed a pointer to an if_nameindex structure than can be freed.

1228 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41928

41929

41930

41931

41932

41933

41934

41935

41936

41937

41938

41939

41940

41941

41942

41943

41944

41945

41946

41947

41948

41949

41950

41951

41952

41953

41954

41955

41956

41957

41958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces if_indextoname()

NAME
if_indextoname — map a network interface index to its corresponding name

SYNOPSIS
#include <net/if.h>

char *if_indextoname(unsigned ifindex, char *ifname);

DESCRIPTION
The if_indextoname() function shall map an interface index to its corresponding name.

When this function is called, ifname shall point to a buffer of at least {IF_NAMESIZE} bytes. The
function shall place in this buffer the name of the interface with index ifindex.

RETURN VALUE
If ifindex is an interface index, then the function shall return the value supplied in ifname, which
points to a buffer now containing the interface name. Otherwise, the function shall return a null
pointer and set errno to indicate the error.

ERRORS
The if_indextoname() function shall fail if:

[ENXIO] The interface does not exist.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_nameindex(), if_nametoindex(), setsockopt()

XBD <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/28 is applied, changing {IFNAMSIZ} to
{IF_NAMESIZ} in the DESCRIPTION.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1229

41959

41960

41961

41962

41963

41964

41965

41966

41967

41968

41969

41970

41971

41972

41973

41974

41975

41976

41977

41978

41979

41980

41981

41982

41983

41984

41985

41986

41987

41988

41989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

if_nameindex() System Interfaces

NAME
if_nameindex — return all network interface names and indexes

SYNOPSIS
#include <net/if.h>

struct if_nameindex *if_nameindex(void);

DESCRIPTION
The if_nameindex() function shall return an array of if_nameindex structures, one structure per
interface. The end of the array is indicated by a structure with an if_index field of zero and an
if_name field of NULL.

Applications should call if_freenameindex() to release the memory that may be dynamically
allocated by this function, after they have finished using it.

RETURN VALUE
An array of structures identifying local interfaces. A null pointer is returned upon an error, with
errno set to indicate the error.

ERRORS
The if_nameindex() function may fail if:

[ENOBUFS] Insufficient resources are available to complete the function.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_indextoname(), if_nametoindex(), setsockopt()

XBD <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1230 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

41990

41991

41992

41993

41994

41995

41996

41997

41998

41999

42000

42001

42002

42003

42004

42005

42006

42007

42008

42009

42010

42011

42012

42013

42014

42015

42016

42017

42018

42019

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces if_nametoindex()

NAME
if_nametoindex — map a network interface name to its corresponding index

SYNOPSIS
#include <net/if.h>

unsigned if_nametoindex(const char *ifname);

DESCRIPTION
The if_nametoindex() function shall return the interface index corresponding to name ifname.

RETURN VALUE
The corresponding index if ifname is the name of an interface; otherwise, zero.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_indextoname(), if_nameindex(), setsockopt()

XBD <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1231

42020

42021

42022

42023

42024

42025

42026

42027

42028

42029

42030

42031

42032

42033

42034

42035

42036

42037

42038

42039

42040

42041

42042

42043

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ilogb() System Interfaces

NAME
ilogb, ilogbf, ilogbl — return an unbiased exponent

SYNOPSIS
#include <math.h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall return the exponent part of their argument x. Formally, the return value is
the integral part of logr |x| as a signed integral value, for non-zero x, where r is the radix of the
machine’s floating-point arithmetic, which is the value of FLT_RADIX defined in <float.h>.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponent part of x as a signed
integer value. They are equivalent to calling the corresponding logb() function and casting the
returned value to type int.

MX When the correct result is representable in the range of the return type, the returned value shall
be exact and shall be independent of the current rounding direction mode.

XSI|MX If x is 0, the value FP_ILOGB0 shall be returned. On XSI-conformant systems and on systems
that support the IEC 60559 Floating-Point option, a domain error shall occur; otherwise, a

CX domain error may occur.

XSI|MX If x is ±Inf, the value {INT_MAX} shall be returned. On XSI-conformant systems and on
systems that support the IEC 60559 Floating-Point option, a domain error shall occur; otherwise,

CX a domain error may occur.

XSI|MX If x is a NaN, the value FP_ILOGBNAN shall be returned. On XSI-conformant systems and on
systems that support the IEC 60559 Floating-Point option, a domain error shall occur; otherwise,

CX a domain error may occur.

If the correct value is greater than {INT_MAX} or less than {INT_MIN}, an unspecified value
XSI shall be returned. On XSI-conformant systems, a domain error shall occur and {INT_MAX} or

{INT_MIN}, respectively, shall be returned;
MX if the IEC 60559 Floating-Point option is supported, a domain error shall occur; otherwise, a

domain error or range error may occur.

ERRORS
These functions shall fail if:

XSI|MX Domain Error The correct value is not representable as an integer.

The x argument is zero, NaN, or ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception

1232 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42044

42045

42046

42047

42048

42049

42050

42051

42052

42053

42054

42055

42056

42057

42058

42059

42060

42061

42062

42063

42064

42065

42066

42067

42068

42069

42070

42071

42072

42073

42074

42075

42076

42077

42078

42079

42080

42081

42082

42083

42084

42085

42086

42087

42088

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ilogb()

shall be raised.

These functions may fail if:

Domain Error The x argument is zero, NaN, or ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
The errors come from taking the expected floating-point value and converting it to int, which is
an invalid operation in IEEE Std 754-1985 (since overflow, infinity, and NaN are not
representable in a type int), so should be a domain error.

There are no known implementations that overflow. For overflow to happen, {INT_MAX} must
be less than LDBL_MAX_EXP*log2(FLT_RADIX) or {INT_MIN} must be greater than
LDBL_MIN_EXP*log2(FLT_RADIX) if subnormals are not supported, or {INT_MIN} must be
greater than (LDBL_MIN_EXP-LDBL_MANT_DIG)*log2(FLT_RADIX) if subnormals are
supported.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), logb(), scalbln()

XBD Section 4.23 (on page 109), <float.h>, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The ilogb() function is no longer marked as an extension.

The ilogbf() and ilogbl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The RETURN VALUE section is revised for alignment with the ISO/IEC 9899: 1999 standard.

Functionality relating to the XSI option is marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #48 (SD5-XSH-ERN-71), #49, and #79
(SD5-XSH-ERN-72) are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1233

42089

42090

42091

42092

42093

42094

42095

42096

42097

42098

42099

42100

42101

42102

42103

42104

42105

42106

42107

42108

42109

42110

42111

42112

42113

42114

42115

42116

42117

42118

42119

42120

42121

42122

42123

42124

42125

42126

42127

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ilogb() System Interfaces

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

1234 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42128

42129

42130

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces imaxabs()

NAME
imaxabs — return absolute value

SYNOPSIS
#include <inttypes.h>

intmax_t imaxabs(intmax_t j);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The imaxabs() function shall compute the absolute value of an integer j. If the result cannot be
represented, the behavior is undefined.

RETURN VALUE
The imaxabs() function shall return the absolute value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Since POSIX.1 requires a two’s complement representation of intmax_t, the absolute value of the
negative integer with the largest magnitude {INTMAX_MIN} is not representable, thus
imaxabs(INTMAX_MIN) is undefined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
imaxdiv()

XBD <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1108 is applied, changing the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1235

42131

42132

42133

42134

42135

42136

42137

42138

42139

42140

42141

42142

42143

42144

42145

42146

42147

42148

42149

42150

42151

42152

42153

42154

42155

42156

42157

42158

42159

42160

42161

42162

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

imaxdiv() System Interfaces

NAME
imaxdiv — return quotient and remainder

SYNOPSIS
#include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The imaxdiv() function shall compute numer / denom and numer % denom in a single operation.

RETURN VALUE
The imaxdiv() function shall return a structure of type imaxdiv_t, comprising both the quotient
and the remainder. The structure shall contain (in either order) the members quot (the quotient)
and rem (the remainder), each of which has type intmax_t.

If either part of the result cannot be represented, the behavior is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
imaxabs()

XBD <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1236 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42163

42164

42165

42166

42167

42168

42169

42170

42171

42172

42173

42174

42175

42176

42177

42178

42179

42180

42181

42182

42183

42184

42185

42186

42187

42188

42189

42190

42191

42192

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces in6addr_any

NAME
in6addr_any, in6addr_loopback — IPv6 address variables

SYNOPSIS
IP6 #include <netinet/in.h>

const struct in6_addr in6addr_any;
const struct in6_addr in6addr_loopback;

DESCRIPTION
The in6addr_any variable is initialized by the system to contain the wildcard IPv6 address (::).

The in6addr_loopback variable is initialized by the system to contain the loopback IPv6 address
(::1).

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
These variables were only described on the XBD <netinet/in.h> page in earlier versions of this
standard.

FUTURE DIRECTIONS
None.

SEE ALSO
bind(), connect()

XBD <netinet/in.h>

CHANGE HISTORY
First released in Issue 8. Derived from Issue 7 XBD <netinet/in.h>.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1237

42193

42194

42195

42196

42197

42198

42199

42200

42201

42202

42203

42204

42205

42206

42207

42208

42209

42210

42211

42212

42213

42214

42215

42216

42217

42218

42219

42220

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

inet_addr() System Interfaces

NAME
inet_addr, inet_ntoa — IPv4 address manipulation

SYNOPSIS
OB #include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);
char *inet_ntoa(struct in_addr in);

DESCRIPTION
The inet_addr() function shall convert the string pointed to by cp, in the standard IPv4 dotted
decimal notation, to an integer value suitable for use as an Internet address.

The inet_ntoa() function shall convert the Internet host address specified by in to a string in the
Internet standard dot notation.

The inet_ntoa() function need not be thread-safe.

All Internet addresses shall be returned in network order (bytes ordered from left to right).

Values specified using IPv4 dotted decimal notation take one of the following forms:

a.b.c.d When four parts are specified, each shall be interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address.

a.b.c When a three-part address is specified, the last part shall be interpreted as a 16-bit
quantity and placed in the rightmost two bytes of the network address. This makes
the three-part address format convenient for specifying Class B network addresses
as "128.net.host".

a.b When a two-part address is supplied, the last part shall be interpreted as a 24-bit
quantity and placed in the rightmost three bytes of the network address. This
makes the two-part address format convenient for specifying Class A network
addresses as "net.host".

a When only one part is given, the value shall be stored directly in the network
address without any byte rearrangement.

All numbers supplied as parts in IPv4 dotted decimal notation may be decimal, octal, or
hexadecimal, as specified in the ISO C standard (that is, a leading 0x or 0X implies hexadecimal;
otherwise, a leading '0' implies octal; otherwise, the number is interpreted as decimal).

RETURN VALUE
Upon successful completion, inet_addr() shall return the Internet address. Otherwise, it shall
return (in_addr_t)(−1).

The inet_ntoa() function shall return a pointer to the network address in Internet standard dot
notation.

ERRORS
No errors are defined.

1238 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42221

42222

42223

42224

42225

42226

42227

42228

42229

42230

42231

42232

42233

42234

42235

42236

42237

42238

42239

42240

42241

42242

42243

42244

42245

42246

42247

42248

42249

42250

42251

42252

42253

42254

42255

42256

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces inet_addr()

EXAMPLES
None.

APPLICATION USAGE
The return value of inet_ntoa() may point to static data that may be overwritten by subsequent
calls to inet_ntoa().

Applications should prefer inet_pton() over inet_addr() for the following reasons:

• The return value from inet_addr() when converting 255.255.255.255 is indistinguishable
from an error.

• The inet_pton() function supports multiple address families.

• The alternative textual representations supported by inet_addr() (but not by inet_pton())
are often used maliciously to confuse or mislead users (e.g., for phishing).

Applications should prefer inet_ntop() over inet_ntoa() as it supports multiple address families
and is thread-safe.

RATIONALE
None.

FUTURE DIRECTIONS
These functions are included only for compatibility with older implementations and may be
removed in a future version.

SEE ALSO
endhostent(), endnetent(), inet_ntop()

XBD <arpa/inet.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

Issue 8
Austin Group Defects 1101 and 1102 are applied, marking inet_addr() and inet_ntoa() as
obsolescent.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1239

42257

42258

42259

42260

42261

42262

42263

42264

42265

42266

42267

42268

42269

42270

42271

42272

42273

42274

42275

42276

42277

42278

42279

42280

42281

42282

42283

42284

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

inet_ntop() System Interfaces

NAME
inet_ntop, inet_pton — convert IPv4 and IPv6 addresses between binary and text form

SYNOPSIS
#include <arpa/inet.h>

const char *inet_ntop(int af, const void *restrict src,
char *restrict dst, socklen_t size);

int inet_pton(int af, const char *restrict src, void *restrict dst);

DESCRIPTION
The inet_ntop() function shall convert a numeric address into a text string suitable for

IP6 presentation. The af argument shall specify the family of the address. This can be AF_INET or
AF_INET6. The src argument points to a buffer holding an IPv4 address if the af argument is

IP6 AF_INET, or an IPv6 address if the af argument is AF_INET6; the address needs to be in
network byte order. The dst argument points to a buffer where the function stores the resulting
text string; it shall not be NULL. The size argument specifies the size of this buffer, which shall

IP6 be large enough to hold the text string (INET_ADDRSTRLEN characters for IPv4,
INET6_ADDRSTRLEN characters for IPv6).

The inet_pton() function shall convert an address in its standard text presentation form into its
IP6 numeric binary form. The af argument shall specify the family of the address. The AF_INET and

AF_INET6 address families shall be supported. The src argument points to the string being
passed in. The dst argument points to a buffer into which the function stores the numeric

IP6 address; this shall be large enough to hold the numeric address (32 bits for AF_INET, 128 bits
for AF_INET6).

If the af argument of inet_pton() is AF_INET, the src string shall be in the standard IPv4 dotted-
decimal form:

ddd.ddd.ddd.ddd

where "ddd" is a one to three digit decimal number between 0 and 255. Leading zeros shall be
allowed. The inet_pton() function does not accept other formats (such as the octal numbers,
hexadecimal numbers, and fewer than four numbers that inet_addr() accepts).

IP6 If the af argument of inet_pton() is AF_INET6, the src string shall be in one of the following
standard IPv6 text forms:

1. The preferred form is "x:x:x:x:x:x:x:x", where the 'x's are the hexadecimal values
of the eight 16-bit pieces of the address. Leading zeros in individual fields can be
omitted, but there shall be one to four hexadecimal digits in every field.

2. A string of contiguous zero fields in the preferred form can be shown as "::". The "::"
can only appear once in an address. Unspecified addresses ("0:0:0:0:0:0:0:0") may
be represented simply as "::".

3. A third form that is sometimes more convenient when dealing with a mixed environment
of IPv4 and IPv6 nodes is "x:x:x:x:x:x:d.d.d.d", where the 'x's are the
hexadecimal values of the six high-order 16-bit pieces of the address, and the 'd's are the
decimal values of the four low-order 8-bit pieces of the address (standard IPv4
representation).

Note: A more extensive description of the standard representations of IPv6 addresses can be found in
RFC 4291.

1240 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42285

42286

42287

42288

42289

42290

42291

42292

42293

42294

42295

42296

42297

42298

42299

42300

42301

42302

42303

42304

42305

42306

42307

42308

42309

42310

42311

42312

42313

42314

42315

42316

42317

42318

42319

42320

42321

42322

42323

42324

42325

42326

42327

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces inet_ntop()

RETURN VALUE
The inet_ntop() function shall return a pointer to the buffer containing the text string if the
conversion succeeds, and NULL otherwise, and set errno to indicate the error.

The inet_pton() function shall return 1 if the conversion succeeds, with the address pointed to by
IP6 dst in network byte order. It shall return 0 if the input is not a valid IPv4 dotted-decimal string

or a valid IPv6 address string, or −1 with errno set to [EAFNOSUPPORT] if the af argument is
unknown.

ERRORS
The inet_ntop() and inet_pton() functions shall fail if:

[EAFNOSUPPORT]
The af argument is invalid.

[ENOSPC] The size of the inet_ntop() result buffer is inadequate.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
inet_addr()

XBD <arpa/inet.h>
CHANGE HISTORY

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IPv6 extensions are marked.

The restrict keyword is added to the inet_ntop() and inet_pton() prototypes for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/29 is applied, adding ``the address must
be in network byte order ’’ to the end of the fourth sentence of the first paragraph in the
DESCRIPTION.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0178 [777] is applied.

Issue 8
Austin Group Defect 1102 is applied, removing a reference to the inet_addr() page from the
DESCRIPTION.

Austin Group Defect 1573 is applied, clarifying that leading zeros are allowed in the IPv4
dotted-decimal form accepted by inet_pton().

Austin Group Defect 1685 is applied, updating RFC references.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1241

42328

42329

42330

42331

42332

42333

42334

42335

42336

42337

42338

42339

42340

42341

42342

42343

42344

42345

42346

42347

42348

42349

42350

42351

42352

42353

42354

42355

42356

42357

42358

42359

42360

42361

42362

42363

42364

42365

42366

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

initstate() System Interfaces

NAME
initstate, random, setstate, srandom — pseudo-random number functions

SYNOPSIS
XSI #include <stdlib.h>

char *initstate(unsigned seed, char *state, size_t size);
long random(void);
char *setstate(char *state);
void srandom(unsigned seed);

DESCRIPTION
The random() function shall use a non-linear additive feedback random-number generator
employing a default state array size of 31 long integers to return successive pseudo-random
numbers in the range from 0 to 231−1. The period of this random-number generator is
approximately 16 x (231−1). The size of the state array determines the period of the random-
number generator. Increasing the state array size shall increase the period.

With 256 bytes of state information, the period of the random-number generator shall be greater
than 269.

Like rand(), random() shall produce by default a sequence of numbers that can be duplicated by
calling srandom() with 1 as the seed.

The srandom() function shall initialize the current state array using the value of seed.

The initstate() and setstate() functions handle restarting and changing random-number
generators. The initstate() function allows a state array, pointed to by the state argument, to be
initialized for future use. The size argument, which specifies the size in bytes of the state array,
shall be used by initstate() to decide what type of random-number generator to use; the larger
the state array, the more random the numbers. Values for the amount of state information are 8,
32, 64, 128, and 256 bytes. Other values greater than 8 bytes are rounded down to the nearest one
of these values. If initstate() is called with 8≤size<32, then random() shall use a simple linear
congruential random number generator. The seed argument specifies a starting point for the
random-number sequence and provides for restarting at the same point. The initstate() function
shall return a pointer to the previous state information array.

If initstate() has not been called, then random() shall behave as though initstate() had been called
with seed=1 and size=128.

Once a state has been initialized, setstate() allows switching between state arrays. The array
defined by the state argument shall be used for further random-number generation until
initstate() is called or setstate() is called again. The setstate() function shall return a pointer to the
previous state array.

RETURN VALUE
If initstate() is called with size less than 8, it shall return NULL.

The random() function shall return the generated pseudo-random number.

The srandom() function shall not return a value.

Upon successful completion, initstate() and setstate() shall return a pointer to the previous state
array; otherwise, a null pointer shall be returned.

1242 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42367

42368

42369

42370

42371

42372

42373

42374

42375

42376

42377

42378

42379

42380

42381

42382

42383

42384

42385

42386

42387

42388

42389

42390

42391

42392

42393

42394

42395

42396

42397

42398

42399

42400

42401

42402

42403

42404

42405

42406

42407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces initstate()

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
After initialization, a state array can be restarted at a different point in one of two ways:

1. The initstate() function can be used, with the desired seed, state array, and size of the
array.

2. The setstate() function, with the desired state, can be used, followed by srandom() with
the desired seed. The advantage of using both of these functions is that the size of the
state array does not have to be saved once it is initialized.

Although some implementations of random() have written messages to standard error, such
implementations do not conform to POSIX.1-2024.

Issue 5 restored the historical behavior of this function.

Threaded applications should use erand48(), nrand48(), or jrand48() instead of random() when
an independent random number sequence in multiple threads is required.

These functions should be avoided whenever non-trivial requirements (including safety) have to
be fulfilled, unless seeded using getentropy().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), getentropy(), rand()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the phrase ``values smaller than 8’’ is replaced with ``values greater than
or equal to 8, or less than 32’’, ``size<8’’ is replaced with ``8≤size <32’’, and a new first paragraph
is added to the RETURN VALUE section. A note is added to the APPLICATION USAGE
indicating that these changes restore the historical behavior of the function.

Issue 6
In the DESCRIPTION, duplicate text ``For values greater than or equal to 8 . . .’’ is removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/30 is applied, removing rand_r() from the
list of suggested functions in the APPLICATION USAGE section.

Issue 7
The type of the first argument to setstate() is changed from const char * to char *.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0179 [743] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1243

42408

42409

42410

42411

42412

42413

42414

42415

42416

42417

42418

42419

42420

42421

42422

42423

42424

42425

42426

42427

42428

42429

42430

42431

42432

42433

42434

42435

42436

42437

42438

42439

42440

42441

42442

42443

42444

42445

42446

42447

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

initstate() System Interfaces

Issue 8
Austin Group Defect 1134 is applied, adding getentropy().

1244 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42448

42449

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces insque()

NAME
insque, remque — insert or remove an element in a queue

SYNOPSIS
XSI #include <search.h>

void insque(void *element, void *pred);
void remque(void *element);

DESCRIPTION
The insque() and remque() functions shall manipulate queues built from doubly-linked lists. The
queue can be either circular or linear. An application using insque() or remque() shall ensure it
defines a structure in which the first two members of the structure are pointers to the same type
of structure, and any further members are application-specific. The first member of the structure
is a forward pointer to the next entry in the queue. The second member is a backward pointer to
the previous entry in the queue. If the queue is linear, the queue is terminated with null
pointers. The names of the structure and of the pointer members are not subject to any special
restriction.

The insque() function shall insert the element pointed to by element into a queue immediately
after the element pointed to by pred.

The remque() function shall remove the element pointed to by element from a queue.

If the queue is to be used as a linear list, invoking insque(&element, NULL), where element is the
initial element of the queue, shall initialize the forward and backward pointers of element to null
pointers.

If the queue is to be used as a circular list, the application shall ensure it initializes the forward
pointer and the backward pointer of the initial element of the queue to the element’s own
address.

RETURN VALUE
The insque() and remque() functions do not return a value.

ERRORS
No errors are defined.

EXAMPLES

Creating a Linear Linked List

The following example creates a linear linked list.

#include <search.h>
...
struct myque element1;
struct myque element2;

char *data1 = "DATA1";
char *data2 = "DATA2";
...
element1.data = data1;
element2.data = data2;

insque (&element1, NULL);
insque (&element2, &element1);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1245

42450

42451

42452

42453

42454

42455

42456

42457

42458

42459

42460

42461

42462

42463

42464

42465

42466

42467

42468

42469

42470

42471

42472

42473

42474

42475

42476

42477

42478

42479

42480

42481

42482

42483

42484

42485

42486

42487

42488

42489

42490

42491

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

insque() System Interfaces

Creating a Circular Linked List

The following example creates a circular linked list.

#include <search.h>
...
struct myque element1;
struct myque element2;

char *data1 = "DATA1";
char *data2 = "DATA2";
...
element1.data = data1;
element2.data = data2;

element1.fwd = &element1;
element1.bck = &element1;

insque (&element2, &element1);

Removing an Element

The following example removes the element pointed to by element1.

#include <search.h>
...
struct myque element1;
...
remque (&element1);

APPLICATION USAGE
The historical implementations of these functions described the arguments as being of type
struct qelem * rather than as being of type void * as defined here. In those implementations,
struct qelem was commonly defined in <search.h> as:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;

};

Applications using these functions, however, were never able to use this structure directly since
it provided no room for the actual data contained in the elements. Most applications defined
structures that contained the two pointers as the initial elements and also provided space for, or
pointers to, the object’s data. Applications that used these functions to update more than one
type of table also had the problem of specifying two or more different structures with the same
name, if they literally used struct qelem as specified.

As described here, the implementations were actually expecting a structure type where the first
two members were forward and backward pointers to structures. With C compilers that didn’t
provide function prototypes, applications used structures as specified in the DESCRIPTION
above and the compiler did what the application expected.

If this method had been carried forward with an ISO C standard compiler and the historical
function prototype, most applications would have to be modified to cast pointers to the
structures actually used to be pointers to struct qelem to avoid compilation warnings. By
specifying void * as the argument type, applications do not need to change (unless they
specifically referenced struct qelem and depended on it being defined in <search.h>).

1246 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42492

42493

42494

42495

42496

42497

42498

42499

42500

42501

42502

42503

42504

42505

42506

42507

42508

42509

42510

42511

42512

42513

42514

42515

42516

42517

42518

42519

42520

42521

42522

42523

42524

42525

42526

42527

42528

42529

42530

42531

42532

42533

42534

42535

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces insque()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <search.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1247

42536

42537

42538

42539

42540

42541

42542

42543

42544

42545

42546

42547

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isalnum() System Interfaces

NAME
isalnum, isalnum_l — test for an alphanumeric character

SYNOPSIS
#include <ctype.h>

int isalnum(int c);
CX int isalnum_l(int c, locale_t locale);

DESCRIPTION
CX For isalnum(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isalnum() and isalnum_l() functions shall test whether c is a character of class alpha or
CX digit in the current locale, or in the locale represented by locale, respectively; see XBD Chapter 7

(on page 127).

The c argument is an int, the value of which the application shall ensure is representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

CX The behavior is undefined if the locale argument to isalnum_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isalnum() and isalnum_l() functions shall return non-zero if c is an alphanumeric character;

otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

1248 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42548

42549

42550

42551

42552

42553

42554

42555

42556

42557

42558

42559

42560

42561

42562

42563

42564

42565

42566

42567

42568

42569

42570

42571

42572

42573

42574

42575

42576

42577

42578

42579

42580

42581

42582

42583

42584

42585

42586

42587

42588

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isalnum()

Issue 7
The isalnum_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0274 [302], XSH/TC1-2008/0275 [283],
and XSH/TC1-2008/0276 [283] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1249

42589

42590

42591

42592

42593

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isalpha() System Interfaces

NAME
isalpha, isalpha_l — test for an alphabetic character

SYNOPSIS
#include <ctype.h>

int isalpha(int c);
CX int isalpha_l(int c, locale_t locale);

DESCRIPTION
CX For isalpha(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isalpha() and isalpha_l() functions shall test whether c is a character of class alpha in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

CX The behavior is undefined if the locale argument to isalpha_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isalpha() and isalpha_l() functions shall return non-zero if c is an alphabetic character;

otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

1250 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42594

42595

42596

42597

42598

42599

42600

42601

42602

42603

42604

42605

42606

42607

42608

42609

42610

42611

42612

42613

42614

42615

42616

42617

42618

42619

42620

42621

42622

42623

42624

42625

42626

42627

42628

42629

42630

42631

42632

42633

42634

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isalpha()

Issue 7
The isalpha_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0277 [302], XSH/TC1-2008/0278 [283],
and XSH/TC1-2008/0279 [283] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1251

42635

42636

42637

42638

42639

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isatty() System Interfaces

NAME
isatty — test for a terminal device

SYNOPSIS
#include <unistd.h>

int isatty(int fildes);

DESCRIPTION
The isatty() function shall test whether fildes, an open file descriptor, is associated with a
terminal device.

RETURN VALUE
The isatty() function shall return 1 if fildes is associated with a terminal; otherwise, it shall return
0 and may set errno to indicate the error.

ERRORS
The isatty() function may fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENOTTY] The file associated with the fildes argument is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
The isatty() function does not necessarily indicate that a human being is available for interaction
via fildes. It is quite possible that non-terminal devices are connected to the communications
line.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno to indicate an error is added.

• The [EBADF] and [ENOTTY] optional error conditions are added.

Issue 7
SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

1252 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42640

42641

42642

42643

42644

42645

42646

42647

42648

42649

42650

42651

42652

42653

42654

42655

42656

42657

42658

42659

42660

42661

42662

42663

42664

42665

42666

42667

42668

42669

42670

42671

42672

42673

42674

42675

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isblank()

NAME
isblank, isblank_l — test for a blank character

SYNOPSIS
#include <ctype.h>

int isblank(int c);
CX int isblank_l(int c, locale_t locale);

DESCRIPTION
CX For isblank(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isblank() and isblank_l() functions shall test whether c is a character of class blank in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is a type int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to isblank_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isblank() and isblank_l() functions shall return non-zero if c is a <blank>; otherwise, they

shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
The isblank_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1253

42676

42677

42678

42679

42680

42681

42682

42683

42684

42685

42686

42687

42688

42689

42690

42691

42692

42693

42694

42695

42696

42697

42698

42699

42700

42701

42702

42703

42704

42705

42706

42707

42708

42709

42710

42711

42712

42713

42714

42715

42716

42717

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isblank() System Interfaces

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0280 [302], XSH/TC1-2008/0281 [283],
and XSH/TC1-2008/0282 [283] are applied.

1254 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42718

42719

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iscntrl()

NAME
iscntrl, iscntrl_l — test for a control character

SYNOPSIS
#include <ctype.h>

int iscntrl(int c);
CX int iscntrl_l(int c, locale_t locale);

DESCRIPTION
CX For iscntrl(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iscntrl() and iscntrl_l() functions shall test whether c is a character of class cntrl in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is a type int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iscntrl_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iscntrl() and iscntrl_l() functions shall return non-zero if c is a control character; otherwise,

they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1255

42720

42721

42722

42723

42724

42725

42726

42727

42728

42729

42730

42731

42732

42733

42734

42735

42736

42737

42738

42739

42740

42741

42742

42743

42744

42745

42746

42747

42748

42749

42750

42751

42752

42753

42754

42755

42756

42757

42758

42759

42760

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iscntrl() System Interfaces

Issue 7
The iscntrl_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0283 [302], XSH/TC1-2008/0284 [283],
and XSH/TC1-2008/0285 [283] are applied.

1256 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42761

42762

42763

42764

42765

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isdigit()

NAME
isdigit, isdigit_l — test for a decimal digit

SYNOPSIS
#include <ctype.h>

int isdigit(int c);
CX int isdigit_l(int c, locale_t locale);

DESCRIPTION
CX For isdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isdigit() and isdigit_l() functions shall test whether c is a character of class digit in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to isdigit_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isdigit() and isdigit_l() functions shall return non-zero if c is a decimal digit; otherwise,

they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1257

42766

42767

42768

42769

42770

42771

42772

42773

42774

42775

42776

42777

42778

42779

42780

42781

42782

42783

42784

42785

42786

42787

42788

42789

42790

42791

42792

42793

42794

42795

42796

42797

42798

42799

42800

42801

42802

42803

42804

42805

42806

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isdigit() System Interfaces

Issue 7
The isdigit_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0286 [302], XSH/TC1-2008/0287 [283],
and XSH/TC1-2008/0288 [283] are applied.

1258 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42807

42808

42809

42810

42811

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isfinite()

NAME
isfinite — test for finite value

SYNOPSIS
#include <math.h>

int isfinite(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The isfinite() macro shall determine whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type of the
argument.

RETURN VALUE
The isfinite() macro shall return a non-zero value if and only if its argument has a finite value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isinf(), isnan(), isnormal(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1259

42812

42813

42814

42815

42816

42817

42818

42819

42820

42821

42822

42823

42824

42825

42826

42827

42828

42829

42830

42831

42832

42833

42834

42835

42836

42837

42838

42839

42840

42841

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isgraph() System Interfaces

NAME
isgraph, isgraph_l — test for a visible character

SYNOPSIS
#include <ctype.h>

int isgraph(int c);
CX int isgraph_l(int c, locale_t locale);

DESCRIPTION
CX For isgraph(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isgraph() and isgraph_l() functions shall test whether c is a character of class graph in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to isgraph_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isgraph() and isgraph_l() functions shall return non-zero if c is a character with a visible

representation; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

1260 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42842

42843

42844

42845

42846

42847

42848

42849

42850

42851

42852

42853

42854

42855

42856

42857

42858

42859

42860

42861

42862

42863

42864

42865

42866

42867

42868

42869

42870

42871

42872

42873

42874

42875

42876

42877

42878

42879

42880

42881

42882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isgraph()

Issue 7
The isgraph_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0289 [302], XSH/TC1-2008/0290 [283],
and XSH/TC1-2008/0291 [283] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1261

42883

42884

42885

42886

42887

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isgreater() System Interfaces

NAME
isgreater, isgreaterequal, isless, islessequal, islessgreater — real-floating relational tests

SYNOPSIS
#include <math.h>

int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The isgreater() macro shall determine whether its first argument is greater than its second
argument. The value of isgreater(x, y) shall be equal to (x) > (y); however, unlike (x) > (y),
isgreater(x, y) shall not raise the invalid floating-point exception when x and y are unordered.

The isgreaterequal() macro shall determine whether its first argument is greater than or equal to
its second argument. The value of isgreaterequal(x, y) shall be equal to (x) ≥ (y); however, unlike
(x) ≥ (y), isgreaterequal(x, y) shall not raise the invalid floating-point exception when x and y are
unordered.

The isless() macro shall determine whether its first argument is less than its second argument.
The value of isless(x, y) shall be equal to (x) < (y); however, unlike (x) < (y), isless(x, y) shall not
raise the invalid floating-point exception when x and y are unordered.

The islessequal() macro shall determine whether its first argument is less than or equal to its
second argument. The value of islessequal(x, y) shall be equal to (x) <= (y); however, unlike
(x) <= (y), islessequal(x, y) shall not raise the invalid floating-point exception when x and y are
unordered.

The islessgreater() macro shall determine whether its first argument is less than or greater than
its second argument. The islessgreater(x, y) macro is similar to (x) < (y) || (x) > (y); however,
islessgreater(x, y) shall not raise the invalid floating-point exception when x and y are unordered
(nor shall it evaluate x and y twice).

MX Relational operators and their corresponding comparison macros shall produce equivalent result
values, even if argument values are represented in wider formats. Thus, comparison macro
arguments represented in formats wider than their semantic types shall not be converted to the
semantic types, unless the wide evaluation method converts operands of relational operators to
their semantic types. The standard wide evaluation methods characterized by
FLT_EVAL_METHOD equal to 1 or 2 (see <float.h>) do not convert operands of relational
operators to their semantic types.

RETURN VALUE
Upon successful completion, the isgreater() macro shall return the value of (x) > (y).

Upon successful completion, the isgreaterequal() macro shall return the value of (x) ≥ (y).

Upon successful completion, the isless() macro shall return the value of (x) < (y).

Upon successful completion, the islessequal() macro shall return the value of (x) <= (y).

Upon successful completion, the islessgreater() macro shall return the value of
(x) < (y) || (x) > (y).

1262 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42888

42889

42890

42891

42892

42893

42894

42895

42896

42897

42898

42899

42900

42901

42902

42903

42904

42905

42906

42907

42908

42909

42910

42911

42912

42913

42914

42915

42916

42917

42918

42919

42920

42921

42922

42923

42924

42925

42926

42927

42928

42929

42930

42931

42932

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isgreater()

If x or y is NaN, these functions shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isunordered()

XBD <float.h>, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
The individual pages for these functions have been merged to form a single page, to reduce
duplication.

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1263

42933

42934

42935

42936

42937

42938

42939

42940

42941

42942

42943

42944

42945

42946

42947

42948

42949

42950

42951

42952

42953

42954

42955

42956

42957

42958

42959

42960

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isinf() System Interfaces

NAME
isinf — test for infinity

SYNOPSIS
#include <math.h>

int isinf(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The isinf() macro shall determine whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is converted
to its semantic type. Then determination is based on the type of the argument.

RETURN VALUE
The isinf() macro shall return a non-zero value if and only if its argument has an infinite value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isnan(), isnormal(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1264 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42961

42962

42963

42964

42965

42966

42967

42968

42969

42970

42971

42972

42973

42974

42975

42976

42977

42978

42979

42980

42981

42982

42983

42984

42985

42986

42987

42988

42989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isless()

NAME
isless, islessequal, islessgreater — real-floating relational tests

SYNOPSIS
#include <math.h>

int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);

DESCRIPTION
Refer to isgreater().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1265

42990

42991

42992

42993

42994

42995

42996

42997

42998

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

islower() System Interfaces

NAME
islower, islower_l — test for a lowercase letter

SYNOPSIS
#include <ctype.h>

int islower(int c);
CX int islower_l(int c, locale_t locale);

DESCRIPTION
CX For islower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The islower() and islower_l() functions shall test whether c is a character of class lower in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to islower_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The islower() and islower_l() functions shall return non-zero if c is a lowercase letter; otherwise,

they shall return 0.

ERRORS
No errors are defined.

EXAMPLES

Testing for a Lowercase Letter

Two examples follow, the first using islower(), the second using multiple concurrent locales and
islower_l().

The examples test whether the value is a lowercase letter, based on the current locale, then use it
as part of a key value.

/* Example 1 -- using islower() */
#include <ctype.h>
#include <stdlib.h>
#include <locale.h>
...
char *keystr;
int elementlen, len;
unsigned char c;
...
setlocale(LC_ALL, "");
...
len = 0;
while (len < elementlen) {

c = (unsigned char) (rand() % 256);
...

1266 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

42999

43000

43001

43002

43003

43004

43005

43006

43007

43008

43009

43010

43011

43012

43013

43014

43015

43016

43017

43018

43019

43020

43021

43022

43023

43024

43025

43026

43027

43028

43029

43030

43031

43032

43033

43034

43035

43036

43037

43038

43039

43040

43041

43042

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces islower()

if (islower(c))
keystr[len++] = c;

}
...

/* Example 2 -- using islower_l() */
#include <ctype.h>
#include <stdlib.h>
#include <locale.h>
...
char *keystr;
int elementlen, len;
unsigned char c;
...
locale_t loc = newlocale (LC_ALL_MASK, "", (locale_t) 0);
...
len = 0;
while (len < elementlen) {

c = (unsigned char) (rand() % 256);
...

if (islower_l(c, loc))
keystr[len++] = c;

}
...

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements and
an example is added.

Issue 7
The islower_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1267

43043

43044

43045

43046

43047

43048

43049

43050

43051

43052

43053

43054

43055

43056

43057

43058

43059

43060

43061

43062

43063

43064

43065

43066

43067

43068

43069

43070

43071

43072

43073

43074

43075

43076

43077

43078

43079

43080

43081

43082

43083

43084

43085

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

islower() System Interfaces

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0292 [302], XSH/TC1-2008/0293 [283],
XSH/TC1-2008/0294 [283], XSH/TC1-2008/0295 [302], and XSH/TC1-2008/0296 [304] are
applied.

1268 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43086

43087

43088

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isnan()

NAME
isnan — test for a NaN

SYNOPSIS
#include <math.h>

int isnan(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The isnan() macro shall determine whether its argument value is a NaN. First, an argument
represented in a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

RETURN VALUE
The isnan() macro shall return a non-zero value if and only if its argument has a NaN value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnormal(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate the return value when NaN is not supported. This
text was previously published in the APPLICATION USAGE section.

Issue 6
Re-written for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1269

43089

43090

43091

43092

43093

43094

43095

43096

43097

43098

43099

43100

43101

43102

43103

43104

43105

43106

43107

43108

43109

43110

43111

43112

43113

43114

43115

43116

43117

43118

43119

43120

43121

43122

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isnormal() System Interfaces

NAME
isnormal — test for a normal value

SYNOPSIS
#include <math.h>

int isnormal(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The isnormal() macro shall determine whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type of the
argument.

RETURN VALUE
The isnormal() macro shall return a non-zero value if and only if its argument has a normal
value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnan(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1270 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43123

43124

43125

43126

43127

43128

43129

43130

43131

43132

43133

43134

43135

43136

43137

43138

43139

43140

43141

43142

43143

43144

43145

43146

43147

43148

43149

43150

43151

43152

43153

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isprint()

NAME
isprint, isprint_l — test for a printable character

SYNOPSIS
#include <ctype.h>

int isprint(int c);
CX int isprint_l(int c, locale_t locale);

DESCRIPTION
CX For isprint(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isprint() and isprint_l() functions shall test whether c is a character of class print in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to isprint_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isprint() and isprint_l() functions shall return non-zero if c is a printable character;

otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1271

43154

43155

43156

43157

43158

43159

43160

43161

43162

43163

43164

43165

43166

43167

43168

43169

43170

43171

43172

43173

43174

43175

43176

43177

43178

43179

43180

43181

43182

43183

43184

43185

43186

43187

43188

43189

43190

43191

43192

43193

43194

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isprint() System Interfaces

Issue 7
The isprint_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0297 [302], XSH/TC1-2008/0298 [283],
and XSH/TC1-2008/0299 [283] are applied.

1272 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43195

43196

43197

43198

43199

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ispunct()

NAME
ispunct, ispunct_l — test for a punctuation character

SYNOPSIS
#include <ctype.h>

int ispunct(int c);
CX int ispunct_l(int c, locale_t locale);

DESCRIPTION
CX For ispunct(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The ispunct() and ispunct_l() functions shall test whether c is a character of class punct in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to ispunct_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The ispunct() and ispunct_l() functions shall return non-zero if c is a punctuation character;

otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1273

43200

43201

43202

43203

43204

43205

43206

43207

43208

43209

43210

43211

43212

43213

43214

43215

43216

43217

43218

43219

43220

43221

43222

43223

43224

43225

43226

43227

43228

43229

43230

43231

43232

43233

43234

43235

43236

43237

43238

43239

43240

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ispunct() System Interfaces

Issue 7
The ispunct_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0300 [302], XSH/TC1-2008/0301 [283],
and XSH/TC1-2008/0302 [283] are applied.

1274 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43241

43242

43243

43244

43245

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isspace()

NAME
isspace, isspace_l — test for a white-space character

SYNOPSIS
#include <ctype.h>

int isspace(int c);
CX int isspace_l(int c, locale_t locale);

DESCRIPTION
CX For isspace(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isspace() and isspace_l() functions shall test whether c is a character of class space in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to isspace_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isspace() and isspace_l() functions shall return non-zero if c is a white-space character;

otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1275

43246

43247

43248

43249

43250

43251

43252

43253

43254

43255

43256

43257

43258

43259

43260

43261

43262

43263

43264

43265

43266

43267

43268

43269

43270

43271

43272

43273

43274

43275

43276

43277

43278

43279

43280

43281

43282

43283

43284

43285

43286

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isspace() System Interfaces

Issue 7
The isspace_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0303 [302], XSH/TC1-2008/0304 [283],
and XSH/TC1-2008/0305 [283] are applied.

1276 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43287

43288

43289

43290

43291

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isunordered()

NAME
isunordered — test if arguments are unordered

SYNOPSIS
#include <math.h>

int isunordered(real-floating x, real-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The isunordered() macro shall determine whether its arguments are unordered.

RETURN VALUE
Upon successful completion, the isunordered() macro shall return 1 if its arguments are
unordered, and 0 otherwise.

If x or y is NaN, 1 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/50 is applied, correcting the RETURN
VALUE section when x or y is NaN.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1277

43292

43293

43294

43295

43296

43297

43298

43299

43300

43301

43302

43303

43304

43305

43306

43307

43308

43309

43310

43311

43312

43313

43314

43315

43316

43317

43318

43319

43320

43321

43322

43323

43324

43325

43326

43327

43328

43329

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isupper() System Interfaces

NAME
isupper, isupper_l — test for an uppercase letter

SYNOPSIS
#include <ctype.h>

int isupper(int c);
CX int isupper_l(int c, locale_t locale);

DESCRIPTION
CX For isupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isupper() and isupper_l() functions shall test whether c is a character of class upper in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to isupper_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isupper() and isupper_l() functions shall return non-zero if c is an uppercase letter;

otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

1278 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43330

43331

43332

43333

43334

43335

43336

43337

43338

43339

43340

43341

43342

43343

43344

43345

43346

43347

43348

43349

43350

43351

43352

43353

43354

43355

43356

43357

43358

43359

43360

43361

43362

43363

43364

43365

43366

43367

43368

43369

43370

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isupper()

Issue 7
The isupper_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0306 [302], XSH/TC1-2008/0307 [283],
and XSH/TC1-2008/0308 [283] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1279

43371

43372

43373

43374

43375

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswalnum() System Interfaces

NAME
iswalnum, iswalnum_l — test for an alphanumeric wide-character code

SYNOPSIS
#include <wctype.h>

int iswalnum(wint_t wc);
CX int iswalnum_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswalnum(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswalnum() and iswalnum_l() functions shall test whether wc is a wide-character code
CX representing a character of class alpha or digit in the current locale, or in the locale represented

by locale, respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswalnum_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswalnum() and iswalnum_l() functions shall return non-zero if wc is an alphanumeric

wide-character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <stdio.h>, <wctype.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1280 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43376

43377

43378

43379

43380

43381

43382

43383

43384

43385

43386

43387

43388

43389

43390

43391

43392

43393

43394

43395

43396

43397

43398

43399

43400

43401

43402

43403

43404

43405

43406

43407

43408

43409

43410

43411

43412

43413

43414

43415

43416

43417

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswalnum()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswalnum_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0309 [302], XSH/TC1-2008/0310 [283],
and XSH/TC1-2008/0311 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0180 [685] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1281

43418

43419

43420

43421

43422

43423

43424

43425

43426

43427

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswalpha() System Interfaces

NAME
iswalpha, iswalpha_l — test for an alphabetic wide-character code

SYNOPSIS
#include <wctype.h>

int iswalpha(wint_t wc);
CX int iswalpha_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswalpha(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswalpha() and iswalpha_l() functions shall test whether wc is a wide-character code
CX representing a character of class alpha in the current locale, or in the locale represented by locale,

respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswalpha_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswalpha() and iswalpha_l() functions shall return non-zero if wc is an alphabetic wide-

character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1282 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43428

43429

43430

43431

43432

43433

43434

43435

43436

43437

43438

43439

43440

43441

43442

43443

43444

43445

43446

43447

43448

43449

43450

43451

43452

43453

43454

43455

43456

43457

43458

43459

43460

43461

43462

43463

43464

43465

43466

43467

43468

43469

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswalpha()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswalpha_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0312 [302], XSH/TC1-2008/0313 [283],
and XSH/TC1-2008/0314 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0181 [685] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1283

43470

43471

43472

43473

43474

43475

43476

43477

43478

43479

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswblank() System Interfaces

NAME
iswblank, iswblank_l — test for a blank wide-character code

SYNOPSIS
#include <wctype.h>

int iswblank(wint_t wc);
CX int iswblank_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswblank(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswblank() and iswblank_l() functions shall test whether wc is a wide-character code
CX representing a character of class blank in the current locale, or in the locale represented by

locale, respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswblank_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswblank() and iswblank_l() functions shall return non-zero if wc is a blank wide-character

code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
The iswblank_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

1284 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43480

43481

43482

43483

43484

43485

43486

43487

43488

43489

43490

43491

43492

43493

43494

43495

43496

43497

43498

43499

43500

43501

43502

43503

43504

43505

43506

43507

43508

43509

43510

43511

43512

43513

43514

43515

43516

43517

43518

43519

43520

43521

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswblank()

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0315 [302], XSH/TC1-2008/0316 [283],
and XSH/TC1-2008/0317 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0182 [685] is applied.

Issue 8
Austin Group Defect 1770 is applied, changing ``iswblank() and iswblank() functions’’ to
``iswblank() and iswblank_l() functions’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1285

43522

43523

43524

43525

43526

43527

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswcntrl() System Interfaces

NAME
iswcntrl, iswcntrl_l — test for a control wide-character code

SYNOPSIS
#include <wctype.h>

int iswcntrl(wint_t wc);
CX int iswcntrl_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswcntrl(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswcntrl() and iswcntrl_l() functions shall test whether wc is a wide-character code
CX representing a character of class cntrl in the current locale, or in the locale represented by locale,

respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswcntrl_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswcntrl() and iswcntrl_l() functions shall return non-zero if wc is a control wide-character

code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1286 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43528

43529

43530

43531

43532

43533

43534

43535

43536

43537

43538

43539

43540

43541

43542

43543

43544

43545

43546

43547

43548

43549

43550

43551

43552

43553

43554

43555

43556

43557

43558

43559

43560

43561

43562

43563

43564

43565

43566

43567

43568

43569

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswcntrl()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswcntrl_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0318 [302], XSH/TC1-2008/0319 [283],
and XSH/TC1-2008/0320 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0183 [685] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1287

43570

43571

43572

43573

43574

43575

43576

43577

43578

43579

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswctype() System Interfaces

NAME
iswctype, iswctype_l — test character for a specified class

SYNOPSIS
#include <wctype.h>

int iswctype(wint_t wc, wctype_t charclass);
CX int iswctype_l(wint_t wc, wctype_t charclass,

locale_t locale);

DESCRIPTION
CX For iswctype(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswctype() and iswctype_l() functions shall determine whether the wide-character code wc
CX has the character class charclass, returning true or false. The iswctype() and iswctype_l()

functions are defined on WEOF and wide-character codes corresponding to the valid character
CX encodings in the current locale, or in the locale represented by locale, respectively. If the wc

argument is not in the domain of the function, the result is undefined. If the value of charclass is
invalid (that is, not obtained by a call to wctype() or charclass is invalidated by a subsequent call
to setlocale() that has affected category LC_CTYPE) the result is unspecified.

CX The behavior is undefined if the locale argument to iswctype_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswctype() and iswctype_l() functions shall return non-zero (true) if and only if wc has the
CX property described by charclass. If charclass is (wctype_t)0, the iswctype() and iswctype_l()

functions shall return 0.

ERRORS
No errors are defined.

EXAMPLES

Testing for a Valid Character

#include <wctype.h>
...
int yes_or_no;
wint_t wc;
wctype_t valid_class;
...
if ((valid_class=wctype("vowel")) == (wctype_t)0)

/* Invalid character class. */
yes_or_no=iswctype(wc,valid_class);

APPLICATION USAGE
The twelve strings "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower",
"print", "punct", "space", "upper", and "xdigit" are reserved for the standard
character classes. In the table below, the functions in the left column are equivalent to the
functions in the right column.

iswalnum(wc) iswctype(wc, wctype("alnum"))
iswalnum_l(wc, locale) iswctype_l(wc, wctype("alnum"), locale)
iswalpha(wc) iswctype(wc, wctype("alpha"))

1288 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43580

43581

43582

43583

43584

43585

43586

43587

43588

43589

43590

43591

43592

43593

43594

43595

43596

43597

43598

43599

43600

43601

43602

43603

43604

43605

43606

43607

43608

43609

43610

43611

43612

43613

43614

43615

43616

43617

43618

43619

43620

43621

43622

43623

43624

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswctype()

iswalpha_l(wc, locale) iswctype_l(wc, wctype("alpha"), locale)
iswblank(wc) iswctype(wc, wctype("blank"))
iswblank_l(wc, locale) iswctype_l(wc, wctype("blank"), locale)
iswcntrl(wc) iswctype(wc, wctype("cntrl"))
iswcntrl_l(wc, locale) iswctype_l(wc, wctype("cntrl"), locale)
iswdigit(wc) iswctype(wc, wctype("digit"))
iswdigit_l(wc, locale) iswctype_l(wc, wctype("digit"), locale)
iswgraph(wc) iswctype(wc, wctype("graph"))
iswgraph_l(wc, locale) iswctype_l(wc, wctype("graph"), locale)
iswlower(wc) iswctype(wc, wctype("lower"))
iswlower_l(wc, locale) iswctype_l(wc, wctype("lower"), locale)
iswprint(wc) iswctype(wc, wctype("print"))
iswprint_l(wc, locale) iswctype_l(wc, wctype("print"), locale)
iswpunct(wc) iswctype(wc, wctype("punct"))
iswpunct_l(wc, locale) iswctype_l(wc, wctype("punct"), locale)
iswspace(wc) iswctype(wc, wctype("space"))
iswspace_l(wc, locale) iswctype_l(wc, wctype("space"), locale)
iswupper(wc) iswctype(wc, wctype("upper"))
iswupper_l(wc, locale) iswctype_l(wc, wctype("upper"), locale)
iswxdigit(wc) iswctype(wc, wctype("xdigit"))
iswxdigit_l(wc, locale) iswctype_l(wc, wctype("xdigit"), locale)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), wctype()

XBD <locale.h>, <wctype.h>

CHANGE HISTORY
First released as World-wide Portability Interfaces in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The behavior of charclass = (wctype_t)0 is now described.

An example is added.

A new function, iswblank(), is added to the list in the APPLICATION USAGE.

Issue 7
The iswctype_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0321 [283] and XSH/TC1-2008/0322
[283] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1289

43625

43626

43627

43628

43629

43630

43631

43632

43633

43634

43635

43636

43637

43638

43639

43640

43641

43642

43643

43644

43645

43646

43647

43648

43649

43650

43651

43652

43653

43654

43655

43656

43657

43658

43659

43660

43661

43662

43663

43664

43665

43666

43667

43668

43669

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswctype() System Interfaces

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0184 [799] and XSH/TC2-2008/0185
[799] are applied.

Issue 8
Austin Group Defect 1302 is applied, aligning the iswctype() function with the
ISO/IEC 9899: 2018 standard.

1290 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43670

43671

43672

43673

43674

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswdigit()

NAME
iswdigit, iswdigit_l — test for a decimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswdigit(wint_t wc);
CX int iswdigit_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswdigit() and iswdigit_l() functions shall test whether wc is a wide-character code
CX representing a character of class digit in the current locale, or in the locale represented by locale,

respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswdigit_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswdigit() and iswdigit_l() functions shall return non-zero if wc is a decimal digit wide-

character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1291

43675

43676

43677

43678

43679

43680

43681

43682

43683

43684

43685

43686

43687

43688

43689

43690

43691

43692

43693

43694

43695

43696

43697

43698

43699

43700

43701

43702

43703

43704

43705

43706

43707

43708

43709

43710

43711

43712

43713

43714

43715

43716

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswdigit() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswdigit_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0323 [302], XSH/TC1-2008/0324 [283],
and XSH/TC1-2008/0325 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0186 [685] is applied.

1292 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43717

43718

43719

43720

43721

43722

43723

43724

43725

43726

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswgraph()

NAME
iswgraph, iswgraph_l — test for a visible wide-character code

SYNOPSIS
#include <wctype.h>

int iswgraph(wint_t wc);
CX int iswgraph_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswgraph(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswgraph() and iswgraph_l() functions shall test whether wc is a wide-character code
CX representing a character of class graph in the current locale, or in the locale represented by

locale, respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswgraph_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswgraph() and iswgraph_l() functions shall return non-zero if wc is a wide-character code

with a visible representation; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1293

43727

43728

43729

43730

43731

43732

43733

43734

43735

43736

43737

43738

43739

43740

43741

43742

43743

43744

43745

43746

43747

43748

43749

43750

43751

43752

43753

43754

43755

43756

43757

43758

43759

43760

43761

43762

43763

43764

43765

43766

43767

43768

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswgraph() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswgraph_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0326 [302], XSH/TC1-2008/0327 [283],
and XSH/TC1-2008/0328 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0187 [685] is applied.

1294 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43769

43770

43771

43772

43773

43774

43775

43776

43777

43778

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswlower()

NAME
iswlower, iswlower_l — test for a lowercase letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswlower(wint_t wc);
CX int iswlower_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswlower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswlower() and iswlower_l() functions shall test whether wc is a wide-character code
CX representing a character of class lower in the current locale, or in the locale represented by

locale, respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswlower_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswlower() and iswlower_l() functions shall return non-zero if wc is a lowercase letter wide-

character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale() (on page 2328) 1

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1295

43779

43780

43781

43782

43783

43784

43785

43786

43787

43788

43789

43790

43791

43792

43793

43794

43795

43796

43797

43798

43799

43800

43801

43802

43803

43804

43805

43806

43807

43808

43809

43810

43811

43812

43813

43814

43815

43816

43817

43818

43819

43820

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswlower() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswlower_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0329 [302], XSH/TC1-2008/0330 [283],
and XSH/TC1-2008/0331 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0188 [685] is applied.

1296 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43821

43822

43823

43824

43825

43826

43827

43828

43829

43830

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswprint()

NAME
iswprint, iswprint_l — test for a printable wide-character code

SYNOPSIS
#include <wctype.h>

int iswprint(wint_t wc);
CX int iswprint_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswprint(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswprint() and iswprint_l() functions shall test whether wc is a wide-character code
CX representing a character of class print in the current locale, or in the locale represented by locale,

respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswprint_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswprint() and iswprint_l() functions shall return non-zero if wc is a printable wide-

character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1297

43831

43832

43833

43834

43835

43836

43837

43838

43839

43840

43841

43842

43843

43844

43845

43846

43847

43848

43849

43850

43851

43852

43853

43854

43855

43856

43857

43858

43859

43860

43861

43862

43863

43864

43865

43866

43867

43868

43869

43870

43871

43872

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswprint() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswprint_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0332 [302], XSH/TC1-2008/0333 [283],
and XSH/TC1-2008/0334 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0189 [685] is applied.

1298 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43873

43874

43875

43876

43877

43878

43879

43880

43881

43882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswpunct()

NAME
iswpunct, iswpunct_l — test for a punctuation wide-character code

SYNOPSIS
#include <wctype.h>

int iswpunct(wint_t wc);
CX int iswpunct_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswpunct(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswpunct() and iswpunct_l() functions shall test whether wc is a wide-character code
CX representing a character of class punct in the current locale, or in the locale represented by

locale, respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswpunct_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswpunct() and iswpunct_l() functions shall return non-zero if wc is a punctuation wide-

character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1299

43883

43884

43885

43886

43887

43888

43889

43890

43891

43892

43893

43894

43895

43896

43897

43898

43899

43900

43901

43902

43903

43904

43905

43906

43907

43908

43909

43910

43911

43912

43913

43914

43915

43916

43917

43918

43919

43920

43921

43922

43923

43924

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswpunct() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswpunct_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0335 [302], XSH/TC1-2008/0336 [283],
and XSH/TC1-2008/0337 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0190 [685] is applied.

1300 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43925

43926

43927

43928

43929

43930

43931

43932

43933

43934

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswspace()

NAME
iswspace, iswspace_l — test for a white-space wide-character code

SYNOPSIS
#include <wctype.h>

int iswspace(wint_t wc);
CX int iswspace_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswspace(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswspace() and iswspace_l() functions shall test whether wc is a wide-character code
CX representing a character of class space in the current locale, or in the locale represented by locale,

respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswspace_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswspace() and iswspace_l() functions shall return non-zero if wc is a white-space wide-

character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1301

43935

43936

43937

43938

43939

43940

43941

43942

43943

43944

43945

43946

43947

43948

43949

43950

43951

43952

43953

43954

43955

43956

43957

43958

43959

43960

43961

43962

43963

43964

43965

43966

43967

43968

43969

43970

43971

43972

43973

43974

43975

43976

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswspace() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswspace_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0338 [302], XSH/TC1-2008/0339 [283],
and XSH/TC1-2008/0340 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0191 [685] is applied.

1302 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43977

43978

43979

43980

43981

43982

43983

43984

43985

43986

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswupper()

NAME
iswupper, iswupper_l — test for an uppercase letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswupper(wint_t wc);
CX int iswupper_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswupper() and iswupper_l() functions shall test whether wc is a wide-character code
CX representing a character of class upper in the current locale, or in the locale represented by

locale, respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswupper_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswupper() and iswupper_l() functions shall return non-zero if wc is an uppercase letter

wide-character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1303

43987

43988

43989

43990

43991

43992

43993

43994

43995

43996

43997

43998

43999

44000

44001

44002

44003

44004

44005

44006

44007

44008

44009

44010

44011

44012

44013

44014

44015

44016

44017

44018

44019

44020

44021

44022

44023

44024

44025

44026

44027

44028

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswupper() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswupper_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0341 [302], XSH/TC1-2008/0342 [283],
and XSH/TC1-2008/0343 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0192 [685] is applied.

1304 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44029

44030

44031

44032

44033

44034

44035

44036

44037

44038

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces iswxdigit()

NAME
iswxdigit, iswxdigit_l — test for a hexadecimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswxdigit(wint_t wc);
CX int iswxdigit_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswxdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The iswxdigit() and iswxdigit_l() functions shall test whether wc is a wide-character code
CX representing a character of class xdigit in the current locale, or in the locale represented by

locale, respectively; see XBD Chapter 7 (on page 127).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the locale used by the function, or equal to the value
of the macro WEOF. If the argument has any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to iswxdigit_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The iswxdigit() and iswxdigit_l() functions shall return non-zero if wc is a hexadecimal digit

wide-character code; otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1305

44039

44040

44041

44042

44043

44044

44045

44046

44047

44048

44049

44050

44051

44052

44053

44054

44055

44056

44057

44058

44059

44060

44061

44062

44063

44064

44065

44066

44067

44068

44069

44070

44071

44072

44073

44074

44075

44076

44077

44078

44079

44080

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iswxdigit() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The iswxdigit_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0344 [302], XSH/TC1-2008/0345 [283],
and XSH/TC1-2008/0346 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0193 [685] is applied.

1306 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44081

44082

44083

44084

44085

44086

44087

44088

44089

44090

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces isxdigit()

NAME
isxdigit, isxdigit_l — test for a hexadecimal digit

SYNOPSIS
#include <ctype.h>

int isxdigit(int c);
CX int isxdigit_l(int c, locale_t locale);

DESCRIPTION
CX For isxdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The isxdigit() and isxdigit_l() functions shall test whether c is a character of class xdigit in the
CX current locale, or in the locale represented by locale, respectively; see XBD Chapter 7 (on page

127).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

CX The behavior is undefined if the locale argument to isxdigit_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The isxdigit() and isxdigit_l() functions shall return non-zero if c is a hexadecimal digit;

otherwise, they shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper()

XBD Chapter 7 (on page 127), <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1307

44091

44092

44093

44094

44095

44096

44097

44098

44099

44100

44101

44102

44103

44104

44105

44106

44107

44108

44109

44110

44111

44112

44113

44114

44115

44116

44117

44118

44119

44120

44121

44122

44123

44124

44125

44126

44127

44128

44129

44130

44131

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

isxdigit() System Interfaces

Issue 7
The isxdigit_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0347 [302], XSH/TC1-2008/0348 [283],
and XSH/TC1-2008/0349 [283] are applied.

1308 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44132

44133

44134

44135

44136

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces j0()

NAME
j0, j1, jn — Bessel functions of the first kind

SYNOPSIS
XSI #include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, double x);

DESCRIPTION
The j0(), j1(), and jn() functions shall compute Bessel functions of x of the first kind of orders 0,
1, and n, respectively.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the relevant Bessel value of x of the
first kind.

If the x argument is finite and too large in magnitude, or the correct result would cause
MXXMXX underflow and is not representable, a range error may occur, and the function shall return 0.0,

or (if the IEC 60559 Floating-Point option is not supported) an implementation-defined value no
greater in magnitude than DBL_MIN.

MXX If the correct result would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

MXX If x is +Inf, +0 shall be returned.

MXX If x is NaN, a NaN shall be returned.

ERRORS
These functions may fail if:

Range Error The value of x was too large in magnitude, or an underflow occurred.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

No other errors shall occur.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1309

44137

44138

44139

44140

44141

44142

44143

44144

44145

44146

44147

44148

44149

44150

44151

44152

44153

44154

44155

44156

44157

44158

44159

44160

44161

44162

44163

44164

44165

44166

44167

44168

44169

44170

44171

44172

44173

44174

44175

44176

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

j0() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), y0()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The may fail [EDOM] error is removed for the case for NaN.

The RETURN VALUE and ERRORS sections are reworked for alignment of the error handling
with the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0350 [68] is applied.

Issue 8
Austin Group Defect 714 is applied, changing the behavior of these functions for special cases to
be a better match for their mathematical behavior.

1310 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44177

44178

44179

44180

44181

44182

44183

44184

44185

44186

44187

44188

44189

44190

44191

44192

44193

44194

44195

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces jrand48()

NAME
jrand48 — generate a uniformly distributed pseudo-random long signed integer

SYNOPSIS
XSI #include <stdlib.h>

long jrand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1311

44196

44197

44198

44199

44200

44201

44202

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

kill() System Interfaces

NAME
kill — send a signal to a process or a group of processes

SYNOPSIS
CX #include <signal.h>

int kill(pid_t pid, int sig);

DESCRIPTION
The kill() function shall send a signal to a process or a group of processes specified by pid. The
signal to be sent is specified by sig and is either one from the list given in <signal.h> or 0. If sig is
0 (the null signal), error checking is performed but no signal is actually sent. The null signal can
be used to check the validity of pid.

For a process to have permission to send a signal to a process designated by pid, unless the
sending process has appropriate privileges, the real or effective user ID of the sending process
shall match the real or saved set-user-ID of the receiving process.

If pid is greater than 0, sig shall be sent to the process whose process ID is equal to pid.

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of system processes)
whose process group ID is equal to the process group ID of the sender, and for which the process
has permission to send a signal.

If pid is −1, sig shall be sent to all processes (excluding an unspecified set of system processes) for
which the process has permission to send that signal.

If pid is negative, but not −1, sig shall be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the absolute value of pid, and for which
the process has permission to send a signal.

If the value of pid causes sig to be generated for the sending process, and if sig is not blocked for
the calling thread and if no other thread has sig unblocked or is waiting in a sigwait() function
for sig, either sig or at least one pending unblocked signal shall be delivered to the sending
thread before kill() returns.

The user ID tests described above shall not be applied when sending SIGCONT to a process that
is a member of the same session as the sending process.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on the sending of signals, including the null signal. In
particular, the system may deny the existence of some or all of the processes specified by pid.

The kill() function is successful if the process has permission to send sig to any of the processes
specified by pid. If kill() fails, no signal shall be sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The kill() function shall fail if:

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

[EPERM] The process does not have permission to send the signal to any receiving
process.

1312 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44203

44204

44205

44206

44207

44208

44209

44210

44211

44212

44213

44214

44215

44216

44217

44218

44219

44220

44221

44222

44223

44224

44225

44226

44227

44228

44229

44230

44231

44232

44233

44234

44235

44236

44237

44238

44239

44240

44241

44242

44243

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces kill()

[ESRCH] No process or process group can be found corresponding to that specified by
pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The semantics for permission checking for kill() differed between System V and most other
implementations, such as Version 7 or 4.3 BSD. The semantics chosen for this volume of
POSIX.1-2024 agree with System V. Specifically, a set-user-ID process cannot protect itself
against signals (or at least not against SIGKILL) unless it changes its real user ID. This choice
allows the user who starts an application to send it signals even if it changes its effective user ID.
The other semantics give more power to an application that wants to protect itself from the user
who ran it.

Some implementations provide semantic extensions to the kill() function when the absolute
value of pid is greater than some maximum, or otherwise special, value. Negative values are a
flag to kill(). Since most implementations return [ESRCH] in this case, this behavior is not
included in this volume of POSIX.1-2024, although a conforming implementation could provide
such an extension.

The unspecified processes to which a signal cannot be sent may include the scheduler or init.

There was initially strong sentiment to specify that, if pid specifies that a signal be sent to the
calling process and that signal is not blocked, that signal would be delivered before kill()
returns. This would permit a process to call kill() and be guaranteed that the call never return.
However, historical implementations that provide only the signal() function make only the
weaker guarantee in this volume of POSIX.1-2024, because they only deliver one signal each
time a process enters the kernel. Modifications to such implementations to support the
sigaction() function generally require entry to the kernel following return from a signal-catching
function, in order to restore the signal mask. Such modifications have the effect of satisfying the
stronger requirement, at least when sigaction() is used, but not necessarily when signal() is used.
The standard developers considered making the stronger requirement except when signal() is
used, but felt this would be unnecessarily complex. Implementors are encouraged to meet the
stronger requirement whenever possible. In practice, the weaker requirement is the same, except
in the rare case when two signals arrive during a very short window. This reasoning also applies
to a similar requirement for sigprocmask().

In 4.2 BSD, the SIGCONT signal can be sent to any descendant process regardless of user-ID
security checks. This allows a job control shell to continue a job even if processes in the job have
altered their user IDs (as in the su command). In keeping with the addition of the concept of
sessions, similar functionality is provided by allowing the SIGCONT signal to be sent to any
process in the same session regardless of user ID security checks. This is less restrictive than BSD
in the sense that ancestor processes (in the same session) can now be the recipient. It is more
restrictive than BSD in the sense that descendant processes that form new sessions are now
subject to the user ID checks. A similar relaxation of security is not necessary for the other job
control signals since those signals are typically sent by the terminal driver in recognition of
special characters being typed; the terminal driver bypasses all security checks.

In secure implementations, a process may be restricted from sending a signal to a process having
a different security label. In order to prevent the existence or nonexistence of a process from
being used as a covert channel, such processes should appear nonexistent to the sender; that is,
[ESRCH] should be returned, rather than [EPERM], if pid refers only to such processes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1313

44244

44245

44246

44247

44248

44249

44250

44251

44252

44253

44254

44255

44256

44257

44258

44259

44260

44261

44262

44263

44264

44265

44266

44267

44268

44269

44270

44271

44272

44273

44274

44275

44276

44277

44278

44279

44280

44281

44282

44283

44284

44285

44286

44287

44288

44289

44290

44291

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

kill() System Interfaces

Historical implementations varied on the result of a kill() with pid indicating a zombie process.
Some indicated success on such a call (subject to permission checking), while others gave an
error of [ESRCH]. Since the definition of process lifetime in this volume of POSIX.1-2024 covers
zombie processes, the [ESRCH] error as described is inappropriate in this case and
implementations that give this error do not conform. This means that an application cannot have
a parent process check for termination of a particular child by sending it the null signal with
kill(), but must instead use waitpid() or waitid().

There is some belief that the name kill() is misleading, since the function is not always intended
to cause process termination. However, the name is common to all historical implementations,
and any change would be in conflict with the goal of minimal changes to existing application
code.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), raise(), setsid(), sig2str(), sigaction(), sigqueue(), wait()

XBD <signal.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the second paragraph is reworded to indicate that the saved set-
user-ID of the calling process is checked in place of its effective user ID. This is a FIPS
requirement.

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The behavior when pid is −1 is now specified. It was previously explicitly unspecified in
the POSIX.1-1988 standard.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/51 is applied, correcting the RATIONALE
section.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0194 [765] is applied.

Issue 8
Austin Group Defect 1138 is applied, adding sig2str() to the SEE ALSO section.

1314 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44292

44293

44294

44295

44296

44297

44298

44299

44300

44301

44302

44303

44304

44305

44306

44307

44308

44309

44310

44311

44312

44313

44314

44315

44316

44317

44318

44319

44320

44321

44322

44323

44324

44325

44326

44327

44328

44329

44330

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces kill_dependency()

NAME
kill_dependency — terminate a dependency chain

SYNOPSIS
#include <stdatomic.h>

type kill_dependency(type *y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support the kill_dependency() macro.

The kill_dependency() macro shall terminate a dependency chain (see XBD Section 4.15.1, on page
100). The argument shall not carry a dependency to the return value.

RETURN VALUE
The kill_dependency() macro shall return the value of y.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.15.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1315

44331

44332

44333

44334

44335

44336

44337

44338

44339

44340

44341

44342

44343

44344

44345

44346

44347

44348

44349

44350

44351

44352

44353

44354

44355

44356

44357

44358

44359

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

killpg() System Interfaces

NAME
killpg — send a signal to a process group

SYNOPSIS
XSI #include <signal.h>

int killpg(pid_t pgrp, int sig);

DESCRIPTION
The killpg() function shall send the signal specified by sig to the process group specified by pgrp.

If pgrp is greater than 1, killpg(pgrp, sig) shall be equivalent to kill(−pgrp, sig). If pgrp is less than or
equal to 1, the behavior of killpg() is undefined.

RETURN VALUE
Refer to kill().

ERRORS
Refer to kill().

EXAMPLES

Sending a Signal to All Other Members of a Process Group

The following example shows how the calling process could send a signal to all other members
of its process group. To prevent itself from receiving the signal it first makes itself immune to the
signal by ignoring it.

#include <signal.h>
#include <unistd.h>
...

if (signal(SIGUSR1, SIG_IGN) == SIG_ERR)
/* Handle error */;

if (killpg(getpgrp(), SIGUSR1) == -1)
/* Handle error */;"

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpgid(), getpid(), kill(), raise()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

1316 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44360

44361

44362

44363

44364

44365

44366

44367

44368

44369

44370

44371

44372

44373

44374

44375

44376

44377

44378

44379

44380

44381

44382

44383

44384

44385

44386

44387

44388

44389

44390

44391

44392

44393

44394

44395

44396

44397

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces killpg()

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/52 is applied, adding the example to the
EXAMPLES section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1317

44398

44399

44400

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

l64a() System Interfaces

NAME
l64a — convert a 32-bit integer to a radix-64 ASCII string

SYNOPSIS
XSI #include <stdlib.h>

char *l64a(long value);

DESCRIPTION
Refer to a64l().

1318 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44401

44402

44403

44404

44405

44406

44407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces labs()

NAME
labs, llabs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long labs(long i);
long long llabs(long long i);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The labs() function shall compute the absolute value of the long integer operand i. The llabs()
function shall compute the absolute value of the long long integer operand i. If the result
cannot be represented, the behavior is undefined.

RETURN VALUE
The labs() function shall return the absolute value of the long integer operand.

The llabs() function shall return the absolute value of the long long integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Since POSIX.1 requires a two’s complement representation of long and long long, the absolute
value of the negative integers with the largest magnitude {LONG_MIN} and {LLONG_MIN} are
not representable, thus labs(LONG_MIN) and llabs(LLONG_MIN) are undefined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The llabs() function is added for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-152 is applied, correcting the RETURN VALUE section.

Issue 8
Austin Group Defect 1108 is applied, changing the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1319

44408

44409

44410

44411

44412

44413

44414

44415

44416

44417

44418

44419

44420

44421

44422

44423

44424

44425

44426

44427

44428

44429

44430

44431

44432

44433

44434

44435

44436

44437

44438

44439

44440

44441

44442

44443

44444

44445

44446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lchown() System Interfaces

NAME
lchown — change the owner and group of a symbolic link

SYNOPSIS
#include <unistd.h>

int lchown(const char *path, uid_t owner, gid_t group);

DESCRIPTION
The lchown() function shall be equivalent to chown(), except in the case where the named file is a
symbolic link. In this case, lchown() shall change the ownership of the symbolic link file itself,
while chown() changes the ownership of the file or directory to which the symbolic link refers.

RETURN VALUE
Upon successful completion, lchown() shall return 0. Otherwise, it shall return −1 and set errno to
indicate an error.

ERRORS
The lchown() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix of path.

[EINVAL] The owner or group ID is not a value supported by the implementation.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The file resides on a read-only file system.

The lchown() function may fail if:

[EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] A signal was caught during execution of the function.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

1320 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44447

44448

44449

44450

44451

44452

44453

44454

44455

44456

44457

44458

44459

44460

44461

44462

44463

44464

44465

44466

44467

44468

44469

44470

44471

44472

44473

44474

44475

44476

44477

44478

44479

44480

44481

44482

44483

44484

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lchown()

EXAMPLES

Changing the Current Owner of a File

The following example shows how to change the ownership of the symbolic link named
/modules/pass1 to the user ID associated with ``jones’’ and the group ID associated with ``cnd’’.

The numeric value for the user ID is obtained by using the getpwnam() function. The numeric
value for the group ID is obtained by using the getgrnam() function.

#include <sys/types.h>
#include <unistd.h>
#include <pwd.h>
#include <grp.h>

struct passwd *pwd;
struct group *grp;
char *path = "/modules/pass1";
...
pwd = getpwnam("jones");
grp = getgrnam("cnd");
lchown(path, pwd->pw_uid, grp->gr_gid);

APPLICATION USAGE
On implementations which support symbolic links as directory entries rather than files, lchown()
may fail.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), symlink()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

The Open Group Base Resolution bwg2001-013 is applied, adding wording to the
APPLICATION USAGE.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The lchown() function is moved from the XSI option to the Base.

The [EOPNOTSUPP] error is removed.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1321

44485

44486

44487

44488

44489

44490

44491

44492

44493

44494

44495

44496

44497

44498

44499

44500

44501

44502

44503

44504

44505

44506

44507

44508

44509

44510

44511

44512

44513

44514

44515

44516

44517

44518

44519

44520

44521

44522

44523

44524

44525

44526

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lchown() System Interfaces

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0351 [324] is applied.

1322 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44527

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lcong48()

NAME
lcong48 — seed a uniformly distributed pseudo-random signed long integer generator

SYNOPSIS
XSI #include <stdlib.h>

void lcong48(unsigned short param[7]);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1323

44528

44529

44530

44531

44532

44533

44534

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ldexp() System Interfaces

NAME
ldexp, ldexpf, ldexpl — load exponent of a floating-point number

SYNOPSIS
#include <math.h>

double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the quantity x * 2exp.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return x multiplied by 2, raised to the power
exp.

If these functions would cause overflow, a range error shall occur and ldexp(), ldexpf(), and
ldexpl() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the sign of
x), respectively.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and ldexp(), ldexpf(), and ldexpl() shall return 0.0, or (if IEC 60559 Floating-Point is not

supported) an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If exp is 0, x shall be returned.

MXX If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow

1324 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44535

44536

44537

44538

44539

44540

44541

44542

44543

44544

44545

44546

44547

44548

44549

44550

44551

44552

44553

44554

44555

44556

44557

44558

44559

44560

44561

44562

44563

44564

44565

44566

44567

44568

44569

44570

44571

44572

44573

44574

44575

44576

44577

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ldexp()

floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), frexp(), isnan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The ldexpf() and ldexpl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0352 [68] and XSH/TC1-2008/0353
[68] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1325

44578

44579

44580

44581

44582

44583

44584

44585

44586

44587

44588

44589

44590

44591

44592

44593

44594

44595

44596

44597

44598

44599

44600

44601

44602

44603

44604

44605

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ldiv() System Interfaces

NAME
ldiv, lldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

ldiv_t ldiv(long numer, long denom);
lldiv_t lldiv(long long numer, long long denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the long
integer (for the ldiv() function) or long long integer (for the lldiv() function) of lesser magnitude
that is the nearest to the algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise, quot * denom+rem shall equal numer.

RETURN VALUE
The ldiv() function shall return a structure of type ldiv_t, comprising both the quotient and the
remainder. The structure shall include the following members, in any order:

long quot; /* Quotient */
long rem; /* Remainder */

The lldiv() function shall return a structure of type lldiv_t, comprising both the quotient and the
remainder. The structure shall include the following members, in any order:

long long quot; /* Quotient */
long long rem; /* Remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
div()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The lldiv() function is added for alignment with the ISO/IEC 9899: 1999 standard.

1326 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44606

44607

44608

44609

44610

44611

44612

44613

44614

44615

44616

44617

44618

44619

44620

44621

44622

44623

44624

44625

44626

44627

44628

44629

44630

44631

44632

44633

44634

44635

44636

44637

44638

44639

44640

44641

44642

44643

44644

44645

44646

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces le16toh()

NAME
le16toh, le32toh, le64toh — convert values between host and specified byte order

SYNOPSIS
#include <endian.h>

uint16_t le16toh(uint16_t little_endian_16bits);
uint32_t le32toh(uint32_t little_endian_32bits);
uint64_t le64toh(uint64_t little_endian_64bits);

DESCRIPTION
Refer to be16toh().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1327

44647

44648

44649

44650

44651

44652

44653

44654

44655

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lfind() System Interfaces

NAME
lfind — find entry in a linear search table

SYNOPSIS
XSI #include <search.h>

void *lfind(const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
Refer to lsearch().

1328 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44656

44657

44658

44659

44660

44661

44662

44663

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lgamma()

NAME
lgamma, lgammaf, lgammal, signgam — log gamma function

SYNOPSIS
#include <math.h>

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

XSI extern int signgam;

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute loge Γ(x) where Γ(x) is defined as
∞

0
∫ e−ttx−1dt. The argument x

need not be a non-positive integer (Γ(x) is defined over the reals, except the non-positive
integers).

XSI The sign of Γ(x) shall be returned in the external integer signgam. If x is NaN, −Inf, or a negative
integer, the value of signgam is unspecified.

If concurrent calls are made to these functions, the value of signgam is indeterminate.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the logarithmic gamma of x.

If x is a non-positive integer, a pole error shall occur and lgamma(), lgammaf(), and lgammal()
shall return +HUGE_VAL, +HUGE_VALF, and +HUGE_VALL, respectively.

If the correct value would cause overflow, a range error shall occur and lgamma(), lgammaf(),
and lgammal() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (having the same
sign as the correct value), respectively.

MX If x is NaN, a NaN shall be returned.

If x is 1 or 2, +0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Pole Error The x argument is a negative integer or zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1329

44664

44665

44666

44667

44668

44669

44670

44671

44672

44673

44674

44675

44676

44677

44678

44679

44680

44681

44682

44683

44684

44685

44686

44687

44688

44689

44690

44691

44692

44693

44694

44695

44696

44697

44698

44699

44700

44701

44702

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lgamma() System Interfaces

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

If the value of signgam will be obtained after a call to lgamma(), lgammaf(), or lgammal(), in order
to ensure that the value will not be altered by another call in a different thread, applications
should either restrict calls to these functions to be from a single thread or use a lock such as a
mutex or spin lock to protect a critical section starting before the function call and ending after
the value of signgam has been obtained.

RATIONALE
Earlier versions of this standard did not require lgamma(), lgammaf(), and lgammal() to be
thread-safe because signgam was a global variable. They are now required to be thread-safe to
align with the ISO C standard (which, since the introduction of threads in 2011, requires that
they avoid data races), with the exception that they need not avoid data races when storing a
value in the signgam variable. Since signgam is not specified by the ISO C standard, this
exception is not a conflict with that standard.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
The lgamma() function is no longer marked as an extension.

The lgammaf() and lgammal() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Functionality relating to the XSI option is marked.

1330 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44703

44704

44705

44706

44707

44708

44709

44710

44711

44712

44713

44714

44715

44716

44717

44718

44719

44720

44721

44722

44723

44724

44725

44726

44727

44728

44729

44730

44731

44732

44733

44734

44735

44736

44737

44738

44739

44740

44741

44742

44743

44744

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lgamma()

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The DESCRIPTION is clarified regarding the value of signgam when x is Nan, −Inf, or a negative
integer.

Issue 8
Austin Group Defect 1002 is applied, reinstating the requirement for the sign of Γ(x) to be
returned in signgam, which had been accidentally removed in Issue 7.

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1331

44745

44746

44747

44748

44749

44750

44751

44752

44753

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

link() System Interfaces

NAME
link, linkat — hard link one file to another file

SYNOPSIS
#include <unistd.h>

int link(const char *path1, const char *path2);

OH #include <fcntl.h>

int linkat(int fd1, const char *path1, int fd2,
const char *path2, int flag);

DESCRIPTION
The link() function shall create a new hard link (directory entry) for the existing file, path1.

The path1 argument points to a pathname naming an existing file. The path2 argument points to
a pathname naming the new directory entry to be created. The link() function shall atomically
create a new hard link for the existing file and the link count of the file shall be incremented by
one.

If path1 names a directory, link() shall fail unless the process has appropriate privileges and the
implementation supports using link() on directories.

If path1 names a symbolic link, it is implementation-defined whether link() follows the symbolic
link, or creates a new hard link to the symbolic link itself.

Upon successful completion, link() shall mark for update the last file status change timestamp of
the file. Also, the last data modification and last file status change timestamps of the directory
that contains the new entry shall be marked for update.

If link() fails, no link shall be created and the link count of the file shall remain unchanged.

The implementation may require that the calling process has permission to access the existing
file.

The linkat() function shall be equivalent to the link() function except that symbolic links shall be
handled as specified by the value of flag (see below) and except in the case where either path1 or
path2 or both are relative paths. In this case a relative path path1 is interpreted relative to the
directory associated with the file descriptor fd1 instead of the current working directory and
similarly for path2 and the file descriptor fd2. If the access mode of the open file description
associated with the file descriptor is not O_SEARCH, the function shall check whether directory
searches are permitted using the current permissions of the directory underlying the file
descriptor. If the access mode is O_SEARCH, the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_FOLLOW
If path1 names a symbolic link, a new hard link for the target of the symbolic link is created.

If linkat() is passed the special value AT_FDCWD in the fd1 or fd2 parameter, the current
working directory shall be used for the respective path argument. If both fd1 and fd2 have value
AT_FDCWD, the behavior shall be identical to a call to link(), except that symbolic links shall be
handled as specified by the value of flag.

If the AT_SYMLINK_FOLLOW flag is clear in the flag argument and the path1 argument names a
symbolic link, a new hard link is created for the symbolic link path1 and not its target.

1332 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44754

44755

44756

44757

44758

44759

44760

44761

44762

44763

44764

44765

44766

44767

44768

44769

44770

44771

44772

44773

44774

44775

44776

44777

44778

44779

44780

44781

44782

44783

44784

44785

44786

44787

44788

44789

44790

44791

44792

44793

44794

44795

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces link()

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] A component of either path prefix denies search permission, or the requested
link requires writing in a directory that denies write permission, or the calling
process does not have permission to access the existing file and this is required
by the implementation.

[EEXIST] The path2 argument resolves to an existing directory entry or refers to a
symbolic link.

[EILSEQ] The last pathname component of path2 is not a portable filename, and cannot
be created in the target directory.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path1 or
path2 argument.

[EMLINK] The number of hard links to the file named by path1 would exceed
{LINK_MAX}.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of either path prefix does not exist; the file named by path1 does
not exist; or path1 or path2 points to an empty string.

[ENOENT] or [ENOTDIR]
The path1 argument names an existing non-directory file, and the path2
argument contains at least one non-<slash> character and ends with one or
more trailing <slash> characters. If path2 without the trailing <slash>
characters would name an existing file, an [ENOENT] error shall not occur.

[ENOSPC] The directory to contain the link cannot be extended.

[ENOTDIR] A component of either path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path1 argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory, or the path1 argument
names an existing non-directory file and the path2 argument names a
nonexistent file, contains at least one non-<slash> character, and ends with
one or more trailing <slash> characters.

[EPERM] The file named by path1 is a directory and either the calling process does not
have appropriate privileges or the implementation prohibits using link() on
directories.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EXDEV] The file named by path1 and the directory in which the directory entry named
by path2 is to be created are on different file systems and the implementation
does not support hard links between file systems.

The linkat() function shall fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1333

44796

44797

44798

44799

44800

44801

44802

44803

44804

44805

44806

44807

44808

44809

44810

44811

44812

44813

44814

44815

44816

44817

44818

44819

44820

44821

44822

44823

44824

44825

44826

44827

44828

44829

44830

44831

44832

44833

44834

44835

44836

44837

44838

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

link() System Interfaces

[EACCES] The access mode of the open file description associated with fd1 or fd2 is not
O_SEARCH and the permissions of the directory underlying fd1 or fd2,
respectively, do not permit directory searches.

[EBADF] The path1 or path2 argument does not specify an absolute path and the fd1 or
fd2 argument, respectively, is neither AT_FDCWD nor a valid file descriptor
open for reading or searching.

[ENOTDIR] The path1 or path2 argument is not an absolute path and fd1 or fd2,
respectively, is a file descriptor associated with a non-directory file.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path1 or path2 argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The linkat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

EXAMPLES

Creating a Hard Link to a File

The following example shows how to create an additional hard link to a file named
/home/cnd/mod1 by creating a new directory entry named /modules/pass1.

#include <unistd.h>
char *path1 = "/home/cnd/mod1";
char *path2 = "/modules/pass1";
int status;
...
status = link (path1, path2);

Creating a Hard Link to a File Within a Program

In the following program example, the link() function hard links the /etc/passwd file (defined as
PASSWDFILE) to a file named /etc/opasswd (defined as SAVEFILE), which is used to save the
current password file. Then, after removing the current password file (defined as
PASSWDFILE), the new password file is saved as the current password file using the link()
function again.

#include <unistd.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
#define SAVEFILE "/etc/opasswd"
...
/* Save current password file */
link (PASSWDFILE, SAVEFILE);

/* Remove current password file. */
unlink (PASSWDFILE);

1334 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44839

44840

44841

44842

44843

44844

44845

44846

44847

44848

44849

44850

44851

44852

44853

44854

44855

44856

44857

44858

44859

44860

44861

44862

44863

44864

44865

44866

44867

44868

44869

44870

44871

44872

44873

44874

44875

44876

44877

44878

44879

44880

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces link()

/* Save new password file as current password file. */
link (LOCKFILE,PASSWDFILE);

APPLICATION USAGE
Some implementations do allow hard links between file systems.

If path1 refers to a symbolic link, application developers should use linkat() with appropriate
flags to select whether or not the symbolic link should be resolved.

RATIONALE
Creating additional hard links to a directory is restricted to the superuser in most historical
implementations because this capability may produce loops in the file hierarchy or otherwise
corrupt the file system. This volume of POSIX.1-2024 continues that philosophy by prohibiting
link() and unlink() from doing this. Other functions could do it if the implementor designed
such an extension.

Some historical implementations allow hard linking of files on different file systems. Wording
was added to explicitly allow this optional behavior.

The exception for cross-file system hard links is intended to apply only to links that are
programmatically indistinguishable from traditional hard links.

The purpose of the linkat() function is to link files in directories other than the current working
directory without exposure to race conditions. Any part of the path of a file could be changed in
parallel to a call to link(), resulting in unspecified behavior. By opening a file descriptor for the
directory of both the existing file and the target location and using the linkat() function it can be
guaranteed that the both filenames are in the desired directories.

Earlier versions of this standard specified only the link() function, and required it to behave like
linkat() with the AT_SYMLINK_FOLLOW flag. However, historical practice from SVR4 and
Linux kernels had link() behaving like linkat() with no flags, and many systems that attempted
to provide a conforming link() function did so in a way that was rarely used, and when it was
used did not conform to the standard (e.g., by not being atomic, or by dereferencing the
symbolic link incorrectly). Since applications could not rely on link() following symbolic links in
practice, the linkat() function was added taking a flag to specify the desired behavior for the
application.

Implementations are encouraged to have link() and linkat() report an [EILSEQ] error if the file
named by path2 did not previously exist, and the last component of that pathname contains any
bytes that have the encoded value of a <newline> character.

FUTURE DIRECTIONS
None.

SEE ALSO
rename(), symlink(), unlink()

XBD <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1335

44881

44882

44883

44884

44885

44886

44887

44888

44889

44890

44891

44892

44893

44894

44895

44896

44897

44898

44899

44900

44901

44902

44903

44904

44905

44906

44907

44908

44909

44910

44911

44912

44913

44914

44915

44916

44917

44918

44919

44920

44921

44922

44923

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

link() System Interfaces

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added of the action when path2 refers to a symbolic link.

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-93 is applied, adding RATIONALE.

The linkat() function is added from The Open Group Technical Standard, 2006, Extended API Set
Part 2.

Functionality relating to XSI STREAMS is marked obsolescent.

Changes are made related to support for finegrained timestamps.

The [EOPNOTSUPP] error is removed.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0354 [326], XSH/TC1-2008/0355 [461],
XSH/TC1-2008/0356 [326], XSH/TC1-2008/0357 [324], XSH/TC1-2008/0358 [147,429],
XSH/TC1-2008/0359 [277], XSH/TC1-2008/0360 [278], and XSH/TC1-2008/0361 [278] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0195 [873], XSH/TC2-2008/0196 [591],
XSH/TC2-2008/0197 [817], XSH/TC2-2008/0198 [822], and XSH/TC2-2008/0199 [817] are
applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 293 is applied, adding the [EILSEQ] error.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1380 is applied, changing text using the term ``link’’ in line with its
updated definition and removing a paragraph from the RATIONALE section.

1336 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44924

44925

44926

44927

44928

44929

44930

44931

44932

44933

44934

44935

44936

44937

44938

44939

44940

44941

44942

44943

44944

44945

44946

44947

44948

44949

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lio_listio()

NAME
lio_listio — list directed I/O

SYNOPSIS
#include <aio.h>

int lio_listio(int mode, struct aiocb *restrict const list[restrict],
int nent, struct sigevent *restrict sig);

DESCRIPTION
The lio_listio() function shall initiate a list of I/O requests with a single function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in <aio.h> and
determines whether the function returns when the I/O operations have been completed, or as
soon as the operations have been queued. If the mode argument is LIO_WAIT, the function shall
wait until all I/O is complete and the sig argument shall be ignored.

If the mode argument is LIO_NOWAIT, the function shall return immediately, and asynchronous
notification shall occur, according to the sig argument, when all the I/O operations complete. If
sig is NULL, then no asynchronous notification shall occur. If sig is not NULL, asynchronous
notification occurs as specified in Section 2.4.1 (on page 513) when all the requests in list have
completed.

The I/O requests enumerated by list are submitted in an unspecified order.

The list argument is an array of pointers to aiocb structures. The array contains nent elements.
The array may contain NULL elements, which shall be ignored.

If the buffer pointed to by list or the aiocb structures pointed to by the elements of the array list
become illegal addresses before all asynchronous I/O completed and, if necessary, the
notification is sent, then the behavior is undefined. If the buffers pointed to by the aio_buf
member of the aiocb structure pointed to by the elements of the array list become illegal
addresses prior to the asynchronous I/O associated with that aiocb structure being completed,
the behavior is undefined.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The
supported operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in
<aio.h>. The LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode
element is equal to LIO_READ, then an I/O operation is submitted as if by a call to aio_read()
with the aiocbp equal to the address of the aiocb structure. If the aio_lio_opcode element is equal to
LIO_WRITE, then an I/O operation is submitted as if by a call to aio_write() with the aiocbp
equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a
manner identical to that of the corresponding aiocb structure when used by the aio_read() and
aio_write() functions.

The nent argument specifies how many elements are members of the list; that is, the length of the
array.

The behavior of this function is altered according to the definitions of synchronized I/O data
integrity completion and synchronized I/O file integrity completion if synchronized I/O is
enabled on the file associated with aio_fildes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1337

44950

44951

44952

44953

44954

44955

44956

44957

44958

44959

44960

44961

44962

44963

44964

44965

44966

44967

44968

44969

44970

44971

44972

44973

44974

44975

44976

44977

44978

44979

44980

44981

44982

44983

44984

44985

44986

44987

44988

44989

44990

44991

44992

44993

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lio_listio() System Interfaces

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiocbp−>aio_fildes.

If sig−>sigev_notify is SIGEV_THREAD and sig−>sigev_notify_attributes is a non-null pointer and
the block pointed to by this pointer becomes an illegal address prior to all asynchronous I/O
being completed, then the behavior is undefined.

RETURN VALUE
If the mode argument has the value LIO_NOWAIT, the lio_listio() function shall return the value
zero if the I/O operations are successfully queued; otherwise, the function shall return the value
−1 and set errno to indicate the error.

If the mode argument has the value LIO_WAIT, the lio_listio() function shall return the value zero
when all the indicated I/O has completed successfully. Otherwise, lio_listio() shall return a value
of −1 and set errno to indicate the error.

In either case, the return value only indicates the success or failure of the lio_listio() call itself,
not the status of the individual I/O requests. In some cases one or more of the I/O requests
contained in the list may fail. Failure of an individual request does not prevent completion of
any other individual request. To determine the outcome of each I/O request, the application
shall examine the error status associated with each aiocb control block. The error statuses so
returned are identical to those returned as the result of an aio_read() or aio_write() function.

ERRORS
The lio_listio() function shall fail if:

[EAGAIN] The resources necessary to queue all the I/O requests were not available. The
application may check the error status for each aiocb to determine the
individual request(s) that failed.

[EAGAIN] The number of entries indicated by nent would cause the system-wide limit
{AIO_MAX} to be exceeded.

[EINVAL] The mode argument is not a proper value, or the value of nent was greater than
{AIO_LISTIO_MAX}.

[EINTR] A signal was delivered while waiting for all I/O requests to complete during
an LIO_WAIT operation. Note that, since each I/O operation invoked by
lio_listio() may possibly provoke a signal when it completes, this error return
may be caused by the completion of one (or more) of the very I/O operations
being awaited. Outstanding I/O requests are not canceled, and the application
shall examine each list element to determine whether the request was
initiated, canceled, or completed.

[EIO] One or more of the individual I/O operations failed. The application may
check the error status for each aiocb structure to determine the individual
request(s) that failed.

If the lio_listio() function succeeds or fails with errors of [EAGAIN], [EINTR], or [EIO], then
some of the I/O specified by the list may have been initiated. If the lio_listio() function fails with
an error code other than [EAGAIN], [EINTR], or [EIO], no operations from the list shall have
been initiated. The I/O operation indicated by each list element can encounter errors specific to
the individual read or write function being performed. In this event, the error status for each
aiocb control block contains the associated error code. The error codes that can be set are the
same as would be set if the I/O operation had been initiated by an aio_read() or aio_write()
function, with the following additional error codes possible:

1338 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

44994

44995

44996

44997

44998

44999

45000

45001

45002

45003

45004

45005

45006

45007

45008

45009

45010

45011

45012

45013

45014

45015

45016

45017

45018

45019

45020

45021

45022

45023

45024

45025

45026

45027

45028

45029

45030

45031

45032

45033

45034

45035

45036

45037

45038

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lio_listio()

[EAGAIN] The requested I/O operation was not queued due to resource limitations.

[EINPROGRESS] The requested I/O is in progress.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Although it may appear that there are inconsistencies in the specified circumstances for error
codes, the [EIO] error condition applies when any circumstance relating to an individual
operation makes that operation fail. This might be due to a badly formulated request (for
example, the aio_lio_opcode field is invalid, and aio_error() returns [EINVAL]) or might arise from
application behavior (for example, the file descriptor is closed before the operation is initiated,
and aio_error() returns [EBADF]).

The limitation on the set of error codes returned when operations from the list shall have been
initiated enables applications to know when operations have been started and whether
aio_error() is valid for a specific operation.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write(), aio_error(), aio_return(), aio_cancel(), close(), exec , exit(), fork(), lseek(),
read()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The lio_listio() function is marked as part of the Asynchronous Input and Output option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
past the offset maximum established in the open file description associated with
aiocbp−>aio_fildes. This change is to support large files.

• The [EBIG] and [EOVERFLOW] error conditions are defined. This change is to support
large files.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the lio_listio() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1339

45039

45040

45041

45042

45043

45044

45045

45046

45047

45048

45049

45050

45051

45052

45053

45054

45055

45056

45057

45058

45059

45060

45061

45062

45063

45064

45065

45066

45067

45068

45069

45070

45071

45072

45073

45074

45075

45076

45077

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lio_listio() System Interfaces

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/53 is applied, adding new text for
symmetry with the aio_read() and aio_write() functions to the DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/54 is applied, adding text to the
DESCRIPTION making it explicit that the user is required to keep the structure pointed to by
sig−>sigev_notify_attributes valid until the last asynchronous operation finished and the
notification has been sent.

Issue 7
The lio_listio() function is moved from the Asynchronous Input and Output option to the Base.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

1340 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45078

45079

45080

45081

45082

45083

45084

45085

45086

45087

45088

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces listen()

NAME
listen — listen for socket connections and limit the queue of incoming connections

SYNOPSIS
#include <sys/socket.h>

int listen(int socket, int backlog);

DESCRIPTION
The listen() function shall mark a connection-mode socket, specified by the socket argument, as
accepting connections.

The backlog argument provides a hint to the implementation which the implementation shall use
to limit the number of outstanding connections in the socket’s listen queue. Implementations
may impose a limit on backlog and silently reduce the specified value. Normally, a larger backlog
argument value shall result in a larger or equal length of the listen queue. Implementations shall
support values of backlog up to SOMAXCONN, defined in <sys/socket.h>.

The implementation may include incomplete connections in its listen queue. The limits on the
number of incomplete connections and completed connections queued may be different.

The implementation may have an upper limit on the length of the listen queue—either global or
per accepting socket. If backlog exceeds this limit, the length of the listen queue is set to the limit.

If listen() is called with a backlog argument value that is less than 0, the function behaves as if it
had been called with a backlog argument value of 0.

A backlog argument of 0 may allow the socket to accept connections, in which case the length of
the listen queue may be set to an implementation-defined minimum value.

The socket in use may require the process to have appropriate privileges to use the listen()
function.

RETURN VALUE
Upon successful completions, listen() shall return 0; otherwise, −1 shall be returned and errno set
to indicate the error.

ERRORS
The listen() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EDESTADDRREQ]
The socket is not bound to a local address, and the protocol does not support
listening on an unbound socket.

[EINVAL] The socket is already connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket protocol does not support listen().

The listen() function may fail if:

[EACCES] The calling process does not have appropriate privileges.

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1341

45089

45090

45091

45092

45093

45094

45095

45096

45097

45098

45099

45100

45101

45102

45103

45104

45105

45106

45107

45108

45109

45110

45111

45112

45113

45114

45115

45116

45117

45118

45119

45120

45121

45122

45123

45124

45125

45126

45127

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

listen() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), connect(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The DESCRIPTION is updated to describe the relationship of SOMAXCONN and the backlog
argument.

1342 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45128

45129

45130

45131

45132

45133

45134

45135

45136

45137

45138

45139

45140

45141

45142

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces llabs()

NAME
llabs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long long llabs(long long i);

DESCRIPTION
Refer to labs().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1343

45143

45144

45145

45146

45147

45148

45149

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lldiv() System Interfaces

NAME
lldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

lldiv_t lldiv(long long numer, long long denom);

DESCRIPTION
Refer to ldiv().

1344 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45150

45151

45152

45153

45154

45155

45156

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces llrint()

NAME
llrint, llrintf, llrintl — round to the nearest integer value using current rounding direction

SYNOPSIS
#include <math.h>

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding according to
the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur, and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error
CX shall occur; otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error
CX shall occur; otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1345

45157

45158

45159

45160

45161

45162

45163

45164

45165

45166

45167

45168

45169

45170

45171

45172

45173

45174

45175

45176

45177

45178

45179

45180

45181

45182

45183

45184

45185

45186

45187

45188

45189

45190

45191

45192

45193

45194

45195

45196

45197

45198

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

llrint() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions provide floating-to-integer conversions. They round according to the current
rounding direction. If the rounded value is outside the range of the return type, the numeric
result is unspecified and the invalid floating-point exception is raised. When they raise no other
floating-point exception and the result differs from the argument, they raise the inexact floating-
point exception.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), lrint()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 is applied.

1346 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45199

45200

45201

45202

45203

45204

45205

45206

45207

45208

45209

45210

45211

45212

45213

45214

45215

45216

45217

45218

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces llround()

NAME
llround, llroundf, llroundl — round to nearest integer value

SYNOPSIS
#include <math.h>

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding halfway cases
away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur, and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error
CX shall occur; otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error
CX shall occur; otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1347

45219

45220

45221

45222

45223

45224

45225

45226

45227

45228

45229

45230

45231

45232

45233

45234

45235

45236

45237

45238

45239

45240

45241

45242

45243

45244

45245

45246

45247

45248

45249

45250

45251

45252

45253

45254

45255

45256

45257

45258

45259

45260

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

llround() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions differ from the llrint() functions in that the default rounding direction for the
llround() functions round halfway cases away from zero and need not raise the inexact floating-
point exception for non-integer arguments that round to within the range of the return type.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), lround()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-75) is applied.

1348 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45261

45262

45263

45264

45265

45266

45267

45268

45269

45270

45271

45272

45273

45274

45275

45276

45277

45278

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces localeconv()

NAME
localeconv — return locale-specific information

SYNOPSIS
#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The localeconv() function shall set the components of an object with the type struct lconv with
the values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the current locale or
is of zero length. The members with type char are non-negative numbers, any of which can be
{CHAR_MAX} to indicate that the value is not available in the current locale.

The members include the following:

char *decimal_point
The radix character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point character in
formatted non-monetary quantities.

char *grouping
A string whose elements taken as one-byte integer values indicate the size of each group of
digits in formatted non-monetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first three characters
contain the alphabetic international currency symbol in accordance with those specified in
the ISO 4217: 2015 standard. The fourth character (immediately preceding the null byte) is
the character used to separate the international currency symbol from the monetary
quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The radix character used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char *mon_grouping
A string whose elements taken as one-byte integer values indicate the size of each group of
digits in formatted monetary quantities.

char *positive_sign
The string used to indicate a non-negative valued formatted monetary quantity.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1349

45279

45280

45281

45282

45283

45284

45285

45286

45287

45288

45289

45290

45291

45292

45293

45294

45295

45296

45297

45298

45299

45300

45301

45302

45303

45304

45305

45306

45307

45308

45309

45310

45311

45312

45313

45314

45315

45316

45317

45318

45319

45320

45321

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

localeconv() System Interfaces

char *negative_sign
The string used to indicate a negative valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a
formatted monetary quantity.

char p_cs_precedes
Set to 1 if the currency_symbol precedes the value for a non-negative formatted monetary
quantity. Set to 0 if the symbol succeeds the value.

char p_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and the
value for a non-negative formatted monetary quantity.

char n_cs_precedes
Set to 1 if the currency_symbol precedes the value for a negative formatted monetary
quantity. Set to 0 if the symbol succeeds the value.

char n_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and the
value for a negative formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative formatted
monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative formatted
monetary quantity.

char int_p_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a non-
negative internationally formatted monetary quantity.

char int_n_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
negative internationally formatted monetary quantity.

char int_p_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and the
value for a non-negative internationally formatted monetary quantity.

char int_n_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and the
value for a negative internationally formatted monetary quantity.

char int_p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative
internationally formatted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative internationally
formatted monetary quantity.

1350 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45322

45323

45324

45325

45326

45327

45328

45329

45330

45331

45332

45333

45334

45335

45336

45337

45338

45339

45340

45341

45342

45343

45344

45345

45346

45347

45348

45349

45350

45351

45352

45353

45354

45355

45356

45357

45358

45359

45360

45361

45362

45363

45364

45365

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces localeconv()

The elements of grouping and mon_grouping are interpreted according to the following:

{CHAR_MAX} No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits
before the current group.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and int_n_sep_by_space
are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value;
otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a
space separates the sign string from the value.

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is
used instead of a space.

The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are
interpreted according to the following:

0 Parentheses surround the quantity and currency_symbol or int_curr_symbol.

1 The sign string precedes the quantity and currency_symbol or int_curr_symbol.

2 The sign string succeeds the quantity and currency_symbol or int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or int_curr_symbol.

The implementation shall behave as if no function in this volume of POSIX.1-2024 calls
localeconv().

The localeconv() function need not be thread-safe; however, localeconv() shall avoid data races
with all other functions.

RETURN VALUE
The localeconv() function shall return a pointer to the filled-in object. The application shall not

CX modify the structure to which the return value points, nor any storage areas pointed to by
pointers within the structure. The returned pointer, and pointers within the structure, might be

CX invalidated or the structure or the storage areas might be overwritten by a subsequent call to
CX localeconv(). In addition, the returned pointer, and pointers within the structure, might be
CX invalidated or the structure or the storage areas might be overwritten by subsequent calls to
CX setlocale() with the categories LC_ALL, LC_MONETARY, or LC_NUMERIC, or by calls to

uselocale() which change the categories LC_MONETARY or LC_NUMERIC. The returned
pointer, pointers within the structure, the structure, and the storage areas might also be
invalidated if the calling thread is terminated.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1351

45366

45367

45368

45369

45370

45371

45372

45373

45374

45375

45376

45377

45378

45379

45380

45381

45382

45383

45384

45385

45386

45387

45388

45389

45390

45391

45392

45393

45394

45395

45396

45397

45398

45399

45400

45401

45402

45403

45404

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

localeconv() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The following table illustrates the rules which may be used by four countries to format
monetary quantities.

Country Positive Format Negative Format International Format
Italy €.1.230 −€.1.230 EUR.1.230
Netherlands € 1.234,56 € −1.234,56 EUR 1.234,56
Norway kr1.234,56 kr1.234,56− NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by localeconv() are:

Italy Netherlands Norway Switzerland
int_curr_symbol "EUR." "EUR " "NOK " "CHF "
currency_symbol "€." "€" "kr" "SFrs."
mon_decimal_point "" "," "," "."
mon_thousands_sep "." "." "." ","
mon_grouping "\3" "\3" "\3" "\3"
positive_sign "" "" "" ""
negative_sign "-" "-" "-" "C"
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep_by_space 0 1 0 0
p_sign_posn 1 1 1 1
n_sign_posn 1 4 2 2
int_p_cs_precedes 1 1 1 1
int_n_cs_precedes 1 1 1 1
int_p_sep_by_space 0 0 0 0
int_n_sep_by_space 0 0 0 0
int_p_sign_posn 1 1 1 1
int_n_sign_posn 1 4 4 2

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), fscanf(), isalpha(), nl_langinfo(), setlocale(), strcat(), strchr(), strcmp(), strcoll(), strcpy(),
strftime(), strlen(), strpbrk(), strspn(), strtok(), strxfrm(), strtod(), uselocale()

XBD <langinfo.h>, <locale.h>

1352 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45405

45406

45407

45408

45409

45410

45411

45412

45413

45414

45415

45416

45417

45418

45419

45420

45421

45422

45423

45424

45425

45426

45427

45428

45429

45430

45431

45432

45433

45434

45435

45436

45437

45438

45439

45440

45441

45442

45443

45444

45445

45446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces localeconv()

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

The RETURN VALUE section is rewritten to avoid use of the term ``must’’.

This reference page is updated for alignment with the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/31 is applied, removing references to
int_curr_symbol and updating the descriptions of p_sep_by_space and n_sep_by_space. These
changes are for alignment with the ISO C standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The definitions of int_curr_symbol and currency_symbol are updated.

The examples in the APPLICATION USAGE section are updated.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0362 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0200 [656] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1353

45447

45448

45449

45450

45451

45452

45453

45454

45455

45456

45457

45458

45459

45460

45461

45462

45463

45464

45465

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

localtime() System Interfaces

NAME
localtime, localtime_r — convert a time value to a broken-down local time

SYNOPSIS
#include <time.h>

struct tm *localtime(const time_t *timer);
CX struct tm *localtime_r(const time_t *restrict timer,

struct tm *restrict result);

DESCRIPTION
CX For localtime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The localtime() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time, expressed as a local time. The function corrects for the timezone and

CX any seasonal time adjustments. Local timezone information shall be set as though localtime()
calls tzset().

The relationship between a time in seconds since the Epoch used as an argument to localtime()
and the tm structure (defined in the <time.h> header) is that the result shall be as specified in
the expression given in the definition of seconds since the Epoch (see XBD Section 4.19, on page
107) corrected for timezone and any seasonal time adjustments, where the names in the structure
and in the expression correspond.

The same relationship shall apply for localtime_r().

The localtime() function need not be thread-safe; however, localtime() shall avoid data races with
all functions other than itself, asctime(), ctime(), and gmtime().

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions that return a pointer to one of these object types may overwrite the information in any
object of the same type pointed to by the value returned from any previous call to any of them.

CX The localtime_r() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time stored in the structure to which result points. The localtime_r() function
shall also return a pointer to that same structure.

Unlike localtime(), the localtime_r() function is not required to set tzname. If localtime_r() sets
tzname, it shall also set daylight and timezone. If localtime_r() does not set tzname, it shall not set
daylight and shall not set timezone. If the tm structure member tm_zone is accessed after the value
of TZ is subsequently modified, the behaviour is undefined.

RETURN VALUE
Upon successful completion, the localtime() function shall return a pointer to the broken-down

CX time structure. If an error is detected, localtime() shall return a null pointer and set errno to
indicate the error.

Upon successful completion, localtime_r() shall return a pointer to the structure pointed to by the
argument result. If an error is detected, localtime_r() shall return a null pointer and set errno to
indicate the error.

1354 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45466

45467

45468

45469

45470

45471

45472

45473

45474

45475

45476

45477

45478

45479

45480

45481

45482

45483

45484

45485

45486

45487

45488

45489

45490

45491

45492

45493

45494

45495

45496

45497

45498

45499

45500

45501

45502

45503

45504

45505

45506

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces localtime()

ERRORS
CX The localtime() and localtime_r() functions shall fail if:

CX [EOVERFLOW] The result cannot be represented.

EXAMPLES

Getting the Local Date and Time

The following example uses the time() function to calculate the time elapsed, in seconds, since
January 1, 1970 0:00 UTC (the Epoch), localtime() to convert that value to a broken-down time,
and asctime() to convert the broken-down time values into a printable string.

#include <stdio.h>
#include <time.h>

int main(void)
{

time_t result;

result = time(NULL);
printf("%s%ju secs since the Epoch\n",

asctime(localtime(&result)),
(uintmax_t)result);

return(0);
}

This example writes the current time to stdout in a form like this:

Wed Jun 26 10:32:15 1996
835810335 secs since the Epoch

Getting the Modification Time for a File

The following example prints the last data modification timestamp in the local timezone for a
given file.

#include <stdio.h>
#include <time.h>
#include <sys/stat.h>

int
print_file_time(const char *pathname)
{

struct stat statbuf;
struct tm *tm;
char timestr[BUFSIZ];

if(stat(pathname, &statbuf) == -1)
return -1;

if((tm = localtime(&statbuf.st_mtime)) == NULL)
return -1;

if(strftime(timestr, sizeof(timestr), "%Y-%m-%d %H:%M:%S", tm) == 0)
return -1;

printf("%s: %s.%09ld\n", pathname, timestr, statbuf.st_mtim.tv_nsec);
return 0;

}

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1355

45507

45508

45509

45510

45511

45512

45513

45514

45515

45516

45517

45518

45519

45520

45521

45522

45523

45524

45525

45526

45527

45528

45529

45530

45531

45532

45533

45534

45535

45536

45537

45538

45539

45540

45541

45542

45543

45544

45545

45546

45547

45548

45549

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

localtime() System Interfaces

Timing an Event

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using fputs(). It then prints the number of minutes to
an event being timed.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
fputs(asctime(localtime(&now)), stdout);
printf("There are still %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The localtime_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), futimens(), getdate(), gmtime(), mktime(), strftime(),
strptime(), time(), tzset()

XBD Section 4.19 (on page 107), <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the localtime() function need not be reentrant is added to the
DESCRIPTION.

The localtime_r() function is included for alignment with the POSIX Threads Extension.

Issue 6
The localtime_r() function is marked as part of the Thread-Safe Functions option.

Extensions beyond the ISO C standard are marked.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the localtime_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Examples are added.

IEEE Std 1003.1-2001/Cor 1-2002, itemm XSH/TC1/D6/32 is applied, adding the
[EOVERFLOW] error.

1356 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45550

45551

45552

45553

45554

45555

45556

45557

45558

45559

45560

45561

45562

45563

45564

45565

45566

45567

45568

45569

45570

45571

45572

45573

45574

45575

45576

45577

45578

45579

45580

45581

45582

45583

45584

45585

45586

45587

45588

45589

45590

45591

45592

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces localtime()

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/55 is applied, updating the error handling
for localtime_r().

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/56 is applied, adding a requirement that if
localtime_r() does not set the tzname variable, it shall not set the daylight or timezone variables. On
systems supporting XSI, the daylight, timezone, and tzname variables should all be set to provide
information for the same timezone. This updates the description of localtime_r() to mention
daylight and timezone as well as tzname. The SEE ALSO section is updated.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The localtime_r() function is moved from the Thread-Safe Functions option to the Base.

Changes are made to the EXAMPLES section related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0363 [291] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0201 [664] is applied.

Issue 8
Austin Group Defect 1125 is applied, changing ``Local timezone information is used’’ to ``Local
timezone information shall be set’’.

Austin Group Defect 1302 is applied, aligning the localtime() function with the
ISO/IEC 9899: 2018 standard.

Austin Group Defect 1376 is applied, removing CX shading from some text derived from the
ISO C standard and updating it to match the ISO C standard.

Austin Group Defect 1533 is applied, adding tm_gmtoff and tm_zone to the tm structure.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1357

45593

45594

45595

45596

45597

45598

45599

45600

45601

45602

45603

45604

45605

45606

45607

45608

45609

45610

45611

45612

45613

45614

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lockf() System Interfaces

NAME
lockf — record locking on files

SYNOPSIS
XSI #include <unistd.h>

int lockf(int fildes, int function, off_t size);

DESCRIPTION
The lockf() function shall lock sections of a file with advisory-mode process-owned file locks.
Calls to lockf() from threads in other processes which attempt to lock the locked file section shall
either return an error value or block until the section becomes unlocked. All the locks for a
process are removed when the process terminates. Record locking with lockf() shall be
supported for regular files and may be supported for other files.

The fildes argument is an open file descriptor. To establish a lock with this function, the file
descriptor shall be opened with write-only permission (O_WRONLY) or with read/write
permission (O_RDWR).

The function argument is a control value which specifies the action to be taken. The permissible
values for function are defined in <unistd.h> as follows:

Function Description
F_ULOCK Unlock locked sections.
F_LOCK Lock a section for exclusive use.
F_TLOCK Test and lock a section for exclusive use.
F_TEST Test a section for locks by other processes.

F_TEST shall detect if a lock by another process is present on the specified section.

F_LOCK and F_TLOCK shall both lock a section of a file if the section is available.

F_ULOCK shall remove locks from a section of the file.

The size argument is the number of contiguous bytes to be locked or unlocked. The section to be
locked or unlocked starts at the current offset in the file and extends forward for a positive size
or backward for a negative size (the preceding bytes up to but not including the current offset).
If size is 0, the section from the current offset through the largest possible file offset shall be
locked (that is, from the current offset through the present or any future end-of-file). An area
need not be allocated to the file to be locked because locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained
by a previously locked section for the same process. When this occurs, or if adjacent locked
sections would occur, the sections shall be combined into a single locked section. If the request
would cause the number of locks to exceed a system-imposed limit, the request shall fail.

F_LOCK and F_TLOCK requests differ only by the action taken if the section is not available.
F_LOCK shall block the calling thread until the section is available. F_TLOCK shall cause the
function to fail if the section is already locked by another process.

Process-owned file locks shall be released on first close by the locking process of any file
descriptor for the file.

F_ULOCK requests may release (wholly or in part) one or more locked sections controlled by the
process. Locked sections shall be unlocked starting at the current file offset through size bytes or
to the end-of-file if size is (off_t)0. When all of a locked section is not released (that is, when the
beginning or end of the area to be unlocked falls within a locked section), the remaining portions
of that section shall remain locked by the process. Releasing the center portion of a locked

1358 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45615

45616

45617

45618

45619

45620

45621

45622

45623

45624

45625

45626

45627

45628

45629

45630

45631

45632

45633

45634

45635

45636

45637

45638

45639

45640

45641

45642

45643

45644

45645

45646

45647

45648

45649

45650

45651

45652

45653

45654

45655

45656

45657

45658

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lockf()

section shall cause the remaining locked beginning and end portions to become two separate
locked sections. If the request would cause the number of locks in the system to exceed a system-
imposed limit, the request shall fail.

A potential for deadlock occurs if the threads of a process controlling a locked section are
blocked by accessing a locked section of another process. If the system detects that deadlock
would occur, lockf() shall fail with an [EDEADLK] error.

The interaction between fcntl() and lockf() locks is unspecified.

Blocking on a section shall be interrupted by any signal.

An F_ULOCK request in which size is non-zero and the offset of the last byte of the requested
section is the maximum value for an object of type off_t, when the process has an existing lock
in which size is 0 and which includes the last byte of the requested section, shall be treated as a
request to unlock from the start of the requested section with a size equal to 0. Otherwise, an
F_ULOCK request shall attempt to unlock only the requested section.

Attempting to lock a section of a file that is associated with a buffered stream produces
unspecified results.

RETURN VALUE
Upon successful completion, lockf() shall return 0. Otherwise, it shall return −1, set errno to
indicate an error, and existing locks shall not be changed.

ERRORS
The lockf() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor; or function is F_LOCK
or F_TLOCK and fildes is not a valid file descriptor open for writing.

[EACCES] or [EAGAIN]
The function argument is F_TLOCK or F_TEST and the section is already
locked by another process.

[EDEADLK] The function argument is F_LOCK and a deadlock is detected.

[EINTR] A signal was caught during execution of the function.

[EINVAL] The function argument is not one of F_LOCK, F_TLOCK, F_TEST, or
F_ULOCK; or size plus the current file offset is less than 0.

[EOVERFLOW] The offset of the first, or if size is not 0 then the last, byte in the requested
section cannot be represented correctly in an object of type off_t.

The lockf() function may fail if:

[EAGAIN] The function argument is F_LOCK or F_TLOCK and the file is mapped with
mmap().

[EDEADLK] or [ENOLCK]
The function argument is F_LOCK, F_TLOCK, or F_ULOCK, and the request
would cause the number of locks to exceed a system-imposed limit.

[EOPNOTSUPP] or [EINVAL]
The implementation does not support the locking of files of the type indicated
by the fildes argument.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1359

45659

45660

45661

45662

45663

45664

45665

45666

45667

45668

45669

45670

45671

45672

45673

45674

45675

45676

45677

45678

45679

45680

45681

45682

45683

45684

45685

45686

45687

45688

45689

45690

45691

45692

45693

45694

45695

45696

45697

45698

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lockf() System Interfaces

EXAMPLES

Locking a Portion of a File

In the following example, a file named /home/cnd/mod1 is being modified. Other processes that
use locking are prevented from changing it during this process. Only the first 10 000 bytes are
locked, and the lock call fails if another process has any part of this area locked already.

#include <fcntl.h>
#include <unistd.h>

int fildes;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = lockf(fildes, F_TLOCK, (off_t)10000);

APPLICATION USAGE
Record-locking should not be used in combination with buffered standard I/O streams (see
Section 2.5, on page 521). Instead, non-buffered I/O should be used. Unexpected results may
occur in processes that do buffering in the user address space. The process may later read/write
data which is/was locked. Functions that operate on standard I/O streams are the most
common source of such buffering.

The alarm() function may be used to provide a timeout facility in applications requiring it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), chmod(), close(), creat(), fcntl(), fopen(), mmap(), open(), read(), write()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added. In particular, the description of [EINVAL] is clarified
and moved from optional to mandatory status.

A note is added to the DESCRIPTION indicating the effects of attempting to lock a section of a
file that is associated with a buffered stream.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #054 is applied, updating the DESCRIPTION.

Issue 8
Austin Group Defect 768 is applied, adding OFD-owned file locks.

Austin Group Defect 1672 is applied, changing the APPLICATION USAGE section.

1360 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45699

45700

45701

45702

45703

45704

45705

45706

45707

45708

45709

45710

45711

45712

45713

45714

45715

45716

45717

45718

45719

45720

45721

45722

45723

45724

45725

45726

45727

45728

45729

45730

45731

45732

45733

45734

45735

45736

45737

45738

45739

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces log()

NAME
log, logf, logl — natural logarithm function

SYNOPSIS
#include <math.h>

double log(double x);
float logf(float x);
long double logl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the natural logarithm of their argument x, log
e
(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the natural logarithm of x.

If x is ±0, a pole error shall occur and log(), logf(), and logl() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, x shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is negative, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1361

45740

45741

45742

45743

45744

45745

45746

45747

45748

45749

45750

45751

45752

45753

45754

45755

45756

45757

45758

45759

45760

45761

45762

45763

45764

45765

45766

45767

45768

45769

45770

45771

45772

45773

45774

45775

45776

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

log() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), log10(), log1p()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The logf() and logl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1362 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45777

45778

45779

45780

45781

45782

45783

45784

45785

45786

45787

45788

45789

45790

45791

45792

45793

45794

45795

45796

45797

45798

45799

45800

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces log10()

NAME
log10, log10f, log10l — base 10 logarithm function

SYNOPSIS
#include <math.h>

double log10(double x);
float log10f(float x);
long double log10l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the base 10 logarithm of their argument x, log
10

(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the base 10 logarithm of x.

If x is ±0, a pole error shall occur and log10(), log10f(), and log10l() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is negative, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1363

45801

45802

45803

45804

45805

45806

45807

45808

45809

45810

45811

45812

45813

45814

45815

45816

45817

45818

45819

45820

45821

45822

45823

45824

45825

45826

45827

45828

45829

45830

45831

45832

45833

45834

45835

45836

45837

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

log10() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), log(), pow()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The log10f() and log10l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1364 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45838

45839

45840

45841

45842

45843

45844

45845

45846

45847

45848

45849

45850

45851

45852

45853

45854

45855

45856

45857

45858

45859

45860

45861

45862

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces log1p()

NAME
log1p, log1pf, log1pl — compute a natural logarithm

SYNOPSIS
#include <math.h>

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute log
e
(1.0 + x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the natural logarithm of 1.0 + x.

If x is −1, a pole error shall occur and log1p(), log1pf(), and log1pl() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than −1, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, or +Inf, x shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, log1p(), log1pf(), and log1pl()

shall return an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is less than −1, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is −1.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1365

45863

45864

45865

45866

45867

45868

45869

45870

45871

45872

45873

45874

45875

45876

45877

45878

45879

45880

45881

45882

45883

45884

45885

45886

45887

45888

45889

45890

45891

45892

45893

45894

45895

45896

45897

45898

45899

45900

45901

45902

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

log1p() System Interfaces

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), log()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The log1p() function is no longer marked as an extension.

The log1pf() and log1pl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0364 [68] is applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

1366 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45903

45904

45905

45906

45907

45908

45909

45910

45911

45912

45913

45914

45915

45916

45917

45918

45919

45920

45921

45922

45923

45924

45925

45926

45927

45928

45929

45930

45931

45932

45933

45934

45935

45936

45937

45938

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces log2()

NAME
log2, log2f, log2l — compute base 2 logarithm functions

SYNOPSIS
#include <math.h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the base 2 logarithm of their argument x, log2(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the base 2 logarithm of x.

If x is ±0, a pole error shall occur and log2(), log2f(), and log2l() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, x shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is less than zero, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1367

45939

45940

45941

45942

45943

45944

45945

45946

45947

45948

45949

45950

45951

45952

45953

45954

45955

45956

45957

45958

45959

45960

45961

45962

45963

45964

45965

45966

45967

45968

45969

45970

45971

45972

45973

45974

45975

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

log2() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), log()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1368 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

45976

45977

45978

45979

45980

45981

45982

45983

45984

45985

45986

45987

45988

45989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces logb()

NAME
logb, logbf, logbl — radix-independent exponent

SYNOPSIS
#include <math.h>

double logb(double x);
float logbf(float x);
long double logbl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the exponent of x, which is the integral part of log
r

| x |, as a
signed floating-point value, for non-zero x, where r is the radix of the machine’s floating-point
arithmetic, which is the value of FLT_RADIX defined in the <float.h> header.

If x is subnormal it is treated as though it were normalized; thus for finite positive x:

1 <= x * FLT_RADIX-logb(x) < FLT_RADIX

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponent of x.

MX The returned value shall be exact and shall be independent of the current rounding direction
mode.

If x is ±0, logb(), logbf(), and logbl() shall return −HUGE_VAL, −HUGE_VALF, and
−HUGE_VALL, respectively.

MX On systems that support the IEC 60559 Floating-Point option, a pole error shall occur;
CX otherwise, a pole error may occur.

MX If x is NaN, a NaN shall be returned.

MX If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

MX Pole Error The value of x is ±0.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

These functions may fail if:

Pole Error The value of x is 0.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1369

45990

45991

45992

45993

45994

45995

45996

45997

45998

45999

46000

46001

46002

46003

46004

46005

46006

46007

46008

46009

46010

46011

46012

46013

46014

46015

46016

46017

46018

46019

46020

46021

46022

46023

46024

46025

46026

46027

46028

46029

46030

46031

46032

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

logb() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), ilogb(), scalbln()

XBD Section 4.23 (on page 109), <float.h>, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The logb() function is no longer marked as an extension.

The logbf() and logbl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #50 (SD5-XSH-ERN-76) is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

1370 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46033

46034

46035

46036

46037

46038

46039

46040

46041

46042

46043

46044

46045

46046

46047

46048

46049

46050

46051

46052

46053

46054

46055

46056

46057

46058

46059

46060

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces logf()

NAME
logf, logl — natural logarithm function

SYNOPSIS
#include <math.h>

float logf(float x);
long double logl(long double x);

DESCRIPTION
Refer to log().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1371

46061

46062

46063

46064

46065

46066

46067

46068

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

longjmp() System Interfaces

NAME
longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

_Noreturn void longjmp(jmp_buf env, int val);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The longjmp() function shall restore the environment saved by the most recent invocation of
setjmp() in the same process, with the corresponding jmp_buf argument. If the most recent
invocation of setjmp() with the corresponding jmp_buf occurred in another thread, or if there is
no such invocation, or if the function containing the invocation of setjmp() has terminated
execution in the interim, or if the invocation of setjmp() was within the scope of an identifier
with variably modified type and execution has left that scope in the interim, the behavior is

CX undefined. It is unspecified whether longjmp() restores the signal mask, leaves the signal mask
unchanged, or restores it to its value at the time setjmp() was called.

All accessible objects have values, and all other components of the abstract machine have state
(for example, floating-point status flags and open files), as of the time longjmp() was called,
except that the values of objects of automatic storage duration are unspecified if they meet all
the following conditions:

• They are local to the function containing the corresponding setjmp() invocation.

• They do not have volatile-qualified type.

• They are changed between the setjmp() invocation and longjmp() call.

CX Although longjmp() is an async-signal-safe function, if it is invoked from a signal handler which
interrupted a non-async-signal-safe function or equivalent (such as the processing equivalent to
exit() performed after a return from the initial call to main()), the behavior of any subsequent
call to a non-async-signal-safe function or equivalent is undefined.

The effect of a call to longjmp() where initialization of the jmp_buf structure was not performed
in the calling thread is undefined.

RETURN VALUE
After longjmp() is completed, thread execution shall continue as if the corresponding invocation
of setjmp() had just returned the value specified by val. The longjmp() function shall not cause
setjmp() to return 0; if val is 0, setjmp() shall return 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications whose behavior depends on the value of the signal mask should not use longjmp()
and setjmp(), since their effect on the signal mask is unspecified, but should instead use the
siglongjmp() and sigsetjmp() functions (which can save and restore the signal mask under
application control).

It is recommended that applications do not call longjmp() or siglongjmp() from signal handlers.
To avoid undefined behavior when calling these functions from a signal handler, the application

1372 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46069

46070

46071

46072

46073

46074

46075

46076

46077

46078

46079

46080

46081

46082

46083

46084

46085

46086

46087

46088

46089

46090

46091

46092

46093

46094

46095

46096

46097

46098

46099

46100

46101

46102

46103

46104

46105

46106

46107

46108

46109

46110

46111

46112

46113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces longjmp()

needs to ensure one of the following two things:

1. After the call to longjmp() or siglongjmp() the process only calls async-signal-safe
functions and does not return from the initial call to main().

2. Any signal whose handler calls longjmp() or siglongjmp() is blocked during every call to a
non-async-signal-safe function, and no such calls are made after returning from the initial
call to main().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setjmp(), sigaction(), siglongjmp(), sigsetjmp()

XBD <setjmp.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now explicitly makes longjmp()’s effect on the signal mask
unspecified.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0365 [394] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0202 [516] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1373

46114

46115

46116

46117

46118

46119

46120

46121

46122

46123

46124

46125

46126

46127

46128

46129

46130

46131

46132

46133

46134

46135

46136

46137

46138

46139

46140

46141

46142

46143

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lrand48() System Interfaces

NAME
lrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
XSI #include <stdlib.h>

long lrand48(void);

DESCRIPTION
Refer to drand48().

1374 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46144

46145

46146

46147

46148

46149

46150

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lrint()

NAME
lrint, lrintf, lrintl — round to nearest integer value using current rounding direction

SYNOPSIS
#include <math.h>

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding according to
the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain error shall
CX occur; otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain error shall
CX occur; otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1375

46151

46152

46153

46154

46155

46156

46157

46158

46159

46160

46161

46162

46163

46164

46165

46166

46167

46168

46169

46170

46171

46172

46173

46174

46175

46176

46177

46178

46179

46180

46181

46182

46183

46184

46185

46186

46187

46188

46189

46190

46191

46192

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lrint() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions provide floating-to-integer conversions. They round according to the current
rounding direction. If the rounded value is outside the range of the return type, the numeric
result is unspecified and the invalid floating-point exception is raised. When they raise no other
floating-point exception and the result differs from the argument, they raise the inexact floating-
point exception.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), llrint()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 (SD5-XSH-ERN-77) is applied.

1376 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46193

46194

46195

46196

46197

46198

46199

46200

46201

46202

46203

46204

46205

46206

46207

46208

46209

46210

46211

46212

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lround()

NAME
lround, lroundf, lroundl — round to nearest integer value

SYNOPSIS
#include <math.h>

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding halfway cases
away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain shall occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain shall occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1377

46213

46214

46215

46216

46217

46218

46219

46220

46221

46222

46223

46224

46225

46226

46227

46228

46229

46230

46231

46232

46233

46234

46235

46236

46237

46238

46239

46240

46241

46242

46243

46244

46245

46246

46247

46248

46249

46250

46251

46252

46253

46254

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lround() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions differ from the lrint() functions in the default rounding direction, with the
lround() functions rounding halfway cases away from zero and needing not to raise the inexact
floating-point exception for non-integer arguments that round to within the range of the return
type.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), llround()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-78) is applied.

1378 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46255

46256

46257

46258

46259

46260

46261

46262

46263

46264

46265

46266

46267

46268

46269

46270

46271

46272

46273

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lsearch()

NAME
lsearch, lfind — linear search and update

SYNOPSIS
XSI #include <search.h>

void *lsearch(const void *key, void *base, size_t *nelp, size_t width,
int (*compar)(const void *, const void *));

void *lfind(const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
The lsearch() function shall linearly search the table and return a pointer into the table for the
matching entry. If the entry does not occur, it shall be added at the end of the table. The key
argument points to the entry to be sought in the table. The base argument points to the first
element in the table. The width argument is the size of an element in bytes. The nelp argument
points to an integer containing the current number of elements in the table. The integer to which
nelp points shall be incremented if the entry is added to the table. The compar argument points to
a comparison function which the application shall supply (for example, strcmp()). It is called
with two arguments that point to the elements being compared. The application shall ensure
that the function returns 0 if the elements are equal, and non-zero otherwise.

The lfind() function shall be equivalent to lsearch(), except that if the entry is not found, it is not
added to the table. Instead, a null pointer is returned.

RETURN VALUE
If the searched for entry is found, both lsearch() and lfind() shall return a pointer to it.
Otherwise, lfind() shall return a null pointer and lsearch() shall return a pointer to the newly
added element.

Both functions shall return a null pointer in case of error.

ERRORS
No errors are defined.

EXAMPLES

Storing Strings in a Table

This fragment reads in less than or equal to TABSIZE strings of length less than or equal to
ELSIZE and stores them in a table, eliminating duplicates.

#include <stdio.h>
#include <string.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
...
while (fgets(line, ELSIZE, stdin) != NULL && nel < TABSIZE)

(void) lsearch(line, tab, &nel,
ELSIZE, (int (*)(const void *, const void *)) strcmp);

...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1379

46274

46275

46276

46277

46278

46279

46280

46281

46282

46283

46284

46285

46286

46287

46288

46289

46290

46291

46292

46293

46294

46295

46296

46297

46298

46299

46300

46301

46302

46303

46304

46305

46306

46307

46308

46309

46310

46311

46312

46313

46314

46315

46316

46317

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lsearch() System Interfaces

Finding a Matching Entry

The following example finds any line that reads "This is a test.".

#include <search.h>
#include <string.h>
...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
char *findline;
void *entry;

findline = "This is a test.\n";

entry = lfind(findline, tab, &nel, ELSIZE, (
int (*)(const void *, const void *)) strcmp);

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

Undefined results can occur if there is not enough room in the table to add a new item.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), tdelete()

XBD <search.h>
CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

1380 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46318

46319

46320

46321

46322

46323

46324

46325

46326

46327

46328

46329

46330

46331

46332

46333

46334

46335

46336

46337

46338

46339

46340

46341

46342

46343

46344

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lseek()

NAME
lseek — move the read/write file offset

SYNOPSIS
#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

DESCRIPTION
The lseek() function shall set the file offset for the open file description associated with the file
descriptor fildes, as follows:

• If whence is SEEK_SET, the file offset shall be set to offset bytes.

• If whence is SEEK_CUR, the file offset shall be set to its current location plus offset.

• If whence is SEEK_END, the file offset shall be set to the size of the file plus offset.

• If whence is SEEK_HOLE, the file offset shall be set to the smallest location of a byte within
a hole and not less than offset, except that if offset falls beyond the last byte not within a
hole, then the file offset may be set to the file size instead. It shall be an error if offset is
greater than or equal to the size of the file.

• If whence is SEEK_DATA, the file offset shall be set to the smallest location of a byte not
within a hole and not less than offset. It shall be an error if no such byte exists.

The symbolic constants SEEK_SET, SEEK_CUR, SEEK_END, SEEK_HOLE, and SEEK_DATA are
defined in <unistd.h>.

A hole is a contiguous region of bytes within a file, all having the value of zero. Not all bytes
with the value zero need belong to a hole; however, all seekable files shall have a virtual hole
starting at the current size of the file, whether or not the file is sparse.

The behavior of lseek() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

The lseek() function shall allow the file offset to be set beyond the end of the existing data in the
file. If data is later written at this point, subsequent reads of data in the gap shall return bytes
with the value 0 until data is actually written into the gap.

The lseek() function shall not, by itself, extend the size of a file.

SHM If fildes refers to a shared memory object, the result of the lseek() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the lseek() function is unspecified.

RETURN VALUE
Upon successful completion, the resulting offset, as measured in bytes from the beginning of the
file, shall be returned. Otherwise, −1 shall be returned, errno shall be set to indicate the error, and
the file offset shall remain unchanged.

ERRORS
The lseek() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EINVAL] The whence argument is not a proper value, or the resulting file offset would
be negative for a regular file, block special file, or directory.

[ENXIO] The whence argument is SEEK_HOLE or SEEK_DATA, and offset is greater
than or equal to the file size; or the whence argument is SEEK_DATA and the
offset falls beyond the last byte not within a hole.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1381

46345

46346

46347

46348

46349

46350

46351

46352

46353

46354

46355

46356

46357

46358

46359

46360

46361

46362

46363

46364

46365

46366

46367

46368

46369

46370

46371

46372

46373

46374

46375

46376

46377

46378

46379

46380

46381

46382

46383

46384

46385

46386

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lseek() System Interfaces

[EOVERFLOW] The resulting file offset would be a value which cannot be represented
correctly in an object of type off_t.

[ESPIPE] The fildes argument is associated with a pipe, FIFO, or socket.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard includes the functions fgetpos() and fsetpos(), which work on very large files
by use of a special positioning type.

Although lseek() may position the file offset beyond the end of the file, this function does not
itself extend the size of the file. While the only function in POSIX.1-2024 that may directly extend
the size of the file is write(), truncate(), and ftruncate(), several functions originally derived from
the ISO C standard, such as fwrite(), fprintf(), and so on, may do so (by causing calls on write()).

An invalid file offset that would cause [EINVAL] to be returned may be both implementation-
defined and device-dependent (for example, memory may have few invalid values). A negative
file offset may be valid for some devices in some implementations.

The POSIX.1-1990 standard did not specifically prohibit lseek() from returning a negative offset.
Therefore, an application was required to clear errno prior to the call and check errno upon return
to determine whether a return value of (off_t)−1 is a negative offset or an indication of an error
condition. The standard developers did not wish to require this action on the part of a
conforming application, and chose to require that errno be set to [EINVAL] when the resulting
file offset would be negative for a regular file, block special file, or directory.

Not all file systems support holes, and even where sparse files are supported, not all contiguous
blocks of zero bytes are required to be recognized as a hole. However, since all files are required
to have a virtual hole starting at the current file size, application writers can use SEEK_HOLE
and SEEK_DATA to optimize algorithms that can run faster when it is known that a block of
bytes is all zeros, because a non-sparse file will correctly report the entire file as a single non-
hole. A trivial recursive implementation for these two constants would be as follows, however,
for file systems that support sparse files, implementations are encouraged to do better.

off_t lseek(int fildes, off_t offset, int whence)
{

off_t cur, end;
switch (whence)
{
case SEEK_HOLE:
case SEEK_DATA:

cur = lseek(fildes, 0, SEEK_CUR);
if (cur < 0)

return cur;
end = lseek(fildes, 0, SEEK_END);
if (end < 0)

return end;
if (offset < end)

return whence == SEEK_HOLE ?
end : lseek(fildes, offset, SEEK_SET);

lseek(fildes, cur, SEEK_SET);

1382 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46387

46388

46389

46390

46391

46392

46393

46394

46395

46396

46397

46398

46399

46400

46401

46402

46403

46404

46405

46406

46407

46408

46409

46410

46411

46412

46413

46414

46415

46416

46417

46418

46419

46420

46421

46422

46423

46424

46425

46426

46427

46428

46429

46430

46431

46432

46433

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces lseek()

errno = ENXIO;
return -1;

default:
... /* Existing implementation */

}
}

Note that although the above looks like user-space code, lseek() cannot be implemented with
recursive calls in user space because this would not conform to the atomicity requirements in
Section 2.9.7 (on page 547).

FUTURE DIRECTIONS
None.

SEE ALSO
open()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EOVERFLOW] error condition is added. This change is to support large files.

An additional [ESPIPE] error condition is added for sockets.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
lseek() results are unspecified for typed memory objects.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0366 [421] is applied.

Issue 8
Austin Group Defect 415 is applied, adding SEEK_HOLE and SEEK_DATA.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1383

46434

46435

46436

46437

46438

46439

46440

46441

46442

46443

46444

46445

46446

46447

46448

46449

46450

46451

46452

46453

46454

46455

46456

46457

46458

46459

46460

46461

46462

46463

46464

46465

46466

46467

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lstat() System Interfaces

NAME
lstat — get file status

SYNOPSIS
#include <sys/stat.h>

int lstat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
Refer to fstatat().

1384 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46468

46469

46470

46471

46472

46473

46474

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces malloc()

NAME
malloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The malloc() function shall allocate unused space for an object whose size in bytes is specified by
size and whose value is unspecified.

The order and contiguity of storage allocated by successive calls to malloc() is unspecified. The
pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to
a pointer to any type of object with a fundamental alignment requirement and then used to
access such an object in the space allocated (until the space is explicitly freed or reallocated).
Each such allocation shall yield a pointer to an object disjoint from any other object. The pointer
returned points to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, a null pointer shall be returned. If the size of the space requested is 0, the behavior is
implementation-defined: either a null pointer shall be returned, or the behavior shall be as if the
size were some non-zero value, except that the behavior is undefined if the returned pointer is
used to access an object.

For purposes of determining the existence of a data race, malloc() shall behave as though it
accessed only memory locations accessible through its argument and not other static duration
storage. The function may, however, visibly modify the storage that it allocates. Calls to

ADV aligned_alloc(), calloc(), free(), malloc(), posix_memalign(),
CX reallocarray(), and realloc() that allocate or deallocate a particular region of memory shall occur

in a single total order (see Section 4.15.1, on page 100), and each such deallocation call shall
synchronize with the next allocation (if any) in this order.

RETURN VALUE
Upon successful completion, malloc() shall return a pointer to the allocated space; if size is 0, the
application shall ensure that the pointer is not used to access an object.

CX Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The malloc() function shall fail if:

CX [ENOMEM] Insufficient storage space is available.

The malloc() function may fail if:

CX [EINVAL] size is 0 and the implementation does not support 0 sized allocations.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1385

46475

46476

46477

46478

46479

46480

46481

46482

46483

46484

46485

46486

46487

46488

46489

46490

46491

46492

46493

46494

46495

46496

46497

46498

46499

46500

46501

46502

46503

46504

46505

46506

46507

46508

46509

46510

46511

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

malloc() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Some implementations set errno to [EAGAIN] to signal memory allocation failures that might
succeed if retried and [ENOMEM] for failures that are unlikely to ever succeed, for example due
to configured limits. Section 2.3 (on page 507) permits this behavior; when multiple error
conditions are simultaneously true there is no precedence between them.

FUTURE DIRECTIONS
None.

SEE ALSO
aligned_alloc(), calloc(), free(), getrlimit(), posix_memalign(), realloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno to indicate an error is added.

• The [ENOMEM] error condition is added.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0203 [526] is applied.

Issue 8
Austin Group Defect 374 is applied, changing the RETURN VALUE and ERRORS sections in
relation to 0 sized allocations.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Austin Group Defects 1387 and 1489 are applied, changing the RATIONALE section.

1386 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46512

46513

46514

46515

46516

46517

46518

46519

46520

46521

46522

46523

46524

46525

46526

46527

46528

46529

46530

46531

46532

46533

46534

46535

46536

46537

46538

46539

46540

46541

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mblen()

NAME
mblen — get number of bytes in a character

SYNOPSIS
#include <stdlib.h>

int mblen(const char *s, size_t n);

DESCRIPTION
CX Except for requirements relating to data races, the functionality described on this reference page

is aligned with the ISO C standard. Any other conflict between the requirements described here
and the ISO C standard is unintentional. This volume of POSIX.1-2024 defers to the ISO C
standard for all mblen() functionality except in relation to data races.

If s is not a null pointer, mblen() shall determine the number of bytes constituting the character
pointed to by s. Except that the shift state of mbtowc() is not affected, it shall be equivalent to:

mbtowc((wchar_t *)0, (const char *)0, 0);
mbtowc((wchar_t *)0, s, n);

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
mblen().

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function shall be placed into its initial state at program startup
and can be returned to that state by a call for which its character pointer argument, s, is a null
pointer. Subsequent calls with s as other than a null pointer shall cause the internal state of the
function to be altered as necessary. A call with s as a null pointer shall cause this function to
return a non-zero value if encodings have state dependency, and 0 otherwise. If the
implementation employs special bytes to change the shift state, these bytes shall not produce
separate wide-character codes, but shall be grouped with an adjacent character. Changing the
LC_CTYPE category causes the shift state of this function to be unspecified.

CX The mblen() function need not be thread-safe; however, it shall avoid data races with all other
functions.

RETURN VALUE
If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, mblen() shall
either return 0 (if s points to the null byte), or return the number of bytes that constitute the
character (if the next n or fewer bytes form a valid character), or return −1 (if they do not form a

CX valid character) and may set errno to indicate the error. In no case shall the value returned be
greater than n or the value of the {MB_CUR_MAX} macro.

ERRORS
The mblen() function may fail if:

CX [EILSEQ] An invalid character sequence is detected. In the POSIX locale an [EILSEQ]
error cannot occur since all byte values are valid characters.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1387

46542

46543

46544

46545

46546

46547

46548

46549

46550

46551

46552

46553

46554

46555

46556

46557

46558

46559

46560

46561

46562

46563

46564

46565

46566

46567

46568

46569

46570

46571

46572

46573

46574

46575

46576

46577

46578

46579

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mblen() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
When the ISO C standard introduced threads in C11, it required mblen() to avoid data races
(with itself as well as with other functions), whereas POSIX.1-2008 did not require it to be
thread-safe, and in many implementations it did not avoid data races with itself and still does
not. The ISO C committee intend to change the requirements in a future version of the ISO C
standard, but since POSIX.1 currently refers to C17 it is necessary for it not to defer to the ISO C
standard regarding data races in order to continue to allow this function not to avoid data races
with itself.

FUTURE DIRECTIONS
It is expected that a change in a future version of the ISO C standard will allow a future version
of this standard to remove the data race exception from the statement that it defers to the ISO C
standard.

SEE ALSO
mbtowc(), mbstowcs(), wctomb(), wcstombs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0367 [109] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0204 [663,674] is applied.
Issue 8

Austin Group Defects 708 and 1302 are applied, aligning this function with the
ISO/IEC 9899: 2018 standard, except in relation to data races.

1388 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46580

46581

46582

46583

46584

46585

46586

46587

46588

46589

46590

46591

46592

46593

46594

46595

46596

46597

46598

46599

46600

46601

46602

46603

46604

46605

46606

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mbrlen()

NAME
mbrlen — get number of bytes in a character (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrlen(const char *restrict s, size_t n,
mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If s is not a null pointer, mbrlen() shall determine the number of bytes constituting the character
pointed to by s. It shall be equivalent to:

mbstate_t internal;
mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen() function shall use its own internal mbstate_t object, which is
initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in this
volume of POSIX.1-2024 calls mbrlen().

The behavior of this function is affected by the LC_CTYPE category of the current locale.

If called with a null ps argument, the mbrlen() function need not be thread-safe; however, such
calls shall avoid data races with calls to mbrlen() with a non-null argument and with calls to all
other functions.

The mbrlen() function shall not change the setting of errno if successful.
RETURN VALUE

The mbrlen() function shall return the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null
wide character.

positive If the next n or fewer bytes complete a valid character; the value returned shall
be the number of bytes that complete the character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed. When n has at least the value of the
{MB_CUR_MAX} macro, this case can only occur if s points at a sequence of
redundant shift sequences (for implementations with state-dependent
encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character. In this case, [EILSEQ] shall be
stored in errno and the conversion state is undefined.

ERRORS
The mbrlen() function shall fail if:

CX [EILSEQ] An invalid character sequence is detected. In the POSIX locale an [EILSEQ]
error cannot occur since all byte values are valid characters.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1389

46607

46608

46609

46610

46611

46612

46613

46614

46615

46616

46617

46618

46619

46620

46621

46622

46623

46624

46625

46626

46627

46628

46629

46630

46631

46632

46633

46634

46635

46636

46637

46638

46639

46640

46641

46642

46643

46644

46645

46646

46647

46648

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mbrlen() System Interfaces

The mbrlen() function may fail if:

[EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbrtowc()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbrlen() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0368 [109,105] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0204 [663,674] is applied.
Issue 8

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

1390 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46649

46650

46651

46652

46653

46654

46655

46656

46657

46658

46659

46660

46661

46662

46663

46664

46665

46666

46667

46668

46669

46670

46671

46672

46673

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mbrtoc16()

NAME
mbrtoc16, mbrtoc32 — convert a character to a Unicode character code (restartable)

SYNOPSIS
#include <uchar.h>

size_t mbrtoc16(char16_t *restrict pc16, const char *restrict s,
size_t n, mbstate_t *restrict ps);

size_t mbrtoc32(char32_t *restrict pc32, const char *restrict s,
size_t n, mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If s is a null pointer, the mbrtoc16() function shall be equivalent to the call:

mbrtoc16(NULL, "", 1, ps)

In this case, the values of the parameters pc16 and n are ignored.

If s is not a null pointer, the mbrtoc16() function shall inspect at most n bytes beginning with the
byte pointed to by s to determine the number of bytes needed to complete the next character
(including any shift sequences). If the function determines that the next character is complete
and valid, it shall determine the values of the corresponding wide characters and then, if pc16 is
not a null pointer, shall store the value of the first (or only) such character in the object pointed
to by pc16. Subsequent calls shall store successive wide characters without consuming any
additional input until all the characters have been stored. If the corresponding wide character is
the null wide character, the resulting state described shall be the initial conversion state.

If ps is a null pointer, the mbrtoc16() function shall use its own internal mbstate_t object, which
shall be initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

The mbrtoc16() function shall not change the setting of errno if successful.

The mbrtoc32() function shall behave the same way as mbrtoc16() except that the first parameter
shall point to an object of type char32_t instead of char16_t. References to pc16 in the above
description shall apply as if they were pc32 when they are being read as describing mbrtoc32().

If called with a null ps argument, the mbrtoc16() function need not be thread-safe; however, such
calls shall avoid data races with calls to mbrtoc16() with a non-null argument and with calls to
all other functions.

If called with a null ps argument, the mbrtoc32() function need not be thread-safe; however, such
calls shall avoid data races with calls to mbrtoc32() with a non-null argument and with calls to
all other functions.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
mbrtoc16() or mbrtoc32() with a null pointer for ps.

RETURN VALUE
These functions shall return the first of the following that applies:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1391

46674

46675

46676

46677

46678

46679

46680

46681

46682

46683

46684

46685

46686

46687

46688

46689

46690

46691

46692

46693

46694

46695

46696

46697

46698

46699

46700

46701

46702

46703

46704

46705

46706

46707

46708

46709

46710

46711

46712

46713

46714

46715

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mbrtoc16() System Interfaces

0 If the next n or fewer bytes complete the character that corresponds to the null
wide character (which is the value stored).

between 1 and n inclusive
If the next n or fewer bytes complete a valid character (which is the value
stored); the value returned shall be the number of bytes that complete the
character.

(size_t)−3 If the next character resulting from a previous call has been stored, in which
case no bytes from the input shall be consumed by the call.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed (no value is stored). When n has at least
the value of the {MB_CUR_MAX} macro, this case can only occur if s points at
a sequence of redundant shift sequences (for implementations with state-
dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character (no value is stored). In this case,
[EILSEQ] shall be stored in errno and the conversion state is undefined.

ERRORS
These functions shall fail if:

CX [EILSEQ] An invalid character sequence is detected. In the POSIX locale an [EILSEQ]
error cannot occur since all byte values are valid characters.

These functions may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
c16rtomb()

XBD <uchar.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

1392 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46716

46717

46718

46719

46720

46721

46722

46723

46724

46725

46726

46727

46728

46729

46730

46731

46732

46733

46734

46735

46736

46737

46738

46739

46740

46741

46742

46743

46744

46745

46746

46747

46748

46749

46750

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mbrtowc()

NAME
mbrtowc — convert a character to a wide-character code (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrtowc(wchar_t *restrict pwc, const char *restrict s,
size_t n, mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If s is a null pointer, the mbrtowc() function shall be equivalent to the call:

mbrtowc(NULL, "", 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc() function shall inspect at most n bytes beginning at the
byte pointed to by s to determine the number of bytes needed to complete the next character
(including any shift sequences). If the function determines that the next character is completed,
it shall determine the value of the corresponding wide character and then, if pwc is not a null
pointer, shall store that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the resulting state described shall be the initial conversion
state.

If ps is a null pointer, the mbrtowc() function shall use its own internal mbstate_t object, which
shall be initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in this
volume of POSIX.1-2024 calls mbrtowc().

The behavior of this function is affected by the LC_CTYPE category of the current locale.

If called with a null ps argument, the mbrtowc() function need not be thread-safe; however, such
calls shall avoid data races with calls to mbrtowc() with a non-null argument and with calls to all
other functions.

The mbrtowc() function shall not change the setting of errno if successful.

RETURN VALUE
The mbrtowc() function shall return the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null
wide character (which is the value stored).

between 1 and n inclusive
If the next n or fewer bytes complete a valid character (which is the value
stored); the value returned shall be the number of bytes that complete the
character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed (no value is stored). When n has at least
the value of the {MB_CUR_MAX} macro, this case can only occur if s points at
a sequence of redundant shift sequences (for implementations with state-
dependent encodings).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1393

46751

46752

46753

46754

46755

46756

46757

46758

46759

46760

46761

46762

46763

46764

46765

46766

46767

46768

46769

46770

46771

46772

46773

46774

46775

46776

46777

46778

46779

46780

46781

46782

46783

46784

46785

46786

46787

46788

46789

46790

46791

46792

46793

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mbrtowc() System Interfaces

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character (no value is stored). In this case,
[EILSEQ] shall be stored in errno and the conversion state is undefined.

ERRORS
The mbrtowc() function shall fail if:

CX [EILSEQ] An invalid character sequence is detected. In the POSIX locale an [EILSEQ]
error cannot occur since all byte values are valid characters.

The mbrtowc() function may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbsrtowcs()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbrtowc() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0369 [109,105] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0204 [663,674] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

1394 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46794

46795

46796

46797

46798

46799

46800

46801

46802

46803

46804

46805

46806

46807

46808

46809

46810

46811

46812

46813

46814

46815

46816

46817

46818

46819

46820

46821

46822

46823

46824

46825

46826

46827

46828

46829

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mbsinit()

NAME
mbsinit — determine conversion object status

SYNOPSIS
#include <wchar.h>

int mbsinit(const mbstate_t *ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If ps is not a null pointer, the mbsinit() function shall determine whether the object pointed to by
ps describes an initial conversion state.

RETURN VALUE
The mbsinit() function shall return non-zero if ps is a null pointer, or if the pointed-to object
describes an initial conversion state; otherwise, it shall return zero.

If an mbstate_t object is altered by any of the functions described as ``restartable’’, and is then
used with a different character sequence, or in the other conversion direction, or with a different
LC_CTYPE category setting than on earlier function calls, the behavior is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The mbstate_t object is used to describe the current conversion state from a particular character
sequence to a wide-character sequence (or vice versa) under the rules of a particular setting of the
LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of
a new character sequence in the initial shift state. A zero valued mbstate_t object is at least one
way to describe an initial conversion state. A zero valued mbstate_t object can be used to initiate
conversion involving any character sequence, in any LC_CTYPE category setting.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbrlen(), mbrtowc(), mbsrtowcs(), wcrtomb(), wcsrtombs()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1395

46830

46831

46832

46833

46834

46835

46836

46837

46838

46839

46840

46841

46842

46843

46844

46845

46846

46847

46848

46849

46850

46851

46852

46853

46854

46855

46856

46857

46858

46859

46860

46861

46862

46863

46864

46865

46866

46867

46868

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mbsrtowcs() System Interfaces

NAME
mbsnrtowcs, mbsrtowcs — convert a character string to a wide-character string (restartable)

SYNOPSIS
#include <wchar.h>

CX size_t mbsnrtowcs(wchar_t *restrict dst, const char **restrict src,
size_t nmc, size_t len, mbstate_t *restrict ps);

size_t mbsrtowcs(wchar_t *restrict dst, const char **restrict src,
size_t len, mbstate_t *restrict ps);

DESCRIPTION
CX For mbsrtowcs(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The mbsrtowcs() function shall convert a sequence of characters, beginning in the conversion
state described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide characters. If dst is not a null pointer, the converted characters
shall be stored into the array pointed to by dst. Conversion continues up to and including a
terminating null character, which shall also be stored. Conversion shall stop early in either of the
following cases:

• A sequence of bytes is encountered that does not form a valid character.

• len codes have been stored into the array pointed to by dst (and dst is not a null pointer).

Each conversion shall take place as if by a call to the mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null
pointer (if conversion stopped due to reaching a terminating null character) or the address just
past the last character converted (if any). If conversion stopped due to reaching a terminating
null character, and if dst is not a null pointer, the resulting state described shall be the initial
conversion state.

If ps is a null pointer, the mbsrtowcs() function shall use its own internal mbstate_t object, which
is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

CX The mbsnrtowcs() function shall be equivalent to the mbsrtowcs() function, except that the
conversion of characters indirectly pointed to by src is limited to at most nmc bytes (the size of
the input buffer), and under conditions where mbsrtowcs() would assign the address just past
the last character converted (if any) to the pointer object pointed to by src, mbsnrtowcs() shall
instead assign the address just past the last byte processed (if any) to that pointer object. If the
input buffer ends with an incomplete character, conversion shall stop at the end of the input
buffer; a subsequent call to mbsnrtowcs() with an input buffer that starts with the remainder of
the incomplete character shall correctly complete the conversion of that character.

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
these functions.

CX If called with a null ps argument, the mbsnrtowcs() function need not be thread-safe; however,
such calls shall avoid data races with calls to mbsnrtowcs() with a non-null argument and with
calls to all other functions.

If called with a null ps argument, the mbsrtowcs() function need not be thread-safe; however,

1396 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46869

46870

46871

46872

46873

46874

46875

46876

46877

46878

46879

46880

46881

46882

46883

46884

46885

46886

46887

46888

46889

46890

46891

46892

46893

46894

46895

46896

46897

46898

46899

46900

46901

46902

46903

46904

46905

46906

46907

46908

46909

46910

46911

46912

46913

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mbsrtowcs()

such calls shall avoid data races with calls to mbsrtowcs() with a non-null argument and with
calls to all other functions.

The mbsrtowcs() function shall not change the setting of errno if successful.

RETURN VALUE
If the input conversion encounters a sequence of bytes that do not form a valid character, an
encoding error occurs. In this case, these functions shall store the value of the macro [EILSEQ] in
errno and shall return (size_t)−1; the conversion state is undefined. Otherwise, these functions
shall return the number of characters successfully converted, not including the terminating null
(if any).

ERRORS
These functions shall fail if:

CX [EILSEQ] An invalid character sequence is detected. In the POSIX locale an [EILSEQ]
error cannot occur since all byte values are valid characters.

These functions may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), mbrtowc(), mbsinit()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbsrtowcs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

The [EINVAL] error condition is marked CX.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

The mbsnrtowcs() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0370 [109,105] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0205 [601], XSH/TC2-2008/0206 [663],
and XSH/TC2-2008/0207 [601] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1397

46914

46915

46916

46917

46918

46919

46920

46921

46922

46923

46924

46925

46926

46927

46928

46929

46930

46931

46932

46933

46934

46935

46936

46937

46938

46939

46940

46941

46942

46943

46944

46945

46946

46947

46948

46949

46950

46951

46952

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mbsrtowcs() System Interfaces

Issue 8
Austin Group Defect 616 is applied, requiring that when the mbsnrtowcs() input buffer ends
with an incomplete character, conversion stops at the end of the input buffer (not at the end of
the previous character, if any).

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

1398 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

46953

46954

46955

46956

46957

46958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mbstowcs()

NAME
mbstowcs — convert a character string to a wide-character string

SYNOPSIS
#include <stdlib.h>

size_t mbstowcs(wchar_t *restrict pwcs, const char *restrict s,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The mbstowcs() function shall convert a sequence of characters that begins in the initial shift
state from the array pointed to by s into a sequence of corresponding wide-character codes and
shall store not more than n wide-character codes into the array pointed to by pwcs. No
characters that follow a null byte (which is converted into a wide-character code with value 0)
shall be examined or converted. Each character shall be converted as if by a call to mbtowc(),
except that the shift state of mbtowc() is not affected.

No more than n elements shall be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap, the behavior is undefined.

XSI The behavior of this function shall be affected by the LC_CTYPE category of the current locale.
If pwcs is a null pointer, mbstowcs() shall return the length required to convert the entire array
regardless of the value of n, but no values are stored.

RETURN VALUE
CX If an invalid character is encountered, mbstowcs() shall return (size_t)−1 and shall set errno to

indicate the error.

XSI Otherwise, mbstowcs() shall return the number of the array elements modified (or required if
pwcs is null), not including a terminating 0 code, if any. The array shall not be zero-terminated if
the value returned is n.

ERRORS
The mbstowcs() function shall fail if:

CX [EILSEQ] An invalid character sequence is detected. In the POSIX locale an [EILSEQ]
error cannot occur since all byte values are valid characters.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), wctomb(), wcstombs()

XBD <stdlib.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1399

46959

46960

46961

46962

46963

46964

46965

46966

46967

46968

46969

46970

46971

46972

46973

46974

46975

46976

46977

46978

46979

46980

46981

46982

46983

46984

46985

46986

46987

46988

46989

46990

46991

46992

46993

46994

46995

46996

46997

46998

46999

47000

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mbstowcs() System Interfaces

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

Issue 6
The mbstowcs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0371 [195] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0208 [663,674] is applied.

1400 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47001

47002

47003

47004

47005

47006

47007

47008

47009

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mbtowc()

NAME
mbtowc — convert a character to a wide-character code

SYNOPSIS
#include <stdlib.h>

int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n);

DESCRIPTION
CX Except for requirements relating to data races, the functionality described on this reference page

is aligned with the ISO C standard. Any other conflict between the requirements described here
and the ISO C standard is unintentional. This volume of POSIX.1-2024 defers to the ISO C
standard for all mbtowc() functionality except in relation to data races.

If s is not a null pointer, mbtowc() shall determine the number of bytes that constitute the
character pointed to by s. It shall then determine the wide-character code for the value of type
wchar_t that corresponds to that character. (The value of the wide-character code corresponding
to the null byte is 0.) If the character is valid and pwc is not a null pointer, mbtowc() shall store
the wide-character code in the object pointed to by pwc.

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function shall be placed into its initial state at program startup
and can be returned to that state by a call for which its character pointer argument, s, is a null
pointer. Subsequent calls with s as other than a null pointer shall cause the internal state of the
function to be altered as necessary. A call with s as a null pointer shall cause this function to
return a non-zero value if encodings have state dependency, and 0 otherwise. If the
implementation employs special bytes to change the shift state, these bytes shall not produce
separate wide-character codes, but shall be grouped with an adjacent character. Changing the
LC_CTYPE category causes the shift state of this function to be unspecified. At most n bytes of
the array pointed to by s shall be examined.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
mbtowc().

CX The mbtowc() function need not be thread-safe; however, it shall avoid data races with all other
functions.

RETURN VALUE
If s is a null pointer, mbtowc() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, mbtowc()
shall either return 0 (if s points to the null byte), or return the number of bytes that constitute the

CX converted character (if the next n or fewer bytes form a valid character), or return −1 and shall
set errno to indicate the error (if they do not form a valid character).

In no case shall the value returned be greater than n or the value of the {MB_CUR_MAX} macro.

ERRORS
The mbtowc() function shall fail if:

CX [EILSEQ] An invalid character sequence is detected. In the POSIX locale an [EILSEQ]
error cannot occur since all byte values are valid characters.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1401

47010

47011

47012

47013

47014

47015

47016

47017

47018

47019

47020

47021

47022

47023

47024

47025

47026

47027

47028

47029

47030

47031

47032

47033

47034

47035

47036

47037

47038

47039

47040

47041

47042

47043

47044

47045

47046

47047

47048

47049

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mbtowc() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
When the ISO C standard introduced threads in C11, it required mbtowc() to avoid data races
(with itself as well as with other functions), whereas POSIX.1-2008 did not require it to be
thread-safe, and in many implementations it did not avoid data races with itself and still does
not. The ISO C committee intend to change the requirements in a future version of the ISO C
standard, but since POSIX.1 currently refers to C17 it is necessary for it not to defer to the ISO C
standard regarding data races in order to continue to allow this function not to avoid data races
with itself.

FUTURE DIRECTIONS
It is expected that a change in a future version of the ISO C standard will allow a future version
of this standard to remove the data race exception from the statement that it defers to the ISO C
standard.

SEE ALSO
mblen(), mbstowcs(), wctomb(), wcstombs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

Issue 6
The mbtowc() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.
Issue 7

Austin Group Interpretation 1003.1-2001 #170 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0372 [109] and XSH/TC1-2008/0373
[195] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0209 [663,674] is applied.

Issue 8
Austin Group Defects 708 and 1302 are applied, aligning this function with the
ISO/IEC 9899: 2018 standard, except in relation to data races.

1402 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47050

47051

47052

47053

47054

47055

47056

47057

47058

47059

47060

47061

47062

47063

47064

47065

47066

47067

47068

47069

47070

47071

47072

47073

47074

47075

47076

47077

47078

47079

47080

47081

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces memccpy()

NAME
memccpy — copy bytes in memory

SYNOPSIS
XSI #include <string.h>

void *memccpy(void *restrict s1, const void *restrict s2,
int c, size_t n);

DESCRIPTION
The memccpy() function shall copy bytes from memory area s2 into s1, stopping after the first
occurrence of byte c (converted to an unsigned char) is copied, or after n bytes are copied,
whichever comes first. If copying takes place between objects that overlap, the behavior is
undefined.

The memccpy() function shall not change the setting of errno on valid input.

RETURN VALUE
The memccpy() function shall return a pointer to the byte after the copy of c in s1, or a null
pointer if c was not found in the first n bytes of s2.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The memccpy() function does not check for the overflow of the receiving memory area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The restrict keyword is added to the memccpy() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that memccpy() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1403

47082

47083

47084

47085

47086

47087

47088

47089

47090

47091

47092

47093

47094

47095

47096

47097

47098

47099

47100

47101

47102

47103

47104

47105

47106

47107

47108

47109

47110

47111

47112

47113

47114

47115

47116

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

memchr() System Interfaces

NAME
memchr — find byte in memory

SYNOPSIS
#include <string.h>

void *memchr(const void *s, int c, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The memchr() function shall locate the first occurrence of c (converted to an unsigned char) in
the initial n bytes (each interpreted as unsigned char) pointed to by s.

The implementation shall behave as if it reads the bytes sequentially and stops as soon as a
matching byte is found.

CX The memchr() function shall not change the setting of errno on valid input.

RETURN VALUE
The memchr() function shall return a pointer to the located byte, or a null pointer if the byte is
not found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0374 [110] is applied.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that memchr() does not change the
setting of errno on valid input.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

1404 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47117

47118

47119

47120

47121

47122

47123

47124

47125

47126

47127

47128

47129

47130

47131

47132

47133

47134

47135

47136

47137

47138

47139

47140

47141

47142

47143

47144

47145

47146

47147

47148

47149

47150

47151

47152

47153

47154

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces memcmp()

NAME
memcmp — compare bytes in memory

SYNOPSIS
#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The memcmp() function shall compare the first n bytes (each interpreted as unsigned char) of the
object pointed to by s1 to the first n bytes of the object pointed to by s2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the objects
being compared.

CX The memcmp() function shall not change the setting of errno on valid input.

RETURN VALUE
The memcmp() function shall return an integer greater than, equal to, or less than 0, if the object
pointed to by s1 is greater than, equal to, or less than the object pointed to by s2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that memcmp() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1405

47155

47156

47157

47158

47159

47160

47161

47162

47163

47164

47165

47166

47167

47168

47169

47170

47171

47172

47173

47174

47175

47176

47177

47178

47179

47180

47181

47182

47183

47184

47185

47186

47187

47188

47189

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

memcpy() System Interfaces

NAME
memcpy — copy bytes in memory

SYNOPSIS
#include <string.h>

void *memcpy(void *restrict s1, const void *restrict s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object pointed
to by s1. If copying takes place between objects that overlap, the behavior is undefined.

CX The memcpy() function shall not change the setting of errno on valid input.

RETURN VALUE
The memcpy() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The memcpy() function does not check for the overflow of the receiving memory area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The memcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that memcpy() does not change the
setting of errno on valid input.

1406 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47190

47191

47192

47193

47194

47195

47196

47197

47198

47199

47200

47201

47202

47203

47204

47205

47206

47207

47208

47209

47210

47211

47212

47213

47214

47215

47216

47217

47218

47219

47220

47221

47222

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces memmem()

NAME
memmem — find a byte subsequence in a byte sequence

SYNOPSIS
CX #include <string.h>

void *memmem(const void *haystack, size_t haystacklen,
const void *needle, size_t needlelen);

DESCRIPTION
The memmem() function shall locate the first occurrence of byte sequence needle of length
needlelen in byte sequence haystack of length haystacklen.

RETURN VALUE
Upon successful completion, memmem() shall return a pointer to the the first byte of the located
byte sequence in haystack, or a null pointer if the byte sequence is not found.

If needlelen is zero, the function shall return haystack.

If haystacklen is less than needlelen, the function shall return a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
This function is similar to strstr(), except that NUL bytes may be included in either needle or
haystack.

FUTURE DIRECTIONS
None.

SEE ALSO
memchr(), strstr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1407

47223

47224

47225

47226

47227

47228

47229

47230

47231

47232

47233

47234

47235

47236

47237

47238

47239

47240

47241

47242

47243

47244

47245

47246

47247

47248

47249

47250

47251

47252

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

memmove() System Interfaces

NAME
memmove — copy bytes in memory with overlapping areas

SYNOPSIS
#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The memmove() function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. Copying takes place as if the n bytes from the object pointed to by s2 are first
copied into a temporary array of n bytes that does not overlap the objects pointed to by s1 and
s2, and then the n bytes from the temporary array are copied into the object pointed to by s1.

CX The memmove() function shall not change the setting of errno on valid input.

RETURN VALUE
The memmove() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that memmove() does not change the
setting of errno on valid input.

1408 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47253

47254

47255

47256

47257

47258

47259

47260

47261

47262

47263

47264

47265

47266

47267

47268

47269

47270

47271

47272

47273

47274

47275

47276

47277

47278

47279

47280

47281

47282

47283

47284

47285

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces memset()

NAME
memset — set bytes in memory

SYNOPSIS
#include <string.h>

void *memset(void *s, int c, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The memset() function shall copy c (converted to an unsigned char) into each of the first n bytes
of the object pointed to by s.

CX The memset() function shall not change the setting of errno on valid input.

RETURN VALUE
The memset() function shall return s; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that memset() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1409

47286

47287

47288

47289

47290

47291

47292

47293

47294

47295

47296

47297

47298

47299

47300

47301

47302

47303

47304

47305

47306

47307

47308

47309

47310

47311

47312

47313

47314

47315

47316

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkdir() System Interfaces

NAME
mkdir, mkdirat — make a directory

SYNOPSIS
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

OH #include <fcntl.h>

int mkdirat(int fd, const char *path, mode_t mode);

DESCRIPTION
XSI The mkdir() function shall create a new directory with name path. The file permission bits and

S_ISVTX bit of the new directory shall be initialized from mode. The file permission bits of the
mode argument shall be modified by the file creation mask of the process.

XSI When bits in mode other than the file permission bits and S_ISVTX are set, the meaning of these
additional bits is implementation-defined.

The directory’s user ID shall be set to the process’ effective user ID. The directory’s group ID
shall be set to the group ID of the parent directory or to the effective group ID of the process.
Implementations shall provide a way to initialize the directory’s group ID to the group ID of the
parent directory. Implementations may, but need not, provide an implementation-defined way
to initialize the directory’s group ID to the effective group ID of the calling process.

The newly created directory shall be an empty directory.

If path names a symbolic link, mkdir() shall fail and set errno to [EEXIST].

Upon successful completion, mkdir() shall mark for update the last data access, last data
modification, and last file status change timestamps of the directory. Also, the last data
modification and last file status change timestamps of the directory that contains the new entry
shall be marked for update.

The mkdirat() function shall be equivalent to the mkdir() function except in the case where path
specifies a relative path. In this case the newly created directory is created relative to the
directory associated with the file descriptor fd instead of the current working directory. If the
access mode of the open file description associated with the file descriptor is not O_SEARCH,
the function shall check whether directory searches are permitted using the current permissions
of the directory underlying the file descriptor. If the access mode is O_SEARCH, the function
shall not perform the check.

If mkdirat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to mkdir().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no directory shall be created.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be created.

[EEXIST] The named file exists.

[EILSEQ] The last pathname component of path is not a portable filename, and cannot be
created in the target directory.

1410 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47317

47318

47319

47320

47321

47322

47323

47324

47325

47326

47327

47328

47329

47330

47331

47332

47333

47334

47335

47336

47337

47338

47339

47340

47341

47342

47343

47344

47345

47346

47347

47348

47349

47350

47351

47352

47353

47354

47355

47356

47357

47358

47359

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mkdir()

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix of path does not name an existing file or path is
an empty string.

[ENOSPC] The file system does not contain enough space to hold the contents of the new
directory or to extend the parent directory of the new directory.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory.

[EROFS] The parent directory resides on a read-only file system.

In addition, the mkdirat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Creating a Directory

The following example shows how to create a directory named /home/cnd/mod1, with
read/write/search permissions for owner and group, and with read/search permissions for
others.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkdir("/home/cnd/mod1", S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

APPLICATION USAGE
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1411

47360

47361

47362

47363

47364

47365

47366

47367

47368

47369

47370

47371

47372

47373

47374

47375

47376

47377

47378

47379

47380

47381

47382

47383

47384

47385

47386

47387

47388

47389

47390

47391

47392

47393

47394

47395

47396

47397

47398

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkdir() System Interfaces

RATIONALE
The mkdir() function originated in 4.2 BSD and was added to System V in Release 3.0.

4.3 BSD detects [ENAMETOOLONG].

The POSIX.1-1990 standard required that the group ID of a newly created directory be set to the
group ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2
required that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the directory is created, or determine under what conditions the implementation
will set the desired group ID.

The purpose of the mkdirat() function is to create a directory in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to the call to mkdir(), resulting in unspecified behavior. By opening a file
descriptor for the target directory and using the mkdirat() function it can be guaranteed that the
newly created directory is located relative to the desired directory.

Implementations are encouraged to have mkdir() and mkdirat() report an [EILSEQ] error if the
last component of path contains any bytes that have the encoded value of a <newline> character.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), mkdtemp(), mknod(), umask()

XBD <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The mkdirat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0375 [461], XSH/TC1-2008/0376 [324],

1412 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47399

47400

47401

47402

47403

47404

47405

47406

47407

47408

47409

47410

47411

47412

47413

47414

47415

47416

47417

47418

47419

47420

47421

47422

47423

47424

47425

47426

47427

47428

47429

47430

47431

47432

47433

47434

47435

47436

47437

47438

47439

47440

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mkdir()

XSH/TC1-2008/0377 [277], XSH/TC1-2008/0378 [278], and XSH/TC1-2008/0379 [278] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0210 [873], XSH/TC2-2008/0211 [591],
XSH/TC2-2008/0212 [817], XSH/TC2-2008/0213 [817], and XSH/TC2-2008/0214 [591] are
applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defects 293 and 1734 are applied, adding the [EILSEQ] error.

Austin Group Defect 1522 is applied, adding requirements relating to the S_ISVTX bit.

Austin Group Defect 1729 is applied, changing the description of the [ENOENT] error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1413

47441

47442

47443

47444

47445

47446

47447

47448

47449

47450

47451

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkdtemp() System Interfaces

NAME
mkdtemp, mkostemp, mkstemp — create a unique directory or file

SYNOPSIS
CX #include <stdlib.h>

char *mkdtemp(char *template);
int mkostemp(char *template, int flag);
int mkstemp(char *template);

DESCRIPTION
The mkdtemp() function shall create a directory with a unique name derived from template. The
application shall ensure that the string provided in template is a pathname ending with at least
six trailing 'X' characters. The mkdtemp() function shall modify the contents of template by
replacing six or more 'X' characters at the end of the pathname with the same number of
characters from the portable filename character set. The characters shall be chosen such that the
resulting pathname does not duplicate the name of an existing file at the time of the call to
mkdtemp(). The mkdtemp() function shall use the resulting pathname to create the new directory
as if by a call to:

mkdir(pathname, S_IRWXU)

The mkstemp() function shall create a regular file with a unique name derived from template and
return a file descriptor for the file open for reading and writing. The application shall ensure that
the string provided in template is a pathname ending with at least six trailing 'X' characters. The
mkstemp() function shall modify the contents of template by replacing six or more 'X' characters
at the end of the pathname with the same number of characters from the portable filename
character set. The characters shall be chosen such that the resulting pathname does not duplicate
the name of an existing file at the time of the call to mkstemp(). The mkstemp() function shall use
the resulting pathname to create the file, and obtain a file descriptor for it, as if by a call to:

open(pathname, O_RDWR|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)

By behaving as if the O_EXCL flag for open() is set, the function prevents any possible race
condition between testing whether the file exists and opening it for use.

The mkostemp() function shall be equivalent to the mkstemp() function, except that the flag
argument can contain additional flags to be used as if by open(). Behavior is unspecified if the
flag argument contains more than the following flags:

O_APPEND Set append mode.

O_CLOEXEC Set the FD_CLOEXEC file descriptor flag.

O_CLOFORK Set the FD_CLOFORK file descriptor flag.

SIO O_DSYNC Write according to the synchronized I/O data integrity completion.

SIO O_RSYNC Synchronized read I/O operations.

XSI|SIO O_SYNC Write according to synchronized I/O file integrity completion.

RETURN VALUE
Upon successful completion, the mkdtemp() function shall return the value of template.
Otherwise, it shall return a null pointer and shall set errno to indicate the error.

Upon successful completion, the mkstemp() function shall return an open file descriptor.
Otherwise, it shall return −1 and shall set errno to indicate the error.

1414 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47452

47453

47454

47455

47456

47457

47458

47459

47460

47461

47462

47463

47464

47465

47466

47467

47468

47469

47470

47471

47472

47473

47474

47475

47476

47477

47478

47479

47480

47481

47482

47483

47484

47485

47486

47487

47488

47489

47490

47491

47492

47493

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mkdtemp()

ERRORS
These functions shall fail if:

[EINVAL] The string pointed to by template does not end in "XXXXXX".

The mkostemp() function may fail if:

[EINVAL] The value of the flag argument is invalid.

Additional error conditions for the mkdtemp() function are defined in mkdir(). Additional error
conditions for the mkstemp() and mkostemp() functions are defined in open().

EXAMPLES

Generating a Pathname

The following example creates a file with a 10-character name beginning with the characters
"file" and opens the file for reading and writing. The value returned as the value of fd is a file
descriptor that identifies the file.

#include <stdlib.h>
...
char template[] = "/tmp/fileXXXXXX";
int fd;

fd = mkstemp(template);

APPLICATION USAGE
It is possible to run out of letters.

Portable applications should pass exactly six trailing 'X's in the template and no more;
implementations may treat any additional trailing 'X's as either a fixed or replaceable part of
the template. To be sure of only passing six, a fixed string of at least one non-'X' character
should precede the six 'X's.

Since 'X' is in the portable filename character set, some of the replacement characters can be
'X's, leaving part (or even all) of the template effectively unchanged.

RATIONALE
The O_CLOEXEC and O_CLOFORK flags of mkostemp() are necessary to avoid a data race in
multi-threaded applications. Without O_CLOFORK, a file descriptor is leaked into a child
process created by one thread in the window between another thread creating a temporary file
descriptor with mkstemp() and then using fcntl() to set the FD_CLOFORK flag. Without
O_CLOEXEC, a temporary file descriptor intentionally inherited by child processes is similarly
leaked into an executed program if FD_CLOEXEC is not set atomically.

Implementations are encouraged to have mkdtemp(), mkostemp(), and mkstemp() report an
[EILSEQ] error if the last component of the pathname in template contains any bytes that have
the encoded value of a <newline> character.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), mkdir(), open(), tmpfile(), tmpnam()

XBD <stdlib.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1415

47494

47495

47496

47497

47498

47499

47500

47501

47502

47503

47504

47505

47506

47507

47508

47509

47510

47511

47512

47513

47514

47515

47516

47517

47518

47519

47520

47521

47522

47523

47524

47525

47526

47527

47528

47529

47530

47531

47532

47533

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkdtemp() System Interfaces

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-168 is applied, clarifying file permissions upon creation.

The mkstemp() function is moved from the XSI option to the Base.

The mkdtemp() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0380 [291], XSH/TC1-2008/0381 [324],
and XSH/TC1-2008/0382 [291] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0215 [567,669] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defects 411, 1318, and 1350 are applied, adding mkostemp().

Austin Group Defect 652 is applied, adding the [EINVAL] error for mkstemp().

Austin Group Defect 1734 is applied, replacing the error conditions specified only for mkdtemp()
with a reference to mkdir().

1416 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47534

47535

47536

47537

47538

47539

47540

47541

47542

47543

47544

47545

47546

47547

47548

47549

47550

47551

47552

47553

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mkfifo()

NAME
mkfifo, mkfifoat — make a FIFO special file

SYNOPSIS
#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);

OH #include <fcntl.h>

int mkfifoat(int fd, const char *path, mode_t mode);

DESCRIPTION
The mkfifo() function shall create a new FIFO special file named by the pathname pointed to by
path. The file permission bits of the new FIFO shall be initialized from mode. The file permission
bits of the mode argument shall be modified by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the effect is implementation-
defined.

If path names a symbolic link, mkfifo() shall fail and set errno to [EEXIST].

The FIFO’s user ID shall be set to the process’ effective user ID. The FIFO’s group ID shall be set
to the group ID of the parent directory or to the effective group ID of the process.
Implementations shall provide a way to initialize the FIFO’s group ID to the group ID of the
parent directory. Implementations may, but need not, provide an implementation-defined way
to initialize the FIFO’s group ID to the effective group ID of the calling process.

Upon successful completion, mkfifo() shall mark for update the last data access, last data
modification, and last file status change timestamps of the file. Also, the last data modification
and last file status change timestamps of the directory that contains the new entry shall be
marked for update.

The mkfifoat() function shall be equivalent to the mkfifo() function except in the case where path
specifies a relative path. In this case the newly created FIFO is created relative to the directory
associated with the file descriptor fd instead of the current working directory. If the access mode
of the open file description associated with the file descriptor is not O_SEARCH, the function
shall check whether directory searches are permitted using the current permissions of the
directory underlying the file descriptor. If the access mode is O_SEARCH, the function shall not
perform the check.

If mkfifoat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to mkfifo().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no FIFO shall be created.

ERRORS
These functions shall fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the parent directory of the FIFO to be created.

[EEXIST] The named file already exists.

[EILSEQ] The last pathname component of path is not a portable filename, and cannot be
created in the target directory.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1417

47554

47555

47556

47557

47558

47559

47560

47561

47562

47563

47564

47565

47566

47567

47568

47569

47570

47571

47572

47573

47574

47575

47576

47577

47578

47579

47580

47581

47582

47583

47584

47585

47586

47587

47588

47589

47590

47591

47592

47593

47594

47595

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkfifo() System Interfaces

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix of path does not name an existing file or path is
an empty string.

[ENOENT] or [ENOTDIR]
The path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters. If path without the trailing <slash>
characters would name an existing file, an [ENOENT] error shall not occur.

[ENOSPC] The directory that would contain the new file cannot be extended or the file
system is out of file-allocation resources.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory.

[EROFS] The named file resides on a read-only file system.

The mkfifoat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Creating a FIFO File

The following example shows how to create a FIFO file named /home/cnd/mod_done, with
read/write permissions for owner, and with read permissions for group and others.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkfifo("/home/cnd/mod_done", S_IWUSR | S_IRUSR |

S_IRGRP | S_IROTH);

1418 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47596

47597

47598

47599

47600

47601

47602

47603

47604

47605

47606

47607

47608

47609

47610

47611

47612

47613

47614

47615

47616

47617

47618

47619

47620

47621

47622

47623

47624

47625

47626

47627

47628

47629

47630

47631

47632

47633

47634

47635

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mkfifo()

APPLICATION USAGE
None.

RATIONALE
The syntax of this function is intended to maintain compatibility with historical
implementations of mknod(). The latter function was included in the 1984 /usr/group standard
but only for use in creating FIFO special files. The mknod() function was originally excluded
from the POSIX.1-1988 standard as implementation-defined and replaced by mkdir() and
mkfifo(). The mknod() function is now included for alignment with the Single UNIX
Specification.

The POSIX.1-1990 standard required that the group ID of a newly created FIFO be set to the
group ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2
required that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the FIFO is created, or determine under what conditions the implementation will
set the desired group ID.

The purpose of the mkfifoat() function is to create a FIFO special file in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to mkfifo(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the mkfifoat() function it can be guaranteed that
the newly created FIFO is located relative to the desired directory.

Implementations are encouraged to have mkfifo() and mkfifoat() report an [EILSEQ] error if the
last component of path contains any bytes that have the encoded value of a <newline> character.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), mknod(), umask()

XBD <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1419

47636

47637

47638

47639

47640

47641

47642

47643

47644

47645

47646

47647

47648

47649

47650

47651

47652

47653

47654

47655

47656

47657

47658

47659

47660

47661

47662

47663

47664

47665

47666

47667

47668

47669

47670

47671

47672

47673

47674

47675

47676

47677

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkfifo() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The mkfifoat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0383 [461], XSH/TC1-2008/0384
[146,435], XSH/TC1-2008/0385 [324], XSH/TC1-2008/0386 [278], and XSH/TC1-2008/0387
[278] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0216 [873], XSH/TC2-2008/0217 [591],
XSH/TC2-2008/0218 [817], XSH/TC2-2008/0219 [822], XSH/TC2-2008/0220 [817], and
XSH/TC2-2008/0221 [591] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 293 is applied, adding the [EILSEQ] error.

1420 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47678

47679

47680

47681

47682

47683

47684

47685

47686

47687

47688

47689

47690

47691

47692

47693

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mknod()

NAME
mknod, mknodat — make directory, special file, or regular file

SYNOPSIS
XSI #include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

OH XSI #include <fcntl.h>

XSI int mknodat(int fd, const char *path, mode_t mode, dev_t dev);

DESCRIPTION
The mknod() function shall create a new file named by the pathname to which the argument path
points.

The file type for path is OR’ed into the mode argument, and the application shall select one of the
following symbolic constants:

Name Description
S_IFIFO FIFO-special
S_IFCHR Character-special (non-portable)
S_IFDIR Directory (non-portable)
S_IFBLK Block-special (non-portable)
S_IFREG Regular (non-portable)

The only portable use of mknod() is to create a FIFO-special file. If mode is not S_IFIFO or dev is
not 0, the behavior of mknod() is unspecified.

The permissions for the new file are OR’ed into the mode argument, and may be selected from
any combination of the following symbolic constants:

Name Description
S_ISUID Set user ID on execution.
S_ISGID Set group ID on execution.
S_IRWXU Read, write, or execute (search) by owner.
S_IRUSR Read by owner.
S_IWUSR Write by owner.
S_IXUSR Execute (search) by owner.
S_IRWXG Read, write, or execute (search) by group.
S_IRGRP Read by group.
S_IWGRP Write by group.
S_IXGRP Execute (search) by group.
S_IRWXO Read, write, or execute (search) by others.
S_IROTH Read by others.
S_IWOTH Write by others.
S_IXOTH Execute (search) by others.
S_ISVTX On directories, restricted deletion flag.

The user ID of the file shall be initialized to the effective user ID of the process. The group ID of
the file shall be initialized to either the effective group ID of the process or the group ID of the
parent directory. Implementations shall provide a way to initialize the file’s group ID to the
group ID of the parent directory. Implementations may, but need not, provide an
implementation-defined way to initialize the file’s group ID to the effective group ID of the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1421

47694

47695

47696

47697

47698

47699

47700

47701

47702

47703

47704

47705

47706

47707

47708

47709

47710

47711

47712

47713

47714

47715

47716

47717

47718

47719

47720

47721

47722

47723

47724

47725

47726

47727

47728

47729

47730

47731

47732

47733

47734

47735

47736

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mknod() System Interfaces

calling process. The owner, group, and other permission bits of mode shall be modified by the file
mode creation mask of the process. The mknod() function shall clear each bit whose
corresponding bit in the file mode creation mask of the process is set.

If path names a symbolic link, mknod() shall fail and set errno to [EEXIST].

Upon successful completion, mknod() shall mark for update the last data access, last data
modification, and last file status change timestamps of the file. Also, the last data modification
and last file status change timestamps of the directory that contains the new entry shall be
marked for update.

Only a process with appropriate privileges may invoke mknod() for file types other than FIFO-
special.

The mknodat() function shall be equivalent to the mknod() function except in the case where path
specifies a relative path. In this case the newly created directory, special file, or regular file is
located relative to the directory associated with the file descriptor fd instead of the current
working directory. If the access mode of the open file description associated with the file
descriptor is not O_SEARCH, the function shall check whether directory searches are permitted
using the current permissions of the directory underlying the file descriptor. If the access mode
is O_SEARCH, the function shall not perform the check.

If mknodat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to mknod().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the new file shall not be created.

ERRORS
These functions shall fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the parent directory.

[EEXIST] The named file exists.

[EILSEQ] The last pathname component of path is not a portable filename, and cannot be
created in the target directory.

[EINVAL] An invalid argument exists.

[EIO] An I/O error occurred while accessing the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix of path does not name an existing file or path is
an empty string.

[ENOENT] or [ENOTDIR]
The path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters. If path without the trailing <slash>
characters would name an existing file, an [ENOENT] error shall not occur.

1422 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47737

47738

47739

47740

47741

47742

47743

47744

47745

47746

47747

47748

47749

47750

47751

47752

47753

47754

47755

47756

47757

47758

47759

47760

47761

47762

47763

47764

47765

47766

47767

47768

47769

47770

47771

47772

47773

47774

47775

47776

47777

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mknod()

[ENOSPC] The directory that would contain the new file cannot be extended or the file
system is out of file allocation resources.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory.

[EPERM] The invoking process does not have appropriate privileges and the file type is
not FIFO-special.

[EROFS] The directory in which the file is to be created is located on a read-only file
system.

The mknodat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Creating a FIFO Special File

The following example shows how to create a FIFO special file named /home/cnd/mod_done,
with read/write permissions for owner, and with read permissions for group and others.

#include <sys/types.h>
#include <sys/stat.h>

dev_t dev;
int status;
...
status = mknod("/home/cnd/mod_done", S_IFIFO | S_IWUSR |

S_IRUSR | S_IRGRP | S_IROTH, dev);

APPLICATION USAGE
The mkfifo() function is preferred over this function for making FIFO special files.

RATIONALE
The POSIX.1-1990 standard required that the group ID of a newly created file be set to the group
ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2 required
that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1423

47778

47779

47780

47781

47782

47783

47784

47785

47786

47787

47788

47789

47790

47791

47792

47793

47794

47795

47796

47797

47798

47799

47800

47801

47802

47803

47804

47805

47806

47807

47808

47809

47810

47811

47812

47813

47814

47815

47816

47817

47818

47819

47820

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mknod() System Interfaces

group ID after the file is created, or determine under what conditions the implementation will
set the desired group ID.

The purpose of the mknodat() function is to create directories, special files, or regular files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to mknod(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the mknodat() function it
can be guaranteed that the newly created directory, special file, or regular file is located relative
to the desired directory.

Implementations are encouraged to have mknod() and mknodat() report an [EILSEQ] error if the
last component of path contains any bytes that have the encoded value of a <newline> character.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), exec , fstatat(), mkdir(), mkfifo(), open(), umask()

XBD <fcntl.h>, <sys/stat.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The mknodat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0388 [324], XSH/TC1-2008/0389 [461],
XSH/TC1-2008/0390 [146,435], XSH/TC1-2008/0391 [278], and XSH/TC1-2008/0392 [278] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0222 [591], XSH/TC2-2008/0223 [817],
XSH/TC2-2008/0224 [822], XSH/TC2-2008/0225 [817], and XSH/TC2-2008/0226 [591] are
applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 293 is applied, adding the [EILSEQ] error.

1424 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47821

47822

47823

47824

47825

47826

47827

47828

47829

47830

47831

47832

47833

47834

47835

47836

47837

47838

47839

47840

47841

47842

47843

47844

47845

47846

47847

47848

47849

47850

47851

47852

47853

47854

47855

47856

47857

47858

47859

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mkostemp()

NAME
mkostemp — create a unique file

SYNOPSIS
CX #include <stdlib.h>

int mkostemp(char *template, int flag);

DESCRIPTION
Refer to mkdtemp().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1425

47860

47861

47862

47863

47864

47865

47866

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkstemp() System Interfaces

NAME
mkstemp — create a unique file

SYNOPSIS
CX #include <stdlib.h>

int mkstemp(char *template);

DESCRIPTION
Refer to mkdtemp().

1426 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47867

47868

47869

47870

47871

47872

47873

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mktime()

NAME
mktime — convert broken-down time into time since the Epoch

SYNOPSIS
#include <time.h>

time_t mktime(struct tm *timeptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The mktime() function shall convert the broken-down time, expressed as local time, in some
members of the structure pointed to by timeptr, into a time since the Epoch value with the same
encoding as that of the values returned by time(). The mktime() function shall make use of only
the tm_year, tm_mon, tm_mday, tm_hour, tm_min, tm_sec, and tm_isdst members of the structure
pointed to by timeptr; the values of these members shall not be restricted to the ranges described
in <time.h>.

CX Local timezone information shall be set as though mktime() called tzset().

The mktime() function shall calculate the time in seconds since the Epoch to be returned as if by
manipulating the members of the tm structure according to the following steps.

1. The tm_sec member may, but should not, be brought into the range 0 to 60, inclusive. For
each 60 seconds added to or subtracted from tm_sec, a decrement or increment,
respectively, of 1 minute shall be saved for later application.

2. The tm_min member shall be brought into the range 0 to 59, inclusive, and any saved
decrement or increment of minutes shall then be applied, repeating the range adjustment
afterwards if necessary. For each 60 minutes added to or subtracted from tm_min, a
decrement or increment, respectively, of 1 hour shall be saved for later application.

3. The tm_hour member shall be brought into the range 0 to 23, inclusive, and any saved
decrement or increment of hours shall then be applied, repeating the range adjustment
afterwards if necessary. For each 24 hours added to or subtracted from tm_hour, a
decrement or increment, respectively, of 1 day shall be saved for later application.

4. The tm_mon member shall be brought into the range 0 to 11, inclusive. For each 12 months
added to or subtracted from tm_mon, a decrement or increment, respectively, of 1 year
shall be saved for later use.

5. The tm_mday member shall be brought into the range 1 to 31, inclusive, and any saved
decrement or increment of days shall then be applied, repeating the range adjustment
afterwards if necessary. Adjustments downwards shall be applied by subtracting the
number of days (according to the Gregorian calendar) in month tm_mon+1 of the year
obtained by adding/subtracting any saved increment/decrement of years to the value
tm_year+1900, and then incrementing tm_mon by 1, repeated as necessary. Adjustments
upwards shall be applied by adding the number of days in the month before month
tm_mon+1 of the year obtained by adding/subtracting any saved increment/decrement of
years to the value tm_year+1900, and then decrementing tm_mon by 1, repeated as
necessary. During these adjustments, the tm_mon value shall be kept within the range 0 to
11, inclusive, by applying step 4 as necessary.

6. If the tm_mday member is greater than the number of days in month tm_mon+1 of the year
obtained by adding/subtracting any saved increment/decrement of years to the value
tm_year+1900, that number of days shall be subtracted from tm_mday, and tm_mon shall

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1427

47874

47875

47876

47877

47878

47879

47880

47881

47882

47883

47884

47885

47886

47887

47888

47889

47890

47891

47892

47893

47894

47895

47896

47897

47898

47899

47900

47901

47902

47903

47904

47905

47906

47907

47908

47909

47910

47911

47912

47913

47914

47915

47916

47917

47918

47919

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mktime() System Interfaces

be incremented by 1. If this results in tm_mon having the value 12, step 4 shall be applied.

7. The number of seconds since the Epoch in Coordinated Universal Time shall be
calculated from the range-corrected values of the relevant tm structure members (or the
original value where a member was not range corrected) as specified in the expression
given in the definition of seconds since the Epoch (see XBD Section 4.19, on page 107),
where the names other than tm_year and tm_yday in the structure and in the expression
correspond, the tm_year value used in the expression is the tm_year in the structure
plus/minus any saved increment/decrement of years, and the tm_yday value used in the
expression is the day of the year from 0 to 365 inclusive, calculated from the tm_mon and
tm_mday members of the tm structure, for that year.

8. The time since the Epoch shall be corrected for the offset of the local timezone’s standard
time from Coordinated Universal Time.

9. The time since the Epoch shall be further corrected (if applicable—see below) for Daylight
Saving Time.

If the timezone is one that includes Daylight Saving Time (DST) adjustments, the value of
tm_isdst in the tm structure controls whether or not mktime() adjusts the calculated seconds since
the Epoch value by the DST offset (after it has made the timezone adjustment), as follows:

• If tm_isdst is zero, mktime() shall not further adjust the seconds since the Epoch by the DST
offset.

• If tm_isdst is positive, mktime() shall further adjust the seconds since the Epoch by the DST
offset.

• If tm_isdst is negative, mktime() shall attempt to determine whether DST is in effect for the
specified time; if it determines that DST is in effect it shall produce the same result as an
equivalent call with a positive tm_isdst value, otherwise it shall produce the same result as
an equivalent call with a tm_isdst value of zero. If the broken-down time specifies a time
that is either skipped over or repeated when a transition to or from DST occurs, it is
unspecified whether mktime() produces the same result as an equivalent call with a
positive tm_isdst value or as an equivalent call with a tm_isdst value of zero.

If the TZ environment variable specifies a geographical timezone for which the
implementation’s timezone database includes historical or future changes to the offset from
Coordinated Universal Time of the timezone’s standard time, and the broken-down time
corresponds to a time that was (or will be) skipped over or repeated due to the occurrence of
such a change, mktime() shall calculate the time since the Epoch value using either the offset in
effect before the change or the offset in effect after the change.

Upon successful completion, the members of the structure shall be set to the values that would
be returned by a call to localtime() with the calculated time since the Epoch as its argument.

RETURN VALUE
The mktime() function shall return the calculated time since the Epoch encoded as a value of

CX type time_t. If the time since the Epoch cannot be represented as a time_t or the value to be
returned in the tm_year member of the structure pointed to by timeptr cannot be represented as

CX an int, the function shall return the value (time_t)−1 and set errno to [EOVERFLOW], and shall
not change the value of the tm_wday component of the structure.

CX Since (time_t)−1 is a valid return value for a successful call to mktime(), an application wishing
to check for error situations should set tm_wday to a value less than 0 or greater than 6 before
calling mktime(). On return, if tm_wday has not changed an error has occurred.

1428 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47920

47921

47922

47923

47924

47925

47926

47927

47928

47929

47930

47931

47932

47933

47934

47935

47936

47937

47938

47939

47940

47941

47942

47943

47944

47945

47946

47947

47948

47949

47950

47951

47952

47953

47954

47955

47956

47957

47958

47959

47960

47961

47962

47963

47964

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mktime()

ERRORS
The mktime() function shall fail if:

CX [EOVERFLOW] The result cannot be represented.

EXAMPLES
What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>

struct tm time_str;

char daybuf[20];

int main(void)
{

time_str.tm_year = 2001 — 1900;
time_str.tm_mon = 7 — 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;
time_str.tm_wday = -1;
if (mktime(&time_str) == (time_t)-1 && time_str.tm_wday == -1)

(void)puts("-unknown-");
else {

(void)strftime(daybuf, sizeof(daybuf), "%A", &time_str);
(void)puts(daybuf);

}
return 0;

}

APPLICATION USAGE
When using mktime() to add or subtract a fixed time period (one that always corresponds to a
fixed number of seconds) to or from a broken-down time in the local timezone, reliable results
for arbitrary TZ can only be assured by using mktime() to convert the original broken-down time
to a time since the Epoch, adding or subtracting the desired number of seconds to that value,
and then calling localtime() with the result. The alternative of adjusting the broken-down time
before calling mktime() may produce unexpected results if the original and updated times are on
different sides of a geographical timezone change. On implementations that follow the
recommendation of not range-correcting tm_sec (see step 1 in the DESCRIPTION), reliable
results can also be assured by adding or subtracting the desired number of seconds to tm_sec
(and not modifying any other members of the tm structure). In applications needing to be
portable to non-POSIX systems where the time_t encoding is not a count of seconds, it is
recommended that conditional compilation is used such that the adjustment is performed on the
mktime() return value when possible, and otherwise on the tm_sec member. For timezones that
are known not to have geographical timezone changes, such as TZ=UTC0, adjustments using just
mktime() do not have this problem.

The way the mktime() function interprets out-of-range tm structure fields might not produce the
expected result when multiple adjustments are made at the same time. For example, if an
application tries to go back one day first and then one year by calling localtime(), decrementing
tm_mday and tm_year, and then calling mktime() this would not produce the expected result if it
was called on 2021−03−01 because mktime() would see the supplied year as 2020 (a leap year)

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1429

47965

47966

47967

47968

47969

47970

47971

47972

47973

47974

47975

47976

47977

47978

47979

47980

47981

47982

47983

47984

47985

47986

47987

47988

47989

47990

47991

47992

47993

47994

47995

47996

47997

47998

47999

48000

48001

48002

48003

48004

48005

48006

48007

48008

48009

48010

48011

48012

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mktime() System Interfaces

and correct Mar 0 to Feb 29, whereas the intended result was Feb 28. Such issues can be avoided
by doing multiple adjustments one at a time when the order in which they are done matters.

Examples of how mktime() handles some adjustments are:

• If given Feb 29 in a non-leap year it treats that as the day after Feb 28 and gives back Mar 1.

• If given Feb 0 it treats that as the day before Feb 1 and gives back Jan 31.

• If given 21:65 it treats that as 6 minutes after 21:59 and gives back 22:05.

• If given tm_isdst=0 for a time when DST is in effect, it gives back a positive tm_isdst and
alters the other fields appropriately.

• If there is a DST transition where 02:00 standard time becomes 03:00 DST and mktime() is
given 02:30 (with negative tm_isdst), it treats that as either 30 minutes after 02:00 standard
time or 30 minutes before 03:00 DST and gives back a zero or positive tm_isdst,
respectively, with the tm_hour field altered appropriately.

• If a geographical timezone changes its UTC offset such that ``old 00:00’’ becomes ``new
00:30’’ and mktime() is given 00:20, it treats that as either 20 minutes after ``old 00:00’’ or 10
minutes before ``new 00:30’’, and gives back appropriately altered struct tm fields.

If an application wants to check whether a given broken-down time is one that is skipped over, it
can do so by seeing whether the tm_mday, tm_hour, and tm_min values it gets back from mktime()
are the same ones it fed in. Just checking tm_hour and tm_min might appear at first sight to
suffice, but tm_mday could also change—without tm_hour and tm_min changing—if, for example,
TZ is set to "ABC12XYZ-12" (which might be used in a torture test) or if a geographical
timezone changes the offset from Coordinated Universal Time of its standard time by 24 hours.

RATIONALE
In order to allow applications to distinguish between a successful return of (time_t)-1 and an
[EOVERFLOW] error, mktime() is required not to change tm_wday on error. This mechanism is
used rather than the convention used for other functions whereby the application sets errno to
zero before the call and the call does not change errno on error because the ISO C standard does
not require mktime() to set errno on error. The next revision of the ISO C standard is expected to
require that mktime() does not change tm_wday when returning (time_t)-1 to indicate an error,
and that this return convention is used both for the case where the value to be returned by the
function cannot be represented as a time_t and the case where the value to be returned in the
tm_year member of the tm structure cannot be represented as an int.

The DESCRIPTION section says that mktime() converts the specified broken-down time into
a time since the Epoch value. The use of the indefinite article here is necessary because, when
tm_isdst is negative and the timezone has Daylight Saving Time transitions, there is not a one-to-
one correspondence between broken-down times and time since the Epoch values.

The description of how the value of tm_isdst affects the behavior of mktime() is shaded CX
because the requirements in the ISO C standard are unclear. The next revision of the ISO C
standard is expected to state the requirements using wording equivalent to the wording in this
standard.

Implementations are encouraged not to range-correct tm_sec (see step 1 in the DESCRIPTION) in
order for the results of making an adjustment to tm_sec always to be equivalent to making the
same adjustment to the value returned by mktime(), even when the original and updated times
are on different sides of a geographical timezone change. This provides a way for applications to
do reliable fixed-period adjustment using only mktime(), as described in APPLICATION
USAGE.

1430 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48013

48014

48015

48016

48017

48018

48019

48020

48021

48022

48023

48024

48025

48026

48027

48028

48029

48030

48031

48032

48033

48034

48035

48036

48037

48038

48039

48040

48041

48042

48043

48044

48045

48046

48047

48048

48049

48050

48051

48052

48053

48054

48055

48056

48057

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mktime()

The described method for range-correcting the tm structure members uses separate variables to
hold adjustment values to be applied later to other members, or (for the year adjustment) used
in later calculations, because this is one way of avoiding intermediate member values that are
not representable as an int. Implementations may use other methods; all that is required is that
tm_year is the only member for which an [EOVERFLOW] error can occur.

The described method for range-correcting tm_mday would, if implemented that way, be highly
inefficient for very large values. The efficiency can be improved by observing that any period of
400 years always has the same number of days, so the month-by-month correction method need
only be applied for a maximum of 4800 months.

FUTURE DIRECTIONS
A future version of this standard may require that mktime() does not perform the optional range
correction of the tm_sec member of the tm structure described at step 1 in the DESCRIPTION.

A future version of this standard is expected to add a timegm() function that is similar to
mktime(), except that the tm structure pointed to by timeptr contains a broken-down time in
Coordinated Universal Time (rather than the local timezone), where references to localtime() are
replaced by references to gmtime(), and where there are no timezone offset or Daylight Saving
Time adjustments. A combination of gmtime() and timegm() will be the expected way to perform
arithmetic upon a time_t value and remain compatible with the ISO C standard (where the
internal structure of a time_t is not specified), since attempting such manipulations using
localtime() and mktime() can lead to unexpected results.

SEE ALSO
asctime(), clock(), ctime(), difftime(), futimens(), gmtime(), localtime(), strftime(), strptime(),
time(), tzset()

XBD Section 4.19 (on page 107), <time.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard and the ANSI C
standard.

Issue 6
Extensions beyond the ISO C standard are marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/58 is applied, updating the RETURN
VALUE and ERRORS sections to add the optional [EOVERFLOW] error as a CX extension.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/59 is applied, adding the tzset() function
to the SEE ALSO section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0393 [104] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0228 [724] is applied.

Issue 8
Austin Group Defect 1253 is applied, changing ``Daylight Savings’’ to ``Daylight Saving’’.

Austin Group Defect 1613 is applied, changing the way the tm structure members used by
mktime() are specified and clarifying that a successful call sets the members to the same values
that would be returned by localtime().

Austin Group Defect 1614 is applied, clarifying how tm_isdst is handled and the conditions
under which (time_t)−1 is returned.

Austin Group Defect 1627 is applied, clarifying how mktime() calculates the time in seconds

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1431

48058

48059

48060

48061

48062

48063

48064

48065

48066

48067

48068

48069

48070

48071

48072

48073

48074

48075

48076

48077

48078

48079

48080

48081

48082

48083

48084

48085

48086

48087

48088

48089

48090

48091

48092

48093

48094

48095

48096

48097

48098

48099

48100

48101

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mktime() System Interfaces

since the Epoch from the members of the tm structure.

1432 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48102

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mlock()

NAME
mlock, munlock — lock or unlock a range of process address space (REALTIME)

SYNOPSIS
MLR #include <sys/mman.h>

int mlock(const void *addr, size_t len);
int munlock(const void *addr, size_t len);

DESCRIPTION
The mlock() function shall cause those whole pages containing any part of the address space of
the process starting at address addr and continuing for len bytes to be memory-resident until
unlocked or until the process exits or execs another process image. The implementation may
require that addr be a multiple of {PAGESIZE}.

The munlock() function shall unlock those whole pages containing any part of the address space
of the process starting at address addr and continuing for len bytes, regardless of how many
times mlock() has been called by the process for any of the pages in the specified range. The
implementation may require that addr be a multiple of {PAGESIZE}.

If any of the pages in the range specified to a call to munlock() are also mapped into the address
spaces of other processes, any locks established on those pages by another process are
unaffected by the call of this process to munlock(). If any of the pages in the range specified by a
call to munlock() are also mapped into other portions of the address space of the calling process
outside the range specified, any locks established on those pages via the other mappings are also
unaffected by this call.

Upon successful return from mlock(), pages in the specified range shall be locked and memory-
resident. Upon successful return from munlock(), pages in the specified range shall be unlocked
with respect to the address space of the process. Memory residency of unlocked pages is
unspecified.

Appropriate privileges are required to lock process memory with mlock().

RETURN VALUE
Upon successful completion, the mlock() and munlock() functions shall return a value of zero.
Otherwise, no change is made to any locks in the address space of the process, and the function
shall return a value of −1 and set errno to indicate the error.

ERRORS
The mlock() and munlock() functions shall fail if:

[ENOMEM] Some or all of the address range specified by the addr and len arguments does
not correspond to valid mapped pages in the address space of the process.

The mlock() function shall fail if:

[EAGAIN] Some or all of the memory identified by the operation could not be locked
when the call was made.

The mlock() and munlock() functions may fail if:

[EINVAL] The addr argument is not a multiple of {PAGESIZE}.

The mlock() function may fail if:

[ENOMEM] Locking the pages mapped by the specified range would exceed an
implementation-defined limit on the amount of memory that the process may
lock.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1433

48103

48104

48105

48106

48107

48108

48109

48110

48111

48112

48113

48114

48115

48116

48117

48118

48119

48120

48121

48122

48123

48124

48125

48126

48127

48128

48129

48130

48131

48132

48133

48134

48135

48136

48137

48138

48139

48140

48141

48142

48143

48144

48145

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mlock() System Interfaces

[EPERM] The calling process does not have appropriate privileges to perform the
requested operation.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), mlockall(), munmap()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mlock() and munlock() functions are marked as part of the Range Memory Locking option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Range Memory Locking option.

1434 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48146

48147

48148

48149

48150

48151

48152

48153

48154

48155

48156

48157

48158

48159

48160

48161

48162

48163

48164

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mlockall()

NAME
mlockall, munlockall — lock/unlock the address space of a process (REALTIME)

SYNOPSIS
ML #include <sys/mman.h>

int mlockall(int flags);
int munlockall(void);

DESCRIPTION
The mlockall() function shall cause all of the pages mapped by the address space of a process to
be memory-resident until unlocked or until the process exits or execs another process image. The
flags argument determines whether the pages to be locked are those currently mapped by the
address space of the process, those that are mapped in the future, or both. The flags argument is
constructed from the bitwise-inclusive OR of one or more of the following symbolic constants,
defined in <sys/mman.h>:

MCL_CURRENT Lock all of the pages currently mapped into the address space of the process.

MCL_FUTURE Lock all of the pages that become mapped into the address space of the
process in the future, when those mappings are established.

If MCL_FUTURE is specified, and the automatic locking of future mappings eventually causes
the amount of locked memory to exceed the amount of available physical memory or any other
implementation-defined limit, the behavior is implementation-defined. The manner in which the
implementation informs the application of these situations is also implementation-defined.

The munlockall() function shall unlock all currently mapped pages of the address space of the
process. Any pages that become mapped into the address space of the process after a call to
munlockall() shall not be locked, unless there is an intervening call to mlockall() specifying
MCL_FUTURE or a subsequent call to mlockall() specifying MCL_CURRENT. If pages mapped
into the address space of the process are also mapped into the address spaces of other processes
and are locked by those processes, the locks established by the other processes shall be
unaffected by a call by this process to munlockall().

Upon successful return from the mlockall() function that specifies MCL_CURRENT, all currently
mapped pages of the address space of the process shall be memory-resident and locked. Upon
return from the munlockall() function, all currently mapped pages of the address space of the
process shall be unlocked with respect to the address space of the process. The memory
residency of unlocked pages is unspecified.

Appropriate privileges are required to lock process memory with mlockall().

RETURN VALUE
Upon successful completion, the mlockall() function shall return a value of zero. Otherwise, no
additional memory shall be locked, and the function shall return a value of −1 and set errno to
indicate the error. The effect of failure of mlockall() on previously existing locks in the address
space is unspecified.

If it is supported by the implementation, the munlockall() function shall always return a value of
zero. Otherwise, the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mlockall() function shall fail if:

[EAGAIN] Some or all of the memory identified by the operation could not be locked
when the call was made.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1435

48165

48166

48167

48168

48169

48170

48171

48172

48173

48174

48175

48176

48177

48178

48179

48180

48181

48182

48183

48184

48185

48186

48187

48188

48189

48190

48191

48192

48193

48194

48195

48196

48197

48198

48199

48200

48201

48202

48203

48204

48205

48206

48207

48208

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mlockall() System Interfaces

[EINVAL] The flags argument is zero, or includes unimplemented flags.

The mlockall() function may fail if:

[ENOMEM] Locking all of the pages currently mapped into the address space of the
process would exceed an implementation-defined limit on the amount of
memory that the process may lock.

[EPERM] The calling process does not have appropriate privileges to perform the
requested operation.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), mlock(), munmap()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mlockall() and munlockall() functions are marked as part of the Process Memory Locking
option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Memory Locking option.

1436 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48209

48210

48211

48212

48213

48214

48215

48216

48217

48218

48219

48220

48221

48222

48223

48224

48225

48226

48227

48228

48229

48230

48231

48232

48233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mmap()

NAME
mmap — map pages of memory

SYNOPSIS
#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags,
int fildes, off_t off);

DESCRIPTION
The mmap() function shall establish a mapping between an address space of a process and a
memory object.

The mmap() function shall be supported for the following memory objects:

• Regular files

• Anonymous memory objects

SHM • Shared memory objects

TYM • Typed memory objects

Support for any other type of file is unspecified.

The format of the call is as follows:

pa=mmap(addr, len, prot, flags, fildes, off);

The mmap() function shall establish a mapping between the address space of the process at an
address pa for len bytes to the memory object represented by the file descriptor fildes at offset off
for len bytes, or to an anonymous memory object of len bytes. The value of pa is an
implementation-defined function of the parameter addr and the values of flags, further described
below. A successful mmap() call shall return pa as its result. The address range starting at pa and
continuing for len bytes shall be legitimate for the possible (not necessarily current) address
space of the process. The range of bytes starting at off and continuing for len bytes shall be
legitimate for the possible (not necessarily current) offsets in the memory object represented by
fildes.

TYM If fildes represents a typed memory object opened with either the
POSIX_TYPED_MEM_ALLOCATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag, the memory object to be mapped shall be that portion of the typed memory object allocated
by the implementation as specified below. In this case, if off is non-zero, the behavior of mmap()
is undefined. If fildes refers to a valid typed memory object that is not accessible from the calling
process, mmap() shall fail.

The mapping established by mmap() shall replace any previous mappings for those whole pages
containing any part of the address space of the process starting at pa and continuing for len
bytes.

If the size of the mapped file changes after the call to mmap() as a result of some other operation
on the mapped file, the effect of references to portions of the mapped region that correspond to
added or removed portions of the file is unspecified.

If len is zero, mmap() shall fail and no mapping shall be established.

The parameter prot determines whether read, write, execute, or some combination of accesses
are permitted to the data being mapped. The prot shall be either PROT_NONE or the bitwise-
inclusive OR of one or more of the other flags in the following table, defined in the
<sys/mman.h> header.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1437

48234

48235

48236

48237

48238

48239

48240

48241

48242

48243

48244

48245

48246

48247

48248

48249

48250

48251

48252

48253

48254

48255

48256

48257

48258

48259

48260

48261

48262

48263

48264

48265

48266

48267

48268

48269

48270

48271

48272

48273

48274

48275

48276

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mmap() System Interfaces

Symbolic Constant Description
PROT_READ Data can be read.
PROT_WRITE Data can be written.
PROT_EXEC Data can be executed.
PROT_NONE Data cannot be accessed.

If an implementation cannot support the combination of access types specified by prot, the call to
mmap() shall fail.

An implementation may permit accesses other than those specified by prot; however, the
implementation shall not permit a write to succeed where PROT_WRITE has not been set and
shall not permit any access where PROT_NONE alone has been set. The implementation shall
support at least the following values of prot: PROT_NONE, PROT_READ, PROT_WRITE, and
the bitwise-inclusive OR of PROT_READ and PROT_WRITE. The file descriptor fildes shall have
been opened with read permission, regardless of the protection options specified. If
PROT_WRITE is specified, the application shall ensure that it has opened the file descriptor fildes
with write permission unless MAP_PRIVATE is specified in the flags parameter as described
below.

The parameter flags provides other information about the handling of the mapped data. The
value of flags is the bitwise-inclusive OR of these options, defined in <sys/mman.h>:

Symbolic Constant Description
MAP_ANON Synonym for MAP_ANONYMOUS.
MAP_ANONYMOUS Map anonymous memory.
MAP_SHARED Changes are shared.
MAP_PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.

XSI It is implementation-defined whether MAP_FIXED shall be supported. MAP_FIXED shall be
supported on XSI-conformant systems.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory
object. If MAP_SHARED is specified, write references shall change the underlying object. If
MAP_PRIVATE is specified, modifications to the mapped data by the calling process shall be
visible only to the calling process and shall not change the underlying object. It is unspecified
whether modifications to the underlying object done after the MAP_PRIVATE mapping is
established are visible through the MAP_PRIVATE mapping. Either MAP_SHARED or
MAP_PRIVATE can be specified, but not both. The mapping type is retained across fork().

The state of synchronization objects such as mutexes, semaphores, barriers, and conditional
variables placed in shared memory mapped with MAP_SHARED becomes undefined when the
last region in any process containing the synchronization object is unmapped.

TYM When fildes represents a typed memory object opened with either the
POSIX_TYPED_MEM_ALLOCATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag, mmap() shall, if there are enough resources available, map len bytes allocated from the
corresponding typed memory object which were not previously allocated to any process in any
processor that may access that typed memory object. If there are not enough resources available,
the function shall fail. If fildes represents a typed memory object opened with the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, these allocated bytes shall be contiguous
within the typed memory object. If fildes represents a typed memory object opened with the
POSIX_TYPED_MEM_ALLOCATE flag, these allocated bytes may be composed of non-
contiguous fragments within the typed memory object. If fildes represents a typed memory
object opened with neither the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag nor the

1438 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48277

48278

48279

48280

48281

48282

48283

48284

48285

48286

48287

48288

48289

48290

48291

48292

48293

48294

48295

48296

48297

48298

48299

48300

48301

48302

48303

48304

48305

48306

48307

48308

48309

48310

48311

48312

48313

48314

48315

48316

48317

48318

48319

48320

48321

48322

48323

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mmap()

POSIX_TYPED_MEM_ALLOCATE flag, len bytes starting at offset off within the typed memory
object are mapped, exactly as when mapping a file or shared memory object. In this case, if two
processes map an area of typed memory using the same off and len values and using file
descriptors that refer to the same memory pool (either from the same port or from a different
port), both processes shall map the same region of storage.

When MAP_FIXED is set in the flags argument, the implementation is informed that the value of
pa shall be addr, exactly. If MAP_FIXED is set, mmap() may return MAP_FAILED and set errno to

ML|MLR [EINVAL]. If a MAP_FIXED request is successful, then any previous mappings or memory
locks for those whole pages containing any part of the address range [pa,pa+len) shall be
removed, as if by an appropriate call to munmap(), before the new mapping is established.

When MAP_FIXED is not set, the implementation uses addr in an implementation-defined
manner to arrive at pa. The pa so chosen shall be an area of the address space that the
implementation deems suitable for a mapping of len bytes to the file. All implementations
interpret an addr value of 0 as granting the implementation complete freedom in selecting pa,
subject to constraints described below. A non-zero value of addr is taken to be a suggestion of a
process address near which the mapping should be placed. When the implementation selects a
value for pa, it never places a mapping at address 0, nor does it replace any extant mapping.

If MAP_FIXED is specified and addr is non-zero, it shall have the same remainder as the off
parameter, modulo the page size as returned by sysconf() when passed _SC_PAGESIZE or
_SC_PAGE_SIZE. The implementation may require that off is a multiple of the page size. If
MAP_FIXED is specified, the implementation may require that addr is a multiple of the page
size. The system performs mapping operations over whole pages. Thus, while the parameter len
need not meet a size or alignment constraint, the system shall include, in any mapping
operation, any partial page specified by the address range starting at pa and continuing for len
bytes.

If MAP_ANONYMOUS (or its synonym MAP_ANON) is specified, fildes is −1, and off is 0, then
mmap() shall ignore fildes and instead establish a mapping to a new anonymous memory object
of size len. The effect of specifying MAP_ANONYMOUS (or MAP_ANON) with other values of
fildes or off is unspecified. Anonymous memory objects shall be initialized to all bits zero.

The system shall always zero-fill any partial page at the end of an object. Further, the system
shall never write out any modified portions of the last page of an object which are beyond its
end. References within the address range starting at pa and continuing for len bytes to whole
pages following the end of an object shall result in delivery of a SIGBUS signal.

An implementation may generate SIGBUS signals when a reference would cause an error in the
mapped object, such as out-of-space condition.

The mmap() function shall add an extra reference to the file associated with the file descriptor
fildes which is not removed by a subsequent close() on that file descriptor. This reference shall be
removed when there are no more mappings to the file.

The last data access timestamp of the mapped file may be marked for update at any time
between the mmap() call and the corresponding munmap() call. The initial read or write
reference to a mapped region shall cause the file’s last data access timestamp to be marked for
update if it has not already been marked for update.

The last data modification and last file status change timestamps of a file that is mapped with
MAP_SHARED and PROT_WRITE shall be marked for update at some point in the interval
between a write reference to the mapped region and the next call to msync() with MS_ASYNC or
MS_SYNC for that portion of the file by any process. If there is no such call and if the
underlying file is modified as a result of a write reference, then these timestamps shall be

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1439

48324

48325

48326

48327

48328

48329

48330

48331

48332

48333

48334

48335

48336

48337

48338

48339

48340

48341

48342

48343

48344

48345

48346

48347

48348

48349

48350

48351

48352

48353

48354

48355

48356

48357

48358

48359

48360

48361

48362

48363

48364

48365

48366

48367

48368

48369

48370

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mmap() System Interfaces

marked for update at some time after the write reference.

There may be implementation-defined limits on the number of memory regions that can be
mapped (per process or per system).

XSI If such a limit is imposed, whether the number of memory regions that can be mapped by a
process is decreased by the use of shmat() is implementation-defined.

If mmap() fails for reasons other than [EBADF], [EINVAL], or [ENOTSUP], some of the
mappings in the address range starting at addr and continuing for len bytes may have been
unmapped.

RETURN VALUE
Upon successful completion, the mmap() function shall return the address at which the mapping
was placed (pa); otherwise, it shall return a value of MAP_FAILED and set errno to indicate the
error. The symbol MAP_FAILED is defined in the <sys/mman.h> header. No successful return
from mmap() shall return the value MAP_FAILED.

ERRORS
The mmap() function shall fail if:

ML [EAGAIN] The mapping could not be locked in memory, if required by mlockall(), due to
a lack of resources.

[EINVAL] The value of len is zero.

[EINVAL] The value of flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is
set).

[EMFILE] The number of mapped regions would exceed an implementation-defined
limit (per process or per system).

[ENOMEM] MAP_FIXED was specified, and the range [addr,addr+len) exceeds that allowed
for the address space of a process; or, if MAP_FIXED was not specified and
there is insufficient room in the address space to effect the mapping.

ML [ENOMEM] The mapping could not be locked in memory, if required by mlockall(),
because it would require more space than the system is able to supply.

TYM [ENOMEM] Not enough unallocated memory resources remain in the typed memory
object designated by fildes to allocate len bytes.

[ENOTSUP] MAP_FIXED or MAP_PRIVATE was specified in the flags argument and the
implementation does not support this functionality.

The implementation does not support the combination of accesses requested
in the prot argument.

[ENXIO] MAP_FIXED was specified in flags and the combination of addr, len, and off is
invalid for the specified object.

TYM [ENXIO] The fildes argument refers to a typed memory object that is not accessible from
the calling process.

In addition, if MAP_ANONYMOUS (or MAP_ANON) is not set in flags, the mmap() function
shall fail if:

[EACCES] The fildes argument is not open for read, regardless of the protection specified,
or fildes is not open for write and PROT_WRITE was specified for a
MAP_SHARED type mapping.

1440 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48371

48372

48373

48374

48375

48376

48377

48378

48379

48380

48381

48382

48383

48384

48385

48386

48387

48388

48389

48390

48391

48392

48393

48394

48395

48396

48397

48398

48399

48400

48401

48402

48403

48404

48405

48406

48407

48408

48409

48410

48411

48412

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mmap()

[EBADF] The fildes argument is not a valid open file descriptor.

[ENODEV] The fildes argument refers to a file whose type is not supported by mmap().

[EOVERFLOW] The file is a regular file and the value of off plus len exceeds the offset
maximum established in the open file description associated with fildes.

[ENXIO] Addresses in the range [off,off+len) are invalid for the object specified by fildes.

The mmap() function may fail if:

[EINVAL] The addr argument (if MAP_FIXED was specified) or off is not a multiple of the
page size as returned by sysconf(), or is considered invalid by the
implementation.

EXAMPLES
None.

APPLICATION USAGE
Use of mmap() may reduce the amount of memory available to other memory allocation
functions.

Use of MAP_FIXED may result in unspecified behavior in further use of malloc() and shmat().
The use of MAP_FIXED is discouraged, as it may prevent an implementation from making the
most effective use of resources. Most implementations require that off and addr are multiples of
the page size as returned by sysconf().

The application must ensure correct synchronization when using mmap() in conjunction with
any other file access method, such as read() and write(), standard input/output, and shmat().

The mmap() function allows access to resources via address space manipulations, instead of
read()/write(). Once a file is mapped, all a process has to do to access it is use the data at the
address to which the file was mapped. So, using pseudo-code to illustrate the way in which an
existing program might be changed to use mmap(), the following:

fildes = open(...)
lseek(fildes, some_offset)
read(fildes, buf, len)
/* Use data in buf. */

becomes:

fildes = open(...)
address = mmap(0, len, PROT_READ, MAP_PRIVATE, fildes, some_offset)
/* Use data at address. */

RATIONALE
After considering several other alternatives, it was decided to adopt the mmap() definition
found in SVR4 for mapping memory objects into process address spaces. The SVR4 definition is
minimal, in that it describes only what has been built, and what appears to be necessary for a
general and portable mapping facility.

Note that while mmap() was first designed for mapping files, it is actually a general-purpose
mapping facility. It can be used to map any appropriate object, such as memory, files, devices,
and so on, into the address space of a process.

When a mapping is established, it is possible that the implementation may need to map more
than is requested into the address space of the process because of hardware requirements. An
application, however, cannot count on this behavior. Implementations that do not use a paged
architecture may simply allocate a common memory region and return the address of it; such

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1441

48413

48414

48415

48416

48417

48418

48419

48420

48421

48422

48423

48424

48425

48426

48427

48428

48429

48430

48431

48432

48433

48434

48435

48436

48437

48438

48439

48440

48441

48442

48443

48444

48445

48446

48447

48448

48449

48450

48451

48452

48453

48454

48455

48456

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mmap() System Interfaces

implementations probably do not allocate any more than is necessary. References past the end of
the requested area are unspecified.

If an application requests a mapping that overlaps existing mappings in the process, it might be
desirable that an implementation detect this and inform the application. However, if the
program specifies a fixed address mapping (which requires some implementation knowledge to
determine a suitable address, if the function is supported at all), then the program is presumed
to be successfully managing its own address space and should be trusted when it asks to map
over existing data structures. Furthermore, it is also desirable to make as few system calls as
possible, and it might be considered onerous to require an munmap() before an mmap() to the
same address range. This volume of POSIX.1-2024 specifies that the new mapping replaces any
existing mappings (implying an automatic munmap() on the address range), following existing
practice in this regard. The standard developers also considered whether there should be a way
for new mappings to overlay existing mappings, but found no existing practice for this.

It is not expected that all hardware implementations are able to support all combinations of
permissions at all addresses. Implementations are required to disallow write access to mappings
without write permission and to disallow access to mappings without any access permission.
Other than these restrictions, implementations may allow access types other than those
requested by the application. For example, if the application requests only PROT_WRITE, the
implementation may also allow read access. A call to mmap() fails if the implementation cannot
support allowing all the access requested by the application. For example, some
implementations cannot support a request for both write access and execute access
simultaneously. All implementations must support requests for no access, read access, write
access, and both read and write access. Strictly conforming code must only rely on the required
checks. These restrictions allow for portability across a wide range of hardware.

The MAP_FIXED address treatment is likely to fail for non-page-aligned values and for certain
architecture-dependent address ranges. Conforming implementations cannot count on being
able to choose address values for MAP_FIXED without utilizing non-portable, implementation-
defined knowledge. Nonetheless, MAP_FIXED is provided as a standard interface conforming
to existing practice for utilizing such knowledge when it is available.

Similarly, in order to allow implementations that do not support virtual addresses, support for
directly specifying any mapping addresses via MAP_FIXED is not required and thus a
conforming application may not count on it.

The MAP_PRIVATE function can be implemented efficiently when memory protection hardware
is available. When such hardware is not available, implementations can implement such
``mappings’’ by simply making a real copy of the relevant data into process private memory,
though this tends to behave similarly to read().

The function has been defined to allow for many different models of using shared memory.
However, all uses are not equally portable across all machine architectures. In particular, the
mmap() function allows the system as well as the application to specify the address at which to
map a specific region of a memory object. The most portable way to use the function is always to
let the system choose the address, specifying NULL as the value for the argument addr and not
to specify MAP_FIXED.

If it is intended that a particular region of a memory object be mapped at the same address in a
group of processes (on machines where this is even possible), then MAP_FIXED can be used to
pass in the desired mapping address. The system can still be used to choose the desired address
if the first such mapping is made without specifying MAP_FIXED, and then the resulting
mapping address can be passed to subsequent processes for them to pass in via MAP_FIXED.
The availability of a specific address range cannot be guaranteed, in general.

1442 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48457

48458

48459

48460

48461

48462

48463

48464

48465

48466

48467

48468

48469

48470

48471

48472

48473

48474

48475

48476

48477

48478

48479

48480

48481

48482

48483

48484

48485

48486

48487

48488

48489

48490

48491

48492

48493

48494

48495

48496

48497

48498

48499

48500

48501

48502

48503

48504

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mmap()

The mmap() function can be used to map a region of memory that is larger than the current size
of the object. Memory access within the mapping but beyond the current end of the underlying
objects may result in SIGBUS signals being sent to the process. The reason for this is that the size
of the object can be manipulated by other processes and can change at any moment. The
implementation should tell the application that a memory reference is outside the object where
this can be detected; otherwise, written data may be lost and read data may not reflect actual
data in the object.

Note that references beyond the end of the object do not extend the object as the new end cannot
be determined precisely by most virtual memory hardware. Instead, the size can be directly
manipulated by ftruncate().

Process memory locking does apply to shared memory regions, and the MCL_FUTURE
argument to mlockall() can be relied upon to cause new shared memory regions to be
automatically locked.

Existing implementations of mmap() return the value −1 when unsuccessful. Since the casting of
this value to type void * cannot be guaranteed by the ISO C standard to be distinct from a
successful value, this volume of POSIX.1-2024 defines the symbol MAP_FAILED, which a
conforming implementation does not return as the result of a successful call.

Some historical implementations only supported MAP_ANON, some only supported
MAP_ANONYMOUS, and some supported both spellings. This standard includes both
spellings partly for application compatibility and partly because neither spelling was clearly
more popular than the other at the time this feature was considered for standardization.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fcntl(), fork(), lockf(), msync(), munmap(), mprotect(), posix_typed_mem_open(), shmat(),
sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with mmap() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• The [EAGAIN] and [ENOTSUP] mandatory error conditions are added.

• New cases of [ENOMEM] and [ENXIO] are added as mandatory error conditions.

• The value returned on failure is the value of the constant MAP_FAILED; this was
previously defined as −1.

Large File Summit extensions are added.

Issue 6
The mmap() function is marked as part of the Memory Mapped Files option.

The Open Group Corrigendum U028/6 is applied, changing (void *)−1 to MAP_FAILED.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1443

48505

48506

48507

48508

48509

48510

48511

48512

48513

48514

48515

48516

48517

48518

48519

48520

48521

48522

48523

48524

48525

48526

48527

48528

48529

48530

48531

48532

48533

48534

48535

48536

48537

48538

48539

48540

48541

48542

48543

48544

48545

48546

48547

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mmap() System Interfaces

• The DESCRIPTION is updated to describe the use of MAP_FIXED.

• The DESCRIPTION is updated to describe the addition of an extra reference to the file
associated with the file descriptor passed to mmap().

• The DESCRIPTION is updated to state that there may be implementation-defined limits on
the number of memory regions that can be mapped.

• The DESCRIPTION is updated to describe constraints on the alignment and size of the off
argument.

• The [EINVAL] and [EMFILE] error conditions are added.

• The [EOVERFLOW] error condition is added. This change is to support large files.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The DESCRIPTION is updated to describe the cases when MAP_PRIVATE and
MAP_FIXED need not be supported.

The following changes are made for alignment with IEEE Std 1003.1j-2000:

• Semantics for typed memory objects are added to the DESCRIPTION.

• New [ENOMEM] and [ENXIO] errors are added to the ERRORS section.

• The posix_typed_mem_open() function is added to the SEE ALSO section.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/34 is applied, changing the margin code
in the SYNOPSIS from MF|SHM to MC3 (notation for MF|SHM|TYM).

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/60 is applied, updating the
DESCRIPTION and ERRORS sections to add the [EINVAL] error when len is zero.

Issue 7
Austin Group Interpretations 1003.1-2001 #078 and #079 are applied, clarifying page alignment
requirements and adding a note about the state of synchronization objects becoming undefined
when a shared region is unmapped.

Functionality relating to the Memory Protection and Memory Mapped Files options is moved to
the Base.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0229 [852] is applied.

Issue 8
Austin Group Defect 850 is applied, adding anonymous memory objects.

1444 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48548

48549

48550

48551

48552

48553

48554

48555

48556

48557

48558

48559

48560

48561

48562

48563

48564

48565

48566

48567

48568

48569

48570

48571

48572

48573

48574

48575

48576

48577

48578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces modf()

NAME
modf, modff, modfl — decompose a floating-point number

SYNOPSIS
#include <math.h>

double modf(double x, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall break the argument x into integral and fractional parts, each of which has
the same sign as the argument. It stores the integral part as a double (for the modf() function), a
float (for the modff() function), or a long double (for the modfl() function), in the object pointed
to by iptr.

RETURN VALUE
Upon successful completion, these functions shall return the signed fractional part of x.

MX The returned value shall be exact and shall be independent of the current rounding direction
mode.

If x is NaN, a NaN shall be returned, and *iptr shall be set to a NaN.

If x is ±Inf, ±0 shall be returned, and *iptr shall be set to ±Inf.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The modf() function computes the function result and *iptr such that:

a = modf(x, iptr) ;
x == a+*iptr ;

allowing for the usual floating-point inaccuracies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
frexp(), isnan(), ldexp()

XBD <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1445

48579

48580

48581

48582

48583

48584

48585

48586

48587

48588

48589

48590

48591

48592

48593

48594

48595

48596

48597

48598

48599

48600

48601

48602

48603

48604

48605

48606

48607

48608

48609

48610

48611

48612

48613

48614

48615

48616

48617

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

modf() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The modff() and modfl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/35 is applied, correcting the code example
in the APPLICATION USAGE section.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

1446 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48618

48619

48620

48621

48622

48623

48624

48625

48626

48627

48628

48629

48630

48631

48632

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mprotect()

NAME
mprotect — set protection of memory mapping

SYNOPSIS
#include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

DESCRIPTION
The mprotect() function shall change the access protections to be that specified by prot for those
whole pages containing any part of the address space of the process starting at address addr and
continuing for len bytes. The parameter prot determines whether read, write, execute, or some
combination of accesses are permitted to the data being mapped. The prot argument should be
either PROT_NONE or the bitwise-inclusive OR of one or more of PROT_READ, PROT_WRITE,
and PROT_EXEC.

If an implementation cannot support the combination of access types specified by prot, the call to
mprotect() shall fail.

An implementation may permit accesses other than those specified by prot; however, no
implementation shall permit a write to succeed where PROT_WRITE has not been set or shall
permit any access where PROT_NONE alone has been set. Implementations shall support at
least the following values of prot: PROT_NONE, PROT_READ, PROT_WRITE, and the bitwise-
inclusive OR of PROT_READ and PROT_WRITE. If PROT_WRITE is specified, the application
shall ensure that it has opened the mapped objects in the specified address range with write
permission, unless MAP_PRIVATE was specified in the original mapping, regardless of whether
the file descriptors used to map the objects have since been closed.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

The behavior of this function is unspecified if the mapping was not established by a call to
mmap().

When mprotect() fails for reasons other than [EINVAL], the protections on some of the pages in
the range [addr,addr+len) may have been changed.

RETURN VALUE
Upon successful completion, mprotect() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The mprotect() function shall fail if:

[EACCES] The prot argument specifies a protection that violates the access permission the
process has to the underlying memory object.

[EAGAIN] The prot argument specifies PROT_WRITE over a MAP_PRIVATE mapping
and there are insufficient memory resources to reserve for locking the private
page.

[ENOMEM] Addresses in the range [addr,addr+len) are invalid for the address space of a
process, or specify one or more pages which are not mapped.

[ENOMEM] The prot argument specifies PROT_WRITE on a MAP_PRIVATE mapping, and
it would require more space than the system is able to supply for locking the
private pages, if required.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1447

48633

48634

48635

48636

48637

48638

48639

48640

48641

48642

48643

48644

48645

48646

48647

48648

48649

48650

48651

48652

48653

48654

48655

48656

48657

48658

48659

48660

48661

48662

48663

48664

48665

48666

48667

48668

48669

48670

48671

48672

48673

48674

48675

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mprotect() System Interfaces

[ENOTSUP] The implementation does not support the combination of accesses requested
in the prot argument.

The mprotect() function may fail if:

[EINVAL] The addr argument is not a multiple of the page size as returned by sysconf().

EXAMPLES
None.

APPLICATION USAGE
Most implementations require that addr is a multiple of the page size as returned by sysconf().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with mprotect() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is largely reworded.

• [ENOTSUP] and a second form of [ENOMEM] are added as mandatory error conditions.

• [EAGAIN] is moved from the optional to the mandatory error conditions.

Issue 6
The mprotect() function is marked as part of the Memory Protection option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size as returned by sysconf().

• The [EINVAL] error condition is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
SD5-XSH-ERN-22 is applied, deleting erroneous APPLICATION USAGE.

Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The mprotect() function is moved from the Memory Protection option to the Base.

1448 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48676

48677

48678

48679

48680

48681

48682

48683

48684

48685

48686

48687

48688

48689

48690

48691

48692

48693

48694

48695

48696

48697

48698

48699

48700

48701

48702

48703

48704

48705

48706

48707

48708

48709

48710

48711

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_close()

NAME
mq_close — close a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_close(mqd_t mqdes);

DESCRIPTION
The mq_close() function shall remove the association between the message queue descriptor,
mqdes, and its message queue. The results of using this message queue descriptor after successful
return from this mq_close(), and until the return of this message queue descriptor from a
subsequent mq_open(), are undefined.

If a message queue descriptor is implemented using a file descriptor, mq_close() shall close the
file descriptor.

If the process has successfully attached a notification request to the message queue via this
mqdes, this attachment shall be removed, and the message queue is available for another process
to attach for notification.

RETURN VALUE
Upon successful completion, the mq_close() function shall return a value of zero; otherwise, the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mq_close() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_unlink(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_close() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

Issue 8
Austin Group Defect 368 is applied, adding a requirement that if a message queue descriptor is
implemented using a file descriptor, mq_close() closes the file descriptor.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1449

48712

48713

48714

48715

48716

48717

48718

48719

48720

48721

48722

48723

48724

48725

48726

48727

48728

48729

48730

48731

48732

48733

48734

48735

48736

48737

48738

48739

48740

48741

48742

48743

48744

48745

48746

48747

48748

48749

48750

48751

48752

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_getattr() System Interfaces

NAME
mq_getattr — get message queue attributes (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

DESCRIPTION
The mq_getattr() function shall obtain status information and attributes of the message queue
and the open message queue description associated with the message queue descriptor.

The mqdes argument specifies a message queue descriptor.

The results shall be returned in the mq_attr structure referenced by the mqstat argument.

Upon return, the following members shall have the values associated with the open message
queue description as set when the message queue was opened and as modified by subsequent
mq_setattr() calls: mq_flags.

The following attributes of the message queue shall be returned as set at message queue
creation: mq_maxmsg, mq_msgsize.

Upon return, the following members within the mq_attr structure referenced by the mqstat
argument shall be set to the current state of the message queue:

mq_curmsgs The number of messages currently on the queue.

RETURN VALUE
Upon successful completion, the mq_getattr() function shall return zero. Otherwise, the function
shall return −1 and set errno to indicate the error.

ERRORS
The mq_getattr() function may fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
See mq_notify().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_notify(), mq_open(), mq_send(), mq_setattr(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_getattr() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

1450 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48753

48754

48755

48756

48757

48758

48759

48760

48761

48762

48763

48764

48765

48766

48767

48768

48769

48770

48771

48772

48773

48774

48775

48776

48777

48778

48779

48780

48781

48782

48783

48784

48785

48786

48787

48788

48789

48790

48791

48792

48793

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_getattr()

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/61 is applied, updating the ERRORS
section to change the [EBADF] error from mandatory to optional.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1451

48794

48795

48796

48797

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_notify() System Interfaces

NAME
mq_notify — notify process that a message is available (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

DESCRIPTION
If the argument notification is not NULL, this function shall register the calling process to be
notified of message arrival at an empty message queue associated with the specified message
queue descriptor, mqdes. The notification specified by the notification argument shall be sent to
the process when the message queue transitions from empty to non-empty. At any time, only
one process may be registered for notification by a message queue. If the calling process or any
other process has already registered for notification of message arrival at the specified message
queue, subsequent attempts to register for that message queue shall fail.

If notification is NULL and the process is currently registered for notification by the specified
message queue, the existing registration shall be removed.

When the notification is sent to the registered process, its registration shall be removed. The
message queue shall then be available for registration.

If a process has registered for notification of message arrival at a message queue and some
thread is blocked in mq_receive() or mq_timedreceive() waiting to receive a message when a
message arrives at the queue, the arriving message shall satisfy the appropriate mq_receive() or
mq_timedreceive(), respectively. The resulting behavior is as if the message queue remains empty,
and no notification shall be sent.

RETURN VALUE
Upon successful completion, the mq_notify() function shall return a value of zero; otherwise, the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mq_notify() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[EBUSY] A process is already registered for notification by the message queue.

The mq_notify() function may fail if:

[EINVAL] The notification argument is NULL and the process is currently not registered.

EXAMPLES
The following program registers a notification request for the message queue named in its
command-line argument. Notification is performed by creating a thread. The thread executes a
function which reads one message from the queue and then terminates the process.

#include <pthread.h>
#include <signal.h>
#include <mqueue.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void /* Thread start function */
tfunc(union sigval sv)

1452 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48798

48799

48800

48801

48802

48803

48804

48805

48806

48807

48808

48809

48810

48811

48812

48813

48814

48815

48816

48817

48818

48819

48820

48821

48822

48823

48824

48825

48826

48827

48828

48829

48830

48831

48832

48833

48834

48835

48836

48837

48838

48839

48840

48841

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_notify()

{
struct mq_attr attr;
ssize_t nr;
void *buf;
mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

/* Determine maximum msg size; allocate buffer to receive msg */

if (mq_getattr(mqdes, &attr) == -1) {
perror("mq_getattr");
exit(EXIT_FAILURE);

}
buf = malloc(attr.mq_msgsize);

if (buf == NULL) {
perror("malloc");
exit(EXIT_FAILURE);

}

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);
if (nr == -1) {

perror("mq_receive");
exit(EXIT_FAILURE);

}

printf("Read %ld bytes from message queue\n", (long) nr);
free(buf);
exit(EXIT_SUCCESS); /* Terminate the process */

}

int
main(int argc, char *argv[])
{

mqd_t mqdes;
struct sigevent not;

assert(argc == 2);

mqdes = mq_open(argv[1], O_RDONLY);
if (mqdes == (mqd_t) -1) {

perror("mq_open");
exit(EXIT_FAILURE);

}

not.sigev_notify = SIGEV_THREAD;
not.sigev_notify_function = tfunc;
not.sigev_notify_attributes = NULL;
not.sigev_value.sival_ptr = &mqdes; /* Arg. to thread func. */
if (mq_notify(mqdes, ¬) == -1) {

perror("mq_notify");
exit(EXIT_FAILURE);

}

pause(); /* Process will be terminated by thread function */
}

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1453

48842

48843

48844

48845

48846

48847

48848

48849

48850

48851

48852

48853

48854

48855

48856

48857

48858

48859

48860

48861

48862

48863

48864

48865

48866

48867

48868

48869

48870

48871

48872

48873

48874

48875

48876

48877

48878

48879

48880

48881

48882

48883

48884

48885

48886

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_notify() System Interfaces

APPLICATION USAGE
Since the <mqueue.h> header is only required to declare the sigevent structure tag as naming
an incomplete structure type, in order to use mq_notify() and pass it a pointer to a sigevent
structure, applications need to include <signal.h> so that sigevent will be fully defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), mq_receive(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_notify() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

Issue 7
SD5-XSH-ERN-38 is applied, adding the mq_timedreceive() function to the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #032 is applied, adding the [EINVAL] error.

An example is added.

Issue 8
Austin Group Defect 1282 is applied, changing the EXAMPLES and APPLICATION USAGE
sections.

1454 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48887

48888

48889

48890

48891

48892

48893

48894

48895

48896

48897

48898

48899

48900

48901

48902

48903

48904

48905

48906

48907

48908

48909

48910

48911

48912

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_open()

NAME
mq_open — open a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...);

DESCRIPTION
The mq_open() function shall establish the connection between a process and a message queue
with a message queue descriptor. It shall create an open message queue description that refers to
the message queue, and a message queue descriptor that refers to that open message queue
description. The message queue descriptor is used by other functions to refer to that message
queue. The name argument points to a string naming a message queue. It is unspecified whether
the name appears in the file system and is visible to other functions that take pathnames as
arguments. The name argument conforms to the construction rules for a pathname, except that
the interpretation of <slash> characters other than the leading <slash> character in name is
implementation-defined, and that the length limits for the name argument are implementation-
defined and need not be the same as the pathname limits {PATH_MAX} and {NAME_MAX}. If
name begins with the <slash> character, then processes calling mq_open() with the same value of
name shall refer to the same message queue object, as long as that name has not been removed. If
name does not begin with the <slash> character, the effect is implementation-defined. If the name
argument is not the name of an existing message queue and creation is not requested, mq_open()
shall fail and return an error.

A message queue descriptor may be implemented using a file descriptor, in which case
applications can open up to at least {OPEN_MAX} file and message queues.

The oflag argument requests the desired receive and/or send access to the message queue. The
requested access permission to receive messages or send messages shall be granted if the calling
process would be granted read or write access, respectively, to an equivalently protected file.

The value of oflag is the bitwise-inclusive OR of values from the following list. Applications
shall specify exactly one of the first three values (access modes) below in the value of oflag:

O_RDONLY Open the message queue for receiving messages. The process can use the
returned message queue descriptor with mq_receive(), but not mq_send(). A
message queue may be open multiple times in the same or different processes
for receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the returned
message queue descriptor with mq_send() but not mq_receive(). A message
queue may be open multiple times in the same or different processes for
sending messages.

O_RDWR Open the queue for both receiving and sending messages. The process can use
any of the functions allowed for O_RDONLY and O_WRONLY. A message
queue may be open multiple times in the same or different processes for
sending messages.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT Create a message queue. It requires two additional arguments: mode, which
shall be of type mode_t, and attr, which shall be a pointer to an mq_attr
structure. If the pathname name has already been used to create a message
queue that still exists, then this flag shall have no effect, except as noted under
O_EXCL. Otherwise, a message queue shall be created without any messages

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1455

48913

48914

48915

48916

48917

48918

48919

48920

48921

48922

48923

48924

48925

48926

48927

48928

48929

48930

48931

48932

48933

48934

48935

48936

48937

48938

48939

48940

48941

48942

48943

48944

48945

48946

48947

48948

48949

48950

48951

48952

48953

48954

48955

48956

48957

48958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_open() System Interfaces

in it. The user ID of the message queue shall be set to the effective user ID of
the process. The group ID of the message queue shall be set to the effective
group ID of the process; however, if the name argument is visible in the file
system, the group ID may be set to the group ID of the containing directory.
When bits in mode other than the file permission bits are specified, the effect is
unspecified. If attr is NULL, the message queue shall be created with
implementation-defined default message queue attributes. If attr is non-NULL
and the calling process has appropriate privileges on name, the message queue
mq_maxmsg and mq_msgsize attributes shall be set to the values of the
corresponding members in the mq_attr structure referred to by attr. The
values of the mq_flags and mq_curmsgs members of the mq_attr structure shall
be ignored. If attr is non-NULL, but the calling process does not have
appropriate privileges on name, the mq_open() function shall fail and return an
error without creating the message queue.

O_EXCL If O_EXCL and O_CREAT are set, mq_open() shall fail if the message queue
name exists. The check for the existence of the message queue and the creation
of the message queue if it does not exist shall be atomic with respect to other
threads executing mq_open() naming the same name with O_EXCL and
O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is
undefined.

O_NONBLOCK Determines whether an mq_send() or mq_receive() waits for resources or
messages that are not currently available, or fails with errno set to [EAGAIN];
see mq_send() and mq_receive() for details.

The mq_open() function does not add or remove messages from the queue.

RETURN VALUE
Upon successful completion, the function shall return a message queue descriptor; otherwise,
the function shall return (mqd_t)−1 and set errno to indicate the error.

ERRORS
The mq_open() function shall fail if:

[EACCES] The message queue exists and the permissions specified by oflag are denied, or
the message queue does not exist and permission to create the message queue
is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named message queue already exists.

[EINTR] The mq_open() function was interrupted by a signal.

[EINVAL] The mq_open() function is not supported for the given name.

[EINVAL] O_CREAT was specified in oflag, the value of attr is not NULL, and either
mq_maxmsg or mq_msgsize was less than or equal to zero.

[EMFILE] Too many message queue descriptors or file descriptors are currently in use by
this process.

[ENFILE] Too many message queue descriptors or file descriptors are currently open in
the system.

[ENOENT] O_CREAT is not set and the named message queue does not exist.

[ENOSPC] There is insufficient space for the creation of the new message queue.

1456 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

48959

48960

48961

48962

48963

48964

48965

48966

48967

48968

48969

48970

48971

48972

48973

48974

48975

48976

48977

48978

48979

48980

48981

48982

48983

48984

48985

48986

48987

48988

48989

48990

48991

48992

48993

48994

48995

48996

48997

48998

48999

49000

49001

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_open()

If any of the following conditions occur, the mq_open() function may return (mqd_t)−1 and set
errno to the corresponding value.

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the mq_open() and mq_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
mq_close(), mq_getattr(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(),
msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_open() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedreceive() and mq_timedsend() functions are added to the SEE ALSO section for
alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION of O_EXCL is updated in response to IEEE PASC Interpretation 1003.1c #48.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/62 is applied, updating the description of
the permission bits in the DESCRIPTION. The change is made for consistency with the
shm_open() and sem_open() functions.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
changing [ENAMETOOLONG] from a ``shall fail’’ to a ``may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording for setting the
user ID and group ID of the message queue.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0394 [259] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1457

49002

49003

49004

49005

49006

49007

49008

49009

49010

49011

49012

49013

49014

49015

49016

49017

49018

49019

49020

49021

49022

49023

49024

49025

49026

49027

49028

49029

49030

49031

49032

49033

49034

49035

49036

49037

49038

49039

49040

49041

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_open() System Interfaces

Issue 8
Austin Group Defect 368 is applied, changing the [ENFILE] error.

1458 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49042

49043

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_receive()

NAME
mq_receive, mq_timedreceive — receive a message from a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio);

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abstime);

DESCRIPTION
The mq_receive() function shall receive the oldest of the highest priority message(s) from the
message queue specified by mqdes. If the size of the buffer in bytes, specified by the msg_len
argument, is less than the mq_msgsize attribute of the message queue, the function shall fail and
return an error. Otherwise, the selected message shall be removed from the queue and copied to
the buffer pointed to by the msg_ptr argument.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

If the argument msg_prio is not NULL, the priority of the selected message shall be stored in the
location referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue
description associated with mqdes, mq_receive() shall block until a message is enqueued on the
message queue or until mq_receive() is interrupted by a signal. If more than one thread is waiting
to receive a message when a message arrives at an empty queue and the Priority Scheduling
option is supported, then the thread of highest priority that has been waiting the longest shall be
selected to receive the message. Otherwise, it is unspecified which waiting thread receives the
message. If the specified message queue is empty and O_NONBLOCK is set in the message
queue description associated with mqdes, no message shall be removed from the queue, and
mq_receive() shall return an error.

The mq_timedreceive() function shall receive the oldest of the highest priority messages from the
message queue specified by mqdes as described for the mq_receive() function. However, if
O_NONBLOCK was not specified when the message queue was opened via the mq_open()
function, and no message exists on the queue to satisfy the receive, the wait for such a message
shall be terminated when the specified timeout expires. If O_NONBLOCK is set, this function is
equivalent to mq_receive().

The timeout expires when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based.

Under no circumstance shall the operation fail with a timeout if a message can be removed from
the message queue immediately. The validity of the abstime parameter need not be checked if a
message can be removed from the message queue immediately.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1459

49044

49045

49046

49047

49048

49049

49050

49051

49052

49053

49054

49055

49056

49057

49058

49059

49060

49061

49062

49063

49064

49065

49066

49067

49068

49069

49070

49071

49072

49073

49074

49075

49076

49077

49078

49079

49080

49081

49082

49083

49084

49085

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_receive() System Interfaces

RETURN VALUE
Upon successful completion, the mq_receive() and mq_timedreceive() functions shall return the
length of the selected message in bytes and the message shall be removed from the queue.
Otherwise, no message shall be removed from the queue, the functions shall return a value of −1,
and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EAGAIN] O_NONBLOCK was set in the message description associated with mqdes, and
the specified message queue is empty.

[EBADF] The mqdes argument is not a valid message queue descriptor open for reading.

[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size
attribute of the message queue.

[EINTR] The mq_receive() or mq_timedreceive() operation was interrupted by a signal.

[EINVAL] The process or thread would have blocked, and the abstime parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
but no message arrived on the queue before the specified timeout expired.

These functions may fail if:

[EBADMSG] The implementation has detected a data corruption problem with the
message.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), msgctl(), msgget(), msgrcv(), msgsnd(), time()

XBD <mqueue.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_receive() function is marked as part of the Message Passing option.

The Open Group Corrigendum U021/4 is applied. The DESCRIPTION is changed to refer to
msg_len rather than maxsize.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

1460 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49086

49087

49088

49089

49090

49091

49092

49093

49094

49095

49096

49097

49098

49099

49100

49101

49102

49103

49104

49105

49106

49107

49108

49109

49110

49111

49112

49113

49114

49115

49116

49117

49118

49119

49120

49121

49122

49123

49124

49125

49126

49127

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_receive()

• In this function it is possible for the return value to exceed the range of the type ssize_t
(since size_t has a larger range of positive values than ssize_t). A sentence restricting the
size of the size_t object is added to the description to resolve this conflict.

The mq_timedreceive() function is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the mq_timedreceive() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE PASC Interpretation 1003.1 #109 is applied, correcting the return type for mq_timedreceive()
from int to ssize_t.

Issue 7
The mq_timedreceive() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

Issue 8
Austin Group Defect 592 is applied, removing text relating to <time.h> from the SYNOPSIS and
DESCRIPTION sections.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1461

49128

49129

49130

49131

49132

49133

49134

49135

49136

49137

49138

49139

49140

49141

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_send() System Interfaces

NAME
mq_send, mq_timedsend — send a message to a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio);

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio, const struct timespec *abstime);

DESCRIPTION
The mq_send() function shall add the message pointed to by the argument msg_ptr to the
message queue specified by mqdes. The msg_len argument specifies the length of the message, in
bytes, pointed to by msg_ptr. The value of msg_len shall be less than or equal to the mq_msgsize
attribute of the message queue, or mq_send() shall fail.

If the specified message queue is not full, mq_send() shall behave as if the message is inserted
into the message queue at the position indicated by the msg_prio argument. A message with a
larger numeric value of msg_prio shall be inserted before messages with lower values of
msg_prio. A message shall be inserted after other messages in the queue, if any, with equal
msg_prio. The value of msg_prio shall be less than {MQ_PRIO_MAX}.

If the specified message queue is full and O_NONBLOCK is not set in the message queue
description associated with mqdes, mq_send() shall block until space becomes available to
enqueue the message, or until mq_send() is interrupted by a signal. If more than one thread is
waiting to send when space becomes available in the message queue and the Priority Scheduling
option is supported, then the thread of the highest priority that has been waiting the longest
shall be unblocked to send its message. Otherwise, it is unspecified which waiting thread is
unblocked. If the specified message queue is full and O_NONBLOCK is set in the message
queue description associated with mqdes, the message shall not be queued and mq_send() shall
return an error.

The mq_timedsend() function shall add a message to the message queue specified by mqdes in the
manner defined for the mq_send() function. However, if the specified message queue is full and
O_NONBLOCK is not set in the message queue description associated with mqdes, the wait for
sufficient room in the queue shall be terminated when the specified timeout expires. If
O_NONBLOCK is set in the message queue description, this function shall be equivalent to
mq_send().

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based.

Under no circumstance shall the operation fail with a timeout if there is sufficient room in the
queue to add the message immediately. The validity of the abstime parameter need not be
checked when there is sufficient room in the queue.

RETURN VALUE
Upon successful completion, the mq_send() and mq_timedsend() functions shall return a value of
zero. Otherwise, no message shall be enqueued, the functions shall return −1, and errno shall be
set to indicate the error.

1462 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49142

49143

49144

49145

49146

49147

49148

49149

49150

49151

49152

49153

49154

49155

49156

49157

49158

49159

49160

49161

49162

49163

49164

49165

49166

49167

49168

49169

49170

49171

49172

49173

49174

49175

49176

49177

49178

49179

49180

49181

49182

49183

49184

49185

49186

49187

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_send()

ERRORS
The mq_send() and mq_timedsend() functions shall fail if:

[EAGAIN] The O_NONBLOCK flag is set in the message queue description associated
with mqdes, and the specified message queue is full.

[EBADF] The mqdes argument is not a valid message queue descriptor open for writing.

[EINTR] A signal interrupted the call to mq_send() or mq_timedsend().

[EINVAL] The value of msg_prio was outside the valid range.

[EINVAL] The process or thread would have blocked, and the abstime parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of
the message queue.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
but the timeout expired before the message could be added to the queue.

EXAMPLES
None.

APPLICATION USAGE
The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the
application. Message priorities range from 0 to {MQ_PRIO_MAX}−1.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_receive(), mq_setattr(), time()

XBD <mqueue.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_send() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added for alignment with IEEE Std 1003.1d-1999.

Issue 7
The mq_timedsend() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

Issue 8
Austin Group Defect 592 is applied, removing text relating to <time.h> from the SYNOPSIS and
DESCRIPTION sections.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1463

49188

49189

49190

49191

49192

49193

49194

49195

49196

49197

49198

49199

49200

49201

49202

49203

49204

49205

49206

49207

49208

49209

49210

49211

49212

49213

49214

49215

49216

49217

49218

49219

49220

49221

49222

49223

49224

49225

49226

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_setattr() System Interfaces

NAME
mq_setattr — set message queue attributes (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *restrict mqstat,
struct mq_attr *restrict omqstat);

DESCRIPTION
The mq_setattr() function shall set attributes associated with the open message queue
description referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr
structure shall be set to the specified values upon successful completion of mq_setattr():

mq_flags The value of this member is the bitwise-logical OR of zero or more of
O_NONBLOCK and any implementation-defined flags.

The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure
shall be ignored by mq_setattr().

If omqstat is non-NULL, the mq_setattr() function shall store, in the location referenced by
omqstat, the previous message queue attributes and the current queue status. These values shall
be the same as would be returned by a call to mq_getattr() at that point.

RETURN VALUE
Upon successful completion, the function shall return a value of zero and the attributes of the
message queue shall have been changed as specified.

Otherwise, the message queue attributes shall be unchanged, and the function shall return a
value of −1 and set errno to indicate the error.

ERRORS
The mq_setattr() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

1464 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49227

49228

49229

49230

49231

49232

49233

49234

49235

49236

49237

49238

49239

49240

49241

49242

49243

49244

49245

49246

49247

49248

49249

49250

49251

49252

49253

49254

49255

49256

49257

49258

49259

49260

49261

49262

49263

49264

49265

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_setattr()

Issue 6
The mq_setattr() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

The restrict keyword is added to the mq_setattr() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1465

49266

49267

49268

49269

49270

49271

49272

49273

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_timedreceive() System Interfaces

NAME
mq_timedreceive — receive a message from a message queue (ADVANCED REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to mq_receive().

1466 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49274

49275

49276

49277

49278

49279

49280

49281

49282

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_timedsend()

NAME
mq_timedsend — send a message to a message queue (ADVANCED REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio, const struct timespec *abstime);

DESCRIPTION
Refer to mq_send().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1467

49283

49284

49285

49286

49287

49288

49289

49290

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mq_unlink() System Interfaces

NAME
mq_unlink — remove a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_unlink(const char *name);

DESCRIPTION
The mq_unlink() function shall remove the message queue named by the string name. If one or
more processes have the message queue open when mq_unlink() is called, destruction of the
message queue shall be postponed until all references to the message queue have been closed.
However, the mq_unlink() call need not block until all references have been closed; it may return
immediately.

After a successful call to mq_unlink(), reuse of the name shall subsequently cause mq_open() to
behave as if no message queue of this name exists (that is, mq_open() shall fail if O_CREAT is not
set, or shall create a new message queue if O_CREAT is set).

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the named
message queue shall be unchanged by this function call, and the function shall return a value of
−1 and set errno to indicate the error.

ERRORS
The mq_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named message queue.

[EINTR] The call to mq_unlink() blocked waiting for all references to the named
message queue to be closed and a signal interrupted the call.

[ENOENT] The named message queue does not exist.

The mq_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to mq_unlink()
with a name argument that contains the same message queue name as was
previously used in a successful mq_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

1468 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49291

49292

49293

49294

49295

49296

49297

49298

49299

49300

49301

49302

49303

49304

49305

49306

49307

49308

49309

49310

49311

49312

49313

49314

49315

49316

49317

49318

49319

49320

49321

49322

49323

49324

49325

49326

49327

49328

49329

49330

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mq_unlink()

FUTURE DIRECTIONS
A future version might require the mq_open() and mq_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
mq_close(), mq_open(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_unlink() function is marked as part of the Message Passing option.

The Open Group Corrigendum U021/5 is applied, clarifying that upon unsuccessful completion,
the named message queue is unchanged by this function.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
``shall fail’’ to a ``may fail’’ error .

Austin Group Interpretation 1003.1-2001 #141 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0230 [504] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1469

49331

49332

49333

49334

49335

49336

49337

49338

49339

49340

49341

49342

49343

49344

49345

49346

49347

49348

49349

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mrand48() System Interfaces

NAME
mrand48 — generate uniformly distributed pseudo-random signed long integers

SYNOPSIS
XSI #include <stdlib.h>

long mrand48(void);

DESCRIPTION
Refer to drand48().

1470 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49350

49351

49352

49353

49354

49355

49356

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces msgctl()

NAME
msgctl — XSI message control operations

SYNOPSIS
XSI #include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

DESCRIPTION
The msgctl() function operates on XSI message queues (see XBD Section 3.206, on page 61). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The msgctl() function shall provide message control operations as specified by cmd. The
following values for cmd, and the message control operations they specify, are:

IPC_STAT Place the current value of each member of the msqid_ds data structure
associated with msqid into the structure pointed to by buf . The contents of this
structure are defined in <sys/msg.h>.

IPC_SET Set the value of the following members of the msqid_ds data structure
associated with msqid to the corresponding value found in the structure
pointed to by buf :

msg_perm.uid
msg_perm.gid
msg_perm.mode
msg_qbytes

Also, the msg_ctime timestamp shall be set to the current time, as described in
Section 2.7.1 (on page 526).

IPC_SET can only be executed by a process with appropriate privileges or that
has an effective user ID equal to the value of msg_perm.cuid or
msg_perm.uid in the msqid_ds data structure associated with msqid. Only a
process with appropriate privileges can raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system and
destroy the message queue and msqid_ds data structure associated with it.
IPC_RMD can only be executed by a process with appropriate privileges or
one that has an effective user ID equal to the value of msg_perm.cuid or
msg_perm.uid in the msqid_ds data structure associated with msqid.

RETURN VALUE
Upon successful completion, msgctl() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The msgctl() function shall fail if:

[EACCES] The argument cmd is IPC_STAT and the calling process does not have read
permission; see Section 2.7 (on page 526).

[EINVAL] The value of msqid is not a valid message queue identifier; or the value of cmd
is not a valid command.

[EPERM] The argument cmd is IPC_RMID or IPC_SET and the effective user ID of the
calling process is not equal to that of a process with appropriate privileges and
it is not equal to the value of msg_perm.cuid or msg_perm.uid in the data

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1471

49357

49358

49359

49360

49361

49362

49363

49364

49365

49366

49367

49368

49369

49370

49371

49372

49373

49374

49375

49376

49377

49378

49379

49380

49381

49382

49383

49384

49385

49386

49387

49388

49389

49390

49391

49392

49393

49394

49395

49396

49397

49398

49399

49400

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msgctl() System Interfaces

structure associated with msqid.

[EPERM] The argument cmd is IPC_SET, an attempt is being made to increase to the
value of msg_qbytes, and the effective user ID of the calling process does not
have appropriate privileges.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 (on page 526) can be easily modified to
use the alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgget(), msgrcv(), msgsnd()

XBD Section 3.206 (on page 61), <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0395 [345] is applied.

1472 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49401

49402

49403

49404

49405

49406

49407

49408

49409

49410

49411

49412

49413

49414

49415

49416

49417

49418

49419

49420

49421

49422

49423

49424

49425

49426

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces msgget()

NAME
msgget — get the XSI message queue identifier

SYNOPSIS
XSI #include <sys/msg.h>

int msgget(key_t key, int msgflg);

DESCRIPTION
The msgget() function operates on XSI message queues (see XBD Section 3.206, on page 61). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The msgget() function shall return the message queue identifier associated with the argument
key.

A message queue identifier, associated message queue, and data structure (see <sys/msg.h>),
shall be created for the argument key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a message queue identifier associated with it, and
(msgflg & IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new message queue identifier shall be
initialized as follows:

• msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid shall be set to the
effective user ID and effective group ID, respectively, of the calling process.

• The low-order 9 bits of msg_perm.mode shall be set to the low-order 9 bits of msgflg.

• msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime shall be set to 0.

• msg_ctime shall be set to the current time, as described in Section 2.7.1 (on page 526).

• msg_qbytes shall be set to the system limit.

RETURN VALUE
Upon successful completion, msgget() shall return a non-negative integer, namely a message
queue identifier. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The msgget() function shall fail if:

[EACCES] A message queue identifier exists for the argument key, but operation
permission as specified by the low-order 9 bits of msgflg would not be granted;
see Section 2.7 (on page 526).

[EEXIST] A message queue identifier exists for the argument key but ((msgflg &
IPC_CREAT) && (msgflg & IPC_EXCL)) is non-zero.

[ENOENT] A message queue identifier does not exist for the argument key and (msgflg &
IPC_CREAT) is 0.

[ENOSPC] A message queue identifier is to be created but the system-imposed limit on
the maximum number of allowed message queue identifiers system-wide
would be exceeded.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1473

49427

49428

49429

49430

49431

49432

49433

49434

49435

49436

49437

49438

49439

49440

49441

49442

49443

49444

49445

49446

49447

49448

49449

49450

49451

49452

49453

49454

49455

49456

49457

49458

49459

49460

49461

49462

49463

49464

49465

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msgget() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 (on page 526) can be easily modified to
use the alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), ftok(), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgrcv(), msgsnd()

XBD Section 3.206 (on page 61), <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0396 [345] and XSH/TC1-2008/0397
[344] are applied.

1474 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49466

49467

49468

49469

49470

49471

49472

49473

49474

49475

49476

49477

49478

49479

49480

49481

49482

49483

49484

49485

49486

49487

49488

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces msgrcv()

NAME
msgrcv — XSI message receive operation

SYNOPSIS
XSI #include <sys/msg.h>

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,
int msgflg);

DESCRIPTION
The msgrcv() function operates on XSI message queues (see XBD Section 3.206, on page 61). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The msgrcv() function shall read a message from the queue associated with the message queue
identifier specified by msqid and place it in the user-defined buffer pointed to by msgp.

The application shall ensure that the argument msgp points to a user-defined buffer that contains
first a field of type long specifying the type of the message, and then a data portion that holds
the data bytes of the message. The structure below is an example of what this user-defined
buffer might look like:

struct mymsg {
long mtype; /* Message type. */
char mtext[1]; /* Message text. */

}

The structure member mtype is the received message’s type as specified by the sending process.

The structure member mtext is the text of the message.

The argument msgsz specifies the size in bytes of mtext. The received message shall be truncated
to msgsz bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is non-zero. The
truncated part of the message shall be lost and no indication of the truncation shall be given to
the calling process.

If the value of msgsz is greater than {SSIZE_MAX}, the result is implementation-defined.

The argument msgtyp specifies the type of message requested as follows:

• If msgtyp is 0, the first message on the queue shall be received.

• If msgtyp is greater than 0, the first message of type msgtyp shall be received.

• If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the
absolute value of msgtyp shall be received.

The argument msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

• If (msgflg & IPC_NOWAIT) is non-zero, the calling thread shall return immediately with a
return value of −1 and errno set to [ENOMSG].

• If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
following occurs:

— A message of the desired type is placed on the queue.

— The message queue identifier msqid is removed from the system; when this occurs,
errno shall be set to [EIDRM] and −1 shall be returned.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1475

49489

49490

49491

49492

49493

49494

49495

49496

49497

49498

49499

49500

49501

49502

49503

49504

49505

49506

49507

49508

49509

49510

49511

49512

49513

49514

49515

49516

49517

49518

49519

49520

49521

49522

49523

49524

49525

49526

49527

49528

49529

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msgrcv() System Interfaces

— The calling thread receives a signal that is to be caught; in this case a message is not
received and the calling thread resumes execution in the manner prescribed in
sigaction().

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid:

• msg_qnum shall be decremented by 1.

• msg_lrpid shall be set to the process ID of the calling process.

• msg_rtime shall be set to the current time, as described in Section 2.7.1 (on page 526).

RETURN VALUE
Upon successful completion, msgrcv() shall return a value equal to the number of bytes actually
placed into the buffer mtext. Otherwise, no message shall be received, msgrcv() shall return −1,
and errno shall be set to indicate the error.

ERRORS
The msgrcv() function shall fail if:

[E2BIG] The value of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is 0.

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
526).

[EIDRM] The message queue identifier msqid is removed from the system.

[EINTR] The msgrcv() function was interrupted by a signal.

[EINVAL] msqid is not a valid message queue identifier.

[ENOMSG] The queue does not contain a message of the desired type and (msgflg &
IPC_NOWAIT) is non-zero.

EXAMPLES

Receiving a Message

The following example receives the first message on the queue (based on the value of the msgtyp
argument, 0). The queue is identified by the msqid argument (assuming that the value has
previously been set). This call specifies that an error should be reported if no message is
available, but not if the message is too large. The message size is calculated directly using the
sizeof operator.

#include <sys/msg.h>
...
int result;
int msqid;
struct message {

long type;
char text[20];

} msg;
long msgtyp = 0;
...
result = msgrcv(msqid, (void *) &msg, sizeof(msg.text),

msgtyp, MSG_NOERROR | IPC_NOWAIT);

1476 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49530

49531

49532

49533

49534

49535

49536

49537

49538

49539

49540

49541

49542

49543

49544

49545

49546

49547

49548

49549

49550

49551

49552

49553

49554

49555

49556

49557

49558

49559

49560

49561

49562

49563

49564

49565

49566

49567

49568

49569

49570

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces msgrcv()

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 (on page 526) can be easily modified to
use the alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(), msgsnd(),
sigaction()

XBD Section 3.206 (on page 61), <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The type of the return value is changed from int to ssize_t, and a warning is added to the
DESCRIPTION about values of msgsz larger the {SSIZE_MAX}.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0398 [345] and XSH/TC1-2008/0399
[421] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1477

49571

49572

49573

49574

49575

49576

49577

49578

49579

49580

49581

49582

49583

49584

49585

49586

49587

49588

49589

49590

49591

49592

49593

49594

49595

49596

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msgsnd() System Interfaces

NAME
msgsnd — XSI message send operation

SYNOPSIS
XSI #include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

DESCRIPTION
The msgsnd() function operates on XSI message queues (see XBD Section 3.206, on page 61). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The msgsnd() function shall send a message to the queue associated with the message queue
identifier specified by msqid.

The application shall ensure that the argument msgp points to a user-defined buffer that contains
first a field of type long specifying the type of the message, and then a data portion that holds
the data bytes of the message. The structure below is an example of what this user-defined
buffer might look like:

struct mymsg {
long mtype; /* Message type. */
char mtext[1]; /* Message text. */

}

The structure member mtype is a non-zero positive type long that can be used by the receiving
process for message selection.

The structure member mtext is any text of length msgsz bytes. The argument msgsz can range
from 0 to a system-imposed maximum.

The argument msgflg specifies the action to be taken if one or more of the following is true:

• The number of bytes already on the queue is equal to msg_qbytes; see <sys/msg.h>.

• The total number of messages on all queues system-wide is equal to the system-imposed
limit.

These actions are as follows:

• If (msgflg & IPC_NOWAIT) is non-zero, the message shall not be sent and the calling
thread shall return immediately.

• If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
following occurs:

— The condition responsible for the suspension no longer exists, in which case the
message is sent.

— The message queue identifier msqid is removed from the system; when this occurs,
errno shall be set to [EIDRM] and −1 shall be returned.

— The calling thread receives a signal that is to be caught; in this case the message is not
sent and the calling thread resumes execution in the manner prescribed in sigaction().

1478 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49597

49598

49599

49600

49601

49602

49603

49604

49605

49606

49607

49608

49609

49610

49611

49612

49613

49614

49615

49616

49617

49618

49619

49620

49621

49622

49623

49624

49625

49626

49627

49628

49629

49630

49631

49632

49633

49634

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces msgsnd()

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid; see <sys/msg.h>:

• msg_qnum shall be incremented by 1.

• msg_lspid shall be set to the process ID of the calling process.

• msg_stime shall be set to the current time, as described in Section 2.7.1 (on page 526).

RETURN VALUE
Upon successful completion, msgsnd() shall return 0; otherwise, no message shall be sent,
msgsnd() shall return −1, and errno shall be set to indicate the error.

ERRORS
The msgsnd() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
526).

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is non-zero.

[EIDRM] The message queue identifier msqid is removed from the system.

[EINTR] The msgsnd() function was interrupted by a signal.

[EINVAL] The value of msqid is not a valid message queue identifier, or the value of
mtype is less than 1; or the value of msgsz is greater than the system-imposed
limit.

EXAMPLES

Sending a Message

The following example sends a message to the queue identified by the msqid argument
(assuming that value has previously been set). This call specifies that an error should be
reported if no message is available. The message size is calculated directly using the sizeof
operator.

#include <sys/msg.h>
...
int result;
int msqid;
struct message {

long type;
char text[20];

} msg;

msg.type = 1;
strcpy(msg.text, "This is message 1");
...
result = msgsnd(msqid, (void *) &msg, sizeof(msg.text), IPC_NOWAIT);

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 (on page 526) can be easily modified to
use the alternative interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1479

49635

49636

49637

49638

49639

49640

49641

49642

49643

49644

49645

49646

49647

49648

49649

49650

49651

49652

49653

49654

49655

49656

49657

49658

49659

49660

49661

49662

49663

49664

49665

49666

49667

49668

49669

49670

49671

49672

49673

49674

49675

49676

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msgsnd() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(), msgrcv(),
sigaction()

XBD Section 3.206 (on page 61), <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0400 [345] and XSH/TC1-2008/0401
[359] are applied.

1480 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49677

49678

49679

49680

49681

49682

49683

49684

49685

49686

49687

49688

49689

49690

49691

49692

49693

49694

49695

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces msync()

NAME
msync — synchronize memory with physical storage

SYNOPSIS
XSI|SIO #include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

DESCRIPTION
The msync() function shall write all modified data to permanent storage locations, if any, in
those whole pages containing any part of the address space of the process starting at address
addr and continuing for len bytes. If no such storage exists, msync() need not have any effect. If
requested, the msync() function shall then invalidate cached copies of data.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

For mappings to files, the msync() function shall ensure that all write operations are completed
as defined for synchronized I/O data integrity completion. It is unspecified whether the
implementation also writes out other file attributes. When the msync() function is called on
MAP_PRIVATE mappings, any modified data shall not be written to the underlying object and
shall not cause such data to be made visible to other processes. It is unspecified whether data in
MAP_PRIVATE mappings has any permanent storage locations. The effect of msync() on an

SHM anonymous memory object, shared memory object, or
TYM typed memory object is unspecified. The behavior of this function is unspecified if the mapping

was not established by a call to mmap().

The flags argument is constructed from the bitwise-inclusive OR of one or more of the following
flags defined in the <sys/mman.h> header:

Symbolic Constant Description
MS_ASYNC Perform asynchronous writes.
MS_SYNC Perform synchronous writes.
MS_INVALIDATE Invalidate cached data.

When MS_ASYNC is specified, msync() shall return immediately once all the write operations
are initiated or queued for servicing; when MS_SYNC is specified, msync() shall not return until
all write operations are completed as defined for synchronized I/O data integrity completion.
Either MS_ASYNC or MS_SYNC shall be specified, but not both.

When MS_INVALIDATE is specified, msync() shall invalidate all cached copies of mapped data
that are inconsistent with the permanent storage locations such that subsequent references shall
obtain data that was consistent with the permanent storage locations sometime between the call
to msync() and the first subsequent memory reference to the data.

If msync() causes any write to a file, the file’s last data modification and last file status change
timestamps shall be marked for update.

RETURN VALUE
Upon successful completion, msync() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The msync() function shall fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1481

49696

49697

49698

49699

49700

49701

49702

49703

49704

49705

49706

49707

49708

49709

49710

49711

49712

49713

49714

49715

49716

49717

49718

49719

49720

49721

49722

49723

49724

49725

49726

49727

49728

49729

49730

49731

49732

49733

49734

49735

49736

49737

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msync() System Interfaces

[EBUSY] Some or all of the addresses in the range starting at addr and continuing for len
bytes are locked, and MS_INVALIDATE is specified.

[EINVAL] The value of flags is invalid.

[ENOMEM] The addresses in the range starting at addr and continuing for len bytes are
outside the range allowed for the address space of a process or specify one or
more pages that are not mapped.

The msync() function may fail if:

[EINVAL] The value of addr is not a multiple of the page size as returned by sysconf().

EXAMPLES
None.

APPLICATION USAGE
The msync() function is only supported if the Synchronized Input and Output option is
supported, and thus need not be available on all implementations.

The msync() function should be used by programs that require a memory object to be in a
known state; for example, in building transaction facilities.

Normal system activity can cause pages to be written to disk. Therefore, there are no guarantees
that msync() is the only control over when pages are or are not written to disk.

RATIONALE
The msync() function writes out data in a mapped region to the permanent storage for the
underlying object. The call to msync() ensures data integrity of the file.

After the data is written out, any cached data may be invalidated if the MS_INVALIDATE flag
was specified. This is useful on systems that do not support read/write consistency.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with msync() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• [EBUSY] and a new form of [EINVAL] are added as mandatory error conditions.

Issue 6
The msync() function is marked as part of the Memory Mapped Files and Synchronized Input
and Output options.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The [EBUSY] mandatory error condition is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

1482 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49738

49739

49740

49741

49742

49743

49744

49745

49746

49747

49748

49749

49750

49751

49752

49753

49754

49755

49756

49757

49758

49759

49760

49761

49762

49763

49764

49765

49766

49767

49768

49769

49770

49771

49772

49773

49774

49775

49776

49777

49778

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces msync()

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size.

• The second [EINVAL] error condition is made mandatory.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding reference to
typed memory objects.

Issue 7
Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

SD5-XSH-ERN-110 is applied.

The msync() function is marked as part of the Synchronized Input and Output option or XSI
option as the Memory Mapped Files is moved to the Base.

Changes are made related to support for finegrained timestamps.

Issue 8
Austin Group Defect 850 is applied, adding anonymous memory objects.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1483

49779

49780

49781

49782

49783

49784

49785

49786

49787

49788

49789

49790

49791

49792

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mtx_destroy() System Interfaces

NAME
mtx_destroy, mtx_init — destroy and initialize a mutex

SYNOPSIS
#include <threads.h>

void mtx_destroy(mtx_t *mtx);
int mtx_init(mtx_t *mtx, int type);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The mtx_destroy() function shall release any resources used by the mutex pointed to by mtx. A
destroyed mutex object can be reinitialized using mtx_init(); the results of otherwise referencing
the object after it has been destroyed are undefined. It shall be safe to destroy an initialized
mutex that is unlocked. Attempting to destroy a locked mutex, or a mutex that another thread is
attempting to lock, or a mutex that is being used in a cnd_timedwait() or cnd_wait() call by
another thread, results in undefined behavior. The behavior is undefined if the value specified
by the mtx argument to mtx_destroy() does not refer to an initialized mutex.

The mtx_init() function shall initialize a mutex object with properties indicated by type, whose
valid values include:

mtx_plain for a simple non-recursive mutex,

mtx_timed for a non-recursive mutex that supports timeout,

mtx_plain|mtx_recursive for a simple recursive mutex, or

mtx_timed|mtx_recursive for a recursive mutex that supports timeout.

If the mtx_init() function succeeds, it shall set the mutex pointed to by mtx to a value that
uniquely identifies the newly initialized mutex. Upon successful initialization, the state of the
mutex shall become initialized and unlocked. Attempting to initialize an already initialized
mutex results in undefined behavior.

CX See Section 2.9.9 (on page 548) for further requirements.

These functions shall not be affected if the calling thread executes a signal handler during the
call.

RETURN VALUE
The mtx_destroy() function shall not return a value.

The mtx_init() function shall return thrd_success on success or thrd_error if the request
could not be honored.

ERRORS
No errors are defined.

1484 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49793

49794

49795

49796

49797

49798

49799

49800

49801

49802

49803

49804

49805

49806

49807

49808

49809

49810

49811

49812

49813

49814

49815

49816

49817

49818

49819

49820

49821

49822

49823

49824

49825

49826

49827

49828

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mtx_destroy()

EXAMPLES
None.

APPLICATION USAGE
A mutex can be destroyed immediately after it is unlocked. However, since attempting to
destroy a locked mutex, or a mutex that another thread is attempting to lock, or a mutex that is
being used in a cnd_timedwait() or cnd_wait() call by another thread results in undefined
behavior, care must be taken to ensure that no other thread may be referencing the mutex.

RATIONALE
These functions are not affected by signal handlers for the reasons stated in XRAT Section B.2.3
(on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
cnd_timedwait(), mtx_lock()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1485

49829

49830

49831

49832

49833

49834

49835

49836

49837

49838

49839

49840

49841

49842

49843

49844

49845

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mtx_lock() System Interfaces

NAME
mtx_lock, mtx_timedlock, mtx_trylock, mtx_unlock — lock and unlock a mutex

SYNOPSIS
#include <threads.h>

int mtx_lock(mtx_t *mtx);
int mtx_timedlock(mtx_t *restrict mtx,

const struct timespec *restrict ts);
int mtx_trylock(mtx_t *mtx);
int mtx_unlock(mtx_t *mtx);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The mtx_lock() function shall block until it locks the mutex pointed to by mtx. If the mutex is
non-recursive, the application shall ensure that it is not already locked by the calling thread.

The mtx_timedlock() function shall block until it locks the mutex pointed to by mtx or until after
the TIME_UTC-based calendar time pointed to by ts. The application shall ensure that the

CX specified mutex supports timeout. Under no circumstance shall the function fail with a timeout
if the mutex can be locked immediately. The validity of the ts parameter need not be checked if
the mutex can be locked immediately.

The mtx_trylock() function shall endeavor to lock the mutex pointed to by mtx. If the mutex is
already locked (by any thread, including the current thread), the function shall return without
blocking. If the mutex is recursive and the mutex is currently owned by the calling thread, the
mutex lock count (see below) shall be incremented by one and the mtx_trylock() function shall
immediately return success.

CX These functions shall not be affected if the calling thread executes a signal handler during the
call; if a signal is delivered to a thread waiting for a mutex, upon return from the signal handler
the thread shall resume waiting for the mutex as if it was not interrupted.

If a call to mtx_lock(), mtx_timedlock() or mtx_trylock() locks the mutex, prior calls to
mtx_unlock() on the same mutex shall synchronize with this lock operation.

The mtx_unlock() function shall unlock the mutex pointed to by mtx. The application shall
CX ensure that the mutex pointed to by mtx is locked by the calling thread. If there are threads

blocked on the mutex object referenced by mtx when mtx_unlock() is called, resulting in the
mutex becoming available, the scheduling policy shall determine which thread shall acquire the
mutex.

A recursive mutex shall maintain the concept of a lock count. When a thread successfully
acquires a mutex for the first time, the lock count shall be set to one. Every time a thread relocks
this mutex, the lock count shall be incremented by one. Each time the thread unlocks the mutex,
the lock count shall be decremented by one. When the lock count reaches zero, the mutex shall
become available for other threads to acquire.

For purposes of determining the existence of a data race, mutex lock and unlock operations on
mutexes of type mtx_t behave as atomic operations. All lock and unlock operations on a
particular mutex occur in some particular total order.

If mtx does not refer to an initialized mutex object, the behavior of these functions is undefined.

1486 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49846

49847

49848

49849

49850

49851

49852

49853

49854

49855

49856

49857

49858

49859

49860

49861

49862

49863

49864

49865

49866

49867

49868

49869

49870

49871

49872

49873

49874

49875

49876

49877

49878

49879

49880

49881

49882

49883

49884

49885

49886

49887

49888

49889

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces mtx_lock()

RETURN VALUE
The mtx_lock() and mtx_unlock() functions shall return thrd_success on success, or
thrd_error if the request could not be honored.

The mtx_timedlock() function shall return thrd_success on success, or thrd_timedout if the
time specified was reached without acquiring the requested resource, or thrd_error if the
request could not be honored.

The mtx_trylock() function shall return thrd_success on success, or thrd_busy if the
resource requested is already in use, or thrd_error if the request could not be honored. The
mtx_trylock() function can spuriously fail to lock an unused resource, in which case it shall
return thrd_busy.

ERRORS
See RETURN VALUE.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
These functions are not affected by signal handlers for the reasons stated in XRAT Section B.2.3
(on page 3742).

Since <pthread.h> has no equivalent of the mtx_timed mutex property, if the <threads.h>
interfaces are implemented as a thin wrapper around <pthread.h> interfaces (meaning mtx_t
and pthread_mutex_t are the same type), all mutexes support timeout and mtx_timedlock() will
not fail for a mutex that was not initialized with mtx_timed. Alternatively, implementations
can use a less thin wrapper where mtx_t contains additional properties that are not held in
pthread_mutex_t in order to be able to return a failure indication from mtx_timedlock() calls
where the mutex was not initialized with mtx_timed.

FUTURE DIRECTIONS
None.

SEE ALSO
mtx_destroy(), timespec_get()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1487

49890

49891

49892

49893

49894

49895

49896

49897

49898

49899

49900

49901

49902

49903

49904

49905

49906

49907

49908

49909

49910

49911

49912

49913

49914

49915

49916

49917

49918

49919

49920

49921

49922

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

munlock() System Interfaces

NAME
munlock — unlock a range of process address space

SYNOPSIS
MLR #include <sys/mman.h>

int munlock(const void *addr, size_t len);

DESCRIPTION
Refer to mlock().

1488 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49923

49924

49925

49926

49927

49928

49929

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces munlockall()

NAME
munlockall — unlock the address space of a process

SYNOPSIS
ML #include <sys/mman.h>

int munlockall(void);

DESCRIPTION
Refer to mlockall().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1489

49930

49931

49932

49933

49934

49935

49936

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

munmap() System Interfaces

NAME
munmap — unmap pages of memory

SYNOPSIS
#include <sys/mman.h>

int munmap(void *addr, size_t len);

DESCRIPTION
The munmap() function shall remove any mappings for those entire pages containing any part of
the address space of the process starting at addr and continuing for len bytes. Further references
to these pages shall result in the generation of a SIGSEGV signal to the process. If there are no
mappings in the specified address range, then munmap() has no effect.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

If a mapping to be removed was private, any modifications made in this address range shall be
discarded.

ML|MLR Any memory locks (see mlock() and mlockall()) associated with this address range shall be
removed, as if by an appropriate call to munlock().

TYM If a mapping removed from a typed memory object causes the corresponding address range of
the memory pool to be inaccessible by any process in the system except through allocatable
mappings (that is, mappings of typed memory objects opened with the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag), then that range of the memory pool shall
become deallocated and may become available to satisfy future typed memory allocation
requests.

A mapping removed from a typed memory object opened with the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag shall not affect in any way the availability of
that typed memory for allocation.

The behavior of this function is unspecified if the mapping was not established by a call to
mmap().

RETURN VALUE
Upon successful completion, munmap() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The munmap() function shall fail if:

[EINVAL] Addresses in the range [addr,addr+len) are outside the valid range for the
address space of a process.

[EINVAL] The len argument is 0.

The munmap() function may fail if:

[EINVAL] The addr argument is not a multiple of the page size as returned by sysconf().

1490 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

49937

49938

49939

49940

49941

49942

49943

49944

49945

49946

49947

49948

49949

49950

49951

49952

49953

49954

49955

49956

49957

49958

49959

49960

49961

49962

49963

49964

49965

49966

49967

49968

49969

49970

49971

49972

49973

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces munmap()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The munmap() function corresponds to SVR4, just as the mmap() function does.

It is possible that an application has applied process memory locking to a region that contains
shared memory. If this has occurred, the munmap() call ignores those locks and, if necessary,
causes those locks to be removed.

Most implementations require that addr is a multiple of the page size as returned by sysconf().

FUTURE DIRECTIONS
None.

SEE ALSO
mlock(), mlockall(), mmap(), posix_typed_mem_open(), sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with munmap() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• The SIGBUS error is no longer permitted to be generated.
Issue 6

The munmap() function is marked as part of the Memory Mapped Files and Shared Memory
Objects option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size.

• The [EINVAL] error conditions are added.

The following changes are made for alignment with IEEE Std 1003.1j-2000:

• Semantics for typed memory objects are added to the DESCRIPTION.

• The posix_typed_mem_open() function is added to the SEE ALSO section.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/36 is applied, changing the margin code
in the SYNOPSIS from MF|SHM to MC3 (notation for MF|SHM|TYM).

Issue 7
Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The munmap() function is moved from the Memory Mapped Files option to the Base.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1491

49974

49975

49976

49977

49978

49979

49980

49981

49982

49983

49984

49985

49986

49987

49988

49989

49990

49991

49992

49993

49994

49995

49996

49997

49998

49999

50000

50001

50002

50003

50004

50005

50006

50007

50008

50009

50010

50011

50012

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nan() System Interfaces

NAME
nan, nanf, nanl — return quiet NaN

SYNOPSIS
#include <math.h>

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The function call nan("n-char-sequence") shall be equivalent to:

strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan(" ") shall be equivalent to:

strtod("NAN()", (char **) NULL)

If tagp does not point to an n-char sequence or an empty string, the function call shall be
equivalent to:

strtod("NAN", (char **) NULL)

Function calls to nanf() and nanl() are equivalent to the corresponding function calls to strtof()
and strtold().

RETURN VALUE
These functions shall return a quiet NaN, if available, with content indicated through tagp.

MX The returned value shall be exact and shall be independent of the current rounding direction
mode.

If the implementation does not support quiet NaNs, these functions shall return zero.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod()

XBD <math.h>

1492 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50013

50014

50015

50016

50017

50018

50019

50020

50021

50022

50023

50024

50025

50026

50027

50028

50029

50030

50031

50032

50033

50034

50035

50036

50037

50038

50039

50040

50041

50042

50043

50044

50045

50046

50047

50048

50049

50050

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces nan()

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1493

50051

50052

50053

50054

50055

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nanosleep() System Interfaces

NAME
nanosleep — high resolution sleep

SYNOPSIS
CX #include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

DESCRIPTION
The nanosleep() function shall cause the current thread to be suspended from execution until
either the time interval specified by the rqtp argument has elapsed or a signal is delivered to the
calling thread, and its action is to invoke a signal-catching function or to terminate the process.
The suspension time may be longer than requested because the argument value is rounded up to
an integer multiple of the sleep resolution or because of the scheduling of other activity by the
system. But, except for the case of being interrupted by a signal, the suspension time shall not be
less than the time specified by rqtp, as measured by the system clock CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any signal.

RETURN VALUE
If the nanosleep() function returns because the requested time has elapsed, its return value shall
be zero.

If the nanosleep() function returns because it has been interrupted by a signal, it shall return a
value of −1 and set errno to indicate the interruption. If the rmtp argument is non-NULL, the
timespec structure referenced by it is updated to contain the amount of time remaining in the
interval (the requested time minus the time actually slept). The rqtp and rmtp arguments can
point to the same object. If the rmtp argument is NULL, the remaining time is not returned.

If nanosleep() fails, it shall return a value of −1 and set errno to indicate the error.

ERRORS
The nanosleep() function shall fail if:

[EINTR] The nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
or equal to 1 000 million.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
It is common to suspend execution of a thread for an interval in order to poll the status of a non-
interrupting function. A large number of actual needs can be met with a simple extension to
sleep() that provides finer resolution.

In the POSIX.1-1990 standard and SVR4, it is possible to implement such a routine, but the
frequency of wakeup is limited by the resolution of the alarm() and sleep() functions. In 4.3 BSD,
it is possible to write such a routine using no static storage and reserving no system facilities.
Although it is possible to write a function with similar functionality to sleep() using the
remainder of the timer_*() functions, such a function requires the use of signals and the
reservation of some signal number. This volume of POSIX.1-2024 requires that nanosleep() be
non-intrusive of the signals function.

The nanosleep() function shall return a value of 0 on success and −1 on failure or if interrupted.

1494 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50056

50057

50058

50059

50060

50061

50062

50063

50064

50065

50066

50067

50068

50069

50070

50071

50072

50073

50074

50075

50076

50077

50078

50079

50080

50081

50082

50083

50084

50085

50086

50087

50088

50089

50090

50091

50092

50093

50094

50095

50096

50097

50098

50099

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces nanosleep()

This latter case is different from sleep(). This was done because the remaining time is returned
via an argument structure pointer, rmtp, instead of as the return value.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_nanosleep(), sleep()

XBD <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The nanosleep() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/37 is applied, updating the SEE ALSO
section to include the clock_nanosleep() function.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/63 is applied, correcting text in the
RATIONALE section.

Issue 7
SD5-XBD-ERN-33 is applied.

The nanosleep() function is moved from the Timers option to the Base.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0231 [909] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1495

50100

50101

50102

50103

50104

50105

50106

50107

50108

50109

50110

50111

50112

50113

50114

50115

50116

50117

50118

50119

50120

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nearbyint() System Interfaces

NAME
nearbyint, nearbyintf, nearbyintl — floating-point rounding functions

SYNOPSIS
#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall round their argument to an integer value in floating-point format, using
the current rounding direction and without raising the inexact floating-point exception.

RETURN VALUE
MX Upon successful completion, these functions shall return the rounded integer value. The result

shall have the same sign as x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0402 [346,428] is applied.

1496 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50121

50122

50123

50124

50125

50126

50127

50128

50129

50130

50131

50132

50133

50134

50135

50136

50137

50138

50139

50140

50141

50142

50143

50144

50145

50146

50147

50148

50149

50150

50151

50152

50153

50154

50155

50156

50157

50158

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces newlocale()

NAME
newlocale — create or modify a locale object

SYNOPSIS
CX #include <locale.h>

locale_t newlocale(int category_mask, const char *locale,
locale_t base);

DESCRIPTION
The newlocale() function shall create a new locale object or modify an existing one. If the base
argument is (locale_t)0, a new locale object shall be created, otherwise the locale specified by
base shall be modified. In the latter case it is unspecified whether the resulting locale object shall
be that pointed to by base modified in place, or whether that object shall be freed after a new
locale object is first created using some values from it.

The category_mask argument specifies the locale categories to be set or modified. Values for
category_mask shall be constructed by a bitwise-inclusive OR of the symbolic constants
LC_CTYPE_MASK, LC_NUMERIC_MASK, LC_TIME_MASK, LC_COLLATE_MASK,
LC_MONETARY_MASK, and LC_MESSAGES_MASK, or any of the implementation-defined
mask values defined in <locale.h>.

For each category with the corresponding bit set in category_mask the data from the locale named
by locale shall be used. In the case of modifying an existing locale object, the data from the locale
named by locale shall replace the existing data within the locale object. If a completely new locale
object is created, the data for all sections not requested by category_mask shall be taken from the
POSIX locale.

The following preset values of locale are defined for all settings of category_mask:

"POSIX" Specifies the minimal environment for C-language translation called the
POSIX locale.

"C" Equivalent to "POSIX".

" " Specifies an implementation-defined native environment. This corresponds to
the value of the associated environment variables, LC_* and LANG; see XBD
Chapter 7 (on page 127) and Chapter 8 (on page 167).

If the base argument is not (locale_t)0 and the newlocale() function call succeeds, the contents of
base are unspecified. Applications shall ensure that they stop using base as a locale object before
calling newlocale(). If the function call fails and the base argument is not (locale_t)0, the contents
of base shall remain valid and unchanged.

The behavior is undefined if the base argument is the special locale object
LC_GLOBAL_LOCALE, or is not a valid locale object handle and is not (locale_t)0.

RETURN VALUE
Upon successful completion, the newlocale() function shall return a handle which the caller may
use on subsequent calls to duplocale(), freelocale(), and other functions taking a locale_t
argument.

Upon failure, the newlocale() function shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The newlocale() function shall fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1497

50159

50160

50161

50162

50163

50164

50165

50166

50167

50168

50169

50170

50171

50172

50173

50174

50175

50176

50177

50178

50179

50180

50181

50182

50183

50184

50185

50186

50187

50188

50189

50190

50191

50192

50193

50194

50195

50196

50197

50198

50199

50200

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

newlocale() System Interfaces

[ENOMEM] There is not enough memory available to create the locale object or load the
locale data.

[EINVAL] The category_mask contains a bit that does not correspond to a valid category.

[ENOENT] For any of the categories in category_mask, the locale data is not available.

The newlocale() function may fail if:

[EINVAL] The locale argument is not a valid string pointer.

EXAMPLES

Constructing a Locale Object from Different Locales

The following example shows the construction of a locale where the LC_CTYPE category data
comes from a locale loc1 and the LC_TIME category data from a locale loc2:

#include <locale.h>
...
locale_t loc, new_loc;

/* Get the "loc1" data. */

loc = newlocale (LC_CTYPE_MASK, "loc1", (locale_t)0);
if (loc == (locale_t) 0)

abort ();

/* Get the "loc2" data. */

new_loc = newlocale (LC_TIME_MASK, "loc2", loc);
if (new_loc != (locale_t) 0)

/* We don t abort if this fails. In this case this
simply used to unchanged locale object. */

loc = new_loc;

...

Freeing up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", (locale_t)0);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

1498 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50201

50202

50203

50204

50205

50206

50207

50208

50209

50210

50211

50212

50213

50214

50215

50216

50217

50218

50219

50220

50221

50222

50223

50224

50225

50226

50227

50228

50229

50230

50231

50232

50233

50234

50235

50236

50237

50238

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces newlocale()

APPLICATION USAGE
Handles for locale objects created by the newlocale() function should either be released by a
corresponding call to freelocale(), or be used as a base locale to another newlocale() call.

The special locale object LC_GLOBAL_LOCALE must not be passed for the base argument, even
when returned by the uselocale() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), freelocale(), getlocalename_l(), uselocale()

XBD Chapter 7 (on page 127), Chapter 8 (on page 167), <locale.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0403 [227], XSH/TC1-2008/0404 [283],
XSH/TC1-2008/0405 [295], and XSH/TC1-2008/0406 [227] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0232 [781] and XSH/TC2-2008/0233
[673] are applied.

Issue 8
Austin Group Defect 1220 is applied, adding getlocalename_l() to the SEE ALSO section.

Austin Group Defect 1243 is applied, clarifying the handling of a non-zero base argument.

Austin Group Defect 1264 is applied, changing ``default locale’’ to ``POSIX locale’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1499

50239

50240

50241

50242

50243

50244

50245

50246

50247

50248

50249

50250

50251

50252

50253

50254

50255

50256

50257

50258

50259

50260

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nextafter() System Interfaces

NAME
nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl — next representable
floating-point number

SYNOPSIS
#include <math.h>

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The nextafter(), nextafterf(), and nextafterl() functions shall compute the next representable
floating-point value following x in the direction of y. Thus, if y is less than x, nextafter() shall
return the largest representable floating-point number less than x. The nextafter(), nextafterf(),
and nextafterl() functions shall return y if x equals y.

The nexttoward(), nexttowardf(), and nexttowardl() functions shall be equivalent to the
corresponding nextafter() functions, except that the second parameter shall have type long
double and the functions shall return y converted to the type of the function if x equals y.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the next representable floating-point
value following x in the direction of y.

If x==y, y (of the type x) shall be returned.

MX Even though underflow or overflow can occur, the returned value shall be independent of the
current rounding direction mode.

If x is finite and the correct function value would overflow, a range error shall occur and
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) shall be returned as
appropriate for the return type of the function.

MX If x or y is NaN, a NaN shall be returned.

MX If x!=y and the correct function value is subnormal, zero, or underflows, a range error shall
occur, and

MXX the correct function value (if representable) or
MX 0.0 shall be returned.

ERRORS
These functions shall fail if:

Range Error The correct value overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression

1500 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50261

50262

50263

50264

50265

50266

50267

50268

50269

50270

50271

50272

50273

50274

50275

50276

50277

50278

50279

50280

50281

50282

50283

50284

50285

50286

50287

50288

50289

50290

50291

50292

50293

50294

50295

50296

50297

50298

50299

50300

50301

50302

50303

50304

50305

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces nextafter()

(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

MX Range Error The correct value is subnormal or underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

When <tgmath.h> is included, note that the return type of nextafter() depends on the generic
typing deduced from both arguments, while the return type of nexttoward() depends only on the
generic typing of the first argument.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.23 (on page 109), <math.h>, <tgmath.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The nextafter() function is no longer marked as an extension.

The nextafterf(), nextafterl(), nexttoward(), nexttowardf(), and nexttowardl() functions are added
for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0407 [68] and XSH/TC1-2008/0408
[357] are applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1501

50306

50307

50308

50309

50310

50311

50312

50313

50314

50315

50316

50317

50318

50319

50320

50321

50322

50323

50324

50325

50326

50327

50328

50329

50330

50331

50332

50333

50334

50335

50336

50337

50338

50339

50340

50341

50342

50343

50344

50345

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nftw() System Interfaces

NAME
nftw — walk a file tree

SYNOPSIS
XSI #include <ftw.h>

int nftw(const char *path, int (*fn)(const char *,
const struct stat *, int, struct FTW *), int fd_limit, int flags);

DESCRIPTION
The nftw() function shall recursively descend the directory hierarchy rooted in path. The
argument flags is a bitwise-inclusive OR of zero or more of the following flags:

FTW_CHDIR If set, nftw() shall change the current working directory to each directory as it
reports files in that directory. If clear, nftw() shall not change the current
working directory.

FTW_DEPTH If set, nftw() shall report all files in a directory before reporting the directory
itself. If clear, nftw() shall report any directory before reporting the files in that
directory.

FTW_MOUNT If set, nftw() shall only report files that have the same device ID (st_dev) as
path and shall not descend below directories that have a different device ID
than path. If clear, nftw() shall report all files encountered during the walk,
unless FTW_XDEV is set.

FTW_PHYS If set, nftw() shall perform a physical walk and shall not follow symbolic links.

FTW_XDEV If set, nftw() shall not descend below directories that have a different device
ID (st_dev) than path; that is, when a directory with a different device ID is
encountered, nftw() shall report the directory itself (unless FTW_MOUNT is
set) but shall not report any files below the directory. If clear, nftw() shall
report all files encountered during the walk, unless FTW_MOUNT is set.

Note: If both FTW_MOUNT and FTW_XDEV are set, nftw() obeys both flags but the end result is the
same as if FTW_XDEV were clear.

If FTW_PHYS is clear and FTW_DEPTH is set, nftw() shall follow links instead of reporting
them, but shall not report any directory that would be a descendant of itself. If FTW_PHYS is
clear and FTW_DEPTH is clear, nftw() shall follow links instead of reporting them, but shall not
report the contents of any directory that would be a descendant of itself.

At each file it encounters, nftw() shall call the user-supplied function fn with four arguments:

• The first argument is the pathname of the object.

• The second argument is a pointer to the stat buffer containing information on the object,
filled in as if fstatat(), stat(), or lstat() had been called to retrieve the information.

• The third argument is an integer giving additional information. Its value is one of the
following:

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. The fn function shall not be
called for any of its descendants.

FTW_DP The object is a directory and subdirectories have been visited. (This condition
shall only occur if the FTW_DEPTH flag is included in flags.)

1502 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50346

50347

50348

50349

50350

50351

50352

50353

50354

50355

50356

50357

50358

50359

50360

50361

50362

50363

50364

50365

50366

50367

50368

50369

50370

50371

50372

50373

50374

50375

50376

50377

50378

50379

50380

50381

50382

50383

50384

50385

50386

50387

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces nftw()

FTW_F The object is a non-directory file.

FTW_NS The stat() function failed on the object because of lack of appropriate
permission. The stat buffer passed to fn is undefined. Failure of stat() for any
other reason is considered an error and nftw() shall return −1.

FTW_SL The object is a symbolic link. (This condition shall only occur if the
FTW_PHYS flag is included in flags.)

FTW_SLN The object is a symbolic link that does not name an existing file. The stat
buffer passed to fn shall contain information on the symbolic link. (This
condition shall only occur if the FTW_PHYS flag is not included in flags.)

• The fourth argument is a pointer to an FTW structure. The value of base is the offset of the
object’s filename in the pathname passed as the first argument to fn. The value of level
indicates depth relative to the root of the walk, where the root level is 0.

The results are unspecified if the application-supplied fn function does not preserve the current
working directory.

The argument fd_limit sets the maximum number of file descriptors that shall be used by nftw()
while traversing the file tree. At most one file descriptor shall be used for each directory level.
The FD_CLOEXEC flag shall be set on any file descriptor opened by nftw() (see <fcntl.h>) not
including those opened by the user-supplied fn function. Every file descriptor opened by nftw()
not including those opened by the user-supplied fn function shall be closed before nftw()
returns.

The nftw() function need not be thread-safe.

RETURN VALUE
The nftw() function shall continue until the first of the following conditions occurs:

• An invocation of fn shall return a non-zero value, in which case nftw() shall return that
value.

• The nftw() function detects an error other than [EACCES] (see FTW_DNR and FTW_NS
above), in which case nftw() shall return −1 and set errno to indicate the error.

• The tree is exhausted, in which case nftw() shall return 0.

ERRORS
The nftw() function shall fail if:

[EACCES] Search permission is denied for any component of path or read permission is
denied for path, or fn returns −1 and does not reset errno.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of path names an existing file that is neither a directory nor a
symbolic link to a directory.

[EOVERFLOW] A field in the stat structure cannot be represented correctly in the current
programming environment for one or more files found in the file hierarchy.

The nftw() function may fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1503

50388

50389

50390

50391

50392

50393

50394

50395

50396

50397

50398

50399

50400

50401

50402

50403

50404

50405

50406

50407

50408

50409

50410

50411

50412

50413

50414

50415

50416

50417

50418

50419

50420

50421

50422

50423

50424

50425

50426

50427

50428

50429

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nftw() System Interfaces

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

In addition, errno may be set if the function pointed to by fn causes errno to be set.

EXAMPLES
The following program traverses the directory tree under the path named in its first command-
line argument, or under the current directory if no argument is supplied. It displays various
information about each file. The second command-line argument can be used to specify
characters that control the value assigned to the flags argument when calling nftw().

#include <ftw.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

static int
display_info(const char *fpath, const struct stat *sb,

int tflag, struct FTW *ftwbuf)
{

printf("%-3s %2d %7jd %-40s %d %s\n",
(tflag == FTW_D) ? "d" : (tflag == FTW_DNR) ? "dnr" :
(tflag == FTW_DP) ? "dp" : (tflag == FTW_F) ?

(S_ISBLK(sb->st_mode) ? "f b" :
S_ISCHR(sb->st_mode) ? "f c" :
S_ISFIFO(sb->st_mode) ? "f p" :
S_ISREG(sb->st_mode) ? "f r" :
S_ISSOCK(sb->st_mode) ? "f s" : "f ?") :

(tflag == FTW_NS) ? "ns" : (tflag == FTW_SL) ? "sl" :
(tflag == FTW_SLN) ? "sln" : "?", ftwbuf->level,
(intmax_t) ((tflag == FTW_NS) ? -1 : sb->st_size),
fpath, ftwbuf->base, fpath + ftwbuf->base);

return 0; /* To tell nftw() to continue */
}

int
main(int argc, char *argv[])
{

int flags = 0;

if (argc > 2 && strchr(argv[2], 'd') != NULL)
flags |= FTW_DEPTH;

if (argc > 2 && strchr(argv[2], 'p') != NULL)
flags |= FTW_PHYS;

if (nftw((argc < 2) ? "." : argv[1], display_info, 20, flags) == -1)
{

1504 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50430

50431

50432

50433

50434

50435

50436

50437

50438

50439

50440

50441

50442

50443

50444

50445

50446

50447

50448

50449

50450

50451

50452

50453

50454

50455

50456

50457

50458

50459

50460

50461

50462

50463

50464

50465

50466

50467

50468

50469

50470

50471

50472

50473

50474

50475

50476

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces nftw()

perror("nftw");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

APPLICATION USAGE
The nftw() function may allocate dynamic storage during its operation. If nftw() is forcibly
terminated, such as by longjmp() or siglongjmp() being executed by the function pointed to by fn
or an interrupt routine, nftw() does not have a chance to free that storage, so it remains
permanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have the function pointed to by fn return a non-zero value at its next
invocation.

When restricting the walk to files on one file system, it can sometimes be desirable for the
crossing points themselves to be reported and sometimes for them not to be reported. (Crossing
points are mount points and, if FTW_PHYS is clear, symbolic links to directories on other file
systems.) With FTW_XDEV nftw() reports them and with FTW_MOUNT it does not. However,
with FTW_MOUNT it also does not report symbolic links to non-directory files on other file
systems (if FTW_PHYS is clear). If there is a need for an application to exclude crossing points
but include symbolic links to non-directory files on other file systems, this can be achieved by
using FTW_XDEV and performing a check such as the following in the function pointed to by fn:

if (tflag == FTW_D && sb->st_dev != saved_dev)
return 0;

(where saved_dev is the st_dev value for path).

RATIONALE
Earlier versions of this standard did not make clear that, as well as not reporting them,
FTW_MOUNT prevents descent below directories that have a different device ID than path if
they are encountered by following a symbolic link (rather than by being a mount point). This
meant that if such a directory contained any symbolic links to files with the same device ID as
path, nftw() with FTW_PHYS clear was required to report them. However, this was not how
nftw() implementations behaved and the standard has been amended to match existing practice.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), fstatat(), readdir()

XBD <fcntl.h>, <ftw.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the definition of the depth argument is clarified.

Issue 6
The Open Group Base Resolution bwg97-003 is applied.

The ERRORS section is updated as follows:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1505

50477

50478

50479

50480

50481

50482

50483

50484

50485

50486

50487

50488

50489

50490

50491

50492

50493

50494

50495

50496

50497

50498

50499

50500

50501

50502

50503

50504

50505

50506

50507

50508

50509

50510

50511

50512

50513

50514

50515

50516

50517

50518

50519

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nftw() System Interfaces

• The wording of the mandatory [ELOOP] error condition is updated.

• A second optional [ELOOP] error condition is added.

• The [EOVERFLOW] mandatory error condition is added.

Text is added to the DESCRIPTION to say that the nftw() function need not be reentrant and that
the results are unspecified if the application-supplied fn function does not preserve the current
working directory.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/64 is applied, changing the argument
depth to fd_limit throughout and changing ``to a maximum of 5 levels deep’’ to ``using a
maximum of 5 file descriptors’’ in the EXAMPLES section.

Issue 7
Austin Group Interpretations 1003.1-2001 #143 and #156 are applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XBD-ERN-61 is applied.

APPLICATION USAGE is added and the EXAMPLES section is replaced with a new example.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0409 [403], XSH/TC1-2008/0410 [324],
and XSH/TC1-2008/0411 [403] are applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement for the FD_CLOEXEC flag to be set.

Austin Group Defect 1121 is applied, changing the description of FTW_SLN and the handling of
FTW_NS in the EXAMPLES section.

Austin Group Defect 1133 is applied, adding FTW_XDEV.

Austin Group Defect 1210 is applied, changing the description of FTW_MOUNT and the
RATIONALE section.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

1506 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50520

50521

50522

50523

50524

50525

50526

50527

50528

50529

50530

50531

50532

50533

50534

50535

50536

50537

50538

50539

50540

50541

50542

50543

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ngettext()

NAME
ngettext, ngettext_l — message handling functions

SYNOPSIS
#include <libintl.h>

char *ngettext(const char *msgid, const char *msgid_plural,
unsigned long int n);

char *ngettext_l(const char *msgid, const char *msgid_plural,
unsigned long int n, locale_t locale);

DESCRIPTION
Refer to gettext .

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1507

50544

50545

50546

50547

50548

50549

50550

50551

50552

50553

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nice() System Interfaces

NAME
nice — change the nice value of a process

SYNOPSIS
XSI #include <unistd.h>

int nice(int incr);

DESCRIPTION
The nice() function shall add the value of incr to the nice value of the calling process. A nice
value of a process is a non-negative number for which a more positive value shall result in less
favorable scheduling.

A maximum nice value of 2*{NZERO}−1 and a minimum nice value of 0 shall be imposed by the
system. Requests for values above or below these limits shall result in the nice value being set to
the corresponding limit. Only a process with appropriate privileges can lower the nice value.

PS|TPS Calling the nice() function has no effect on the priority of processes or threads with policy
SCHED_FIFO or SCHED_RR. The effect on processes or threads with other scheduling policies
is implementation-defined.

The nice value set with nice() shall be applied to the process. If the process is multi-threaded, the
nice value shall affect all system scope threads in the process.

As −1 is a permissible return value in a successful situation, an application wishing to check for
error situations should set errno to 0, then call nice(), and if it returns −1, check to see whether
errno is non-zero.

RETURN VALUE
Upon successful completion, nice() shall return the new nice value −{NZERO}. Otherwise, −1
shall be returned, the nice value of the process shall not be changed, and errno shall be set to
indicate the error.

ERRORS
The nice() function shall fail if:

[EPERM] The incr argument is negative and the calling process does not have
appropriate privileges.

EXAMPLES

Changing the Nice Value

The following example adds the value of the incr argument, −20, to the nice value of the calling
process.

#include <unistd.h>
...
int incr = -20;
int ret;

ret = nice(incr);

APPLICATION USAGE
None.

1508 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50554

50555

50556

50557

50558

50559

50560

50561

50562

50563

50564

50565

50566

50567

50568

50569

50570

50571

50572

50573

50574

50575

50576

50577

50578

50579

50580

50581

50582

50583

50584

50585

50586

50587

50588

50589

50590

50591

50592

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces nice()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getpriority()

XBD <limits.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A statement is added to the description indicating the effects of this function on the different
scheduling policies and multi-threaded processes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1509

50593

50594

50595

50596

50597

50598

50599

50600

50601

50602

50603

50604

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nl_langinfo() System Interfaces

NAME
nl_langinfo, nl_langinfo_l — language information

SYNOPSIS
#include <langinfo.h>

char *nl_langinfo(nl_item item);
char *nl_langinfo_l(nl_item item, locale_t locale);

DESCRIPTION
The nl_langinfo() and nl_langinfo_l() functions shall return a pointer to a string containing
information relevant to the particular language or cultural area defined in the current locale, or
in the locale represented by locale, respectively (see <langinfo.h>). The manifest constant names
and values of item are defined in <langinfo.h>. For example:

nl_langinfo(ABDAY_1)

would return a pointer to the string "Dom" if the identified language was Portuguese, and
"Sun" if the identified language was English.

nl_langinfo_l(ABDAY_1, loc)

would return a pointer to the string "Dom" if the identified language of the locale represented by
loc was Portuguese, and "Sun" if the identified language of the locale represented by loc was
English.

The nl_langinfo() function need not be thread-safe.

The behavior is undefined if the locale argument to nl_langinfo_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
In a locale where langinfo data is not defined, these functions shall return a pointer to the
corresponding string in the POSIX locale. In all locales, these functions shall return a pointer to
an empty string if item contains an invalid setting.

The application shall not modify the string returned. The pointer returned by nl_langinfo()
might be invalidated or the string content might be overwritten by a subsequent call to
nl_langinfo() in any thread or to nl_langinfo_l() in the same thread or the initial thread, by
subsequent calls to setlocale() with a category corresponding to the category of item (see
<langinfo.h>) or the category LC_ALL, or by subsequent calls to uselocale() which change the
category corresponding to the category of item. The pointer returned by nl_langinfo_l() might be
invalidated or the string content might be overwritten by a subsequent call to nl_langinfo_l() in
the same thread or to nl_langinfo() in any thread, or by subsequent calls to freelocale() or
newlocale() which free or modify the locale object that was passed to nl_langinfo_l(). The
returned pointer and the string content might also be invalidated if the calling thread is
terminated.

ERRORS
No errors are defined.

1510 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50605

50606

50607

50608

50609

50610

50611

50612

50613

50614

50615

50616

50617

50618

50619

50620

50621

50622

50623

50624

50625

50626

50627

50628

50629

50630

50631

50632

50633

50634

50635

50636

50637

50638

50639

50640

50641

50642

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces nl_langinfo()

EXAMPLES

Getting Date and Time Formatting Information

The following example returns a pointer to a string containing date and time formatting
information, as defined in the LC_TIME category of the current locale.

#include <time.h>
#include <langinfo.h>
...
strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);
...

APPLICATION USAGE
The array pointed to by the return value should not be modified by the program, but may be
modified by further calls to these functions.

RATIONALE
The possible interactions between internal data used by nl_langinfo() and nl_langinfo_l() are
complicated by the fact that nl_langinfo_l() must be thread-safe but nl_langinfo() need not be.
The various implementation choices are:

1. nl_langinfo_l() and nl_langinfo() use separate buffers, or at least one of them does not use
an internal string buffer. In this case there are no interactions.

2. nl_langinfo_l() and nl_langinfo() share an internal per-thread buffer. There can be
interactions, but only in the same thread.

3. nl_langinfo_l() uses an internal per-thread buffer, and nl_langinfo() uses (in all threads)
the same buffer that nl_langinfo_l() uses in the initial thread. There can be interactions,
but only when nl_langinfo_l() is called in the initial thread.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 127), <langinfo.h>, <locale.h>, <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 5
The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The nl_langinfo() function is moved from the XSI option to the Base.

The nl_langinfo_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0412 [302], XSH/TC1-2008/0413 [75],
XSH/TC1-2008/0414 [283], XSH/TC1-2008/0415 [75,402], XSH/TC1-2008/0416 [283], and
XSH/TC1-2008/0417 [402] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1511

50643

50644

50645

50646

50647

50648

50649

50650

50651

50652

50653

50654

50655

50656

50657

50658

50659

50660

50661

50662

50663

50664

50665

50666

50667

50668

50669

50670

50671

50672

50673

50674

50675

50676

50677

50678

50679

50680

50681

50682

50683

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nl_langinfo() System Interfaces

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0234 [656] is applied.

1512 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50684

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces nrand48()

NAME
nrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
XSI #include <stdlib.h>

long nrand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1513

50685

50686

50687

50688

50689

50690

50691

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ntohl() System Interfaces

NAME
ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
Refer to htonl().

1514 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50692

50693

50694

50695

50696

50697

50698

50699

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces open()

NAME
open, openat — open file

SYNOPSIS
OH #include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag, ...);
int openat(int fd, const char *path, int oflag, ...);

DESCRIPTION
The open() function shall establish the connection between a file and a file descriptor. It shall
create an open file description that refers to a file and a file descriptor that refers to that open file
description. The file descriptor is used by other I/O functions to refer to that file. The path
argument points to a pathname naming the file.

The open() function shall return a file descriptor for the named file, allocated as described in
Section 2.6 (on page 525). The open file description is new, and therefore the file descriptor shall
not share it with any other process in the system. The FD_CLOEXEC file descriptor flag
associated with the new file descriptor shall be cleared unless the O_CLOEXEC flag is set in
oflag. The FD_CLOFORK file descriptor flag associated with the new file descriptor shall be
cleared unless the O_CLOFORK flag is set in oflag.

The file offset used to mark the current position within the file shall be set to the beginning of
the file.

The file status flags and file access modes of the open file description shall be set according to
the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>. Applications shall specify exactly one of the first five values (file access modes)
below in the value of oflag:
O_EXEC Open for execute only (non-directory files). If path names a directory and

O_EXEC is not the same value as O_SEARCH, open() shall fail.

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing. If path names a FIFO, and the
implementation does not support opening a FIFO for simultaneous read
and write, then open() shall fail.

O_SEARCH Open directory for search only. If path names a non-directory file and
O_SEARCH is not the same value as O_EXEC, open() shall fail.

O_WRONLY Open for writing only.

Any combination of the following may be used:

O_APPEND If set, the file offset shall be set to the end of the file prior to each write.

O_CLOEXEC If set, the FD_CLOEXEC flag for the new file descriptor shall be set.

O_CLOFORK If set, the FD_CLOFORK flag for the new file descriptor shall be set.

O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL
below. Otherwise, if O_DIRECTORY is not set the file shall be created as a
regular file; the user ID of the file shall be set to the effective user ID of the
process; the group ID of the file shall be set to the group ID of the file’s
parent directory or to the effective group ID of the process; and the access
permission bits (see <sys/stat.h>) of the file mode shall be set to the value

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1515

50700

50701

50702

50703

50704

50705

50706

50707

50708

50709

50710

50711

50712

50713

50714

50715

50716

50717

50718

50719

50720

50721

50722

50723

50724

50725

50726

50727

50728

50729

50730

50731

50732

50733

50734

50735

50736

50737

50738

50739

50740

50741

50742

50743

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

open() System Interfaces

of the argument following the oflag argument taken as type mode_t
modified as follows: a bitwise AND is performed on the file-mode bits
and the corresponding bits in the complement of the process’ file mode
creation mask. Thus, all bits in the file mode whose corresponding bit in
the file mode creation mask is set are cleared. When bits other than the
file permission bits are set, the effect is unspecified. The argument
following the oflag argument does not affect whether the file is open for
reading, writing, or for both. Implementations shall provide a way to
initialize the file’s group ID to the group ID of the parent directory.
Implementations may, but need not, provide an implementation-defined
way to initialize the file’s group ID to the effective group ID of the calling
process.

O_DIRECTORY If path resolves to a non-directory file, fail and set errno to [ENOTDIR].

SIO O_DSYNC Write I/O operations on the file descriptor shall complete as defined by
synchronized I/O data integrity completion.

O_EXCL If O_CREAT and O_EXCL are set, open() shall fail if the file exists. The
check for the existence of the file and the creation of the file if it does not
exist shall be atomic with respect to other threads executing open()
naming the same filename in the same directory with O_EXCL and
O_CREAT set. If O_EXCL and O_CREAT are set, and path names a
symbolic link, open() shall fail and set errno to [EEXIST], regardless of the
contents of the symbolic link. If O_EXCL is set and O_CREAT is not set,
the result is undefined.

O_NOCTTY If set and path identifies a terminal device, open() shall not cause the
terminal device to become the controlling terminal for the process. If path
does not identify a terminal device, O_NOCTTY shall be ignored.

O_NOFOLLOW If path names a symbolic link, fail and set errno to [ELOOP].

O_NONBLOCK When opening a FIFO with O_RDONLY or O_WRONLY set:

• If O_NONBLOCK is set, an open() for reading-only shall return
without delay. An open() for writing-only shall return an error if no
process currently has the file open for reading.

• If O_NONBLOCK is clear, an open() for reading-only shall block the
calling thread until a thread opens the file for writing. An open() for
writing-only shall block the calling thread until a thread opens the
file for reading.

When opening a block special or character special file that supports non-
blocking opens:

• If O_NONBLOCK is set, the open() function shall return without
blocking for the device to be ready or available. Subsequent
behavior of the device is device-specific.

• If O_NONBLOCK is clear, the open() function shall block the calling
thread until the device is ready or available before returning.

Otherwise, the O_NONBLOCK flag shall not cause an error, but it is
unspecified whether the file status flags will include the O_NONBLOCK
flag.

1516 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50744

50745

50746

50747

50748

50749

50750

50751

50752

50753

50754

50755

50756

50757

50758

50759

50760

50761

50762

50763

50764

50765

50766

50767

50768

50769

50770

50771

50772

50773

50774

50775

50776

50777

50778

50779

50780

50781

50782

50783

50784

50785

50786

50787

50788

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces open()

SIO O_RSYNC Read I/O operations on the file descriptor shall complete at the same
level of integrity as specified by the O_DSYNC and O_SYNC flags. If both
O_DSYNC and O_RSYNC are set in oflag, all I/O operations on the file
descriptor shall complete as defined by synchronized I/O data integrity
completion. If both O_SYNC and O_RSYNC are set in flags, all I/O
operations on the file descriptor shall complete as defined by
synchronized I/O file integrity completion.

XSI|SIO O_SYNC Write I/O operations on the file descriptor shall complete as defined by
synchronized I/O file integrity completion.

XSI The O_SYNC flag shall be supported for regular files, even if the
Synchronized Input and Output option is not supported.

O_TRUNC If the file exists and is a regular file, and the file is successfully opened
O_RDWR or O_WRONLY, its length shall be truncated to 0, and the mode
and owner shall be unchanged. It shall have no effect on FIFO special files
or terminal device files. Its effect on other file types is implementation-
defined. The result of using O_TRUNC without either O_RDWR or
O_WRONLY is undefined.

O_TTY_INIT If path identifies a terminal device other than a pseudo-terminal, the
device is not already open in any process, and either O_TTY_INIT is set in
oflag or O_TTY_INIT has the value zero, open() shall set any non-standard
termios structure terminal parameters to a state that provides conforming
behavior (see XBD Section 11.2, on page 205) and initialize the winsize
structure associated with the terminal to appropriate default settings. It is
unspecified whether O_TTY_INIT has any effect if the device is already
open in any process. If path identifies the subsidiary side of a pseudo-
terminal that is not already open in any process, open() shall set any non-
standard termios structure terminal parameters to a state that provides
conforming behavior and initialize the winsize structure associated with
the terminal to appropriate default settings, regardless of whether
O_TTY_INIT is set. If path does not identify a terminal device,
O_TTY_INIT shall be ignored.

If O_CREAT and O_DIRECTORY are set and the requested access mode is neither O_WRONLY
nor O_RDWR, the result is unspecified.

If O_CREAT is set and the file did not previously exist, upon successful completion, open() shall
mark for update the last data access, last data modification, and last file status change
timestamps of the file and the last data modification and last file status change timestamps of
the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open() shall
mark for update the last data modification and last file status change timestamps of the file.

SIO If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.

The application shall ensure that it specifies the O_TTY_INIT flag on the first open of a terminal
device since system boot or since the device was closed by the process that last had it open. The

XSI application need not specify the O_TTY_INIT flag when opening pseudo-terminals. If path
names the manager side of a pseudo-terminal device, then it is unspecified whether open() locks
the subsidiary side so that it cannot be opened. Conforming applications shall call unlockpt()
before opening the subsidiary side.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1517

50789

50790

50791

50792

50793

50794

50795

50796

50797

50798

50799

50800

50801

50802

50803

50804

50805

50806

50807

50808

50809

50810

50811

50812

50813

50814

50815

50816

50817

50818

50819

50820

50821

50822

50823

50824

50825

50826

50827

50828

50829

50830

50831

50832

50833

50834

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

open() System Interfaces

The largest value that can be represented correctly in an object of type off_t shall be established
as the offset maximum in the open file description.

The openat() function shall be equivalent to the open() function except in the case where path
specifies a relative path. In this case the file to be opened is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. If the access mode
of the open file description associated with the file descriptor is not O_SEARCH, the function
shall check whether directory searches are permitted using the current permissions of the
directory underlying the file descriptor. If the access mode is O_SEARCH, the function shall not
perform the check.

The oflag parameter and the optional fourth parameter correspond exactly to the parameters of
open().

If openat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to open().

RETURN VALUE
Upon successful completion, these functions shall open the file and return a non-negative
integer representing the file descriptor. Otherwise, these functions shall return −1 and set errno
to indicate the error. If −1 is returned, no files shall be created or modified.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by oflag are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created, or O_TRUNC is specified and write permission is denied.

[EEXIST] O_CREAT and O_EXCL are set, and the named file exists.

[EILSEQ] O_CREAT was specified, the file did not exist, and the last pathname
component of path is not a portable filename and cannot be created in the
target directory.

[EINTR] A signal was caught during open().

[EINVAL] The path argument names a FIFO, O_RDWR was specified, and the
SIO implementation considers this an error; or synchronized I/O flags were

specified and the implementation does not support synchronized I/O for the
file.

[EISDIR] The named file is a directory and oflag includes O_WRONLY or O_RDWR, or
includes O_CREAT without O_DIRECTORY, or includes O_EXEC when
O_EXEC is not the same value as O_SEARCH.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument, or O_NOFOLLOW was specified and the path argument names a
symbolic link.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENFILE] The maximum allowable number of files is currently open in the system.

1518 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50835

50836

50837

50838

50839

50840

50841

50842

50843

50844

50845

50846

50847

50848

50849

50850

50851

50852

50853

50854

50855

50856

50857

50858

50859

50860

50861

50862

50863

50864

50865

50866

50867

50868

50869

50870

50871

50872

50873

50874

50875

50876

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces open()

[ENOENT] O_CREAT is not set and a component of path does not name an existing file, or
O_CREAT is set and a component of the path prefix of path does not name an
existing file, or path points to an empty string.

[ENOENT] or [ENOTDIR]
O_CREAT is set, and the path argument contains at least one non-<slash>
character and ends with one or more trailing <slash> characters. If path
without the trailing <slash> characters would name an existing file, an
[ENOENT] error shall not occur.

[ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and O_CREAT is specified.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory; or O_CREAT and O_EXCL are not
specified, the path argument contains at least one non-<slash> character and
ends with one or more trailing <slash> characters, and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory; or O_DIRECTORY was specified and the path argument
names a non-directory file; or the path argument names a non-directory file
and O_SEARCH was specified when O_SEARCH is not the same value as
O_EXEC.

[ENXIO] O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set, and no
process has the file open for reading.

[ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

[EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

[EROFS] The named file resides on a read-only file system and either O_WRONLY,
O_RDWR, O_CREAT (if the file does not exist), or O_TRUNC is set in the oflag
argument.

The openat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

XSI [EAGAIN] The path argument names the subsidiary side of a pseudo-terminal device that
is locked.

[EINVAL] The value of the oflag argument is not valid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1519

50877

50878

50879

50880

50881

50882

50883

50884

50885

50886

50887

50888

50889

50890

50891

50892

50893

50894

50895

50896

50897

50898

50899

50900

50901

50902

50903

50904

50905

50906

50907

50908

50909

50910

50911

50912

50913

50914

50915

50916

50917

50918

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

open() System Interfaces

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[EOPNOTSUPP] The path argument names a socket.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and oflag is
O_WRONLY or O_RDWR.

EXAMPLES

Opening a File for Writing by the Owner

The following example opens the file /tmp/file, either by creating it (if it does not already exist),
or by truncating its length to 0 (if it does exist). In the former case, if the call creates a new file,
the access permission bits in the file mode of the file are set to permit reading and writing by the
owner, and to permit reading only by group members and others.

If the call to open() is successful, the file is opened for writing.

#include <fcntl.h>
...
int fd;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *pathname = "/tmp/file";
...
fd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);
...

Opening a File Using an Existence Check

The following example uses the open() function to try to create the LOCKFILE file and open it
for writing. Since the open() function specifies the O_EXCL flag, the call fails if the file already
exists. In that case, the program assumes that someone else is updating the password file and
exits.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd; /* Integer for file descriptor returned by open() call. */
...
if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}
...

1520 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

50919

50920

50921

50922

50923

50924

50925

50926

50927

50928

50929

50930

50931

50932

50933

50934

50935

50936

50937

50938

50939

50940

50941

50942

50943

50944

50945

50946

50947

50948

50949

50950

50951

50952

50953

50954

50955

50956

50957

50958

50959

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces open()

Opening a File for Writing

The following example opens a file for writing, creating the file if it does not already exist. If the
file does exist, the system truncates the file to zero bytes.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd;
char pathname[PATH_MAX+1];
...
if ((pfd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

perror("Cannot open output file\n"); exit(1);
}
...

APPLICATION USAGE
POSIX.1-2024 does not require that terminal parameters be automatically set to any state on first
open, nor that they be reset after the last close. It is possible for a non-conforming application to
leave a terminal device in a state where the next process to use that device finds it in a non-
conforming state, but has no way of determining this. To ensure that the device is set to a
conforming initial state, applications which perform a first open of a terminal (other than a
pseudo-terminal) should do so using the O_TTY_INIT flag to set the parameters associated with
the terminal to a conforming state.

Except as specified in this volume of POSIX.1-2024, the flags allowed in oflag are not mutually-
exclusive and any number of them may be used simultaneously. Not all combinations of flags
make sense. For example, using O_SEARCH | O_CREAT will successfully open a pre-existing
directory for searching, but if there is no existing file by that name, then it is unspecified whether
a regular file will be created. Likewise, if a non-directory file descriptor is successfully returned,
it is unspecified whether that descriptor will have execute permissions as if by O_EXEC (note
that it is unspecified whether O_EXEC and O_SEARCH have the same value).

The O_CLOEXEC and O_CLOFORK flags of open() are necessary to avoid a data race in multi-
threaded applications. Without O_CLOFORK, a file descriptor is leaked into a child process
created by one thread in the window between another thread creating a file descriptor with
open() and then using fcntl() to set the FD_CLOFORK flag. Without O_CLOEXEC, a file
descriptor intentionally inherited by child processes is similarly leaked into an executed
program if FD_CLOEXEC is not set atomically.

RATIONALE
Some implementations permit opening FIFOs with O_RDWR. Since FIFOs could be
implemented in other ways, and since two file descriptors can be used to the same effect, an
implementation is allowed to reject the use of O_RDWR on a FIFO.

See getgroups() about the group of a newly created file.

The use of open() to create a regular file is preferable to the use of creat(), because the latter is
redundant and included only for historical reasons.

The use of the O_TRUNC flag on FIFOs and directories (pipes cannot be open()-ed) must be
permissible without unexpected side-effects (for example, creat() on a FIFO must not remove

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1521

50960

50961

50962

50963

50964

50965

50966

50967

50968

50969

50970

50971

50972

50973

50974

50975

50976

50977

50978

50979

50980

50981

50982

50983

50984

50985

50986

50987

50988

50989

50990

50991

50992

50993

50994

50995

50996

50997

50998

50999

51000

51001

51002

51003

51004

51005

51006

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

open() System Interfaces

data). Since terminal special files might have type-ahead data stored in the buffer, O_TRUNC
should not affect their content, particularly if a program that normally opens a regular file
should open the current controlling terminal instead. Other file types, particularly
implementation-defined ones, are left implementation-defined.

POSIX.1-2024 permits [EACCES] to be returned for conditions other than those explicitly listed.

The O_NOCTTY flag was added to allow applications to avoid unintentionally acquiring a
controlling terminal as a side-effect of opening a terminal file. This volume of POSIX.1-2024 does
not specify how a controlling terminal is acquired, but it allows an implementation to provide
this on open() if the O_NOCTTY flag is not set and other conditions specified in XBD Chapter 11
(on page 199) are met.

In historical implementations the value of O_RDONLY is zero. Because of that, it is not possible
to detect the presence of O_RDONLY and another option. Future implementations should
encode O_RDONLY and O_WRONLY as bit flags so that:

O_RDONLY | O_WRONLY == O_RDWR

O_EXEC and O_SEARCH are specified as two of the five file access modes. Since O_EXEC does
not apply to directories, and O_SEARCH only applies to directories, their values need not be
distinct. Although this standard requires open() to fail on an attempt to use O_EXEC on a
directory, or O_SEARCH on a non-directory, this only applies in implementations where the two
modes have distinct values. Since O_RDONLY has historically had the value zero,
implementations are not able to distinguish between O_SEARCH and O_SEARCH |
O_RDONLY, and similarly for O_EXEC.

In general, the open() function follows the symbolic link if path names a symbolic link. However,
the open() function, when called with O_CREAT and O_EXCL, is required to fail with [EEXIST]
if path names an existing symbolic link, even if the symbolic link refers to a nonexistent file. This
behavior is required so that privileged applications can create a new file in a known location
without the possibility that a symbolic link might cause the file to be created in a different
location.

For example, a privileged application that must create a file with a predictable name in a user-
writable directory, such as the user’s home directory, could be compromised if the user creates a
symbolic link with that name that refers to a nonexistent file in a system directory. If the user can
influence the contents of a file, the user could compromise the system by creating a new system
configuration or spool file that would then be interpreted by the system. The test for a symbolic
link which refers to a nonexisting file must be atomic with the creation of a new file.

In addition, the open() function refuses to open non-directories if the O_DIRECTORY flag is set.
This avoids race conditions whereby a user might compromise the system by substituting a hard
link to a sensitive file (e.g., a device or a FIFO) while a privileged application is running, where
opening a file even for read access might have undesirable side-effects.

In addition, the open() function does not follow symbolic links if the O_NOFOLLOW flag is set.
This avoids race conditions whereby a user might compromise the system by substituting a
symbolic link to a sensitive file (e.g., a device) while a privileged application is running, where
opening a file even for read access might have undesirable side-effects.

The POSIX.1-1990 standard required that the group ID of a newly created file be set to the group
ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2 required
that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the

1522 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51007

51008

51009

51010

51011

51012

51013

51014

51015

51016

51017

51018

51019

51020

51021

51022

51023

51024

51025

51026

51027

51028

51029

51030

51031

51032

51033

51034

51035

51036

51037

51038

51039

51040

51041

51042

51043

51044

51045

51046

51047

51048

51049

51050

51051

51052

51053

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces open()

group ID after the file is created, or determine under what conditions the implementation will
set the desired group ID.

The purpose of the openat() function is to enable opening files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to open(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the openat() function it can be guaranteed that
the opened file is located relative to the desired directory. Some implementations use the
openat() function for other purposes as well. In some cases, if the oflag parameter has the
O_XATTR bit set, the returned file descriptor provides access to extended attributes. This
functionality is not standardized here.

Implementations are encouraged to have open() and openat() report an [EILSEQ] error if oflag
includes O_CREAT, the file did not previously exist, and the last component of path contains any
bytes that have the encoded value of a <newline> character.

FUTURE DIRECTIONS
A future version of this standard may add an O_NOCLOBBER flag, specified as follows, for use
by shells when the noclobber option is set (see XRAT Section C.2.7.2, on page 3891):

O_NOCLOBBER If O_CREAT and O_NOCLOBBER are set, open() shall fail if the file exists
and is either a regular file or a symbolic link that resolves to a regular file.
The check for the existence and type of the file and the creation of the file
if it does not exist shall be atomic with respect to other threads executing
open() naming the same filename in the same directory with
O_NOCLOBBER and O_CREAT set or with O_EXCL and O_CREAT set.
If O_NOCLOBBER and O_CREAT are set, and the file exists and is either
a non-regular file or a symbolic link that resolves to a non-regular file, the
file shall be opened as if neither flag was set. If O_NOCLOBBER and
O_CREAT are set, and path names a symbolic link that does not resolve to
an existing file, an empty file shall be created such that path resolves to the
newly created file. If O_NOCLOBBER is set and O_CREAT is not set, the
result is undefined.

SEE ALSO
chmod(), close(), creat(), dirfd(), dup(), exec , fcntl(), fdopendir(), link(), lseek(), mkdtemp(),
mknod(), read(), symlink(), umask(), unlockpt(), write()

XBD Chapter 11 (on page 199), <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1523

51054

51055

51056

51057

51058

51059

51060

51061

51062

51063

51064

51065

51066

51067

51068

51069

51070

51071

51072

51073

51074

51075

51076

51077

51078

51079

51080

51081

51082

51083

51084

51085

51086

51087

51088

51089

51090

51091

51092

51093

51094

51095

51096

51097

51098

51099

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

open() System Interfaces

• In the DESCRIPTION, O_CREAT is amended to state that the group ID of the file is set to
the group ID of the file’s parent directory or to the effective group ID of the process. This is
a FIPS requirement.

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ENXIO] mandatory error condition is added.

• The [EINVAL], [ENAMETOOLONG], and [ETXTBSY] optional error conditions are added.

The DESCRIPTION and ERRORS sections are updated so that items related to the optional XSI
STREAMS Option Group are marked.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added of the effect of the O_CREAT and O_EXCL flags when the path
refers to a symbolic link.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The DESCRIPTION of O_EXCL is updated in response to IEEE PASC Interpretation 1003.1c #48.

Issue 7
Austin Group Interpretations 1003.1-2001 #113 and #143 are applied.

Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC flag.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

This page is revised and the openat() function is added from The Open Group Technical
Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0418 [292], XSH/TC1-2008/0419 [141],
XSH/TC1-2008/0420 [461], XSH/TC1-2008/0421 [390], XSH/TC1-2008/0422 [146],
XSH/TC1-2008/0423 [324], XSH/TC1-2008/0424 [292], XSH/TC1-2008/0425 [278],
XSH/TC1-2008/0426 [278], XSH/TC1-2008/0427 [291], and XSH/TC1-2008/0428 [307] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0235 [873], XSH/TC2-2008/0236 [835],
XSH/TC2-2008/0237 [847], XSH/TC2-2008/0238 [817], XSH/TC2-2008/0239 [835],
XSH/TC2-2008/0240 [847], XSH/TC2-2008/0241 [822], XSH/TC2-2008/0242 [817], and
XSH/TC2-2008/0243 [943] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 293 is applied, adding the [EILSEQ] error.

1524 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51100

51101

51102

51103

51104

51105

51106

51107

51108

51109

51110

51111

51112

51113

51114

51115

51116

51117

51118

51119

51120

51121

51122

51123

51124

51125

51126

51127

51128

51129

51130

51131

51132

51133

51134

51135

51136

51137

51138

51139

51140

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces open()

Austin Group Defects 658 and 1665 are applied, restricting the allowed behaviors when O_EXEC
is used on a directory, or O_SEARCH on a non-directory file, or O_RDWR on a FIFO, so that the
requirements for O_EXCL still apply.

Austin Group Defect 1016 is applied, changing the FUTURE DIRECTIONS section.

Austin Group Defect 1151 is applied, changing the description of O_TTY_INIT to include
requirements relating to the winsize structure.

Austin Group Defect 1318 is applied, adding FD_CLOFORK and O_CLOFORK.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1466 is applied, changing the terminology used for pseudo-terminal
devices.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1525

51141

51142

51143

51144

51145

51146

51147

51148

51149

51150

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

open_memstream() System Interfaces

NAME
open_memstream, open_wmemstream — open a dynamic memory buffer stream

SYNOPSIS
CX #include <stdio.h>

FILE *open_memstream(char **bufp, size_t *sizep);

#include <wchar.h>

FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

DESCRIPTION
The open_memstream() and open_wmemstream() functions shall create an I/O stream associated
with a dynamically allocated memory buffer. The stream shall be opened for writing and shall
be seekable.

The stream associated with a call to open_memstream() shall be byte-oriented.

The stream associated with a call to open_wmemstream() shall be wide-oriented.

The stream shall maintain a current position in the allocated buffer and a current buffer length.
The position shall be initially set to zero (the start of the buffer). Each write to the stream shall
start at the current position and move this position by the number of successfully written bytes
for open_memstream() or the number of successfully written wide characters for
open_wmemstream(). The length shall be initially set to zero. If a write moves the position to a
value larger than the current length, the current length shall be set to this position. In this case a
null character for open_memstream() or a null wide character for open_wmemstream() shall be
appended to the current buffer. For both functions the terminating null is not included in the
calculation of the buffer length.

After a successful fflush() or fclose(), the pointer referenced by bufp shall contain the address of
the buffer, and the variable pointed to by sizep shall contain the smaller of the current buffer
length and the number of bytes for open_memstream(), or the number of wide characters for
open_wmemstream(), between the beginning of the buffer and the current file position indicator.

The fseek() and fseeko() functions can be used to set the file position beyond the current buffer
length. It is implementation-defined whether this extends the buffer to the new length. If it
extends the buffer, the added buffer contents shall be set to null bytes for open_memstream(), or
null wide characters for open_wmemstream(); if it does not extend the buffer, then if data is later
written at this point, the buffer contents in the gap shall be set to null bytes for
open_memstream(), or null wide characters for open_wmemstream(). If fseek() or fseeko() is called
with SEEK_END as the whence argument, it is implementation-defined whether the file position
is adjusted relative to the current buffer length or relative to the buffer size that would be set by
an fflush() call made immediately before the fseek() or fseeko() call.

After a successful fflush() the pointer referenced by bufp and the variable referenced by sizep
remain valid only until the next write operation on the stream or a call to fclose().

After a successful fclose(), the pointer referenced by bufp can be passed to free().

RETURN VALUE
Upon successful completion, these functions shall return a pointer to the object controlling the
stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

1526 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51151

51152

51153

51154

51155

51156

51157

51158

51159

51160

51161

51162

51163

51164

51165

51166

51167

51168

51169

51170

51171

51172

51173

51174

51175

51176

51177

51178

51179

51180

51181

51182

51183

51184

51185

51186

51187

51188

51189

51190

51191

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces open_memstream()

ERRORS
These functions shall fail if:

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

These functions may fail if:

[EINVAL] bufp or sizep are NULL.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[ENOMEM] Memory for the stream or the buffer could not be allocated.

EXAMPLES

#include <stdio.h>
#include <stdlib.h>

int
main (void)
{

FILE *stream;
char *buf;
size_t len;
off_t eob;

stream = open_memstream (&buf, &len);
if (stream == NULL)

/* handle error */ ;
fprintf (stream, "hello my world");
fflush (stream);
printf ("buf=%s, len=%zu\n", buf, len);
eob = ftello(stream);
fseeko (stream, 0, SEEK_SET);
fprintf (stream, "good-bye");
fseeko (stream, eob, SEEK_SET);
fclose (stream);
printf ("buf=%s, len=%zu\n", buf, len);
free (buf);
return 0;

}

This program produces the following output:

buf=hello my world, len=14
buf=good-bye world, len=14

APPLICATION USAGE
The buffer created by these functions should be freed by the application after closing the stream,
by means of a call to free().

RATIONALE
These functions are similar to fmemopen() except that the memory is always allocated
dynamically by the function, and the stream is opened only for output.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1527

51192

51193

51194

51195

51196

51197

51198

51199

51200

51201

51202

51203

51204

51205

51206

51207

51208

51209

51210

51211

51212

51213

51214

51215

51216

51217

51218

51219

51220

51221

51222

51223

51224

51225

51226

51227

51228

51229

51230

51231

51232

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

open_memstream() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fdopen(), fflush(), fmemopen(), fopen(), free(), freopen()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0244 [588] and XSH/TC2-2008/0245
[586] are applied.

Issue 8
Austin Group Defect 1406 is applied, clarifying the behavior of fseek() and fseeko() on streams
created by open_memstream() and open_wmemstream().

1528 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51233

51234

51235

51236

51237

51238

51239

51240

51241

51242

51243

51244

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces openat()

NAME
openat — open file relative to directory file descriptor

SYNOPSIS
#include <fcntl.h>

int openat(int fd, const char *path, int oflag, ...);

DESCRIPTION
Refer to open().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1529

51245

51246

51247

51248

51249

51250

51251

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

opendir() System Interfaces

NAME
opendir — open directory associated with file descriptor

SYNOPSIS
#include <dirent.h>

DIR *opendir(const char *dirname);

DESCRIPTION
Refer to fdopendir().

1530 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51252

51253

51254

51255

51256

51257

51258

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces openlog()

NAME
openlog — open a connection to the logging facility

SYNOPSIS
XSI #include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

DESCRIPTION
Refer to closelog().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1531

51259

51260

51261

51262

51263

51264

51265

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

optarg System Interfaces

NAME
optarg, opterr, optind, optopt — options parsing variables

SYNOPSIS
#include <unistd.h>

extern char *optarg;
extern int opterr, optind, optopt;

DESCRIPTION
Refer to getopt().

1532 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51266

51267

51268

51269

51270

51271

51272

51273

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pathconf()

NAME
pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long pathconf(const char *path, int name);

DESCRIPTION
Refer to fpathconf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1533

51274

51275

51276

51277

51278

51279

51280

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pause() System Interfaces

NAME
pause — suspend the thread until a signal is received

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
The pause() function shall suspend the calling thread until delivery of a signal whose action is
either to execute a signal-catching function or to terminate the process.

If the action is to terminate the process, pause() shall not return.

If the action is to execute a signal-catching function, pause() shall return after the signal-catching
function returns.

RETURN VALUE
Since pause() suspends thread execution indefinitely unless interrupted by a signal, there is no
successful completion return value. A value of −1 shall be returned and errno set to indicate the
error.

ERRORS
The pause() function shall fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

EXAMPLES
None.

APPLICATION USAGE
Many common uses of pause() have timing windows. The scenario involves checking a
condition related to a signal and, if the signal has not occurred, calling pause(). When the signal
occurs between the check and the call to pause(), the process often blocks indefinitely. The
sigprocmask() and sigsuspend() functions can be used to avoid this type of problem.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigsuspend()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The APPLICATION USAGE section is added.

1534 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51281

51282

51283

51284

51285

51286

51287

51288

51289

51290

51291

51292

51293

51294

51295

51296

51297

51298

51299

51300

51301

51302

51303

51304

51305

51306

51307

51308

51309

51310

51311

51312

51313

51314

51315

51316

51317

51318

51319

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pclose()

NAME
pclose — close a pipe stream to or from a process

SYNOPSIS
CX #include <stdio.h>

int pclose(FILE *stream);

DESCRIPTION
The pclose() function shall close a stream that was opened by popen(), wait for the command to
terminate, and return the termination status of the process that was running the command
language interpreter. However, if a call caused the termination status to be unavailable to
pclose(), then pclose() shall return −1 with errno set to [ECHILD] to report this situation. This can
happen if the application calls one of the following functions:

• wait()

• waitpid() with a pid argument less than or equal to 0 or equal to the process ID of the
command line interpreter

• Any other function not defined in this volume of POSIX.1-2024 that could do one of the
above

In any case, pclose() shall not return before the child process created by popen() has terminated.

If the command language interpreter cannot be executed, the child termination status returned
by pclose() shall be as if the command language interpreter terminated using exit(127) or
_exit(127).

The pclose() function shall not affect the termination status of any child of the calling process
other than the one created by popen() for the associated stream.

If the argument stream to pclose() is not a pointer to a stream created by popen(), the result of
pclose() is undefined.

If a thread is canceled during execution of pclose(), the behavior is undefined.

RETURN VALUE
Upon successful return, pclose() shall return the termination status of the command language
interpreter. Otherwise, pclose() shall return −1 and set errno to indicate the error.

ERRORS
The pclose() function shall fail if:

[ECHILD] The status of the child process could not be obtained, as described above.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There is a requirement that pclose() not return before the child process terminates. This is
intended to disallow implementations that return [EINTR] if a signal is received while waiting.
If pclose() returned before the child terminated, there would be no way for the application to
discover which child used to be associated with the stream, and it could not do the cleanup
itself.

If the stream pointed to by stream was not created by popen(), historical implementations of

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1535

51320

51321

51322

51323

51324

51325

51326

51327

51328

51329

51330

51331

51332

51333

51334

51335

51336

51337

51338

51339

51340

51341

51342

51343

51344

51345

51346

51347

51348

51349

51350

51351

51352

51353

51354

51355

51356

51357

51358

51359

51360

51361

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pclose() System Interfaces

pclose() return −1 without setting errno. To avoid requiring pclose() to set errno in this case,
POSIX.1-2024 makes the behavior unspecified. An application should not use pclose() to close
any stream that was not created by popen().

Some historical implementations of pclose() either block or ignore the signals SIGINT, SIGQUIT,
and SIGHUP while waiting for the child process to terminate. Since this behavior is not
described for the pclose() function in POSIX.1-2024, such implementations are not conforming.
Also, some historical implementations return [EINTR] if a signal is received, even though the
child process has not terminated. Such implementations are also considered non-conforming.

Consider, for example, an application that uses:

popen("command", "r")

to start command, which is part of the same application. The parent writes a prompt to its
standard output (presumably the terminal) and then reads from the popen()ed stream. The child
reads the response from the user, does some transformation on the response (pathname
expansion, perhaps) and writes the result to its standard output. The parent process reads the
result from the pipe, does something with it, and prints another prompt. The cycle repeats.
Assuming that both processes do appropriate buffer flushing, this would be expected to work.

To conform to POSIX.1-2024, pclose() must use waitpid(), or some similar function, instead of
wait().

See the RATIONALE for popen() for a sample implementation of pclose().

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), popen(), wait()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0246 [632] is applied.

Issue 8
Austin Group Defect 411 is applied, changing the RATIONALE section.

1536 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51362

51363

51364

51365

51366

51367

51368

51369

51370

51371

51372

51373

51374

51375

51376

51377

51378

51379

51380

51381

51382

51383

51384

51385

51386

51387

51388

51389

51390

51391

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces perror()

NAME
perror — write error messages to standard error

SYNOPSIS
#include <stdio.h>

void perror(const char *s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The perror() function shall map the error number accessed through the symbol errno to a
language-dependent error message, which shall be written to the standard error stream as
follows:

• First (if s is not a null pointer and the character pointed to by s is not the null byte), the
string pointed to by s followed by a <colon> and a <space>.

• Then an error message string followed by a <newline>.

The contents of the error message strings shall be the same as those returned by strerror() with
argument errno.

CX The perror() function shall mark for update the last data modification and last file status change
timestamps of the file associated with the standard error stream at some time between its
successful completion and exit(), abort(), or the completion of fflush() or fclose() on stderr.

The perror() function shall not change the orientation of the standard error stream.

On error, perror() shall set the error indicator for the stream to which stderr points, and shall set
errno to indicate the error.

Since no value is returned, an application wishing to check for error situations should call
clearerr(stderr) before calling perror(), then if ferror(stderr) returns non-zero, the value of errno
indicates which error occurred.

RETURN VALUE
The perror() function shall not return a value.

ERRORS
CX Refer to fputc().

EXAMPLES

Printing an Error Message for a Function

The following example replaces bufptr with a buffer that is the necessary size. If an error occurs,
the perror() function prints a message and the program exits.

#include <stdio.h>
#include <stdlib.h>
...
char *bufptr;
size_t szbuf;
...
if ((bufptr = malloc(szbuf)) == NULL) {

perror("malloc"); exit(2);
}

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1537

51392

51393

51394

51395

51396

51397

51398

51399

51400

51401

51402

51403

51404

51405

51406

51407

51408

51409

51410

51411

51412

51413

51414

51415

51416

51417

51418

51419

51420

51421

51422

51423

51424

51425

51426

51427

51428

51429

51430

51431

51432

51433

51434

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

perror() System Interfaces

...

APPLICATION USAGE
Application writers may prefer to use alternative interfaces instead of perror(), such as
strerror_r() in combination with fprintf().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), fputc(), psiginfo(), strerror()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A paragraph is added to the DESCRIPTION indicating that perror() does not change the
orientation of the standard error stream.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XSH-ERN-95 is applied.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0429 [389,401], XSH/TC1-2008/0430
[389], and XSH/TC1-2008/0431 [389,401] are applied.

1538 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51435

51436

51437

51438

51439

51440

51441

51442

51443

51444

51445

51446

51447

51448

51449

51450

51451

51452

51453

51454

51455

51456

51457

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pipe()

NAME
pipe, pipe2 — create an interprocess channel

SYNOPSIS
#include <unistd.h>

int pipe(int fildes[2]);
int pipe2(int fildes[2], int flag);

DESCRIPTION
The pipe() function shall create a pipe and place two file descriptors, one each into the
arguments fildes[0] and fildes[1], that refer to the open file descriptions for the read and write
ends of the pipe, respectively. The file descriptors shall be allocated as described in Section 2.6
(on page 525). The FD_CLOEXEC and FD_CLOFORK flags shall be clear on both file
descriptors. The O_NONBLOCK flag shall be clear on both open file descriptions. (The fcntl()
function can be used to set this flag.)

Data can be written to the file descriptor fildes[1] and read from the file descriptor fildes[0]. A
read on the file descriptor fildes[0] shall access data written to the file descriptor fildes[1] on a
first-in-first-out basis. It is unspecified whether fildes[0] is also open for writing and whether
fildes[1] is also open for reading.

A process has the pipe open for reading (correspondingly writing) if it has a file descriptor open
that refers to the read end, fildes[0] (write end, fildes[1]).

The pipe’s user ID shall be set to the effective user ID of the calling process.

The pipe’s group ID shall be set to the effective group ID of the calling process.

Upon successful completion, pipe() shall mark for update the last data access, last data
modification, and last file status change timestamps of the pipe.

The pipe2() function shall be equivalent to the pipe() function, except that the state of
O_NONBLOCK on the new file descriptions and FD_CLOEXEC and FD_CLOFORK on the new
file descriptors shall be determined solely by the flag argument, which can be constructed from a
bitwise-inclusive OR of flags from the following list (provided by <fcntl.h>):

O_CLOEXEC Atomically set the FD_CLOEXEC flag on both new file descriptors.

O_CLOFORK Atomically set the FD_CLOFORK flag on both new file descriptors.

O_NONBLOCK Set the O_NONBLOCK file status flag on both new file descriptions.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error, no file descriptors shall be allocated and the contents of fildes shall be left
unmodified.

ERRORS
The pipe() and pipe2() functions shall fail if:

[EMFILE] All, or all but one, of the file descriptors available to the process are currently
open.

[ENFILE] The number of simultaneously open files in the system would exceed a
system-imposed limit.

The pipe2() function may fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1539

51458

51459

51460

51461

51462

51463

51464

51465

51466

51467

51468

51469

51470

51471

51472

51473

51474

51475

51476

51477

51478

51479

51480

51481

51482

51483

51484

51485

51486

51487

51488

51489

51490

51491

51492

51493

51494

51495

51496

51497

51498

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pipe() System Interfaces

[EINVAL] The value of the flag argument is invalid.

EXAMPLES

Using a Pipe to Pass Data Between a Parent Process and a Child Process

The following example demonstrates the use of a pipe to transfer data between a parent process
and a child process. Error handling is excluded, but otherwise this code demonstrates good
practice when using pipes: after the fork() the two processes close the unused ends of the pipe
before they commence transferring data.

#include <stdlib.h>
#include <unistd.h>
...

int fildes[2];
const int BSIZE = 100;
char buf[BSIZE];
ssize_t nbytes;
int status;

status = pipe(fildes);
if (status == -1) {

/* an error occurred */
...

}

switch (fork()) {
case -1: /* Handle error */

break;

case 0: /* Child - reads from pipe */
close(fildes[1]); /* Write end is unused */
nbytes = read(fildes[0], buf, BSIZE); /* Get data from pipe */
/* At this point, a further read would see end-of-file ... */
close(fildes[0]); /* Finished with pipe */
exit(EXIT_SUCCESS);

default: /* Parent - writes to pipe */
close(fildes[0]); /* Read end is unused */
write(fildes[1], "Hello world\n", 12); /* Write data on pipe */
close(fildes[1]); /* Child will see EOF */
exit(EXIT_SUCCESS);

}

APPLICATION USAGE
None.

RATIONALE
The wording carefully avoids using the verb ``to open’’ in order to avoid any implication of use
of open(); see also write().

The O_CLOEXEC and O_CLOFORK flags of pipe2() are necessary to avoid a data race in multi-
threaded applications. Without O_CLOFORK, a file descriptor is leaked into a child process
created by one thread in the window between another thread creating a file descriptor with
pipe() and then using fcntl() to set the FD_CLOFORK flag. Without O_CLOEXEC, a file
descriptor intentionally inherited by child processes is similarly leaked into an executed

1540 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51499

51500

51501

51502

51503

51504

51505

51506

51507

51508

51509

51510

51511

51512

51513

51514

51515

51516

51517

51518

51519

51520

51521

51522

51523

51524

51525

51526

51527

51528

51529

51530

51531

51532

51533

51534

51535

51536

51537

51538

51539

51540

51541

51542

51543

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pipe()

program if FD_CLOEXEC is not set atomically.

Since pipes are often used for communication between a parent and child process, O_CLOFORK
has to be used with care in order for the pipe to be usable. If the parent will be writing and the
child will be reading, O_CLOFORK should be used when creating the pipe, and then fcntl()
should be used to clear FD_CLOFORK for the read side of the pipe. This prevents the write side
from leaking into other children, ensuring the child will get end-of-file when the parent closes
the write side (although the read side can still be leaked). If the parent will be reading and the
child will be writing, there is no way to prevent the write side being leaked (short of preventing
other threads from creating child processes) in order to ensure the parent gets end-of-file when
the child closes the write side, and so the two processes should use an alternative method of
indicating the end of communications.

Arranging for FD_CLOEXEC to be set appropriately is more straightforward. The parent should
use O_CLOEXEC when creating the pipe and the child should clear FD_CLOEXEC on the side
to be passed to the new program before calling an exec family function to execute it.

The O_NONBLOCK flag is for convenience in avoiding additional fcntl() calls.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 525), fcntl(), read(), write()

XBD <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate that certain dispositions of fildes[0] and fildes[1]
are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/65 is applied, adding the example to the
EXAMPLES section.

Issue 7
SD5-XSH-ERN-156 is applied, updating the DESCRIPTION to state the setting of the pipe’s user
ID and group ID.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0247 [835] and XSH/TC2-2008/0248
[467,835] are applied.

Issue 8
Austin Group Defects 411, 1318, and 1577 are applied, adding pipe2() and FD_CLOFORK.

Austin Group Defect 1576 is applied, adding the word ``respectively’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1541

51544

51545

51546

51547

51548

51549

51550

51551

51552

51553

51554

51555

51556

51557

51558

51559

51560

51561

51562

51563

51564

51565

51566

51567

51568

51569

51570

51571

51572

51573

51574

51575

51576

51577

51578

51579

51580

51581

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

poll() System Interfaces

NAME
poll, ppoll — input/output multiplexing

SYNOPSIS
#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);
int ppoll(struct pollfd fds[], nfds_t nfds,

const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

DESCRIPTION
The ppoll() function provides applications with a mechanism for multiplexing input/output
over a set of file descriptors. For each member of the array pointed to by fds, ppoll() shall
examine the given file descriptor for the event(s) specified in events. The number of pollfd
structures in the fds array is specified by nfds. The ppoll() function shall identify those file
descriptors on which an application can make an attempt to read or write data without blocking,
or on which certain events have occurred.

The poll() function shall be equivalent to the ppoll() function, except as follows:

• For the poll() function, the timeout period is given in milliseconds in an argument of type
int, whereas for the ppoll() function the timeout period is given in seconds and
nanoseconds via an argument of type pointer to struct timespec. A timeout of −1 for poll()
shall be equivalent to passing a null pointer for the timeout for ppoll().

• The poll() function has no sigmask argument; it shall behave as ppoll() does when sigmask is
a null pointer.

The fds argument specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one member for each open file descriptor of
interest. The array’s members are pollfd structures within which fd specifies an open file
descriptor and events and revents are bitmasks constructed by OR’ing a combination of the
following event flags:

POLLIN The file descriptor is ready for reading data other than high-priority data.

POLLRDNORM The file descriptor is ready for reading normal data.

POLLRDBAND The file descriptor is ready for reading priority data.

POLLPRI The file descriptor is ready for reading high-priority data.

POLLOUT The file descriptor is ready for writing normal data.

POLLWRNORM Equivalent to POLLOUT.

POLLWRBAND The file descriptor is ready for writing priority data.

POLLERR An error condition is present on the file descriptor. All error conditions that
arise solely from the state of the object underlying the open file description
and would be diagnosed by a return of −1 from a read() or write() call on the
file descriptor shall be reported as a POLLERR event. This flag is only valid in
the revents bitmask; it shall be ignored in the events member.

POLLHUP A device has been disconnected, or a pipe or FIFO has been closed by the last
process that had it open for writing. Once set, the hangup state of a FIFO shall
persist until some process opens the FIFO for writing or until all read-only file
descriptors for the FIFO are closed. This event and POLLOUT are mutually-
exclusive. However, this event and POLLIN, POLLRDNORM,

1542 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51582

51583

51584

51585

51586

51587

51588

51589

51590

51591

51592

51593

51594

51595

51596

51597

51598

51599

51600

51601

51602

51603

51604

51605

51606

51607

51608

51609

51610

51611

51612

51613

51614

51615

51616

51617

51618

51619

51620

51621

51622

51623

51624

51625

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces poll()

POLLRDBAND, or POLLPRI are not mutually-exclusive. This flag is only
valid in the revents bitmask; it shall be ignored in the events member.

POLLNVAL The specified fd value is not an open file descriptor. This flag is only valid in
the revents member; it shall be ignored in the events member.

A file descriptor shall be considered ready for reading when a call to an input function with
O_NONBLOCK clear would not block, whether or not the function would transfer data
successfully. (The function might return data, an end-of-file indication, or an error other than
one indicating that it is blocked, and in each of these cases the descriptor is considered ready for
reading.) A file descriptor shall be considered ready for writing when a call to an output
function with O_NONBLOCK clear would not block, whether or not the function would transfer
data successfully. How much data could be written without blocking depends upon the object
underlying the open file description and its current state.

The significance and semantics of normal, priority, and high-priority data are file and device-
specific. The semantics of device disconnection are device-specific.

If the value of fd is less than 0, events shall be ignored, and revents shall be set to 0 in that entry on
return from poll() or ppoll().

In each pollfd structure, poll() or ppoll() shall clear the revents member, except that where the
application requested a report on a condition by setting one of the bits of events listed above,
poll() or ppoll() shall set the corresponding bit in revents if the requested condition is true. In
addition, poll() or ppoll() shall set the POLLHUP, POLLERR, and POLLNVAL flag in revents if
the condition is true, even if the application did not set the corresponding bit in events.

The timeout argument controls how long the poll() or ppoll() function shall wait before timing
out. If the timeout argument is positive for poll() or not a null pointer for ppoll(), it specifies a
maximum interval to wait for the poll to complete. If the specified time interval expires without
any of the defined events having occurred, the function shall return. If the timeout argument is
−1 for poll() or a null pointer for ppoll(), then the call shall block indefinitely until at least one
descriptor meets the specified criteria or until the call is interrupted. To effect a poll, the
application shall ensure that the timeout argument for poll() is 0, or for ppoll() is not a null
pointer and points to a zero-valued timespec structure.

Implementations may place limitations on the maximum timeout interval supported. All
implementations shall support a maximum timeout interval of at least 31 days for ppoll(). If the
timeout argument specifies a timeout interval greater than the implementation-defined
maximum value, the maximum value shall be used as the actual timeout value. Implementations
may also place limitations on the granularity of timeout intervals. If the requested timeout
interval requires a finer granularity than the implementation supports, the actual timeout
interval shall be rounded up to the next supported value.

The poll() and ppoll() functions shall not be affected by the O_NONBLOCK flag.

The poll() and ppoll() functions shall support regular files, terminal and pseudo-terminal
devices, FIFOs, pipes, and sockets. The behavior of poll() and ppoll() on elements of fds that refer
to other types of file is unspecified.

Regular files shall always poll TRUE for reading and writing.

A file descriptor for a socket that is listening for connections shall indicate that it is ready for
reading, once connections are available. A file descriptor for a socket that is connecting
asynchronously shall indicate that it is ready for writing, once a connection has been established.

Provided the application does not perform any action that results in unspecified or undefined
behavior, the value of the fd and events members of each element of fds shall not be modified by

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1543

51626

51627

51628

51629

51630

51631

51632

51633

51634

51635

51636

51637

51638

51639

51640

51641

51642

51643

51644

51645

51646

51647

51648

51649

51650

51651

51652

51653

51654

51655

51656

51657

51658

51659

51660

51661

51662

51663

51664

51665

51666

51667

51668

51669

51670

51671

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

poll() System Interfaces

poll() or ppoll().

If sigmask is not a null pointer, the ppoll() function shall replace the signal mask of the caller by
the set of signals pointed to by sigmask before examining the descriptors, and shall restore the
signal mask of the calling thread before returning. If a signal is unmasked as a result of the
signal mask being altered by ppoll(), and a signal-catching function is called for that signal
during the execution of the ppoll() function, and SA_RESTART is clear for the interrupting
signal, then

• If none of the defined events have occurred on any selected file descriptor, ppoll() shall
immediately fail with the [EINTR] error after the signal-catching function returns.

• If one or more of the defined events have occurred, it is unspecified whether ppoll()
behaves the same as if none of the events had occurred (failing with [EINTR] as above) or
behaves the same as if it was not interrupted (returning the total number of pollfd
structures that have selected events).

If a thread is canceled during a ppoll() call, it is unspecified whether the signal mask in effect
when executing the registered cleanup functions is the original signal mask or the signal mask
installed as part of the ppoll() call.

RETURN VALUE
Upon successful completion, a non-negative value shall be returned. A positive value shall
indicate the total number of pollfd structures that have selected events (that is, those for which
the revents member is non-zero). A value of 0 shall indicate that the call timed out and no file
descriptors have been selected. Upon failure, −1 shall be returned and errno set to indicate the
error.

ERRORS
The poll() and ppoll() functions shall fail if:

[EAGAIN] The allocation of internal data structures failed but a subsequent request may
succeed.

[EINTR] A signal was caught during poll() or ppoll().

[EINVAL] The nfds argument is greater than {OPEN_MAX}.

The ppoll() function shall fail if:

[EINVAL] An invalid timeout interval was specified.

EXAMPLES
None.

APPLICATION USAGE
Other than the difference in the precision of the requested timeout, the following ppoll() call:

ready = ppoll(&fds, nfds, tmo_p, &sigmask);

is equivalent to atomically executing the following calls:

sigset_t origmask;
int timeout;

timeout = (tmo_p == NULL) ? -1 :
(tmo_p->tv_sec * 1000 + tmo_p->tv_nsec / 1000000);

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = poll(&fds, nfds, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

1544 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51672

51673

51674

51675

51676

51677

51678

51679

51680

51681

51682

51683

51684

51685

51686

51687

51688

51689

51690

51691

51692

51693

51694

51695

51696

51697

51698

51699

51700

51701

51702

51703

51704

51705

51706

51707

51708

51709

51710

51711

51712

51713

51714

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces poll()

When a poll() or ppoll() call indicates a file descriptor is ready for reading, this means that if an
attempt to read data had been made at the time that the status of the file descriptor was checked,
it would have returned at least one byte of data, an end-of-file indication, or an error, without
blocking (even if O_NONBLOCK is clear). When a poll() or ppoll() call indicates that a file
descriptor is ready for writing, this means that if an attempt to write one byte of data had been
made at the time that the status of the file descriptor was checked, it would have written that
byte or returned an error, without blocking. However, if an attempt to write more than one byte
had been made, it might have blocked (if O_NONBLOCK is clear). In both cases, by the time the
call returns and a subsequent I/O operation is attempted, the state of the file descriptor might
have changed (for example, because another thread read or wrote some data) and, if
O_NONBLOCK is clear, there is no guarantee that the operation will not block (unless it would
not block for some other reason, such as setting MIN=0 and TIME=0 for a terminal in non-
canonical mode). Therefore it is recommended that applications always set O_NONBLOCK on
file descriptors whose readiness for I/O they query with poll() or ppoll().

The error conditions specified for read() and write() that are reported as POLLERR events are
only those that arise solely from the state of the object underlying the open file description.
They do not include, for example, [EAGAIN] as this relates to the state of the open file
description not (solely) the object underlying it.

Application writers should note that repeating a poll() or ppoll() call which indicated that I/O
was possible on one or more of the file descriptors given, without causing some change to the
state, either by altering the fds array or causing appropriate input or output to occur on at least
one file descriptor indicated as ready, will result in ``busy waiting’’—a subsequent call will
always return immediately indicating the same (or perhaps more) events as the previous one.

RATIONALE
The POLLHUP event does not occur for FIFOs just because the FIFO is not open for writing. It
only occurs when the FIFO is closed by the last writer and persists until some process opens the
FIFO for writing or until all read-only file descriptors for the FIFO are closed.

Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers
can install an additional cancellation handler which resets the signal mask to the expected value:

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}
int call_ppoll(struct pollfd fds[], nfds_t nfds,

const struct timespec *restrict timeout,
const sigset_t *restrict sigmask)

{
sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);
pthread_cleanup_push(cleanup, &oldmask);
result = ppoll(fds, nfds, timeout, sigmask);
pthread_cleanup_pop(0);
return result;

}

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1545

51715

51716

51717

51718

51719

51720

51721

51722

51723

51724

51725

51726

51727

51728

51729

51730

51731

51732

51733

51734

51735

51736

51737

51738

51739

51740

51741

51742

51743

51744

51745

51746

51747

51748

51749

51750

51751

51752

51753

51754

51755

51756

51757

51758

51759

51760

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

poll() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pselect(), read(), write()

XBD <poll.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The description of POLLWRBAND is updated.

Issue 6
Text referring to sockets is added to the DESCRIPTION.

Functionality relating to the XSI STREAMS Option Group is marked.

The Open Group Corrigendum U055/3 is applied, updating the DESCRIPTION of
POLLWRBAND.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/66 is applied, correcting the spacing in
the EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #209 is applied, clarifying the POLLHUP event.

The poll() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0249 [623] and XSH/TC2-2008/0250
[683] are applied.

Issue 8
Austin Group Defect 1263 is applied, adding ppoll().

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1448 is applied, aligning the wording relating to file descriptor readiness
with pselect() and changing the APPLICATION USAGE section.

1546 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51761

51762

51763

51764

51765

51766

51767

51768

51769

51770

51771

51772

51773

51774

51775

51776

51777

51778

51779

51780

51781

51782

51783

51784

51785

51786

51787

51788

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces popen()

NAME
popen — initiate pipe streams to or from a process

SYNOPSIS
CX #include <stdio.h>

FILE *popen(const char *command, const char *mode);

DESCRIPTION
The popen() function shall execute the command specified by the string command. It shall create
a pipe between the calling program and the executed command, and shall return a pointer to a
stream that can be used to either read from or write to the pipe.

The environment of the executed command shall be as if a child process were created within the
popen() call using the fork() function, and the child invoked the sh utility using the call:

execl(<shell path>, "sh", "-c", "--", command, (char *)0);

where <shell path> is an unspecified pathname for the sh utility. It is implementation-defined
whether the handlers registered with pthread_atfork() are called as part of the creation of the
child process.

The popen() function shall ensure that any streams from previous popen() calls that remain open
in the parent process are closed in the new child process, regardless of the FD_CLOEXEC or
FD_CLOFORK status of the file descriptor underlying those streams.

The mode argument to popen() is a string that specifies I/O mode:

1. If mode starts with 'r', when the child process is started, its file descriptor
STDOUT_FILENO shall be the writable end of the pipe, and the file descriptor
fileno(stream) in the calling process, where stream is the stream pointer returned by
popen(), shall be the readable end of the pipe. The FD_CLOFORK flag shall be cleared on
both the STDOUT_FILENO file descriptor passed to the child process and the file
descriptor underlying the returned stream.

2. If mode starts with 'w', when the child process is started its file descriptor
STDIN_FILENO shall be the readable end of the pipe, and the file descriptor fileno(stream)
in the calling process, where stream is the stream pointer returned by popen(), shall be the
writable end of the pipe. The FD_CLOFORK flag shall be cleared on both the
STDOUT_FILENO file descriptor passed to the child process and the file descriptor
underlying the returned stream.

3. If mode includes a second character of 'e', then the file descriptor underlying the stream
returned to the calling process by popen() shall have the FD_CLOEXEC flag atomically
set. Additionally, if the implementation creates the file descriptor for use by the child
process from within the parent process, then that file descriptor shall have the
FD_CLOEXEC flag atomically set within the parent process. If mode does not have a
second character, the FD_CLOEXEC flag of the underlying file descriptor returned by
popen() shall be clear.

4. If mode is any other value, the result is unspecified.

After popen(), both the parent and the child process shall be capable of executing independently
before either terminates.

Pipe streams are byte-oriented.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1547

51789

51790

51791

51792

51793

51794

51795

51796

51797

51798

51799

51800

51801

51802

51803

51804

51805

51806

51807

51808

51809

51810

51811

51812

51813

51814

51815

51816

51817

51818

51819

51820

51821

51822

51823

51824

51825

51826

51827

51828

51829

51830

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

popen() System Interfaces

RETURN VALUE
Upon successful completion, popen() shall return a pointer to an open stream that can be used to
read or write to the pipe. Otherwise, it shall return a null pointer and may set errno to indicate
the error.

ERRORS
The popen() function shall fail if:

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

The popen() function may fail if:

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[EINVAL] The mode argument is invalid.

The popen() function may also set errno values as described by fork() or pipe().

EXAMPLES

Using popen() to Obtain a List of Files from the ls Utility

The following example demonstrates the use of popen() and pclose() to execute the command ls*
in order to obtain a list of files in the current directory:

#include <stdio.h>
...

FILE *fp;
int status;
char path[PATH_MAX];

fp = popen("ls *", "r");
if (fp == NULL)

/* Handle error */;

while (fgets(path, PATH_MAX, fp) != NULL)
printf("%s", path);

status = pclose(fp);
if (status == -1) {

/* Error reported by pclose() */
...

} else {
/* Use macros described under wait() to inspect `status' in order

to determine success/failure of command executed by popen() */
...

}

APPLICATION USAGE
Since open files are shared, a mode 'r' command can be used as an input filter and a mode 'w'
command as an output filter.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be prevented by careful buffer
flushing; for example, with fflush().

A stream opened by popen() should be closed by pclose().

The behavior of popen() is specified for values of mode of "r", "w", "re", and "we". Other

1548 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51831

51832

51833

51834

51835

51836

51837

51838

51839

51840

51841

51842

51843

51844

51845

51846

51847

51848

51849

51850

51851

51852

51853

51854

51855

51856

51857

51858

51859

51860

51861

51862

51863

51864

51865

51866

51867

51868

51869

51870

51871

51872

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces popen()

modes such as "rb" and "wb" might be supported by specific implementations, but these
would not be portable features. Note that historical implementations of popen() only check to see
if the first character of mode is 'r'. Thus, a mode of "robert the robot" would be treated as
mode "r", and a mode of "anything else" would be treated as mode "w".

If the application calls waitpid() or waitid() with a pid argument greater than 0, and it still has a
stream that was called with popen() open, it must ensure that pid does not refer to the process
started by popen().

To determine whether or not the environment specified in the Shell and Utilities volume of
POSIX.1-2024 is present, use the function call:

sysconf(_SC_2_VERSION)

(See sysconf()).

RATIONALE
The popen() function should not be used by programs that have set user (or group) ID privileges.
The fork() and exec family of functions (except execlp() and execvp()), should be used instead.
This prevents any unforeseen manipulation of the environment of the user that could cause
execution of commands not anticipated by the calling program.

If the original and popen()ed processes both intend to read or write or read and write a common
file, and either will be using FILE-type C functions (fread(), fwrite(), and so on), the rules for
sharing file handles must be observed (see Section 2.5.1, on page 522).

The 'e' mode modifier to popen() is necessary to avoid a data race in multi-threaded
applications. Without it, the parent’s file descriptor is leaked into a second child process created
by one thread in the window between another thread creating the pipe via popen() then using
fileno() and fcntl() on the result. Also, if the popen() implementation temporarily has the child’s
file descriptor open within the parent, then that file descriptor could also be leaked if it is not
atomically FD_CLOEXEC for the duration in which it is open in the parent.

The standard only requires that the implementation atomically set FD_CLOEXEC on file
descriptors created in the parent process when the 'e' mode modifier is in effect;
implementations may also do so when the 'e' modifier is not in use, provided that the
FD_CLOEXEC bit is eventually cleared before popen() completes, however, this is not required
because any application worried about the potential file descriptor leak will already be using the
'e' modifier.

Implementations are encouraged to add support for a "wf" mode which creates the pipe as if by
calling pipe2() with the O_CLOFORK flag and then clearing FD_CLOFORK for the read side of
the pipe. This prevents the write side from leaking into child processes created by other threads,
ensuring the child created by popen() will get end-of-file when the parent closes the write side
(although the read side can still be leaked). Unfortunately there is no way (short of temporarily
preventing other threads from creating child processes, or implementing an atomic create-pipe-
and-fork system call) to implement an "rf" mode with the equivalent guarantee that the child
created by popen() will be the only writer. Therefore multi-threaded applications that do not
have complete control over process creation cannot rely on getting end-of-file on the stream and
need to use an alternative method of indicating the end of communications.

Although the standard is clear that a conforming application should not call popen() when file
descriptor 0 or 1 is closed, implementations are encouraged to handle these cases correctly.

The following two examples demonstrate possible implementations of popen() using other
standard functions. These examples are designed to show FD_CLOEXEC handling rather than
all aspects of thread safety, and implementations are encouraged to improve the locking

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1549

51873

51874

51875

51876

51877

51878

51879

51880

51881

51882

51883

51884

51885

51886

51887

51888

51889

51890

51891

51892

51893

51894

51895

51896

51897

51898

51899

51900

51901

51902

51903

51904

51905

51906

51907

51908

51909

51910

51911

51912

51913

51914

51915

51916

51917

51918

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

popen() System Interfaces

mechanism around the state list to be more efficient, as well as to be more robust if file
descriptor 0 or 1 is returned as either part of the pipe. Also, remember that other
implementations are possible, including one that uses an implementation-specific means of
creating a pipe between parent and child where the parent process never has access to the child’s
end of the pipe. Both of these examples make use of the following helper functions, documented
but not implemented here, to do the bookkeeping necessary to properly close all file descriptors
created by other popen() calls regardless of their FD_CLOEXEC or FD_CLOFORK status:

/* Obtain mutual exclusion lock, so that no concurrent popen() or
pclose() calls are simultaneously modifying the list of tracked
children. */

static void popen_lock(void);

/* Release mutual exclusion lock, without changing errno. */
static void popen_unlock(void);

/* Add the pid and stream pair to the list of tracked children, prior
to any code that can clear FD_CLOEXEC on the file descriptor
associated with stream. To be used while holding the lock. */

static void popen_add_pair(FILE *stream, pid_t pid);

/* Given a stream, return the associated pid, or -1 with errno set if
the stream was not created by popen(). To be used while holding
the lock. */

static pid_t popen_get_pid(FILE *stream);

/* Remove stream and its corresponding pid from the list of tracked
children. To be used while holding the lock. */

static void popen_remove(FILE *stream);

/* If stream is NULL, return the first tracked child; otherwise,
return the next tracked child. Return NULL if all tracked children
have been returned. To be used while holding the lock. */

static FILE *popen_next(FILE *stream);

The first example is based on fork():

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <unistd.h>
FILE *popen(const char *command, const char *mode)
{
int fds[2];
pid_t pid;
FILE *stream;
int target = mode[0] == 'w'; /* index of fds used by parent */

/* Validate mode */
if ((mode[0] != 'w' && mode[0] != 'r') ||

mode[1 + (mode[1] == 'e')]) {
errno = EINVAL;
return NULL;

}

/* Create pipe and stream with FD_CLOEXEC set */

1550 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51919

51920

51921

51922

51923

51924

51925

51926

51927

51928

51929

51930

51931

51932

51933

51934

51935

51936

51937

51938

51939

51940

51941

51942

51943

51944

51945

51946

51947

51948

51949

51950

51951

51952

51953

51954

51955

51956

51957

51958

51959

51960

51961

51962

51963

51964

51965

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces popen()

if (pipe2(fds, O_CLOEXEC) < 0)
return NULL;

stream = fdopen(fds[target], mode);
if (!stream) {
int saved = errno;
close(fds[0]);
close(fds[1]);
errno = saved;
return NULL;

}

/* Create child process */
popen_lock();
pid = fork();
if (pid < 0) {
int saved = errno;
close(fds[!target]);
fclose(stream);
popen_unlock();
errno = saved;
return NULL;

}

/* Child process. */
if (!pid) {
FILE *tracked = popen_next(NULL);
while (tracked) {
int fd = fileno(tracked);
if (fd < 0 || close(fd))
_exit(127);

tracked = popen_next(tracked);
}
target = mode[0] == 'r'; /* Opposite fd in the child */
/* Use dup2 or fcntl to clear FD_CLOEXEC on child's descriptor,

FD_CLOEXEC will take care of the rest of fds[]. */
if (fds[target] != target) {
if (dup2(fds[target], target) != target)
_exit(127);

} else {
int flags = fcntl(fds[target], F_GETFD);
if (flags < 0 ||

fcntl(fds[target], F_SETFD, flags & ~FD_CLOEXEC) < 0)
_exit(127);

}
execl("/bin/sh", "sh", "-c", "--", command, NULL);
_exit(127);

}

/* Parent process. From here on out, the close and fcntl system
calls are assumed to pass, since all inputs are valid and do not
require allocating any fds or memory. Besides, excluding
failures due to undefined behavior (such as another thread
closing an fd it knows nothing about), cleanup from any defined

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1551

51966

51967

51968

51969

51970

51971

51972

51973

51974

51975

51976

51977

51978

51979

51980

51981

51982

51983

51984

51985

51986

51987

51988

51989

51990

51991

51992

51993

51994

51995

51996

51997

51998

51999

52000

52001

52002

52003

52004

52005

52006

52007

52008

52009

52010

52011

52012

52013

52014

52015

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

popen() System Interfaces

failures would require stopping and reaping the child process,
which may have worse consequences. */

close(fds[!target]); popen_add_pair(stream, pid);
popen_unlock();
if (mode[1] != 'e') {
int flags = fcntl(fds[target], F_GETFD);
if (flags >= 0)
fcntl(fds[target], F_SETFD, flags & ~FD_CLOEXEC);

}
return stream;

}

The second example is based on posix_spawn():

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <unistd.h>
#include <spawn.h>
extern char **environ;
FILE *popen(const char *command, const char *mode)
{
int fds[2];
pid_t pid;
FILE *stream;
int target = mode[0] == 'w'; /* index of fds used by parent */
const char *argv[] = { "sh", "-c", "--", command, NULL };
posix_spawn_file_actions_t actions;
int saved;
FILE *tracked;

/* Validate mode */
if ((mode[0] != 'w' && mode[0] != 'r') ||

mode[1 + (mode[1] == 'e')]) {
errno = EINVAL;
return NULL;

}

/* Create pipe and stream with FD_CLOEXEC set */
if (pipe2(fds, O_CLOEXEC) < 0)
return NULL;

stream = fdopen(fds[target], mode);
if (!stream) {
saved = errno;
close(fds[0]);
close(fds[1]);
errno = saved;
return NULL;

}

/* Create child process */
if (posix_spawn_file_actions_init(&actions)) {
saved = errno;

1552 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52016

52017

52018

52019

52020

52021

52022

52023

52024

52025

52026

52027

52028

52029

52030

52031

52032

52033

52034

52035

52036

52037

52038

52039

52040

52041

52042

52043

52044

52045

52046

52047

52048

52049

52050

52051

52052

52053

52054

52055

52056

52057

52058

52059

52060

52061

52062

52063

52064

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces popen()

goto spawnerr1;
}
popen_lock();
tracked = popen_next(NULL);
while (tracked) {
int fd = fileno(tracked);
if (fd < 0 || posix_spawn_file_actions_addclose(&actions, fd))
goto spawnerr2;

tracked = popen_next(tracked);
}
if (posix_spawn_file_actions_adddup2(&actions, fds[!target], !target))
goto spawnerr2;

if (posix_spawn(&pid, "/bin/sh", &actions, NULL, (char **)argv,
environ)) {
spawnerr2:

saved = errno;
posix_spawn_file_actions_destroy(&actions);
popen_unlock();

spawnerr1:
close(fds[!target]);
fclose(stream);
errno = saved;
return NULL;

}

/* From here on out, system calls are assumed to pass, since all
inputs are valid and do not require allocating any fds or memory.
Besides, excluding failures due to undefined behavior (such as
another thread closing an fd it knows nothing about), cleanup
from any defined failures would require stopping and reaping the
child process, which may have worse consequences. */

posix_spawn_file_actions_destroy(&actions);
close(fds[!target]);
popen_add_pair(stream, pid);
popen_unlock();
if (mode[1] != 'e') {
int flags = fcntl(fds[target], F_GETFD);
if (flags >= 0)
fcntl(fds[target], F_SETFD, flags & ~FD_CLOEXEC);

}
return stream;

}

Both examples can share a common pclose() implementation.

int pclose(FILE *stream)
{
int status;
popen_lock();
pid_t pid = popen_get_pid(stream);
if (pid < 0) {
popen_unlock();
return -1;

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1553

52065

52066

52067

52068

52069

52070

52071

52072

52073

52074

52075

52076

52077

52078

52079

52080

52081

52082

52083

52084

52085

52086

52087

52088

52089

52090

52091

52092

52093

52094

52095

52096

52097

52098

52099

52100

52101

52102

52103

52104

52105

52106

52107

52108

52109

52110

52111

52112

52113

52114

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

popen() System Interfaces

}
popen_remove(stream);
popen_unlock();
fclose(stream); /* Ignore failure */
while (waitpid(pid, &status, 0) == -1) {

if (errno != EINTR) {
status = -1;
break;

}
}
return status;

}

Note that, while a particular implementation of popen() (such as the two above) can assume a
particular path for the shell, such a path is not necessarily valid on another system. The above
examples are not portable, and are not intended to be.

Earlier versions of this standard required the command string to be passed as the next argument
after "-c" (omitting "--"). This meant that portable applications needed to take care not to
pass a command string beginning with <hyphen-minus> ('-') or <plus-sign> ('+'), as it
would then be interpreted as containing options. Now that implementations are required to pass
the "--", applications no longer need to do this.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fork(), pclose(), pipe(), sysconf(), system(), wait(), waitid()

XBD <stdio.h>

XCU sh

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A statement is added to the DESCRIPTION indicating that pipe streams are byte-oriented.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional [EMFILE] error condition is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/67 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #029 is applied, clarifying the values for mode in the
DESCRIPTION.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error condition from a
``may fail’’ to a ``shall fail’’.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0432 [14] is applied.

1554 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52115

52116

52117

52118

52119

52120

52121

52122

52123

52124

52125

52126

52127

52128

52129

52130

52131

52132

52133

52134

52135

52136

52137

52138

52139

52140

52141

52142

52143

52144

52145

52146

52147

52148

52149

52150

52151

52152

52153

52154

52155

52156

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces popen()

Issue 8
Austin Group Defects 411 and 1318 are applied, adding the 'e' mode modifier and
FD_CLOFORK, and adding example implementations of popen() and pclose() in the
RATIONALE section.

Austin Group Defect 1317 is applied, making it implementation-defined whether the handlers
registered with pthread_atfork() are called.

Austin Group Defect 1440 is applied, adding a "--" argument to the specified execl() call.

Austin Group Defect 1526 is applied, making typographic changes relating to mode values for
consistency with fopen().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1555

52157

52158

52159

52160

52161

52162

52163

52164

52165

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_close() System Interfaces

NAME
posix_close — close a file descriptor

SYNOPSIS
#include <unistd.h>

int posix_close(int fildes, int flag);

DESCRIPTION
Refer to close().

1556 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52166

52167

52168

52169

52170

52171

52172

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_devctl()

NAME
posix_devctl — device control

SYNOPSIS
DC #include <devctl.h>

int posix_devctl(int fildes, int dcmd, void *restrict dev_data_ptr,
size_t nbyte, int *restrict dev_info_ptr);

DESCRIPTION
The posix_devctl() function shall cause the device control command dcmd to be passed to the
driver identified by fildes. Associated data shall be passed to and/or from the driver depending
on direction information encoded in the dcmd argument or as implied in the dcmd argument by
the design and implementation of the driver.

If the dev_data_ptr argument is not a null pointer, it shall be a pointer to a buffer that is provided
by the caller and that contains data bytes to be passed to the driver or provides space for
receiving data bytes to be passed back from the driver, or both.

If the data bytes are to be passed to the driver, at least nbyte bytes of associated data shall be
made available to the driver; if the data bytes are to be passed from the driver, no more than
nbyte bytes shall be passed.

The driver may be executing in an address space different from the address space of the calling
thread. Therefore, if the data bytes passed to the driver (i.e., the contents of the memory area
starting at dev_data_ptr and continuing for nbyte bytes) contain pointers to memory in the
address space of the calling thread and the driver uses these pointers to access that memory, the
effects are unspecified.

OB If dev_data_ptr is not a null pointer and nbyte is zero, the amount of data passed to and/or from
the driver is unspecified. This feature is obsolescent and is only provided for compatibility with
existing device drivers.

If dev_data_ptr is a null pointer, there shall be no data bytes passed between the caller and the
driver other than the data specified in the rest of the arguments to posix_devctl() and in its return
value.

The dev_info_ptr argument provides the opportunity to return an integer number containing
additional device information, instead of just a success/failure indication. For implementation-
provided dcmd values, it is implementation-defined whether each such value causes the int
pointed to by dev_info_ptr to be set and, if set, what value it is set to.

For each supported device, the set of valid dcmd commands, the associated data interpretation,
and the effects of the command on the device are all defined by the driver for the device
identified by fildes, and are therefore implementation-defined for implementation-provided
device drivers.

RETURN VALUE
Upon successful completion, posix_devctl() shall return zero; otherwise an error number shall be
returned to indicate the error. The value returned in the int value pointed to by dev_info_ptr is
driver dependent.

ERRORS
The posix_devctl() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

The posix_devctl() function may fail if:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1557

52173

52174

52175

52176

52177

52178

52179

52180

52181

52182

52183

52184

52185

52186

52187

52188

52189

52190

52191

52192

52193

52194

52195

52196

52197

52198

52199

52200

52201

52202

52203

52204

52205

52206

52207

52208

52209

52210

52211

52212

52213

52214

52215

52216

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_devctl() System Interfaces

[EINTR] The posix_devctl() function was interrupted by a signal.

[EINVAL] The nbyte argument exceeds an implementation-defined maximum or is less
than the minimum number of bytes required for this command.

[EINVAL] The dcmd argument is not valid for this device.

[ENOTTY] The fildes argument is not associated with a character special file that accepts
control functions.

[EPERM] The requesting process does not have the appropriate privilege to request the
device to perform the specified command.

Driver code may detect other errors, but the error numbers returned are driver dependent. See
``Recommended Practice for Driver-Detected Errors’’ in RATIONALE.

If the posix_devctl() function fails, the effect of this failed function on the device is driver
dependent. Corresponding data might be transferred, partially transferred, or not transferred at
all.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE

Background

An interface to be included in the POSIX standard should improve source code portability of
application programs. In traditional UNIX practice, ioctl() was used to handle special devices.
Therefore, a general specification of its arguments cannot be written. Based on this fact, in the
past many people claimed that ioctl(), or something close to it, had no place in the POSIX
standards.

Against this perception stood the widespread use of ioctl() to interface to all sorts of drivers for a
vast variety of hardware used in all areas of general-purpose, realtime, and embedded
computing, such as analog-digital converters, counters, and video graphic devices. These
devices provide a set of services that cannot be represented or used in terms of read() or write()
calls.

The arguments in favor of ioctl() standardization can be summarized as follows:

Even if ioctl() addresses very different hardware, many of these devices either are actually the
same, interfaced to different computer systems with different implementations of operating
systems, or belong to classes of devices with rather high commonality in their functions, e.g.,
analog-digital converters or digital-analog converters. Growing standardization of the control
and status register (CSR) space of these devices allows exploitation of a growing similarity of
control codes and data for these devices. A general mechanism is needed to control these
devices.

In all these cases, a standardized interface from the application program to drivers for these
devices will improve source code portability.

Even if control codes and device data have to be changed when porting applications from one
system to another, the definition of ioctl() largely improves readability of a program handling
special devices. Changes are confined to more clearly labeled places.

A driver for a specific device normally cannot be considered portable per se, but an application

1558 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52217

52218

52219

52220

52221

52222

52223

52224

52225

52226

52227

52228

52229

52230

52231

52232

52233

52234

52235

52236

52237

52238

52239

52240

52241

52242

52243

52244

52245

52246

52247

52248

52249

52250

52251

52252

52253

52254

52255

52256

52257

52258

52259

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_devctl()

that uses this driver can be made portable if all interfaces needed are well defined and
standardized. Users and integrators of realtime systems often add device drivers for specific
devices, and a standard interface simplifies this process. Also, device drivers often follow their
special hardware from system to system.

In recognition of these reasons, The Open Group included ioctl() in the The Single UNIX
Specification, Version 1, and the interface was later incorporated into POSIX.1 under the XSI
STREAMS option (although that option was subsequently removed).

The posix_devctl() interface defined in this standard provides an alternative to the the various
ioctl() implementations with a standard interface that captures the extensibility of ioctl(), but
avoids several of its deficiencies, which is mentioned in ``Relationship to ioctl() and the
Perceived Needs for Improvement’’ below.

Existing Practice

The ioctl() interface is widely used. It has provided the generality mentioned above. Existing
practice encodes into the second parameter information about data size and direction in some
systems. An example of such an encoding is the use in BSD 4.3 of two bits of the command word
as read/write bits. However, ioctl() has definite problems with the way that its sometimes
optional third parameter can be interpreted.

This practice is similar to the existing POSIX fcntl() function, in which the third parameter can
be optional for the F_GETFD and F_GETFL commands, an int when used with the F_DUPFD,
F_SETFD, or F_SETFL commands, or a struct flock when used with the F_GETLK, F_SETLK, or
F_SETLKW commands. However, the fcntl() interface defines two distinct and known data
types as possible for the third parameter. This is not the case in the ioctl() interface, where any
number of device driver specific structures and commands are used.

Relationship to ioctl() and the Perceived Needs for Improvement

Section A.11 (on page 3718) briefly mentions some of the perceived deficiencies in existing
implementations of the ioctl() function, in the context of those ioctl() commands used to
implement terminal control. The standard developers decided that, since the set of such control
operations was fairly well defined, suitable encapsulations such as tcsetattr(), tcsendbreak(), and
tcdrain() could be standardized. These interfaces, while successfully standardizing portable
terminal control operations, are not extensible to arbitrary user-supplied devices.

There are several perceived deficiencies with the ioctl() function that drove the development of
the posix_devctl() interface as an alternative:

• The major problem with ioctl() is that the third argument (when one is passed) varies in
both size and type according to the second (command) argument. It is not unprecedented
in POSIX, or standards in general, for a function to accept a generic pointer; consider the
ISO C function fread(), or the POSIX functions read() and mmap(). However, in all such
instances, the generic pointer is accompanied by a size argument that specifies the size of
the pointed-to object. Unlike the Ada language, it is, and has always been, the C
programmer ’s responsibility to ensure that these two arguments form a consistent
specification of the passed object. But traditional ioctl() implementations do not allow the
user to specify the size of the pointed-to object; that size is instead fixed implicitly by the
specified command (passed as another argument). The posix_devctl() interface improves
upon ioctl() in that it allows the user to specify the object size, thereby restoring the
familiar C paradigm for passing a generic object by pointer/size pair.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1559

52260

52261

52262

52263

52264

52265

52266

52267

52268

52269

52270

52271

52272

52273

52274

52275

52276

52277

52278

52279

52280

52281

52282

52283

52284

52285

52286

52287

52288

52289

52290

52291

52292

52293

52294

52295

52296

52297

52298

52299

52300

52301

52302

52303

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_devctl() System Interfaces

• A secondary problem with ioctl() is that the third argument is sometimes permitted to be
interpreted as an integer (int). The posix_devctl() interface clearly requires the dev_data_ptr
argument to be a pointer.

• A related problem with ioctl() is that the direction(s) in which data are transferred to or
from the pointed-to object is neither specified explicitly as an argument (as with mmap()),
nor implied by the ioctl() function (as with read()/write(), fread()/fwrite(), or
fgets()/fputs()). Instead, the direction is implied by the command argument. In traditional
implementations, only the device driver knows the interpretation of the commands and
whether data bytes are to be transferred to or from the pointed-to object. But in networked
implementations, generic portions of the operating system may need to know the direction
to ensure that data bytes are passed properly between a client and a server, separately from
device driver concerns. Two implementation-specific solutions to this problem are to
always assume data bytes need to be transferred in both directions, or to encode the
implied direction into the command word along with the fixed data size. The posix_devctl()
interface already provides the implementation with an explicit size parameter. Since the
direction is already known implicitly to both the application and the driver and since
workable methods exist for implementations to ascertain that direction if required, this
perceived problem is strictly an implementation issue and solvable without further impact
on the interface.

• Finally, posix_devctl() improves upon ioctl() by adopting the new style of error return,
avoiding all the problems errno brings to multi-threaded applications. Because the driver-
specific information carried by the non-error return values of ioctl() still potentially needs
to be passed to the application, posix_devctl() adds the dev_info_ptr argument to specify
where this information should be stored.

Which Differences Between posix_devctl() and ioctl() Are Acceptable?

Any differences between the definitions of posix_devctl() and ioctl() have to be perceived as a
clear improvement by the community of potential users. Drivers for normal peripherals are
typically written by highly specialized professionals. Drivers for the special devices are very
often written by the application developer or by the hardware designer. Any interface definition
that can be seen as overly complicated will simply not be accepted.

Nevertheless, a few simple and useful improvements to ioctl() are possible, specifically the
improvement of type checking, and justify the definition of a new interface.

The major difference between the two interfaces is the addition of the size of the device data. For
enhanced compatibility with existing ioctl() implementations, this size can be specified as zero;
in this case the amount of data passed is unspecified. (This allows a macro definition of ioctl()
that converts it into a posix_devctl() call.) In any case, the data size argument does not contradict
the general goal of being able to implement posix_devctl() using the existing ioctl() interfaces
provided in current UNIX systems and other POSIX implementations because the standard
allows but does not require checking the size of the device data. Although the third argument of
the ioctl() function does not specify a size, it is implicit in the specific combination of control
command and driver and, therefore, known to the driver implementation.

The method of indicating error return values differs from traditional ioctl() implementations, but
it does not preclude the construction of posix_devctl() as a macro built upon ioctl(), which was
one of the original design goals.

1560 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52304

52305

52306

52307

52308

52309

52310

52311

52312

52313

52314

52315

52316

52317

52318

52319

52320

52321

52322

52323

52324

52325

52326

52327

52328

52329

52330

52331

52332

52333

52334

52335

52336

52337

52338

52339

52340

52341

52342

52343

52344

52345

52346

52347

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_devctl()

Rationale for the dev_info_ptr Argument

The POSIX.26 developers felt that it was important to preserve the current ioctl() functionality of
allowing a device driver to return some arbitrary piece of information instead of just a
success/failure indication. Such information might be, for example, the number of bytes
received, the number of bytes that would not fit into the buffer pointed at by dev_data_ptr, the
data type indication, or the device status. Current practice for device drivers and ioctl() usage
allows such a device-dependent return value. Thus, the concept of an additional output
argument, dev_info_ptr, was born.

Rationale for No direction Argument

The initial specification for posix_devctl() contained an additional argument that specified the
direction of data flow, i.e., to the driver and/or from the driver. This argument was later
removed for the following reasons:

• The argument was redundant. Most (if not all) existing implementations encode the
direction data either explicitly or implicitly in the command word.

• The argument increased the probability of programming errors, since it must be made to
agree with the direction information already encoded or implied in the command word or
an error would occur.

• The only real use of the argument would be if new drivers were written that supported
generic commands such as TRANSFER_CONTROL_DATA, which was modified by the
direction argument to indicate in which direction the data should be transferred. This is
contrary to current practice that uses command pairs such as GET_CONTROL_DATA and
PUT_CONTROL_DATA.

• The primary purpose of the direction argument was to allow higher levels of the system to
identify the direction of data transfers, particularly in the case of remote devices, without
having to understand all the commands of all the devices on the system. Implementations
that need to ascertain the direction of data transfer from a command word will define a
consistent convention for encoding the direction into each command word, and all device
drivers supplied by the user must adhere to this convention.

Thus, the data direction argument was removed.

Rationale for Not Defining the Direction Encoding in the dcmd Argument

The POSIX.26 developers gave consideration to defining the direction encoding in the dcmd
argument, but decided against doing so. No particular benefit was seen to a predefined
encoding, as long as the encoding was used consistently across the entire implementation and
was well known to the implementation.

In addition, although only one encoding (BSD’s) employed for ioctl() was known among the
members of the small working group, it could not be ruled out that other encodings already
existed, and no reason for precluding these encodings was seen.

Finally, system or architectural constraints might make a chosen standard encoding difficult to
use on a given implementation.

Thus, this standard does not define a direction encoding. Specifying a standard encoding is
actually a small part of a larger and more contentious objective, that of specifying a complete set
of interfaces for portable device drivers. If a future POSIX standard specifies such interfaces, the
issue of device control direction encoding will necessarily be addressed as part of that
specification.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1561

52348

52349

52350

52351

52352

52353

52354

52355

52356

52357

52358

52359

52360

52361

52362

52363

52364

52365

52366

52367

52368

52369

52370

52371

52372

52373

52374

52375

52376

52377

52378

52379

52380

52381

52382

52383

52384

52385

52386

52387

52388

52389

52390

52391

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_devctl() System Interfaces

Recommended Practice for Handling Data Size Errors

In the event that the amount of data from the device is too large to fit into the specified buffer, as
much data as will fit should be transferred, and the error posted. The retained data will aid in
debugging, even if some of the data is lost.

Recommended Practice for nbyte == 0

The feature that permits an unspecified amount of control data to be transferred if nbyte is zero
exists only for compatibility with existing device driver usage of ioctl(),
i.e., when ioctl() is implemented on top of posix_devctl() and the device driver transfers an
amount of data implied by the command.

Implementations in which posix_devctl() is built as a library routine on top of ioctl() may not be
able to make checks on the nbyte argument. However, newly developed applications using
posix_devctl() should always use an appropriate value for the nbyte argument, for portability to
implementations directly supporting posix_devctl() in which the device drivers may be able to
honor the application’s nbyte argument or return the error [EINVAL] if the argument is an
unacceptable value. Device drivers designed for those systems should interpret a zero value of
nbyte as no data to be transferred.

Recommended Practice for Driver-Detected Errors

If the driver detects the following error conditions, it is recommended that the posix_devctl()
function fail and return the corresponding error number:

[EBUSY] The control operation could not complete successfully because the device was
in use by another process, or the driver was unable to carry out the request
due to an outstanding operation in progress.

[EINVAL] The arguments dev_data_ptr and nbyte define a buffer too small to hold the
amount of data expected by or to be returned by this driver.

[EIO] The control operation could not complete successfully because the driver
detected a hardware error.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.21 (on page 108), <devctl.h>

CHANGE HISTORY
First released in Issue 8. Derived from POSIX.26.

1562 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52392

52393

52394

52395

52396

52397

52398

52399

52400

52401

52402

52403

52404

52405

52406

52407

52408

52409

52410

52411

52412

52413

52414

52415

52416

52417

52418

52419

52420

52421

52422

52423

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_fadvise()

NAME
posix_fadvise — file advisory information (ADVANCED REALTIME)

SYNOPSIS
ADV #include <fcntl.h>

int posix_fadvise(int fd, off_t offset, off_t len, int advice);

DESCRIPTION
The posix_fadvise() function shall advise the implementation on the expected behavior of the
application with respect to the data in the file associated with the open file descriptor, fd, starting
at offset and continuing for len bytes. The specified range need not currently exist in the file. If len
is zero, all data from offset to the largest possible value of the file offset for that file shall be
specified. The implementation may use this information to optimize handling of the specified
data. The posix_fadvise() function shall have no effect on the semantics of other operations on the
specified data, although it may affect the performance of other operations.

The advice to be applied to the data is specified by the advice parameter and may be one of the
following values:

POSIX_FADV_NORMAL
Specifies that the application has no advice to give on its behavior with respect to the
specified data. It is the default characteristic if no advice is given for an open file.

POSIX_FADV_SEQUENTIAL
Specifies that the application expects to access the specified data sequentially from lower
offsets to higher offsets.

POSIX_FADV_RANDOM
Specifies that the application expects to access the specified data in a random order.

POSIX_FADV_WILLNEED
Specifies that the application expects to access the specified data in the near future.

POSIX_FADV_DONTNEED
Specifies that the application expects that it will not access the specified data in the near
future.

POSIX_FADV_NOREUSE
Specifies that the application expects to access the specified data once and then not reuse it
thereafter.

These values are defined in <fcntl.h>.

RETURN VALUE
Upon successful completion, posix_fadvise() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_fadvise() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor.

[EINVAL] The value of advice is invalid, or the value of len is less than zero.

[ESPIPE] The fd argument is associated with a pipe or FIFO.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1563

52424

52425

52426

52427

52428

52429

52430

52431

52432

52433

52434

52435

52436

52437

52438

52439

52440

52441

52442

52443

52444

52445

52446

52447

52448

52449

52450

52451

52452

52453

52454

52455

52456

52457

52458

52459

52460

52461

52462

52463

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_fadvise() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The posix_fadvise() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_madvise()

XBD <fcntl.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/68 is applied, changing the function
prototype in the SYNOPSIS section. The previous prototype was not large file-aware, and the
standard developers felt it acceptable to make this change before implementations of this
function become widespread.

Issue 7
Austin Group Interpretation 1003.1-2001 #024 is applied, changing the definition of the
[EINVAL] error.

Issue 8
Austin Group Defect 1135 is applied, clarifying the requirements when len is zero.

1564 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52464

52465

52466

52467

52468

52469

52470

52471

52472

52473

52474

52475

52476

52477

52478

52479

52480

52481

52482

52483

52484

52485

52486

52487

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_fallocate()

NAME
posix_fallocate — file space control (ADVANCED REALTIME)

SYNOPSIS
ADV #include <fcntl.h>

int posix_fallocate(int fd, off_t offset, off_t len);

DESCRIPTION
The posix_fallocate() function shall ensure that any required storage for regular file data starting
at offset and continuing for len bytes is allocated on the file system storage media. If
posix_fallocate() returns successfully, subsequent writes to the specified file data shall not fail due
to the lack of free space on the file system storage media.

If the offset+len is beyond the current file size, then posix_fallocate() shall adjust the file size to
offset+len. Otherwise, the file size shall not be changed.

It is implementation-defined whether a previous posix_fadvise() call influences allocation
strategy.

Space allocated via posix_fallocate() shall be freed by a successful call to creat() or open() that
truncates the size of the file. Space allocated via posix_fallocate() may be freed by a successful call
to ftruncate() that reduces the file size to a size smaller than offset+len.

RETURN VALUE
Upon successful completion, posix_fallocate() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_fallocate() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor.

[EBADF] The fd argument references a file that was opened without write permission.

[EFBIG] The value of offset+len is greater than the maximum file size.

XSI [EFBIG] The value of offset+len exceeds the file size limit of the process. A SIGXFSZ
signal shall also be generated for the thread.

[EINTR] A signal was caught during execution.

[EINVAL] The len argument is less than zero, or the offset argument is less than zero.

[EIO] An I/O error occurred while reading from or writing to a file system.

[ENODEV] The fd argument does not refer to a regular file.

[ENOSPC] There is insufficient free space remaining on the file system storage media.

[ENOTSUP] The underlying file system does not support this operation.

[ESPIPE] The fd argument is associated with a pipe or FIFO.

The posix_fallocate() function may fail if:

[EINVAL] The len argument is zero.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1565

52488

52489

52490

52491

52492

52493

52494

52495

52496

52497

52498

52499

52500

52501

52502

52503

52504

52505

52506

52507

52508

52509

52510

52511

52512

52513

52514

52515

52516

52517

52518

52519

52520

52521

52522

52523

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_fallocate() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The posix_fallocate() function is part of the Advisory Information option and need not be
provided on all implementations.

Not all file systems are capable of supporting posix_fallocate(), in which case the function will
return [ENOTSUP]. However, if a system supports the Advisory Information option, there must
be at least one file system that is capable of supporting this function and is available for use in
conforming environments. The pathconf() and fpathconf() functions can be used to determine
whether a file in a particular file system supports posix_fallocate().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), ftruncate(), open(), unlink()

XBD <fcntl.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/69 is applied, changing the function
prototype in the SYNOPSIS section. The previous prototype was not large file-aware, and the
standard developers felt it acceptable to make this change before implementations of this
function become widespread.

Issue 7
Austin Group Interpretations 1003.1-2001 #022, #024, and #162 are applied, changing the
definition of the [EINVAL] error.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 684 is applied, requiring an [ENOTSUP] error instead of [EINVAL] when
the underlying file system does not support posix_fallocate().

Austin Group Defect 687 is applied, changing the APPLICATION USAGE section.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

1566 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52524

52525

52526

52527

52528

52529

52530

52531

52532

52533

52534

52535

52536

52537

52538

52539

52540

52541

52542

52543

52544

52545

52546

52547

52548

52549

52550

52551

52552

52553

52554

52555

52556

52557

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_getdents()

NAME
posix_getdents — read directory entries

SYNOPSIS
#include <dirent.h>

ssize_t posix_getdents(int fildes, void *buf, size_t nbyte, int flags);

DESCRIPTION
The posix_getdents() function shall attempt to read directory entries from the directory associated
with the open file descriptor fildes and shall place information about the directory entries and the
files they refer to in posix_dent structures in the buffer pointed to by buf, up to a maximum of
nbyte bytes. The number of posix_dent structures populated in buf may be fewer than the
number that will fit in nbyte bytes, but shall be at least one if nbyte is greater than the size of the
posix_dent structure plus {NAME_MAX} and fildes is not currently at end-of-file.

The application shall ensure that buf is aligned suitably to point to a posix_dent structure. The
alignment needed shall not be more restrictive than the alignment provided by malloc(). Strictly
conforming applications shall ensure that the value of flags is zero; other applications can set it to
a value constructed by a bitwise-inclusive OR of implementation-defined bitwise-distinct flag
values.

Each posix_dent structure returned in buf shall be located at an address that satisfies the
implementation’s alignment requirements for the posix_dent structure and shall be populated
as follows:

• The value of the d_ino member shall be set to the file serial number of the file named by the
d_name member.

• The value of the d_reclen member shall be set to the number of bytes occupied by this entry
in buf, including any padding bytes needed before the next entry, if any. If this is the last
entry in buf, d_reclen shall include any padding bytes needed to make the address of this
entry plus d_reclen bytes satisfy the alignment requirements for the posix_dent structure.

• The value of the d_type member shall be set to indicate the file type of the named file, if the
file type can be determined without needing to use the file serial number to obtain the
file’s metadata; otherwise it may be set to DT_UNKNOWN. If the file type is determined
and it is one of the file types defined in this standard, the value of d_type shall be DT_BLK,
DT_CHR, DT_DIR, DT_FIFO, DT_LNK, DT_REG, DT_SOCK, DT_MQ, DT_SEM,

TYM DT_SHM, or DT_TMO (see <dirent.h>). If it is determined but is not a standard file type,
the value of d_type shall not equal any of those listed here.

• The d_name member shall be a filename string, and (if not dot or dot-dot) shall contain the
same byte sequence as the last pathname component of the string used to create the
directory entry, plus the terminating NUL byte.

If the d_name member names a symbolic link, the values of the d_ino and d_type members shall
be set to the values for the symbolic link itself.

The posix_getdents() function shall start reading at the current file offset in the open file
description associated with fildes. On successful return, the file offset shall be incremented to
point to the directory entry immediately following the last entry whose information was
returned in buf, or to point to end-of-file if there are no more directory entries. On failure, the
value of the file offset is unspecified. The current file offset can be set and retrieved using lseek()
on the open file description associated with fildes. The behavior is unspecified if lseek() is used
to set the file offset to a value other than zero or a value returned by a previous call to lseek() on
the same open file description.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1567

52558

52559

52560

52561

52562

52563

52564

52565

52566

52567

52568

52569

52570

52571

52572

52573

52574

52575

52576

52577

52578

52579

52580

52581

52582

52583

52584

52585

52586

52587

52588

52589

52590

52591

52592

52593

52594

52595

52596

52597

52598

52599

52600

52601

52602

52603

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_getdents() System Interfaces

The posix_getdents() function shall not return directory entries containing empty names. If
entries for dot or dot-dot exist, a sequence of calls that reads from offset zero to end-of-file shall
return one entry for dot and one entry for dot-dot; otherwise, they shall not be returned.

Upon successful completion, posix_getdents() shall mark for update the last data access
timestamp of the directory.

If fildes is a file descriptor associated with a directory stream opened using fdopendir() or
opendir(), the behavior is unspecified.

If posix_getdents() is called concurrently with an operation that adds, deletes, or modifies a
directory entry, the results from posix_getdents() shall reflect either all of the effects of the
concurrent operation or none of them. If a sequence of calls to posix_getdents() is made that reads
from offset zero to end-of-file and a file is removed from or added to the directory between the
first and last of those calls, whether the sequence of calls returns an entry for that file is
unspecified.

RETURN VALUE
Upon successful completion, either a non-negative integer shall be returned indicating the
number of bytes occupied by the posix_dent structures placed in buf or 0 shall be returned
indicating the end of the directory was reached without any directory entries being placed in buf.
Otherwise, −1 shall be returned and errno shall be set to indicate the error.

ERRORS
The posix_getdents() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor open for reading.

[EINVAL] The nbyte argument is not large enough to contain the information to be
returned about the directory entry located at the current file offset.

[ENOENT] The current file offset is not located at a valid directory entry.

[ENOTDIR] The fildes argument is associated with a non-directory file.

[EOVERFLOW] One of the values in a structure to be placed in buf cannot be represented
correctly.

The posix_getdents() function may fail if:

[EIO] A physical I/O error has occurred.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
This example function lists the files in a specified directory with their file serial number and file
type. If the file type is not available from posix_getdents(), it is obtained using fstatat().

#include <dirent.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

#define ENTBUFSIZ 10240

int list_dir(const char *dirnam)
{

int fd = open(dirnam, O_RDONLY | O_DIRECTORY);

1568 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52604

52605

52606

52607

52608

52609

52610

52611

52612

52613

52614

52615

52616

52617

52618

52619

52620

52621

52622

52623

52624

52625

52626

52627

52628

52629

52630

52631

52632

52633

52634

52635

52636

52637

52638

52639

52640

52641

52642

52643

52644

52645

52646

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_getdents()

if (fd == -1)
return -1;

char *buf = malloc(ENTBUFSIZ);
if (buf == NULL)
{

close(fd);
return -1;

}

ssize_t bytesinbuf;
for(;;)
{

ssize_t nextent = 0;

bytesinbuf = posix_getdents(fd, buf, ENTBUFSIZ, 0);
if (bytesinbuf <= 0)

break;

do {
const char *ftype;
struct posix_dent *entp = (void *)&buf[nextent];
if (entp->d_type == DT_UNKNOWN)
{

struct stat stbuf;
if (fstatat(fd, entp->d_name, &stbuf,

AT_SYMLINK_NOFOLLOW) == -1)
ftype = "?";

else
ftype = S_ISBLK(stbuf.st_mode) ? "b" :

S_ISCHR(stbuf.st_mode) ? "c" :
S_ISDIR(stbuf.st_mode) ? "d" :
S_ISFIFO(stbuf.st_mode) ? "p" :
S_ISLNK(stbuf.st_mode) ? "l" :
S_ISREG(stbuf.st_mode) ? "r" :
S_ISSOCK(stbuf.st_mode) ? "s" :
S_TYPEISMQ(&stbuf) ? "mq" :
S_TYPEISSEM(&stbuf) ? "sem" :
S_TYPEISSHM(&stbuf) ? "shm" :

#ifdef S_TYPEISTMO
S_TYPEISTMO(&stbuf) ? "tmo" :

#endif
"?";

}
else
{

ftype = entp->d_type == DT_BLK ? "b" :
entp->d_type == DT_CHR ? "c" :
entp->d_type == DT_DIR ? "d" :
entp->d_type == DT_FIFO ? "p" :
entp->d_type == DT_LNK ? "l" :
entp->d_type == DT_REG ? "r" :
entp->d_type == DT_SOCK ? "s" :
entp->d_type == DT_MQ ? "mq" :

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1569

52647

52648

52649

52650

52651

52652

52653

52654

52655

52656

52657

52658

52659

52660

52661

52662

52663

52664

52665

52666

52667

52668

52669

52670

52671

52672

52673

52674

52675

52676

52677

52678

52679

52680

52681

52682

52683

52684

52685

52686

52687

52688

52689

52690

52691

52692

52693

52694

52695

52696

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_getdents() System Interfaces

entp->d_type == DT_SEM ? "sem" :
entp->d_type == DT_SHM ? "shm" :

#ifdef DT_TMO
entp->d_type == DT_TMO ? "tmo" :

#endif
"?";

}

printf("%ld\t%s\t%s\n", (long)entp->d_ino, ftype,
entp->d_name);

nextent += entp->d_reclen;

} while (nextent < bytesinbuf);
}

close(fd);
free(buf);
return bytesinbuf;

}

APPLICATION USAGE
If an array of posix_dent structures (which is only possible on implementations where d_name is
not a flexible array member) is used to provide the storage for buf in order to satisfy the
alignment requirement, it should be noted that the number of array elements used to size the
array may bear little or no relation to the number of directory entries that can be stored in it. It is
recommended that the number of elements is calculated from the desired size in bytes, for
example:

#define DESIREDSIZE 10240
struct posix_dent buf[DESIREDSIZE / sizeof(struct posix_dent) + 1];
size_t nbyte = sizeof buf;

When posix_getdents() is called with a buf that is not type char *, it is important to note that
d_reclen is a byte count and therefore any pointer arithmetic involved in calculating the start of
the next entry needs to use a char * pointer.

On implementations where directory entries in a directory take up more space than the
corresponding posix_dent structures in buf, a call to posix_getdents() may read nbyte bytes from
the directory, resulting (in most cases) in the actual number of bytes placed in buf being less than
nbyte.

One advantage of posix_getdents() is that it provides the file type of each directory entry (if
available), whereas readdir() only does so on implementations that have the file type as a non-
standard additional member of the dirent structure. Knowing the file type can greatly reduce the
number of fstatat() calls that need to be made when traversing the file hierarchy.

Whether or not a file’s type can be determined without needing to use the file serial number to
obtain the file’s metadata may vary across the different file system types supported by an
implementation. Therefore applications should not assume that if d_type contains known file
types (i.e. not DT_UNKNOWN) for entries in a given directory then it will also contain known
file types for entries in subdirectories of that directory or in its parent.

Since the d_reclen value for the last entry in buf includes padding to satisfy alignment
requirements, applications can grow the buffer and call posix_getdents() again to append to it
without needing to perform an alignment calculation.

1570 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52697

52698

52699

52700

52701

52702

52703

52704

52705

52706

52707

52708

52709

52710

52711

52712

52713

52714

52715

52716

52717

52718

52719

52720

52721

52722

52723

52724

52725

52726

52727

52728

52729

52730

52731

52732

52733

52734

52735

52736

52737

52738

52739

52740

52741

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_getdents()

RATIONALE
The posix_getdents() function was derived from existing getdents() functions but the name was
changed because the existing getdents() functions differed in various ways, in particular the type
of the second argument (structure pointer or void *), the members of the populated structures,
and the error numbers used for some conditions. The name change also provided an
opportunity to add a flags argument to provide for future extensibility.

Implementations are encouraged to include support for a DT_FORCE_TYPE flag which, when
that bit is set in flags, causes posix_getdents() to look up the file type if it can not be obtained from
the directory entry. This will allow applications that need to know the file type of every directory
entry to keep the cost of these lookups to the minimum needed to obtain the type at the file
system level, without the additional overhead of making a call to fstatat() for every file (that has
d_type equal to DT_UNKNOWN).

Some existing getdents() or similar functions return directory entry structures for deleted
directory entries in buf, marked with a special value of one of the structure members to
distinguish them from non-deleted entries. This behavior is not allowed for posix_getdents(),
although the data from a deleted directory entry may be present in buf in the form of extra
padding on the end of the previous entry.

FUTURE DIRECTIONS
A future version of this standard may add a DT_FORCE_TYPE flag as described in
RATIONALE.

SEE ALSO
fdopendir(), fstatat(), lseek(), readdir()

XBD <dirent.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1571

52742

52743

52744

52745

52746

52747

52748

52749

52750

52751

52752

52753

52754

52755

52756

52757

52758

52759

52760

52761

52762

52763

52764

52765

52766

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_madvise() System Interfaces

NAME
posix_madvise — memory advisory information and alignment control (ADVANCED
REALTIME)

SYNOPSIS
ADV #include <sys/mman.h>

int posix_madvise(void *addr, size_t len, int advice);

DESCRIPTION
The posix_madvise() function shall advise the implementation on the expected behavior of the
application with respect to the data in the memory starting at address addr, and continuing for
len bytes. The implementation may use this information to optimize handling of the specified
data. The posix_madvise() function shall have no effect on the semantics of access to memory in
the specified range, although it may affect the performance of access.

The implementation may require that addr be a multiple of the page size, which is the value
returned by sysconf() when the name value _SC_PAGESIZE is used.

The advice to be applied to the memory range is specified by the advice parameter and may be
one of the following values:

POSIX_MADV_NORMAL
Specifies that the application has no advice to give on its behavior with respect to the
specified range. It is the default characteristic if no advice is given for a range of memory.

POSIX_MADV_SEQUENTIAL
Specifies that the application expects to access the specified range sequentially from lower
addresses to higher addresses.

POSIX_MADV_RANDOM
Specifies that the application expects to access the specified range in a random order.

POSIX_MADV_WILLNEED
Specifies that the application expects to access the specified range in the near future.

POSIX_MADV_DONTNEED
Specifies that the application expects that it will not access the specified range in the near
future.

These values are defined in the <sys/mman.h> header.

RETURN VALUE
Upon successful completion, posix_madvise() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_madvise() function shall fail if:

[EINVAL] The value of advice is invalid.

[ENOMEM] Addresses in the range starting at addr and continuing for len bytes are partly
or completely outside the range allowed for the address space of the calling
process.

1572 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52767

52768

52769

52770

52771

52772

52773

52774

52775

52776

52777

52778

52779

52780

52781

52782

52783

52784

52785

52786

52787

52788

52789

52790

52791

52792

52793

52794

52795

52796

52797

52798

52799

52800

52801

52802

52803

52804

52805

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_madvise()

The posix_madvise() function may fail if:

[EINVAL] The value of addr is not a multiple of the value returned by sysconf() when the
name value _SC_PAGESIZE is used.

[EINVAL] The value of len is zero.

EXAMPLES
None.

APPLICATION USAGE
The posix_madvise() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), posix_fadvise(), sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #102 is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1573

52806

52807

52808

52809

52810

52811

52812

52813

52814

52815

52816

52817

52818

52819

52820

52821

52822

52823

52824

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_mem_offset() System Interfaces

NAME
posix_mem_offset — find offset and length of a mapped typed memory block (ADVANCED
REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_mem_offset(const void *restrict addr, size_t len,
off_t *restrict off, size_t *restrict contig_len,
int *restrict fildes);

DESCRIPTION
The posix_mem_offset() function shall return in the variable pointed to by off a value that
identifies the offset (or location), within a memory object, of the memory block currently
mapped at addr. The function shall return in the variable pointed to by fildes, the descriptor used
(via mmap()) to establish the mapping which contains addr. If that descriptor was closed since
the mapping was established, the returned value of fildes shall be −1. The len argument specifies
the length of the block of the memory object the user wishes the offset for; upon return, the
value pointed to by contig_len shall equal either len, or the length of the largest contiguous block
of the memory object that is currently mapped to the calling process starting at addr, whichever
is smaller.

If the memory object mapped at addr is a typed memory object, then if the off and contig_len
values obtained by calling posix_mem_offset() are used in a call to mmap() with a file descriptor
that refers to the same memory pool as fildes (either through the same port or through a different
port), and that was opened with neither the POSIX_TYPED_MEM_ALLOCATE nor the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the typed memory area that is mapped shall
be exactly the same area that was mapped at addr in the address space of the process that called
posix_mem_offset().

If the memory object specified by fildes is not a typed memory object, then the behavior of this
function is implementation-defined.

RETURN VALUE
Upon successful completion, the posix_mem_offset() function shall return zero; otherwise, the
corresponding error status value shall be returned.

ERRORS
The posix_mem_offset() function shall fail if:

[EACCES] The process has not mapped a memory object supported by this function at
the given address addr.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

1574 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52825

52826

52827

52828

52829

52830

52831

52832

52833

52834

52835

52836

52837

52838

52839

52840

52841

52842

52843

52844

52845

52846

52847

52848

52849

52850

52851

52852

52853

52854

52855

52856

52857

52858

52859

52860

52861

52862

52863

52864

52865

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_mem_offset()

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), posix_typed_mem_open()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1575

52866

52867

52868

52869

52870

52871

52872

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_memalign() System Interfaces

NAME
posix_memalign — aligned memory allocation (ADVANCED REALTIME)

SYNOPSIS
ADV #include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);

DESCRIPTION
The posix_memalign() function shall allocate size bytes aligned on a boundary specified by
alignment, and shall return a pointer to the allocated memory in memptr. The value of alignment
shall be a power of two multiple of sizeof (void *).

Upon successful completion, the value pointed to by memptr shall be a multiple of alignment.

If the size of the space requested is 0, the behavior is implementation-defined: either a null
pointer shall be returned in memptr, or the behavior shall be as if the size were some non-zero
value, except that the behavior is undefined if the the value returned in memptr is used to access
an object.

CX The free() function shall deallocate memory that has previously been allocated by
posix_memalign().

For purposes of determining the existence of a data race, posix_memalign() shall behave as
though it accessed only memory locations accessible through its argument and not other static
duration storage. The function may, however, visibly modify the storage that it allocates. Calls
to aligned_alloc(), calloc(), free(), malloc(), posix_memalign(), reallocarray(), and realloc() that
allocate or deallocate a particular region of memory shall occur in a single total order (see
Section 4.15.1, on page 100), and each such deallocation call shall synchronize with the next
allocation (if any) in this order.

RETURN VALUE
Upon successful completion, posix_memalign() shall return zero; otherwise, an error number
shall be returned to indicate the error and the contents of memptr shall either be left unmodified
or be set to a null pointer.

If size is 0, either:

• posix_memalign() shall not attempt to allocate any space, in which case either an
implementation-defined error number shall be returned, or zero shall be returned with a
null pointer returned in memptr, or

• posix_memalign() shall attempt to allocate some space and, if the allocation succeeds, zero
shall be returned and a pointer to the allocated space shall be returned in memptr. The
application shall ensure that the pointer is not used to access an object.

ERRORS
The posix_memalign() function shall fail if:

[EINVAL] The value of the alignment parameter is not a power of two multiple of
sizeof (void *).

[ENOMEM] There is insufficient memory available with the requested alignment.

1576 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52873

52874

52875

52876

52877

52878

52879

52880

52881

52882

52883

52884

52885

52886

52887

52888

52889

52890

52891

52892

52893

52894

52895

52896

52897

52898

52899

52900

52901

52902

52903

52904

52905

52906

52907

52908

52909

52910

52911

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_memalign()

EXAMPLES
The following example shows how applications can obtain consistent behavior on error by
setting *memptr to be a null pointer before calling posix_memalign().

void *ptr = NULL;
...
//do some work, which might goto error
if (posix_memalign(&ptr, align, size))

goto error;

//do some more work, which might goto error
...
error:

free(ptr);
//more cleanup;

APPLICATION USAGE
The posix_memalign() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aligned_alloc(), free(), malloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
Austin Group Interpretation 1003.1-2001 #058 is applied, clarifying the value of the alignment
argument in the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #152 is applied, clarifying the behavior when the size of
the space requested is 0.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0251 [526] and XSH/TC2-2008/0252
[520,526] are applied.

Issue 8
Austin Group Defect 1302 is applied, aligning this function with the requirements of the
ISO/IEC 9899: 2018 standard on other memory allocation functions.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1577

52912

52913

52914

52915

52916

52917

52918

52919

52920

52921

52922

52923

52924

52925

52926

52927

52928

52929

52930

52931

52932

52933

52934

52935

52936

52937

52938

52939

52940

52941

52942

52943

52944

52945

52946

52947

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_openpt() System Interfaces

NAME
posix_openpt — open a pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

int posix_openpt(int oflag);

DESCRIPTION
The posix_openpt() function shall establish a connection between a manager device for a pseudo-
terminal and a file descriptor. The file descriptor shall be allocated as described in Section 2.6 (on
page 525) and can be used by other I/O functions that refer to that pseudo-terminal.

The file status flags and file access modes of the open file description shall be set according to
the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list:

O_RDWR Open for reading and writing.

O_CLOEXEC Atomically set the FD_CLOEXEC flag on the file descriptor.

O_CLOFORK Atomically set the FD_CLOFORK flag on the file descriptor.

O_NOCTTY If set posix_openpt() shall not cause the terminal device to become the
controlling terminal for the process.

The behavior of other values for the oflag argument is unspecified.

RETURN VALUE
Upon successful completion, the posix_openpt() function shall open a file descriptor for a
manager pseudo-terminal device and return a non-negative integer representing the file
descriptor. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The posix_openpt() function shall fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The posix_openpt() function may fail if:

[EINVAL] The value of oflag is not valid.

[EAGAIN] Out of pseudo-terminal resources.

EXAMPLES

Opening a Pseudo-Terminal and Returning the Name of the Subsidiary Device and a File
Descriptor

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

int managerfd, subsidiaryfd;
char *subsidiarydevice;

managerfd = posix_openpt(O_RDWR|O_NOCTTY);

if (managerfd == -1
|| grantpt (managerfd) == -1

1578 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

52948

52949

52950

52951

52952

52953

52954

52955

52956

52957

52958

52959

52960

52961

52962

52963

52964

52965

52966

52967

52968

52969

52970

52971

52972

52973

52974

52975

52976

52977

52978

52979

52980

52981

52982

52983

52984

52985

52986

52987

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_openpt()

|| unlockpt (managerfd) == -1
|| (subsidiarydevice = ptsname (managerfd)) == NULL)
return -1;

printf("subsidiary device is: %s\n", subsidiarydevice);

subsidiaryfd = open(subsidiarydevice, O_RDWR|O_NOCTTY);
if (subsidiaryfd < 0)

return -1;

APPLICATION USAGE
This function is a method for portably obtaining a file descriptor of a manager terminal device
for a pseudo-terminal. The grantpt() function and the ptsname() and ptsname_r() functions can
be used to manipulate mode and ownership permissions, and to obtain the name of the
subsidiary device, respectively.

RATIONALE
The standard developers considered the matter of adding a special device for cloning manager
pseudo-terminal devices: the /dev/ptmx device. However, consensus could not be reached, and
it was felt that adding a new function would permit other implementations. The posix_openpt()
function is designed to complement the grantpt(), ptsname(), ptsname_r(), and unlockpt()
functions.

On implementations supporting the /dev/ptmx clone device, opening the manager device of a
pseudo-terminal is simply:

mfdp = open("/dev/ptmx", oflag);
if (mfdp < 0)

return -1;

The O_CLOEXEC and O_CLOFORK flags are necessary to avoid a data race in multi-threaded
applications. Without O_CLOFORK, a file descriptor is leaked into a child process created by
one thread in the window between another thread creating a file descriptor with posix_openpt()
and then using fcntl() to set the FD_CLOFORK flag. Without O_CLOEXEC, a file descriptor
intentionally inherited by child processes is similarly leaked into an executed program if
FD_CLOEXEC is not set atomically.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 525), grantpt(), open(), ptsname(), unlockpt()

XBD <fcntl.h>, <stdlib.h>

CHANGE HISTORY
First released in Issue 6.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-51 is applied, correcting an error in the EXAMPLES section.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0253 [835] and XSH/TC2-2008/0254
[835] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1579

52988

52989

52990

52991

52992

52993

52994

52995

52996

52997

52998

52999

53000

53001

53002

53003

53004

53005

53006

53007

53008

53009

53010

53011

53012

53013

53014

53015

53016

53017

53018

53019

53020

53021

53022

53023

53024

53025

53026

53027

53028

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_openpt() System Interfaces

Issue 8
Austin Group Defects 411 and 1318 are applied, adding O_CLOEXEC and O_CLOFORK.

Austin Group Defect 508 is applied, changing the APPLICATION USAGE and RATIONALE
sections to refer to ptsname_r() as well as ptsname().

Austin Group Defect 593 is applied, removing #include <fcntl.h> from the SYNOPSIS and
a reference to <fcntl.h> from the DESCRIPTION section.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1466 is applied, changing the terminology used for pseudo-terminal
devices.

1580 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53029

53030

53031

53032

53033

53034

53035

53036

53037

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn()

NAME
posix_spawn, posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn(pid_t *restrict pid, const char *restrict path,
const posix_spawn_file_actions_t *restrict file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *restrict file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

DESCRIPTION
The posix_spawn() and posix_spawnp() functions shall create a new process (child process) from
the specified process image. The new process image shall be constructed from a regular
executable file called the new process image file.

When a C program is executed as the result of this call, it shall be entered as a C-language
function call as follows:

int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable:

extern char **environ;

shall be initialized as a pointer to an array of character pointers to the environment strings.

The argument argv is an array of character pointers to null-terminated strings. The last member
of this array shall be a null pointer and is not counted in argc. These strings constitute the
argument list available to the new process image. The value in argv[0] should point to a filename
string that is associated with the process image being started by the posix_spawn() or
posix_spawnp() function.

The argument envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated by a
null pointer.

The number of bytes available for the combined argument and environment lists of the child
process is {ARG_MAX}. The implementation shall specify in the system documentation (see
XBD Chapter 2, on page 15) whether any list overhead, such as length words, null terminators,
pointers, or alignment bytes, is included in this total.

The path argument to posix_spawn() is a pathname that identifies the new process image file to
execute; if the pathname does not start with a <slash>, it shall be interpreted relative to the
working directory of the child process after all file_actions have been performed.

The file parameter to posix_spawnp() shall be used to construct a pathname that identifies the
new process image file. If the file parameter contains a <slash> character, the file parameter shall
be used as the pathname for the new process image file. Otherwise, the path prefix for this file
shall be obtained by a search of the directories passed as the environment variable PA TH (see
XBD Chapter 8, on page 167), using the working directory of the child process after all
file_actions have been performed. If this environment variable is not defined, the results of the
search are implementation-defined. However, if at least one of the exec family of functions

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1581

53038

53039

53040

53041

53042

53043

53044

53045

53046

53047

53048

53049

53050

53051

53052

53053

53054

53055

53056

53057

53058

53059

53060

53061

53062

53063

53064

53065

53066

53067

53068

53069

53070

53071

53072

53073

53074

53075

53076

53077

53078

53079

53080

53081

53082

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn() System Interfaces

would fail with [ENOEXEC] because the process image contents are not executable, this shall
cause posix_spawnp() to fail rather than attempting a fallback to invoking the process as a shell
script passed to sh.

If file_actions is a null pointer, then file descriptors open in the calling process shall remain open
in the child process, except for those whose FD_CLOEXEC or FD_CLOFORK flag is set (see
fcntl()), and except for file descriptors that are closed by a fork handler (if fork handlers are
called). For those file descriptors that remain open, the child process shall not inherit any
process-owned file locks, but all remaining attributes of the corresponding open file descriptions
(see fcntl()), shall remain unchanged. The current working directory of the child process shall be
the same as it is in the parent process.

If file_actions is not a null pointer, then the file descriptors open in the child process shall be those
open in the calling process as modified by FD_CLOFORK file descriptor flags, fork handlers (if
they are called), the spawn file actions object pointed to by file_actions, and the FD_CLOEXEC
flag of each remaining open file descriptor after the spawn file actions have been processed. The
effective order of processing the spawn file actions shall be:

1. The set of open file descriptors for the child process shall initially be the same set as is
open for the calling process, except for those that have the FD_CLOFORK flag set and any
that are closed by fork handlers (if they are called). The child process shall not inherit any
file locks, but all remaining attributes of the corresponding open file descriptions (see
fcntl()), shall remain unchanged.

2. The signal mask, signal default actions, and the effective user and group IDs for the child
process shall be changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object shall be performed in the order
in which they were added to the spawn file actions object, and relative pathnames in a
given action shall be interpreted in relation to the tracked working directory. The tracked
working directory shall begin with the current working directory of the parent process,
and can be altered according to chdir or fchdir file actions; the current working directory of
the child process shall be the final state of the tracked working directory after all file
actions have been applied.

4. Any file descriptor that has its FD_CLOEXEC flag set shall be closed.

If file descriptor 0, 1, or 2 would otherwise be closed in the new process image created by
posix_spawn() or posix_spawnp(), implementations may open an unspecified file for the file
descriptor in the new process image. If a standard utility or a conforming application is executed
with file descriptor 0 not open for reading or with file descriptor 1 or 2 not open for writing, the
environment in which the utility or application is executed shall be deemed non-conforming,
and consequently the utility or application might not behave as described in this standard.

The posix_spawnattr_t spawn attributes object type is defined in <spawn.h>. It shall contain at
least the attributes defined below.

If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object referenced
by attrp, and the spawn-pgroup attribute of the same object is non-zero, then the child’s process
group shall be as specified in the spawn-pgroup attribute of the object referenced by attrp.

As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of
the object referenced by attrp, and the spawn-pgroup attribute of the same object is set to zero,
then the child shall be in a new process group with a process group ID equal to its process ID.

If the POSIX_SPAWN_SETSID flag is set in the spawn-flags attribute of the object referenced by
attrp, the child process shall be the session leader of a new session, shall be the process group

1582 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53083

53084

53085

53086

53087

53088

53089

53090

53091

53092

53093

53094

53095

53096

53097

53098

53099

53100

53101

53102

53103

53104

53105

53106

53107

53108

53109

53110

53111

53112

53113

53114

53115

53116

53117

53118

53119

53120

53121

53122

53123

53124

53125

53126

53127

53128

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn()

leader of a new process group, and shall have no controlling terminal. The process group ID of
the child process shall be set equal to the process ID of the child process. The child process shall
be the only process in the new process group and the only process in the new session.

If both the POSIX_SPAWN_SETPGROUP flag and the POSIX_SPAWN_SETSID flag are set in the
spawn-flags attribute of the object referenced by attrp, the behavior is unspecified.

If neither the POSIX_SPAWN_SETPGROUP flag nor the POSIX_SPAWN_SETSID flag is set in
the spawn-flags attribute of the object referenced by attrp, the new child process shall inherit the
parent’s process group.

PS If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object
referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image
shall initially have the scheduling policy of the calling process with the scheduling parameters
specified in the spawn-schedparam attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSCHEDULER flag is set in the spawn-flags attribute of the object
referenced by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag),
the new process image shall initially have the scheduling policy specified in the spawn-
schedpolicy attribute of the object referenced by attrp and the scheduling parameters specified in
the spawn-schedparam attribute of the same object.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
governs the effective user ID of the child process. If this flag is not set, the child process shall
inherit the effective user ID of the parent process. If this flag is set, the effective user ID of the
child process shall be reset to the parent’s real user ID. In either case, if the set-user-ID mode bit
of the new process image file is set, the effective user ID of the child process shall become that
file’s owner ID before the new process image begins execution.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
also governs the effective group ID of the child process. If this flag is not set, the child process
shall inherit the effective group ID of the parent process. If this flag is set, the effective group ID
of the child process shall be reset to the parent’s real group ID. In either case, if the set-group-ID
mode bit of the new process image file is set, the effective group ID of the child process shall
become that file’s group ID before the new process image begins execution.

If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object
referenced by attrp, the child process shall initially have the signal mask specified in the spawn-
sigmask attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced
by attrp, the signals specified in the spawn-sigdefault attribute of the same object shall be set to
their default actions in the child process. Signals set to the default action in the parent process
shall be set to the default action in the child process.

Signals set to be caught by the calling process shall be set to the default action in the child
process.

Except for SIGCHLD, signals set to be ignored by the calling process image shall be set to be
ignored by the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag
being set in the spawn-flags attribute of the object referenced by attrp and the signals being
indicated in the spawn-sigdefault attribute of the object referenced by attrp.

If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the
SIGCHLD signal is set to be ignored or to the default action in the child process, unless
otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the spawn_flags
attribute of the object referenced by attrp and the SIGCHLD signal being indicated in the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1583

53129

53130

53131

53132

53133

53134

53135

53136

53137

53138

53139

53140

53141

53142

53143

53144

53145

53146

53147

53148

53149

53150

53151

53152

53153

53154

53155

53156

53157

53158

53159

53160

53161

53162

53163

53164

53165

53166

53167

53168

53169

53170

53171

53172

53173

53174

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn() System Interfaces

spawn_sigdefault attribute of the object referenced by attrp.

If the value of the attrp pointer is a null pointer, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced
by attrp as specified above or by the file descriptor manipulations specified in file_actions, shall
appear in the new process image as though fork() had been called to create a child process and
then a member of the exec family of functions had been called by the child process to execute the
new process image.

It is implementation-defined whether the fork handlers are run when posix_spawn() or
posix_spawnp() is called.

RETURN VALUE
Upon successful completion, posix_spawn() and posix_spawnp() shall return the process ID of the
child process to the parent process, in the variable pointed to by a non-null pid argument, and
shall return zero as the function return value. Otherwise, no child process shall be created, the
value stored into the variable pointed to by a non-null pid is unspecified, and an error number
shall be returned as the function return value to indicate the error. If the pid argument is a null
pointer, the process ID of the child is not returned to the caller.

ERRORS
These functions may fail if:

[EINVAL] The value specified by file_actions or attrp is invalid.

If this error occurs after the calling process successfully returns from the posix_spawn() or
posix_spawnp() function, the child process may exit with exit status 127.

If posix_spawn() or posix_spawnp() fail for any of the reasons that would cause fork() or one of
the exec family of functions to fail, including when the corresponding exec function would
attempt a fallback to sh instead of failing with [ENOEXEC], an error value shall be returned as
described by fork() and exec, respectively; or, if the error occurs after the calling process
successfully returns, the child process shall exit with exit status 127.

If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by
attrp, and posix_spawn() or posix_spawnp() fails while changing the child’s process group, an
error value shall be returned as described by setpgid(); or, if the error occurs after the calling
process successfully returns, the child process shall exit with exit status 127.

If POSIX_SPAWN_SETSID is set in the spawn-flags attribute of the object referenced by attrp, and
posix_spawn() or posix_spawnp() fails while creating the new session, changing the child’s
session ID, or changing the child’s process group, an error value shall be returned as described
by setsid(); or, if the error occurs after the calling process successfully returns, the child process
shall exit with exit status 127.

PS If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set in
the spawn-flags attribute of the object referenced by attrp, then if posix_spawn() or posix_spawnp()
fails for any of the reasons that would cause sched_setparam() to fail, an error value shall be
returned as described by sched_setparam(); or, if the error occurs after the calling process
successfully returns, the child process shall exit with exit status 127.

If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by
attrp, and if posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
sched_setscheduler() to fail, an error value shall be returned as described by sched_setscheduler();
or, if the error occurs after the calling process successfully returns, the child process shall exit
with exit status 127.

1584 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53175

53176

53177

53178

53179

53180

53181

53182

53183

53184

53185

53186

53187

53188

53189

53190

53191

53192

53193

53194

53195

53196

53197

53198

53199

53200

53201

53202

53203

53204

53205

53206

53207

53208

53209

53210

53211

53212

53213

53214

53215

53216

53217

53218

53219

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn()

If the file_actions argument is not a null pointer, and specifies any chdir, close, dup2, fchdir, or open
actions to be performed, and if posix_spawn() or posix_spawnp() fails for any of the reasons that
would cause chdir(), close(), dup2(), fchdir(), or open() to fail, other than attempting a close() on
a file descriptor that is in range but already closed, an error value shall be returned as described
by chdir(), close(), dup2(), fchdir(), and open(), respectively; or, if the error occurs after the
calling process successfully returns, the child process shall exit with exit status 127. An open file
action may, by itself, result in any of the errors described by close() or dup2(), in addition to
those described by open().

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

See also the APPLICATION USAGE section for exec .

RATIONALE
The posix_spawn() function and its close relation posix_spawnp() have been introduced to
overcome the following perceived difficulties with fork(): the fork() function is difficult or
impossible to implement without swapping or dynamic address translation.

• Swapping is generally too slow for a realtime environment.

• Dynamic address translation is not available everywhere that POSIX might be useful.

• Processes are too useful to simply option out of POSIX whenever it must run without
address translation or other MMU services.

Thus, POSIX needs process creation and file execution primitives that can be efficiently
implemented without address translation or other MMU services.

The posix_spawn() function is implementable as a library routine, but both posix_spawn() and
posix_spawnp() are designed as kernel operations. Also, although they may be an efficient
replacement for many fork()/exec pairs, their goal is to provide useful process creation
primitives for systems that have difficulty with fork(), not to provide drop-in replacements for
fork()/exec.

This view of the role of posix_spawn() and posix_spawnp() influenced the design of their API. It
does not attempt to provide the full functionality of fork()/exec in which arbitrary user-specified
operations of any sort are permitted between the creation of the child process and the execution
of the new process image; any attempt to reach that level would need to provide a programming
language as parameters. Instead, posix_spawn() and posix_spawnp() are process creation
primitives like the Start_Process and Start_Process_Search Ada language bindings package
POSIX_Process_Primitives and also like those in many operating systems that are not UNIX
systems, but with some POSIX-specific additions.

To achieve its coverage goals, posix_spawn() and posix_spawnp() have control of seven types of
inheritance: file descriptors, current working directory, process group ID, user and group ID,
signal mask, scheduling, and whether each signal ignored in the parent will remain ignored in
the child, or be reset to its default action in the child.

Control of file descriptors is required to allow an independently written child process image to
access data streams opened by and even generated or read by the parent process without being
specifically coded to know which parent files and file descriptors are to be used. Control of the
current working directory is required because the parent process may want to constrain the
resources that the child process can reach from its current working directory or affect how
relative pathnames are interpreted, while recognizing that a multi-threaded parent process

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1585

53220

53221

53222

53223

53224

53225

53226

53227

53228

53229

53230

53231

53232

53233

53234

53235

53236

53237

53238

53239

53240

53241

53242

53243

53244

53245

53246

53247

53248

53249

53250

53251

53252

53253

53254

53255

53256

53257

53258

53259

53260

53261

53262

53263

53264

53265

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn() System Interfaces

would require a lot of overhead to safely change its own working directory prior to creating the
child process. Control of the process group ID is required to control how the job control of the
child process relates to that of the parent.

Control of the signal mask and signal defaulting is sufficient to support the implementation of
system(). Although support for system() is not explicitly one of the goals for posix_spawn() and
posix_spawnp(), it is covered under the ``at least 50%’’ coverage goal.

The intention is that the normal file descriptor inheritance across fork(), the subsequent effect of
the specified spawn file actions, and the normal file descriptor inheritance across one of the exec
family of functions should fully specify open file inheritance. The implementation need make no
decisions regarding the set of open file descriptors when the child process image begins
execution, those decisions having already been made by the caller and expressed as the set of
open file descriptors and their FD_CLOEXEC and FD_CLOFORK flags at the time of the call, the
actions of fork handlers (if they are called), and the spawn file actions object specified in the call.
We have been assured that in cases where the POSIX Start_Process Ada primitives have been
implemented in a library, this method of controlling file descriptor inheritance may be
implemented very easily.

We can identify several problems with posix_spawn() and posix_spawnp(), but there does not
appear to be a solution that introduces fewer problems. Environment modification for child
process attributes not specifiable via the attrp or file_actions arguments must be done in the
parent process, and since the parent generally wants to save its context, it is more costly than
similar functionality with fork()/exec. It is also complicated to modify the environment of a
multi-threaded process temporarily, since all threads must agree when it is safe for the
environment to be changed. However, this cost is only borne by those invocations of
posix_spawn() and posix_spawnp() that use the additional functionality. Since extensive
modifications are not the usual case, and are particularly unlikely in time-critical code, keeping
much of the environment control out of posix_spawn() and posix_spawnp() is appropriate design.

The posix_spawn() and posix_spawnp() functions do not have all the power of fork()/exec. This is
to be expected. The fork() function is a wonderfully powerful operation. We do not expect to
duplicate its functionality in a simple, fast function with no special hardware requirements. It is
worth noting that posix_spawn() and posix_spawnp() are very similar to the process creation
operations on many operating systems that are not UNIX systems.

Requirements

The requirements for posix_spawn() and posix_spawnp() are:

• They must be implementable without an MMU or unusual hardware.

• They must be compatible with existing POSIX standards.

Additional goals are:

• They should be efficiently implementable.

• They should be able to replace at least 50% of typical executions of fork().

• A system with posix_spawn() and posix_spawnp() and without fork() should be useful, at
least for realtime applications.

• A system with fork() and the exec family should be able to implement posix_spawn() and
posix_spawnp() as library routines.

1586 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53266

53267

53268

53269

53270

53271

53272

53273

53274

53275

53276

53277

53278

53279

53280

53281

53282

53283

53284

53285

53286

53287

53288

53289

53290

53291

53292

53293

53294

53295

53296

53297

53298

53299

53300

53301

53302

53303

53304

53305

53306

53307

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn()

Two-Syntax

POSIX exec has several calling sequences with approximately the same functionality. These
appear to be required for compatibility with existing practice. Since the existing practice for the
posix_spawn*() functions is otherwise substantially unlike POSIX, we feel that simplicity
outweighs compatibility. There are, therefore, only two names for the posix_spawn*() functions.

The parameter list does not differ between posix_spawn() and posix_spawnp(); posix_spawnp()
interprets the second parameter more elaborately than posix_spawn().

Compatibility with POSIX.5 (Ada)

The Start_Process and Start_Process_Search procedures from the POSIX_Process_Primitives
package from the Ada language binding to POSIX.1 encapsulate fork() and exec functionality in a
manner similar to that of posix_spawn() and posix_spawnp(). Originally, in keeping with our
simplicity goal, the standard developers had limited the capabilities of posix_spawn() and
posix_spawnp() to a subset of the capabilities of Start_Process and Start_Process_Search; certain
non-default capabilities were not supported. However, based on suggestions by the ballot group
to improve file descriptor mapping or drop it, and on the advice of an Ada Language Bindings
working group member, the standard developers decided that posix_spawn() and posix_spawnp()
should be sufficiently powerful to implement Start_Process and Start_Process_Search. The
rationale is that if the Ada language binding to such a primitive had already been approved as
an IEEE standard, there can be little justification for not approving the functionally-equivalent
parts of a C binding. The only three capabilities provided by posix_spawn() and posix_spawnp()
that are not provided by Start_Process and Start_Process_Search are optionally specifying the
child’s process group ID, the set of signals to be reset to default signal handling in the child
process, and the child’s scheduling policy and parameters.

For the Ada language binding for Start_Process to be implemented with posix_spawn(), that
binding would need to explicitly pass an empty signal mask and the parent’s environment to
posix_spawn() whenever the caller of Start_Process allowed these arguments to default, since
posix_spawn() does not provide such defaults. The ability of Start_Process to mask user-specified
signals during its execution is functionally unique to the Ada language binding and must be
dealt with in the binding separately from the call to posix_spawn().

Process Group

The process group inheritance field can be used to join the child process with an existing process
group. By assigning a value of zero to the spawn-pgroup attribute of the object referenced by attrp,
the setpgid() mechanism will place the child process in a new process group.

Threads

Without the posix_spawn() and posix_spawnp() functions, systems without address translation
can still use threads to give an abstraction of concurrency. In many cases, thread creation
suffices, but it is not always a good substitute. The posix_spawn() and posix_spawnp() functions
are considerably ``heavier ’’ than thread creation. Processes have several important attributes that
threads do not. Even without address translation, a process may have base-and-bound memory
protection. Each process has a process environment including security attributes and file
capabilities, and powerful scheduling attributes. Processes abstract the behavior of non-
uniform-memory-architecture multi-processors better than threads, and they are more
convenient to use for activities that are not closely linked.

The posix_spawn() and posix_spawnp() functions may not bring support for multiple processes to
every configuration. Process creation is not the only piece of operating system support required

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1587

53308

53309

53310

53311

53312

53313

53314

53315

53316

53317

53318

53319

53320

53321

53322

53323

53324

53325

53326

53327

53328

53329

53330

53331

53332

53333

53334

53335

53336

53337

53338

53339

53340

53341

53342

53343

53344

53345

53346

53347

53348

53349

53350

53351

53352

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn() System Interfaces

to support multiple processes. The total cost of support for multiple processes may be quite high
in some circumstances. Existing practice shows that support for multiple processes is
uncommon and threads are common among ``tiny kernels’’. There should, therefore, probably
continue to be AEPs for operating systems with only one process.

Asynchronous Error Notification

A library implementation of posix_spawn() or posix_spawnp() may not be able to detect all
possible errors before it forks the child process. POSIX.1-2024 provides for an error indication
returned from a child process which could not successfully complete the spawn operation via a
special exit status which may be detected using the status value returned by wait(), waitid(), and
waitpid().

The stat_val interface and the macros used to interpret it are not well suited to the purpose of
returning API errors, but they are the only path available to a library implementation. Thus, an
implementation may cause the child process to exit with exit status 127 for any error detected
during the spawn process after the posix_spawn() or posix_spawnp() function has successfully
returned.

The standard developers had proposed using two additional macros to interpret stat_val. The
first, WIFSPAWNFAIL, would have detected a status that indicated that the child exited because
of an error detected during the posix_spawn() or posix_spawnp() operations rather than during
actual execution of the child process image; the second, WSPAWNERRNO, would have
extracted the error value if WIFSPAWNFAIL indicated a failure. Unfortunately, the ballot group
strongly opposed this because it would make a library implementation of posix_spawn() or
posix_spawnp() dependent on kernel modifications to waitpid() to be able to embed special
information in stat_val to indicate a spawn failure.

The 8 bits of child process exit status that are guaranteed by POSIX.1-2024 to be accessible to the
waiting parent process are insufficient to disambiguate a spawn error from any other kind of
error that may be returned by an arbitrary process image. No other bits of the exit status are
required to be visible in stat_val, so these macros could not be strictly implemented at the library
level. Reserving an exit status of 127 for such spawn errors is consistent with the use of this
value by system() and popen() to signal failures in these operations that occur after the function
has returned but before a shell is able to execute. The exit status of 127 does not uniquely
identify this class of error, nor does it provide any detailed information on the nature of the
failure. Note that a kernel implementation of posix_spawn() or posix_spawnp() is permitted (and
encouraged) to return any possible error as the function value, thus providing more detailed
failure information to the parent process.

Thus, no special macros are available to isolate asynchronous posix_spawn() or posix_spawnp()
errors. Instead, errors detected by the posix_spawn() or posix_spawnp() operations in the context
of the child process before the new process image executes are reported by setting the child’s exit
status to 127. The calling process may use the WIFEXITED and WEXITSTATUS macros on the
stat_val stored by the wait() or waitpid() functions to detect spawn failures to the extent that
other status values with which the child process image may exit (before the parent can
conclusively determine that the child process image has begun execution) are distinct from exit
status 127.

FUTURE DIRECTIONS
None.

1588 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53353

53354

53355

53356

53357

53358

53359

53360

53361

53362

53363

53364

53365

53366

53367

53368

53369

53370

53371

53372

53373

53374

53375

53376

53377

53378

53379

53380

53381

53382

53383

53384

53385

53386

53387

53388

53389

53390

53391

53392

53393

53394

53395

53396

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn()

SEE ALSO
alarm(), chmod(), close(), dup(), exec , exit(), fcntl(), fork(), fstatat(), kill(), open(),
posix_spawn_file_actions_addchdir(), posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_adddup2(), posix_spawn_file_actions_destroy(), posix_spawnattr_destroy(),
posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(), posix_spawnattr_getpgroup(),
posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask(),
sched_setparam(), sched_setscheduler(), setpgid(), setsid(), setuid(), times(), wait(), waitid()

XBD Chapter 8 (on page 167), <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #103 is applied, noting that the signal default actions are
changed as well as the signal mask in step 2.

IEEE PASC Interpretation 1003.1 #132 is applied.

Issue 7
Functionality relating to the Threads option is moved to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0433 [291], XSH/TC1-2008/0434 [173],
and XSH/TC1-2008/0435 [173] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0255 [824] is applied.

Issue 8
Austin Group Defect 370 is applied, requiring that attempting to close a file descriptor that is in
range but already closed is not treated as an error.

Austin Group Defect 768 is applied, adding OFD-owned file locks.

Austin Group Defect 1044 is applied, adding POSIX_SPAWN_SETSID.

Austin Group Defect 1208 is applied, adding posix_spawn_file_actions_addchdir() and
posix_spawn_file_actions_addfchdir().

Austin Group Defect 1318 is applied, adding FD_CLOFORK and clarifying that the inherited set
of file descriptors is affected by the actions of fork handlers (if they are called).

Austin Group Defect 1328 is applied, adding the restrict keyword to the third parameter of
posix_spawn() and posix_spawnp().

Austin Group Defect 1362 is applied, removing parentheses around some text intended to be
normative.

Austin Group Defect 1674 is applied, adding a requirement that posix_spawnp() does not fallback
to executing sh when the corresponding exec function would do so instead of failing with
[ENOEXEC].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1589

53397

53398

53399

53400

53401

53402

53403

53404

53405

53406

53407

53408

53409

53410

53411

53412

53413

53414

53415

53416

53417

53418

53419

53420

53421

53422

53423

53424

53425

53426

53427

53428

53429

53430

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn_file_actions_addchdir() System Interfaces

NAME
posix_spawn_file_actions_addchdir, posix_spawn_file_actions_addfchdir — add chdir or fchdir
action to spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_addchdir(posix_spawn_file_actions_t
*restrict file_actions, const char *restrict path);

int posix_spawn_file_actions_addfchdir(posix_spawn_file_actions_t
*file_actions, int fildes);

DESCRIPTION
The posix_spawn_file_actions_addchdir() function shall add a chdir action to the object referenced
by file_actions that shall cause the working directory to be set to path (as if chdir(path) had been
called) when a new process is spawned using this file actions object. A relative path shall be
interpreted in relation to the working directory determined by any prior actions. The string
pointed to by path shall be copied by the posix_spawn_file_actions_addchdir() function.

The posix_spawn_file_actions_addfchdir() function shall add an fchdir action to the object
referenced by file_actions that shall cause the working directory to be set to fildes (as if
fchdir(fildes) had been called) when a new process is spawned using this file actions object.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_addfchdir() function shall fail if:
[EBADF] The value specified by fildes is negative.

These functions shall fail if:

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

These functions may fail if:

[EINVAL] The value specified by file_actions is invalid.

It shall not be considered an error for the path or fildes argument passed to these functions to
specify a pathname or file descriptor for which the specified operation could not be performed
at the time of the call. Any such error shall be detected when the associated file actions object is
later used during a posix_spawn() or posix_spawnp() operation.

EXAMPLES
None.

APPLICATION USAGE
The posix_spawn_file_actions_addchdir() and posix_spawn_file_actions_addfchdir() functions are
part of the Spawn option and need not be provided on all implementations.

Changing the working directory of a child process can be useful when invoking utilities such as
pax. Furthermore, the ability to add fchdir actions to posix_spawn() gives the caller as much
control over relative pathnames processed in the context of the child as it would otherwise have
using openat(), since all file actions are processed in sequence in the context of the child at a
point where the child process is still single-threaded. Without chdir or fchdir actions, changing
the working directory of the child would require a shim utility (some implementations provide

1590 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53431

53432

53433

53434

53435

53436

53437

53438

53439

53440

53441

53442

53443

53444

53445

53446

53447

53448

53449

53450

53451

53452

53453

53454

53455

53456

53457

53458

53459

53460

53461

53462

53463

53464

53465

53466

53467

53468

53469

53470

53471

53472

53473

53474

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn_file_actions_addchdir()

env -C /new/path program args...

as an extension, but the standard does not require this extension), or else temporarily changing
the working directory in the parent process prior to calling posix_spawn() (but this requires
locking in a multi-threaded process, to ensure that no other thread is impacted by the temporary
change to global state).

File actions are performed in a new process created by posix_spawn() or posix_spawnp() in the
same order that they were added to the file actions object. Thus, the execution of an open action
that was created by a call to posix_spawn_file_actions_addopen() that specifies a relative path will
be affected by the execution of a chdir or fchdir action that was created by a previous call to
posix_spawn_file_actions_addchdir() or posix_spawn_file_actions_addfchdir(). Likewise, a relative
path passed to posix_spawn() will be affected by the last chdir or fchdir action in the file action
list.

RATIONALE
Refer to the RATIONALE section in posix_spawn_file_actions_addclose().

FUTURE DIRECTIONS
None.

SEE ALSO
chdir(), fchdir(), posix_spawn(), posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_destroy()

XBD <spawn.h>

CHANGE HISTORY
First released in Issue 8. Derived from Solaris posix_spawn_file_actions_addchdir_np.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1591

53475

53476

53477

53478

53479

53480

53481

53482

53483

53484

53485

53486

53487

53488

53489

53490

53491

53492

53493

53494

53495

53496

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn_file_actions_addclose() System Interfaces

NAME
posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen — add close or open
action to spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t
*file_actions, int fildes);

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t
*restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

DESCRIPTION
These functions shall add a close or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in <spawn.h>) and is
used to specify a series of actions to be performed by a posix_spawn() or posix_spawnp()
operation in order to arrive at the set of open file descriptors for the child process given the set
of open file descriptors of the parent. POSIX.1-2024 does not define comparison or assignment
operators for the type posix_spawn_file_actions_t.

A spawn file actions object, when passed to posix_spawn() or posix_spawnp(), shall specify how
the set of open file descriptors in the calling process is transformed into a set of potentially open
file descriptors for the spawned process. This transformation shall be as if the specified sequence
of actions was performed exactly once, in the context of the spawned process (prior to execution
of the new process image), in the order in which the actions were added to the object;
additionally, when the new process image is executed, any file descriptor (from this new set)
which has its FD_CLOEXEC flag set shall be closed (see posix_spawn()).

The posix_spawn_file_actions_addclose() function shall add a close action to the object referenced
by file_actions that shall cause the file descriptor fildes to be closed (as if close(fildes) had been
called) when a new process is spawned using this file actions object, except that a non-negative
fildes less than {OPEN_MAX} that is already closed at the time when the new process is spawned
shall be ignored rather than failing with [EBADF].

The posix_spawn_file_actions_addopen() function shall add an open action to the object referenced
by file_actions that shall cause the file named by path to be opened (as if open(path, oflag, mode)
had been called, and the returned file descriptor, if not fildes, had been changed to fildes) when a
new process is spawned using this file actions object. If fildes was already an open file descriptor,
it shall be closed before the new file is opened. A relative path shall be interpreted in relation to
the working directory determined by any prior actions.

The string pointed to by path shall be copied by the posix_spawn_file_actions_addopen() function.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_addopen() function shall fail if:

[EBADF] The value specified by fildes is negative or greater than or equal to
{OPEN_MAX}.

The posix_spawn_file_actions_addclose() function shall fail if:

1592 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53497

53498

53499

53500

53501

53502

53503

53504

53505

53506

53507

53508

53509

53510

53511

53512

53513

53514

53515

53516

53517

53518

53519

53520

53521

53522

53523

53524

53525

53526

53527

53528

53529

53530

53531

53532

53533

53534

53535

53536

53537

53538

53539

53540

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn_file_actions_addclose()

[EBADF] The value specified by fildes is negative.

These functions shall fail if:

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

These functions may fail if:

[EINVAL] The value specified by file_actions is invalid.

It shall not be considered an error for the fildes argument passed to these functions to specify a
file descriptor for which the specified operation could not be performed at the time of the call.
Any such error shall be detected when the associated file actions object is later used during a
posix_spawn() or posix_spawnp() operation.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

Implementations may use file descriptors that must be inherited into child processes for the
child process to remain conforming, such as for message catalog or tracing purposes. Therefore,
an application that calls posix_spawn_file_actions_addclose() with an arbitrary integer risks non-
conforming behavior, and this function can only portably be used to close file descriptor values
that the application has obtained through explicit actions, or for the three file descriptors
corresponding to the standard file streams. In order to avoid a race condition of leaking an
unintended file descriptor into a child process or executed program, an application should
consider opening all file descriptors with the FD_CLOFORK or FD_CLOEXEC flag, or both
flags, set unless the file descriptor is intended to be inherited by child processes or executed
programs, respectively.

RATIONALE
A spawn file actions object may be initialized to contain an ordered sequence of chdir(), close(),
dup2(), fchdir(), and open() operations to be used by posix_spawn() or posix_spawnp() to arrive at
the set of open file descriptors and current working directory inherited by the spawned process
from the set of open file descriptors and current working directory in the parent at the time of
the posix_spawn() or posix_spawnp() call. It had been suggested that the close() and dup2()
operations alone are sufficient to rearrange file descriptors, and that files which need to be
opened for use by the spawned process can be handled either by having the calling process open
them before the posix_spawn() or posix_spawnp() call (and close them after), or by passing
pathnames to the spawned process (in argv) so that it may open them itself. The standard
developers recommend that applications use one of these two methods when practical, since
detailed error status on a failed open operation is always available to the application this way.
However, the standard developers feel that allowing a spawn file actions object to specify open
operations is still appropriate because:

1. It is consistent with equivalent POSIX.5 (Ada) functionality.

2. It supports the I/O redirection paradigm commonly employed by POSIX programs
designed to be invoked from a shell. When such a program is the child process, it may not
be designed to open files on its own.

3. It allows file opens that might otherwise fail or violate file ownership/access rights if
executed by the parent process.

Regarding 2. above, note that the spawn open file action provides to posix_spawn() and
posix_spawnp() the same capability that the shell redirection operators provide to system(), only

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1593

53541

53542

53543

53544

53545

53546

53547

53548

53549

53550

53551

53552

53553

53554

53555

53556

53557

53558

53559

53560

53561

53562

53563

53564

53565

53566

53567

53568

53569

53570

53571

53572

53573

53574

53575

53576

53577

53578

53579

53580

53581

53582

53583

53584

53585

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn_file_actions_addclose() System Interfaces

without the intervening execution of a shell; for example:

system ("myprog <file1 3<file2");

Regarding 3. above, note that if the calling process needs to open one or more files for access by
the spawned process, but has insufficient spare file descriptors, then the open action is necessary
to allow the open() to occur in the context of the child process after other file descriptors have
been closed (that must remain open in the parent).

Additionally, if a parent is executed from a file having a ``set-user-id’’ mode bit set and the
POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created within the parent
process will (possibly incorrectly) have the parent’s effective user ID as its owner, whereas a file
created via an open() action during posix_spawn() or posix_spawnp() will have the parent’s real
ID as its owner; and an open by the parent process may successfully open a file to which the real
user should not have access or fail to open a file to which the real user should have access.

File Descriptor Mapping

The standard developers had originally proposed using an array which specified the mapping of
child file descriptors back to those of the parent. It was pointed out by the ballot group that it is
not possible to reshuffle file descriptors arbitrarily in a library implementation of posix_spawn()
or posix_spawnp() without provision for one or more spare file descriptor entries (which simply
may not be available). Such an array requires that an implementation develop a complex
strategy to achieve the desired mapping without inadvertently closing the wrong file descriptor
at the wrong time.

It was noted by a member of the Ada Language Bindings working group that the approved Ada
Language Start_Process family of POSIX process primitives use a caller-specified set of file
actions to alter the normal fork()/exec semantics for inheritance of file descriptors in a very
flexible way, yet no such problems exist because the burden of determining how to achieve the
final file descriptor mapping is completely on the application. Furthermore, although the file
actions interface appears frightening at first glance, it is actually quite simple to implement in
either a library or the kernel.

The posix_spawn_file_actions_addclose() function is not required to check whether the file
descriptor is less than {OPEN_MAX} because on some implementations {OPEN_MAX} reflects
the RLIMIT_NOFILE soft limit and therefore calling setrlimit() to reduce this limit can result in
an {OPEN_MAX} value less than or equal to an already open file descriptor. Applications need
to be able to close such file descriptors on spawn. On implementations where {OPEN_MAX}
does not change, it is recommended that posix_spawn_file_actions_addclose() should return
[EBADF] if fildes is greater than or equal to {OPEN_MAX}.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), open(), posix_spawn(), posix_spawn_file_actions_addchdir(),
posix_spawn_file_actions_adddup2(), posix_spawn_file_actions_destroy()

XBD <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #105 is applied, adding a note to the DESCRIPTION that the
string pointed to by path is copied by the posix_spawn_file_actions_addopen() function.

1594 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53586

53587

53588

53589

53590

53591

53592

53593

53594

53595

53596

53597

53598

53599

53600

53601

53602

53603

53604

53605

53606

53607

53608

53609

53610

53611

53612

53613

53614

53615

53616

53617

53618

53619

53620

53621

53622

53623

53624

53625

53626

53627

53628

53629

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn_file_actions_addclose()

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0436 [418], XSH/TC1-2008/0437 [149],
XSH/TC1-2008/0438 [291], and XSH/TC1-2008/0439 [418] are applied.

Issue 8
Austin Group Defect 370 is applied, requiring that attempting to close a file descriptor that is in
range, but already closed at the time when the new process is spawned, is not treated as an error.

Austin Group Defect 1208 is applied, adding posix_spawn_file_actions_addchdir() and
posix_spawn_file_actions_addfchdir().

Austin Group Defect 1318 is applied, adding FD_CLOFORK.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1595

53630

53631

53632

53633

53634

53635

53636

53637

53638

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn_file_actions_adddup2() System Interfaces

NAME
posix_spawn_file_actions_adddup2 — add dup2 action to spawn file actions object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t
*file_actions, int fildes, int newfildes);

DESCRIPTION
The posix_spawn_file_actions_adddup2() function shall add a dup2() action to the object
referenced by file_actions that shall cause the file descriptor fildes to be duplicated as newfildes (as
if dup2(fildes, newfildes) had been called) when a new process is spawned using this file actions
object.

If fildes and newfildes are equal, then the action shall ensure that newfildes is inherited by the new
process with FD_CLOEXEC clear, even if the FD_CLOEXEC flag of fildes is set at the time the
new process is spawned, and even though dup2() would not make such a change.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

RETURN VALUE
Upon successful completion, the posix_spawn_file_actions_adddup2() function shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_adddup2() function shall fail if:

[EBADF] The value specified by fildes or newfildes is negative or greater than or equal to
{OPEN_MAX}.

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2() function may fail if:

[EINVAL] The value specified by file_actions is invalid.

It shall not be considered an error for the fildes argument passed to the
posix_spawn_file_actions_adddup2() function to specify a file descriptor for which the specified
operation could not be performed at the time of the call. Any such error shall be detected when
the associated file actions object is later used during a posix_spawn() or posix_spawnp()
operation.

EXAMPLES
None.

APPLICATION USAGE
The posix_spawn_file_actions_adddup2() function is part of the Spawn option and need not be
provided on all implementations.

Implementations may use file descriptors that must be inherited into child processes for the
child process to remain conforming, such as for message catalog or tracing purposes. Therefore,
an application that calls posix_spawn_file_actions_adddup2() with an arbitrary integer for newfildes
risks non-conforming behavior, and this function can only portably be used to overwrite file
descriptor values that the application has obtained through explicit actions, or for the three file
descriptors corresponding to the standard file streams. In order to avoid a race condition of
leaking an unintended file descriptor into a child process or executed program, an application
should consider opening all file descriptors with the FD_CLOFORK or FD_CLOEXEC flag, or

1596 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53639

53640

53641

53642

53643

53644

53645

53646

53647

53648

53649

53650

53651

53652

53653

53654

53655

53656

53657

53658

53659

53660

53661

53662

53663

53664

53665

53666

53667

53668

53669

53670

53671

53672

53673

53674

53675

53676

53677

53678

53679

53680

53681

53682

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn_file_actions_adddup2()

both flags, set unless the file descriptor is intended to be inherited by child processes or executed
programs, respectively.

RATIONALE
Refer to the RATIONALE section in posix_spawn_file_actions_addclose().

Although dup2() is required to do nothing when fildes and newfildes are equal and fildes is an
open descriptor, the use of posix_spawn_file_actions_adddup2() is required to cause fildes to be
accessible in the child with FD_CLOEXEC clear. This is because there is no counterpart
posix_spawn_file_actions_fcntl() that could be used for clearing the flag as an independent file
action. It would also be possible to achieve this effect by using two calls to
posix_spawn_file_actions_adddup2() and a temporary fildes value known not to conflict with any
other file descriptors, coupled with a posix_spawn_file_actions_close() to avoid leaking the
temporary, but this approach is complex, and risks [EMFILE] or [ENFILE] failure that can be
avoided with the in-place removal of FD_CLOEXEC.

There is no need for posix_spawn_file_actions_adddup3(), since it makes no sense to create a file
descriptor with FD_CLOEXEC set before spawning the child process, where that file descriptor
would immediately be closed again.

FUTURE DIRECTIONS
None.

SEE ALSO
dup(), posix_spawn(), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_destroy()

XBD <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #104 is applied, noting that the [EBADF] error can apply to the
newfildes argument in addition to fildes.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0440 [149] is applied.

Issue 8
Austin Group Defect 411 is applied, changing requirements relating to the FD_CLOEXEC flag
when fildes and newfildes are equal.

Austin Group Defect 1318 is applied, adding FD_CLOFORK.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1597

53683

53684

53685

53686

53687

53688

53689

53690

53691

53692

53693

53694

53695

53696

53697

53698

53699

53700

53701

53702

53703

53704

53705

53706

53707

53708

53709

53710

53711

53712

53713

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn_file_actions_addfchdir() System Interfaces

NAME
posix_spawn_file_actions_addfchdir — add fchdir action to spawn file actions object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_addfchdir(posix_spawn_file_actions_t
*file_actions, int fildes);

DESCRIPTION
Refer to posix_spawn_file_actions_addchdir().

1598 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53714

53715

53716

53717

53718

53719

53720

53721

53722

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn_file_actions_addopen()

NAME
posix_spawn_file_actions_addopen — add open action to spawn file actions object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t
*restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

DESCRIPTION
Refer to posix_spawn_file_actions_addclose().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1599

53723

53724

53725

53726

53727

53728

53729

53730

53731

53732

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawn_file_actions_destroy() System Interfaces

NAME
posix_spawn_file_actions_destroy, posix_spawn_file_actions_init — destroy and initialize
spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t
*file_actions);

int posix_spawn_file_actions_init(posix_spawn_file_actions_t
*file_actions);

DESCRIPTION
The posix_spawn_file_actions_destroy() function shall destroy the object referenced by file_actions;
the object becomes, in effect, uninitialized. An implementation may cause
posix_spawn_file_actions_destroy() to set the object referenced by file_actions to an invalid value. A
destroyed spawn file actions object can be reinitialized using posix_spawn_file_actions_init(); the
results of otherwise referencing the object after it has been destroyed are undefined.

The posix_spawn_file_actions_init() function shall initialize the object referenced by file_actions to
contain no file actions for posix_spawn() or posix_spawnp() to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

The effect of initializing an already initialized spawn file actions object is undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn file actions object.

The posix_spawn_file_actions_destroy() function may fail if:

[EINVAL] The value specified by file_actions is invalid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
Refer to the RATIONALE section in posix_spawn_file_actions_addclose().

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawn_file_actions_addclose()

XBD <spawn.h>

1600 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53733

53734

53735

53736

53737

53738

53739

53740

53741

53742

53743

53744

53745

53746

53747

53748

53749

53750

53751

53752

53753

53754

53755

53756

53757

53758

53759

53760

53761

53762

53763

53764

53765

53766

53767

53768

53769

53770

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawn_file_actions_destroy()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1601

53771

53772

53773

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_destroy() System Interfaces

NAME
posix_spawnattr_destroy, posix_spawnattr_init — destroy and initialize spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attr);
int posix_spawnattr_init(posix_spawnattr_t *attr);

DESCRIPTION
The posix_spawnattr_destroy() function shall destroy a spawn attributes object. A destroyed attr
attributes object can be reinitialized using posix_spawnattr_init(); the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation may cause
posix_spawnattr_destroy() to set the object referenced by attr to an invalid value.

The posix_spawnattr_init() function shall initialize a spawn attributes object attr with the default
value for all of the individual attributes used by the implementation. Results are undefined if
posix_spawnattr_init() is called specifying an already initialized attr attributes object.

A spawn attributes object is of type posix_spawnattr_t (defined in <spawn.h>) and is used to
specify the inheritance of process attributes across a spawn operation. POSIX.1-2024 does not
define comparison or assignment operators for the type posix_spawnattr_t.

Each implementation shall document the individual attributes it uses and their default values
unless these values are defined by POSIX.1-2024. Attributes not defined by POSIX.1-2024, their
default values, and the names of the associated functions to get and set those attribute values are
implementation-defined.

The resulting spawn attributes object (possibly modified by setting individual attribute values),
is used to modify the behavior of posix_spawn() or posix_spawnp(). After a spawn attributes
object has been used to spawn a process by a call to a posix_spawn() or posix_spawnp(), any
function affecting the attributes object (including destruction) shall not affect any process that
has been spawned in this way.

RETURN VALUE
Upon successful completion, posix_spawnattr_destroy() and posix_spawnattr_init() shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawnattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn attributes object.

The posix_spawnattr_destroy() function may fail if:

[EINVAL] The value specified by attr is invalid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
The original spawn interface proposed in POSIX.1-2024 defined the attributes that specify the
inheritance of process attributes across a spawn operation as a structure. In order to be able to
separate optional individual attributes under their appropriate options (that is, the spawn-
schedparam and spawn-schedpolicy attributes depending upon the Process Scheduling option), and

1602 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53774

53775

53776

53777

53778

53779

53780

53781

53782

53783

53784

53785

53786

53787

53788

53789

53790

53791

53792

53793

53794

53795

53796

53797

53798

53799

53800

53801

53802

53803

53804

53805

53806

53807

53808

53809

53810

53811

53812

53813

53814

53815

53816

53817

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_destroy()

also for extensibility and consistency with the newer POSIX interfaces, the attributes interface
has been changed to an opaque data type. This interface now consists of the type
posix_spawnattr_t, representing a spawn attributes object, together with associated functions to
initialize or destroy the attributes object, and to set or get each individual attribute. Although the
new object-oriented interface is more verbose than the original structure, it is simple to use,
more extensible, and easy to implement.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask()

XBD <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #106 is applied, noting that the effect of initializing an already
initialized spawn attributes option is undefined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1603

53818

53819

53820

53821

53822

53823

53824

53825

53826

53827

53828

53829

53830

53831

53832

53833

53834

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_getflags() System Interfaces

NAME
posix_spawnattr_getflags, posix_spawnattr_setflags — get and set the spawn-flags attribute of a
spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
short *restrict flags);

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

DESCRIPTION
The posix_spawnattr_getflags() function shall obtain the value of the spawn-flags attribute from the
attributes object referenced by attr.

The posix_spawnattr_setflags() function shall set the spawn-flags attribute in an initialized
attributes object referenced by attr.

The spawn-flags attribute is used to indicate which process attributes are to be changed in the
new process image when invoking posix_spawn() or posix_spawnp(). It is the bitwise-inclusive
OR of zero or more of the following flags:

POSIX_SPAWN_RESETIDS
POSIX_SPAWN_SETPGROUP

PS POSIX_SPAWN_SETSCHEDPARAM
POSIX_SPAWN_SETSCHEDULER
POSIX_SPAWN_SETSID
POSIX_SPAWN_SETSIGDEF
POSIX_SPAWN_SETSIGMASK

These flags are defined in <spawn.h>. The default value of this attribute shall be as if no flags
were set.

RETURN VALUE
Upon successful completion, posix_spawnattr_getflags() shall return zero and store the value of
the spawn-flags attribute of attr into the object referenced by the flags parameter; otherwise, an
error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setflags() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setflags() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

1604 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53835

53836

53837

53838

53839

53840

53841

53842

53843

53844

53845

53846

53847

53848

53849

53850

53851

53852

53853

53854

53855

53856

53857

53858

53859

53860

53861

53862

53863

53864

53865

53866

53867

53868

53869

53870

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_getflags()

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask()

XBD <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 8
Austin Group Defect 1044 is applied, adding POSIX_SPAWN_SETSID.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1605

53871

53872

53873

53874

53875

53876

53877

53878

53879

53880

53881

53882

53883

53884

53885

53886

53887

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_getpgroup() System Interfaces

NAME
posix_spawnattr_getpgroup, posix_spawnattr_setpgroup — get and set the spawn-pgroup
attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

DESCRIPTION
The posix_spawnattr_getpgroup() function shall obtain the value of the spawn-pgroup attribute
from the attributes object referenced by attr.

The posix_spawnattr_setpgroup() function shall set the spawn-pgroup attribute in an initialized
attributes object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new process image
in a spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The
default value of this attribute shall be zero.

RETURN VALUE
Upon successful completion, posix_spawnattr_getpgroup() shall return zero and store the value of
the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter; otherwise,
an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setpgroup() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setpgroup() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask()

XBD <spawn.h>

1606 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53888

53889

53890

53891

53892

53893

53894

53895

53896

53897

53898

53899

53900

53901

53902

53903

53904

53905

53906

53907

53908

53909

53910

53911

53912

53913

53914

53915

53916

53917

53918

53919

53920

53921

53922

53923

53924

53925

53926

53927

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_getpgroup()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1607

53928

53929

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_getschedparam() System Interfaces

NAME
posix_spawnattr_getschedparam, posix_spawnattr_setschedparam — get and set the spawn-
schedparam attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t
*restrict attr, struct sched_param *restrict schedparam);

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

DESCRIPTION
The posix_spawnattr_getschedparam() function shall obtain the value of the spawn-schedparam
attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedparam() function shall set the spawn-schedparam attribute in an
initialized attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or
POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this
attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedparam() shall return zero and store the
value of the spawn-schedparam attribute of attr into the object referenced by the schedparam
parameter; otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedparam() shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setschedparam() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask()

1608 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53930

53931

53932

53933

53934

53935

53936

53937

53938

53939

53940

53941

53942

53943

53944

53945

53946

53947

53948

53949

53950

53951

53952

53953

53954

53955

53956

53957

53958

53959

53960

53961

53962

53963

53964

53965

53966

53967

53968

53969

53970

53971

53972

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_getschedparam()

XBD <sched.h>, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1609

53973

53974

53975

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_getschedpolicy() System Interfaces

NAME
posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy — get and set the spawn-
schedpolicy attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t
*restrict attr, int *restrict schedpolicy);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

DESCRIPTION
The posix_spawnattr_getschedpolicy() function shall obtain the value of the spawn-schedpolicy
attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedpolicy() function shall set the spawn-schedpolicy attribute in an
initialized attributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-
flags attribute). The default value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedpolicy() shall return zero and store the
value of the spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy
parameter; otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedpolicy() shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setschedpolicy() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
posix_spawnattr_getsigmask()

XBD <sched.h>, <spawn.h>

1610 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53976

53977

53978

53979

53980

53981

53982

53983

53984

53985

53986

53987

53988

53989

53990

53991

53992

53993

53994

53995

53996

53997

53998

53999

54000

54001

54002

54003

54004

54005

54006

54007

54008

54009

54010

54011

54012

54013

54014

54015

54016

54017

54018

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_getschedpolicy()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1611

54019

54020

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_getsigdefault() System Interfaces

NAME
posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault — get and set the spawn-
sigdefault attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t
*restrict attr, sigset_t *restrict sigdefault);

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

DESCRIPTION
The posix_spawnattr_getsigdefault() function shall obtain the value of the spawn-sigdefault
attribute from the attributes object referenced by attr.

The posix_spawnattr_setsigdefault() function shall set the spawn-sigdefault attribute in an
initialized attributes object referenced by attr.

The spawn-sigdefault attribute represents the set of signals to be forced to default signal handling
in the new process image (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags attribute) by a
spawn operation. The default value of this attribute shall be an empty signal set.

RETURN VALUE
Upon successful completion, posix_spawnattr_getsigdefault() shall return zero and store the value
of the spawn-sigdefault attribute of attr into the object referenced by the sigdefault parameter;
otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigdefault() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setsigdefault() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getflags(), posix_spawnattr_getpgroup(),
posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask()

XBD <signal.h>, <spawn.h>

1612 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54021

54022

54023

54024

54025

54026

54027

54028

54029

54030

54031

54032

54033

54034

54035

54036

54037

54038

54039

54040

54041

54042

54043

54044

54045

54046

54047

54048

54049

54050

54051

54052

54053

54054

54055

54056

54057

54058

54059

54060

54061

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_getsigdefault()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1613

54062

54063

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_getsigmask() System Interfaces

NAME
posix_spawnattr_getsigmask, posix_spawnattr_setsigmask — get and set the spawn-sigmask
attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

DESCRIPTION
The posix_spawnattr_getsigmask() function shall obtain the value of the spawn-sigmask attribute
from the attributes object referenced by attr.

The posix_spawnattr_setsigmask() function shall set the spawn-sigmask attribute in an initialized
attributes object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process image of a
spawn operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The
default value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getsigmask() shall return zero and store the value
of the spawn-sigmask attribute of attr into the object referenced by the sigmask parameter;
otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigmask() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setsigmask() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
posix_spawnattr_getschedpolicy()

XBD <signal.h>, <spawn.h>

1614 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54064

54065

54066

54067

54068

54069

54070

54071

54072

54073

54074

54075

54076

54077

54078

54079

54080

54081

54082

54083

54084

54085

54086

54087

54088

54089

54090

54091

54092

54093

54094

54095

54096

54097

54098

54099

54100

54101

54102

54103

54104

54105

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_getsigmask()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1615

54106

54107

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_init() System Interfaces

NAME
posix_spawnattr_init — initialize the spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_init(posix_spawnattr_t *attr);

DESCRIPTION
Refer to posix_spawnattr_destroy().

1616 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54108

54109

54110

54111

54112

54113

54114

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_setflags()

NAME
posix_spawnattr_setflags — set the spawn-flags attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

DESCRIPTION
Refer to posix_spawnattr_getflags().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1617

54115

54116

54117

54118

54119

54120

54121

54122

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_setpgroup() System Interfaces

NAME
posix_spawnattr_setpgroup — set the spawn-pgroup attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

DESCRIPTION
Refer to posix_spawnattr_getpgroup().

1618 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54123

54124

54125

54126

54127

54128

54129

54130

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_setschedparam()

NAME
posix_spawnattr_setschedparam — set the spawn-schedparam attribute of a spawn attributes
object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <sched.h>

#include <spawn.h>

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

DESCRIPTION
Refer to posix_spawnattr_getschedparam().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1619

54131

54132

54133

54134

54135

54136

54137

54138

54139

54140

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_setschedpolicy() System Interfaces

NAME
posix_spawnattr_setschedpolicy — set the spawn-schedpolicy attribute of a spawn attributes
object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <sched.h>

#include <spawn.h>

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

DESCRIPTION
Refer to posix_spawnattr_getschedpolicy().

1620 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54141

54142

54143

54144

54145

54146

54147

54148

54149

54150

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnattr_setsigdefault()

NAME
posix_spawnattr_setsigdefault — set the spawn-sigdefault attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

DESCRIPTION
Refer to posix_spawnattr_getsigdefault().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1621

54151

54152

54153

54154

54155

54156

54157

54158

54159

54160

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_spawnattr_setsigmask() System Interfaces

NAME
posix_spawnattr_setsigmask — set the spawn-sigmask attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

DESCRIPTION
Refer to posix_spawnattr_getsigmask().

1622 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54161

54162

54163

54164

54165

54166

54167

54168

54169

54170

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_spawnp()

NAME
posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

DESCRIPTION
Refer to posix_spawn().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1623

54171

54172

54173

54174

54175

54176

54177

54178

54179

54180

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_typed_mem_get_info() System Interfaces

NAME
posix_typed_mem_get_info — query typed memory information (ADVANCED REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_typed_mem_get_info(int fildes,
struct posix_typed_mem_info *info);

DESCRIPTION
The posix_typed_mem_get_info() function shall return, in the posix_tmi_length field of the
posix_typed_mem_info structure pointed to by info, the maximum length which may be
successfully allocated by the typed memory object designated by fildes. This maximum length
shall take into account the flag POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified when the typed memory object
represented by fildes was opened. The maximum length is dynamic; therefore, the value
returned is valid only while the current mapping of the corresponding typed memory pool
remains unchanged.

If fildes represents a typed memory object opened with neither the
POSIX_TYPED_MEM_ALLOCATE flag nor the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag specified, the returned value of info->posix_tmi_length is unspecified.

The posix_typed_mem_get_info() function may return additional implementation-defined
information in other fields of the posix_typed_mem_info structure pointed to by info.

If the memory object specified by fildes is not a typed memory object, then the behavior of this
function is undefined.

RETURN VALUE
Upon successful completion, the posix_typed_mem_get_info() function shall return zero;
otherwise, the corresponding error status value shall be returned.

ERRORS
The posix_typed_mem_get_info() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENODEV] The fildes argument is not connected to a memory object supported by this
function.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
An application that needs to allocate a block of typed memory with length dependent upon the
amount of memory currently available must either query the typed memory object to obtain the
amount available, or repeatedly invoke mmap() attempting to guess an appropriate length.
While the latter method is existing practice with malloc(), it is awkward and imprecise. The
posix_typed_mem_get_info() function allows an application to immediately determine available
memory. This is particularly important for typed memory objects that may in some cases be
scarce resources. Note that when a typed memory pool is a shared resource, some form of
mutual-exclusion or synchronization may be required while typed memory is being queried and

1624 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54181

54182

54183

54184

54185

54186

54187

54188

54189

54190

54191

54192

54193

54194

54195

54196

54197

54198

54199

54200

54201

54202

54203

54204

54205

54206

54207

54208

54209

54210

54211

54212

54213

54214

54215

54216

54217

54218

54219

54220

54221

54222

54223

54224

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_typed_mem_get_info()

allocated to prevent race conditions.

The existing fstat() function is not suitable for this purpose. We realize that implementations
may wish to provide other attributes of typed memory objects (for example, alignment
requirements, page size, and so on). The fstat() function returns a structure which is not
extensible and, furthermore, contains substantial information that is inappropriate for typed
memory objects.

FUTURE DIRECTIONS
None.

SEE ALSO
fstat(), mmap(), posix_typed_mem_open()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1625

54225

54226

54227

54228

54229

54230

54231

54232

54233

54234

54235

54236

54237

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_typed_mem_open() System Interfaces

NAME
posix_typed_mem_open — open a typed memory object (ADVANCED REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_typed_mem_open(const char *name, int oflag, int tflag);

DESCRIPTION
The posix_typed_mem_open() function shall establish a connection between the typed memory
object specified by the string pointed to by name and a file descriptor. It shall create an open file
description that refers to the typed memory object and a file descriptor that refers to that open
file description. The file descriptor shall be allocated as described in Section 2.6 (on page 525)
and can be used by other functions to refer to that typed memory object. It is unspecified
whether the name appears in the file system and is visible to other functions that take
pathnames as arguments. The name argument conforms to the construction rules for a pathname,
except that the interpretation of <slash> characters other than the leading <slash> character in
name is implementation-defined, and that the length limits for the name argument are
implementation-defined and need not be the same as the pathname limits {PATH_MAX} and
{NAME_MAX}. If name begins with the <slash> character, then processes calling
posix_typed_mem_open() with the same value of name shall refer to the same typed memory
object. If name does not begin with the <slash> character, the effect is implementation-defined.

Each typed memory object supported in a system shall be identified by a name which specifies
not only its associated typed memory pool, but also the path or port by which it is accessed. That
is, the same typed memory pool accessed via several different ports shall have several different
corresponding names. The binding between names and typed memory objects is established in
an implementation-defined manner. Unlike shared memory objects, there is no way within
POSIX.1-2024 for a program to create a typed memory object.

The value of tflag shall determine how the typed memory object behaves when subsequently
mapped by calls to mmap(). At most, one of the following flags defined in <sys/mman.h> may
be specified:

POSIX_TYPED_MEM_ALLOCATE
Allocate on mmap().

POSIX_TYPED_MEM_ALLOCATE_CONTIG
Allocate contiguously on mmap().

POSIX_TYPED_MEM_MAP_ALLOCATABLE
Map on mmap(), without affecting allocatability.

If tflag has the flag POSIX_TYPED_MEM_ALLOCATE specified, any subsequent call to mmap()
using the returned file descriptor shall result in allocation and mapping of typed memory from
the specified typed memory pool. The allocated memory may be a contiguous previously
unallocated area of the typed memory pool or several non-contiguous previously unallocated
areas (mapped to a contiguous portion of the process address space). If tflag has the flag
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the
returned file descriptor shall result in allocation and mapping of a single contiguous previously
unallocated area of the typed memory pool (also mapped to a contiguous portion of the process
address space). If tflag has none of the flags POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the
returned file descriptor shall map an application-chosen area from the specified typed memory
pool such that this mapped area becomes unavailable for allocation until unmapped by all
processes. If tflag has the flag POSIX_TYPED_MEM_MAP_ALLOCATABLE specified, any

1626 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54238

54239

54240

54241

54242

54243

54244

54245

54246

54247

54248

54249

54250

54251

54252

54253

54254

54255

54256

54257

54258

54259

54260

54261

54262

54263

54264

54265

54266

54267

54268

54269

54270

54271

54272

54273

54274

54275

54276

54277

54278

54279

54280

54281

54282

54283

54284

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces posix_typed_mem_open()

subsequent call to mmap() using the returned file descriptor shall map an application-chosen
area from the specified typed memory pool without an effect on the availability of that area for
allocation; that is, mapping such an object leaves each byte of the mapped area unallocated if it
was unallocated prior to the mapping or allocated if it was allocated prior to the mapping.
Appropriate privileges to specify the POSIX_TYPED_MEM_MAP_ALLOCATABLE flag are
implementation-defined.

If successful, posix_typed_mem_open() shall return a file descriptor for the typed memory object.
The open file description is new, and therefore the file descriptor shall not share it with any other
processes. It is unspecified whether the file offset is set. The FD_CLOEXEC file descriptor flag
associated with the new file descriptor shall be cleared unless oflag includes O_CLOEXEC. The
FD_CLOFORK file descriptor flag associated with the new file descriptor shall be cleared unless
oflag includes O_CLOFORK.

The behavior of msync(), ftruncate(), and all file operations other than mmap(),
posix_mem_offset(), posix_typed_mem_get_info(), fstat(), dup(), dup2(), dup3(), and close(), is
unspecified when passed a file descriptor connected to a typed memory object by this function.

The file status flags of the open file description shall be set according to the value of oflag.
Applications shall specify exactly one of the three access mode values described below as the
value of oflag.

O_RDONLY Open for read access only.

O_WRONLY Open for write access only.

O_RDWR Open for read or write access.

Additionally, the value of oflag can include the following flags:

O_CLOEXEC Set the FD_CLOEXEC file descriptor flag.

O_CLOFORK Set the FD_CLOFORK file descriptor flag.

RETURN VALUE
Upon successful completion, the posix_typed_mem_open() function shall return a non-negative
integer representing the file descriptor. Otherwise, it shall return −1 and set errno to indicate the
error.

ERRORS
The posix_typed_mem_open() function shall fail if:

[EACCES] The typed memory object exists and the permissions specified by oflag are
denied.

[EINTR] The posix_typed_mem_open() operation was interrupted by a signal.

[EINVAL] The flags specified in tflag are invalid (more than one of
POSIX_TYPED_MEM_ALLOCATE,
POSIX_TYPED_MEM_ALLOCATE_CONTIG, or
POSIX_TYPED_MEM_MAP_ALLOCATABLE is specified).

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] Too many file descriptors are currently open in the system.

[ENOENT] The named typed memory object does not exist.

[EPERM] The caller lacks appropriate privileges to specify the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag in the tflag argument.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1627

54285

54286

54287

54288

54289

54290

54291

54292

54293

54294

54295

54296

54297

54298

54299

54300

54301

54302

54303

54304

54305

54306

54307

54308

54309

54310

54311

54312

54313

54314

54315

54316

54317

54318

54319

54320

54321

54322

54323

54324

54325

54326

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

posix_typed_mem_open() System Interfaces

The posix_typed_mem_open() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The use of the O_CLOEXEC and O_CLOFORK flags to posix_typed_mem_open() is necessary to
avoid leaking typed memory file descriptors to child processes, since fcntl() has unspecified
results on typed memory objects and therefore cannot be used to set FD_CLOEXEC or
FD_CLOFORK after the file descriptor has been opened. The exec family of functions already
unmaps all memory associated with a typed memory object, but does not close the file
descriptor unless FD_CLOEXEC is also set.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 525), close(), dup(), exec , fcntl(), fstat(), ftruncate(), mmap(), msync(),
posix_mem_offset(), posix_typed_mem_get_info(), umask()

XBD <fcntl.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0442 [119,428] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0256 [835], XSH/TC2-2008/0257 [835],
and XSH/TC2-2008/0258 [835] are applied.

Issue 8
Austin Group Defects 411 and 1318 are applied, adding O_CLOEXEC, O_CLOFORK, and
dup3().

Austin Group Defect 593 is applied, removing a reference to <fcntl.h> from the DESCRIPTION
section.

1628 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54327

54328

54329

54330

54331

54332

54333

54334

54335

54336

54337

54338

54339

54340

54341

54342

54343

54344

54345

54346

54347

54348

54349

54350

54351

54352

54353

54354

54355

54356

54357

54358

54359

54360

54361

54362

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pow()

NAME
pow, powf, powl — power function

SYNOPSIS
#include <math.h>

double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the value of x raised to the power y, xy. If x is negative, the
application shall ensure that y is an integer value.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of x raised to the power y.

MX For finite values of x < 0, and finite non-integer values of y, a domain error shall occur and
either a NaN (if representable), or an implementation-defined value shall be returned.

If the correct value would cause overflow, a range error shall occur and pow(), powf(), and
powl() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively, with the
same sign as the correct value of the function.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and pow(), powf(), and powl() shall return 0.0, or (if IEC 60559 Floating-Point is not supported)

an implementation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and
LDBL_MIN, respectively.

CX For y < 0, if x is zero, a pole error may occur and pow(), powf(), and powl() shall return
MX ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively. On systems that support the

IEC 60559 Floating-Point option, if x is ±0:

• If y is an odd integer, a pole error shall occur and pow(), powf(), and powl() shall return
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively.

• If y is finite and is not an odd integer, a pole error shall occur and pow(), powf(), and powl()
shall return HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

• If y is −Inf, a pole error may occur and pow(), powf(), and powl() shall return HUGE_VAL,
HUGE_VALF, and HUGE_VALL, respectively.

MX If x or y is a NaN, a NaN shall be returned (unless specified elsewhere in this description).

For any value of y (including NaN), if x is +1, 1.0 shall be returned.

For any value of x (including NaN), if y is ±0, 1.0 shall be returned.

For any odd integer value of y > 0, if x is ±0, ±0 shall be returned.

For y > 0 and not an odd integer, if x is ±0, +0 shall be returned.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1629

54363

54364

54365

54366

54367

54368

54369

54370

54371

54372

54373

54374

54375

54376

54377

54378

54379

54380

54381

54382

54383

54384

54385

54386

54387

54388

54389

54390

54391

54392

54393

54394

54395

54396

54397

54398

54399

54400

54401

54402

54403

54404

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pow() System Interfaces

If x is −1, and y is ±Inf, 1.0 shall be returned.

For |x| < 1, if y is −Inf, +Inf shall be returned.

For |x| > 1, if y is −Inf, +0 shall be returned.

For |x| < 1, if y is +Inf, +0 shall be returned.

For |x| > 1, if y is +Inf, +Inf shall be returned.

For y an odd integer < 0, if x is −Inf, −0 shall be returned.

For y < 0 and not an odd integer, if x is −Inf, +0 shall be returned.

For y an odd integer > 0, if x is −Inf, −Inf shall be returned.

For y > 0 and not an odd integer, if x is −Inf, +Inf shall be returned.

For y < 0, if x is +Inf, +0 shall be returned.

For y > 0, if x is +Inf, +Inf shall be returned.

MXX If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Domain Error The value of x is negative and y is a finite non-integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Pole Error The value of x is zero and y is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Pole Error The value of x is zero and y is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow

1630 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54405

54406

54407

54408

54409

54410

54411

54412

54413

54414

54415

54416

54417

54418

54419

54420

54421

54422

54423

54424

54425

54426

54427

54428

54429

54430

54431

54432

54433

54434

54435

54436

54437

54438

54439

54440

54441

54442

54443

54444

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pow()

floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The powf() and powl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/42 is applied, correcting the third
paragraph in the RETURN VALUE section.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #51 (SD5-XSH-ERN-81) is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0443 [68], XSH/TC1-2008/0444 [148],
and XSH/TC1-2008/0445 [68] are applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1631

54445

54446

54447

54448

54449

54450

54451

54452

54453

54454

54455

54456

54457

54458

54459

54460

54461

54462

54463

54464

54465

54466

54467

54468

54469

54470

54471

54472

54473

54474

54475

54476

54477

54478

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ppoll() System Interfaces

NAME
ppoll — input/output multiplexing

SYNOPSIS
#include <poll.h>

int ppoll(struct pollfd fds[], nfds_t nfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

DESCRIPTION
Refer to poll().

1632 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54479

54480

54481

54482

54483

54484

54485

54486

54487

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pread()

NAME
pread — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

DESCRIPTION
Refer to read().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1633

54488

54489

54490

54491

54492

54493

54494

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

printf() System Interfaces

NAME
printf — print formatted output

SYNOPSIS
#include <stdio.h>

int printf(const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

1634 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54495

54496

54497

54498

54499

54500

54501

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pselect()

NAME
pselect, select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

int pselect(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

int select(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, const fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

DESCRIPTION
The pselect() function shall examine the file descriptor sets whose addresses are passed in the
readfds, writefds, and errorfds parameters to see whether some of their descriptors are ready for
reading, are ready for writing, or have an exceptional condition pending, respectively.

The select() function shall be equivalent to the pselect() function, except as follows:

• For the select() function, the timeout period is given in seconds and microseconds in an
argument of type struct timeval, whereas for the pselect() function the timeout period is
given in seconds and nanoseconds in an argument of type struct timespec.

• The select() function has no sigmask argument; it shall behave as pselect() does when
sigmask is a null pointer.

• Upon successful completion, the select() function may modify the object pointed to by the
timeout argument.

The pselect() and select() functions shall support regular files, terminal and pseudo-terminal
devices, FIFOs, pipes, and sockets. The behavior of pselect() and select() on file descriptors that
refer to other types of file is unspecified.

The nfds argument specifies the range of descriptors to be tested. The first nfds descriptors shall
be checked in each set; that is, the descriptors from zero through nfds−1 in the descriptor sets
shall be examined.

If the readfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to read, and on output indicates
which file descriptors are ready to read.

If the writefds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to write, and on output indicates
which file descriptors are ready to write.

If the errorfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for error conditions pending, and on output indicates
which file descriptors have error conditions pending.

Upon successful completion, the pselect() or select() function shall modify the objects pointed to
by the readfds, writefds, and errorfds arguments to indicate which file descriptors are ready for
reading, ready for writing, or have an error condition pending, respectively, and shall return the
total number of ready descriptors in all the output sets. For each file descriptor less than nfds, the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1635

54502

54503

54504

54505

54506

54507

54508

54509

54510

54511

54512

54513

54514

54515

54516

54517

54518

54519

54520

54521

54522

54523

54524

54525

54526

54527

54528

54529

54530

54531

54532

54533

54534

54535

54536

54537

54538

54539

54540

54541

54542

54543

54544

54545

54546

54547

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pselect() System Interfaces

corresponding bit shall be set upon successful completion if it was set on input and the
associated condition is true for that file descriptor.

If none of the selected descriptors are ready for the requested operation, the pselect() or select()
function shall block until at least one of the requested operations becomes ready, until the
timeout occurs, or until interrupted by a signal. The timeout parameter controls how long the
pselect() or select() function shall take before timing out. If the timeout parameter is not a null
pointer, it specifies a maximum interval to wait for the selection to complete. If the specified
time interval expires without any requested operation becoming ready, the function shall return.
If the timeout parameter is a null pointer, then the call to pselect() or select() shall block
indefinitely until at least one descriptor meets the specified criteria. To effect a poll, the timeout
parameter should not be a null pointer, and should point to a zero-valued timespec structure.

The use of a timeout does not affect any pending timers set up by alarm().

Implementations may place limitations on the maximum timeout interval supported. All
implementations shall support a maximum timeout interval of at least 31 days. If the timeout
argument specifies a timeout interval greater than the implementation-defined maximum value,
the maximum value shall be used as the actual timeout value. Implementations may also place
limitations on the granularity of timeout intervals. If the requested timeout interval requires a
finer granularity than the implementation supports, the actual timeout interval shall be rounded
up to the next supported value.

If sigmask is not a null pointer, then the pselect() function shall replace the signal mask of the
caller by the set of signals pointed to by sigmask before examining the descriptors, and shall
restore the signal mask of the calling thread before returning. If a signal is unmasked as a result
of the signal mask being altered by pselect(), and a signal-catching function is called for that
signal during the execution of the pselect() function, and SA_RESTART is clear for the
interrupting signal, then

• If none of the selected file descriptors are ready, pselect() shall immediately fail with the
[EINTR] error after the signal-catching function returns.

• If one or more of the selected file descriptors are ready, it is unspecified whether pselect()
behaves the same as if none of the descriptors were ready (failing with [EINTR] as above)
or behaves the same as if it was not interrupted (returning the total number of ready
descriptors).

A descriptor shall be considered ready for reading when a call to an input function with
O_NONBLOCK clear would not block, whether or not the function would transfer data
successfully. (The function might return data, an end-of-file indication, or an error other than
one indicating that it is blocked, and in each of these cases the descriptor shall be considered
ready for reading.)

A descriptor shall be considered ready for writing when a call to an output function with
O_NONBLOCK clear would not block, whether or not the function would transfer data
successfully.

If a socket has a pending error, it shall be considered to have an exceptional condition pending.
Otherwise, what constitutes an exceptional condition is file type-specific. For a file descriptor for
use with a socket, it is protocol-specific except as noted below. For other file types it is
implementation-defined. If the operation is meaningless for a particular file type, pselect() or
select() shall indicate that the descriptor is ready for read or write operations, and shall indicate
that the descriptor has no exceptional condition pending.

If a descriptor refers to a socket, the implied input function is the recvmsg() function with
parameters requesting normal and ancillary data, such that the presence of either type shall

1636 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54548

54549

54550

54551

54552

54553

54554

54555

54556

54557

54558

54559

54560

54561

54562

54563

54564

54565

54566

54567

54568

54569

54570

54571

54572

54573

54574

54575

54576

54577

54578

54579

54580

54581

54582

54583

54584

54585

54586

54587

54588

54589

54590

54591

54592

54593

54594

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pselect()

cause the socket to be marked as readable. The presence of out-of-band data shall be checked if
the socket option SO_OOBINLINE has been enabled, as out-of-band data is enqueued with
normal data. If the socket is currently listening, then it shall be marked as readable if an
incoming connection request has been received, and a call to the accept() or accept4() function
shall complete without blocking.

If a descriptor refers to a socket, the implied output function is the sendmsg() function supplying
an amount of normal data equal to the current value of the SO_SNDLOWAT option for the
socket. If a non-blocking call to the connect() function has been made for a socket, and the
connection attempt has either succeeded or failed leaving a pending error, the socket shall be
marked as writable.

A socket shall be considered to have an exceptional condition pending if a receive operation
with O_NONBLOCK clear for the open file description and with the MSG_OOB flag set would
return out-of-band data without blocking. (It is protocol-specific whether the MSG_OOB flag
would be used to read out-of-band data.) A socket shall also be considered to have an
exceptional condition pending if an out-of-band data mark is present in the receive queue. Other
circumstances under which a socket may be considered to have an exceptional condition
pending are protocol-specific and implementation-defined.

If the readfds, writefds, and errorfds arguments are all null pointers and the timeout argument is
not a null pointer, the pselect() or select() function shall block for the time specified, or until
interrupted by a signal. If the readfds, writefds, and errorfds arguments are all null pointers and
the timeout argument is a null pointer, the pselect() or select() function shall block until
interrupted by a signal.

File descriptors associated with regular files shall always select true for ready to read, ready to
write, and error conditions.

On failure, the objects pointed to by the readfds, writefds, and errorfds arguments shall not be
modified. If the timeout interval expires without the specified condition being true for any of the
specified file descriptors, the objects pointed to by the readfds, writefds, and errorfds arguments
shall have all bits set to 0.

File descriptor masks of type fd_set can be initialized and tested with FD_CLR(), FD_ISSET(),
FD_SET(), and FD_ZERO(). It is unspecified whether each of these is a macro or a function. If a
macro definition is suppressed in order to access an actual function, or a program defines an
external identifier with any of these names, the behavior is undefined.

FD_CLR(fd, fdsetp) shall remove the file descriptor fd from the set pointed to by fdsetp. If fd is not
a member of this set, there shall be no effect on the set, and this shall not be treated as an error.

FD_ISSET(fd, fdsetp) shall evaluate to non-zero if the file descriptor fd is a member of the set
pointed to by fdsetp, and shall evaluate to zero otherwise.

FD_SET(fd, fdsetp) shall add the file descriptor fd to the set pointed to by fdsetp. If the file
descriptor fd is already in this set, there shall be no effect on the set, and this shall not be treated
as an error.

FD_ZERO(fdsetp) shall initialize the descriptor set pointed to by fdsetp to the null set. No error is
returned if the set is not empty at the time FD_ZERO() is invoked.

The behavior of these macros is undefined if the fd argument is less than 0 or greater than or
equal to FD_SETSIZE, or if fd is not a valid file descriptor, or if any of the arguments are
expressions with side-effects.

If a thread gets canceled during a pselect() call, the signal mask in effect when executing the
registered cleanup functions is either the original signal mask or the signal mask installed as part

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1637

54595

54596

54597

54598

54599

54600

54601

54602

54603

54604

54605

54606

54607

54608

54609

54610

54611

54612

54613

54614

54615

54616

54617

54618

54619

54620

54621

54622

54623

54624

54625

54626

54627

54628

54629

54630

54631

54632

54633

54634

54635

54636

54637

54638

54639

54640

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pselect() System Interfaces

of the pselect() call.

RETURN VALUE
Upon successful completion, the pselect() and select() functions shall return the total number of
bits set in the bit masks. Otherwise, −1 shall be returned, and errno shall be set to indicate the
error.

FD_CLR(), FD_SET(), and FD_ZERO() do not return a value. FD_ISSET() shall return a non-
zero value if the bit for the file descriptor fd is set in the file descriptor set pointed to by fdset, and
0 otherwise.

ERRORS
Under the following conditions, pselect() and select() shall fail and set errno to:

[EBADF] One or more of the file descriptor sets specified a file descriptor that is not a
valid open file descriptor.

[EINTR] The function was interrupted by a signal.

If SA_RESTART has been set for the interrupting signal, it is implementation-
defined whether the function restarts or returns with [EINTR].

[EINVAL] An invalid timeout interval was specified.

[EINVAL] The nfds argument is less than 0 or greater than FD_SETSIZE.

EXAMPLES
None.

APPLICATION USAGE
The use of select() and pselect() requires that the application construct the set of file descriptors
to work on each time through a polling loop, and is inherently limited from operating on file
descriptors larger than FD_SETSIZE. Also, the amount of work to perform scales as nfds
increases, even if the number of file descriptors selected within the larger set remains the same.
Thus, applications may wish to consider using poll() and ppoll() instead, for better scaling.

When a pselect() or select() call indicates a file descriptor is ready for reading, this means that if
an attempt to read data had been made at the time that the status of the file descriptor was
checked, it would have returned at least one byte of data, an end-of-file indication, or an error,
without blocking (even if O_NONBLOCK is clear). When a pselect() or select() call indicates that
a file descriptor is ready for writing, this means that if an attempt to write one byte of data had
been made at the time that the status of the file descriptor was checked, it would have written
that byte or returned an error, without blocking. However, if an attempt to write more than one
byte had been made, it might have blocked (if O_NONBLOCK is clear). In both cases, by the
time the call returns and a subsequent I/O operation is attempted, the state of the file descriptor
might have changed (for example, because another thread read or wrote some data) and, if
O_NONBLOCK is clear, there is no guarantee that the operation will not block (unless it would
not block for some other reason, such as setting MIN=0 and TIME=0 for a terminal in non-
canonical mode). Therefore it is recommended that applications always set O_NONBLOCK on
file descriptors whose readiness for I/O they query with pselect() or select().

RATIONALE
In earlier versions of the Single UNIX Specification, the select() function was defined in the
<sys/time.h> header. This is now changed to <sys/select.h>. The rationale for this change was
as follows: the introduction of the pselect() function included the <sys/select.h> header and the
<sys/select.h> header defines all the related definitions for the pselect() and select() functions.
Backwards-compatibility to existing XSI implementations is handled by allowing <sys/time.h>
to include <sys/select.h>.

1638 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54641

54642

54643

54644

54645

54646

54647

54648

54649

54650

54651

54652

54653

54654

54655

54656

54657

54658

54659

54660

54661

54662

54663

54664

54665

54666

54667

54668

54669

54670

54671

54672

54673

54674

54675

54676

54677

54678

54679

54680

54681

54682

54683

54684

54685

54686

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pselect()

Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers
can install an additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_pselect(int nfds, fd_set *readfds, fd_set *writefds,
fd_set errorfds, const struct timespec *timeout,
const sigset_t *sigmask)

{
sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);
pthread_cleanup_push(cleanup, &oldmask);
result = pselect(nfds, readfds, writefds, errorfds, timeout, sigmask);
pthread_cleanup_pop(0);
return result;

}

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), alarm(), connect(), fcntl(), poll(), read(), recvmsg(), sendmsg(), write()

XBD <sys/select.h>, <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the ERRORS section, the text has been changed to indicate that [EINVAL] is returned when
nfds is less than 0 or greater than FD_SETSIZE. It previously stated less than 0, or greater than or
equal to FD_SETSIZE.

Text about timeout is moved from the APPLICATION USAGE section to the DESCRIPTION.

Issue 6
The Open Group Corrigendum U026/6 is applied, changing the occurrences of readfs and writefs
in the select() DESCRIPTION to be readfds and writefds.

Text referring to sockets is added to the DESCRIPTION.

The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• These functions are now mandatory.

The pselect() function is added for alignment with IEEE Std 1003.1g-2000 and additional detail
related to sockets semantics is added to the DESCRIPTION.

The select() function now requires inclusion of <sys/select.h>.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1639

54687

54688

54689

54690

54691

54692

54693

54694

54695

54696

54697

54698

54699

54700

54701

54702

54703

54704

54705

54706

54707

54708

54709

54710

54711

54712

54713

54714

54715

54716

54717

54718

54719

54720

54721

54722

54723

54724

54725

54726

54727

54728

54729

54730

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pselect() System Interfaces

The restrict keyword is added to the select() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/70 is applied, updating the
DESCRIPTION to reference the signal mask in terms of the calling thread rather than the
process.

Issue 7
SD5-XSH-ERN-122 is applied, adding text to the DESCRIPTION for when a thread is canceled
during a call to pselect(), and adding example code to the RATIONALE.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0446 [372] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0259 [680] is applied.

Issue 8
Austin Group Defect 220 is applied, adding const to the second parameter of FD_ISSET().

Austin Group Defect 411 is applied, adding accept4().

Austin Group Defect 1186 is applied, clarifying the behavior when the pselect() function is
interrupted by a signal.

Austin Group Defect 1263 is applied, changing the APPLICATION USAGE section.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1448 is applied, changing the APPLICATION USAGE section.

1640 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54731

54732

54733

54734

54735

54736

54737

54738

54739

54740

54741

54742

54743

54744

54745

54746

54747

54748

54749

54750

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces psiginfo()

NAME
psiginfo, psignal — write signal information to standard error

SYNOPSIS
CX #include <signal.h>

void psiginfo(const siginfo_t *pinfo, const char *message);
void psignal(int signum, const char *message);

DESCRIPTION
The psiginfo() and psignal() functions shall write a language-dependent message associated with
a signal number to the standard error stream as follows:

• First, if message is not a null pointer and is not the empty string, the string pointed to by the
message argument shall be written, followed by a <colon> and a <space>.

• Then the signal description string associated with signum or with the signal indicated by
pinfo shall be written, followed by a <newline>.

For psiginfo(), the application shall ensure that the argument pinfo references a valid siginfo_t
structure. For psignal(), if signum is not a valid signal number, the behavior is implementation-
defined.

The psiginfo() and psignal() functions shall not change the orientation of the standard error
stream.

The psiginfo() and psignal() functions shall mark for update the last data modification and last
file status change timestamps of the file associated with the standard error stream at some time
between their successful completion and exit(), abort(), or the completion of fflush() or fclose()
on stderr.

The psiginfo() and psignal() functions shall not change the setting of errno if successful.

On error, the psiginfo() and psignal() functions shall set the error indicator for the stream to
which stderr points, and shall set errno to indicate the error.

Since no value is returned, an application wishing to check for error situations should set errno
to 0, then call psiginfo() or psignal(), then check errno.

RETURN VALUE
These functions shall not return a value.

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
As an alternative to setting errno to zero before the call and checking if it is non-zero afterwards,
applications can use ferror() to detect whether psiginfo() or psignal() encountered an error.

An application wishing to use this method to check for error situations should call
clearerr(stderr) before calling psiginfo() or psignal(), then if ferror(stderr) returns non-zero, the
value of errno indicates which error occurred.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1641

54751

54752

54753

54754

54755

54756

54757

54758

54759

54760

54761

54762

54763

54764

54765

54766

54767

54768

54769

54770

54771

54772

54773

54774

54775

54776

54777

54778

54779

54780

54781

54782

54783

54784

54785

54786

54787

54788

54789

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

psiginfo() System Interfaces

RATIONALE
System V historically has psignal() and psiginfo() in <siginfo.h>. However, the <siginfo.h>
header is not specified in the Base Definitions volume of POSIX.1-2024, and the type siginfo_t is
defined in <signal.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
fputc(), perror(), strsignal()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0447 [399,428], XSH/TC1-2008/0448
[399], and XSH/TC1-2008/0449 [399,401] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0260 [629] is applied.

1642 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54790

54791

54792

54793

54794

54795

54796

54797

54798

54799

54800

54801

54802

54803

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_atfork()

NAME
pthread_atfork — register fork handlers

SYNOPSIS
OB #include <pthread.h>

int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

DESCRIPTION
The pthread_atfork() function shall declare fork handlers to be called before and after fork(), in
the context of the thread that called fork(). The prepare fork handler shall be called before fork()
processing commences. The parent fork handle shall be called after fork() processing completes
in the parent process. The child fork handler shall be called after fork() processing completes in
the child process. If no handling is desired at one or more of these three points, the
corresponding fork handler address(es) may be set to NULL.

If a fork() call in a multi-threaded process leads to a child fork handler calling any function that is
not async-signal-safe, the behavior is undefined.

The order of calls to pthread_atfork() is significant. The parent and child fork handlers shall be
called in the order in which they were established by calls to pthread_atfork(). The prepare fork
handlers shall be called in the opposite order.

RETURN VALUE
Upon successful completion, pthread_atfork() shall return a value of zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_atfork() function shall fail if:

[ENOMEM] Insufficient table space exists to record the fork handler addresses.

The pthread_atfork() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The original usage pattern envisaged for pthread_atfork() was for the prepare fork handler to lock
mutexes and other locks, and for the parent and child handlers to unlock them. However, since all
of the relevant unlocking functions, except sem_post(), are not async-signal-safe, this usage
results in undefined behavior in the child process unless the only such unlocking function it calls
is sem_post().

RATIONALE
There are at least two serious problems with the semantics of fork() in a multi-threaded
program. One problem has to do with state (for example, memory) covered by mutexes.
Consider the case where one thread has a mutex locked and the state covered by that mutex is
inconsistent while another thread calls fork(). In the child, the mutex is in the locked state
(locked by a nonexistent thread and thus can never be unlocked). Having the child simply
reinitialize the mutex is unsatisfactory since this approach does not resolve the question about
how to correct or otherwise deal with the inconsistent state in the child.

It is suggested that programs that use fork() call an exec function very soon afterwards in the
child process, thus resetting all states. In the meantime, only a short list of async-signal-safe
library routines are promised to be available.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1643

54804

54805

54806

54807

54808

54809

54810

54811

54812

54813

54814

54815

54816

54817

54818

54819

54820

54821

54822

54823

54824

54825

54826

54827

54828

54829

54830

54831

54832

54833

54834

54835

54836

54837

54838

54839

54840

54841

54842

54843

54844

54845

54846

54847

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_atfork() System Interfaces

Unfortunately, this solution does not address the needs of multi-threaded libraries. Application
programs may not be aware that a multi-threaded library is in use, and they feel free to call any
number of library routines between the fork() and exec calls, just as they always have. Indeed,
they may be extant single-threaded programs and cannot, therefore, be expected to obey new
restrictions imposed by the threads library.

On the other hand, the multi-threaded library needs a way to protect its internal state during
fork() in case it is re-entered later in the child process. The problem arises especially in multi-
threaded I/O libraries, which are almost sure to be invoked between the fork() and exec calls to
effect I/O redirection. The solution may require locking mutex variables during fork(), or it may
entail simply resetting the state in the child after the fork() processing completes.

The pthread_atfork() function was intended to provide multi-threaded libraries with a means to
protect themselves from innocent application programs that call fork(), and to provide multi-
threaded application programs with a standard mechanism for protecting themselves from
fork() calls in a library routine or the application itself.

The expected usage was that the prepare handler would acquire all mutex locks and the other
two fork handlers would release them.

For example, an application could have supplied a prepare routine that acquires the necessary
mutexes the library maintains and supplied child and parent routines that release those
mutexes, thus ensuring that the child would have got a consistent snapshot of the state of the
library (and that no mutexes would have been left stranded). This is good in theory, but in
reality not practical. Each and every mutex and lock in the process must be located and locked.
Every component of a program including third-party components must participate and they
must agree who is responsible for which mutex or lock. This is especially problematic for
mutexes and locks in dynamically allocated memory. All mutexes and locks internal to the
implementation must be locked, too. This possibly delays the thread calling fork() for a long
time or even indefinitely since uses of these synchronization objects may not be under control of
the application. A final problem to mention here is the problem of locking streams. At least the
streams under control of the system (like stdin, stdout, stderr) must be protected by locking the
stream with flockfile(). But the application itself could have done that, possibly in the same
thread calling fork(). In this case, the process will deadlock.

Alternatively, some libraries might have been able to supply just a child routine that reinitializes
the mutexes in the library and all associated states to some known value (for example, what it
was when the image was originally executed). This approach is not possible, though, because
implementations are allowed to fail *_init() and *_destroy() calls for mutexes and locks if the
mutex or lock is still locked. In this case, the child routine is not able to reinitialize the mutexes
and locks.

When fork() is called, only the calling thread is duplicated in the child process. Synchronization
variables remain in the same state in the child as they were in the parent at the time fork() was
called. Thus, for example, mutex locks may be held by threads that no longer exist in the child
process, and any associated states may be inconsistent. The intention was that the parent process
could have avoided this by explicit code that acquires and releases locks critical to the child via
pthread_atfork(). In addition, any critical threads would have needed to be recreated and
reinitialized to the proper state in the child (also via pthread_atfork()).

A higher-level package may acquire locks on its own data structures before invoking lower-level
packages. Under this scenario, the order specified for fork handler calls allows a simple rule of
initialization for avoiding package deadlock: a package initializes all packages on which it
depends before it calls the pthread_atfork() function for itself.

As explained, there is no suitable solution for functionality which requires non-atomic

1644 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54848

54849

54850

54851

54852

54853

54854

54855

54856

54857

54858

54859

54860

54861

54862

54863

54864

54865

54866

54867

54868

54869

54870

54871

54872

54873

54874

54875

54876

54877

54878

54879

54880

54881

54882

54883

54884

54885

54886

54887

54888

54889

54890

54891

54892

54893

54894

54895

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_atfork()

operations to be protected through mutexes and locks. This is why the POSIX.1 standard since
the 1996 release requires that the child process after fork() in a multi-threaded process only calls
async-signal-safe interfaces.

An additional problem arises when pthread_atfork() is called to register a function in a library
that was loaded using dlopen(). If the library is unloaded using dlclose(), and the
implementation of dlclose() does not unregister the function, then when fork() tries to call it the
result will be undefined behavior. Some implementations of dlclose() do unregister
pthread_atfork() handlers, but this cannot be relied upon by portable applications. The standard
provides no portable method for unregistering a function installed as a handler via
pthread_atfork().

FUTURE DIRECTIONS
The pthread_atfork() function may be removed in a future version of this standard.

SEE ALSO
atexit(), exec , fork()

XBD <pthread.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 5. Derived from the POSIX Threads Extension.

IEEE PASC Interpretation 1003.1c #4 is applied.

Issue 6
The pthread_atfork() function is marked as part of the Threads option.

The <pthread.h> header is added to the SYNOPSIS.

Issue 7
The pthread_atfork() function is moved from the Threads option to the Base.

SD5-XSH-ERN-145 is applied, updating the RATIONALE.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0261 [858] is applied.

Issue 8
Austin Group Defect 851 is applied, marking pthread_atfork() as obsolescent.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1645

54896

54897

54898

54899

54900

54901

54902

54903

54904

54905

54906

54907

54908

54909

54910

54911

54912

54913

54914

54915

54916

54917

54918

54919

54920

54921

54922

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_destroy() System Interfaces

NAME
pthread_attr_destroy, pthread_attr_init — destroy and initialize the thread attributes object

SYNOPSIS
#include <pthread.h>

int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_init(pthread_attr_t *attr);

DESCRIPTION
The pthread_attr_destroy() function shall destroy a thread attributes object. An implementation
may cause pthread_attr_destroy() to set attr to an implementation-defined invalid value. A
destroyed attr attributes object can be reinitialized using pthread_attr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

The pthread_attr_init() function shall initialize a thread attributes object attr with the default
value for all of the individual attributes used by a given implementation.

The resulting attributes object (possibly modified by setting individual attribute values) when
used by pthread_create() defines the attributes of the thread created. A single attributes object can
be used in multiple simultaneous calls to pthread_create(). Results are undefined if
pthread_attr_init() is called specifying an already initialized attr attributes object.

The behavior is undefined if the value specified by the attr argument to pthread_attr_destroy()
does not refer to an initialized thread attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_destroy() and pthread_attr_init() shall return a value of
0; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the thread attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to
support probable future standardization in these areas without requiring that the function itself
be changed.

Attributes objects provide clean isolation of the configurable aspects of threads. For example,
``stack size’’ is an important attribute of a thread, but it cannot be expressed portably. When
porting a threaded program, stack sizes often need to be adjusted. The use of attributes objects
can help by allowing the changes to be isolated in a single place, rather than being spread across
every instance of thread creation.

Attributes objects can be used to set up ``classes’ of threads with similar attributes; for example,
``threads with large stacks and high priority’’ or ``threads with minimal stacks’’. These classes
can be defined in a single place and then referenced wherever threads need to be created.
Changes to ``class’’ decisions become straightforward, and detailed analysis of each
pthread_create() call is not required.

1646 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54923

54924

54925

54926

54927

54928

54929

54930

54931

54932

54933

54934

54935

54936

54937

54938

54939

54940

54941

54942

54943

54944

54945

54946

54947

54948

54949

54950

54951

54952

54953

54954

54955

54956

54957

54958

54959

54960

54961

54962

54963

54964

54965

54966

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_destroy()

The attributes objects are defined as opaque types as an aid to extensibility. If these objects had
been specified as structures, adding new attributes would force recompilation of all multi-
threaded programs when the attributes objects are extended; this might not be possible if
different program components were supplied by different vendors.

Additionally, opaque attributes objects present opportunities for improving performance.
Argument validity can be checked once when attributes are set, rather than each time a thread is
created. Implementations often need to cache kernel objects that are expensive to create.
Opaque attributes objects provide an efficient mechanism to detect when cached objects become
invalid due to attribute changes.

Since assignment is not necessarily defined on a given opaque type, implementation-defined
default values cannot be defined in a portable way. The solution to this problem is to allow
attributes objects to be initialized dynamically by attributes object initialization functions, so that
default values can be supplied automatically by the implementation.

The following proposal was provided as a suggested alternative to the supplied attributes:

1. Maintain the style of passing a parameter formed by the bitwise-inclusive OR of flags to
the initialization routines (pthread_create(), pthread_mutex_init(), pthread_cond_init()). The
parameter containing the flags should be an opaque type for extensibility. If no flags are
set in the parameter, then the objects are created with default characteristics. An
implementation may specify implementation-defined flag values and associated
behavior.

2. If further specialization of mutexes and condition variables is necessary, implementations
may specify additional procedures that operate on the pthread_mutex_t and
pthread_cond_t objects (instead of on attributes objects).

The difficulties with this solution are:

1. A bitmask is not opaque if bits have to be set into bitvector attributes objects using
explicitly-coded bitwise-inclusive OR operations. If the set of options exceeds an int,
application programmers need to know the location of each bit. If bits are set or read by
encapsulation (that is, get and set functions), then the bitmask is merely an
implementation of attributes objects as currently defined and should not be exposed to
the programmer.

2. Many attributes are not Boolean or very small integral values. For example, scheduling
policy may be placed in 3-bit or 4-bit, but priority requires 5-bit or more, thereby taking
up at least 8 bits out of a possible 16 bits on machines with 16-bit integers. Because of this,
the bitmask can only reasonably control whether particular attributes are set or not, and it
cannot serve as the repository of the value itself. The value needs to be specified as a
function parameter (which is non-extensible), or by setting a structure field (which is non-
opaque), or by get and set functions (making the bitmask a redundant addition to the
attributes objects).

Stack size is defined as an optional attribute because the very notion of a stack is inherently
machine-dependent. Some implementations may not be able to change the size of the stack, for
example, and others may not need to because stack pages may be discontiguous and can be
allocated and released on demand.

The attribute mechanism has been designed in large measure for extensibility. Future extensions
to the attribute mechanism or to any attributes object defined in this volume of POSIX.1-2024 has
to be done with care so as not to affect binary-compatibility.

Attributes objects, even if allocated by means of dynamic allocation functions such as malloc(),

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1647

54967

54968

54969

54970

54971

54972

54973

54974

54975

54976

54977

54978

54979

54980

54981

54982

54983

54984

54985

54986

54987

54988

54989

54990

54991

54992

54993

54994

54995

54996

54997

54998

54999

55000

55001

55002

55003

55004

55005

55006

55007

55008

55009

55010

55011

55012

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_destroy() System Interfaces

may have their size fixed at compile time. This means, for example, a pthread_create() in an
implementation with extensions to pthread_attr_t cannot look beyond the area that the binary
application assumes is valid. This suggests that implementations should maintain a size field in
the attributes object, as well as possibly version information, if extensions in different directions
(possibly by different vendors) are to be accommodated.

If an implementation detects that the value specified by the attr argument to
pthread_attr_destroy() does not refer to an initialized thread attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the attr argument to pthread_attr_init()
refers to an already initialized thread attributes object, it is recommended that the function
should fail and report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_getstacksize(), pthread_attr_getdetachstate(), pthread_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_destroy() and pthread_attr_init() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1 #107 is applied, noting that the effect of initializing an already
initialized thread attributes object is undefined.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/71 is applied, updating the ERRORS
section to add the optional [EINVAL] error for the pthread_attr_destroy() function, and the
optional [EBUSY] error for the pthread_attr_init() function.

Issue 7
The pthread_attr_destroy() and pthread_attr_init() functions are moved from the Threads option
to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

The [EBUSY] error for an already initialized thread attributes object is removed; this condition
results in undefined behavior.

1648 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55013

55014

55015

55016

55017

55018

55019

55020

55021

55022

55023

55024

55025

55026

55027

55028

55029

55030

55031

55032

55033

55034

55035

55036

55037

55038

55039

55040

55041

55042

55043

55044

55045

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getdetachstate()

NAME
pthread_attr_getdetachstate, pthread_attr_setdetachstate — get and set the detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getdetachstate(const pthread_attr_t *attr,
int *detachstate);

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

DESCRIPTION
The detachstate attribute controls whether the thread is created in a detached state. If the thread
is created detached, then use of the ID of the newly created thread by the pthread_detach() or
pthread_join() function is an error.

The pthread_attr_getdetachstate() and pthread_attr_setdetachstate() functions, respectively, shall get
and set the detachstate attribute in the attr object.

For pthread_attr_getdetachstate(), detachstate shall be set to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

For pthread_attr_setdetachstate(), the application shall set detachstate to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

A value of PTHREAD_CREATE_DETACHED shall cause all threads created with attr to be in
the detached state, whereas using a value of PTHREAD_CREATE_JOINABLE shall cause all
threads created with attr to be in the joinable state. The default value of the detachstate attribute
shall be PTHREAD_CREATE_JOINABLE.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getdetachstate() or pthread_attr_setdetachstate() does not refer to an initialized thread
attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_getdetachstate() and pthread_attr_setdetachstate() shall
return a value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getdetachstate() function stores the value of the detachstate attribute in detachstate
if successful.

ERRORS
The pthread_attr_setdetachstate() function shall fail if:

[EINVAL] The value of detachstate was not valid

These functions shall not return an error code of [EINTR].

EXAMPLES

Retrieving the detachstate Attribute

This example shows how to obtain the detachstate attribute of a thread attribute object.

#include <pthread.h>

pthread_attr_t thread_attr;
int detachstate;
int rc;

/* code initializing thread_attr */
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1649

55046

55047

55048

55049

55050

55051

55052

55053

55054

55055

55056

55057

55058

55059

55060

55061

55062

55063

55064

55065

55066

55067

55068

55069

55070

55071

55072

55073

55074

55075

55076

55077

55078

55079

55080

55081

55082

55083

55084

55085

55086

55087

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getdetachstate() System Interfaces

rc = pthread_attr_getdetachstate (&thread_attr, &detachstate);
if (rc!=0) {

/* handle error */
...

}
else {

/* legal values for detachstate are:
* PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE
*/
...

}

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getdetachstate() or pthread_attr_setdetachstate() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getstacksize(), pthread_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are marked as part of
the Threads option.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/72 is applied, adding the example to the
EXAMPLES section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/73 is applied, updating the ERRORS
section to include the optional [EINVAL] error.

Issue 7
The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

1650 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55088

55089

55090

55091

55092

55093

55094

55095

55096

55097

55098

55099

55100

55101

55102

55103

55104

55105

55106

55107

55108

55109

55110

55111

55112

55113

55114

55115

55116

55117

55118

55119

55120

55121

55122

55123

55124

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getguardsize()

NAME
pthread_attr_getguardsize, pthread_attr_setguardsize — get and set the thread guardsize
attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
size_t *restrict guardsize);

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

DESCRIPTION
The pthread_attr_getguardsize() function shall get the guardsize attribute in the attr object. This
attribute shall be returned in the guardsize parameter.

The pthread_attr_setguardsize() function shall set the guardsize attribute in the attr object. The new
value of this attribute shall be obtained from the guardsize parameter. If guardsize is zero, a guard
area shall not be provided for threads created with attr. If guardsize is greater than zero, a guard
area of at least size guardsize bytes shall be provided for each thread created with attr.

The guardsize attribute controls the size of the guard area for the created thread’s stack. The
guardsize attribute provides protection against overflow of the stack pointer. If a thread’s stack is
created with guard protection, the implementation allocates extra memory at the overflow end
of the stack as a buffer against stack overflow of the stack pointer. If an application overflows
into this buffer an error shall result (possibly in a SIGSEGV signal being delivered to the thread).

A conforming implementation may round up the value contained in guardsize to a multiple of
the configurable system variable {PAGESIZE} (see <sys/mman.h>). If an implementation
rounds up the value of guardsize to a multiple of {PAGESIZE}, a call to pthread_attr_getguardsize()
specifying attr shall store in the guardsize parameter the guard size specified by the previous
pthread_attr_setguardsize() function call.

The default value of the guardsize attribute is implementation-defined.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread
stacks), the guardsize attribute shall be ignored and no protection shall be provided by the
implementation. It is the responsibility of the application to manage stack overflow along with
stack allocation and management in this case.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getguardsize() or pthread_attr_setguardsize() does not refer to an initialized thread
attributes object.

RETURN VALUE
If successful, the pthread_attr_getguardsize() and pthread_attr_setguardsize() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall fail if:

[EINVAL] The parameter guardsize is invalid.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1651

55125

55126

55127

55128

55129

55130

55131

55132

55133

55134

55135

55136

55137

55138

55139

55140

55141

55142

55143

55144

55145

55146

55147

55148

55149

55150

55151

55152

55153

55154

55155

55156

55157

55158

55159

55160

55161

55162

55163

55164

55165

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getguardsize() System Interfaces

EXAMPLES

Retrieving the guardsize Attribute

This example shows how to obtain the guardsize attribute of a thread attribute object.

#include <pthread.h>

pthread_attr_t thread_attr;
size_t guardsize;
int rc;

/* code initializing thread_attr */
...

rc = pthread_attr_getguardsize (&thread_attr, &guardsize);
if (rc != 0) {

/* handle error */
...

}
else {

if (guardsize > 0) {
/* a guard area of at least guardsize bytes is provided */
...
}
else {
/* no guard area provided */
...
}

}

APPLICATION USAGE
None.

RATIONALE
The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An application
that creates a large number of threads, and which knows its threads never overflow their
stack, can save system resources by turning off guard areas.

2. When threads allocate large data structures on the stack, large guard areas may be needed
to detect stack overflow.

The default size of the guard area is left implementation-defined since on systems supporting
very large page sizes, the overhead might be substantial if at least one guard page is required by
default.

If an implementation detects that the value specified by the attr argument to
pthread_attr_getguardsize() or pthread_attr_setguardsize() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

1652 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55166

55167

55168

55169

55170

55171

55172

55173

55174

55175

55176

55177

55178

55179

55180

55181

55182

55183

55184

55185

55186

55187

55188

55189

55190

55191

55192

55193

55194

55195

55196

55197

55198

55199

55200

55201

55202

55203

55204

55205

55206

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getguardsize()

SEE ALSO
XBD <pthread.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
In the ERRORS section, a third [EINVAL] error condition is removed as it is covered by the
second error condition.

The restrict keyword is added to the pthread_attr_getguardsize() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/74 is applied, updating the ERRORS
section to remove the [EINVAL] error (``The attribute attr is invalid.’’), and replacing it with the
optional [EINVAL] error.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/76 is applied, adding the example to the
EXAMPLES section.

Issue 7
SD5-XSH-ERN-111 is applied, removing the reference to the stack attribute in the DESCRIPTION.

SD5-XSH-ERN-175 is applied, updating the DESCRIPTION to note that the default size of the
guard area is implementation-defined.

The pthread_attr_getguardsize() and pthread_attr_setguardsize() functions are moved from the XSI
option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1653

55207

55208

55209

55210

55211

55212

55213

55214

55215

55216

55217

55218

55219

55220

55221

55222

55223

55224

55225

55226

55227

55228

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getinheritsched() System Interfaces

NAME
pthread_attr_getinheritsched, pthread_attr_setinheritsched — get and set the inheritsched
attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

DESCRIPTION
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions, respectively, shall
get and set the inheritsched attribute in the attr argument.

When the attributes objects are used by pthread_create(), the inheritsched attribute determines
how the other scheduling attributes of the created thread shall be set.

The supported values of inheritsched shall be:

PTHREAD_INHERIT_SCHED
Specifies that the thread scheduling attributes shall be inherited from the creating thread,
and the scheduling attributes in this attr argument shall be ignored.

PTHREAD_EXPLICIT_SCHED
Specifies that the thread scheduling attributes shall be set to the corresponding values from
this attributes object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are defined in
the <pthread.h> header.

The following thread scheduling attributes defined by POSIX.1-2024 are affected by the
inheritsched attribute: scheduling policy (schedpolicy), scheduling parameters (schedparam), and
scheduling contention scope (contentionscope).

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getinheritsched() or pthread_attr_setinheritsched() does not refer to an initialized
thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setinheritsched() function shall fail if:

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setinheritsched() function may fail if:

[EINVAL] The value of inheritsched is not valid.

These functions shall not return an error code of [EINTR].

1654 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55229

55230

55231

55232

55233

55234

55235

55236

55237

55238

55239

55240

55241

55242

55243

55244

55245

55246

55247

55248

55249

55250

55251

55252

55253

55254

55255

55256

55257

55258

55259

55260

55261

55262

55263

55264

55265

55266

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getinheritsched()

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 (on page 540) for further details on thread scheduling attributes and their
default settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getinheritsched() or pthread_attr_setinheritsched() does not refer to an initialized
thread attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(), pthread_create()

XBD <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are marked as part
of the Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The restrict keyword is added to the pthread_attr_getinheritsched() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/75 is applied, clarifying the values of
inheritsched in the DESCRIPTION and adding two optional [EINVAL] errors to the ERRORS
section for checking when attr refers to an uninitialized thread attribute object.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/77 is applied, adding a reference to
Section 2.9.4 (on page 540) in the APPLICATION USAGE section.

Issue 7
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are marked only as
part of the Thread Execution Scheduling option as the Threads option is now part of the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0450 [314] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0262 [757] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1655

55267

55268

55269

55270

55271

55272

55273

55274

55275

55276

55277

55278

55279

55280

55281

55282

55283

55284

55285

55286

55287

55288

55289

55290

55291

55292

55293

55294

55295

55296

55297

55298

55299

55300

55301

55302

55303

55304

55305

55306

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getschedparam() System Interfaces

NAME
pthread_attr_getschedparam, pthread_attr_setschedparam — get and set the schedparam
attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getschedparam(const pthread_attr_t *restrict attr,
struct sched_param *restrict param);

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

DESCRIPTION
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions, respectively, shall
get and set the scheduling parameter attributes in the attr argument. The contents of the param
structure are defined in the <sched.h> header. For the SCHED_FIFO and SCHED_RR policies,
the only required member of param is sched_priority.

TSP For the SCHED_SPORADIC policy, the required members of the param structure are
sched_priority, sched_ss_low_priority, sched_ss_repl_period, sched_ss_init_budget, and
sched_ss_max_repl. The specified sched_ss_repl_period needs to be greater than or equal to the
specified sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.
The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail. It is unspecified whether the
sched_ss_repl_period and sched_ss_init_budget values are stored as provided by this function or are
rounded to align with the resolution of the clock being used.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getschedparam() or pthread_attr_setschedparam() does not refer to an initialized thread
attributes object.

RETURN VALUE
If successful, the pthread_attr_getschedparam() and pthread_attr_setschedparam() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setschedparam() function shall fail if:

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setschedparam() function may fail if:

[EINVAL] The value of param is not valid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getschedparam() or pthread_attr_setschedparam() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

1656 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55307

55308

55309

55310

55311

55312

55313

55314

55315

55316

55317

55318

55319

55320

55321

55322

55323

55324

55325

55326

55327

55328

55329

55330

55331

55332

55333

55334

55335

55336

55337

55338

55339

55340

55341

55342

55343

55344

55345

55346

55347

55348

55349

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getschedparam()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(),
pthread_attr_getschedpolicy(), pthread_create()

XBD <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are marked as part
of the Threads option.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_attr_getschedparam() and
pthread_attr_setschedparam() prototypes for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/78 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are moved from the
Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy requirements
for the sched_ss_repl_period and sched_ss_init_budget values.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0451 [314] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1657

55350

55351

55352

55353

55354

55355

55356

55357

55358

55359

55360

55361

55362

55363

55364

55365

55366

55367

55368

55369

55370

55371

55372

55373

55374

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getschedpolicy() System Interfaces

NAME
pthread_attr_getschedpolicy, pthread_attr_setschedpolicy — get and set the schedpolicy
attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

DESCRIPTION
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, shall
get and set the schedpolicy attribute in the attr argument.

The supported values of policy shall include SCHED_FIFO, SCHED_RR, and SCHED_OTHER,
which are defined in the <sched.h> header. When threads executing with the scheduling policy

TSP SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC are waiting on a mutex, they shall acquire
the mutex in priority order when the mutex is unlocked.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getschedpolicy() or pthread_attr_setschedpolicy() does not refer to an initialized thread
attributes object.

RETURN VALUE
If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setschedpolicy() function shall fail if:

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setschedpolicy() function may fail if:

[EINVAL] The value of policy is not valid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 (on page 540) for further details on thread scheduling attributes and their
default settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getschedpolicy() or pthread_attr_setschedpolicy() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

1658 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55375

55376

55377

55378

55379

55380

55381

55382

55383

55384

55385

55386

55387

55388

55389

55390

55391

55392

55393

55394

55395

55396

55397

55398

55399

55400

55401

55402

55403

55404

55405

55406

55407

55408

55409

55410

55411

55412

55413

55414

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getschedpolicy()

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(),
pthread_attr_getschedparam(), pthread_create()

XBD <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are marked as part of
the Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_attr_getschedpolicy() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/79 is applied, adding a reference to
Section 2.9.4 (on page 540) in the APPLICATION USAGE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/80 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are marked only as
part of the Thread Execution Scheduling option as the Threads option is now part of the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0452 [314] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0263 [757] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1659

55415

55416

55417

55418

55419

55420

55421

55422

55423

55424

55425

55426

55427

55428

55429

55430

55431

55432

55433

55434

55435

55436

55437

55438

55439

55440

55441

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getscope() System Interfaces

NAME
pthread_attr_getscope, pthread_attr_setscope — get and set the contentionscope attribute
(REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope);

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

DESCRIPTION
The pthread_attr_getscope() and pthread_attr_setscope() functions, respectively, shall get and set
the contentionscope attribute in the attr object.

The contentionscope attribute may have the values PTHREAD_SCOPE_SYSTEM, signifying
system scheduling contention scope, or PTHREAD_SCOPE_PROCESS, signifying process
scheduling contention scope. The symbols PTHREAD_SCOPE_SYSTEM and
PTHREAD_SCOPE_PROCESS are defined in the <pthread.h> header.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getscope() or
pthread_attr_setscope() does not refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getscope() and pthread_attr_setscope() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setscope() function shall fail if:

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setscope() function may fail if:

[EINVAL] The value of contentionscope is not valid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 (on page 540) for further details on thread scheduling attributes and their
default settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getscope() or pthread_attr_setscope() does not refer to an initialized thread attributes
object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

1660 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55442

55443

55444

55445

55446

55447

55448

55449

55450

55451

55452

55453

55454

55455

55456

55457

55458

55459

55460

55461

55462

55463

55464

55465

55466

55467

55468

55469

55470

55471

55472

55473

55474

55475

55476

55477

55478

55479

55480

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getscope()

SEE ALSO
pthread_attr_destroy(), pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(), pthread_create()

XBD <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getscope() and pthread_attr_setscope() functions are marked as part of the
Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The restrict keyword is added to the pthread_attr_getscope() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/81 is applied, adding a reference to
Section 2.9.4 (on page 540) in the APPLICATION USAGE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/82 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getscope() and pthread_attr_setscope() functions are marked only as part of the
Thread Execution Scheduling option as the Threads option is now part of the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0453 [314] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0264 [757] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1661

55481

55482

55483

55484

55485

55486

55487

55488

55489

55490

55491

55492

55493

55494

55495

55496

55497

55498

55499

55500

55501

55502

55503

55504

55505

55506

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getstack() System Interfaces

NAME
pthread_attr_getstack, pthread_attr_setstack — get and set stack attributes

SYNOPSIS
TSA TSS #include <pthread.h>

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, size_t *restrict stacksize);

int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
size_t stacksize);

DESCRIPTION
The pthread_attr_getstack() and pthread_attr_setstack() functions, respectively, shall get and set the
thread creation stack attributes stackaddr and stacksize in the attr object.

The stack attributes specify the area of storage to be used for the created thread’s stack. The base
(lowest addressable byte) of the storage shall be stackaddr, and the size of the storage shall be
stacksize bytes. The stacksize shall be at least {PTHREAD_STACK_MIN}. The
pthread_attr_setstack() function may fail with [EINVAL] if stackaddr does not meet
implementation-defined alignment requirements. All pages within the stack described by
stackaddr and stacksize shall be both readable and writable by the thread.

If the pthread_attr_getstack() function is called before the stackaddr attribute has been set, the
behavior is unspecified.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getstack() or
pthread_attr_setstack() does not refer to an initialized thread attributes object.

RETURN VALUE
Upon successful completion, these functions shall return a value of 0; otherwise, an error
number shall be returned to indicate the error.

The pthread_attr_getstack() function shall store the stack attribute values in stackaddr and stacksize
if successful.

ERRORS

The pthread_attr_setstack() function shall fail if:

[EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds an
implementation-defined limit.

The pthread_attr_setstack() function may fail if:

[EINVAL] The value of stackaddr does not have proper alignment to be used as a stack, or
((char *)stackaddr + stacksize) lacks proper alignment.

[EACCES] The stack page(s) described by stackaddr and stacksize are not both readable
and writable by the thread.

These functions shall not return an error code of [EINTR].

1662 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55507

55508

55509

55510

55511

55512

55513

55514

55515

55516

55517

55518

55519

55520

55521

55522

55523

55524

55525

55526

55527

55528

55529

55530

55531

55532

55533

55534

55535

55536

55537

55538

55539

55540

55541

55542

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getstack()

EXAMPLES
None.

APPLICATION USAGE
These functions are appropriate for use by applications in an environment where the stack for a
thread must be placed in some particular region of memory.

While it might seem that an application could detect stack overflow by providing a protected
page outside the specified stack region, this cannot be done portably. Implementations are free
to place the thread’s initial stack pointer anywhere within the specified region to accommodate
the machine’s stack pointer behavior and allocation requirements. Furthermore, on some
architectures, such as the IA-64, ``overflow’’ might mean that two separate stack pointers
allocated within the region will overlap somewhere in the middle of the region.

After a successful call to pthread_attr_setstack(), the storage area specified by the stackaddr
parameter is under the control of the implementation, as described in Section 2.9.8 (on page 548).

The specification of the stackaddr attribute presents several ambiguities that make portable use of
these functions impossible. For example, the standard allows implementations to impose
arbitrary alignment requirements on stackaddr. Applications cannot assume that a buffer
obtained from malloc() is suitably aligned. Note that although the stacksize value passed to
pthread_attr_setstack() must satisfy alignment requirements, the same is not true for
pthread_attr_setstacksize() where the implementation must increase the specified size if necessary
to achieve the proper alignment.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getstack() or pthread_attr_setstack() does not refer to an initialized thread attributes
object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getdetachstate(), pthread_attr_getstacksize(), pthread_create()

XBD <limits.h>, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Developed as part of the XSI option and brought into the BASE by IEEE
PASC Interpretation 1003.1 #101.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/83 is applied, updating the
APPLICATION USAGE section to refer to Section 2.9.8 (on page 548).

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC/D6/84 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
SD5-XSH-ERN-66 is applied, correcting the use of attr in the [EINVAL] error condition.

Austin Group Interpretation 1003.1-2001 #057 is applied, clarifying the behavior if the function is
called before the stackaddr attribute is set.

SD5-XSH-ERN-157 is applied, updating the APPLICATION USAGE section.

The description of the stackaddr attribute is updated in the DESCRIPTION and APPLICATION
USAGE sections.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1663

55543

55544

55545

55546

55547

55548

55549

55550

55551

55552

55553

55554

55555

55556

55557

55558

55559

55560

55561

55562

55563

55564

55565

55566

55567

55568

55569

55570

55571

55572

55573

55574

55575

55576

55577

55578

55579

55580

55581

55582

55583

55584

55585

55586

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getstack() System Interfaces

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

1664 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55587

55588

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_getstacksize()

NAME
pthread_attr_getstacksize, pthread_attr_setstacksize — get and set the stacksize attribute

SYNOPSIS
TSS #include <pthread.h>

int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
size_t *restrict stacksize);

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

DESCRIPTION
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions, respectively, shall get and
set the thread creation stacksize attribute in the attr object.

The stacksize attribute shall define the minimum stack size (in bytes) allocated for the created
threads stack.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getstacksize() or pthread_attr_setstacksize() does not refer to an initialized thread
attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_getstacksize() and pthread_attr_setstacksize() shall
return a value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getstacksize() function stores the stacksize attribute value in stacksize if
successful.

ERRORS
The pthread_attr_setstacksize() function shall fail if:

[EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds a
system-imposed limit.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getstacksize() or pthread_attr_setstacksize() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getdetachstate(), pthread_create()

XBD <limits.h>, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1665

55589

55590

55591

55592

55593

55594

55595

55596

55597

55598

55599

55600

55601

55602

55603

55604

55605

55606

55607

55608

55609

55610

55611

55612

55613

55614

55615

55616

55617

55618

55619

55620

55621

55622

55623

55624

55625

55626

55627

55628

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_getstacksize() System Interfaces

Issue 6
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are marked as part of the
Threads and Thread Stack Size Attribute options.

The restrict keyword is added to the pthread_attr_getstacksize() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/43 is applied, correcting the margin code
in the SYNOPSIS from TSA to TSS and updating the CHANGE HISTORY from ``Thread Stack
Address Attribute’’ option to ``Thread Stack Size Attribute’’ option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/87 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are marked only as part of
the Thread Stack Size Attribute option as the Threads option is now part of the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0265 [757] is applied.

1666 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55629

55630

55631

55632

55633

55634

55635

55636

55637

55638

55639

55640

55641

55642

55643

55644

55645

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_init()

NAME
pthread_attr_init — initialize the thread attributes object

SYNOPSIS
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

DESCRIPTION
Refer to pthread_attr_destroy().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1667

55646

55647

55648

55649

55650

55651

55652

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_setdetachstate() System Interfaces

NAME
pthread_attr_setdetachstate — set the detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

DESCRIPTION
Refer to pthread_attr_getdetachstate().

1668 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55653

55654

55655

55656

55657

55658

55659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_setguardsize()

NAME
pthread_attr_setguardsize — set the thread guardsize attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

DESCRIPTION
Refer to pthread_attr_getguardsize().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1669

55660

55661

55662

55663

55664

55665

55666

55667

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_setinheritsched() System Interfaces

NAME
pthread_attr_setinheritsched — set the inheritsched attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

DESCRIPTION
Refer to pthread_attr_getinheritsched().

1670 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55668

55669

55670

55671

55672

55673

55674

55675

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_setschedparam()

NAME
pthread_attr_setschedparam — set the schedparam attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

DESCRIPTION
Refer to pthread_attr_getschedparam().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1671

55676

55677

55678

55679

55680

55681

55682

55683

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_setschedpolicy() System Interfaces

NAME
pthread_attr_setschedpolicy — set the schedpolicy attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

DESCRIPTION
Refer to pthread_attr_getschedpolicy().

1672 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55684

55685

55686

55687

55688

55689

55690

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_setscope()

NAME
pthread_attr_setscope — set the contentionscope attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

DESCRIPTION
Refer to pthread_attr_getscope().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1673

55691

55692

55693

55694

55695

55696

55697

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_attr_setstack() System Interfaces

NAME
pthread_attr_setstack — set the stack attribute

SYNOPSIS
TSA TSS #include <pthread.h>

int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
size_t stacksize);

DESCRIPTION
Refer to pthread_attr_getstack().

1674 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55698

55699

55700

55701

55702

55703

55704

55705

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_attr_setstacksize()

NAME
pthread_attr_setstacksize — set the stacksize attribute

SYNOPSIS
TSS #include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

DESCRIPTION
Refer to pthread_attr_getstacksize().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1675

55706

55707

55708

55709

55710

55711

55712

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_barrier_destroy() System Interfaces

NAME
pthread_barrier_destroy, pthread_barrier_init — destroy and initialize a barrier object

SYNOPSIS
#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr, unsigned count);

DESCRIPTION
The pthread_barrier_destroy() function shall destroy the barrier referenced by barrier and release
any resources used by the barrier. The effect of subsequent use of the barrier is undefined until
the barrier is reinitialized by another call to pthread_barrier_init(). An implementation may use
this function to set barrier to an invalid value. The results are undefined if
pthread_barrier_destroy() is called when any thread is blocked on the barrier, or if this function is
called with an uninitialized barrier.

The pthread_barrier_init() function shall allocate any resources required to use the barrier
referenced by barrier and shall initialize the barrier with attributes referenced by attr. If attr is
NULL, the default barrier attributes shall be used; the effect is the same as passing the address of
a default barrier attributes object. The results are undefined if pthread_barrier_init() is called
when any thread is blocked on the barrier (that is, has not returned from the
pthread_barrier_wait() call). The results are undefined if a barrier is used without first being
initialized. The results are undefined if pthread_barrier_init() is called specifying an already
initialized barrier.

The count argument specifies the number of threads that have to call pthread_barrier_wait()
before any of them successfully return from the call. The value specified by count needs to be
greater than zero.

If the pthread_barrier_init() function fails, the barrier shall not be initialized and the contents of
barrier are undefined.

See Section 2.9.9 (on page 548) for further requirements.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_barrier_init() function shall fail if:

[EAGAIN] The system lacks the necessary resources to initialize another barrier.

[EINVAL] The value specified by count is equal to zero.

[ENOMEM] Insufficient memory exists to initialize the barrier.

These functions shall not return an error code of [EINTR].

1676 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55713

55714

55715

55716

55717

55718

55719

55720

55721

55722

55723

55724

55725

55726

55727

55728

55729

55730

55731

55732

55733

55734

55735

55736

55737

55738

55739

55740

55741

55742

55743

55744

55745

55746

55747

55748

55749

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_barrier_destroy()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the barrier argument to
pthread_barrier_destroy() does not refer to an initialized barrier object, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the attr argument to
pthread_barrier_init() does not refer to an initialized barrier attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the barrier argument to
pthread_barrier_destroy() or pthread_barrier_init() refers to a barrier that is in use (for example, in
a pthread_barrier_wait() call) by another thread, or detects that the value specified by the barrier
argument to pthread_barrier_init() refers to an already initialized barrier object, it is
recommended that the function should fail and report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_wait()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The pthread_barrier_destroy() and pthread_barrier_init() functions are moved from the Barriers
option to the Base.

The [EINVAL] error for an uninitialized barrier object and an uninitialized barrier attributes
object is removed; this condition results in undefined behavior.

The [EBUSY] error for a barrier that is in use or an already initialized barrier object is removed;
this condition results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0266 [972] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1677

55750

55751

55752

55753

55754

55755

55756

55757

55758

55759

55760

55761

55762

55763

55764

55765

55766

55767

55768

55769

55770

55771

55772

55773

55774

55775

55776

55777

55778

55779

55780

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_barrier_wait() System Interfaces

NAME
pthread_barrier_wait — synchronize at a barrier

SYNOPSIS
#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

DESCRIPTION
The pthread_barrier_wait() function shall synchronize participating threads at the barrier
referenced by barrier. The calling thread shall block until the required number of threads have
called pthread_barrier_wait() specifying the barrier.

When the required number of threads have called pthread_barrier_wait() specifying the barrier,
the constant PTHREAD_BARRIER_SERIAL_THREAD shall be returned to one unspecified
thread and zero shall be returned to each of the remaining threads. At this point, the barrier shall
be reset to the state it had as a result of the most recent pthread_barrier_init() function that
referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h> and its value
shall be distinct from any other value returned by pthread_barrier_wait().

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler the
thread shall resume waiting at the barrier if the barrier wait has not completed (that is, if the
required number of threads have not arrived at the barrier during the execution of the signal
handler); otherwise, the thread shall continue as normal from the completed barrier wait. Until
the thread in the signal handler returns from it, it is unspecified whether other threads may
proceed past the barrier once they have all reached it.

A thread that has blocked on a barrier shall not prevent any unblocked thread that is eligible to
use the same processing resources from eventually making forward progress in its execution.
Eligibility for processing resources shall be determined by the scheduling policy.

RETURN VALUE
Upon successful completion, the pthread_barrier_wait() function shall return
PTHREAD_BARRIER_SERIAL_THREAD for a single (arbitrary) thread synchronized at the
barrier and zero for each of the other threads. Otherwise, an error number shall be returned to
indicate the error.

ERRORS
This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

RATIONALE
If an implementation detects that the value specified by the barrier argument to
pthread_barrier_wait() does not refer to an initialized barrier object, it is recommended that the
function should fail and report an [EINVAL] error.

1678 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55781

55782

55783

55784

55785

55786

55787

55788

55789

55790

55791

55792

55793

55794

55795

55796

55797

55798

55799

55800

55801

55802

55803

55804

55805

55806

55807

55808

55809

55810

55811

55812

55813

55814

55815

55816

55817

55818

55819

55820

55821

55822

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_barrier_wait()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_destroy()

XBD Section 3.275 (on page 72), Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_barrier_wait() function is moved from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier object is removed; this condition results in
undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1679

55823

55824

55825

55826

55827

55828

55829

55830

55831

55832

55833

55834

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_barrierattr_destroy() System Interfaces

NAME
pthread_barrierattr_destroy, pthread_barrierattr_init — destroy and initialize the barrier
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);
int pthread_barrierattr_init(pthread_barrierattr_t *attr);

DESCRIPTION
The pthread_barrierattr_destroy() function shall destroy a barrier attributes object. A destroyed
attr attributes object can be reinitialized using pthread_barrierattr_init(); the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation may cause
pthread_barrierattr_destroy() to set the object referenced by attr to an invalid value.

The pthread_barrierattr_init() function shall initialize a barrier attributes object attr with the
default value for all of the attributes defined by the implementation.

If pthread_barrierattr_init() is called specifying an already initialized attr attributes object, the
results are undefined.

After a barrier attributes object has been used to initialize one or more barriers, any function
affecting the attributes object (including destruction) shall not affect any previously initialized
barrier.

The behavior is undefined if the value specified by the attr argument to
pthread_barrierattr_destroy() does not refer to an initialized barrier attributes object.

RETURN VALUE
If successful, the pthread_barrierattr_destroy() and pthread_barrierattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_barrierattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the barrier attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_barrierattr_destroy() does not refer to an initialized barrier attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrierattr_getpshared()

XBD <pthread.h>

1680 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55835

55836

55837

55838

55839

55840

55841

55842

55843

55844

55845

55846

55847

55848

55849

55850

55851

55852

55853

55854

55855

55856

55857

55858

55859

55860

55861

55862

55863

55864

55865

55866

55867

55868

55869

55870

55871

55872

55873

55874

55875

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_barrierattr_destroy()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_barrierattr_destroy() and pthread_barrierattr_init() functions are moved from the
Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1681

55876

55877

55878

55879

55880

55881

55882

55883

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_barrierattr_getpshared() System Interfaces

NAME
pthread_barrierattr_getpshared, pthread_barrierattr_setpshared — get and set the process-
shared attribute of the barrier attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_barrierattr_getpshared(const pthread_barrierattr_t
*restrict attr, int *restrict pshared);

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
int pshared);

DESCRIPTION
The pthread_barrierattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr. The pthread_barrierattr_setpshared() function shall
set the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be
operated upon by any thread that has access to the memory where the barrier is allocated. See
Section 2.9.9 (on page 548) for further requirements. The default value of the attribute shall be
PTHREAD_PROCESS_PRIVATE. Both constants PTHREAD_PROCESS_SHARED and
PTHREAD_PROCESS_PRIVATE are defined in <pthread.h>.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to
pthread_barrierattr_getpshared() or pthread_barrierattr_setpshared() does not refer to an initialized
barrier attributes object.

RETURN VALUE
If successful, the pthread_barrierattr_getpshared() function shall return zero and store the value of
the process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise,
an error number shall be returned to indicate the error.

If successful, the pthread_barrierattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_barrierattr_setpshared() function may fail if:

[EINVAL] The new value specified for the process-shared attribute is not one of the legal
values PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions are part of the
Thread Process-Shared Synchronization option and need not be provided on all
implementations.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_barrierattr_getpshared() or pthread_barrierattr_setpshared() does not refer to an initialized
barrier attributes object, it is recommended that the function should fail and report an [EINVAL]

1682 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55884

55885

55886

55887

55888

55889

55890

55891

55892

55893

55894

55895

55896

55897

55898

55899

55900

55901

55902

55903

55904

55905

55906

55907

55908

55909

55910

55911

55912

55913

55914

55915

55916

55917

55918

55919

55920

55921

55922

55923

55924

55925

55926

55927

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_barrierattr_getpshared()

error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_destroy(), pthread_barrierattr_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000

Issue 7
The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions are marked
only as part of the Thread Process-Shared Synchronization option as the Threads option is now
part of the Base.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0266 [972] and XSH/TC2-2008/0267
[757] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1683

55928

55929

55930

55931

55932

55933

55934

55935

55936

55937

55938

55939

55940

55941

55942

55943

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_barrierattr_init() System Interfaces

NAME
pthread_barrierattr_init — initialize the barrier attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_init(pthread_barrierattr_t *attr);

DESCRIPTION
Refer to pthread_barrierattr_destroy().

1684 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55944

55945

55946

55947

55948

55949

55950

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_barrierattr_setpshared()

NAME
pthread_barrierattr_setpshared — set the process-shared attribute of the barrier attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_barrierattr_getpshared().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1685

55951

55952

55953

55954

55955

55956

55957

55958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cancel() System Interfaces

NAME
pthread_cancel — cancel execution of a thread

SYNOPSIS
#include <pthread.h>

int pthread_cancel(pthread_t thread);

DESCRIPTION
The pthread_cancel() function shall request that thread be canceled. The target thread’s
cancelability state and type determines when the cancellation takes effect. When the cancellation
is acted on, the cancellation cleanup handlers for thread shall be called. When the last
cancellation cleanup handler returns, the thread-specific data destructor functions shall be called
for thread. When the last destructor function returns, thread shall be terminated. It shall not be an
error to request cancellation of a zombie thread.

The cancellation processing in the target thread shall run asynchronously with respect to the
calling thread returning from pthread_cancel().

If thread refers to a thread that was created using thrd_create(), the behavior is undefined.

RETURN VALUE
If successful, the pthread_cancel() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_cancel() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Two alternative functions were considered for sending the cancellation notification to a thread.
One would be to define a new SIGCANCEL signal that had the cancellation semantics when
delivered; the other was to define the new pthread_cancel() function, which would trigger the
cancellation semantics.

The advantage of a new signal was that so much of the delivery criteria were identical to that
used when trying to deliver a signal that making cancellation notification a signal was seen as
consistent. Indeed, many implementations implement cancellation using a special signal. On the
other hand, there would be no signal functions that could be used with this signal except
pthread_kill(), and the behavior of the delivered cancellation signal would be unlike any
previously existing defined signal.

The benefits of a special function include the recognition that this signal would be defined
because of the similar delivery criteria and that this is the only common behavior between a
cancellation request and a signal. In addition, the cancellation delivery mechanism does not
have to be implemented as a signal. There are also strong, if not stronger, parallels with
language exception mechanisms than with signals that are potentially obscured if the delivery
mechanism is visibly closer to signals.

In the end, it was considered that as there were so many exceptions to the use of the new signal
with existing signals functions it would be misleading. A special function has resolved this
problem. This function was carefully defined so that an implementation wishing to provide the
cancellation functions on top of signals could do so. The special function also means that
implementations are not obliged to implement cancellation with signals.

1686 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55959

55960

55961

55962

55963

55964

55965

55966

55967

55968

55969

55970

55971

55972

55973

55974

55975

55976

55977

55978

55979

55980

55981

55982

55983

55984

55985

55986

55987

55988

55989

55990

55991

55992

55993

55994

55995

55996

55997

55998

55999

56000

56001

56002

56003

56004

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cancel()

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

Historical implementations varied on the result of a pthread_cancel() with a thread ID indicating
a zombie thread. Some indicated success with nothing further to do because the thread had
already terminated, while others gave an error of [ESRCH]. Since the definition of thread
lifetime in this standard covers zombie threads, the [ESRCH] error as described is inappropriate
in this case and implementations that give this error do not conform.

Use of pthread_cancel() to cancel a thread that was created using thrd_create() is undefined
because thrd_join() has no way to indicate a thread was cancelled. The standard developers
considered adding a thrd_canceled enumeration constant that thrd_join() would return in
this case. However, this return would be unexpected in code that is written to conform to the
ISO C standard, and it would also not solve the problem that threads which use only ISO C
<threads.h> interfaces (such as ones created by third party libraries written to conform to the
ISO C standard) have no way to handle being cancelled, as the ISO C standard does not provide
cancellation cleanup handlers.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit(), pthread_cond_clockwait(), pthread_join(), pthread_setcancelstate()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cancel() function is marked as part of the Threads option.

Issue 7
The pthread_cancel() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

Issue 8
Austin Group Defect 792 is applied, adding a requirement that passing the thread ID of a zombie
thread to pthread_cancel() is not treated as an error.

Austin Group Defect 1302 is applied, updating the page to account for the addition of
<threads.h> interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1687

56005

56006

56007

56008

56009

56010

56011

56012

56013

56014

56015

56016

56017

56018

56019

56020

56021

56022

56023

56024

56025

56026

56027

56028

56029

56030

56031

56032

56033

56034

56035

56036

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cleanup_pop() System Interfaces

NAME
pthread_cleanup_pop, pthread_cleanup_push — establish cancellation handlers

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_pop(int execute);
void pthread_cleanup_push(void (*routine)(void*), void *arg);

DESCRIPTION
The pthread_cleanup_pop() function shall remove the routine at the top of the calling thread’s
cancellation cleanup stack and optionally invoke it (if execute is non-zero).

The pthread_cleanup_push() function shall push the specified cancellation cleanup handler routine
onto the calling thread’s cancellation cleanup stack. The cancellation cleanup handler shall be
popped from the cancellation cleanup stack and invoked with the argument arg when:

• The thread exits (that is, calls pthread_exit()).

• The thread acts upon a cancellation request.

• The thread calls pthread_cleanup_pop() with a non-zero execute argument.

It is unspecified whether pthread_cleanup_push() and pthread_cleanup_pop() are macros or
functions. If a macro definition is suppressed in order to access an actual function, or a program
defines an external identifier with any of these names, the behavior is undefined. The
application shall ensure that they appear as statements, and in pairs within the same lexical
scope (that is, the pthread_cleanup_push() macro may be thought to expand to a token list whose
first token is '{' with pthread_cleanup_pop() expanding to a token list whose last token is the
corresponding '}').

The effect of calling longjmp() or siglongjmp() is undefined if there have been any calls to
pthread_cleanup_push() or pthread_cleanup_pop() made without the matching call since the jump
buffer was filled. The effect of calling longjmp() or siglongjmp() from inside a cancellation
cleanup handler is also undefined unless the jump buffer was also filled in the cancellation
cleanup handler.

Invoking a cancellation cleanup handler may terminate the execution of any code block being
executed by the thread whose execution began after the corresponding invocation of
pthread_cleanup_push().

The effect of the use of return, break, continue, and goto to prematurely leave a code block
described by a pair of pthread_cleanup_push() and pthread_cleanup_pop() functions calls is
undefined.

RETURN VALUE
The pthread_cleanup_push() and pthread_cleanup_pop() functions shall not return a value.

ERRORS
No errors are defined.

These functions shall not return an error code of [EINTR].

1688 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56037

56038

56039

56040

56041

56042

56043

56044

56045

56046

56047

56048

56049

56050

56051

56052

56053

56054

56055

56056

56057

56058

56059

56060

56061

56062

56063

56064

56065

56066

56067

56068

56069

56070

56071

56072

56073

56074

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cleanup_pop()

EXAMPLES
The following is an example using thread primitives to implement a cancelable, writers-priority
read-write lock:

typedef struct {
pthread_mutex_t lock;
pthread_cond_t rcond,

wcond;
int lock_count; /* < 0 .. Held by writer. */

/* > 0 .. Held by lock_count readers. */
/* = 0 .. Held by nobody. */

int waiting_writers; /* Count of waiting writers. */
} rwlock;

void
waiting_reader_cleanup(void *arg)
{

rwlock *l;

l = (rwlock *) arg;
pthread_mutex_unlock(&l->lock);

}

void
lock_for_read(rwlock *l)
{

pthread_mutex_lock(&l->lock);
pthread_cleanup_push(waiting_reader_cleanup, l);
while ((l->lock_count < 0) || (l->waiting_writers != 0))

pthread_cond_wait(&l->rcond, &l->lock);
l->lock_count++;
/*
* Note the pthread_cleanup_pop executes
* waiting_reader_cleanup.
*/
pthread_cleanup_pop(1);

}

void
release_read_lock(rwlock *l)
{

pthread_mutex_lock(&l->lock);
if (--l->lock_count == 0)

pthread_cond_signal(&l->wcond);
pthread_mutex_unlock(&l->lock);

}

void
waiting_writer_cleanup(void *arg)
{

rwlock *l;

l = (rwlock *) arg;
if ((--l->waiting_writers == 0) && (l->lock_count >= 0)) {

/*

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1689

56075

56076

56077

56078

56079

56080

56081

56082

56083

56084

56085

56086

56087

56088

56089

56090

56091

56092

56093

56094

56095

56096

56097

56098

56099

56100

56101

56102

56103

56104

56105

56106

56107

56108

56109

56110

56111

56112

56113

56114

56115

56116

56117

56118

56119

56120

56121

56122

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cleanup_pop() System Interfaces

* This only happens if we have been canceled. If the
* lock is not held by a writer, there may be readers who
* were blocked because waiting_writers was positive; they
* can now be unblocked.
*/
pthread_cond_broadcast(&l->rcond);

}
pthread_mutex_unlock(&l->lock);

}

void
lock_for_write(rwlock *l)
{

pthread_mutex_lock(&l->lock);
l->waiting_writers++;
pthread_cleanup_push(waiting_writer_cleanup, l);
while (l->lock_count != 0)

pthread_cond_wait(&l->wcond, &l->lock);
l->lock_count = -1;
/*
* Note the pthread_cleanup_pop executes
* waiting_writer_cleanup.
*/
pthread_cleanup_pop(1);

}

void
release_write_lock(rwlock *l)
{

pthread_mutex_lock(&l->lock);
l->lock_count = 0;
if (l->waiting_writers == 0)

pthread_cond_broadcast(&l->rcond);
else

pthread_cond_signal(&l->wcond);
pthread_mutex_unlock(&l->lock);

}

/*
* This function is called to initialize the read/write lock.
*/
void
initialize_rwlock(rwlock *l)
{

pthread_mutex_init(&l->lock, pthread_mutexattr_default);
pthread_cond_init(&l->wcond, pthread_condattr_default);
pthread_cond_init(&l->rcond, pthread_condattr_default);
l->lock_count = 0;
l->waiting_writers = 0;

}

reader_thread()
{

lock_for_read(&lock);

1690 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56123

56124

56125

56126

56127

56128

56129

56130

56131

56132

56133

56134

56135

56136

56137

56138

56139

56140

56141

56142

56143

56144

56145

56146

56147

56148

56149

56150

56151

56152

56153

56154

56155

56156

56157

56158

56159

56160

56161

56162

56163

56164

56165

56166

56167

56168

56169

56170

56171

56172

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cleanup_pop()

pthread_cleanup_push(release_read_lock, &lock);
/*
* Thread has read lock.
*/
pthread_cleanup_pop(1);

}

writer_thread()
{

lock_for_write(&lock);
pthread_cleanup_push(release_write_lock, &lock);
/*
* Thread has write lock.
*/

pthread_cleanup_pop(1);
}

APPLICATION USAGE
The two routines that push and pop cancellation cleanup handlers, pthread_cleanup_push() and
pthread_cleanup_pop(), can be thought of as left and right-parentheses. They always need to be
matched.

RATIONALE
The restriction that the two routines that push and pop cancellation cleanup handlers,
pthread_cleanup_push() and pthread_cleanup_pop(), have to appear in the same lexical scope
allows for efficient macro or compiler implementations and efficient storage management. A
sample implementation of these routines as macros might look like this:

#define pthread_cleanup_push(rtn,arg) { \
struct _pthread_handler_rec __cleanup_handler, **__head; \
__cleanup_handler.rtn = rtn; \
__cleanup_handler.arg = arg; \
(void) pthread_getspecific(_pthread_handler_key, &__head); \
__cleanup_handler.next = *__head; \
*__head = &__cleanup_handler;

#define pthread_cleanup_pop(ex) \
*__head = __cleanup_handler.next; \
if (ex) (*__cleanup_handler.rtn)(__cleanup_handler.arg); \

}

A more ambitious implementation of these routines might do even better by allowing the
compiler to note that the cancellation cleanup handler is a constant and can be expanded inline.

This volume of POSIX.1-2024 currently leaves unspecified the effect of calling longjmp() from a
signal handler executing in a POSIX System Interfaces function. If an implementation wants to
allow this and give the programmer reasonable behavior, the longjmp() function has to call all
cancellation cleanup handlers that have been pushed but not popped since the time setjmp() was
called.

Consider a multi-threaded function called by a thread that uses signals. If a signal were
delivered to a signal handler during the operation of qsort() and that handler were to call
longjmp() (which, in turn, did not call the cancellation cleanup handlers) the helper threads
created by the qsort() function would not be canceled. Instead, they would continue to execute
and write into the argument array even though the array might have been popped off the stack.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1691

56173

56174

56175

56176

56177

56178

56179

56180

56181

56182

56183

56184

56185

56186

56187

56188

56189

56190

56191

56192

56193

56194

56195

56196

56197

56198

56199

56200

56201

56202

56203

56204

56205

56206

56207

56208

56209

56210

56211

56212

56213

56214

56215

56216

56217

56218

56219

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cleanup_pop() System Interfaces

Note that the specified cleanup handling mechanism is especially tied to the C language and,
while the requirement for a uniform mechanism for expressing cleanup is language-
independent, the mechanism used in other languages may be quite different. In addition, this
mechanism is really only necessary due to the lack of a real exception mechanism in the C
language, which would be the ideal solution.

There is no notion of a cancellation cleanup-safe function. If an application has no cancellation
points in its signal handlers, blocks any signal whose handler may have cancellation points
while calling async-unsafe functions, or disables cancellation while calling async-unsafe
functions, all functions may be safely called from cancellation cleanup routines.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cancel(), pthread_setcancelstate()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cleanup_pop() and pthread_cleanup_push() functions are marked as part of the
Threads option.

The APPLICATION USAGE section is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/88 is applied, updating the
DESCRIPTION to describe the consequences of prematurely leaving a code block defined by the
pthread_cleanup_push() and pthread_cleanup_pop() functions.

Issue 7
The pthread_cleanup_pop() and pthread_cleanup_push() functions are moved from the Threads
option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0454 [229] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0268 [624] is applied.

Issue 8
Austin Group Defect 613 is applied, clarifying the relationship of automatic object lifetimes to
cancellation cleanup functions.

1692 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56220

56221

56222

56223

56224

56225

56226

56227

56228

56229

56230

56231

56232

56233

56234

56235

56236

56237

56238

56239

56240

56241

56242

56243

56244

56245

56246

56247

56248

56249

56250

56251

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cond_broadcast()

NAME
pthread_cond_broadcast, pthread_cond_signal — broadcast or signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION
These functions shall unblock threads blocked on a condition variable.

The pthread_cond_broadcast() function shall, as a single atomic operation, determine which
threads, if any, are blocked on the specified condition variable cond and unblock all of these
threads.

The pthread_cond_signal() function shall, as a single atomic operation, determine which threads,
if any, are blocked on the specified condition variable cond and unblock at least one of these
threads.

If more than one thread is blocked on a condition variable, the scheduling policy shall determine
the order in which threads are unblocked. When each thread unblocked as a result of a
pthread_cond_broadcast() or pthread_cond_signal() returns from its call to pthread_cond_clockwait(),
pthread_cond_timedwait(), or pthread_cond_wait(), the thread shall own the mutex with which it
called pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait(). The thread(s)
that are unblocked shall contend for the mutex according to the scheduling policy (if applicable),
and as if each had called pthread_mutex_lock().

The pthread_cond_broadcast() or pthread_cond_signal() functions may be called by a thread
whether or not it currently owns the mutex that threads calling pthread_cond_clockwait(),
pthread_cond_timedwait(), or pthread_cond_wait() have associated with the condition variable
during their waits; however, if predictable scheduling behavior is required, then that mutex shall
be locked by the thread calling pthread_cond_broadcast() or pthread_cond_signal().

The pthread_cond_broadcast() and pthread_cond_signal() functions shall have no effect if they
determine that there are no threads blocked on cond.

The behavior is undefined if the value specified by the cond argument to pthread_cond_broadcast()
or pthread_cond_signal() does not refer to an initialized condition variable.

RETURN VALUE
If successful, the pthread_cond_broadcast() and pthread_cond_signal() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_cond_broadcast() function is used whenever the shared-variable state has been
changed in a way that more than one thread can proceed with its task. Consider a single
producer/multiple consumer problem, where the producer can insert multiple items on a list
that is accessed one item at a time by the consumers. By calling the pthread_cond_broadcast()
function, the producer would notify all consumers that might be waiting, and thereby the
application would receive more throughput on a multi-processor. In addition,
pthread_cond_broadcast() makes it easier to implement a read-write lock. The
pthread_cond_broadcast() function is needed in order to wake up all waiting readers when a

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1693

56252

56253

56254

56255

56256

56257

56258

56259

56260

56261

56262

56263

56264

56265

56266

56267

56268

56269

56270

56271

56272

56273

56274

56275

56276

56277

56278

56279

56280

56281

56282

56283

56284

56285

56286

56287

56288

56289

56290

56291

56292

56293

56294

56295

56296

56297

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cond_broadcast() System Interfaces

writer releases its lock. Finally, the two-phase commit algorithm can use this broadcast function
to notify all clients of an impending transaction commit.

It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked
asynchronously. Even if it were safe, there would still be a race between the test of the Boolean
pthread_cond_wait() that could not be efficiently eliminated.

Mutexes and condition variables are thus not suitable for releasing a waiting thread by signaling
from code running in a signal handler.

RATIONALE
If an implementation detects that the value specified by the cond argument to
pthread_cond_broadcast() or pthread_cond_signal() does not refer to an initialized condition
variable, it is recommended that the function should fail and report an [EINVAL] error.

Multiple Awakenings by Condition Signal

On a multi-processor, it may be impossible for an implementation of pthread_cond_signal() to
avoid the unblocking of more than one thread blocked on a condition variable. For example,
consider the following partial implementation of pthread_cond_wait() and pthread_cond_signal(),
executed by two threads in the order given. One thread is trying to wait on the condition
variable, another is concurrently executing pthread_cond_signal(), while a third thread is already
waiting.

pthread_cond_wait(mutex, cond):
value = cond->value; /* 1 */
pthread_mutex_unlock(mutex); /* 2 */
pthread_mutex_lock(cond->mutex); /* 10 */
if (value == cond->value) { /* 11 */

me->next_cond = cond->waiter;
cond->waiter = me;
pthread_mutex_unlock(cond->mutex);
unable_to_run(me);

} else
pthread_mutex_unlock(cond->mutex); /* 12 */

pthread_mutex_lock(mutex); /* 13 */

pthread_cond_signal(cond):
pthread_mutex_lock(cond->mutex); /* 3 */
cond->value++; /* 4 */
if (cond->waiter) { /* 5 */

sleeper = cond->waiter; /* 6 */
cond->waiter = sleeper->next_cond; /* 7 */
able_to_run(sleeper); /* 8 */

}
pthread_mutex_unlock(cond->mutex); /* 9 */

The effect is that more than one thread can return from its call to pthread_cond_clockwait(),
pthread_cond_timedwait(), or pthread_cond_wait() as a result of one call to pthread_cond_signal().
This effect is called ``spurious wakeup’’. Note that the situation is self-correcting in that the
number of threads that are so awakened is finite; for example, the next thread to call
pthread_cond_wait() after the sequence of events above blocks.

While this problem could be resolved, the loss of efficiency for a fringe condition that occurs
only rarely is unacceptable, especially given that one has to check the predicate associated with a
condition variable anyway. Correcting this problem would unnecessarily reduce the degree of

1694 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56298

56299

56300

56301

56302

56303

56304

56305

56306

56307

56308

56309

56310

56311

56312

56313

56314

56315

56316

56317

56318

56319

56320

56321

56322

56323

56324

56325

56326

56327

56328

56329

56330

56331

56332

56333

56334

56335

56336

56337

56338

56339

56340

56341

56342

56343

56344

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cond_broadcast()

concurrency in this basic building block for all higher-level synchronization operations.

An added benefit of allowing spurious wakeups is that applications are forced to code a
predicate-testing-loop around the condition wait. This also makes the application tolerate
superfluous condition broadcasts or signals on the same condition variable that may be coded in
some other part of the application. The resulting applications are thus more robust. Therefore,
POSIX.1-2024 explicitly documents that spurious wakeups may occur.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_clockwait(), pthread_cond_destroy()

XBD Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_broadcast() and pthread_cond_signal() functions are marked as part of the
Threads option.

The APPLICATION USAGE section is added.

Issue 7
The pthread_cond_broadcast() and pthread_cond_signal() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized condition variable is removed; this condition results in
undefined behavior.

Issue 8
Austin Group Defect 609 is applied, adding atomicity requirements.

Austin Group Defect 1216 is applied, adding pthread_cond_clockwait().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1695

56345

56346

56347

56348

56349

56350

56351

56352

56353

56354

56355

56356

56357

56358

56359

56360

56361

56362

56363

56364

56365

56366

56367

56368

56369

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cond_clockwait() System Interfaces

NAME
pthread_cond_clockwait, pthread_cond_timedwait, pthread_cond_wait — wait on a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_clockwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex, clockid_t clock_id,
const struct timespec *restrict abstime);

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

DESCRIPTION
The pthread_cond_clockwait(), pthread_cond_timedwait(), and pthread_cond_wait() functions shall
block on a condition variable. The application shall ensure that these functions are called with
mutex locked by the calling thread; otherwise, an error (for PTHREAD_MUTEX_ERRORCHECK
and robust mutexes) or undefined behavior (for other mutexes) results.

These functions atomically release mutex and cause the calling thread to block on the condition
variable cond; atomically here means ``atomically with respect to access by another thread to the
mutex and then the condition variable’’. That is, if another thread is able to acquire the mutex
after the about-to-block thread has released it, then a subsequent call to pthread_cond_broadcast()
or pthread_cond_signal() in that thread shall behave as if it were issued after the about-to-block
thread has blocked.

Upon successful return, the mutex shall have been locked and shall be owned by the calling
thread.

If mutex is a robust mutex where an owner terminated while holding the lock and the state is
recoverable, the mutex shall be acquired even though the function returns [EOWNERDEAD].

When using condition variables there is always a Boolean predicate involving shared variables
associated with each condition wait that is true if the thread should proceed. Spurious wakeups
from the pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() functions
may occur. Since the return from pthread_cond_clockwait(), pthread_cond_timedwait(), or
pthread_cond_wait() does not imply anything about the value of this predicate, the predicate
should be re-evaluated upon such return.

When a thread waits on a condition variable, having specified a particular mutex to the
pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() operation, a dynamic
binding is formed between that mutex and condition variable that remains in effect as long as at
least one thread is blocked on the condition variable. During this time, the effect of an attempt
by any thread to wait on that condition variable using a different mutex is undefined. Once all
waiting threads have been unblocked (as by the pthread_cond_broadcast() operation), the next
wait operation on that condition variable shall form a new dynamic binding with the mutex
specified by that wait operation. Even though the dynamic binding between condition variable
and mutex may be removed or replaced between the time a thread is unblocked from a wait on
the condition variable and the time that it returns to the caller or begins cancellation cleanup, the
unblocked thread shall always re-acquire the mutex specified in the condition wait operation
call from which it is returning.

A condition wait (whether timed or not) is a cancellation point. When the cancelability type of a
thread is set to PTHREAD_CANCEL_DEFERRED, a side-effect of acting upon a cancellation
request while in a condition wait is that the mutex is (in effect) re-acquired before calling the first

1696 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56370

56371

56372

56373

56374

56375

56376

56377

56378

56379

56380

56381

56382

56383

56384

56385

56386

56387

56388

56389

56390

56391

56392

56393

56394

56395

56396

56397

56398

56399

56400

56401

56402

56403

56404

56405

56406

56407

56408

56409

56410

56411

56412

56413

56414

56415

56416

56417

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cond_clockwait()

cancellation cleanup handler. The effect is as if the thread were unblocked, allowed to execute up
to the point of returning from the call to pthread_cond_clockwait(), pthread_cond_timedwait(), or
pthread_cond_wait(), but at that point notices the cancellation request and, instead of returning to
the caller, starts the thread cancellation activities, which includes calling cancellation cleanup
handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to
pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() shall not consume any
condition signal that may be directed concurrently at the condition variable if there are other
threads blocked on the condition variable.

The pthread_cond_clockwait() function shall be equivalent to pthread_cond_wait(), except that an
error is returned if the absolute time specified by abstime as measured against the clock indicated
by clock_id passes (that is, the current time measured by that clock equals or exceeds abstime)
before the condition cond is signaled or broadcasted, or if the absolute time specified by abstime
has already been passed at the time of the call. Implementations shall support passing
CLOCK_REALTIME and CLOCK_MONOTONIC to pthread_cond_clockwait() as the clock_id
argument. When such timeouts occur, pthread_cond_clockwait() shall nonetheless release and re-
acquire the mutex referenced by mutex, and may consume a condition signal directed
concurrently at the condition variable.

The pthread_cond_timedwait() function shall be equivalent to pthread_cond_clockwait(), except that
it lacks the clock_id argument. The clock to measure abstime against shall instead come from the
condition variable’s clock attribute which can be set by pthread_condattr_setclock() prior to the
condition variable’s creation. If no clock attribute has been set, the default shall be
CLOCK_REALTIME.

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal
handler the thread resumes waiting for the condition variable as if it was not interrupted, or it
shall return zero due to spurious wakeup.

The behavior is undefined if the value specified by the cond or mutex argument to these
functions does not refer to an initialized condition variable or an initialized mutex object,
respectively.

RETURN VALUE
Except for [ETIMEDOUT], [ENOTRECOVERABLE], and [EOWNERDEAD], all these error
checks shall act as if they were performed immediately at the beginning of processing for the
function and shall cause an error return, in effect, prior to modifying the state of the mutex
specified by mutex or the condition variable specified by cond.

Upon successful completion, a value of zero shall be returned; otherwise, an error number shall
be returned to indicate the error.

ERRORS
These functions shall fail if:

[EAGAIN] The mutex is a robust mutex and the system resources available for robust
mutexes owned would be exceeded.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1697

56418

56419

56420

56421

56422

56423

56424

56425

56426

56427

56428

56429

56430

56431

56432

56433

56434

56435

56436

56437

56438

56439

56440

56441

56442

56443

56444

56445

56446

56447

56448

56449

56450

56451

56452

56453

56454

56455

56456

56457

56458

56459

56460

56461

56462

56463

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cond_clockwait() System Interfaces

consistent.

[EPERM] The mutex type is PTHREAD_MUTEX_ERRORCHECK or the mutex is a
robust mutex, and the current thread does not own the mutex.

The pthread_cond_clockwait() and pthread_cond_timedwait() functions shall fail if:

[ETIMEDOUT] The time specified by abstime has passed.

[EINVAL] The abstime argument specified a nanosecond value less than zero or greater
than or equal to 1000 million, or the clock_id argument passed to
pthread_cond_clockwait() is invalid or not supported.

These functions may fail if:

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes, it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
If an implementation detects that the value specified by the cond argument to
pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() does not refer to an
initialized condition variable, or detects that the value specified by the mutex argument does not
refer to an initialized mutex object, it is recommended that the function should fail and report an
[EINVAL] error.

Condition Wait Semantics

It is important to note that when pthread_cond_clockwait(), pthread_cond_timedwait(), and
pthread_cond_wait() return without error, the associated predicate may still be false. Similarly,
when pthread_cond_clockwait() or pthread_cond_timedwait() returns with the timeout error, the
associated predicate may be true due to an unavoidable race between the expiration of the
timeout and the predicate state change.

The application needs to recheck the predicate on any return because it cannot be sure there is
another thread waiting on the thread to handle the signal, and if there is not then the signal is
lost. The burden is on the application to check the predicate.

Some implementations, particularly on a multi-processor, may sometimes cause multiple
threads to wake up when the condition variable is signaled simultaneously on different
processors.

In general, whenever a condition wait returns, the thread has to re-evaluate the predicate
associated with the condition wait to determine whether it can safely proceed, should wait
again, or should declare a timeout. A return from the wait does not imply that the associated

1698 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56464

56465

56466

56467

56468

56469

56470

56471

56472

56473

56474

56475

56476

56477

56478

56479

56480

56481

56482

56483

56484

56485

56486

56487

56488

56489

56490

56491

56492

56493

56494

56495

56496

56497

56498

56499

56500

56501

56502

56503

56504

56505

56506

56507

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cond_clockwait()

predicate is either true or false.

It is thus recommended that a condition wait be enclosed in the equivalent of a ``while loop’’
that checks the predicate.

Timed Wait Semantics

An absolute time measure was chosen for specifying the timeout parameter for two reasons.
First, a relative time measure can be easily implemented on top of a function that specifies
absolute time, but there is a race condition associated with specifying an absolute timeout on top
of a function that specifies relative timeouts. For example, assume that clock_gettime() returns
the current time and cond_relative_timed_wait() uses relative timeouts:

clock_gettime(CLOCK_REALTIME, &now)
reltime = sleep_til_this_absolute_time -now;
cond_relative_timed_wait(c, m, &reltime);

If the thread is preempted between the first statement and the last statement, the thread blocks
for too long. Blocking, however, is irrelevant if an absolute timeout is used. An absolute timeout
also need not be recomputed if it is used multiple times in a loop, such as that enclosing a
condition wait.

For cases when the system clock is advanced discontinuously by an operator, it is expected that
implementations process any timed wait expiring at an intervening time as if that time had
actually occurred.

Choice of Clock

Care should be taken to decide which clock is most appropriate when waiting with a timeout.
The system clock CLOCK_REALTIME, as used by default with pthread_cond_timedwait(), may be
subject to jumps forwards and backwards in order to correct it against actual time.
CLOCK_MONOTONIC is guaranteed not to jump backwards and must also advance in real
time, so using it via pthread_cond_clockwait() or pthread_condattr_setclock() may be more
appropriate.

Cancellation and Condition Wait

A condition wait, whether timed or not, is a cancellation point. That is, the functions
pthread_cond_clockwait(), pthread_cond_timedwait(), and pthread_cond_wait() are points where a
pending (or concurrent) cancellation request is noticed. The reason for this is that an indefinite
wait is possible at these points—whatever event is being waited for, even if the program is
totally correct, might never occur; for example, some input data being awaited might never be
sent. By making condition wait a cancellation point, the thread can be canceled and perform its
cancellation cleanup handler even though it may be stuck in some indefinite wait.

A side-effect of acting on a cancellation request while a thread is blocked on a condition variable
is to re-acquire the mutex before calling any of the cancellation cleanup handlers. This is done in
order to ensure that the cancellation cleanup handler is executed in the same state as the critical
code that lies both before and after the call to the condition wait function. This rule is also
required when interfacing to POSIX threads from languages, such as Ada or C++, which may
choose to map cancellation onto a language exception; this rule ensures that each exception
handler guarding a critical section can always safely depend upon the fact that the associated
mutex has already been locked regardless of exactly where within the critical section the
exception was raised. Without this rule, there would not be a uniform rule that exception
handlers could follow regarding the lock, and so coding would become very cumbersome.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1699

56508

56509

56510

56511

56512

56513

56514

56515

56516

56517

56518

56519

56520

56521

56522

56523

56524

56525

56526

56527

56528

56529

56530

56531

56532

56533

56534

56535

56536

56537

56538

56539

56540

56541

56542

56543

56544

56545

56546

56547

56548

56549

56550

56551

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cond_clockwait() System Interfaces

Therefore, since some statement has to be made regarding the state of the lock when a
cancellation is delivered during a wait, a definition has been chosen that makes application
coding most convenient and error free.

When acting on a cancellation request while a thread is blocked on a condition variable, the
implementation is required to ensure that the thread does not consume any condition signals
directed at that condition variable if there are any other threads waiting on that condition
variable. This rule is specified in order to avoid deadlock conditions that could occur if these
two independent requests (one acting on a thread and the other acting on the condition variable)
were not processed independently.

Performance of Mutexes and Condition Variables

Mutexes are expected to be locked only for a few instructions. This practice is almost
automatically enforced by the desire of programmers to avoid long serial regions of execution
(which would reduce total effective parallelism).

When using mutexes and condition variables, one tries to ensure that the usual case is to lock the
mutex, access shared data, and unlock the mutex. Waiting on a condition variable should be a
relatively rare situation. For example, when implementing a read-write lock, code that acquires a
read-lock typically needs only to increment the count of readers (under mutual-exclusion) and
return. The calling thread would actually wait on the condition variable only when there is
already an active writer. So the efficiency of a synchronization operation is bounded by the cost
of mutex lock/unlock and not by condition wait. Note that in the usual case there is no context
switch.

This is not to say that the efficiency of condition waiting is unimportant. Since there needs to be
at least one context switch per Ada rendezvous, the efficiency of waiting on a condition variable
is important. The cost of waiting on a condition variable should be little more than the minimal
cost for a context switch plus the time to unlock and lock the mutex.

Features of Mutexes and Condition Variables

It had been suggested that the mutex acquisition and release be decoupled from condition wait.
This was rejected because it is the combined nature of the operation that, in fact, facilitates
realtime implementations. Those implementations can atomically move a high-priority thread
between the condition variable and the mutex in a manner that is transparent to the caller. This
can prevent extra context switches and provide more deterministic acquisition of a mutex when
the waiting thread is signaled. Thus, fairness and priority issues can be dealt with directly by the
scheduling discipline. Furthermore, the current condition wait operation matches existing
practice.

Scheduling Behavior of Mutexes and Condition Variables

Synchronization primitives that attempt to interfere with scheduling policy by specifying an
ordering rule are considered undesirable. Threads waiting on mutexes and condition variables
are selected to proceed in an order dependent upon the scheduling policy rather than in some
fixed order (for example, FIFO or priority). Thus, the scheduling policy determines which
thread(s) are awakened and allowed to proceed.

1700 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56552

56553

56554

56555

56556

56557

56558

56559

56560

56561

56562

56563

56564

56565

56566

56567

56568

56569

56570

56571

56572

56573

56574

56575

56576

56577

56578

56579

56580

56581

56582

56583

56584

56585

56586

56587

56588

56589

56590

56591

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cond_clockwait()

Timed Condition Wait

The pthread_cond_clockwait() and pthread_cond_timedwait() functions allow an application to give
up waiting for a particular condition after a given amount of time. An example follows:

(void) pthread_mutex_lock(&t.mn);
t.waiters++;
clock_gettime(CLOCK_MONOTONIC, &ts);
ts.tv_sec += 5;
rc = 0;
while (! mypredicate(&t) && rc == 0)

rc = pthread_cond_clockwait(&t.cond, &t.mn,
CLOCK_MONOTONIC, &ts);

t.waiters--;
if (rc == 0 || mypredicate(&t))

setmystate(&t);
(void) pthread_mutex_unlock(&t.mn);

By making the timeout parameter absolute, it does not need to be recomputed each time the
program checks its blocking predicate. If the timeout was relative, it would have to be
recomputed before each call. This would be especially difficult since such code would need to
take into account the possibility of extra wakeups that result from extra broadcasts or signals on
the condition variable that occur before either the predicate is true or the timeout is due. Using
CLOCK_MONOTONIC rather than CLOCK_REALTIME means that the timeout is not
influenced by the system clock being changed.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast()

XBD Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_timedwait() and pthread_cond_wait() functions are marked as part of the
Threads option.

The Open Group Corrigendum U021/9 is applied, correcting the prototype for the
pthread_cond_wait() function.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for the Clock Selection option.

The ERRORS section has an additional case for [EPERM] in response to IEEE PASC
Interpretation 1003.1c #28.

The restrict keyword is added to the pthread_cond_timedwait() and pthread_cond_wait()
prototypes for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/89 is applied, updating the
DESCRIPTION for consistency with the pthread_cond_destroy() function that states it is safe to
destroy an initialized condition variable upon which no threads are currently blocked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/90 is applied, updating words in the
DESCRIPTION from ``the cancelability enable state’’ to ``the cancelability type’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1701

56592

56593

56594

56595

56596

56597

56598

56599

56600

56601

56602

56603

56604

56605

56606

56607

56608

56609

56610

56611

56612

56613

56614

56615

56616

56617

56618

56619

56620

56621

56622

56623

56624

56625

56626

56627

56628

56629

56630

56631

56632

56633

56634

56635

56636

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cond_clockwait() System Interfaces

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/91 is applied, updating the ERRORS
section to remove the error case related to abstime from the pthread_cond_wait() function, and to
make the error case related to abstime mandatory for pthread_cond_timedwait() for consistency
with other functions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/92 is applied, adding a new paragraph to
the RATIONALE section stating that an application should check the predicate on any return
from this function.

Issue 7
SD5-XSH-ERN-44 is applied, changing the definition of the ``shall fail’’ case of the [EINVAL]
error.

Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_cond_timedwait() and pthread_cond_wait() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized condition variable or uninitialized mutex object is
removed; this condition results in undefined behavior"

The [EPERM] error is revised and moved to the ``shall fail’’ list of error conditions for the
pthread_cond_timedwait() function.

The DESCRIPTION is updated to clarify the behavior when mutex is a robust mutex.

The ERRORS section is updated to include ``shall fail’’ cases for
PTHREAD_MUTEX_ERRORCHECK mutexes.

The DESCRIPTION is rewritten to clarify that undefined behavior occurs only for mutexes
where the [EPERM] error is not mandated.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0456 [91,286,437] and
XSH/TC1-2008/0457 [239] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0271 [749] is applied.

Issue 8
Austin Group Defect 354 is applied, adding the [EAGAIN] error.

Austin Group Defect 1162 is applied, changing ``an error code’’ to ``[EOWNERDEAD]’’.

Austin Group Defects 1216 and 1485 are applied, adding pthread_cond_clockwait().

1702 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56637

56638

56639

56640

56641

56642

56643

56644

56645

56646

56647

56648

56649

56650

56651

56652

56653

56654

56655

56656

56657

56658

56659

56660

56661

56662

56663

56664

56665

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cond_destroy()

NAME
pthread_cond_destroy, pthread_cond_init — destroy and initialize condition variables

SYNOPSIS
#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

DESCRIPTION
The pthread_cond_destroy() function shall destroy the given condition variable specified by cond;
the object becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy()
to set the object referenced by cond to an invalid value. A destroyed condition variable object can
be reinitialized using pthread_cond_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

It shall be safe to destroy an initialized condition variable upon which no threads are currently
blocked. Attempting to destroy a condition variable upon which other threads are currently
blocked results in undefined behavior.

The pthread_cond_init() function shall initialize the condition variable referenced by cond with
attributes referenced by attr. If attr is NULL, the default condition variable attributes shall be
used; the effect is the same as passing the address of a default condition variable attributes
object. Upon successful initialization, the state of the condition variable shall become initialized.

See Section 2.9.9 (on page 548) for further requirements.

Attempting to initialize an already initialized condition variable results in undefined behavior.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables. The effect shall
be equivalent to dynamic initialization by a call to pthread_cond_init() with parameter attr
specified as NULL, except that no error checks are performed.

The behavior is undefined if the value specified by the cond argument to pthread_cond_destroy()
does not refer to an initialized condition variable.

The behavior is undefined if the value specified by the attr argument to pthread_cond_init() does
not refer to an initialized condition variable attributes object.

RETURN VALUE
If successful, the pthread_cond_destroy() and pthread_cond_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_cond_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another condition variable.

[ENOMEM] Insufficient memory exists to initialize the condition variable.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1703

56666

56667

56668

56669

56670

56671

56672

56673

56674

56675

56676

56677

56678

56679

56680

56681

56682

56683

56684

56685

56686

56687

56688

56689

56690

56691

56692

56693

56694

56695

56696

56697

56698

56699

56700

56701

56702

56703

56704

56705

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cond_destroy() System Interfaces

EXAMPLES
A condition variable can be destroyed immediately after all the threads that are blocked on it are
awakened. For example, consider the following code:

struct list {
pthread_mutex_t lm;
...

}

struct elt {
key k;
int busy;
pthread_cond_t notbusy;
...

}

/* Find a list element and reserve it. */
struct elt *
list_find(struct list *lp, key k)
{

struct elt *ep;

pthread_mutex_lock(&lp->lm);
while ((ep = find_elt(l, k) != NULL) && ep->busy)

pthread_cond_wait(&ep->notbusy, &lp->lm);
if (ep != NULL)

ep->busy = 1;
pthread_mutex_unlock(&lp->lm);
return(ep);

}
delete_elt(struct list *lp, struct elt *ep)
{

pthread_mutex_lock(&lp->lm);
assert(ep->busy);
... remove ep from list ...
ep->busy = 0; /* Paranoid. */

(A) pthread_cond_broadcast(&ep->notbusy);
pthread_mutex_unlock(&lp->lm);

(B) pthread_cond_destroy(&ep->notbusy);
free(ep);

}

In this example, the condition variable and its list element may be freed (line B) immediately
after all threads waiting for it are awakened (line A), since the mutex and the code ensure that
no other thread can touch the element to be deleted.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the cond argument to
pthread_cond_destroy() does not refer to an initialized condition variable, it is recommended that
the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the cond argument to
pthread_cond_destroy() or pthread_cond_init() refers to a condition variable that is in use (for

1704 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56706

56707

56708

56709

56710

56711

56712

56713

56714

56715

56716

56717

56718

56719

56720

56721

56722

56723

56724

56725

56726

56727

56728

56729

56730

56731

56732

56733

56734

56735

56736

56737

56738

56739

56740

56741

56742

56743

56744

56745

56746

56747

56748

56749

56750

56751

56752

56753

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cond_destroy()

example, in a pthread_cond_wait() call) by another thread, or detects that the value specified by
the cond argument to pthread_cond_init() refers to an already initialized condition variable, it is
recommended that the function should fail and report an [EBUSY] error.

If an implementation detects that the value specified by the attr argument to pthread_cond_init()
does not refer to an initialized condition variable attributes object, it is recommended that the
function should fail and report an [EINVAL] error.

See also pthread_mutex_destroy().

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast(), pthread_cond_clockwait(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_destroy() and pthread_cond_init() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_cond_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_cond_destroy() and pthread_cond_init() functions are moved from the Threads option
to the Base.

The [EINVAL] error for an uninitialized condition variable and an uninitialized condition
variable attributes object is removed; this condition results in undefined behavior.

The [EBUSY] error for a condition variable already in use or an already initialized condition
variable is removed; this condition results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0455 [70] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0269 [972] and XSH/TC2-2008/0270
[910] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1705

56754

56755

56756

56757

56758

56759

56760

56761

56762

56763

56764

56765

56766

56767

56768

56769

56770

56771

56772

56773

56774

56775

56776

56777

56778

56779

56780

56781

56782

56783

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_cond_signal() System Interfaces

NAME
pthread_cond_signal — signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION
Refer to pthread_cond_broadcast().

1706 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56784

56785

56786

56787

56788

56789

56790

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_cond_timedwait()

NAME
pthread_cond_timedwait, pthread_cond_wait — wait on a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

DESCRIPTION
Refer to pthread_cond_clockwait().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1707

56791

56792

56793

56794

56795

56796

56797

56798

56799

56800

56801

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_condattr_destroy() System Interfaces

NAME
pthread_condattr_destroy, pthread_condattr_init — destroy and initialize the condition variable
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t *attr);
int pthread_condattr_init(pthread_condattr_t *attr);

DESCRIPTION
The pthread_condattr_destroy() function shall destroy a condition variable attributes object; the
object becomes, in effect, uninitialized. An implementation may cause pthread_condattr_destroy()
to set the object referenced by attr to an invalid value. A destroyed attr attributes object can be
reinitialized using pthread_condattr_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

The pthread_condattr_init() function shall initialize a condition variable attributes object attr with
the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_condattr_init() is called specifying an already initialized attr
attributes object.

After a condition variable attributes object has been used to initialize one or more condition
variables, any function affecting the attributes object (including destruction) shall not affect any
previously initialized condition variables.

This volume of POSIX.1-2024 requires two attributes, the clock attribute and the process-shared
attribute.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to
pthread_condattr_destroy() does not refer to an initialized condition variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_destroy() and pthread_condattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_condattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the condition variable attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A process-shared attribute has been defined for condition variables for the same reason it has been
defined for mutexes.

If an implementation detects that the value specified by the attr argument to
pthread_condattr_destroy() does not refer to an initialized condition variable attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

1708 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56802

56803

56804

56805

56806

56807

56808

56809

56810

56811

56812

56813

56814

56815

56816

56817

56818

56819

56820

56821

56822

56823

56824

56825

56826

56827

56828

56829

56830

56831

56832

56833

56834

56835

56836

56837

56838

56839

56840

56841

56842

56843

56844

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_condattr_destroy()

See also pthread_attr_destroy() and pthread_mutex_destroy().

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_cond_destroy(), pthread_condattr_getpshared(), pthread_create(),
pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_condattr_destroy() and pthread_condattr_init() functions are marked as part of the
Threads option.

Issue 7
The pthread_condattr_destroy() and pthread_condattr_init() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is removed; this
condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1709

56845

56846

56847

56848

56849

56850

56851

56852

56853

56854

56855

56856

56857

56858

56859

56860

56861

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_condattr_getclock() System Interfaces

NAME
pthread_condattr_getclock, pthread_condattr_setclock — get and set the clock selection
condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,
clockid_t *restrict clock_id);

int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id);

DESCRIPTION
The pthread_condattr_getclock() function shall obtain the value of the clock attribute from the
attributes object referenced by attr.

The pthread_condattr_setclock() function shall set the clock attribute in an initialized attributes
object referenced by attr. If pthread_condattr_setclock() is called with a clock_id argument that
refers to a CPU-time clock, the call shall fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of
pthread_cond_timedwait(). The default value of the clock attribute shall refer to the system clock.
The clock attribute shall have no effect on the pthread_cond_clockwait() function.

The behavior is undefined if the value specified by the attr argument to
pthread_condattr_getclock() or pthread_condattr_setclock() does not refer to an initialized condition
variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_getclock() function shall return zero and store the value of the
clock attribute of attr into the object referenced by the clock_id argument. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_setclock() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_condattr_setclock() function may fail if:

[EINVAL] The value specified by clock_id does not refer to a known clock, or is a CPU-
time clock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_condattr_getclock() or pthread_condattr_setclock() does not refer to an initialized condition
variable attributes object, it is recommended that the function should fail and report an
[EINVAL] error.

1710 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56862

56863

56864

56865

56866

56867

56868

56869

56870

56871

56872

56873

56874

56875

56876

56877

56878

56879

56880

56881

56882

56883

56884

56885

56886

56887

56888

56889

56890

56891

56892

56893

56894

56895

56896

56897

56898

56899

56900

56901

56902

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_condattr_getclock()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_clockwait(), pthread_cond_destroy(), pthread_condattr_destroy(),
pthread_condattr_getpshared(), pthread_create(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The pthread_condattr_getclock() and pthread_condattr_setclock() functions are moved from the
Clock Selection option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is removed; this
condition results in undefined behavior.

Issue 8
Austin Group Defect 1216 is applied, adding pthread_cond_clockwait().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1711

56903

56904

56905

56906

56907

56908

56909

56910

56911

56912

56913

56914

56915

56916

56917

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_condattr_getpshared() System Interfaces

NAME
pthread_condattr_getpshared, pthread_condattr_setpshared — get and set the process-shared
condition variable attributes

SYNOPSIS
TSH #include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t *restrict attr,
int *restrict pshared);

int pthread_condattr_setpshared(pthread_condattr_t *attr,
int pshared);

DESCRIPTION
The pthread_condattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr.

The pthread_condattr_setpshared() function shall set the process-shared attribute in an initialized
attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition
variable to be operated upon by any thread that has access to the memory where the condition
variable is allocated, even if the condition variable is allocated in memory that is shared by
multiple processes. See Section 2.9.9 (on page 548) for further requirements. The default value of
the attribute is PTHREAD_PROCESS_PRIVATE.

The behavior is undefined if the value specified by the attr argument to
pthread_condattr_getpshared() or pthread_condattr_setpshared() does not refer to an initialized
condition variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_getpshared() function shall return zero and store the value of
the process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise,
an error number shall be returned to indicate the error.

ERRORS
The pthread_condattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_condattr_getpshared() or pthread_condattr_setpshared() does not refer to an initialized
condition variable attributes object, it is recommended that the function should fail and report
an [EINVAL] error.

1712 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56918

56919

56920

56921

56922

56923

56924

56925

56926

56927

56928

56929

56930

56931

56932

56933

56934

56935

56936

56937

56938

56939

56940

56941

56942

56943

56944

56945

56946

56947

56948

56949

56950

56951

56952

56953

56954

56955

56956

56957

56958

56959

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_condattr_getpshared()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_cond_destroy(), pthread_condattr_destroy(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are marked as part
of the Threads and Thread Process-Shared Synchronization options.

The restrict keyword is added to the pthread_condattr_getpshared() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are marked only as
part of the Thread Process-Shared Synchronization option as the Threads option is now part of
the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is removed; this
condition results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0272 [972] and XSH/TC2-2008/0273
[757] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1713

56960

56961

56962

56963

56964

56965

56966

56967

56968

56969

56970

56971

56972

56973

56974

56975

56976

56977

56978

56979

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_condattr_init() System Interfaces

NAME
pthread_condattr_init — initialize the condition variable attributes object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr);

DESCRIPTION
Refer to pthread_condattr_destroy().

1714 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56980

56981

56982

56983

56984

56985

56986

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_condattr_setclock()

NAME
pthread_condattr_setclock — set the clock selection condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id);

DESCRIPTION
Refer to pthread_condattr_getclock().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1715

56987

56988

56989

56990

56991

56992

56993

56994

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_condattr_setpshared() System Interfaces

NAME
pthread_condattr_setpshared — set the process-shared condition variable attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_condattr_getpshared().

1716 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56995

56996

56997

56998

56999

57000

57001

57002

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_create()

NAME
pthread_create — thread creation

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

DESCRIPTION
The pthread_create() function shall create a new thread, with attributes specified by attr, within a
process. If attr is NULL, the default attributes shall be used. If the attributes specified by attr are
modified later, the thread’s attributes shall not be affected. Upon successful completion,
pthread_create() shall store the ID of the created thread in the location referenced by thread.

The thread is created executing start_routine with arg as its sole argument. If the start_routine
returns, the effect shall be as if there was an implicit call to pthread_exit() using the return value
of start_routine as the exit status. Note that the thread in which main() was originally invoked
differs from this. When it returns from main(), the effect shall be as if there was an implicit call to
exit() using the return value of main() as the exit status.

The signal state of the new thread shall be initialized as follows:

• The signal mask shall be inherited from the creating thread.

• The set of signals pending for the new thread shall be empty.

XSI The thread-local current locale and the alternate stack shall not be inherited.

The floating-point environment shall be inherited from the creating thread.

If pthread_create() fails, no new thread is created and the contents of the location referenced by
thread are undefined.

TCT If _POSIX_THREAD_CPUTIME is defined, the new thread shall have a CPU-time clock
accessible, and the initial value of this clock shall be set to zero.

The behavior is undefined if the value specified by the attr argument to pthread_create() does not
refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_create() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_create() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another thread, or the
system-imposed limit on the total number of threads in a process
{PTHREAD_THREADS_MAX} would be exceeded.

[EPERM] The caller does not have appropriate privileges to set the required scheduling
parameters or scheduling policy.

The pthread_create() function shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1717

57003

57004

57005

57006

57007

57008

57009

57010

57011

57012

57013

57014

57015

57016

57017

57018

57019

57020

57021

57022

57023

57024

57025

57026

57027

57028

57029

57030

57031

57032

57033

57034

57035

57036

57037

57038

57039

57040

57041

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_create() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
There is no requirement on the implementation that the ID of the created thread be available
before the newly created thread starts executing. The calling thread can obtain the ID of the
created thread through the thread argument of the pthread_create() function, and the newly
created thread can obtain its ID by a call to pthread_self().

RATIONALE
A suggested alternative to pthread_create() would be to define two separate operations: create
and start. Some applications would find such behavior more natural. Ada, in particular,
separates the ``creation’’ of a task from its ``activation’’.

Splitting the operation was rejected by the standard developers for many reasons:

• The number of calls required to start a thread would increase from one to two and thus
place an additional burden on applications that do not require the additional
synchronization. The second call, however, could be avoided by the additional
complication of a start-up state attribute.

• An extra state would be introduced: ``created but not started’’. This would require the
standard to specify the behavior of the thread operations when the target has not yet
started executing.

• For those applications that require such behavior, it is possible to simulate the two separate
steps with the facilities that are currently provided. The start_routine() can synchronize by
waiting on a condition variable that is signaled by the start operation.

An Ada implementor can choose to create the thread at either of two points in the Ada program:
when the task object is created, or when the task is activated (generally at a ``begin’’). If the first
approach is adopted, the start_routine() needs to wait on a condition variable to receive the order
to begin ``activation’’. The second approach requires no such condition variable or extra
synchronization. In either approach, a separate Ada task control block would need to be created
when the task object is created to hold rendezvous queues, and so on.

An extension of the preceding model would be to allow the state of the thread to be modified
between the create and start. This would allow the thread attributes object to be eliminated. This
has been rejected because:

• All state in the thread attributes object has to be able to be set for the thread. This would
require the definition of functions to modify thread attributes. There would be no
reduction in the number of function calls required to set up the thread. In fact, for an
application that creates all threads using identical attributes, the number of function calls
required to set up the threads would be dramatically increased. Use of a thread attributes
object permits the application to make one set of attribute setting function calls.
Otherwise, the set of attribute setting function calls needs to be made for each thread
creation.

• Depending on the implementation architecture, functions to set thread state would require
kernel calls, or for other implementation reasons would not be able to be implemented as
macros, thereby increasing the cost of thread creation.

• The ability for applications to segregate threads by class would be lost.

Another suggested alternative uses a model similar to that for process creation, such as ``thread
fork’’. The fork semantics would provide more flexibility and the ``create’’ function can be
implemented simply by doing a thread fork followed immediately by a call to the desired ``start

1718 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57042

57043

57044

57045

57046

57047

57048

57049

57050

57051

57052

57053

57054

57055

57056

57057

57058

57059

57060

57061

57062

57063

57064

57065

57066

57067

57068

57069

57070

57071

57072

57073

57074

57075

57076

57077

57078

57079

57080

57081

57082

57083

57084

57085

57086

57087

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_create()

routine’’ for the thread. This alternative has these problems:

• For many implementations, the entire stack of the calling thread would need to be
duplicated, since in many architectures there is no way to determine the size of the calling
frame.

• Efficiency is reduced since at least some part of the stack has to be copied, even though in
most cases the thread never needs the copied context, since it merely calls the desired start
routine.

If an implementation detects that the value specified by the attr argument to pthread_create()
does not refer to an initialized thread attributes object, it is recommended that the function
should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), pthread_exit(), pthread_join()

XBD Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_create() function is marked as part of the Threads option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EPERM] mandatory error condition is added.

The thread CPU-time clock semantics are added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_create() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The DESCRIPTION is updated to make it explicit that the floating-point environment is
inherited from the creating thread.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/44 is applied, adding text that the
alternate stack is not inherited.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/93 is applied, updating the ERRORS
section to remove the mandatory [EINVAL] error (``The value specified by attr is invalid’’), and
adding the optional [EINVAL] error (``The attributes specified by attr are invalid’’).

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/94 is applied, adding the APPLICATION
USAGE section.

Issue 7
The pthread_create() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0458 [302] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0274 [849] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1719

57088

57089

57090

57091

57092

57093

57094

57095

57096

57097

57098

57099

57100

57101

57102

57103

57104

57105

57106

57107

57108

57109

57110

57111

57112

57113

57114

57115

57116

57117

57118

57119

57120

57121

57122

57123

57124

57125

57126

57127

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_detach() System Interfaces

NAME
pthread_detach — detach a thread

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t thread);

DESCRIPTION
The pthread_detach() function shall change the thread thread from joinable to detached, indicating
to the implementation that storage for the thread can be reclaimed when the thread terminates.
If thread has not terminated, pthread_detach() shall not cause it to terminate, but shall prevent the
thread from becoming a zombie thread when it does terminate.

The behavior is undefined if the value specified by the thread argument to pthread_detach() does
not refer to a joinable thread.

RETURN VALUE
If the call succeeds, pthread_detach() shall return 0; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_detach() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_join() or pthread_detach() functions should eventually be called for every thread that
is created so that storage associated with the thread may be reclaimed.

It has been suggested that a ``detach’’ function is not necessary; the detachstate thread creation
attribute is sufficient, since a thread need never be dynamically detached. However, need arises
in at least two cases:

1. In a cancellation handler for a pthread_join() it is nearly essential to have a
pthread_detach() function in order to detach the thread on which pthread_join() was
waiting. Without it, it would be necessary to have the handler do another pthread_join() to
attempt to detach the thread, which would both delay the cancellation processing for an
unbounded period and introduce a new call to pthread_join(), which might itself need a
cancellation handler. A dynamic detach is nearly essential in this case.

2. In order to detach the ``initial thread’’ (as may be desirable in processes that set up server
threads).

If an implementation detects that the value specified by the thread argument to pthread_detach()
does not refer to a joinable thread, it is recommended that the function should fail and report an
[EINVAL] error.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

1720 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57128

57129

57130

57131

57132

57133

57134

57135

57136

57137

57138

57139

57140

57141

57142

57143

57144

57145

57146

57147

57148

57149

57150

57151

57152

57153

57154

57155

57156

57157

57158

57159

57160

57161

57162

57163

57164

57165

57166

57167

57168

57169

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_detach()

SEE ALSO
pthread_join()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_detach() function is marked as part of the Threads option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/95 is applied, updating the ERRORS
section so that the [EINVAL] and [ESRCH] error cases become optional.

Issue 7
The pthread_detach() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in undefined
behavior.

Issue 8
Austin Group Defect 792 is applied, clarifying that detaching a live thread prevents it becoming
a zombie thread when it terminates.

Austin Group Defect 1167 is applied, clarifying that a thread is no longer joinable after
pthread_detach() has been called for it.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1721

57170

57171

57172

57173

57174

57175

57176

57177

57178

57179

57180

57181

57182

57183

57184

57185

57186

57187

57188

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_equal() System Interfaces

NAME
pthread_equal — compare thread IDs

SYNOPSIS
#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

DESCRIPTION
This function shall compare the thread IDs t1 and t2.

RETURN VALUE
The pthread_equal() function shall return a non-zero value if t1 and t2 are equal; otherwise, zero
shall be returned.

If either t1 or t2 is not a valid thread ID and is not equal to PTHREAD_NULL, the behavior is
undefined.

ERRORS
No errors are defined.

The pthread_equal() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Implementations may choose to define a thread ID as a structure. This allows additional
flexibility and robustness over using an int. For example, a thread ID could include a sequence
number that allows detection of ``dangling IDs’’ (copies of a thread ID that has been detached).
Since the C language does not support comparison on structure types, the pthread_equal()
function is provided to compare thread IDs.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_self()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_equal() function is marked as part of the Threads option.

Issue 7
The pthread_equal() function is moved from the Threads option to the Base.

Issue 8
Austin Group Defect 599 is applied, changing the RETURN VALUE section to mention
PTHREAD_NULL.

1722 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57189

57190

57191

57192

57193

57194

57195

57196

57197

57198

57199

57200

57201

57202

57203

57204

57205

57206

57207

57208

57209

57210

57211

57212

57213

57214

57215

57216

57217

57218

57219

57220

57221

57222

57223

57224

57225

57226

57227

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_exit()

NAME
pthread_exit — thread termination

SYNOPSIS
#include <pthread.h>

_Noreturn void pthread_exit(void *value_ptr);

DESCRIPTION
The pthread_exit() function shall terminate the calling thread and make the value value_ptr
available to any successful join with the terminating thread. Any cancellation cleanup handlers
that have been pushed and not yet popped shall be popped in the reverse order that they were
pushed and then executed. After all cancellation cleanup handlers have been executed, if the
thread has any thread-specific data (whether associated with key type tss_t or pthread_key_t),
appropriate destructor functions shall be called in an unspecified order. Thread termination
does not release any application visible process resources, including, but not limited to, mutexes
and file descriptors, nor does it perform any process-level cleanup actions, including, but not
limited to, calling any atexit() routines that may exist.

An implicit call to pthread_exit() is made when a thread that was not created using thrd_create(),
and is not the thread in which main() was first invoked, returns from the start routine that was
used to create it. The function’s return value shall serve as the thread’s exit status.

The behavior of pthread_exit() is undefined if called from a cancellation cleanup handler or
destructor function that was invoked as a result of either an implicit or explicit call to
pthread_exit().

After a thread has terminated, the result of access to local (auto) variables of the thread is
undefined. Thus, references to local variables of the exiting thread should not be used for the
pthread_exit() value_ptr parameter value.

The process shall exit with an exit status of 0 after the last thread has been terminated. The
behavior shall be as if the implementation called exit() with a zero argument at thread
termination time.

RETURN VALUE
The pthread_exit() function cannot return to its caller.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Calls to pthread_exit() should not be made from threads created using thrd_create(), as their exit
status has a different type (int instead of void *). If pthread_exit() is called from the initial thread
and it is not the last thread to terminate, other threads should not try to obtain its exit status
using thrd_join().

RATIONALE
The normal mechanism by which a thread that was started using pthread_create() terminates is to
return from the routine that was specified in the pthread_create() call that started it. The
pthread_exit() function provides the capability for a thread to terminate without requiring a
return from the start routine of that thread, thereby providing a function analogous to exit().

Regardless of the method of thread termination, any cancellation cleanup handlers that have
been pushed and not yet popped are executed, and the destructors for any existing thread-
specific data are executed. This volume of POSIX.1-2024 requires that cancellation cleanup

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1723

57228

57229

57230

57231

57232

57233

57234

57235

57236

57237

57238

57239

57240

57241

57242

57243

57244

57245

57246

57247

57248

57249

57250

57251

57252

57253

57254

57255

57256

57257

57258

57259

57260

57261

57262

57263

57264

57265

57266

57267

57268

57269

57270

57271

57272

57273

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_exit() System Interfaces

handlers be popped and called in order. After all cancellation cleanup handlers have been
executed, thread-specific data destructors are called, in an unspecified order, for each item of
thread-specific data that exists in the thread. This ordering is necessary because cancellation
cleanup handlers may rely on thread-specific data.

As the meaning of the status is determined by the application (except when the thread has been
canceled, in which case it is PTHREAD_CANCELED), the implementation has no idea what an
illegal status value is, which is why no address error checking is done.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), pthread_create(), pthread_join(), pthread_key_create(), thrd_create(), thrd_exit(), tss_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_exit() function is marked as part of the Threads option.

Issue 7
The pthread_exit() function is moved from the Threads option to the Base.

Issue 8
Austin Group Defect 1302 is applied, adding _Noreturn to the SYNOPSIS, and updating the
page to account for the addition of <threads.h> interfaces.

1724 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57274

57275

57276

57277

57278

57279

57280

57281

57282

57283

57284

57285

57286

57287

57288

57289

57290

57291

57292

57293

57294

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_getcpuclockid()

NAME
pthread_getcpuclockid — access a thread CPU-time clock (ADVANCED REALTIME
THREADS)

SYNOPSIS
TCT #include <pthread.h>

#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id, clockid_t *clock_id);

DESCRIPTION
The pthread_getcpuclockid() function shall return in clock_id the clock ID of the CPU-time clock of
the thread specified by thread_id, if the thread specified by thread_id exists.

RETURN VALUE
Upon successful completion, pthread_getcpuclockid() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The pthread_getcpuclockid() function is part of the Thread CPU-Time Clocks option and need not
be provided on all implementations.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getcpuclockid(), clock_getres(), timer_create()

XBD <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_getcpuclockid() function is marked only as part of the Thread CPU-Time Clocks
option as the Threads option is now part of the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0275 [757] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1725

57295

57296

57297

57298

57299

57300

57301

57302

57303

57304

57305

57306

57307

57308

57309

57310

57311

57312

57313

57314

57315

57316

57317

57318

57319

57320

57321

57322

57323

57324

57325

57326

57327

57328

57329

57330

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_getschedparam() System Interfaces

NAME
pthread_getschedparam, pthread_setschedparam — dynamic thread scheduling parameters
access (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_getschedparam(pthread_t thread, int *restrict policy,
struct sched_param *restrict param);

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param);

DESCRIPTION
The pthread_getschedparam() and pthread_setschedparam() functions shall, respectively, get and set
the scheduling policy and parameters of individual threads within a multi-threaded process to
be retrieved and set. For SCHED_FIFO and SCHED_RR, the only required member of the
sched_param structure is the priority sched_priority. For SCHED_OTHER, the affected
scheduling parameters are implementation-defined.

The pthread_getschedparam() function shall retrieve the scheduling policy and scheduling
parameters for the thread whose thread ID is given by thread and shall store those values in
policy and param, respectively. The priority value returned from pthread_getschedparam() shall be
the value specified by the most recent pthread_setschedparam(), pthread_setschedprio(), or
pthread_create() call affecting the target thread. It shall not reflect any temporary adjustments to
its priority as a result of any priority inheritance or ceiling functions. The pthread_setschedparam()
function shall set the scheduling policy and associated scheduling parameters for the thread
whose thread ID is given by thread to the policy and associated parameters provided in policy
and param, respectively.

The policy parameter may have the value SCHED_OTHER, SCHED_FIFO, or SCHED_RR. The
scheduling parameters for the SCHED_OTHER policy are implementation-defined. The
SCHED_FIFO and SCHED_RR policies shall have a single scheduling parameter, priority.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, then the policy argument may have the
value SCHED_SPORADIC, with the exception for the pthread_setschedparam() function that if the
scheduling policy was not SCHED_SPORADIC at the time of the call, it is implementation-
defined whether the function is supported; in other words, the implementation need not allow
the application to dynamically change the scheduling policy to SCHED_SPORADIC. The
sporadic server scheduling policy has the associated parameters sched_ss_low_priority,
sched_ss_repl_period, sched_ss_init_budget, sched_priority, and sched_ss_max_repl. The specified
sched_ss_repl_period shall be greater than or equal to the specified sched_ss_init_budget for the
function to succeed; if it is not, then the function shall fail. The value of sched_ss_max_repl shall
be within the inclusive range [1,{SS_REPL_MAX}] for the function to succeed; if not, the function
shall fail. It is unspecified whether the sched_ss_repl_period and sched_ss_init_budget values are
stored as provided by this function or are rounded to align with the resolution of the clock being
used.

If the pthread_setschedparam() function fails, the scheduling parameters shall not be changed for
the target thread.

RETURN VALUE
If successful, the pthread_getschedparam() and pthread_setschedparam() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

1726 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57331

57332

57333

57334

57335

57336

57337

57338

57339

57340

57341

57342

57343

57344

57345

57346

57347

57348

57349

57350

57351

57352

57353

57354

57355

57356

57357

57358

57359

57360

57361

57362

57363

57364

57365

57366

57367

57368

57369

57370

57371

57372

57373

57374

57375

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_getschedparam()

ERRORS
The pthread_setschedparam() function shall fail if:

[ENOTSUP] An attempt was made to set the policy or scheduling parameters to an
unsupported value.

TSP [ENOTSUP] An attempt was made to dynamically change the scheduling policy to
SCHED_SPORADIC, and the implementation does not support this change.

The pthread_setschedparam() function may fail if:

[EINVAL] The value specified by policy or one of the scheduling parameters associated
with the scheduling policy policy is invalid.

[EPERM] The caller does not have appropriate privileges to set either the scheduling
parameters or the scheduling policy of the specified thread.

[EPERM] The implementation does not allow the application to modify one of the
parameters to the value specified.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_setschedprio(), sched_getparam(), sched_getscheduler()

XBD <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_getschedparam() and pthread_setschedparam() functions are marked as part of the
Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The Open Group Corrigendum U026/2 is applied, correcting the prototype for the
pthread_setschedparam() function so that its second argument is of type int.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_getschedparam() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The Open Group Corrigendum U047/1 is applied.

IEEE PASC Interpretation 1003.1 #96 is applied, noting that priority values can also be set by a
call to the pthread_setschedprio() function.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1727

57376

57377

57378

57379

57380

57381

57382

57383

57384

57385

57386

57387

57388

57389

57390

57391

57392

57393

57394

57395

57396

57397

57398

57399

57400

57401

57402

57403

57404

57405

57406

57407

57408

57409

57410

57411

57412

57413

57414

57415

57416

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_getschedparam() System Interfaces

Issue 7
The pthread_getschedparam() and pthread_setschedparam() functions are marked only as part of the
Thread Execution Scheduling option as the Threads option is now part of the Base.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy requirements
for the sched_ss_repl_period and sched_ss_init_budget values.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0459 [314] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0276 [757] is applied.

1728 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57417

57418

57419

57420

57421

57422

57423

57424

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_getspecific()

NAME
pthread_getspecific, pthread_setspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

void *pthread_getspecific(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *value);

DESCRIPTION
The pthread_getspecific() function shall return the value currently bound to the specified key on
behalf of the calling thread.

The pthread_setspecific() function shall associate a thread-specific value with a key obtained via a
previous call to pthread_key_create(). Different threads may bind different values to the same
key. These values are typically pointers to blocks of dynamically allocated memory that have
been reserved for use by the calling thread.

The effect of calling pthread_getspecific() or pthread_setspecific() with a key value not obtained
from pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

Both pthread_getspecific() and pthread_setspecific() may be called from a thread-specific data
destructor function. A call to pthread_getspecific() for the thread-specific data key being
destroyed shall return the value NULL, unless the value is changed (after the destructor starts)
by a call to pthread_setspecific(). Calling pthread_setspecific() from a thread-specific data
destructor routine may result either in lost storage (after at least
PTHREAD_DESTRUCTOR_ITERATIONS attempts at destruction) or in an infinite loop.

Both functions may be implemented as macros.

RETURN VALUE
The pthread_getspecific() function shall return the thread-specific data value associated with the
given key. If no thread-specific data value is associated with key, then the value NULL shall be
returned.

If successful, the pthread_setspecific() function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
No errors are returned from pthread_getspecific().

The pthread_setspecific() function shall fail if:

[ENOMEM] Insufficient memory exists to associate the non-NULL value with the key.

The pthread_setspecific() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Performance and ease-of-use of pthread_getspecific() are critical for functions that rely on
maintaining state in thread-specific data. Since no errors are required to be detected by it, and
since the only error that could be detected is the use of an invalid key, the function to
pthread_getspecific() has been designed to favor speed and simplicity over error reporting.

If an implementation detects that the value specified by the key argument to pthread_setspecific()
does not refer to a a key value obtained from pthread_key_create() or refers to a key that has been

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1729

57425

57426

57427

57428

57429

57430

57431

57432

57433

57434

57435

57436

57437

57438

57439

57440

57441

57442

57443

57444

57445

57446

57447

57448

57449

57450

57451

57452

57453

57454

57455

57456

57457

57458

57459

57460

57461

57462

57463

57464

57465

57466

57467

57468

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_getspecific() System Interfaces

deleted with pthread_key_delete(), it is recommended that the function should fail and report an
[EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_getspecific() and pthread_setspecific() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1c #3 (Part 6) is applied, updating the DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/96 is applied, updating the ERRORS
section so that the [ENOMEM] error case is changed from ``to associate the value with the key’’
to ``to associate the non-NULL value with the key’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #063 is applied, updating the ERRORS section.

The pthread_getspecific() and pthread_setspecific() functions are moved from the Threads option to
the Base.

The [EINVAL] error for a key value not obtained from pthread_key_create() or a key deleted with
pthread_key_delete() is removed; this condition results in undefined behavior.

1730 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57469

57470

57471

57472

57473

57474

57475

57476

57477

57478

57479

57480

57481

57482

57483

57484

57485

57486

57487

57488

57489

57490

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_join()

NAME
pthread_join — wait for thread termination

SYNOPSIS
#include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

DESCRIPTION
The pthread_join() function shall suspend execution of the calling thread until the target thread
terminates, unless the target thread has already terminated. On return from a successful
pthread_join() call with a non-NULL value_ptr argument, the value passed to pthread_exit() by
the terminating thread shall be made available in the location referenced by value_ptr. When a
pthread_join() returns successfully, the target thread has been terminated. The results of multiple
simultaneous calls to pthread_join() specifying the same target thread are undefined. If the
thread calling pthread_join() is canceled, then the target thread shall not be detached.

It is unspecified whether a zombie thread counts against {PTHREAD_THREADS_MAX}.

The behavior is undefined if the value specified by the thread argument to pthread_join() does not
refer to a joinable thread.

The behavior is undefined if the value specified by the thread argument to pthread_join() refers to
the calling thread.

If thread refers to a thread that was created using thrd_create() and the thread terminates, or has
already terminated, by returning from its start routine, the behavior of pthread_join() is
undefined. If thread refers to a thread that terminates, or has already terminated, by calling
thrd_exit(), the behavior of pthread_join() is undefined.

RETURN VALUE
If successful, the pthread_join() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_join() function may fail if:

[EDEADLK] A deadlock was detected.

The pthread_join() function shall not return an error code of [EINTR].

EXAMPLES
An example of thread creation and deletion follows:

typedef struct {
int *ar;
long n;

} subarray;

void *
incer(void *arg)
{

long i;

for (i = 0; i < ((subarray *)arg)->n; i++)
((subarray *)arg)->ar[i]++;

}

int main(void)
{

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1731

57491

57492

57493

57494

57495

57496

57497

57498

57499

57500

57501

57502

57503

57504

57505

57506

57507

57508

57509

57510

57511

57512

57513

57514

57515

57516

57517

57518

57519

57520

57521

57522

57523

57524

57525

57526

57527

57528

57529

57530

57531

57532

57533

57534

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_join() System Interfaces

int ar[1000000];
pthread_t th1, th2;
subarray sb1, sb2;

sb1.ar = &ar[0];
sb1.n = 500000;
(void) pthread_create(&th1, NULL, incer, &sb1);

sb2.ar = &ar[500000];
sb2.n = 500000;
(void) pthread_create(&th2, NULL, incer, &sb2);

(void) pthread_join(th1, NULL);
(void) pthread_join(th2, NULL);
return 0;

}

APPLICATION USAGE
None.

RATIONALE
The pthread_join() function is a convenience that has proven useful in multi-threaded
applications. It is true that a programmer could simulate this function if it were not provided by
passing extra state as part of the argument to the start_routine(). The terminating thread would
set a flag to indicate termination and broadcast a condition that is part of that state; a joining
thread would wait on that condition variable. While such a technique would allow a thread to
wait on more complex conditions (for example, waiting for multiple threads to terminate),
waiting on individual thread termination is considered widely useful. Also, including the
pthread_join() function in no way precludes a programmer from coding such complex waits.
Thus, while not a primitive, including pthread_join() in this volume of POSIX.1-2024 was
considered valuable.

The pthread_join() function provides a simple mechanism allowing an application to wait for a
thread to terminate. After the thread terminates, the application may then choose to clean up
resources that were used by the thread. For instance, after pthread_join() returns, any
application-provided stack storage could be reclaimed.

The pthread_join() or pthread_detach() function should eventually be called for every thread that
is created with the detachstate attribute set to PTHREAD_CREATE_JOINABLE so that storage
associated with the thread may be reclaimed.

The interaction between pthread_join() and cancellation is well-defined for the following reasons:

• The pthread_join() function, like all other non-async-cancel-safe functions, can only be
called with deferred cancelability type.

• Cancellation cannot occur in the disabled cancelability state.

Thus, only the default cancelability state need be considered. As specified, either the
pthread_join() call is canceled, or it succeeds, but not both. The difference is obvious to the
application, since either a cancellation handler is run or pthread_join() returns. There are no race
conditions since pthread_join() was called in the deferred cancelability state.

If an implementation detects that the value specified by the thread argument to pthread_join()
does not refer to a joinable thread, it is recommended that the function should fail and report an
[EINVAL] error.

If an implementation detects that the value specified by the thread argument to pthread_join()

1732 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57535

57536

57537

57538

57539

57540

57541

57542

57543

57544

57545

57546

57547

57548

57549

57550

57551

57552

57553

57554

57555

57556

57557

57558

57559

57560

57561

57562

57563

57564

57565

57566

57567

57568

57569

57570

57571

57572

57573

57574

57575

57576

57577

57578

57579

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_join()

refers to the calling thread, it is recommended that the function should fail and report an
[EDEADLK] error.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

The pthread_join() function cannot be used to obtain the exit status of a thread that was created
using thrd_create() and which terminates by returning from its start routine, or of a thread that
terminates by calling thrd_exit(), because such threads have an int exit status, instead of the
void * that pthread_join() returns via its value_ptr argument.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), thrd_create(), thrd_exit(), wait()

XBD Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_join() function is marked as part of the Threads option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/97 is applied, updating the ERRORS
section so that the [EINVAL] error is made optional and the words ``the implementation has
detected’’ are removed from it.

Issue 7
The pthread_join() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in undefined
behavior.

The [EDEADLK] error for the calling thread is removed; this condition results in undefined
behavior.

Issue 8
Austin Group Defect 792 is applied, changing ``a thread that has exited but remains unjoined’’ to
``a zombie thread’’.

Austin Group Defect 1302 is applied, updating the page to account for the addition of
<threads.h> interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1733

57580

57581

57582

57583

57584

57585

57586

57587

57588

57589

57590

57591

57592

57593

57594

57595

57596

57597

57598

57599

57600

57601

57602

57603

57604

57605

57606

57607

57608

57609

57610

57611

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_key_create() System Interfaces

NAME
pthread_key_create — thread-specific data key creation

SYNOPSIS
#include <pthread.h>

int pthread_key_create(pthread_key_t *key, void (*destructor)(void*));

DESCRIPTION
The pthread_key_create() function shall create a thread-specific data key visible to all threads in
the process. Key values provided by pthread_key_create() are opaque objects used to locate
thread-specific data. Although the same key value may be used by different threads, the values
bound to the key by pthread_setspecific() are maintained on a per-thread basis and persist for the
life of the calling thread.

Upon key creation, the value NULL shall be associated with the new key in all active threads.
Upon thread creation, the value NULL shall be associated with all defined keys in the new
thread.

An optional destructor function may be associated with each key value. At thread exit, if a key
value has a non-NULL destructor pointer, and the thread has a non-NULL value associated with
that key, the value of the key is set to NULL, and then the function pointed to is called with the
previously associated value as its sole argument. The order of destructor calls is unspecified if
more than one destructor exists for a thread when it exits.

If, after all the destructors have been called for all non-NULL values with associated destructors,
there are still some non-NULL values with associated destructors, then the process is repeated.
If, after at least {PTHREAD_DESTRUCTOR_ITERATIONS} iterations of destructor calls for
outstanding non-NULL values, there are still some non-NULL values with associated
destructors, implementations may stop calling destructors, or they may continue calling
destructors until no non-NULL values with associated destructors exist, even though this might
result in an infinite loop.

RETURN VALUE
If successful, the pthread_key_create() function shall store the newly created key value at *key and
shall return zero. Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_key_create() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another thread-specific
data key, or the system-imposed limit on the total number of keys per process
{PTHREAD_KEYS_MAX} has been exceeded.

[ENOMEM] Insufficient memory exists to create the key.

The pthread_key_create() function shall not return an error code of [EINTR].

EXAMPLES
The following example demonstrates a function that initializes a thread-specific data key when it
is first called, and associates a thread-specific object with each calling thread, initializing this
object when necessary.

static pthread_key_t key;
static pthread_once_t key_once = PTHREAD_ONCE_INIT;

static void
make_key()
{

1734 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57612

57613

57614

57615

57616

57617

57618

57619

57620

57621

57622

57623

57624

57625

57626

57627

57628

57629

57630

57631

57632

57633

57634

57635

57636

57637

57638

57639

57640

57641

57642

57643

57644

57645

57646

57647

57648

57649

57650

57651

57652

57653

57654

57655

57656

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_key_create()

(void) pthread_key_create(&key, NULL);
}

func()
{

void *ptr;

(void) pthread_once(&key_once, make_key);
if ((ptr = pthread_getspecific(key)) == NULL) {

ptr = malloc(OBJECT_SIZE);
...
(void) pthread_setspecific(key, ptr);

}
...

}

Note that the key has to be initialized before pthread_getspecific() or pthread_setspecific() can be
used. The pthread_key_create() call could either be explicitly made in a module initialization
routine, or it can be done implicitly by the first call to a module as in this example. Any attempt
to use the key before it is initialized is a programming error, making the code below incorrect.

static pthread_key_t key;

func()
{

void *ptr;

/* KEY NOT INITIALIZED!!! THIS WILL NOT WORK!!! */
if ((ptr = pthread_getspecific(key)) == NULL &&

pthread_setspecific(key, NULL) != 0) {
pthread_key_create(&key, NULL);
...

}
}

APPLICATION USAGE
None.

RATIONALE

Destructor Functions

Normally, the value bound to a key on behalf of a particular thread is a pointer to storage
allocated dynamically on behalf of the calling thread. The destructor functions specified with
pthread_key_create() are intended to be used to free this storage when the thread exits. Thread
cancellation cleanup handlers cannot be used for this purpose because thread-specific data may
persist outside the lexical scope in which the cancellation cleanup handlers operate.

If the value associated with a key needs to be updated during the lifetime of the thread, it may
be necessary to release the storage associated with the old value before the new value is bound.
Although the pthread_setspecific() function could do this automatically, this feature is not needed
often enough to justify the added complexity. Instead, the programmer is responsible for freeing
the stale storage:

old = pthread_getspecific(key);
new = allocate();
destructor(old);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1735

57657

57658

57659

57660

57661

57662

57663

57664

57665

57666

57667

57668

57669

57670

57671

57672

57673

57674

57675

57676

57677

57678

57679

57680

57681

57682

57683

57684

57685

57686

57687

57688

57689

57690

57691

57692

57693

57694

57695

57696

57697

57698

57699

57700

57701

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_key_create() System Interfaces

pthread_setspecific(key, new);

Note: The above example could leak storage if run with asynchronous cancellation enabled. No such
problems occur in the default cancellation state if no cancellation points occur between the get
and set.

There is no notion of a destructor-safe function. If an application does not call pthread_exit()
from a signal handler, or if it blocks any signal whose handler may call pthread_exit() while
calling async-unsafe functions, all functions may be safely called from destructors.

Non-Idempotent Data Key Creation

There were requests to make pthread_key_create() idempotent with respect to a given key address
parameter. This would allow applications to call pthread_key_create() multiple times for a given
key address and be guaranteed that only one key would be created. Doing so would require the
key value to be previously initialized (possibly at compile time) to a known null value and
would require that implicit mutual-exclusion be performed based on the address and contents of
the key parameter in order to guarantee that exactly one key would be created.

Unfortunately, the implicit mutual-exclusion would not be limited to only pthread_key_create().
On many implementations, implicit mutual-exclusion would also have to be performed by
pthread_getspecific() and pthread_setspecific() in order to guard against using incompletely stored
or not-yet-visible key values. This could significantly increase the cost of important operations,
particularly pthread_getspecific().

Thus, this proposal was rejected. The pthread_key_create() function performs no implicit
synchronization. It is the responsibility of the programmer to ensure that it is called exactly once
per key before use of the key. Several straightforward mechanisms can already be used to
accomplish this, including calling explicit module initialization functions, using mutexes, and
using pthread_once(). This places no significant burden on the programmer, introduces no
possibly confusing ad hoc implicit synchronization mechanism, and potentially allows
commonly used thread-specific data operations to be more efficient.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_getspecific(), pthread_key_delete()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_key_create() function is marked as part of the Threads option.

IEEE PASC Interpretation 1003.1c #8 is applied, updating the DESCRIPTION.

Issue 7
The pthread_key_create() function is moved from the Threads option to the Base.

Issue 8
Austin Group Defect 1059 is applied, changing the example code in the RATIONALE section.

1736 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57702

57703

57704

57705

57706

57707

57708

57709

57710

57711

57712

57713

57714

57715

57716

57717

57718

57719

57720

57721

57722

57723

57724

57725

57726

57727

57728

57729

57730

57731

57732

57733

57734

57735

57736

57737

57738

57739

57740

57741

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_key_delete()

NAME
pthread_key_delete — thread-specific data key deletion

SYNOPSIS
#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

DESCRIPTION
The pthread_key_delete() function shall delete a thread-specific data key previously returned by
pthread_key_create(). The thread-specific data values associated with key need not be NULL at
the time pthread_key_delete() is called. It is the responsibility of the application to free any
application storage or perform any cleanup actions for data structures related to the deleted key
or associated thread-specific data in any threads; this cleanup can be done either before or after
pthread_key_delete() is called. Any attempt to use key following the call to pthread_key_delete()
results in undefined behavior.

The pthread_key_delete() function shall be callable from within destructor functions. No
destructor functions shall be invoked by pthread_key_delete(). Any destructor function that may
have been associated with key shall no longer be called upon thread exit.

RETURN VALUE
If successful, the pthread_key_delete() function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_key_delete() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A thread-specific data key deletion function has been included in order to allow the resources
associated with an unused thread-specific data key to be freed. Unused thread-specific data keys
can arise, among other scenarios, when a dynamically loaded module that allocated a key is
unloaded.

Conforming applications are responsible for performing any cleanup actions needed for data
structures associated with the key to be deleted, including data referenced by thread-specific
data values. No such cleanup is done by pthread_key_delete(). In particular, destructor functions
are not called. There are several reasons for this division of responsibility:

1. The associated destructor functions used to free thread-specific data at thread exit time
are only guaranteed to work correctly when called in the thread that allocated the thread-
specific data. (Destructors themselves may utilize thread-specific data.) Thus, they cannot
be used to free thread-specific data in other threads at key deletion time. Attempting to
have them called by other threads at key deletion time would require other threads to be
asynchronously interrupted. But since interrupted threads could be in an arbitrary state,
including holding locks necessary for the destructor to run, this approach would fail. In
general, there is no safe mechanism whereby an implementation could free thread-
specific data at key deletion time.

2. Even if there were a means of safely freeing thread-specific data associated with keys to
be deleted, doing so would require that implementations be able to enumerate the
threads with non-NULL data and potentially keep them from creating more thread-

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1737

57742

57743

57744

57745

57746

57747

57748

57749

57750

57751

57752

57753

57754

57755

57756

57757

57758

57759

57760

57761

57762

57763

57764

57765

57766

57767

57768

57769

57770

57771

57772

57773

57774

57775

57776

57777

57778

57779

57780

57781

57782

57783

57784

57785

57786

57787

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_key_delete() System Interfaces

specific data while the key deletion is occurring. This special case could cause extra
synchronization in the normal case, which would otherwise be unnecessary.

For an application to know that it is safe to delete a key, it has to know that all the threads that
might potentially ever use the key do not attempt to use it again. For example, it could know
this if all the client threads have called a cleanup procedure declaring that they are through with
the module that is being shut down, perhaps by setting a reference count to zero.

If an implementation detects that the value specified by the key argument to pthread_key_delete()
does not refer to a a key value obtained from pthread_key_create() or refers to a key that has been
deleted with pthread_key_delete(), it is recommended that the function should fail and report an
[EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_key_delete() function is marked as part of the Threads option.

Issue 7
The pthread_key_delete() function is moved from the Threads option to the Base.

The [EINVAL] error for a key value not obtained from pthread_key_create() or a key deleted with
pthread_key_delete() is removed; this condition results in undefined behavior.

1738 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57788

57789

57790

57791

57792

57793

57794

57795

57796

57797

57798

57799

57800

57801

57802

57803

57804

57805

57806

57807

57808

57809

57810

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_kill()

NAME
pthread_kill — send a signal to a thread

SYNOPSIS
CX #include <signal.h>

int pthread_kill(pthread_t thread, int sig);

DESCRIPTION
The pthread_kill() function shall request that a signal be delivered to the specified thread. It shall
not be an error if thread is a zombie thread.

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the function
shall return an error number. If the pthread_kill() function fails, no signal shall be sent.

ERRORS
The pthread_kill() function may fail if:

[EINVAL] The value of the sig argument is zero.

The pthread_kill() function shall fail if:

[EINVAL] The value of the sig argument is non-zero and is an invalid or unsupported
signal number.

The pthread_kill() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_kill() function provides a mechanism for asynchronously directing a signal at a
thread in the calling process. This could be used, for example, by one thread to affect broadcast
delivery of a signal to a set of threads.

Note that pthread_kill() only causes the signal to be handled in the context of the given thread;
the signal action (termination or stopping) affects the process as a whole.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

Historical implementations varied on the result of a pthread_kill() with a thread ID indicating a
zombie thread. Some indicated success on such a call, while others gave an error of [ESRCH].
Since the definition of thread lifetime in this volume of POSIX.1-2024 covers zombie threads, the
[ESRCH] error as described is inappropriate in this case and implementations that give this error
do not conform. In particular, this means that an application cannot have one thread check for
termination of another by calling pthread_kill() with a sig argument of zero, and implementations
may indicate that it is not possible by returning [EINVAL] when sig is zero.

FUTURE DIRECTIONS
None.

SEE ALSO
kill(), pthread_self(), raise()

XBD <signal.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1739

57811

57812

57813

57814

57815

57816

57817

57818

57819

57820

57821

57822

57823

57824

57825

57826

57827

57828

57829

57830

57831

57832

57833

57834

57835

57836

57837

57838

57839

57840

57841

57842

57843

57844

57845

57846

57847

57848

57849

57850

57851

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_kill() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_kill() function is marked as part of the Threads option.

The APPLICATION USAGE section is added.

Issue 7
The pthread_kill() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0277 [765] is applied.

Issue 8
Austin Group Defect 792 is applied, adding a requirement that passing the thread ID of a zombie
thread to pthread_kill() is not treated as an error.

Austin Group Defect 1214 is applied, allowing pthread_kill() to fail with [EINVAL] when the sig
argument is zero.

1740 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57852

57853

57854

57855

57856

57857

57858

57859

57860

57861

57862

57863

57864

57865

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_clocklock()

NAME
pthread_mutex_clocklock, pthread_mutex_timedlock — lock a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_clocklock(pthread_mutex_t *restrict mutex,
clockid_t clock_id, const struct timespec *restrict abstime);

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_mutex_clocklock() and pthread_mutex_timedlock() functions shall lock the mutex
object referenced by mutex. If the mutex is already locked, the calling thread shall block until the
mutex becomes available as in the pthread_mutex_lock() function. If the mutex cannot be locked
without waiting for another thread to unlock the mutex, this wait shall be terminated when the
specified timeout expires.

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

For pthread_mutex_timedlock(), the timeout shall be based on the CLOCK_REALTIME clock. For
pthread_mutex_clocklock(), the timeout shall be based on the clock specified by the clock_id
argument. The resolution of the timeout shall be the resolution of the clock on which it is based.
Implementations shall support passing CLOCK_REALTIME and CLOCK_MONOTONIC to
pthread_mutex_clocklock() as the clock_id argument.

Under no circumstance shall the function fail with a timeout if the mutex can be locked
immediately. The validity of the abstime parameter need not be checked if the mutex can be
locked immediately.

RPI|TPI As a consequence of the priority inheritance rules (for mutexes initialized with the
PRIO_INHERIT protocol), if a timed mutex wait is terminated because its timeout expires, the
priority of the owner of the mutex shall be adjusted as necessary to reflect the fact that this
thread is no longer among the threads waiting for the mutex.

If mutex is a robust mutex and the process containing the owning thread terminated while
holding the mutex lock, a call to pthread_mutex_clocklock() or pthread_mutex_timedlock() shall
return the error value [EOWNERDEAD]. If mutex is a robust mutex and the owning thread
terminated while holding the mutex lock, a call to pthread_mutex_clocklock() or
pthread_mutex_timedlock() may return the error value [EOWNERDEAD] even if the process in
which the owning thread resides has not terminated. In these cases, the mutex is locked by the
thread but the state it protects is marked as inconsistent. The application should ensure that the
state is made consistent for reuse and when that is complete call pthread_mutex_consistent(). If
the application is unable to recover the state, it should unlock the mutex without a prior call to
pthread_mutex_consistent(), after which the mutex is marked permanently unusable.

If mutex does not refer to an initialized mutex object, the behavior is undefined.

RETURN VALUE
If successful, the pthread_mutex_clocklock() and pthread_mutex_timedlock() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1741

57866

57867

57868

57869

57870

57871

57872

57873

57874

57875

57876

57877

57878

57879

57880

57881

57882

57883

57884

57885

57886

57887

57888

57889

57890

57891

57892

57893

57894

57895

57896

57897

57898

57899

57900

57901

57902

57903

57904

57905

57906

57907

57908

57909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_clocklock() System Interfaces

ERRORS
The pthread_mutex_clocklock() and pthread_mutex_timedlock() functions shall fail if:

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

[EAGAIN] The mutex is a robust mutex and the system resources available for robust
mutexes owned would be exceeded.

[EDEADLK] The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current
thread already owns the mutex.

[EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’ current priority ceiling.

[EINVAL] The process or thread would have blocked, and either the abstime parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million, or the pthread_mutex_clocklock() function was passed an invalid
or unsupported clock_id value.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state
consistent.

[ETIMEDOUT] The mutex could not be locked before the specified timeout expired.

The pthread_mutex_clocklock() and pthread_mutex_timedlock() functions may fail if:

[EDEADLK] A deadlock condition was detected.

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes, it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
Refer to pthread_mutex_lock().

1742 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57910

57911

57912

57913

57914

57915

57916

57917

57918

57919

57920

57921

57922

57923

57924

57925

57926

57927

57928

57929

57930

57931

57932

57933

57934

57935

57936

57937

57938

57939

57940

57941

57942

57943

57944

57945

57946

57947

57948

57949

57950

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_clocklock()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy(), pthread_mutex_lock(), time()

XBD Section 4.15.2 (on page 104), <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/99 is applied, marking the last paragraph
in the DESCRIPTION as part of the Thread Priority Inheritance option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/100 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_timedlock() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to an initialized
mutex.

The ERRORS section is updated to account properly for all of the various mutex types.

Issue 8
Austin Group Defect 354 is applied, adding the [EAGAIN] error for exceeding system resources
available for robust mutexes owned.

Austin Group Defect 592 is applied, removing text relating to <time.h> from the SYNOPSIS and
DESCRIPTION sections.

Austin Group Defects 1216 and 1472 are applied, adding pthread_mutex_clocklock().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1743

57951

57952

57953

57954

57955

57956

57957

57958

57959

57960

57961

57962

57963

57964

57965

57966

57967

57968

57969

57970

57971

57972

57973

57974

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_consistent() System Interfaces

NAME
pthread_mutex_consistent — mark state protected by robust mutex as consistent

SYNOPSIS
#include <pthread.h>

int pthread_mutex_consistent(pthread_mutex_t *mutex);

DESCRIPTION
If mutex is a robust mutex in an inconsistent state, the pthread_mutex_consistent() function can be
used to mark the state protected by the mutex referenced by mutex as consistent again.

If an owner of a robust mutex terminates while holding the mutex, the mutex becomes
inconsistent and the next thread that acquires the mutex lock shall be notified of the state by the
return value [EOWNERDEAD]. In this case, the mutex does not become normally usable again
until the state is marked consistent.

If the thread which acquired the mutex lock with the return value [EOWNERDEAD] terminates
before calling either pthread_mutex_consistent() or pthread_mutex_unlock(), the next thread that
acquires the mutex lock shall be notified about the state of the mutex by the return value
[EOWNERDEAD].

The behavior is undefined if the value specified by the mutex argument to
pthread_mutex_consistent() does not refer to an initialized mutex.

RETURN VALUE
Upon successful completion, the pthread_mutex_consistent() function shall return zero.
Otherwise, an error value shall be returned to indicate the error.

ERRORS
The pthread_mutex_consistent() function shall fail if:

[EINVAL] The mutex object referenced by mutex is not robust or does not protect an
inconsistent state.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_mutex_consistent() function is only responsible for notifying the implementation that
the state protected by the mutex has been recovered and that normal operations with the mutex
can be resumed. It is the responsibility of the application to recover the state so it can be reused.
If the application is not able to perform the recovery, it can notify the implementation that the
situation is unrecoverable by a call to pthread_mutex_unlock() without a prior call to
pthread_mutex_consistent(), in which case subsequent threads that attempt to lock the mutex will
fail to acquire the lock and be returned [ENOTRECOVERABLE].

RATIONALE
If an implementation detects that the value specified by the mutex argument to
pthread_mutex_consistent() does not refer to an initialized mutex, it is recommended that the
function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

1744 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

57975

57976

57977

57978

57979

57980

57981

57982

57983

57984

57985

57986

57987

57988

57989

57990

57991

57992

57993

57994

57995

57996

57997

57998

57999

58000

58001

58002

58003

58004

58005

58006

58007

58008

58009

58010

58011

58012

58013

58014

58015

58016

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_consistent()

SEE ALSO
pthread_mutex_lock(), pthread_mutexattr_getrobust()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 7.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1745

58017

58018

58019

58020

58021

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_destroy() System Interfaces

NAME
pthread_mutex_destroy, pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
The pthread_mutex_destroy() function shall destroy the mutex object referenced by mutex; the
mutex object becomes, in effect, uninitialized. An implementation may cause
pthread_mutex_destroy() to set the object referenced by mutex to an invalid value.

A destroyed mutex object can be reinitialized using pthread_mutex_init(); the results of otherwise
referencing the object after it has been destroyed are undefined.

It shall be safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked
mutex, or a mutex that another thread is attempting to lock, or a mutex that is being used in a
pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() call by another thread,
results in undefined behavior.

The pthread_mutex_init() function shall initialize the mutex referenced by mutex with attributes
specified by attr. If attr is NULL, the default mutex attributes are used; the effect shall be the
same as passing the address of a default mutex attributes object. Upon successful initialization,
the state of the mutex becomes initialized and unlocked.

See Section 2.9.9 (on page 548) for further requirements.

Attempting to initialize an already initialized mutex results in undefined behavior.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes. The effect shall be
equivalent to dynamic initialization by a call to pthread_mutex_init() with parameter attr
specified as NULL, except that no error checks are performed.

The behavior is undefined if the value specified by the mutex argument to
pthread_mutex_destroy() does not refer to an initialized mutex.

The behavior is undefined if the value specified by the attr argument to pthread_mutex_init()
does not refer to an initialized mutex attributes object.

RETURN VALUE
If successful, the pthread_mutex_destroy() and pthread_mutex_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutex_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another mutex.

[ENOMEM] Insufficient memory exists to initialize the mutex.

[EPERM] The caller does not have the privilege to perform the operation.

1746 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58022

58023

58024

58025

58026

58027

58028

58029

58030

58031

58032

58033

58034

58035

58036

58037

58038

58039

58040

58041

58042

58043

58044

58045

58046

58047

58048

58049

58050

58051

58052

58053

58054

58055

58056

58057

58058

58059

58060

58061

58062

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_destroy()

The pthread_mutex_init() function may fail if:

[EINVAL] The attributes object referenced by attr has the robust mutex attribute set
without the process-shared attribute being set.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the mutex argument to
pthread_mutex_destroy() does not refer to an initialized mutex, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the mutex argument to
pthread_mutex_destroy() or pthread_mutex_init() refers to a locked mutex or a mutex that is
referenced (for example, while being used in a pthread_cond_clockwait(),
pthread_cond_timedwait(), or pthread_cond_wait() call) by another thread, or detects that the value
specified by the mutex argument to pthread_mutex_init() refers to an already initialized mutex, it
is recommended that the function should fail and report an [EBUSY] error.

If an implementation detects that the value specified by the attr argument to
pthread_mutex_init() does not refer to an initialized mutex attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

Alternate Implementations Possible

This volume of POSIX.1-2024 supports several alternative implementations of mutexes. An
implementation may store the lock directly in the object of type pthread_mutex_t. Alternatively,
an implementation may store the lock in the heap and merely store a pointer, handle, or unique
ID in the mutex object. Either implementation has advantages or may be required on certain
hardware configurations. So that portable code can be written that is invariant to this choice, this
volume of POSIX.1-2024 does not define assignment or equality for this type, and it uses the
term ``initialize’’ to reinforce the (more restrictive) notion that the lock may actually reside in the
mutex object itself.

Note that this precludes an over-specification of the type of the mutex or condition variable and
motivates the opaqueness of the type.

An implementation is permitted, but not required, to have pthread_mutex_destroy() store an
illegal value into the mutex. This may help detect erroneous programs that try to lock (or
otherwise reference) a mutex that has already been destroyed.

Tradeoff Between Error Checks and Performance Supported

Many error conditions that can occur are not required to be detected by the implementation in
order to let implementations trade off performance versus degree of error checking according to
the needs of their specific applications and execution environment. As a general rule, conditions
caused by the system (such as insufficient memory) are required to be detected, but conditions
caused by an erroneously coded application (such as failing to provide adequate
synchronization to prevent a mutex from being deleted while in use) are specified to result in
undefined behavior.

A wide range of implementations is thus made possible. For example, an implementation

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1747

58063

58064

58065

58066

58067

58068

58069

58070

58071

58072

58073

58074

58075

58076

58077

58078

58079

58080

58081

58082

58083

58084

58085

58086

58087

58088

58089

58090

58091

58092

58093

58094

58095

58096

58097

58098

58099

58100

58101

58102

58103

58104

58105

58106

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_destroy() System Interfaces

intended for application debugging may implement all of the error checks, but an
implementation running a single, provably correct application under very tight performance
constraints in an embedded computer might implement minimal checks. An implementation
might even be provided in two versions, similar to the options that compilers provide: a full-
checking, but slower version; and a limited-checking, but faster version. To forbid this
optionality would be a disservice to users.

By carefully limiting the use of ``undefined behavior’’ only to things that an erroneous (badly
coded) application might do, and by defining that resource-not-available errors are mandatory,
this volume of POSIX.1-2024 ensures that a fully-conforming application is portable across the
full range of implementations, while not forcing all implementations to add overhead to check
for numerous things that a correct program never does. When the behavior is undefined, no
error number is specified to be returned on implementations that do detect the condition. This is
because undefined behavior means anything can happen, which includes returning with any
value (which might happen to be a valid, but different, error number). However, since the error
number might be useful to application developers when diagnosing problems during
application development, a recommendation is made in rationale that implementors should
return a particular error number if their implementation does detect the condition.

Why No Limits are Defined

Defining symbols for the maximum number of mutexes and condition variables was considered
but rejected because the number of these objects may change dynamically. Furthermore, many
implementations place these objects into application memory; thus, there is no explicit
maximum.

Static Initializers for Mutexes and Condition Variables

Providing for static initialization of statically allocated synchronization objects allows modules
with private static synchronization variables to avoid runtime initialization tests and overhead.
Furthermore, it simplifies the coding of self-initializing modules. Such modules are common in
C libraries, where for various reasons the design calls for self-initialization instead of requiring
an explicit module initialization function to be called. An example use of static initialization
follows.

Without static initialization, a self-initializing routine foo() might look as follows:

static pthread_once_t foo_once = PTHREAD_ONCE_INIT;
static pthread_mutex_t foo_mutex;

void foo_init()
{

pthread_mutex_init(&foo_mutex, NULL);
}

void foo()
{

pthread_once(&foo_once, foo_init);
pthread_mutex_lock(&foo_mutex);
/* Do work. */
pthread_mutex_unlock(&foo_mutex);

}

With static initialization, the same routine could be coded as follows:

static pthread_mutex_t foo_mutex = PTHREAD_MUTEX_INITIALIZER;

1748 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58107

58108

58109

58110

58111

58112

58113

58114

58115

58116

58117

58118

58119

58120

58121

58122

58123

58124

58125

58126

58127

58128

58129

58130

58131

58132

58133

58134

58135

58136

58137

58138

58139

58140

58141

58142

58143

58144

58145

58146

58147

58148

58149

58150

58151

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_destroy()

void foo()
{

pthread_mutex_lock(&foo_mutex);
/* Do work. */
pthread_mutex_unlock(&foo_mutex);

}

Note that the static initialization both eliminates the need for the initialization test inside
pthread_once() and the fetch of &foo_mutex to learn the address to be passed to
pthread_mutex_lock() or pthread_mutex_unlock().

Thus, the C code written to initialize static objects is simpler on all systems and is also faster on a
large class of systems; those where the (entire) synchronization object can be stored in
application memory.

Yet the locking performance question is likely to be raised for machines that require mutexes to
be allocated out of special memory. Such machines actually have to have mutexes and possibly
condition variables contain pointers to the actual hardware locks. For static initialization to work
on such machines, pthread_mutex_lock() also has to test whether or not the pointer to the actual
lock has been allocated. If it has not, pthread_mutex_lock() has to initialize it before use. The
reservation of such resources can be made when the program is loaded, and hence return codes
have not been added to mutex locking and condition variable waiting to indicate failure to
complete initialization.

This runtime test in pthread_mutex_lock() would at first seem to be extra work; an extra test is
required to see whether the pointer has been initialized. On most machines this would actually
be implemented as a fetch of the pointer, testing the pointer against zero, and then using the
pointer if it has already been initialized. While the test might seem to add extra work, the extra
effort of testing a register is usually negligible since no extra memory references are actually
done. As more and more machines provide caches, the real expenses are memory references, not
instructions executed.

Alternatively, depending on the machine architecture, there are often ways to eliminate all
overhead in the most important case: on the lock operations that occur after the lock has been
initialized. This can be done by shifting more overhead to the less frequent operation:
initialization. Since out-of-line mutex allocation also means that an address has to be
dereferenced to find the actual lock, one technique that is widely applicable is to have static
initialization store a bogus value for that address; in particular, an address that causes a machine
fault to occur. When such a fault occurs upon the first attempt to lock such a mutex, validity
checks can be done, and then the correct address for the actual lock can be filled in. Subsequent
lock operations incur no extra overhead since they do not ``fault’’. This is merely one technique
that can be used to support static initialization, while not adversely affecting the performance of
lock acquisition. No doubt there are other techniques that are highly machine-dependent.

The locking overhead for machines doing out-of-line mutex allocation is thus similar for
modules being implicitly initialized, where it is improved for those doing mutex allocation
entirely inline. The inline case is thus made much faster, and the out-of-line case is not
significantly worse.

Besides the issue of locking performance for such machines, a concern is raised that it is possible
that threads would serialize contending for initialization locks when attempting to finish
initializing statically allocated mutexes. (Such finishing would typically involve taking an
internal lock, allocating a structure, storing a pointer to the structure in the mutex, and releasing
the internal lock.) First, many implementations would reduce such serialization by hashing on
the mutex address. Second, such serialization can only occur a bounded number of times. In

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1749

58152

58153

58154

58155

58156

58157

58158

58159

58160

58161

58162

58163

58164

58165

58166

58167

58168

58169

58170

58171

58172

58173

58174

58175

58176

58177

58178

58179

58180

58181

58182

58183

58184

58185

58186

58187

58188

58189

58190

58191

58192

58193

58194

58195

58196

58197

58198

58199

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_destroy() System Interfaces

particular, it can happen at most as many times as there are statically allocated synchronization
objects. Dynamically allocated objects would still be initialized via pthread_mutex_init() or
pthread_cond_init().

Finally, if none of the above optimization techniques for out-of-line allocation yields sufficient
performance for an application on some implementation, the application can avoid static
initialization altogether by explicitly initializing all synchronization objects with the
corresponding pthread_*_init() functions, which are supported by all implementations. An
implementation can also document the tradeoffs and advise which initialization technique is
more efficient for that particular implementation.

Destroying Mutexes

A mutex can be destroyed immediately after it is unlocked. However, since attempting to
destroy a locked mutex, or a mutex that another thread is attempting to lock, or a mutex that is
being used in a pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() call by
another thread, results in undefined behavior, care must be taken to ensure that no other thread
may be referencing the mutex.

Robust Mutexes

Implementations are required to provide robust mutexes for mutexes with the process-shared
attribute set to PTHREAD_PROCESS_SHARED. Implementations are allowed, but not required,
to provide robust mutexes when the process-shared attribute is set to
PTHREAD_PROCESS_PRIVATE.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_getprioceiling(), pthread_mutexattr_getrobust(), pthread_mutex_clocklock(),
pthread_mutex_lock(), pthread_mutexattr_getpshared()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutex_destroy() and pthread_mutex_init() functions are marked as part of the
Threads option.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_mutex_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_destroy() and pthread_mutex_init() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized mutex or an uninitialized mutex attributes object is
removed; this condition results in undefined behavior.

1750 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58200

58201

58202

58203

58204

58205

58206

58207

58208

58209

58210

58211

58212

58213

58214

58215

58216

58217

58218

58219

58220

58221

58222

58223

58224

58225

58226

58227

58228

58229

58230

58231

58232

58233

58234

58235

58236

58237

58238

58239

58240

58241

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_destroy()

The [EBUSY] error for a locked mutex, a mutex that is referenced, or an already initialized mutex
is removed; this condition results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0460 [70,428] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0278 [811], XSH/TC2-2008/0279 [972],
and XSH/TC2-2008/0280 [811] are applied.

Issue 8
Austin Group Defect 1216 is applied, adding pthread_cond_clockwait().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1751

58242

58243

58244

58245

58246

58247

58248

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_getprioceiling() System Interfaces

NAME
pthread_mutex_getprioceiling, pthread_mutex_setprioceiling — get and set the priority ceiling
of a mutex (REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

DESCRIPTION
The pthread_mutex_getprioceiling() function shall return the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling() function shall attempt to lock the mutex as if by a call to
pthread_mutex_lock(), except that the process of locking the mutex need not adhere to the priority
protect protocol. On acquiring the mutex it shall change the mutex’s priority ceiling and then
release the mutex as if by a call to pthread_mutex_unlock(). When the change is successful, the
previous value of the priority ceiling shall be returned in old_ceiling.

If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling shall not be
changed.

RETURN VALUE
If successful, the pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall fail if:

[EINVAL] The protocol attribute of mutex is PTHREAD_PRIO_NONE.

[EPERM] The implementation requires appropriate privileges to perform the operation
and the caller does not have appropriate privileges.

The pthread_mutex_setprioceiling() function shall fail if:

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

[EAGAIN] The mutex is a robust mutex and the system resources available for robust
mutexes owned would be exceeded.

[EDEADLK] The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current
thread already owns the mutex.

[EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’s current priority ceiling, and the implementation adheres to the
priority protect protocol in the process of locking the mutex.

[ENOTRECOVERABLE]
The mutex is a robust mutex and the state protected by the mutex is not
recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be

1752 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58249

58250

58251

58252

58253

58254

58255

58256

58257

58258

58259

58260

58261

58262

58263

58264

58265

58266

58267

58268

58269

58270

58271

58272

58273

58274

58275

58276

58277

58278

58279

58280

58281

58282

58283

58284

58285

58286

58287

58288

58289

58290

58291

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_getprioceiling()

acquired by the calling thread and it is up to the new owner to make the state
consistent (see pthread_mutex_lock()).

The pthread_mutex_setprioceiling() function may fail if:

[EDEADLK] A deadlock condition was detected.

[EINVAL] The priority requested by prioceiling is out of range.

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent (see
pthread_mutex_lock()).

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_clocklock(), pthread_mutex_destroy(), pthread_mutex_lock()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions are marked as
part of the Threads and Thread Priority Protection options.

The [ENOSYS] error conditions have been removed.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() prototypes for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-39 is applied.

Austin Group Interpretation 1003.1-2001 #052 is applied, adding [EDEADLK] as a ``may fail’’
error.

SD5-XSH-ERN-158 is applied, updating the ERRORS section to include a ``shall fail’’ error case
for when the protocol attribute of mutex is PTHREAD_PRIO_NONE.

The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions are moved from
the Threads option to require support of either the Robust Mutex Priority Protection option or

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1753

58292

58293

58294

58295

58296

58297

58298

58299

58300

58301

58302

58303

58304

58305

58306

58307

58308

58309

58310

58311

58312

58313

58314

58315

58316

58317

58318

58319

58320

58321

58322

58323

58324

58325

58326

58327

58328

58329

58330

58331

58332

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_getprioceiling() System Interfaces

the Non-Robust Mutex Priority Protection option.

The DESCRIPTION and ERRORS sections are updated to account properly for all of the various
mutex types.

Issue 8
Austin Group Defect 354 is applied, adding the [EAGAIN] error for exceeding system resources
available for robust mutexes owned.

1754 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58333

58334

58335

58336

58337

58338

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_init()

NAME
pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
Refer to pthread_mutex_destroy().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1755

58339

58340

58341

58342

58343

58344

58345

58346

58347

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_lock() System Interfaces

NAME
pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a
mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION
The mutex object referenced by mutex shall be locked by a call to pthread_mutex_lock() that
returns zero or [EOWNERDEAD]. If the mutex is already locked by another thread, the calling
thread shall block until the mutex becomes available. This operation shall return with the mutex
object referenced by mutex in the locked state with the calling thread as its owner. If a thread
attempts to relock a mutex that it has already locked, pthread_mutex_lock() shall behave as
described in the Relock column of the following table. If a thread attempts to unlock a mutex
that it has not locked or a mutex which is unlocked, pthread_mutex_unlock() shall behave as
described in the Unlock When Not Owner column of the following table.

Mutex Type Robustness Relock Unlock When Not Owner
NORMAL non-robust deadlock undefined behavior
NORMAL robust deadlock error returned
ERRORCHECK either error returned error returned
RECURSIVE either recursive error returned

(see below)
DEFAULT non-robust undefined undefined behavior†

behavior†

DEFAULT robust undefined error returned
behavior†

† If the mutex type is PTHREAD_MUTEX_DEFAULT, the behavior of pthread_mutex_lock()
may correspond to one of the three other standard mutex types as described in the table
above. If it does not correspond to one of those three, the behavior is undefined for the cases
marked †.

Where the table indicates recursive behavior, the mutex shall maintain the concept of a lock
count. When a thread successfully acquires a mutex for the first time, the lock count shall be set
to one. Every time a thread relocks this mutex, the lock count shall be incremented by one. Each
time the thread unlocks the mutex, the lock count shall be decremented by one. When the lock
count reaches zero, the mutex shall become available for other threads to acquire.

The pthread_mutex_trylock() function shall be equivalent to pthread_mutex_lock(), except that if
the mutex object referenced by mutex is currently locked (by any thread, including the current
thread), the call shall return immediately. If the mutex type is PTHREAD_MUTEX_RECURSIVE
and the mutex is currently owned by the calling thread, the mutex lock count shall be
incremented by one and the pthread_mutex_trylock() function shall immediately return success.

The pthread_mutex_unlock() function shall release the mutex object referenced by mutex. The
manner in which a mutex is released is dependent upon the mutex’s type attribute. If there are
threads blocked on the mutex object referenced by mutex when pthread_mutex_unlock() is called,
resulting in the mutex becoming available, the scheduling policy shall determine which thread
shall acquire the mutex.

1756 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58348

58349

58350

58351

58352

58353

58354

58355

58356

58357

58358

58359

58360

58361

58362

58363

58364

58365

58366

58367

58368

58369

58370

58371

58372

58373

58374

58375

58376

58377

58378

58379

58380

58381

58382

58383

58384

58385

58386

58387

58388

58389

58390

58391

58392

58393

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_lock()

(In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex shall become available
when the count reaches zero and the calling thread no longer has any locks on this mutex.)

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the
thread shall resume waiting for the mutex as if it was not interrupted.

If mutex is a robust mutex and the process containing the owning thread terminated while
holding the mutex lock, a call to pthread_mutex_lock() shall return the error value
[EOWNERDEAD]. If mutex is a robust mutex and the owning thread terminated while holding
the mutex lock, a call to pthread_mutex_lock() may return the error value [EOWNERDEAD] even
if the process in which the owning thread resides has not terminated. In these cases, the mutex
shall be locked by the calling thread but the state it protects is marked as inconsistent. The
application should ensure that the state is made consistent for reuse and when that is complete
call pthread_mutex_consistent(). If the application is unable to recover the state, it should unlock
the mutex without a prior call to pthread_mutex_consistent(), after which the mutex is marked
permanently unusable.

If mutex does not refer to an initialized mutex object, the behavior of pthread_mutex_lock(),
pthread_mutex_trylock(), and pthread_mutex_unlock() is undefined.

RETURN VALUE
If successful, the pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock()
functions shall return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutex_lock() and pthread_mutex_trylock() functions shall fail if:

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

[EAGAIN] The mutex is a robust mutex and the system resources available for robust
mutexes owned would be exceeded.

RPP|TPP [EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’s current priority ceiling.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state
consistent.

The pthread_mutex_lock() function shall fail if:

[EDEADLK] The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current
thread already owns the mutex.

The pthread_mutex_trylock() function shall fail if:

[EBUSY] The mutex could not be acquired because it was already locked.

The pthread_mutex_unlock() function shall fail if:

[EPERM] The mutex type is PTHREAD_MUTEX_ERRORCHECK or
PTHREAD_MUTEX_RECURSIVE, or the mutex is a robust mutex, and the
current thread does not own the mutex.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1757

58394

58395

58396

58397

58398

58399

58400

58401

58402

58403

58404

58405

58406

58407

58408

58409

58410

58411

58412

58413

58414

58415

58416

58417

58418

58419

58420

58421

58422

58423

58424

58425

58426

58427

58428

58429

58430

58431

58432

58433

58434

58435

58436

58437

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_lock() System Interfaces

The pthread_mutex_lock() and pthread_mutex_trylock() functions may fail if:

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent.

The pthread_mutex_lock() function may fail if:

[EDEADLK] A deadlock condition was detected.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
Mutex objects are intended to serve as a low-level primitive from which other thread
synchronization functions can be built. As such, the implementation of mutexes should be as
efficient as possible, and this has ramifications on the features available at the interface.

The mutex functions and the particular default settings of the mutex attributes have been
motivated by the desire to not preclude fast, inlined implementations of mutex locking and
unlocking.

Since most attributes only need to be checked when a thread is going to be blocked, the use of
attributes does not slow the (common) mutex-locking case.

Likewise, while being able to extract the thread ID of the owner of a mutex might be desirable, it
would require storing the current thread ID when each mutex is locked, and this could incur
unacceptable levels of overhead. Similar arguments apply to a mutex_tryunlock operation.

For further rationale on the extended mutex types, see XRAT Threads Extensions (on page 3815).

If an implementation detects that the value specified by the mutex argument does not refer to an
initialized mutex object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_clocklock(), pthread_mutex_consistent(), pthread_mutex_destroy(),
pthread_mutexattr_getrobust()

XBD Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

1758 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58438

58439

58440

58441

58442

58443

58444

58445

58446

58447

58448

58449

58450

58451

58452

58453

58454

58455

58456

58457

58458

58459

58460

58461

58462

58463

58464

58465

58466

58467

58468

58469

58470

58471

58472

58473

58474

58475

58476

58477

58478

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_lock()

Issue 6
The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions are
marked as part of the Threads option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The behavior when attempting to relock a mutex is defined.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/98 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition. The
RATIONALE section is also reworded to take into account non-XSI-conformant systems.

Issue 7
SD5-XSH-ERN-43 is applied, marking the ``shall fail’’ case of the [EINVAL] error as dependent
on the Thread Priority Protection option.

Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions are
moved from the Threads option to the Base.

The following extended mutex types are moved from the XSI option to the Base:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_DEFAULT

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to an initialized
mutex.

The ERRORS section is updated to account properly for all of the various mutex types.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0461 [121], XSH/TC1-2008/0462
[92,428], and XSH/TC1-2008/0463 [121] are applied.

Issue 8
Austin Group Defect 354 is applied, adding the [EAGAIN] error for exceeding system resources
available for robust mutexes owned.

Austin Group Defect 1115 is applied, changing ``the thread’’ to ``the calling thread’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1759

58479

58480

58481

58482

58483

58484

58485

58486

58487

58488

58489

58490

58491

58492

58493

58494

58495

58496

58497

58498

58499

58500

58501

58502

58503

58504

58505

58506

58507

58508

58509

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_setprioceiling() System Interfaces

NAME
pthread_mutex_setprioceiling — change the priority ceiling of a mutex (REALTIME
THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

DESCRIPTION
Refer to pthread_mutex_getprioceiling().

1760 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58510

58511

58512

58513

58514

58515

58516

58517

58518

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutex_timedlock()

NAME
pthread_mutex_timedlock — lock a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to pthread_mutex_clocklock().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1761

58519

58520

58521

58522

58523

58524

58525

58526

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutex_trylock() System Interfaces

NAME
pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION
Refer to pthread_mutex_lock().

1762 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58527

58528

58529

58530

58531

58532

58533

58534

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_destroy()

NAME
pthread_mutexattr_destroy, pthread_mutexattr_init — destroy and initialize the mutex
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
int pthread_mutexattr_init(pthread_mutexattr_t *attr);

DESCRIPTION
The pthread_mutexattr_destroy() function shall destroy a mutex attributes object; the object
becomes, in effect, uninitialized. An implementation may cause pthread_mutexattr_destroy() to
set the object referenced by attr to an invalid value.

A destroyed attr attributes object can be reinitialized using pthread_mutexattr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

The pthread_mutexattr_init() function shall initialize a mutex attributes object attr with the
default value for all of the attributes defined by the implementation.

Results are undefined if pthread_mutexattr_init() is called specifying an already initialized attr
attributes object.

After a mutex attributes object has been used to initialize one or more mutexes, any function
affecting the attributes object (including destruction) shall not affect any previously initialized
mutexes.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_destroy() does not refer to an initialized mutex attributes object.

RETURN VALUE
Upon successful completion, pthread_mutexattr_destroy() and pthread_mutexattr_init() shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the mutex attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_destroy() does not refer to an initialized mutex attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

See pthread_attr_destroy() for a general explanation of attributes. Attributes objects allow
implementations to experiment with useful extensions and permit extension of this volume of
POSIX.1-2024 without changing the existing functions. Thus, they provide for future
extensibility of this volume of POSIX.1-2024 and reduce the temptation to standardize
prematurely on semantics that are not yet widely implemented or understood.

Examples of possible additional mutex attributes that have been discussed are spin_only,
limited_spin, no_spin, recursive, and metered. (To explain what the latter attributes might mean:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1763

58535

58536

58537

58538

58539

58540

58541

58542

58543

58544

58545

58546

58547

58548

58549

58550

58551

58552

58553

58554

58555

58556

58557

58558

58559

58560

58561

58562

58563

58564

58565

58566

58567

58568

58569

58570

58571

58572

58573

58574

58575

58576

58577

58578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_destroy() System Interfaces

recursive mutexes would allow for multiple re-locking by the current owner; metered mutexes
would transparently keep records of queue length, wait time, and so on.) Since there is not yet
wide agreement on the usefulness of these resulting from shared implementation and usage
experience, they are not yet specified in this volume of POSIX.1-2024. Mutex attributes objects,
however, make it possible to test out these concepts for possible standardization at a later time.

Mutex Attributes and Performance

Care has been taken to ensure that the default values of the mutex attributes have been defined
such that mutexes initialized with the defaults have simple enough semantics so that the locking
and unlocking can be done with the equivalent of a test-and-set instruction (plus possibly a few
other basic instructions).

There is at least one implementation method that can be used to reduce the cost of testing at
lock-time if a mutex has non-default attributes. One such method that an implementation can
employ (and this can be made fully transparent to fully conforming POSIX applications) is to
secretly pre-lock any mutexes that are initialized to non-default attributes. Any later attempt to
lock such a mutex causes the implementation to branch to the ``slow path’’ as if the mutex were
unavailable; then, on the slow path, the implementation can do the ``real work’’ to lock a non-
default mutex. The underlying unlock operation is more complicated since the implementation
never really wants to release the pre-lock on this kind of mutex. This illustrates that, depending
on the hardware, there may be certain optimizations that can be used so that whatever mutex
attributes are considered ``most frequently used’’ can be processed most efficiently.

Process Shared Memory and Synchronization

The existence of memory mapping functions in this volume of POSIX.1-2024 leads to the
possibility that an application may allocate the synchronization objects from this section in
memory that is accessed by multiple processes (and therefore, by threads of multiple processes).

In order to permit such usage, while at the same time keeping the usual case (that is, usage
within a single process) efficient, a process-shared option has been defined.

If an implementation supports the _POSIX_THREAD_PROCESS_SHARED option, then the
process-shared attribute can be used to indicate that mutexes or condition variables may be
accessed by threads of multiple processes.

The default setting of PTHREAD_PROCESS_PRIVATE has been chosen for the process-shared
attribute so that the most efficient forms of these synchronization objects are created by default.

Synchronization variables that are initialized with the PTHREAD_PROCESS_PRIVATE process-
shared attribute may only be operated on by threads in the process that initialized them.
Synchronization variables that are initialized with the PTHREAD_PROCESS_SHARED process-
shared attribute may be operated on by any thread in any process that has access to it. In
particular, these processes may exist beyond the lifetime of the initializing process. For example,
the following code implements a simple counting semaphore in a mapped file that may be used
by many processes.

/* sem.h */
struct semaphore {

pthread_mutex_t lock;
pthread_cond_t nonzero;
unsigned count;

};
typedef struct semaphore semaphore_t;

1764 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58579

58580

58581

58582

58583

58584

58585

58586

58587

58588

58589

58590

58591

58592

58593

58594

58595

58596

58597

58598

58599

58600

58601

58602

58603

58604

58605

58606

58607

58608

58609

58610

58611

58612

58613

58614

58615

58616

58617

58618

58619

58620

58621

58622

58623

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_destroy()

semaphore_t *semaphore_create(char *semaphore_name);
semaphore_t *semaphore_open(char *semaphore_name);
void semaphore_post(semaphore_t *semap);
void semaphore_wait(semaphore_t *semap);
void semaphore_close(semaphore_t *semap);

/* sem.c */
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <pthread.h>
#include "sem.h"

semaphore_t *
semaphore_create(char *semaphore_name)
{
int fd;

semaphore_t *semap;
pthread_mutexattr_t psharedm;
pthread_condattr_t psharedc;

fd = open(semaphore_name, O_RDWR | O_CREAT | O_EXCL, 0666);
if (fd < 0)

return (NULL);
(void) ftruncate(fd, sizeof(semaphore_t));
(void) pthread_mutexattr_init(&psharedm);
(void) pthread_mutexattr_setpshared(&psharedm,

PTHREAD_PROCESS_SHARED);
(void) pthread_condattr_init(&psharedc);
(void) pthread_condattr_setpshared(&psharedc,

PTHREAD_PROCESS_SHARED);
semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

close (fd);
(void) pthread_mutex_init(&semap->lock, &psharedm);
(void) pthread_cond_init(&semap->nonzero, &psharedc);
semap->count = 0;
return (semap);

}

semaphore_t *
semaphore_open(char *semaphore_name)
{

int fd;
semaphore_t *semap;

fd = open(semaphore_name, O_RDWR, 0666);
if (fd < 0)

return (NULL);
semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1765

58624

58625

58626

58627

58628

58629

58630

58631

58632

58633

58634

58635

58636

58637

58638

58639

58640

58641

58642

58643

58644

58645

58646

58647

58648

58649

58650

58651

58652

58653

58654

58655

58656

58657

58658

58659

58660

58661

58662

58663

58664

58665

58666

58667

58668

58669

58670

58671

58672

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_destroy() System Interfaces

close (fd);
return (semap);

}

void
semaphore_post(semaphore_t *semap)
{

pthread_mutex_lock(&semap->lock);
if (semap->count == 0)

pthread_cond_signal(&semapx->nonzero);
semap->count++;
pthread_mutex_unlock(&semap->lock);

}

void
semaphore_wait(semaphore_t *semap)
{

pthread_mutex_lock(&semap->lock);
while (semap->count == 0)

pthread_cond_wait(&semap->nonzero, &semap->lock);
semap->count--;
pthread_mutex_unlock(&semap->lock);

}

void
semaphore_close(semaphore_t *semap)
{

munmap((void *) semap, sizeof(semaphore_t));
}

The following code is for three separate processes that create, post, and wait on a semaphore in
the file /tmp/semaphore. Once the file is created, the post and wait programs increment and
decrement the counting semaphore (waiting and waking as required) even though they did not
initialize the semaphore.

/* create.c */
#include "pthread.h"
#include "sem.h"

int
main(void)
{

semaphore_t *semap;

semap = semaphore_create("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_close(semap);
return (0);

}

/* post.c */
#include "pthread.h"
#include "sem.h"

int

1766 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58673

58674

58675

58676

58677

58678

58679

58680

58681

58682

58683

58684

58685

58686

58687

58688

58689

58690

58691

58692

58693

58694

58695

58696

58697

58698

58699

58700

58701

58702

58703

58704

58705

58706

58707

58708

58709

58710

58711

58712

58713

58714

58715

58716

58717

58718

58719

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_destroy()

main(void)
{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_post(semap);
semaphore_close(semap);
return (0);

}

/* wait.c */
#include "pthread.h"
#include "sem.h"

int
main(void)
{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_wait(semap);
semaphore_close(semap);
return (0);

}

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are marked as part of the
Threads option.

IEEE PASC Interpretation 1003.1c #27 is applied, updating the ERRORS section.

Issue 7
The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

Issue 8
Austin Group Defect 1195 is applied, changing ``main()’’ to ``main(void)’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1767

58720

58721

58722

58723

58724

58725

58726

58727

58728

58729

58730

58731

58732

58733

58734

58735

58736

58737

58738

58739

58740

58741

58742

58743

58744

58745

58746

58747

58748

58749

58750

58751

58752

58753

58754

58755

58756

58757

58758

58759

58760

58761

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_getprioceiling() System Interfaces

NAME
pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling — get and set the
prioceiling attribute of the mutex attributes object (REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t
*restrict attr, int *restrict prioceiling);

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

DESCRIPTION
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions,
respectively, shall get and set the priority ceiling attribute of a mutex attributes object pointed to
by attr which was previously created by the function pthread_mutexattr_init().

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of
prioceiling are within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the minimum
priority level at which the critical section guarded by the mutex is executed. In order to avoid
priority inversion, the priority ceiling of the mutex shall be set to a priority higher than or equal
to the highest priority of all the threads that may lock that mutex. The values of prioceiling are
within the maximum range of priorities defined under the SCHED_FIFO scheduling policy.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getprioceiling() or pthread_mutexattr_setprioceiling() does not refer to an
initialized mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling() functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by prioceiling is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_getprioceiling() or pthread_mutexattr_setprioceiling() does not refer to an
initialized mutex attributes object, it is recommended that the function should fail and report an
[EINVAL] error.

1768 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58762

58763

58764

58765

58766

58767

58768

58769

58770

58771

58772

58773

58774

58775

58776

58777

58778

58779

58780

58781

58782

58783

58784

58785

58786

58787

58788

58789

58790

58791

58792

58793

58794

58795

58796

58797

58798

58799

58800

58801

58802

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_getprioceiling()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions are marked
as part of the Threads and Thread Priority Protection options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection option.

The [ENOTSUP] error condition has been removed since these functions do not have a protocol
argument.

The restrict keyword is added to the pthread_mutexattr_getprioceiling() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions are moved
from the Threads option to require support of either the Robust Mutex Priority Protection option
or the Non-Robust Mutex Priority Protection option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1769

58803

58804

58805

58806

58807

58808

58809

58810

58811

58812

58813

58814

58815

58816

58817

58818

58819

58820

58821

58822

58823

58824

58825

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_getprotocol() System Interfaces

NAME
pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol — get and set the protocol
attribute of the mutex attributes object (REALTIME THREADS)

SYNOPSIS
MC1 #include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t
*restrict attr, int *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

DESCRIPTION
The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions, respectively,
shall get and set the protocol attribute of a mutex attributes object pointed to by attr which was
previously created by the function pthread_mutexattr_init().

The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of
protocol may be one of:

RPI|TPI PTHREAD_PRIO_INHERIT
MC1 PTHREAD_PRIO_NONE
RPP|TPP PTHREAD_PRIO_PROTECT

which are defined in the <pthread.h> header. The default value of the attribute shall be
PTHREAD_PRIO_NONE.

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority
and scheduling shall not be affected by its mutex ownership.

RPI When a thread is blocking higher priority threads because of owning one or more robust
mutexes with the PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of
its priority or the priority of the highest priority thread waiting on any of the robust mutexes
owned by this thread and initialized with this protocol.

TPI When a thread is blocking higher priority threads because of owning one or more non-robust
mutexes with the PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of
its priority or the priority of the highest priority thread waiting on any of the non-robust
mutexes owned by this thread and initialized with this protocol.

RPP When a thread owns one or more robust mutexes initialized with the
PTHREAD_PRIO_PROTECT protocol, it shall execute at the higher of its priority or the highest
of the priority ceilings of all the robust mutexes owned by this thread and initialized with this
attribute, regardless of whether other threads are blocked on any of these robust mutexes or not.

TPP When a thread owns one or more non-robust mutexes initialized with the
PTHREAD_PRIO_PROTECT protocol, it shall execute at the higher of its priority or the highest
of the priority ceilings of all the non-robust mutexes owned by this thread and initialized with
this attribute, regardless of whether other threads are blocked on any of these non-robust
mutexes or not.

If a thread simultaneously owns several mutexes initialized with different protocols, it shall
execute at the highest of the priorities that it would have obtained by each of these protocols.

1770 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58826

58827

58828

58829

58830

58831

58832

58833

58834

58835

58836

58837

58838

58839

58840

58841

58842

58843

58844

58845

58846

58847

58848

58849

58850

58851

58852

58853

58854

58855

58856

58857

58858

58859

58860

58861

58862

58863

58864

58865

58866

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_getprotocol()

RPI|TPI When a thread makes a call to pthread_mutex_lock(), the mutex was initialized with the protocol
attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked
because the mutex is owned by another thread, that owner thread shall inherit the priority level
of the calling thread as long as it continues to own the mutex. The implementation shall update
its execution priority to the maximum of its assigned priority and all its inherited priorities.
Furthermore, if this owner thread itself becomes blocked on another mutex with the protocol
attribute having the value PTHREAD_PRIO_INHERIT, the same priority inheritance effect shall
be propagated to this other owner thread, in a recursive manner.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getprotocol() or pthread_mutexattr_setprotocol() does not refer to an initialized
mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol() functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutexattr_setprotocol() function shall fail if:

[ENOTSUP] The value specified by protocol is an unsupported value.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions may fail if:

[EINVAL] The value specified by protocol is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_getprotocol() or pthread_mutexattr_setprotocol() does not refer to an initialized
mutex attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions are marked as
part of the Threads option and either the Thread Priority Protection or Thread Priority
Inheritance options.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1771

58867

58868

58869

58870

58871

58872

58873

58874

58875

58876

58877

58878

58879

58880

58881

58882

58883

58884

58885

58886

58887

58888

58889

58890

58891

58892

58893

58894

58895

58896

58897

58898

58899

58900

58901

58902

58903

58904

58905

58906

58907

58908

58909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_getprotocol() System Interfaces

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection or Thread Priority Inheritance
options.

The restrict keyword is added to the pthread_mutexattr_getprotocol() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-135 is applied, updating the DESCRIPTION to define a default value for the
protocol attribute.

SD5-XSH-ERN-188 is applied, updating the DESCRIPTION.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions are moved from
the Threads option to require support of either the Non-Robust Mutex Priority Protection option
or the Non-Robust Mutex Priority Inheritance option or the Robust Mutex Priority Protection
option or the Robust Mutex Priority Inheritance option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

Issue 8
Austin Group Defect 1610 is applied, moving text relating to the effects of
PTHREAD_PRIO_INHERIT and PTHREAD_PRIO_PROTECT on scheduling queues to
Scheduling Policies (on page 531).

1772 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58910

58911

58912

58913

58914

58915

58916

58917

58918

58919

58920

58921

58922

58923

58924

58925

58926

58927

58928

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_getpshared()

NAME
pthread_mutexattr_getpshared, pthread_mutexattr_setpshared — get and set the process-shared
attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t
*restrict attr, int *restrict pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

DESCRIPTION
The pthread_mutexattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr.

The pthread_mutexattr_setpshared() function shall set the process-shared attribute in an initialized
attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be
operated upon by any thread that has access to the memory where the mutex is allocated, even if
the mutex is allocated in memory that is shared by multiple processes. See Section 2.9.9 (on page
548) for further requirements. The default value of the attribute shall be
PTHREAD_PROCESS_PRIVATE.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getpshared() or pthread_mutexattr_setpshared() does not refer to an initialized
mutex attributes object.

RETURN VALUE
Upon successful completion, pthread_mutexattr_setpshared() shall return zero; otherwise, an error
number shall be returned to indicate the error.

Upon successful completion, pthread_mutexattr_getpshared() shall return zero and store the value
of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_getpshared() or pthread_mutexattr_setpshared() does not refer to an initialized
mutex attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1773

58929

58930

58931

58932

58933

58934

58935

58936

58937

58938

58939

58940

58941

58942

58943

58944

58945

58946

58947

58948

58949

58950

58951

58952

58953

58954

58955

58956

58957

58958

58959

58960

58961

58962

58963

58964

58965

58966

58967

58968

58969

58970

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_getpshared() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), pthread_mutexattr_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions are marked as
part of the Threads and Thread Process-Shared Synchronization options.

The restrict keyword is added to the pthread_mutexattr_getpshared() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions are marked only
as part of the Thread Process-Shared Synchronization option as the Threads option is now part
of the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0281 [972] and XSH/TC2-2008/0282
[757] are applied.

1774 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

58971

58972

58973

58974

58975

58976

58977

58978

58979

58980

58981

58982

58983

58984

58985

58986

58987

58988

58989

58990

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_getrobust()

NAME
pthread_mutexattr_getrobust, pthread_mutexattr_setrobust — get and set the mutex robust
attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *restrict
attr, int *restrict robust);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robust);

DESCRIPTION
The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions, respectively, shall
get and set the mutex robust attribute. This attribute is set in the robust parameter. Valid values
for robust include:

PTHREAD_MUTEX_STALLED
No special actions are taken if the owner of the mutex is terminated while holding the
mutex lock. This can lead to deadlocks if no other thread can unlock the mutex.
This is the default value.

PTHREAD_MUTEX_ROBUST
If the process containing the owning thread of a robust mutex terminates while holding the
mutex lock, the next thread that acquires the mutex shall be notified about the termination
by the return value [EOWNERDEAD] from the locking function. If the owning thread of a
robust mutex terminates while holding the mutex lock, the next thread that attempts to
acquire the mutex may be notified about the termination by the return value
[EOWNERDEAD]. The notified thread can then attempt to make the state protected by the
mutex consistent again, and if successful can mark the mutex state as consistent by calling
pthread_mutex_consistent(). After a subsequent successful call to pthread_mutex_unlock(), the
mutex lock shall be released and can be used normally by other threads. If the mutex is
unlocked without a call to pthread_mutex_consistent(), it shall be in a permanently unusable
state and all attempts to lock the mutex shall fail with the error [ENOTRECOVERABLE].
The only permissible operation on such a mutex is pthread_mutex_destroy().

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getrobust() or pthread_mutexattr_setrobust() does not refer to an initialized
mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getrobust() function shall return zero and
store the value of the robust attribute of attr into the object referenced by the robust parameter.
Otherwise, an error value shall be returned to indicate the error. If successful, the
pthread_mutexattr_setrobust() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutexattr_setrobust() function shall fail if:

[EINVAL] The value of robust is invalid.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1775

58991

58992

58993

58994

58995

58996

58997

58998

58999

59000

59001

59002

59003

59004

59005

59006

59007

59008

59009

59010

59011

59012

59013

59014

59015

59016

59017

59018

59019

59020

59021

59022

59023

59024

59025

59026

59027

59028

59029

59030

59031

59032

59033

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_getrobust() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The actions required to make the state protected by the mutex consistent again are solely
dependent on the application. If it is not possible to make the state of a mutex consistent, robust
mutexes can be used to notify this situation by calling pthread_mutex_unlock() without a prior
call to pthread_mutex_consistent().

If the state is declared inconsistent by calling pthread_mutex_unlock() without a prior call to
pthread_mutex_consistent(), a possible approach could be to destroy the mutex and then
reinitialize it. However, it should be noted that this is possible only in certain situations where
the state protected by the mutex has to be reinitialized and coordination achieved with other
threads blocked on the mutex, because otherwise a call to a locking function with a reference to a
mutex object invalidated by a call to pthread_mutex_destroy() results in undefined behavior.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_getrobust() or pthread_mutexattr_setrobust() does not refer to an initialized
mutex attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_consistent(), pthread_mutex_destroy(), pthread_mutex_lock()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0283 [748] is applied.

1776 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59034

59035

59036

59037

59038

59039

59040

59041

59042

59043

59044

59045

59046

59047

59048

59049

59050

59051

59052

59053

59054

59055

59056

59057

59058

59059

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_gettype()

NAME
pthread_mutexattr_gettype, pthread_mutexattr_settype — get and set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr,
int *restrict type);

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

DESCRIPTION
The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions, respectively, shall get
and set the mutex type attribute. This attribute is set in the type parameter to these functions. The
default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types
include:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_DEFAULT

The mutex type affects the behavior of calls which lock and unlock the mutex. See
pthread_mutex_lock() for details. An implementation may map PTHREAD_MUTEX_DEFAULT
to one of the other mutex types.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_gettype() or pthread_mutexattr_settype() does not refer to an initialized mutex
attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_gettype() function shall return zero and store
the value of the type attribute of attr into the object referenced by the type parameter. Otherwise,
an error shall be returned to indicate the error.

If successful, the pthread_mutexattr_settype() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_settype() function shall fail if:

[EINVAL] The value type is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with
condition variables because the implicit unlock performed in a pthread_cond_clockwait(),
pthread_cond_timedwait(), or pthread_cond_wait() call may not actually release the mutex (if it had
been locked multiple times). If this happens, no other thread can satisfy the condition of the
predicate.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1777

59060

59061

59062

59063

59064

59065

59066

59067

59068

59069

59070

59071

59072

59073

59074

59075

59076

59077

59078

59079

59080

59081

59082

59083

59084

59085

59086

59087

59088

59089

59090

59091

59092

59093

59094

59095

59096

59097

59098

59099

59100

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_gettype() System Interfaces

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_gettype() or pthread_mutexattr_settype() does not refer to an initialized mutex
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_clockwait(), pthread_mutex_lock()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The Open Group Corrigendum U033/3 is applied. The SYNOPSIS for
pthread_mutexattr_gettype() is updated so that the first argument is of type const
pthread_mutexattr_t *.

The restrict keyword is added to the pthread_mutexattr_gettype() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions are moved from the
XSI option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0464 [121] is applied.

Issue 8
Austin Group Defect 1216 is applied, adding pthread_cond_clockwait().

1778 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59101

59102

59103

59104

59105

59106

59107

59108

59109

59110

59111

59112

59113

59114

59115

59116

59117

59118

59119

59120

59121

59122

59123

59124

59125

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_init()

NAME
pthread_mutexattr_init — initialize the mutex attributes object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

DESCRIPTION
Refer to pthread_mutexattr_destroy().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1779

59126

59127

59128

59129

59130

59131

59132

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_setprioceiling() System Interfaces

NAME
pthread_mutexattr_setprioceiling — set the prioceiling attribute of the mutex attributes object
(REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

DESCRIPTION
Refer to pthread_mutexattr_getprioceiling().

1780 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59133

59134

59135

59136

59137

59138

59139

59140

59141

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_setprotocol()

NAME
pthread_mutexattr_setprotocol — set the protocol attribute of the mutex attributes object
(REALTIME THREADS)

SYNOPSIS
MC1 #include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

DESCRIPTION
Refer to pthread_mutexattr_getprotocol().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1781

59142

59143

59144

59145

59146

59147

59148

59149

59150

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_setpshared() System Interfaces

NAME
pthread_mutexattr_setpshared — set the process-shared attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_mutexattr_getpshared().

1782 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59151

59152

59153

59154

59155

59156

59157

59158

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_mutexattr_setrobust()

NAME
pthread_mutexattr_setrobust — get and set the mutex robust attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robust);

DESCRIPTION
Refer to pthread_mutexattr_getrobust().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1783

59159

59160

59161

59162

59163

59164

59165

59166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_mutexattr_settype() System Interfaces

NAME
pthread_mutexattr_settype — set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

DESCRIPTION
Refer to pthread_mutexattr_gettype().

1784 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59167

59168

59169

59170

59171

59172

59173

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_once()

NAME
pthread_once — dynamic package initialization

SYNOPSIS
#include <pthread.h>

int pthread_once(pthread_once_t *once_control,
void (*init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

DESCRIPTION
The first call to pthread_once() by any thread in a process, with a given once_control, shall call the
init_routine with no arguments. Subsequent calls of pthread_once() with the same once_control
shall not call the init_routine. On return from pthread_once(), init_routine shall have completed.
The once_control parameter shall determine whether the associated initialization routine has been
called.

The pthread_once() function is not a cancellation point. However, if init_routine is a cancellation
point and is canceled, the effect on once_control shall be as if pthread_once() was never called.

If the call to init_routine is terminated by a call to longjmp() or siglongjmp(), the behavior is
undefined.

The constant PTHREAD_ONCE_INIT is defined in the <pthread.h> header.

The behavior of pthread_once() is undefined if once_control has automatic storage duration or is
not initialized by PTHREAD_ONCE_INIT.

RETURN VALUE
Upon successful completion, pthread_once() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_once() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
If init_routine recursively calls pthread_once() with the same once_control, the recursive call will
not call the specified init_routine, and thus the specified init_routine will not complete, and thus
the recursive call to pthread_once() will not return. Use of longjmp() or siglongjmp() within an
init_routine to jump to a point outside of init_routine prevents init_routine from returning.

RATIONALE
Some C libraries are designed for dynamic initialization. That is, the global initialization for the
library is performed when the first procedure in the library is called. In a single-threaded
program, this is normally implemented using a static variable whose value is checked on entry
to a routine, as follows:

static int random_is_initialized = 0;
extern void initialize_random(void);

int random_function()
{

if (random_is_initialized == 0) {
initialize_random();
random_is_initialized = 1;

}

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1785

59174

59175

59176

59177

59178

59179

59180

59181

59182

59183

59184

59185

59186

59187

59188

59189

59190

59191

59192

59193

59194

59195

59196

59197

59198

59199

59200

59201

59202

59203

59204

59205

59206

59207

59208

59209

59210

59211

59212

59213

59214

59215

59216

59217

59218

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_once() System Interfaces

... /* Operations performed after initialization. */
}

To keep the same structure in a multi-threaded program, a new primitive is needed. Otherwise,
library initialization has to be accomplished by an explicit call to a library-exported initialization
function prior to any use of the library.

For dynamic library initialization in a multi-threaded process, if an initialization flag is used the
flag needs to be protected against modification by multiple threads simultaneously calling into
the library. This can be done by using a mutex (initialized by assigning
PTHREAD_MUTEX_INITIALIZER). However, the better solution is to use pthread_once() which
is designed for exactly this purpose, as follows:

#include <pthread.h>
static pthread_once_t random_is_initialized = PTHREAD_ONCE_INIT;
extern void initialize_random(void);

int random_function()
{

(void) pthread_once(&random_is_initialized, initialize_random);
... /* Operations performed after initialization. */

}

If an implementation detects that the value specified by the once_control argument to
pthread_once() does not refer to a pthread_once_t object initialized by PTHREAD_ONCE_INIT,
it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_once() function is marked as part of the Threads option.

The [EINVAL] error is added as a ``may fail’’ case for if either argument is invalid.

Issue 7
The pthread_once() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized pthread_once_t object is removed; this condition results
in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0284 [863], XSH/TC2-2008/0285 [874],
XSH/TC2-2008/0286 [874], and XSH/TC2-2008/0287 [747] are applied.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

1786 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59219

59220

59221

59222

59223

59224

59225

59226

59227

59228

59229

59230

59231

59232

59233

59234

59235

59236

59237

59238

59239

59240

59241

59242

59243

59244

59245

59246

59247

59248

59249

59250

59251

59252

59253

59254

59255

59256

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_clockrdlock()

NAME
pthread_rwlock_clockrdlock, pthread_rwlock_timedrdlock — lock a read-write lock for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_clockrdlock(pthread_rwlock_t *restrict rwlock,
clockid_t clock_id, const struct timespec *restrict abstime);

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_rwlock_clockrdlock() and pthread_rwlock_timedrdlock() functions shall apply a read
lock to the read-write lock referenced by rwlock as in the pthread_rwlock_rdlock() function.
However, if the lock cannot be acquired without waiting for other threads to unlock the lock,
this wait shall be terminated when the specified timeout expires. The timeout shall expire when
the absolute time specified by abstime passes, as measured by the clock on which timeouts are
based (that is, when the value of that clock equals or exceeds abstime), or if the absolute time
specified by abstime has already been passed at the time of the call.

For pthread_rwlock_timedrdlock(), the timeout shall be based on the CLOCK_REALTIME clock.
For pthread_rwlock_clockrdlock(), the timeout shall be based on the clock specified by the clock_id
argument. The resolution of the timeout shall be the resolution of the clock on which it is based.
Implementations shall support passing CLOCK_REALTIME and CLOCK_MONOTONIC to
pthread_rwlock_clockrdlock() as the clock_id argument.

Under no circumstances shall the function fail with a timeout if the lock can be acquired
immediately. The validity of the abstime parameter need not be checked if the lock can be
immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_clockrdlock() or pthread_rwlock_timedrdlock(), upon return
from the signal handler the thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds a write lock on rwlock.
The results are undefined if these functions are called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_clockrdlock() and pthread_rwlock_timedrdlock() functions shall return zero if
the lock for reading on the read-write lock object referenced by rwlock is acquired. Otherwise, an
error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_clockrdlock() and pthread_rwlock_timedrdlock() functions shall fail if:

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_clockrdlock() and pthread_rwlock_timedrdlock() functions may fail if:

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for lock would be exceeded.

[EDEADLK] A deadlock condition was detected or the calling thread already holds a write
lock on rwlock.

[EINVAL] The abstime nanosecond value is less than zero or greater than or equal to 1 000
million, or the pthread_rwlock_clockrdlock() function was passed an invalid or
unsupported clock_id value.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1787

59257

59258

59259

59260

59261

59262

59263

59264

59265

59266

59267

59268

59269

59270

59271

59272

59273

59274

59275

59276

59277

59278

59279

59280

59281

59282

59283

59284

59285

59286

59287

59288

59289

59290

59291

59292

59293

59294

59295

59296

59297

59298

59299

59300

59301

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_clockrdlock() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_clockrdlock() or pthread_rwlock_timedrdlock() does not refer to an initialized read-
write lock object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_clockwrlock(), pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.275 (on page 72), Section 4.15.2 (on page 104), <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/102 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_timedrdlock() function is moved from the Timeouts option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

Issue 8
Austin Group Defect 592 is applied, removing text relating to <time.h> from the SYNOPSIS and
DESCRIPTION sections.

Austin Group Defects 1216 and 1472 are applied, adding pthread_rwlock_clockrdlock().

1788 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59302

59303

59304

59305

59306

59307

59308

59309

59310

59311

59312

59313

59314

59315

59316

59317

59318

59319

59320

59321

59322

59323

59324

59325

59326

59327

59328

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_clockwrlock()

NAME
pthread_rwlock_clockwrlock, pthread_rwlock_timedwrlock — lock a read-write lock for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_clockwrlock(pthread_rwlock_t *restrict rwlock,
clockid_t clock_id, const struct timespec *restrict abstime);

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_rwlock_clockwrlock() and pthread_rwlock_timedwrlock() functions shall apply a write
lock to the read-write lock referenced by rwlock as in the pthread_rwlock_wrlock() function.
However, if the lock cannot be acquired without waiting for other threads to unlock the lock,
this wait shall be terminated when the specified timeout expires. The timeout shall expire when
the absolute time specified by abstime passes, as measured by the clock on which timeouts are
based (that is, when the value of that clock equals or exceeds abstime), or if the absolute time
specified by abstime has already been passed at the time of the call.

For pthread_rwlock_timedwrlock(), the timeout shall be based on the CLOCK_REALTIME clock.
For pthread_rwlock_clockwrlock(), the timeout shall be based on the clock specified by the clock_id
argument. The resolution of the timeout shall be the resolution of the clock on which it is based.
Implementations shall support passing CLOCK_REALTIME and CLOCK_MONOTONIC to
pthread_rwlock_clockwrlock() as the clock_id argument.

Under no circumstances shall the function fail with a timeout if the lock can be acquired
immediately. The validity of the abstime parameter need not be checked if the lock can be
immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_clockwrlock() or pthread_rwlock_timedwrlock(), upon return
from the signal handler the thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds the read-write lock. The
results are undefined if these functions are called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_clockwrlock() and pthread_rwlock_timedwrlock() functions shall return zero if
the lock for writing on the read-write lock object referenced by rwlock is acquired. Otherwise, an
error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_clockwrlock() and pthread_rwlock_timedwrlock() functions shall fail if:

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_clockwrlock() and pthread_rwlock_timedwrlock() functions may fail if:

[EDEADLK] A deadlock condition was detected or the calling thread already holds the
rwlock.

[EINVAL] The abstime nanosecond value is less than zero or greater than or equal to 1 000
million, or the pthread_rwlock_clockwrlock() function was passed an invalid or
unsupported clock_id value.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1789

59329

59330

59331

59332

59333

59334

59335

59336

59337

59338

59339

59340

59341

59342

59343

59344

59345

59346

59347

59348

59349

59350

59351

59352

59353

59354

59355

59356

59357

59358

59359

59360

59361

59362

59363

59364

59365

59366

59367

59368

59369

59370

59371

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_clockwrlock() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_clockwrlock() or pthread_rwlock_timedwrlock() does not refer to an initialized read-
write lock object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_clockrdlock(), pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.275 (on page 72), Section 4.15.2 (on page 104), <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/103 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_timedwrlock() function is moved from the Timeouts option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

Issue 8
Austin Group Defect 592 is applied, removing text relating to <time.h> from the SYNOPSIS and
DESCRIPTION sections.

Austin Group Defects 1216 and 1472 are applied, adding pthread_rwlock_clockwrlock().

1790 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59372

59373

59374

59375

59376

59377

59378

59379

59380

59381

59382

59383

59384

59385

59386

59387

59388

59389

59390

59391

59392

59393

59394

59395

59396

59397

59398

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_destroy()

NAME
pthread_rwlock_destroy, pthread_rwlock_init — destroy and initialize a read-write lock object

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

const pthread_rwlockattr_t *restrict attr);
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

DESCRIPTION
The pthread_rwlock_destroy() function shall destroy the read-write lock object referenced by
rwlock and release any resources used by the lock. The effect of subsequent use of the lock is
undefined until the lock is reinitialized by another call to pthread_rwlock_init(). An
implementation may cause pthread_rwlock_destroy() to set the object referenced by rwlock to an
invalid value. Results are undefined if pthread_rwlock_destroy() is called when any thread holds
rwlock. Attempting to destroy an uninitialized read-write lock results in undefined behavior.

The pthread_rwlock_init() function shall allocate any resources required to use the read-write lock
referenced by rwlock and initializes the lock to an unlocked state with attributes referenced by
attr. If attr is NULL, the default read-write lock attributes shall be used; the effect is the same as
passing the address of a default read-write lock attributes object. Once initialized, the lock can be
used any number of times without being reinitialized. Results are undefined if
pthread_rwlock_init() is called specifying an already initialized read-write lock. Results are
undefined if a read-write lock is used without first being initialized.

If the pthread_rwlock_init() function fails, rwlock shall not be initialized and the contents of rwlock
are undefined.

See Section 2.9.9 (on page 548) for further requirements.

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks. The effect shall
be equivalent to dynamic initialization by a call to pthread_rwlock_init() with the attr parameter
specified as NULL, except that no error checks are performed.

The behavior is undefined if the value specified by the attr argument to pthread_rwlock_init()
does not refer to an initialized read-write lock attributes object.

RETURN VALUE
If successful, the pthread_rwlock_destroy() and pthread_rwlock_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another read-write lock.

[ENOMEM] Insufficient memory exists to initialize the read-write lock.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1791

59399

59400

59401

59402

59403

59404

59405

59406

59407

59408

59409

59410

59411

59412

59413

59414

59415

59416

59417

59418

59419

59420

59421

59422

59423

59424

59425

59426

59427

59428

59429

59430

59431

59432

59433

59434

59435

59436

59437

59438

59439

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_destroy() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications using these and related read-write lock functions may be subject to priority
inversion, as discussed in XBD Section 3.275 (on page 72).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_destroy() does not refer to an initialized read-write lock object, it is recommended
that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the attr argument to
pthread_rwlock_init() does not refer to an initialized read-write lock attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_destroy() or pthread_rwlock_init() refers to a locked read-write lock object, or
detects that the value specified by the rwlock argument to pthread_rwlock_init() refers to an
already initialized read-write lock object, it is recommended that the function should fail and
report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), pthread_rwlock_rdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.275 (on page 72), <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension). The initializer macro is also
deleted from the SYNOPSIS.

• The DESCRIPTION is updated as follows:

— It explicitly notes allocation of resources upon initialization of a read-write lock
object.

— A paragraph is added specifying that copies of read-write lock objects may not be
used.

• An [EINVAL] error is added to the ERRORS section for pthread_rwlock_init(), indicating
that the rwlock value is invalid.

• The SEE ALSO section is updated.

The restrict keyword is added to the pthread_rwlock_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/45 is applied, adding APPLICATION
USAGE relating to priority inversion.

1792 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59440

59441

59442

59443

59444

59445

59446

59447

59448

59449

59450

59451

59452

59453

59454

59455

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

59469

59470

59471

59472

59473

59474

59475

59476

59477

59478

59479

59480

59481

59482

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_destroy()

Issue 7
Austin Group Interpretation 1003.1-2001 #048 is applied, adding the
PTHREAD_RWLOCK_INITIALIZER macro.

The pthread_rwlock_destroy() and pthread_rwlock_init() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized read-write lock object or read-write lock attributes
object is removed; this condition results in undefined behavior.

The [EBUSY] error for a locked read-write lock object or an already initialized read-write lock
object is removed; this condition results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0465 [70] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0288 [972] and XSH/TC2-2008/0289
[758] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1793

59483

59484

59485

59486

59487

59488

59489

59490

59491

59492

59493

59494

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_rdlock() System Interfaces

NAME
pthread_rwlock_rdlock, pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_rdlock() function shall apply a read lock to the read-write lock referenced by
rwlock. The calling thread acquires the read lock if a writer does not hold the lock and there are
no writers blocked on the lock.

TPS If the Thread Execution Scheduling option is supported, and the threads that hold or are blocked
on the lock are executing with the scheduling policies SCHED_FIFO or SCHED_RR, the calling
thread shall not acquire the lock if a writer holds the lock or if the calling thread does not
already hold a read lock and writers of higher or equal priority are blocked on the lock;
otherwise, the calling thread shall acquire the lock.

TPS TSP If the Thread Execution Scheduling option is supported, and the threads that hold or are blocked
on the lock are executing with the SCHED_SPORADIC scheduling policy, the calling thread
shall not acquire the lock if a writer holds the lock or if the calling thread does not already hold a
read lock and writers of higher or equal priority are blocked on the lock; otherwise, the calling
thread shall acquire the lock.

If the Thread Execution Scheduling option is not supported, it is implementation-defined
whether the calling thread acquires the lock when a writer does not hold the lock and there are
writers blocked on the lock. If a writer holds the lock, the calling thread shall not acquire the
read lock.

Whether the Thread Execution Scheduling option is supported or not, if the read lock is not
acquired, the calling thread shall block until it can acquire the lock. The calling thread may
deadlock if at the time the call is made it holds a write lock.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock() function n times). If so, the application shall ensure that the thread
performs matching unlocks (that is, it calls the pthread_rwlock_unlock() function n times).

The maximum number of simultaneous read locks that an implementation guarantees can be
applied to a read-write lock shall be implementation-defined. The pthread_rwlock_rdlock()
function may fail if this maximum would be exceeded.

The pthread_rwlock_tryrdlock() function shall apply a read lock as in the pthread_rwlock_rdlock()
function, with the exception that the function shall fail if the equivalent pthread_rwlock_rdlock()
call would have blocked the calling thread. In no case shall the pthread_rwlock_tryrdlock()
function ever block; it always either acquires the lock or fails and returns immediately.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the
signal handler the thread resumes waiting for the read-write lock for reading as if it was not
interrupted.

RETURN VALUE
If successful, the pthread_rwlock_rdlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

The pthread_rwlock_tryrdlock() function shall return zero if the lock for reading on the read-write

1794 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59495

59496

59497

59498

59499

59500

59501

59502

59503

59504

59505

59506

59507

59508

59509

59510

59511

59512

59513

59514

59515

59516

59517

59518

59519

59520

59521

59522

59523

59524

59525

59526

59527

59528

59529

59530

59531

59532

59533

59534

59535

59536

59537

59538

59539

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_rdlock()

lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
indicate the error.

ERRORS
The pthread_rwlock_tryrdlock() function shall fail if:

[EBUSY] The read-write lock could not be acquired for reading because a writer holds
the lock or a writer with the appropriate priority was blocked on it.

The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions may fail if:

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for rwlock has been exceeded.

The pthread_rwlock_rdlock() function may fail if:

[EDEADLK] A deadlock condition was detected or the current thread already owns the
read-write lock for writing.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_rdlock() or pthread_rwlock_tryrdlock() does not refer to an initialized read-write
lock object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), pthread_rwlock_destroy(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.275 (on page 72), Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION is updated as follows:

— Conditions under which writers have precedence over readers are specified.

— Failure of pthread_rwlock_tryrdlock() is clarified.

— A paragraph on the maximum number of read locks is added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1795

59540

59541

59542

59543

59544

59545

59546

59547

59548

59549

59550

59551

59552

59553

59554

59555

59556

59557

59558

59559

59560

59561

59562

59563

59564

59565

59566

59567

59568

59569

59570

59571

59572

59573

59574

59575

59576

59577

59578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_rdlock() System Interfaces

• In the ERRORS sections, [EBUSY] is modified to take into account write priority, and
[EDEADLK] is deleted as a pthread_rwlock_tryrdlock() error.

• The SEE ALSO section is updated.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/101 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

Issue 8
Austin Group Defect 1111 is applied, changing ``threads involved in the lock’’ to ``threads that
hold or are blocked on the lock’’ and clarifying that a requirement when the read lock is not
acquired applies regardless of whether or not the Thread Execution Scheduling option is
supported.

1796 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59579

59580

59581

59582

59583

59584

59585

59586

59587

59588

59589

59590

59591

59592

59593

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_timedrdlock()

NAME
pthread_rwlock_timedrdlock — lock a read-write lock for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to pthread_rwlock_clockrdlock().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1797

59594

59595

59596

59597

59598

59599

59600

59601

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_timedwrlock() System Interfaces

NAME
pthread_rwlock_timedwrlock — lock a read-write lock for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to pthread_rwlock_clockwrlock().

1798 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59602

59603

59604

59605

59606

59607

59608

59609

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_tryrdlock()

NAME
pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_rdlock().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1799

59610

59611

59612

59613

59614

59615

59616

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_trywrlock() System Interfaces

NAME
pthread_rwlock_trywrlock, pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_trywrlock() function shall apply a write lock like the pthread_rwlock_wrlock()
function, with the exception that the function shall fail if any thread currently holds rwlock (for
reading or writing).

The pthread_rwlock_wrlock() function shall apply a write lock to the read-write lock referenced by
rwlock. The calling thread shall acquire the write lock if no thread (reader or writer) holds the
read-write lock rwlock. Otherwise, if another thread holds the read-write lock rwlock, the calling
thread shall block until it can acquire the lock. If a deadlock condition occurs or the calling
thread already owns the read-write lock for writing or reading, the call shall either deadlock or
return [EDEADLK].

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the
signal handler the thread resumes waiting for the read-write lock for writing as if it was not
interrupted.

RETURN VALUE
The pthread_rwlock_trywrlock() function shall return zero if the lock for writing on the read-write
lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
indicate the error.

If successful, the pthread_rwlock_wrlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlock_trywrlock() function shall fail if:

[EBUSY] The read-write lock could not be acquired for writing because it was already
locked for reading or writing.

The pthread_rwlock_wrlock() function may fail if:

[EDEADLK] A deadlock condition was detected or the current thread already owns the
read-write lock for writing or reading.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_trywrlock() or pthread_rwlock_wrlock() does not refer to an initialized read-write
lock object, it is recommended that the function should fail and report an [EINVAL] error.

1800 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59617

59618

59619

59620

59621

59622

59623

59624

59625

59626

59627

59628

59629

59630

59631

59632

59633

59634

59635

59636

59637

59638

59639

59640

59641

59642

59643

59644

59645

59646

59647

59648

59649

59650

59651

59652

59653

59654

59655

59656

59657

59658

59659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_trywrlock()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), pthread_rwlock_destroy(),
pthread_rwlock_rdlock(), pthread_rwlock_unlock()

XBD Section 3.275 (on page 72), Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The [EDEADLK] error is deleted as a pthread_rwlock_trywrlock() error.

• The SEE ALSO section is updated.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/104 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_trywrlock() and pthread_rwlock_wrlock() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0290 [720] and XSH/TC2-2008/0291
[722] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1801

59660

59661

59662

59663

59664

59665

59666

59667

59668

59669

59670

59671

59672

59673

59674

59675

59676

59677

59678

59679

59680

59681

59682

59683

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_unlock() System Interfaces

NAME
pthread_rwlock_unlock — unlock a read-write lock object

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_unlock() function shall release a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by the
calling thread.

If this function is called to release a read lock from the read-write lock object and there are other
read locks currently held on this read-write lock object, the read-write lock object remains in the
read locked state. If this function releases the last read lock for this read-write lock object, the
read-write lock object shall be put in the unlocked state with no owners.

If this function is called to release a write lock for this read-write lock object, the read-write lock
object shall be put in the unlocked state.

If there are threads blocked on the lock when it becomes available, the scheduling policy shall
TPS determine which thread(s) shall acquire the lock. If the Thread Execution Scheduling option is

supported, when threads executing with the scheduling policies SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC are waiting on the lock, they shall acquire the lock in priority order when
the lock becomes available. For equal priority threads, write locks shall take precedence over
read locks. If the Thread Execution Scheduling option is not supported, it is implementation-
defined whether write locks take precedence over read locks.

Results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
If successful, the pthread_rwlock_unlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlock_unlock() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_unlock() does not refer to an initialized read-write lock object, it is recommended
that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_unlock() refers to a read-write lock object for which the current thread does not
hold a lock, it is recommended that the function should fail and report an [EPERM] error.

FUTURE DIRECTIONS
None.

1802 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59684

59685

59686

59687

59688

59689

59690

59691

59692

59693

59694

59695

59696

59697

59698

59699

59700

59701

59702

59703

59704

59705

59706

59707

59708

59709

59710

59711

59712

59713

59714

59715

59716

59717

59718

59719

59720

59721

59722

59723

59724

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlock_unlock()

SEE ALSO
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), pthread_rwlock_destroy(),
pthread_rwlock_rdlock(), pthread_rwlock_trywrlock()

XBD Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION is updated as follows:

— The conditions under which writers have precedence over readers are specified.

— The concept of read-write lock owner is deleted.

• The SEE ALSO section is updated.

Issue 7
SD5-XSH-ERN-183 is applied.

The pthread_rwlock_unlock() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

The [EPERM] error for a read-write lock object for which the current thread does not hold a lock
is removed; this condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1803

59725

59726

59727

59728

59729

59730

59731

59732

59733

59734

59735

59736

59737

59738

59739

59740

59741

59742

59743

59744

59745

59746

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlock_wrlock() System Interfaces

NAME
pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_trywrlock().

1804 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59747

59748

59749

59750

59751

59752

59753

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlockattr_destroy()

NAME
pthread_rwlockattr_destroy, pthread_rwlockattr_init — destroy and initialize the read-write
lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION
The pthread_rwlockattr_destroy() function shall destroy a read-write lock attributes object. A
destroyed attr attributes object can be reinitialized using pthread_rwlockattr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined. An implementation
may cause pthread_rwlockattr_destroy() to set the object referenced by attr to an invalid value.

The pthread_rwlockattr_init() function shall initialize a read-write lock attributes object attr with
the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init() is called specifying an already initialized attr
attributes object.

After a read-write lock attributes object has been used to initialize one or more read-write locks,
any function affecting the attributes object (including destruction) shall not affect any previously
initialized read-write locks.

The behavior is undefined if the value specified by the attr argument to
pthread_rwlockattr_destroy() does not refer to an initialized read-write lock attributes object.

RETURN VALUE
If successful, the pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the read-write lock attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_rwlockattr_destroy() does not refer to an initialized read-write lock attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockattr_getpshared()

XBD <pthread.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1805

59754

59755

59756

59757

59758

59759

59760

59761

59762

59763

59764

59765

59766

59767

59768

59769

59770

59771

59772

59773

59774

59775

59776

59777

59778

59779

59780

59781

59782

59783

59784

59785

59786

59787

59788

59789

59790

59791

59792

59793

59794

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlockattr_destroy() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The SEE ALSO section is updated.

Issue 7
The pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock attributes object is removed; this
condition results in undefined behavior.

1806 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59795

59796

59797

59798

59799

59800

59801

59802

59803

59804

59805

59806

59807

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlockattr_getpshared()

NAME
pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared — get and set the process-
shared attribute of the read-write lock attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t
*restrict attr, int *restrict pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

DESCRIPTION
The pthread_rwlockattr_getpshared() function shall obtain the value of the process-shared attribute
from the initialized attributes object referenced by attr. The pthread_rwlockattr_setpshared()
function shall set the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute shall be set to PTHREAD_PROCESS_SHARED to permit a read-write
lock to be operated upon by any thread that has access to the memory where the read-write lock
is allocated, even if the read-write lock is allocated in memory that is shared by multiple
processes. See Section 2.9.9 (on page 548) for further requirements. The default value of the
process-shared attribute shall be PTHREAD_PROCESS_PRIVATE.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to
pthread_rwlockattr_getpshared() or pthread_rwlockattr_setpshared() does not refer to an initialized
read-write lock attributes object.

RETURN VALUE
Upon successful completion, the pthread_rwlockattr_getpshared() function shall return zero and
store the value of the process-shared attribute of attr into the object referenced by the pshared
parameter. Otherwise, an error number shall be returned to indicate the error.

If successful, the pthread_rwlockattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1807

59808

59809

59810

59811

59812

59813

59814

59815

59816

59817

59818

59819

59820

59821

59822

59823

59824

59825

59826

59827

59828

59829

59830

59831

59832

59833

59834

59835

59836

59837

59838

59839

59840

59841

59842

59843

59844

59845

59846

59847

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlockattr_getpshared() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockattr_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR TSH to indicate that the
functionality is now part of the Threads option (previously it was part of the Read-Write
Locks option in IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION notes that additional attributes are implementation-defined.

• The SEE ALSO section is updated.

The restrict keyword is added to the pthread_rwlockattr_getpshared() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared() functions are marked
only as part of the Thread Process-Shared Synchronization option as the Threads option is now
part of the Base.

The [EINVAL] error for an uninitialized read-write lock attributes object is removed; this
condition results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0292 [972] and XSH/TC2-2008/0293
[757] are applied.

1808 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59848

59849

59850

59851

59852

59853

59854

59855

59856

59857

59858

59859

59860

59861

59862

59863

59864

59865

59866

59867

59868

59869

59870

59871

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_rwlockattr_init()

NAME
pthread_rwlockattr_init — initialize the read-write lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION
Refer to pthread_rwlockattr_destroy().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1809

59872

59873

59874

59875

59876

59877

59878

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_rwlockattr_setpshared() System Interfaces

NAME
pthread_rwlockattr_setpshared — set the process-shared attribute of the read-write lock
attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_rwlockattr_getpshared().

1810 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59879

59880

59881

59882

59883

59884

59885

59886

59887

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_self()

NAME
pthread_self — get the calling thread ID

SYNOPSIS
#include <pthread.h>

pthread_t pthread_self(void);

DESCRIPTION
The pthread_self() function shall return the thread ID of the calling thread.

RETURN VALUE
The pthread_self() function shall always be successful and no return value is reserved to indicate
an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_self() function provides a capability similar to the getpid() function for processes
and the rationale is the same: the creation call does not provide the thread ID to the created
thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_equal()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_self() function is marked as part of the Threads option.

Issue 7
Austin Group Interpretation 1003.1-2001 #063 is applied, updating the RETURN VALUE section.

The pthread_self() function is moved from the Threads option to the Base.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1811

59888

59889

59890

59891

59892

59893

59894

59895

59896

59897

59898

59899

59900

59901

59902

59903

59904

59905

59906

59907

59908

59909

59910

59911

59912

59913

59914

59915

59916

59917

59918

59919

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_setcancelstate() System Interfaces

NAME
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);

DESCRIPTION
The pthread_setcancelstate() function shall atomically both set the calling thread’s cancelability
state to the indicated state and return the previous cancelability state at the location referenced
by oldstate. Legal values for state are PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function shall atomically both set the calling thread’s cancelability
type to the indicated type and return the previous cancelability type at the location referenced by
oldtype. Legal values for type are PTHREAD_CANCEL_DEFERRED and
PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which
main() was first invoked, shall be PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel() function shall create a cancellation point in the calling thread. The
pthread_testcancel() function shall have no effect if cancelability is disabled.

The pthread_setcancelstate() function shall be async-signal-safe.

RETURN VALUE
If successful, the pthread_setcancelstate() and pthread_setcanceltype() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_setcancelstate() function may fail if:

[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function may fail if:

[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
In order to write a signal handler for an asynchronous signal which can run safely in a
cancellable thread, pthread_setcancelstate() must be used to disable cancellation for the duration
of any calls that the signal handler makes which are cancellation points. However, earlier
versions of the standard did not permit strictly conforming applications to call
pthread_setcancelstate() from a signal handler since it was not required to be async-signal-safe.
On non-conforming implementations where pthread_setcancelstate() is not async-signal-safe,
alternatives are to ensure either that the corresponding signals are blocked during execution of
functions that are not async-cancel-safe or that cancellation is disabled during times when those
signals could be delivered.

1812 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59920

59921

59922

59923

59924

59925

59926

59927

59928

59929

59930

59931

59932

59933

59934

59935

59936

59937

59938

59939

59940

59941

59942

59943

59944

59945

59946

59947

59948

59949

59950

59951

59952

59953

59954

59955

59956

59957

59958

59959

59960

59961

59962

59963

59964

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_setcancelstate()

RATIONALE
The pthread_setcancelstate() and pthread_setcanceltype() functions control the points at which a
thread may be asynchronously canceled. For cancellation control to be usable in modular
fashion, some rules need to be followed.

An object can be considered to be a generalization of a procedure. It is a set of procedures and
global variables written as a unit and called by clients not known by the object. Objects may
depend on other objects.

First, cancelability should only be disabled on entry to an object, never explicitly enabled. On
exit from an object, the cancelability state should always be restored to its value on entry to the
object.

This follows from a modularity argument: if the client of an object (or the client of an object that
uses that object) has disabled cancelability, it is because the client does not want to be concerned
about cleaning up if the thread is canceled while executing some sequence of actions. If an object
is called in such a state and it enables cancelability and a cancellation request is pending for that
thread, then the thread is canceled, contrary to the wish of the client that disabled.

Second, the cancelability type may be explicitly set to either deferred or asynchronous upon entry
to an object. But as with the cancelability state, on exit from an object the cancelability type
should always be restored to its value on entry to the object.

Finally, only functions that are cancel-safe may be called from a thread that is asynchronously
cancelable.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cancel()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel() functions are marked
as part of the Threads option.

Issue 7
The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel() functions are moved
from the Threads option to the Base.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0294 [622] and XSH/TC2-2008/0295
[615] are applied.

Issue 8
Austin Group Defect 841 is applied, requiring pthread_setcancelstate() to be async-signal-safe.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1813

59965

59966

59967

59968

59969

59970

59971

59972

59973

59974

59975

59976

59977

59978

59979

59980

59981

59982

59983

59984

59985

59986

59987

59988

59989

59990

59991

59992

59993

59994

59995

59996

59997

59998

59999

60000

60001

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_setschedparam() System Interfaces

NAME
pthread_setschedparam — dynamic thread scheduling parameters access (REALTIME
THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param);

DESCRIPTION
Refer to pthread_getschedparam().

1814 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60002

60003

60004

60005

60006

60007

60008

60009

60010

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_setschedprio()

NAME
pthread_setschedprio — dynamic thread scheduling parameters access (REALTIME
THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_setschedprio(pthread_t thread, int prio);

DESCRIPTION
The pthread_setschedprio() function shall set the scheduling priority for the thread whose thread
ID is given by thread to the value given by prio. See Scheduling Policies (on page 531) for a
description on how this function call affects the ordering of the thread in the thread list for its
new priority.

If the pthread_setschedprio() function fails, the scheduling priority of the target thread shall not be
changed.

RETURN VALUE
If successful, the pthread_setschedprio() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_setschedprio() function may fail if:

[EINVAL] The value of prio is invalid for the scheduling policy of the specified thread.

[EPERM] The caller does not have appropriate privileges to set the scheduling priority
of the specified thread.

The pthread_setschedprio() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_setschedprio() function provides a way for an application to temporarily raise its
priority and then lower it again, without having the undesired side-effect of yielding to other
threads of the same priority. This is necessary if the application is to implement its own
strategies for bounding priority inversion, such as priority inheritance or priority ceilings. This
capability is especially important if the implementation does not support the Thread Priority
Protection or Thread Priority Inheritance options, but even if those options are supported it is
needed if the application is to bound priority inheritance for other resources, such as
semaphores.

The standard developers considered that while it might be preferable conceptually to solve this
problem by modifying the specification of pthread_setschedparam(), it was too late to make such a
change, as there may be implementations that would need to be changed. Therefore, this new
function was introduced.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1815

60011

60012

60013

60014

60015

60016

60017

60018

60019

60020

60021

60022

60023

60024

60025

60026

60027

60028

60029

60030

60031

60032

60033

60034

60035

60036

60037

60038

60039

60040

60041

60042

60043

60044

60045

60046

60047

60048

60049

60050

60051

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_setschedprio() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 531), pthread_getschedparam()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Included as a response to IEEE PASC Interpretation 1003.1 #96.

Issue 7
The pthread_setschedprio() function is marked only as part of the Thread Execution Scheduling
option as the Threads option is now part of the Base.

Austin Group Interpretation 1003.1-2001 #069 is applied, updating the [EPERM] error.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0466 [314] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0296 [757] is applied.

1816 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60052

60053

60054

60055

60056

60057

60058

60059

60060

60061

60062

60063

60064

60065

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_setspecific()

NAME
pthread_setspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *value);

DESCRIPTION
Refer to pthread_getspecific().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1817

60066

60067

60068

60069

60070

60071

60072

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_sigmask() System Interfaces

NAME
pthread_sigmask, sigprocmask — examine and change blocked signals

SYNOPSIS
CX #include <signal.h>

int pthread_sigmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

int sigprocmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

DESCRIPTION
The pthread_sigmask() function shall examine or change (or both) the calling thread’s signal
mask.

If the argument set is not a null pointer, it points to a set of signals to be used to change the
currently blocked set.

The argument how indicates the way in which the set is changed, and the application shall
ensure it consists of one of the following values:

SIG_BLOCK The resulting set shall be the union of the current set and the signal set
pointed to by set.

SIG_SETMASK The resulting set shall be the signal set pointed to by set.

SIG_UNBLOCK The resulting set shall be the intersection of the current set and the
complement of the signal set pointed to by set.

If the argument oset is not a null pointer, the previous mask shall be stored in the location
pointed to by oset. If set is a null pointer, the value of the argument how is not significant and the
thread’s signal mask shall be unchanged; thus the call can be used to enquire about currently
blocked signals.

If the argument set is not a null pointer, after pthread_sigmask() changes the currently blocked set
of signals it shall determine whether there are any pending unblocked signals; if there are any,
then at least one of those signals shall be delivered before the call to pthread_sigmask() returns.

It is not possible to block those signals which cannot be ignored. This shall be enforced by the
system without causing an error to be indicated.

If any of the SIGFPE, SIGILL, SIGSEGV, or SIGBUS signals are generated while they are blocked,
the result is undefined, unless the signal was generated by the action of another process, or by
one of the functions kill(), pthread_kill(), raise(), or sigqueue().

If pthread_sigmask() fails, the thread’s signal mask shall not be changed.

The sigprocmask() function shall be equivalent to pthread_sigmask(), except that its behavior is
unspecified if called from a multi-threaded process, and on error it returns −1 and sets errno to
the error number instead of returning the error number directly.

RETURN VALUE
Upon successful completion, pthread_sigmask() shall return 0; otherwise, it shall return the
corresponding error number.

Upon successful completion, sigprocmask() shall return 0; otherwise, −1 shall be returned and
errno shall be set to indicate the error.

1818 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60073

60074

60075

60076

60077

60078

60079

60080

60081

60082

60083

60084

60085

60086

60087

60088

60089

60090

60091

60092

60093

60094

60095

60096

60097

60098

60099

60100

60101

60102

60103

60104

60105

60106

60107

60108

60109

60110

60111

60112

60113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_sigmask()

ERRORS
These functions shall fail if:

[EINVAL] The set argument is not a null pointer and the value of the how argument is not
equal to one of the defined values.

These functions shall not return an error code of [EINTR].

EXAMPLES

Signaling in a Multi-Threaded Process

This example shows the use of pthread_sigmask() in order to deal with signals in a multi-
threaded process. It provides a fairly general framework that could be easily adapted/extended.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
...

static sigset_t signal_mask; /* signals to block */

int main (int argc, char *argv[])
{

pthread_t sig_thr_id; /* signal handler thread ID */
int rc; /* return code */

sigemptyset (&signal_mask);
sigaddset (&signal_mask, SIGINT);
sigaddset (&signal_mask, SIGTERM);
rc = pthread_sigmask (SIG_BLOCK, &signal_mask, NULL);
if (rc != 0) {

/* handle error */
...

}
/* any newly created threads inherit the signal mask */

rc = pthread_create (&sig_thr_id, NULL, signal_thread, NULL);
if (rc != 0) {

/* handle error */
...

}

/* APPLICATION CODE */
...

}

void *signal_thread (void *arg)
{

int sig_caught; /* signal caught */
int rc; /* returned code */

rc = sigwait (&signal_mask, &sig_caught);
if (rc != 0) {

/* handle error */

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1819

60114

60115

60116

60117

60118

60119

60120

60121

60122

60123

60124

60125

60126

60127

60128

60129

60130

60131

60132

60133

60134

60135

60136

60137

60138

60139

60140

60141

60142

60143

60144

60145

60146

60147

60148

60149

60150

60151

60152

60153

60154

60155

60156

60157

60158

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_sigmask() System Interfaces

}
switch (sig_caught)
{
case SIGINT: /* process SIGINT */

...
break;

case SIGTERM: /* process SIGTERM */
...
break;

default: /* should normally not happen */
fprintf (stderr, "\nUnexpected signal %d\n", sig_caught);
break;

}
}

APPLICATION USAGE
Although pthread_sigmask() has to deliver at least one of any pending unblocked signals that
exist after it has changed the currently blocked set of signals, there is no requirement that the
delivered signal(s) include any that were unblocked by the change. If one or more signals that
were already unblocked become pending (see Section 2.4.1, on page 513) during the period the
pthread_setmask() call is executing, the signal(s) delivered before the call returns might include
only those signals.

RATIONALE
When a thread’s signal mask is changed in a signal-catching function that is installed by
sigaction(), the restoration of the signal mask on return from the signal-catching function
overrides that change (see sigaction()). If the signal-catching function was installed with
signal(), it is unspecified whether this occurs.

See kill() for a discussion of the requirement on delivery of signals.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , kill(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(),
sigpending(), sigqueue(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

The pthread_sigmask() function is added for alignment with the POSIX Threads Extension.

Issue 6
The pthread_sigmask() function is marked as part of the Threads option.

The SYNOPSIS for sigprocmask() is marked as a CX extension to note that the presence of this
function in the <signal.h> header is an extension to the ISO C standard.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

1820 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60159

60160

60161

60162

60163

60164

60165

60166

60167

60168

60169

60170

60171

60172

60173

60174

60175

60176

60177

60178

60179

60180

60181

60182

60183

60184

60185

60186

60187

60188

60189

60190

60191

60192

60193

60194

60195

60196

60197

60198

60199

60200

60201

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_sigmask()

• The DESCRIPTION is updated to explicitly state the functions which may generate the
signal.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the pthread_sigmask() and sigprocmask() prototypes for
alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/105 is applied, updating ``process’ signal
mask’’ to ``thread’s signal mask’’ in the DESCRIPTION and RATIONALE sections.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/106 is applied, adding the example to the
EXAMPLES section.

Issue 7
The pthread_sigmask() function is moved from the Threads option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0467 [319] is applied.

Issue 8
Austin Group Defect 1132 is applied, clarifying the [EINVAL] error.

Austin Group Defect 1636 is applied, clarifying the exceptions to the equivalence of
pthread_sigmask() and sigprocmask().

Austin Group Defect 1731 is applied, clarifying that although pthread_sigmask() has to deliver at
least one of any pending unblocked signals that exist after it has changed the currently blocked
set of signals, there is no requirement that the delivered signal(s) include any that were
unblocked by the change.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1821

60202

60203

60204

60205

60206

60207

60208

60209

60210

60211

60212

60213

60214

60215

60216

60217

60218

60219

60220

60221

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_spin_destroy() System Interfaces

NAME
pthread_spin_destroy, pthread_spin_init — destroy or initialize a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);
int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

DESCRIPTION
The pthread_spin_destroy() function shall destroy the spin lock referenced by lock and release any
resources used by the lock. The effect of subsequent use of the lock is undefined until the lock is
reinitialized by another call to pthread_spin_init(). The results are undefined if
pthread_spin_destroy() is called when a thread holds the lock, or if this function is called with an
uninitialized thread spin lock.

The pthread_spin_init() function shall allocate any resources required to use the spin lock
referenced by lock and initialize the lock to an unlocked state.

TSH If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_SHARED, the implementation shall permit the spin lock to be operated
upon by any thread that has access to the memory where the spin lock is allocated, even if it is
allocated in memory that is shared by multiple processes.

See Section 2.9.9 (on page 548) for further requirements.

The results are undefined if pthread_spin_init() is called specifying an already initialized spin
lock. The results are undefined if a spin lock is used without first being initialized.

If the pthread_spin_init() function fails, the lock is not initialized and the contents of lock are
undefined.

Only the object referenced by lock may be used for performing synchronization.

The result of referring to copies of that object in calls to pthread_spin_destroy(),
pthread_spin_lock(), pthread_spin_trylock(), or pthread_spin_unlock() is undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_spin_init() function shall fail if:

[EAGAIN] The system lacks the necessary resources to initialize another spin lock.

[ENOMEM] Insufficient memory exists to initialize the lock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the lock argument to
pthread_spin_destroy() does not refer to an initialized spin lock object, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the lock argument to

1822 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60222

60223

60224

60225

60226

60227

60228

60229

60230

60231

60232

60233

60234

60235

60236

60237

60238

60239

60240

60241

60242

60243

60244

60245

60246

60247

60248

60249

60250

60251

60252

60253

60254

60255

60256

60257

60258

60259

60260

60261

60262

60263

60264

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_spin_destroy()

pthread_spin_destroy() or pthread_spin_init() refers to a locked spin lock object, or detects that the
value specified by the lock argument to pthread_spin_init() refers to an already initialized spin
lock object, it is recommended that the function should fail and report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_lock(), pthread_spin_unlock()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_spin_destroy() and pthread_spin_init() functions are moved from the Spin Locks
option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition results in
undefined behavior.

The [EBUSY] error for a locked spin lock object or an already initialized spin lock object is
removed; this condition results in undefined behavior.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0297 [972] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1823

60265

60266

60267

60268

60269

60270

60271

60272

60273

60274

60275

60276

60277

60278

60279

60280

60281

60282

60283

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_spin_lock() System Interfaces

NAME
pthread_spin_lock, pthread_spin_trylock — lock a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);

DESCRIPTION
The pthread_spin_lock() function shall lock the spin lock referenced by lock. The calling thread
shall acquire the lock if it is not held by another thread. Otherwise, the thread shall spin (that is,
shall not return from the pthread_spin_lock() call) until the lock becomes available. The results are
undefined if the calling thread holds the lock at the time the call is made. The
pthread_spin_trylock() function shall lock the spin lock referenced by lock if it is not held by any
thread. Otherwise, the function shall fail.

The results are undefined if any of these functions is called with an uninitialized spin lock.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_spin_lock() function may fail if:

[EDEADLK] A deadlock condition was detected.

The pthread_spin_trylock() function shall fail if:

[EBUSY] A thread currently holds the lock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

RATIONALE
If an implementation detects that the value specified by the lock argument to pthread_spin_lock()
or pthread_spin_trylock() does not refer to an initialized spin lock object, it is recommended that
the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the lock argument to pthread_spin_lock()
refers to a spin lock object for which the calling thread already holds the lock, it is recommended
that the function should fail and report an [EDEADLK] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_destroy(), pthread_spin_unlock()

XBD Section 3.275 (on page 72), Section 4.15.2 (on page 104), <pthread.h>

1824 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60284

60285

60286

60287

60288

60289

60290

60291

60292

60293

60294

60295

60296

60297

60298

60299

60300

60301

60302

60303

60304

60305

60306

60307

60308

60309

60310

60311

60312

60313

60314

60315

60316

60317

60318

60319

60320

60321

60322

60323

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_spin_lock()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/107 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_spin_lock() and pthread_spin_trylock() functions are moved from the Spin Locks
option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition results in
undefined behavior.

The [EDEADLK] error for a spin lock object for which the calling thread already holds the lock is
removed; this condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1825

60324

60325

60326

60327

60328

60329

60330

60331

60332

60333

60334

60335

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_spin_unlock() System Interfaces

NAME
pthread_spin_unlock — unlock a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

DESCRIPTION
The pthread_spin_unlock() function shall release the spin lock referenced by lock which was
locked via the pthread_spin_lock() or pthread_spin_trylock() functions.

The results are undefined if the lock is not held by the calling thread.

If there are threads spinning on the lock when pthread_spin_unlock() is called, the lock becomes
available and an unspecified spinning thread shall acquire the lock.

The results are undefined if this function is called with an uninitialized thread spin lock.

RETURN VALUE
Upon successful completion, the pthread_spin_unlock() function shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the lock argument to
pthread_spin_unlock() does not refer to an initialized spin lock object, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the lock argument to
pthread_spin_unlock() refers to a spin lock object for which the current thread does not hold the
lock, it is recommended that the function should fail and report an [EPERM] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_destroy(), pthread_spin_lock()

XBD Section 4.15.2 (on page 104), <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_spin_unlock() function is moved from the Spin Locks option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition results in
undefined behavior.

1826 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60336

60337

60338

60339

60340

60341

60342

60343

60344

60345

60346

60347

60348

60349

60350

60351

60352

60353

60354

60355

60356

60357

60358

60359

60360

60361

60362

60363

60364

60365

60366

60367

60368

60369

60370

60371

60372

60373

60374

60375

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pthread_spin_unlock()

The [EPERM] error for a spin lock object for which the current thread does not hold the lock is
removed; this condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1827

60376

60377

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pthread_testcancel() System Interfaces

NAME
pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

void pthread_testcancel(void);

DESCRIPTION
Refer to pthread_setcancelstate().

1828 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60378

60379

60380

60381

60382

60383

60384

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ptsname()

NAME
ptsname, ptsname_r — get name of the subsidiary pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

char *ptsname(int fildes);
int ptsname_r(int fildes, char *name, size_t namesize);

DESCRIPTION
The ptsname() function shall return the name of the subsidiary pseudo-terminal device
associated with a manager pseudo-terminal device. The fildes argument is a file descriptor that
refers to the manager device. The ptsname() function shall return a pointer to a string containing
the pathname of the corresponding subsidiary device.

The ptsname() function need not be thread-safe.

The ptsname_r() function shall store the name of the subsidiary pseudo-terminal device
corresponding to fildes in the character array referenced by name. The array is namesize
characters long and should have space for the name and the terminating null character. The
maximum length of the terminal name shall be {TTY_NAME_MAX}.

RETURN VALUE
Upon successful completion, ptsname() shall return a pointer to a string which is the name of the
pseudo-terminal subsidiary device. Upon failure, ptsname() shall return a null pointer and may
set errno. This could occur if fildes is an invalid file descriptor or if the subsidiary device name
does not exist in the file system.

The application shall not modify the string returned. The returned pointer might be invalidated
or the string content might be overwritten by a subsequent call to ptsname(). The returned
pointer and the string content might also be invalidated if the calling thread is terminated.

If successful, the ptsname_r() function shall return zero. Otherwise, an error number shall be
returned to indicate the error.

ERRORS
The ptsname_r() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The name argument is a null pointer.

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

The ptsname() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

The ptsname() and ptsname_r() functions may fail if:

[EINVAL] or [ENOTTY]
The file associated with the fildes argument is not a manager pseudo-terminal
device.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1829

60385

60386

60387

60388

60389

60390

60391

60392

60393

60394

60395

60396

60397

60398

60399

60400

60401

60402

60403

60404

60405

60406

60407

60408

60409

60410

60411

60412

60413

60414

60415

60416

60417

60418

60419

60420

60421

60422

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ptsname() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The ptsname_r() function is required to make it possible for a multi-threaded program to safely
determine the name of a subsidiary device. Although the name of the device is constrained by
{TTY_NAME_MAX}, this value might not be a compile-time constant, so an application can rely
on repeated calls with successively larger buffers until the result is no longer [ERANGE] as an
alternative for properly sizing the buffer.

Historically, some versions of ptsname() did not set errno even when returning a null pointer.
However, ptsname_r() is required to either populate the buffer with a valid name or return an
error value.

See also the RATIONALE section for posix_openpt().

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), posix_openpt(), ttyname(), unlockpt()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0468 [75] and XSH/TC1-2008/0469
[96] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0298 [503], XSH/TC2-2008/0299 [656],
and XSH/TC2-2008/0300 [503] are applied.

Issue 8
Austin Group Defect 508 is applied, adding the ptsname_r() function.

Austin Group Defect 1466 is applied, changing the terminology used for pseudo-terminal
devices.

1830 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60423

60424

60425

60426

60427

60428

60429

60430

60431

60432

60433

60434

60435

60436

60437

60438

60439

60440

60441

60442

60443

60444

60445

60446

60447

60448

60449

60450

60451

60452

60453

60454

60455

60456

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces putc()

NAME
putc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int putc(int c, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The putc() function shall be equivalent to fputc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side-
effects.

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, putc() may treat a stream argument with side-effects
incorrectly. In particular, putc(c,*f++) does not necessarily work correctly. Therefore, use of this
function is not recommended in such situations; fputc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fputc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0470 [14] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1831

60457

60458

60459

60460

60461

60462

60463

60464

60465

60466

60467

60468

60469

60470

60471

60472

60473

60474

60475

60476

60477

60478

60479

60480

60481

60482

60483

60484

60485

60486

60487

60488

60489

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

putc_unlocked() System Interfaces

NAME
putc_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int putc_unlocked(int c, FILE *stream);

DESCRIPTION
Refer to getc_unlocked().

1832 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60490

60491

60492

60493

60494

60495

60496

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces putchar()

NAME
putchar — put a byte on a stdout stream

SYNOPSIS
#include <stdio.h>

int putchar(int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The function call putchar(c) shall be equivalent to putc(c,stdout).

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), putc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0471 [14] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1833

60497

60498

60499

60500

60501

60502

60503

60504

60505

60506

60507

60508

60509

60510

60511

60512

60513

60514

60515

60516

60517

60518

60519

60520

60521

60522

60523

60524

60525

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

putchar_unlocked() System Interfaces

NAME
putchar_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int putchar_unlocked(int c);

DESCRIPTION
Refer to getc_unlocked().

1834 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60526

60527

60528

60529

60530

60531

60532

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces putenv()

NAME
putenv — change or add a value to an environment

SYNOPSIS
XSI #include <stdlib.h>

int putenv(char *string);

DESCRIPTION
The putenv() function shall use the string argument to set, or optionally unset, an environment
variable value:

• If the string argument points to a string of the form "name=value", where name is a valid
name, the putenv() function shall make the value of the environment variable with that
name equal to value by altering an existing variable or creating a new one. In either case,
the string pointed to by string shall become part of the environment, so altering the string
shall change the environment.

• If the string argument points to a string containing a valid name, the putenv() function
shall either remove the environment variable with that name (if it exists) from the
environment or fail with errno set to [EINVAL].

• Otherwise, the behavior is unspecified.

The putenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, putenv() shall return 0; otherwise, it shall return a non-zero value
and set errno to indicate the error.

ERRORS
The putenv() function may fail if:
[EINVAL] The string argument points to a string that is not of the form "name=value",

where name is a valid name.

[ENOMEM] Insufficient memory was available.

EXAMPLES

Changing the Value of an Environment Variable

The following example changes the value of the HOME environment variable to the value
/usr/home.

#include <stdlib.h>
...
static char *var = "HOME=/usr/home";
int ret;

ret = putenv(var);

APPLICATION USAGE
The putenv() function manipulates the environment pointed to by environ, and can be used in
conjunction with getenv().

See exec() for restrictions on changing the environment in multi-threaded applications.

This routine may use malloc() to enlarge the environment.

A potential error is to call putenv() with an automatic variable as the argument, then return from

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1835

60533

60534

60535

60536

60537

60538

60539

60540

60541

60542

60543

60544

60545

60546

60547

60548

60549

60550

60551

60552

60553

60554

60555

60556

60557

60558

60559

60560

60561

60562

60563

60564

60565

60566

60567

60568

60569

60570

60571

60572

60573

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

putenv() System Interfaces

the calling function while string is still part of the environment.

Although the space used by string is no longer used once a new string which defines name is
passed to putenv(), if any thread in the application has used getenv() to retrieve a pointer to this
variable, it should not be freed by calling free(). If the changed environment variable is one
known by the system (such as the locale environment variables) the application should never
free the buffer used by earlier calls to putenv() for the same variable.

The setenv() function is preferred over this function. One reason is that putenv() is optional and
therefore less portable. Another is that using putenv() can slow down environment searches, as
explained in the RATIONALE section for getenv().

RATIONALE
Refer to the RATIONALE section in setenv().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , free(), getenv(), malloc(), setenv()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The type of the argument to this function is changed from const char * to char *. This was
indicated as a FUTURE DIRECTION in previous issues.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/48 is applied, clarifying wording in the
DESCRIPTION and adding a new paragraph into APPLICATION USAGE referring readers to
exec.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0472 [167], XSH/TC1-2008/0473 [167],
XSH/TC1-2008/0474 [273,438], and XSH/TC1-2008/0475 [273] are applied.

Issue 8
Austin Group Defect 1598 is applied, specifying the allowed behaviors when the string argument
points to a string containing a valid name.

1836 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60574

60575

60576

60577

60578

60579

60580

60581

60582

60583

60584

60585

60586

60587

60588

60589

60590

60591

60592

60593

60594

60595

60596

60597

60598

60599

60600

60601

60602

60603

60604

60605

60606

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces puts()

NAME
puts — put a string on standard output

SYNOPSIS
#include <stdio.h>

int puts(const char *s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The puts() function shall write the string pointed to by s, followed by a <newline>, to the
standard output stream stdout. The terminating null byte shall not be written.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of puts() and the next successful completion of a call to
fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, puts() shall return a non-negative number. Otherwise, it shall

CX return EOF, shall set an error indicator for the stream, and errno shall be set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES

Printing to Standard Output

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using puts(). It then prints the number of minutes to
an event for which it is waiting.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
puts(asctime(localtime(&now)));
printf("There are %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The puts() function appends a <newline>, while fputs() does not.

This volume of POSIX.1-2024 requires that successful completion simply return a non-negative
integer. There are at least three known different implementation conventions for this
requirement:

• Return a constant value.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1837

60607

60608

60609

60610

60611

60612

60613

60614

60615

60616

60617

60618

60619

60620

60621

60622

60623

60624

60625

60626

60627

60628

60629

60630

60631

60632

60633

60634

60635

60636

60637

60638

60639

60640

60641

60642

60643

60644

60645

60646

60647

60648

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

puts() System Interfaces

• Return the last character written.

• Return the number of bytes written. Note that this implementation convention cannot be
adhered to for strings longer than {INT_MAX} bytes as the value would not be
representable in the return type of the function. For backwards compatibility,
implementations can return the number of bytes for strings of up to {INT_MAX} bytes, and
return {INT_MAX} for all longer strings.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), fputs(), putc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0476 [174,412] and
XSH/TC1-2008/0477 [14] are applied.

1838 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60649

60650

60651

60652

60653

60654

60655

60656

60657

60658

60659

60660

60661

60662

60663

60664

60665

60666

60667

60668

60669

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces pututxline()

NAME
pututxline — put an entry into the user accounting database

SYNOPSIS
XSI #include <utmpx.h>

struct utmpx *pututxline(const struct utmpx *utmpx);

DESCRIPTION
Refer to endutxent().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1839

60670

60671

60672

60673

60674

60675

60676

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

putwc() System Interfaces

NAME
putwc — put a wide character on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t putwc(wchar_t wc, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The putwc() function shall be equivalent to fputwc(), except that if it is implemented as a macro
it may evaluate stream more than once, so the argument should never be an expression with
side-effects.

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, putwc() may treat a stream argument with side-effects
incorrectly. In particular, putwc(wc,*f++) need not work correctly. Therefore, use of this function
is not recommended; fputwc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fputwc()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

The Optional Header (OH) marking is removed from <stdio.h>.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0478 [14] is applied.

1840 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60677

60678

60679

60680

60681

60682

60683

60684

60685

60686

60687

60688

60689

60690

60691

60692

60693

60694

60695

60696

60697

60698

60699

60700

60701

60702

60703

60704

60705

60706

60707

60708

60709

60710

60711

60712

60713

60714

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces putwchar()

NAME
putwchar — put a wide character on a stdout stream

SYNOPSIS
#include <wchar.h>

wint_t putwchar(wchar_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The function call putwchar(wc) shall be equivalent to putwc(wc,stdout).

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fputwc(), putwc()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0479 [14] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1841

60715

60716

60717

60718

60719

60720

60721

60722

60723

60724

60725

60726

60727

60728

60729

60730

60731

60732

60733

60734

60735

60736

60737

60738

60739

60740

60741

60742

60743

60744

60745

60746

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pwrite() System Interfaces

NAME
pwrite — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

DESCRIPTION
Refer to write().

1842 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60747

60748

60749

60750

60751

60752

60753

60754

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces qsort()

NAME
qsort, qsort_r — sort a table of data

SYNOPSIS
#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *));

CX void qsort_r(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *, void *), void *arg);

DESCRIPTION
CX For qsort(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The qsort() function shall sort an array of nel objects, the initial element of which is pointed to by
base. The size of each object, in bytes, is specified by the width argument. If the nel argument has
the value zero, the comparison function pointed to by compar shall not be called and no
rearrangement shall take place.

The application shall ensure that the comparison function pointed to by compar does not alter the
contents of the array. The implementation may reorder elements of the array between calls to the
comparison function, but shall not alter the contents of any individual element.

When the same objects (consisting of width bytes, irrespective of their current positions in the
array) are passed more than once to the comparison function, the results shall be consistent with
one another. That is, they shall define a total ordering on the array.

The contents of the array shall be sorted in ascending order according to a comparison function.
The compar argument is a pointer to the comparison function, which is called with two
arguments that point to the elements being compared. The application shall ensure that the
function returns an integer less than, equal to, or greater than 0, if the first argument is
considered respectively less than, equal to, or greater than the second. If two members compare
as equal, their order in the sorted array is unspecified.

CX The qsort_r() function shall be identical to qsort() except that the comparison function compar
takes a third argument. The arg opaque pointer passed to qsort_r() shall in turn be passed as the
third argument to the comparison function.

RETURN VALUE
These functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

If the compar callback function requires any additional state outside of the items being sorted, it
can only access this state through global variables, making it potentially unsafe to use qsort()
with the same compar function from separate threads at the same time. The qsort_r() function
was added with the ability to pass through arbitrary arguments to the comparator, which avoids
the need to access global variables and thus making it possible to safely share a stateful

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1843

60755

60756

60757

60758

60759

60760

60761

60762

60763

60764

60765

60766

60767

60768

60769

60770

60771

60772

60773

60774

60775

60776

60777

60778

60779

60780

60781

60782

60783

60784

60785

60786

60787

60788

60789

60790

60791

60792

60793

60794

60795

60796

60797

60798

60799

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

qsort() System Interfaces

comparator across threads.

RATIONALE
The requirement that each argument (hereafter referred to as p) to the comparison function is a
pointer to elements of the array implies that for every call, for each argument separately, all of
the following expressions are non-zero:

((char *)p - (char *)base) % width == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nel * width

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/49 is applied, adding the last sentence to
the first non-shaded paragraph in the DESCRIPTION, and the following two paragraphs. The
RATIONALE is also updated. These changes are for alignment with the ISO C standard.

Issue 8
Austin Group Defect 900 is applied, adding the qsort_r() function.

1844 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60800

60801

60802

60803

60804

60805

60806

60807

60808

60809

60810

60811

60812

60813

60814

60815

60816

60817

60818

60819

60820

60821

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces quick_exit()

NAME
quick_exit — terminate a process

SYNOPSIS
#include <stdlib.h>

_Noreturn void quick_exit(int status);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The quick_exit() function shall cause normal process termination to occur. It shall not call
functions registered with atexit() nor any registered signal handlers. If a process calls the
quick_exit() function more than once, or calls the exit() function in addition to the quick_exit()
function, the behavior is undefined. If a signal is raised while the quick_exit() function is
executing, the behavior is undefined.

The quick_exit() function shall first call all functions registered by at_quick_exit(), in the reverse
order of their registration, except that a function is called after any previously registered
functions that had already been called at the time it was registered. If, during the call to any such

CX function, a call to the longjmp() or siglongjmp() function is made that would terminate the call
to the registered function, the behavior is undefined.

If a function registered by a call to at_quick_exit() fails to return, the remaining registered
functions shall not be called and the rest of the quick_exit() processing shall not be completed.

Finally, the quick_exit() function shall terminate the process as if by a call to _Exit(status).

RETURN VALUE
The quick_exit() function does not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
_Exit(), at_quick_exit(), atexit(), exit()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1845

60822

60823

60824

60825

60826

60827

60828

60829

60830

60831

60832

60833

60834

60835

60836

60837

60838

60839

60840

60841

60842

60843

60844

60845

60846

60847

60848

60849

60850

60851

60852

60853

60854

60855

60856

60857

60858

60859

60860

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

raise() System Interfaces

NAME
raise — send a signal to the executing process

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

CX The raise() function shall send the signal sig to the executing thread or process. If a signal
handler is called, the raise() function shall not return until after the signal handler does.

CX The effect of the raise() function shall be equivalent to calling:

pthread_kill(pthread_self(), sig);

RETURN VALUE
CX Upon successful completion, 0 shall be returned. Otherwise, a non-zero value shall be returned

and errno shall be set to indicate the error.

ERRORS
The raise() function shall fail if:

CX [EINVAL] The value of the sig argument is an invalid signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ``thread’’ is an extension to the ISO C standard.

FUTURE DIRECTIONS
None.

SEE ALSO
kill(), sigaction()

XBD <signal.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno on error is added.

1846 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60861

60862

60863

60864

60865

60866

60867

60868

60869

60870

60871

60872

60873

60874

60875

60876

60877

60878

60879

60880

60881

60882

60883

60884

60885

60886

60887

60888

60889

60890

60891

60892

60893

60894

60895

60896

60897

60898

60899

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces raise()

• The [EINVAL] error condition is added.

Issue 7
Functionality relating to the Threads option is moved to the Base.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1847

60900

60901

60902

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rand() System Interfaces

NAME
rand, srand — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

int rand(void);
void srand(unsigned seed);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The rand() function shall compute a sequence of pseudo-random integers in the range
XSI [0,{RAND_MAX}] with a period of at least 232.

The rand() function need not be thread-safe; however, rand() shall avoid data races with all
functions other than non-thread-safe pseudo-random sequence generation functions.

The srand() function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand(). If srand() is then called with the same
seed value, the sequence of pseudo-random numbers shall be repeated. If rand() is called before
any calls to srand() are made, the same sequence shall be generated as when srand() is first
called with a seed value of 1.

The srand() function need not be thread-safe; however, srand() shall avoid data races with all
functions other than non-thread-safe pseudo-random sequence generation functions.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
rand() or srand().

RETURN VALUE
The rand() function shall return the next pseudo-random number in the sequence.

The srand() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

Generating a Pseudo-Random Number Sequence

The following example demonstrates how to generate a sequence of pseudo-random numbers.

#include <stdio.h>
#include <stdlib.h>
...

long count, i;
char *keystr;
int elementlen, len;
char c;

...
/* Initial random number generator. */

srand(1);

/* Create keys using only lowercase characters */
len = 0;
for (i=0; i<count; i++) {

1848 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60903

60904

60905

60906

60907

60908

60909

60910

60911

60912

60913

60914

60915

60916

60917

60918

60919

60920

60921

60922

60923

60924

60925

60926

60927

60928

60929

60930

60931

60932

60933

60934

60935

60936

60937

60938

60939

60940

60941

60942

60943

60944

60945

60946

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces rand()

while (len < elementlen) {
c = (char) (rand() % 128);
if (islower(c))

keystr[len++] = c;
}

keystr[len] = '\0';
printf("%s Element%0*ld\n", keystr, elementlen, i);
len = 0;

}

Generating the Same Sequence on Different Machines

The following code defines a pair of functions that could be incorporated into applications
wishing to ensure that the same sequence of numbers is generated across different machines.

static unsigned long next = 1;
int myrand(void) /* RAND_MAX assumed to be 32767. */
{

next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768);

}

void mysrand(unsigned seed)
{

next = seed;
}

APPLICATION USAGE
These functions should be avoided whenever non-trivial requirements (including safety) have to
be fulfilled, unless seeded using getentropy().

The drand48() and random() functions provide much more elaborate pseudo-random number
generators.

RATIONALE
The ISO C standard rand() and srand() functions allow per-process pseudo-random streams
shared by all threads. Those two functions need not change, but there has to be mutual-
exclusion that prevents interference between two threads concurrently accessing the random
number generator.

With regard to rand(), there are two different behaviors that may be wanted in a multi-threaded
program:

1. A single per-process sequence of pseudo-random numbers that is shared by all threads
that call rand()

2. A different sequence of pseudo-random numbers for each thread that calls rand()

This is provided by the modified thread-safe function based on whether the seed value is global
to the entire process or local to each thread.

This does not address the known deficiencies of the rand() function implementations, which
have been approached by maintaining more state. In effect, this specifies new thread-safe forms
of a deficient function.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1849

60947

60948

60949

60950

60951

60952

60953

60954

60955

60956

60957

60958

60959

60960

60961

60962

60963

60964

60965

60966

60967

60968

60969

60970

60971

60972

60973

60974

60975

60976

60977

60978

60979

60980

60981

60982

60983

60984

60985

60986

60987

60988

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rand() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), getentropy(), initstate()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The rand_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the rand() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The rand_r() function is marked as part of the Thread-Safe Functions option.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The rand_r() function is marked obsolescent.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0301 [743] is applied.

Issue 8
Austin Group Defect 1134 is applied, adding getentropy().

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

1850 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

60989

60990

60991

60992

60993

60994

60995

60996

60997

60998

60999

61000

61001

61002

61003

61004

61005

61006

61007

61008

61009

61010

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces random()

NAME
random — generate pseudo-random number

SYNOPSIS
XSI #include <stdlib.h>

long random(void);

DESCRIPTION
Refer to initstate().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1851

61011

61012

61013

61014

61015

61016

61017

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

read() System Interfaces

NAME
pread, read — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);
ssize_t read(int fildes, void *buf, size_t nbyte);

DESCRIPTION
The read() function shall attempt to read nbyte bytes from the file associated with the open file
descriptor, fildes, into the buffer pointed to by buf . The behavior of multiple concurrent reads on
the same pipe, FIFO, or terminal device is unspecified.

Before any action described below is taken, and if nbyte is zero, the read() function may detect
and return errors as described below. In the absence of errors, or if error detection is not
performed, the read() function shall return zero and have no other results.

On files that support seeking (for example, a regular file), the read() shall start at a position in
the file given by the file offset associated with fildes. The file offset shall be incremented by the
number of bytes actually read.

Files that do not support seeking—for example, terminals—always read from the current
position. The value of a file offset associated with such a file is undefined.

No data transfer shall occur past the current end-of-file. If the starting position is at or after the
end-of-file, 0 shall be returned. If the file refers to a device special file, the result of subsequent
read() requests is implementation-defined.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined.

When attempting to read from an empty pipe or FIFO:

• If no process has the pipe open for writing, read() shall return 0 to indicate end-of-file.

• If some process has the pipe open for writing and O_NONBLOCK is set, read() shall return
−1 and set errno to [EAGAIN].

• If some process has the pipe open for writing and O_NONBLOCK is clear, read() shall
block the calling thread until some data is written or the pipe is closed by all processes that
had the pipe open for writing.

When attempting to read a file (other than a pipe or FIFO) that supports non-blocking reads and
has no data currently available:

• If O_NONBLOCK is set, read() shall return −1 and set errno to [EAGAIN].

• If O_NONBLOCK is clear, read() shall block the calling thread until some data becomes
available.

• The use of the O_NONBLOCK flag has no effect if there is some data available.

The read() function reads data previously written to a file. If any portion of a regular file prior to
the end-of-file has not been written, read() shall return bytes with value 0. For example, lseek()
allows the file offset to be set beyond the end of existing data in the file. If data is later written at
this point, subsequent reads in the gap between the previous end of data and the newly written
data shall return bytes with value 0 until data is written into the gap.

Upon successful completion, where nbyte is greater than 0, read() shall mark for update the last
data access timestamp of the file, and shall return the number of bytes read. This number shall
never be greater than nbyte. The value returned may be less than nbyte if the number of bytes

1852 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61018

61019

61020

61021

61022

61023

61024

61025

61026

61027

61028

61029

61030

61031

61032

61033

61034

61035

61036

61037

61038

61039

61040

61041

61042

61043

61044

61045

61046

61047

61048

61049

61050

61051

61052

61053

61054

61055

61056

61057

61058

61059

61060

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces read()

left in the file is less than nbyte, if the read() request was interrupted by a signal, or if the file is a
pipe or FIFO or special file and has fewer than nbyte bytes immediately available for reading.
For example, a read() from a file associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it shall return −1 with errno set to
[EINTR].

If a read() is interrupted by a signal after it has successfully read some data, it shall return the
number of bytes read.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with fildes.

If fildes refers to a socket, read() shall be equivalent to recv() with no flags set.

SIO If the O_DSYNC and O_RSYNC bits have been set, read I/O operations on the file descriptor
shall complete as defined by synchronized I/O data integrity completion. If the O_SYNC and
O_RSYNC bits have been set, read I/O operations on the file descriptor shall complete as
defined by synchronized I/O file integrity completion.

SHM If fildes refers to a shared memory object, the result of the read() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the read() function is unspecified.

The pread() function shall be equivalent to read(), except that it shall read from a given position
in the file without changing the file offset. The first three arguments to pread() are the same as
read() with the addition of a fourth argument offset for the desired position inside the file. An
attempt to perform a pread() on a file that is incapable of seeking shall result in an error.

RETURN VALUE
Upon successful completion, these functions shall return a non-negative integer indicating the
number of bytes actually read. Otherwise, the functions shall return −1 and set errno to indicate
the error.

ERRORS
These functions shall fail if:

[EAGAIN] The file is neither a pipe, nor a FIFO, nor a socket, the O_NONBLOCK flag is
set for the file descriptor, and the thread would be delayed in the read
operation.

[EBADF] The fildes argument is not a valid file descriptor open for reading.

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

[EIO] The process is a member of a background process group attempting to read
from its controlling terminal, and either the calling thread is blocking
SIGTTIN or the process is ignoring SIGTTIN or the process group of the
process is orphaned. This error may also be generated for implementation-
defined reasons.

XSI [EISDIR] The fildes argument refers to a directory and the implementation does not
allow the directory to be read using read() or pread(). The readdir() function
should be used instead.

[EOVERFLOW] The file is a regular file, nbyte is greater than 0, the starting position is before
the end-of-file, and the starting position is greater than or equal to the offset
maximum established in the open file description associated with fildes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1853

61061

61062

61063

61064

61065

61066

61067

61068

61069

61070

61071

61072

61073

61074

61075

61076

61077

61078

61079

61080

61081

61082

61083

61084

61085

61086

61087

61088

61089

61090

61091

61092

61093

61094

61095

61096

61097

61098

61099

61100

61101

61102

61103

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

read() System Interfaces

The pread() function shall fail if:

[EINVAL] The file is a regular file or block special file, and the offset argument is
negative. The file offset shall remain unchanged.

[ESPIPE] The file is incapable of seeking.

The read() function shall fail if:

[EAGAIN] The file is a pipe or FIFO, the O_NONBLOCK flag is set for the file descriptor,
and the thread would be delayed in the read operation.

[EAGAIN] or [EWOULDBLOCK]
The file is a socket, the O_NONBLOCK flag is set for the file descriptor, and
the thread would be delayed in the read operation.

[ECONNRESET] A read was attempted on a socket and the connection was forcibly closed by
its peer.

[ENOTCONN] A read was attempted on a socket that is not connected.

[ETIMEDOUT] A read was attempted on a socket and a transmission timeout occurred.

These functions may fail if:

[EIO] A physical I/O error has occurred.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
Reading Data into a Buffer

The following example reads data from the file associated with the file descriptor fd into the
buffer pointed to by buf .

#include <sys/types.h>
#include <unistd.h>
...
char buf[20];
size_t nbytes;
ssize_t bytes_read;
int fd;
...
nbytes = sizeof(buf);
bytes_read = read(fd, buf, nbytes);
...

APPLICATION USAGE
None.

RATIONALE
This volume of POSIX.1-2024 does not specify the value of the file offset after an error is
returned; there are too many cases. For programming errors, such as [EBADF], the concept is
meaningless since no file is involved. For errors that are detected immediately, such as
[EAGAIN], clearly the offset should not change. After an interrupt or hardware error, however,
an updated value would be very useful and is the behavior of many implementations.

1854 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61104

61105

61106

61107

61108

61109

61110

61111

61112

61113

61114

61115

61116

61117

61118

61119

61120

61121

61122

61123

61124

61125

61126

61127

61128

61129

61130

61131

61132

61133

61134

61135

61136

61137

61138

61139

61140

61141

61142

61143

61144

61145

61146

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces read()

Note that a read() of zero bytes does not modify the last data access timestamp. A read() that
requests more than zero bytes, but returns zero, is required to modify the last data access
timestamp.

Implementations are allowed, but not required, to perform error checking for read() requests of
zero bytes.

Input and Output

The use of I/O with large byte counts has always presented problems. Ideas such as lread() and
lwrite() (using and returning longs) were considered at one time. The current solution is to use
abstract types on the ISO C standard function to read() and write(). The abstract types can be
declared so that existing functions work, but can also be declared so that larger types can be
represented in future implementations. It is presumed that whatever constraints limit the
maximum range of size_t also limit portable I/O requests to the same range. This volume of
POSIX.1-2024 also limits the range further by requiring that the byte count be limited so that a
signed return value remains meaningful. Since the return type is also a (signed) abstract type,
the byte count can be defined by the implementation to be larger than an int can hold.

The standard developers considered adding atomicity requirements to a pipe or FIFO, but
recognized that due to the nature of pipes and FIFOs there could be no guarantee of atomicity of
reads of {PIPE_BUF} or any other size that would be an aid to applications portability.

This volume of POSIX.1-2024 requires that no action be taken for read() or write() when nbyte is
zero. This is not intended to take precedence over detection of errors (such as invalid buffer
pointers or file descriptors). This is consistent with the rest of this volume of POSIX.1-2024, but
the phrasing here could be misread to require detection of the zero case before any other errors.
A value of zero is to be considered a correct value, for which the semantics are a no-op.

I/O is intended to be atomic to ordinary files and pipes and FIFOs. Atomic means that all the
bytes from a single operation that started out together end up together, without interleaving
from other I/O operations. It is a known attribute of terminals that this is not honored, and
terminals are explicitly (and implicitly permanently) excepted, making the behavior unspecified.
The behavior for other device types is also left unspecified, but the wording is intended to imply
that future standards might choose to specify atomicity (or not).

There were recommendations to add format parameters to read() and write() in order to handle
networked transfers among heterogeneous file system and base hardware types. Such a facility
may be required for support by the OSI presentation of layer services. However, it was
determined that this should correspond with similar C-language facilities, and that is beyond
the scope of this volume of POSIX.1-2024. The concept was suggested to the developers of the
ISO C standard for their consideration as a possible area for future work.

In 4.3 BSD, a read() or write() that is interrupted by a signal before transferring any data does
not by default return an [EINTR] error, but is restarted. In 4.2 BSD, 4.3 BSD, and the Eighth
Edition, there is an additional function, select(), whose purpose is to pause until specified
activity (data to read, space to write, and so on) is detected on specified file descriptors. It is
common in applications written for those systems for select() to be used before read() in
situations (such as keyboard input) where interruption of I/O due to a signal is desired.

The issue of which files or file types are interruptible is considered an implementation design
issue. This is often affected primarily by hardware and reliability issues.

There are no references to actions taken following an ``unrecoverable error ’’. It is considered
beyond the scope of this volume of POSIX.1-2024 to describe what happens in the case of
hardware errors.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1855

61147

61148

61149

61150

61151

61152

61153

61154

61155

61156

61157

61158

61159

61160

61161

61162

61163

61164

61165

61166

61167

61168

61169

61170

61171

61172

61173

61174

61175

61176

61177

61178

61179

61180

61181

61182

61183

61184

61185

61186

61187

61188

61189

61190

61191

61192

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

read() System Interfaces

Earlier versions of this standard allowed two very different behaviors with regard to the
handling of interrupts. In order to minimize the resulting confusion, it was decided that
POSIX.1-2024 should support only one of these behaviors. Historical practice on AT&T-derived
systems was to have read() and write() return −1 and set errno to [EINTR] when interrupted after
some, but not all, of the data requested had been transferred. However, the US Department of
Commerce FIPS 151-1 and FIPS 151-2 require the historical BSD behavior, in which read() and
write() return the number of bytes actually transferred before the interrupt. If −1 is returned
when any data is transferred, it is difficult to recover from the error on a seekable device and
impossible on a non-seekable device. Most new implementations support this behavior. The
behavior required by POSIX.1-2024 is to return the number of bytes transferred.

POSIX.1-2024 does not specify when an implementation that buffers read()s actually moves the
data into the user-supplied buffer, so an implementation may choose to do this at the latest
possible moment. Therefore, an interrupt arriving earlier may not cause read() to return a
partial byte count, but rather to return −1 and set errno to [EINTR].

Consideration was also given to combining the two previous options, and setting errno to
[EINTR] while returning a short count. However, not only is there no existing practice that
implements this, it is also contradictory to the idea that when errno is set, the function
responsible shall return −1.

This volume of POSIX.1-2024 intentionally does not specify any pread() errors related to pipes,
FIFOs, and sockets other than [ESPIPE].

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), lseek(), open(), pipe(), readv()

XBD Chapter 11 (on page 199), <sys/uio.h>, <unistd.h>
CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

The pread() function is added.

Issue 6
The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now states that if read() is interrupted by a signal after it has
successfully read some data, it returns the number of bytes read. In Issue 3, it was optional
whether read() returned the number of bytes read, or whether it returned −1 with errno set
to [EINTR]. This is a FIPS requirement.

• In the DESCRIPTION, text is added to indicate that for regular files, no data transfer
occurs past the offset maximum established in the open file description associated with
fildes. This change is to support large files.

1856 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61193

61194

61195

61196

61197

61198

61199

61200

61201

61202

61203

61204

61205

61206

61207

61208

61209

61210

61211

61212

61213

61214

61215

61216

61217

61218

61219

61220

61221

61222

61223

61224

61225

61226

61227

61228

61229

61230

61231

61232

61233

61234

61235

61236

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces read()

• The [EOVERFLOW] mandatory error condition is added.

• The [ENXIO] optional error condition is added.

Text referring to sockets is added to the DESCRIPTION.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of reading zero bytes is clarified.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
read() results are unspecified for typed memory objects.

New RATIONALE is added to explain the atomicity requirements for input and output
operations.

The following error conditions are added for operations on sockets: [EAGAIN],
[ECONNRESET], [ENOTCONN], and [ETIMEDOUT].

The [EIO] error is made optional.

The following error conditions are added for operations on sockets: [ENOBUFS] and
[ENOMEM].

The readv() function is split out into a separate reference page.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/108 is applied, updating the [EAGAIN]
error in the ERRORS section from ``the process would be delayed’’ to ``the thread would be
delayed’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/109 is applied, making an editorial
correction in the RATIONALE section.

Issue 7
The pread() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0480 [218], XSH/TC1-2008/0481 [79],
XSH/TC1-2008/0482 [218], XSH/TC1-2008/0483 [218], XSH/TC1-2008/0484 [218], and
XSH/TC1-2008/0485 [218,428] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0302 [710] and XSH/TC2-2008/0303
[676,710] are applied.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1857

61237

61238

61239

61240

61241

61242

61243

61244

61245

61246

61247

61248

61249

61250

61251

61252

61253

61254

61255

61256

61257

61258

61259

61260

61261

61262

61263

61264

61265

61266

61267

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readdir() System Interfaces

NAME
readdir, readdir_r — read a directory

SYNOPSIS
#include <dirent.h>

struct dirent *readdir(DIR *dirp);
OB int readdir_r(DIR *restrict dirp, struct dirent *restrict entry,

struct dirent **restrict result);

DESCRIPTION
The type DIR, which is defined in the <dirent.h> header, represents a directory stream, which is
an ordered sequence of all the directory entries in a particular directory. Directory entries
represent files; files may be removed from a directory or added to a directory asynchronously to
the operation of readdir().

The readdir() function shall return a pointer to a structure representing the directory entry at the
current position in the directory stream specified by the argument dirp, and position the
directory stream at the next entry. It shall return a null pointer upon reaching the end of the
directory stream. The structure dirent defined in the <dirent.h> header describes a directory
entry. The value of the structure’s d_ino member shall be set to the file serial number of the file
named by the d_name member. If the d_name member names a symbolic link, the value of the
d_ino member shall be set to the file serial number of the symbolic link itself. The d_name
member shall be a filename string, and (if not dot or dot-dot) shall contain the same byte
sequence as the last pathname component of the string used to create the directory entry, plus
the terminating <NUL> byte.

The readdir() function shall not return directory entries containing empty names. If entries for
dot or dot-dot exist, one entry shall be returned for dot and one entry shall be returned for dot-
dot; otherwise, they shall not be returned.

The application shall not modify the structure to which the return value of readdir() points, nor
any storage areas pointed to by pointers within the structure. The returned pointer, and pointers
within the structure, might be invalidated or the structure or the storage areas might be
overwritten by a subsequent call to readdir() on the same directory stream. They shall not be
affected by a call to readdir() on a different directory stream. The returned pointer, and pointers
within the structure, might also be invalidated if the calling thread is terminated.

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir() returns an entry for that file is unspecified.

The readdir() function may buffer several directory entries per actual read operation; readdir()
shall mark for update the last data access timestamp of the directory each time the directory is
actually read.

After a call to fork(), either the parent or child (but not both) may continue processing the
XSI directory stream using readdir(), rewinddir(), or seekdir(). If both the parent and child processes

use these functions, the result is undefined.

The readdir() function need not be thread-safe if concurrent calls are made for the same directory
stream.

Applications wishing to check for error situations should set errno to 0 before calling readdir(). If
errno is set to non-zero on return, an error occurred.

OB The readdir_r() function shall initialize the dirent structure referenced by entry to represent the
directory entry at the current position in the directory stream referred to by dirp, store a pointer

1858 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61268

61269

61270

61271

61272

61273

61274

61275

61276

61277

61278

61279

61280

61281

61282

61283

61284

61285

61286

61287

61288

61289

61290

61291

61292

61293

61294

61295

61296

61297

61298

61299

61300

61301

61302

61303

61304

61305

61306

61307

61308

61309

61310

61311

61312

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces readdir()

to this structure at the location referenced by result, and position the directory stream at the next
entry.

The storage pointed to by entry shall be large enough for a dirent with an array of char d_name
members containing at least {NAME_MAX}+1 elements.

Upon successful return, the pointer returned at *result shall have the same value as the argument
entry. Upon reaching the end of the directory stream, this pointer shall have the value NULL.

The readdir_r() function shall not return directory entries containing empty names.

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir_r() returns an entry for that file is unspecified.

The readdir_r() function may buffer several directory entries per actual read operation;
readdir_r() shall mark for update the last data access timestamp of the directory each time the
directory is actually read.

RETURN VALUE
Upon successful completion, readdir() shall return a pointer to an object of type struct dirent.
When an error is encountered, a null pointer shall be returned and errno shall be set to indicate
the error. When the end of the directory is encountered, a null pointer shall be returned and
errno is not changed.

OB If successful, the readdir_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
OB The readdir() and readdir_r() functions shall fail if:

[EOVERFLOW] One of the values in the structure to be returned cannot be represented
correctly.

[ENOMEM] Insufficient memory is available.

OB The readdir() and readdir_r() functions may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

[ENOENT] The current position of the directory stream is invalid.

EXAMPLES
The following sample program searches the current directory for each of the arguments supplied
on the command line.

#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

static void lookup(const char *arg)
{

DIR *dirp;
struct dirent *dp;

if ((dirp = opendir(".")) == NULL) {
perror("couldn't open '.'");
return;

}

do {

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1859

61313

61314

61315

61316

61317

61318

61319

61320

61321

61322

61323

61324

61325

61326

61327

61328

61329

61330

61331

61332

61333

61334

61335

61336

61337

61338

61339

61340

61341

61342

61343

61344

61345

61346

61347

61348

61349

61350

61351

61352

61353

61354

61355

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readdir() System Interfaces

errno = 0;
if ((dp = readdir(dirp)) != NULL) {

if (strcmp(dp->d_name, arg) != 0)
continue;

(void) printf("found %s\n", arg);
(void) closedir(dirp);

return;

}
} while (dp != NULL);

if (errno != 0)
perror("error reading directory");

else
(void) printf("failed to find %s\n", arg);

(void) closedir(dirp);
return;

}

int main(int argc, char *argv[])
{

int i;
for (i = 1; i < argc; i++)

lookup(argv[i]);
return (0);

}

APPLICATION USAGE
The readdir() function should be used in conjunction with opendir(), closedir(), and rewinddir() to
examine the contents of the directory.

The readdir_r() function returns values in a user-supplied buffer, but does not allow the size of
the buffer to be specified by the caller. If {NAME_MAX} is indeterminate, there is no way for an
application to know how large the buffer needs to be and readdir_r() cannot safely be used.

RATIONALE
The returned value of readdir() merely represents a directory entry. No equivalence should be
inferred.

Historical implementations of readdir() obtain multiple directory entries on a single read
operation, which permits subsequent readdir() operations to operate from the buffered
information. Any wording that required each successful readdir() operation to mark the
directory last data access timestamp for update would disallow such historical performance-
oriented implementations.

When returning a directory entry for the root of a mounted file system, some historical
implementations of readdir() returned the file serial number of the underlying mount point,
rather than of the root of the mounted file system. This behavior is considered to be a bug, since
the underlying file serial number has no significance to applications.

Since readdir() returns NULL when it detects an error and when the end of the directory is
encountered, an application that needs to tell the difference must set errno to zero before the call
and check it if NULL is returned. Since the function must not change errno in the second case
and must set it to a non-zero value in the first case, a zero errno after a call returning NULL
indicates end-of-directory; otherwise, an error.

1860 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61356

61357

61358

61359

61360

61361

61362

61363

61364

61365

61366

61367

61368

61369

61370

61371

61372

61373

61374

61375

61376

61377

61378

61379

61380

61381

61382

61383

61384

61385

61386

61387

61388

61389

61390

61391

61392

61393

61394

61395

61396

61397

61398

61399

61400

61401

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces readdir()

Routines to deal with this problem more directly were proposed:

int derror (dirp)
DIR *dirp;

void clearderr (dirp)
DIR *dirp;

The first would indicate whether an error had occurred, and the second would clear the error
indication. The simpler method involving errno was adopted instead by requiring that readdir()
not change errno when end-of-directory is encountered.

An error or signal indicating that a directory has changed while open was considered but
rejected.

Historically, readdir() returned a pointer to an internal static buffer that was overwritten by each
call. The readdir_r() function was added as a thread-safe alternative that returns values in a user-
supplied buffer. However, it does not allow the size of the buffer to be specified by the caller,
and so is only usable if {NAME_MAX} is a compile-time constant or fpathconf() with
_SC_NAME_MAX returns a value other than −1. If {NAME_MAX} is indeterminate (indicated
by fpathconf() returning −1), there is no way to reliably allocate a buffer large enough to hold a
filename being returned by readdir_r(). Therefore, readdir_r() has been marked obsolescent and
readdir() is now required to be thread safe as long as there are no concurrent calls to it on a
single directory stream.

Conforming file systems are required to store filenames unaltered from how they were created
(via open(), link(), mkdir(), mkfifo(), rename(), etc.). By definition, a filename string does not
include a <slash>, even if a trailing <slash> was present in the pathname presented to mkdir()
when creating a sub-directory.

However, there are non-conforming file systems where filenames are converted to a canonical
representation before a directory entry is created, such that it is possible to create a file using one
string, then perform opendir() and a readdir() loop and not encounter the same string, because
readdir() returns the canonical form of the string instead. Such non-conforming file systems also
have the issue that multiple filenames can resolve to the same directory entry, with potentially
confusing results. This standard cannot mandate the behavior of non-conforming file systems,
and strictly conforming applications need not worry about dealing with such file systems, but it
is a concern for developers of portable applications. Therefore, this standard recommends that
file system implementations that perform canonicalization of filenames should reject attempts to
create a directory entry with a non-canonical filename using the [EILSEQ] error. However, if a
directory entry already exists, it is reasonable for a file system to permit accessing that file via a
non-canonical filename.

FUTURE DIRECTIONS
The readdir_r() function may be removed in a future version.

SEE ALSO
closedir(), dirfd(), exec , fdopendir(), fstatat(), posix_getdents(), rewinddir(), symlink()

XBD <dirent.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1861

61402

61403

61404

61405

61406

61407

61408

61409

61410

61411

61412

61413

61414

61415

61416

61417

61418

61419

61420

61421

61422

61423

61424

61425

61426

61427

61428

61429

61430

61431

61432

61433

61434

61435

61436

61437

61438

61439

61440

61441

61442

61443

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readdir() System Interfaces

Issue 5
Large File Summit extensions are added.

The readdir_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the readdir() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The readdir_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U026/7 is applied, correcting the prototype for readdir_r().

The Open Group Corrigendum U026/8 is applied, clarifying the wording of the successful
return for the readdir_r() function.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• A statement is added to the DESCRIPTION indicating the disposition of certain fields in
struct dirent when an entry refers to a symbolic link.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [ENOENT] optional error condition is added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the readdir_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/50 is applied, replacing the EXAMPLES
section with a new example.

Issue 7
Austin Group Interpretation 1003.1-2001 #059 is applied, updating the ERRORS section.

Austin Group Interpretation 1003.1-2001 #156 is applied.

The readdir_r() function is moved from the Thread-Safe Functions option to the Base.

Changes are made related to support for finegrained timestamps.

The value of the d_ino member is no longer unspecified for symbolic links.

SD5-XSH-ERN-193 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0486 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0304 [656] is applied.

Issue 8
Austin Group Defect 293 is applied, adding a requirement that d_name contains the same byte
sequence as the last pathname component of the string used to create the directory entry.

Austin Group Defects 696 and 1664 are applied, making readdir_r() obsolescent, requiring
readdir() to be thread-safe except when concurrent calls are made for the same directory stream,

1862 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61444

61445

61446

61447

61448

61449

61450

61451

61452

61453

61454

61455

61456

61457

61458

61459

61460

61461

61462

61463

61464

61465

61466

61467

61468

61469

61470

61471

61472

61473

61474

61475

61476

61477

61478

61479

61480

61481

61482

61483

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces readdir()

and adding the [ENOMEM] error.

Austin Group Defect 697 is applied, adding posix_getdents() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1863

61484

61485

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readlink() System Interfaces

NAME
readlink, readlinkat — read the contents of a symbolic link

SYNOPSIS
#include <unistd.h>

ssize_t readlink(const char *restrict path, char *restrict buf,
size_t bufsize);

OH #include <fcntl.h>

ssize_t readlinkat(int fd, const char *restrict path,
char *restrict buf, size_t bufsize);

DESCRIPTION
The readlink() function shall place the contents of the symbolic link referred to by path in the
buffer buf which has size bufsize. If the number of bytes in the symbolic link is less than bufsize,
the contents of the remainder of buf are unspecified. If the buf argument is not large enough to
contain the link content, the first bufsize bytes shall be placed in buf .

If the value of bufsize is greater than {SSIZE_MAX}, the result is implementation-defined.

Upon successful completion, readlink() shall mark for update the last data access timestamp of
the symbolic link.

The readlinkat() function shall be equivalent to the readlink() function except in the case where
path specifies a relative path. In this case the symbolic link whose content is read is relative to the
directory associated with the file descriptor fd instead of the current working directory. If the
access mode of the open file description associated with the file descriptor is not O_SEARCH,
the function shall check whether directory searches are permitted using the current permissions
of the directory underlying the file descriptor. If the access mode is O_SEARCH, the function
shall not perform the check.

If readlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to readlink().

RETURN VALUE
Upon successful completion, these functions shall return the count of bytes placed in the buffer.
Otherwise, these functions shall return a value of −1, leave the buffer unchanged, and set errno to
indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied for a component of the path prefix of path.

[EINVAL] The path argument names a file that is not a symbolic link.

[EIO] An I/O error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>

1864 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61486

61487

61488

61489

61490

61491

61492

61493

61494

61495

61496

61497

61498

61499

61500

61501

61502

61503

61504

61505

61506

61507

61508

61509

61510

61511

61512

61513

61514

61515

61516

61517

61518

61519

61520

61521

61522

61523

61524

61525

61526

61527

61528

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces readlink()

characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

The readlinkat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Reading the Name of a Symbolic Link

The following example shows how to read the name of a symbolic link named /modules/pass1.

#include <unistd.h>

char buf[1024];
ssize_t len;
...
if ((len = readlink("/modules/pass1", buf, sizeof(buf)-1)) != -1)

buf[len] = '\0';

APPLICATION USAGE
Conforming applications should not assume that the returned contents of the symbolic link are
null-terminated.

RATIONALE
The type associated with bufsiz is a size_t in order to be consistent with both the ISO C standard
and the definition of read(). The behavior specified for readlink() when bufsiz is zero represents
historical practice. For this case, the standard developers considered a change whereby readlink()
would return the number of non-null bytes contained in the symbolic link with the buffer buf
remaining unchanged; however, since the stat structure member st_size value can be used to
determine the size of buffer necessary to contain the contents of the symbolic link as returned by
readlink(), this proposal was rejected, and the historical practice retained.

The purpose of the readlinkat() function is to read the content of symbolic links in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to readlink(), resulting in unspecified behavior.
By opening a file descriptor for the target directory and using the readlinkat() function it can be
guaranteed that the symbolic link read is located relative to the desired directory.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1865

61529

61530

61531

61532

61533

61534

61535

61536

61537

61538

61539

61540

61541

61542

61543

61544

61545

61546

61547

61548

61549

61550

61551

61552

61553

61554

61555

61556

61557

61558

61559

61560

61561

61562

61563

61564

61565

61566

61567

61568

61569

61570

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readlink() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
fstatat(), symlink()

XBD <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The return type is changed to ssize_t, to align with the IEEE P1003.1a draft standard.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• This function is made mandatory.

• In this function it is possible for the return value to exceed the range of the type ssize_t
(since size_t has a larger range of positive values than ssize_t). A sentence restricting the
size of the size_t object is added to the description to resolve this conflict.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The FUTURE DIRECTIONS section is changed to None.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The restrict keyword is added to the readlink() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-189 is applied, updating the ERRORS section.

The readlinkat() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

The [EACCES] error is removed from the ``may fail’’ error conditions.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0487 [120], XSH/TC1-2008/0488 [461],
XSH/TC1-2008/0489 [143], XSH/TC1-2008/0490 [324], XSH/TC1-2008/0491 [278],
XSH/TC1-2008/0492 [278], XSH/TC1-2008/0493 [455], and XSH/TC1-2008/0494 [151,231] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0305 [591], XSH/TC2-2008/0306 [817],
XSH/TC2-2008/0307 [817], and XSH/TC2-2008/0308 [591] are applied.

1866 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61571

61572

61573

61574

61575

61576

61577

61578

61579

61580

61581

61582

61583

61584

61585

61586

61587

61588

61589

61590

61591

61592

61593

61594

61595

61596

61597

61598

61599

61600

61601

61602

61603

61604

61605

61606

61607

61608

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces readv()

NAME
readv — read a vector

SYNOPSIS
XSI #include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The readv() function shall be equivalent to read(), except as described below. The readv()
function shall place the input data into the iovcnt buffers specified by the members of the iov
array: iov[0], iov[1], . . ., iov[iovcnt−1]. The iovcnt argument is valid if greater than 0 and less than
or equal to {IOV_MAX}.

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. The readv() function shall always fill an area completely before proceeding to the
next.

Upon successful completion, readv() shall mark for update the last data access timestamp of the
file.

RETURN VALUE
Refer to read().

ERRORS
Refer to read().

In addition, the readv() function shall fail if:

[EINVAL] The sum of the iov_len values in the iov array overflowed an ssize_t.

The readv() function may fail if:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

EXAMPLES

Reading Data into an Array

The following example reads data from the file associated with the file descriptor fd into the
buffers specified by members of the iov array.

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
...
ssize_t bytes_read;
int fd;
char buf0[20];
char buf1[30];
char buf2[40];
int iovcnt;
struct iovec iov[3];

iov[0].iov_base = buf0;
iov[0].iov_len = sizeof(buf0);
iov[1].iov_base = buf1;
iov[1].iov_len = sizeof(buf1);
iov[2].iov_base = buf2;

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1867

61609

61610

61611

61612

61613

61614

61615

61616

61617

61618

61619

61620

61621

61622

61623

61624

61625

61626

61627

61628

61629

61630

61631

61632

61633

61634

61635

61636

61637

61638

61639

61640

61641

61642

61643

61644

61645

61646

61647

61648

61649

61650

61651

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readv() System Interfaces

iov[2].iov_len = sizeof(buf2);
...
iovcnt = sizeof(iov) / sizeof(struct iovec);

bytes_read = readv(fd, iov, iovcnt);
...

APPLICATION USAGE
None.

RATIONALE
Refer to read().

FUTURE DIRECTIONS
None.

SEE ALSO
read(), writev()

XBD <sys/uio.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
Split out from the read() reference page.

Issue 7
Changes are made related to support for finegrained timestamps.

1868 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61652

61653

61654

61655

61656

61657

61658

61659

61660

61661

61662

61663

61664

61665

61666

61667

61668

61669

61670

61671

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces realloc()

NAME
realloc, reallocarray — memory reallocators

SYNOPSIS
#include <stdlib.h>

void *realloc(void *ptr, size_t size);
CX void *reallocarray(void *ptr, size_t nelem, size_t elsize);

DESCRIPTION
CX For realloc(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The realloc() function shall deallocate the old object pointed to by ptr and return a pointer to a
new object that has the size specified by size. The contents of the new object shall be the same as
that of the old object prior to deallocation, up to the lesser of the new and old sizes. Any bytes in
the new object beyond the size of the old object have indeterminate values.

CX The reallocarray() function shall be equivalent to the call realloc(ptr, nelem * elsize)
except that overflow in the multiplication shall be an error.

CX If ptr is a null pointer, realloc() or reallocarray() shall be equivalent to malloc() for the specified
size. Otherwise, if ptr does not match a pointer earlier returned by aligned_alloc(), calloc(),

ADV malloc(), posix_memalign(), realloc(),
CX reallocarray(), or a function in POSIX.1-2024 that allocates memory as if by malloc(), or if the
CX space has been deallocated by a call to free(), reallocarray(), or realloc(), the behavior is

undefined.

If size is non-zero and memory for the new object is not allocated, the old object shall not be
deallocated.

CX The order and contiguity of storage allocated by successive calls to realloc() or reallocarray() is
unspecified. The pointer returned if the allocation succeeds shall be suitably aligned so that it
may be assigned to a pointer to any type of object with a fundamental alignment requirement
and then used to access such an object in the space allocated (until the space is explicitly freed or
reallocated). Each such allocation shall yield a pointer to an object disjoint from any other object.
The pointer returned shall point to the start (lowest byte address) of the allocated space. If the
space cannot be allocated, a null pointer shall be returned.

CX For purposes of determining the existence of a data race, realloc() and reallocarray() shall each
behave as though it accessed only memory locations accessible through its argument and not
other static duration storage. The function may, however, visibly modify the storage that it

ADV allocates. Calls to aligned_alloc(), calloc(), free(), malloc(), posix_memalign(),
CX reallocarray(), and realloc() that allocate or deallocate a particular region of memory shall occur

in a single total order (see Section 4.15.1, on page 100), and each such deallocation call shall
synchronize with the next allocation (if any) in this order.

RETURN VALUE
CX Upon successful completion, realloc() and reallocarray() shall return a pointer to the new object

(which can have the same value as a pointer to the old object), or a null pointer if the new object
has not been allocated.

OB If size is 0,
OB CX or either nelem or elsize is 0,
OB either:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1869

61672

61673

61674

61675

61676

61677

61678

61679

61680

61681

61682

61683

61684

61685

61686

61687

61688

61689

61690

61691

61692

61693

61694

61695

61696

61697

61698

61699

61700

61701

61702

61703

61704

61705

61706

61707

61708

61709

61710

61711

61712

61713

61714

61715

61716

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

realloc() System Interfaces

OB • A null pointer shall be returned
OB CX and, if ptr is not a null pointer, errno shall be set to [EINVAL].

OB • A pointer to the allocated space shall be returned, and the memory object pointed to by ptr
shall be freed. The application shall ensure that the pointer is not used to access an object.

CX If there is not enough available memory, realloc() and reallocarray() shall return a null pointer
CX and set errno to [ENOMEM].

ERRORS
CX The realloc() and reallocarray() functions shall fail if:

CX [ENOMEM] Insufficient memory is available.

CX The reallocarray() function shall fail if:

[ENOMEM] The calculation nelem * elsize would overflow.

CX The realloc() and reallocarray() functions may fail if:

CX [EINVAL] The requested allocation size is 0 and the implementation does not support 0
sized allocations.

EXAMPLES
None.

APPLICATION USAGE
The ISO C standard makes it implementation-defined whether a call to realloc(p, 0) frees the
space pointed to by p if it returns a null pointer because memory for the new object was not
allocated. POSIX.1 instead requires that implementations set errno if a null pointer is returned
and the space has not been freed, and POSIX applications should only free the space if errno was
changed.

RATIONALE
See the RATIONALE for malloc().

FUTURE DIRECTIONS
The ISO C standard states that invoking realloc() with a size argument equal to zero is an
obsolescent feature. This feature may be removed in a future version of this standard.

SEE ALSO
aligned_alloc(), calloc(), free(), malloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, if there is not enough available memory, the setting of
errno to [ENOMEM] is added.

• The [ENOMEM] error condition is added.

1870 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61717

61718

61719

61720

61721

61722

61723

61724

61725

61726

61727

61728

61729

61730

61731

61732

61733

61734

61735

61736

61737

61738

61739

61740

61741

61742

61743

61744

61745

61746

61747

61748

61749

61750

61751

61752

61753

61754

61755

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces realloc()

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0495 [400], XSH/TC1-2008/0496 [400],
XSH/TC1-2008/0497 [400], and XSH/TC1-2008/0498 [400] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0309 [526] and XSH/TC2-2008/0310
[526,688] are applied.

Issue 8
Austin Group Defect 374 is applied, adding the [EINVAL] error.

Austin Group Defect 1218 is applied, adding reallocarray().

Austin Group Defect 1302 is applied, aligning the realloc() function with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1387 is applied, changing the RATIONALE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1871

61756

61757

61758

61759

61760

61761

61762

61763

61764

61765

61766

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

realpath() System Interfaces

NAME
realpath — resolve a pathname

SYNOPSIS
#include <stdlib.h>

char *realpath(const char *restrict file_name,
char *restrict resolved_name);

DESCRIPTION
The realpath() function shall derive, from the pathname pointed to by file_name, an absolute
pathname that resolves to the same directory entry, whose resolution does not involve '.',
'..', or symbolic links. If resolved_name is a null pointer, the generated pathname shall be
stored as a null-terminated string in a buffer allocated as if by a call to malloc(). Otherwise, if
{PATH_MAX} is defined as a constant in the <limits.h> header, then the generated pathname
shall be stored as a null-terminated string, up to a maximum of {PATH_MAX} bytes, in the
buffer pointed to by resolved_name.

If resolved_name is not a null pointer and {PATH_MAX} is not defined as a constant in the
<limits.h> header, the behavior is undefined.

RETURN VALUE
Upon successful completion, realpath() shall return a pointer to the buffer containing the
resolved name. Otherwise, realpath() shall return a null pointer and set errno to indicate the
error.

If the resolved_name argument is a null pointer, the pointer returned by realpath() can be passed
to free().

If the resolved_name argument is not a null pointer and the realpath() function fails, the contents
of the buffer pointed to by resolved_name are undefined.

ERRORS
The realpath() function shall fail if:

[EACCES] Search permission was denied for a component of the path prefix of file_name.

[EINVAL] The file_name argument is a null pointer.

[EIO] An error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the file_name
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of file_name does not name an existing file or file_name points to
an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the file_name argument contains
at least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

1872 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61767

61768

61769

61770

61771

61772

61773

61774

61775

61776

61777

61778

61779

61780

61781

61782

61783

61784

61785

61786

61787

61788

61789

61790

61791

61792

61793

61794

61795

61796

61797

61798

61799

61800

61801

61802

61803

61804

61805

61806

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces realpath()

The realpath() function may fail if:

[EACCES] The file_name argument does not begin with a <slash> and none of the
symbolic links (if any) processed during pathname resolution of file_name had
contents that began with a <slash>, and either search permission was denied
for the current directory or read or search permission was denied for a
directory above the current directory in the file hierarchy.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the file_name argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENOMEM] Insufficient storage space is available.

EXAMPLES

Generating an Absolute Pathname

The following example generates an absolute pathname for the file identified by the symlinkpath
argument. The generated pathname is stored in the buffer pointed to by actualpath.

#include <stdlib.h>
...
char *symlinkpath = "/tmp/symlink/file";
char *actualpath;

actualpath = realpath(symlinkpath, NULL);
if (actualpath != NULL)
{

... use actualpath ...

free(actualpath);
}
else
{

... handle error ...
}

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For realpath(), this is the return value.

RATIONALE
Since realpath() has no length argument, if {PATH_MAX} is not defined as a constant in
<limits.h>, applications have no way of determining how large a buffer they need to allocate for
it to be safe to pass to realpath(). A {PATH_MAX} value obtained from a prior pathconf() call is
out-of-date by the time realpath() is called. Hence the only reliable way to use realpath() when
{PATH_MAX} is not defined in <limits.h> is to pass a null pointer for resolved_name so that
realpath() will allocate a buffer of the necessary size.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1873

61807

61808

61809

61810

61811

61812

61813

61814

61815

61816

61817

61818

61819

61820

61821

61822

61823

61824

61825

61826

61827

61828

61829

61830

61831

61832

61833

61834

61835

61836

61837

61838

61839

61840

61841

61842

61843

61844

61845

61846

61847

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

realpath() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
fpathconf(), free(), getcwd(), sysconf()

XBD <limits.h>, <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The restrict keyword is added to the realpath() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/51 is applied, adding new text to the
DESCRIPTION for the case when resolved_name is a null pointer, changing the [EINVAL] error
text, adding text to the RATIONALE, and adding text to FUTURE DIRECTIONS.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/110 is applied, updating the ERRORS
section to refer to the file_name argument, rather than a nonexistent path argument.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

This function is updated for passing a null pointer to realpath() for the resolved_name argument.

The APPLICATION USAGE section is updated to clarify that memory is allocated as if by
malloc().

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0499 [353], XSH/TC1-2008/0500 [324],
and XSH/TC1-2008/0501 [353] are applied.

Issue 8
Austin Group Defect 1663 is applied, removing XSI shading from realpath().

1874 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61848

61849

61850

61851

61852

61853

61854

61855

61856

61857

61858

61859

61860

61861

61862

61863

61864

61865

61866

61867

61868

61869

61870

61871

61872

61873

61874

61875

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces recv()

NAME
recv — receive a message from a connected socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recv(int socket, void *buffer, size_t length, int flags);

DESCRIPTION
The recv() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connected sockets because it does not permit the application to
retrieve the source address of received data.

The recv() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to a buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next recv() or similar function shall still return this data.

MSG_OOB Requests out-of-band data. The significance and semantics of
out-of-band data are protocol-specific.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function block
until the full amount of data can be returned. The function may
return the smaller amount of data if the socket is a message-
based socket, if a signal is caught, if the connection is terminated,
if MSG_PEEK was specified, or if an error is pending for the
socket.

The recv() function shall return the length of the message written to the buffer pointed to by the
buffer argument. For message-based sockets, such as SOCK_DGRAM and SOCK_SEQPACKET,
the entire message shall be read in a single operation. If a message is too long to fit in the
supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes shall be
discarded. For stream-based sockets, such as SOCK_STREAM, message boundaries shall be
ignored. In this case, data shall be returned to the user as soon as it becomes available, and no
data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recv() shall block until a message arrives or a timeout occurs (see SO_RCVTIMEO in
Section 2.10.16, on page 554). If no messages are available at the socket and O_NONBLOCK is
set on the socket’s file descriptor, recv() shall fail and set errno to [EAGAIN] or
[EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recv() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown, recv()
shall return 0. Otherwise, −1 shall be returned and errno set to indicate the error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1875

61876

61877

61878

61879

61880

61881

61882

61883

61884

61885

61886

61887

61888

61889

61890

61891

61892

61893

61894

61895

61896

61897

61898

61899

61900

61901

61902

61903

61904

61905

61906

61907

61908

61909

61910

61911

61912

61913

61914

61915

61916

61917

61918

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

recv() System Interfaces

ERRORS
The recv() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data. See also SO_RCVTIMEO in
Section 2.10.16 (on page 554).

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] The recv() function was interrupted by a signal that was caught, before any
data was available.

[EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type or protocol.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recv() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The recv() function is equivalent to recvfrom() with null pointer address and address_len
arguments, and to read() if the socket argument refers to a socket and the flags argument is 0.

The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), read(), recvmsg(), recvfrom(), send(), sendmsg(), sendto(), setsockopt(), shutdown(),
socket(), write()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1876 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61919

61920

61921

61922

61923

61924

61925

61926

61927

61928

61929

61930

61931

61932

61933

61934

61935

61936

61937

61938

61939

61940

61941

61942

61943

61944

61945

61946

61947

61948

61949

61950

61951

61952

61953

61954

61955

61956

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces recv()

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0502 [462] is applied.

Issue 8
Austin Group Defect 1429 is applied, clarifying the behavior on timeout by adding references to
Section 2.10.16 (on page 554).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1877

61957

61958

61959

61960

61961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

recvfrom() System Interfaces

NAME
recvfrom — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvfrom(int socket, void *restrict buffer, size_t length,
int flags, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The recvfrom() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application
to retrieve the source address of received data.

The recvfrom() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread
and the next recvfrom() or similar function shall still return
this data.

MSG_OOB Requests out-of-band data. The significance and semantics
of out-of-band data are protocol-specific.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function
block until the full amount of data can be returned. The
function may return the smaller amount of data if the socket
is a message-based socket, if a signal is caught, if the
connection is terminated, if MSG_PEEK was specified, or if
an error is pending for the socket.

address A null pointer, or points to a sockaddr structure in which the sending address
is to be stored. The length and format of the address depend on the address
family of the socket.

address_len Either a null pointer, if address is a null pointer, or a pointer to a socklen_t
object which on input specifies the length of the supplied sockaddr structure,
and on output specifies the length of the sending address.

The recvfrom() function shall return the length of the message written to the buffer pointed to by
RS the buffer argument. For message-based sockets, such as SOCK_RAW, SOCK_DGRAM, and

SOCK_SEQPACKET, the entire message shall be read in a single operation. If a message is too
long to fit in the supplied buffer, and MSG_PEEK is not set in the flags argument, the excess
bytes shall be discarded. For stream-based sockets, such as SOCK_STREAM, message
boundaries shall be ignored. In this case, data shall be returned to the user as soon as it becomes
available, and no data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
message.

Not all protocols provide the source address for messages. If the address argument is not a null

1878 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61962

61963

61964

61965

61966

61967

61968

61969

61970

61971

61972

61973

61974

61975

61976

61977

61978

61979

61980

61981

61982

61983

61984

61985

61986

61987

61988

61989

61990

61991

61992

61993

61994

61995

61996

61997

61998

61999

62000

62001

62002

62003

62004

62005

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces recvfrom()

pointer and the protocol provides the source address of messages, the source address of the
received message shall be stored in the sockaddr structure pointed to by the address argument,
and the length of this address shall be stored in the object pointed to by the address_len
argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the address argument is not a null pointer and the protocol does not provide the source address
of messages, the value stored in the object pointed to by address is unspecified.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recvfrom() shall block until a message arrives or a timeout occurs (see
SO_RCVTIMEO in Section 2.10.16, on page 554). If no messages are available at the socket and
O_NONBLOCK is set on the socket’s file descriptor, recvfrom() shall fail and set errno to
[EAGAIN] or [EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recvfrom() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvfrom() shall return 0. Otherwise, the function shall return −1 and set errno to indicate the
error.

ERRORS
The recvfrom() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data. See also SO_RCVTIMEO in
Section 2.10.16 (on page 554).

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted recvfrom() before any data was available.

[EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvfrom() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1879

62006

62007

62008

62009

62010

62011

62012

62013

62014

62015

62016

62017

62018

62019

62020

62021

62022

62023

62024

62025

62026

62027

62028

62029

62030

62031

62032

62033

62034

62035

62036

62037

62038

62039

62040

62041

62042

62043

62044

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

recvfrom() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when data is available to be received.

For AF_UNIX sockets, it is recommended that address points to a buffer of length greater than
sizeof(struct sockaddr_un) which has been initialized with null bytes. That way, even if
the implementation supports the use of all bytes of sun_path without a terminating null byte, the
larger buffer guarantees that the sun_path member can then be passed to other interfaces that
expect a null-terminated string. If no truncation occurred based on the input value of address_len,
it is unspecified whether the returned address_len will be sizeof(struct sockaddr_un), or
merely a value at least as large as offsetof(struct sockaddr_un, sun_path) plus the
number of non-null bytes stored in sun_path.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), read(), recv(), recvmsg(), send(), sendmsg(), sendto(), setsockopt(), shutdown(),
socket(), write()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0503 [464] is applied.

Issue 8
Austin Group Defect 561 is applied, adding a paragraph about sun_path to APPLICATION
USAGE.

Austin Group Defect 1429 is applied, clarifying the behavior on timeout by adding references to
Section 2.10.16 (on page 554).

Austin Group Defect 1565 is applied, changing the description of address_len.

1880 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62045

62046

62047

62048

62049

62050

62051

62052

62053

62054

62055

62056

62057

62058

62059

62060

62061

62062

62063

62064

62065

62066

62067

62068

62069

62070

62071

62072

62073

62074

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces recvmsg()

NAME
recvmsg — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvmsg(int socket, struct msghdr *message, int flags);

DESCRIPTION
The recvmsg() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application
to retrieve the source address of received data.

The recvmsg() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the buffer to store the source
address and the buffers for the incoming message. The length and format of
the address depend on the address family of the socket. The msg_flags member
is ignored on input, but may contain meaningful values on output.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_OOB Requests out-of-band data. The significance and semantics
of out-of-band data are protocol-specific.

MSG_PEEK Peeks at the incoming message.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function
block until the full amount of data can be returned. The
function may return the smaller amount of data if the socket
is a message-based socket, if a signal is caught, if the
connection is terminated, if MSG_PEEK was specified, or if
an error is pending for the socket.

MSG_CMSG_CLOEXEC
On sockets that permit a cmsg_type of SCM_RIGHTS in the
msg_control ancillary data as a means of copying file
descriptors into the process, the file descriptors shall be
created with the FD_CLOEXEC flag atomically set.

MSG_CMSG_CLOFORK
On sockets that permit a cmsg_type of SCM_RIGHTS in the
msg_control ancillary data as a means of copying file
descriptors into the process, the file descriptors shall be
created with the FD_CLOFORK flag atomically set.

The recvmsg() function shall receive messages from unconnected or connected sockets and shall
return the length of the message.

The recvmsg() function shall return the total length of the message. For message-based sockets,
such as SOCK_DGRAM and SOCK_SEQPACKET, the entire message shall be read in a single
operation. If a message is too long to fit in the supplied buffers, and MSG_PEEK is not set in the
flags argument, the excess bytes shall be discarded, and MSG_TRUNC shall be set in the
msg_flags member of the msghdr structure. For stream-based sockets, such as SOCK_STREAM,
message boundaries shall be ignored. In this case, data shall be returned to the user as soon as it
becomes available, and no data shall be discarded.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1881

62075

62076

62077

62078

62079

62080

62081

62082

62083

62084

62085

62086

62087

62088

62089

62090

62091

62092

62093

62094

62095

62096

62097

62098

62099

62100

62101

62102

62103

62104

62105

62106

62107

62108

62109

62110

62111

62112

62113

62114

62115

62116

62117

62118

62119

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

recvmsg() System Interfaces

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recvmsg() shall block until a message arrives or a timeout occurs (see SO_RCVTIMEO
in Section 2.10.16, on page 554). If no messages are available at the socket and O_NONBLOCK
is set on the socket’s file descriptor, the recvmsg() function shall fail and set errno to [EAGAIN]
or [EWOULDBLOCK].

In the msghdr structure, the msg_name member may be a null pointer if the source address is not
required. Otherwise, if the socket is unconnected, the msg_name member points to a sockaddr
structure in which the source address is to be stored, and the msg_namelen member on input
specifies the length of the supplied sockaddr structure and on output specifies the length of the
source address. If the actual length of the address is greater than the length of the supplied
sockaddr structure, the stored address shall be truncated. If the socket is connected, the
msg_name and msg_namelen members shall be ignored. The msg_iov and msg_iovlen fields are
used to specify where the received data shall be stored. The msg_iov member points to an array
of iovec structures; the msg_iovlen member shall be set to the dimension of this array. In each
iovec structure, the iov_base field specifies a storage area and the iov_len field gives its size in
bytes. Each storage area indicated by msg_iov is filled with received data in turn until all of the
received data is stored or all of the areas have been filled.

Upon successful completion, the msg_flags member of the message header shall be the bitwise-
inclusive OR of all of the following flags that indicate conditions detected for the received
message:

MSG_EOR End-of-record was received (if supported by the protocol).

MSG_OOB Out-of-band data was received.

MSG_TRUNC Normal data was truncated.

MSG_CTRUNC Control data was truncated.

RETURN VALUE
Upon successful completion, recvmsg() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvmsg() shall return 0. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The recvmsg() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data. See also SO_RCVTIMEO in
Section 2.10.16 (on page 554).

[EBADF] The socket argument is not a valid open file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] This function was interrupted by a signal before any data was available.

[EINVAL] The sum of the iov_len values overflows a ssize_t, or the MSG_OOB flag is set
and no out-of-band data is available.

1882 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62120

62121

62122

62123

62124

62125

62126

62127

62128

62129

62130

62131

62132

62133

62134

62135

62136

62137

62138

62139

62140

62141

62142

62143

62144

62145

62146

62147

62148

62149

62150

62151

62152

62153

62154

62155

62156

62157

62158

62159

62160

62161

62162

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces recvmsg()

[EMSGSIZE] The msg_iovlen member of the msghdr structure pointed to by message is less
than or equal to 0, or is greater than {IOV_MAX}.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvmsg() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
The use of the MSG_CMSG_CLOEXEC and MSG_CMSG_CLOFORK flags to recvmsg() when
using SCM_RIGHTS to receive file descriptors via ancillary data is necessary to avoid a data race
in multi-threaded applications. Without MSG_CMSG_CLOFORK, a file descriptor is leaked into
a child process created by one thread in the window between another thread calling recvmsg()
and using fcntl() to set the FD_CLOFORK flag. Without MSG_CMSG_CLOEXEC, a file
descriptor intentionally inherited by child processes is similarly leaked into an executed
program if FD_CLOEXEC is not set atomically.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), recv(), recvfrom(), send(), sendmsg(), sendto(), setsockopt(), shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0504 [464] is applied.

Issue 8
Austin Group Defects 411 and 1318 are applied, adding MSG_CMSG_CLOEXEC and
MSG_CMSG_CLOFORK.

Austin Group Defect 1429 is applied, clarifying the behavior on timeout by adding references to
Section 2.10.16 (on page 554).

Austin Group Defect 1565 is applied, changing the description of msg_namelen.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1883

62163

62164

62165

62166

62167

62168

62169

62170

62171

62172

62173

62174

62175

62176

62177

62178

62179

62180

62181

62182

62183

62184

62185

62186

62187

62188

62189

62190

62191

62192

62193

62194

62195

62196

62197

62198

62199

62200

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

regcomp() System Interfaces

NAME
regcomp, regerror, regexec, regfree — regular expression matching

SYNOPSIS
#include <regex.h>

int regcomp(regex_t *restrict preg, const char *restrict pattern,
int cflags);

size_t regerror(int errcode, const regex_t *restrict preg,
char *restrict errbuf, size_t errbuf_size);

int regexec(const regex_t *restrict preg, const char *restrict string,
size_t nmatch, regmatch_t pmatch[restrict], int eflags);

void regfree(regex_t *preg);

DESCRIPTION
These functions interpret basic and extended regular expressions as described in XBD Chapter 9
(on page 179).

The regex_t structure is defined in <regex.h> and contains at least the following member:

Member Type Member Name Description
size_t re_nsub Number of parenthesized

subexpressions.

The regmatch_t structure is defined in <regex.h> and contains at least the following members:

Member Type Member Name Description
regoff_t rm_so Byte offset from start of string to start of

substring.
regoff_t rm_eo Byte offset from start of string of the first

character after the end of substring.

The regcomp() function shall compile the regular expression contained in the string pointed to by
the pattern argument and place the results in the structure pointed to by preg. The cflags
argument is the bitwise-inclusive OR of zero or more of the following flags, which are defined in
the <regex.h> header:

REG_EXTENDED Use Extended Regular Expressions.

REG_ICASE Perform matching in a case-insensitive manner (see XBD Section 9.2, on
page 180).

REG_MINIMAL Change the matching behavior for duplication symbols to the leftmost
shortest possible match, and invert the behavior of the repetition modifier
'?' (<question-mark>) to match the longest possible match instead of the
shortest. Only applicable to REG_EXTENDED regular expressions.

REG_NOSUB Report only success/fail in regexec().

REG_NEWLINE Change the handling of <newline> characters, as described in the text.

The default regular expression type for pattern is a Basic Regular Expression. The application can
specify Extended Regular Expressions using the REG_EXTENDED cflags flag.

If the REG_NOSUB flag was not set in cflags, then regcomp() shall set re_nsub to the number of
parenthesized subexpressions (delimited by "\(\)" in basic regular expressions or "()" in
extended regular expressions) found in pattern.

The regexec() function compares the null-terminated string specified by string with the compiled

1884 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62201

62202

62203

62204

62205

62206

62207

62208

62209

62210

62211

62212

62213

62214

62215

62216

62217

62218

62219

62220

62221

62222

62223

62224

62225

62226

62227

62228

62229

62230

62231

62232

62233

62234

62235

62236

62237

62238

62239

62240

62241

62242

62243

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces regcomp()

regular expression preg initialized by a previous call to regcomp(). If it finds a match, regexec()
shall return 0; otherwise, it shall return non-zero indicating either no match or an error. The
eflags argument is the bitwise-inclusive OR of zero or more of the following flags, which are
defined in the <regex.h> header:

REG_NOTBOL The first character of the string pointed to by string is not the beginning of
the line. Therefore, the <circumflex> character ('^'), when taken as a
special character, shall not match the beginning of string.

REG_NOTEOL The last character of the string pointed to by string is not the end of the
line. Therefore, the <dollar-sign> ('$'), when taken as a special character,
shall not match the end of string.

If nmatch is 0 or REG_NOSUB was set in the cflags argument to regcomp(), then regexec() shall
ignore the pmatch argument. Otherwise, the application shall ensure that the pmatch argument
points to an array with at least nmatch elements, and regexec() shall fill in the elements of that
array with offsets of the substrings of string that correspond to the parenthesized subexpressions
of pattern: pmatch[i].rm_so shall be the byte offset of the beginning and pmatch[i].rm_eo shall be
one greater than the byte offset of the end of substring i. (Subexpression i begins at the ith
matched open parenthesis, counting from 1.) Offsets in pmatch[0] identify the substring that
corresponds to the entire regular expression. Unused elements of pmatch up to pmatch[nmatch−1]
shall be filled with −1. If there are more than nmatch subexpressions in pattern (pattern itself
counts as a subexpression), then regexec() shall still do the match, but shall record only the first
nmatch substrings.

When matching a basic or extended regular expression, any given parenthesized subexpression
of pattern might participate in the match of several different substrings of string, or it might not
match any substring even though the pattern as a whole did match. The following rules shall be
used to determine which substrings to report in pmatch when matching regular expressions:

1. If subexpression i in a regular expression is not contained within another subexpression,
and it participated in the match several times, then the byte offsets in pmatch[i] shall
delimit the last such match.

2. If subexpression i is not contained within another subexpression, and it did not
participate in an otherwise successful match, the byte offsets in pmatch[i] shall be −1. A
subexpression does not participate in the match when:

'*' or "\{\}" appears immediately after the subexpression in a basic regular
expression, or '*', '?', or "{ }" appears immediately after the subexpression in
an extended regular expression, and the subexpression did not match (matched 0
times)

or:

'|' is used in an extended regular expression to select this subexpression or
another, and the other subexpression matched.

3. If subexpression i is contained within another subexpression j, and i is not contained
within any other subexpression that is contained within j, and a match of subexpression j
is reported in pmatch[j], then the match or non-match of subexpression i reported in
pmatch[i] shall be as described in 1. and 2. above, but within the substring reported in
pmatch[j] rather than the whole string. The offsets in pmatch[i] are still relative to the start
of string.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1885

62244

62245

62246

62247

62248

62249

62250

62251

62252

62253

62254

62255

62256

62257

62258

62259

62260

62261

62262

62263

62264

62265

62266

62267

62268

62269

62270

62271

62272

62273

62274

62275

62276

62277

62278

62279

62280

62281

62282

62283

62284

62285

62286

62287

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

regcomp() System Interfaces

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are −1,
then the pointers in pmatch[i] shall also be −1.

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] shall be
the byte offset of the character or null terminator immediately following the zero-length
string.

If, when regexec() is called, the locale is different from when the regular expression was
compiled, the result is undefined.

If REG_NEWLINE is not set in cflags, then a <newline> in pattern or string shall be treated as an
ordinary character. If REG_NEWLINE is set, then <newline> shall be treated as an ordinary
character except as follows:

1. A <newline> in string shall not be matched by a <period> outside a bracket expression or
by any form of a non-matching list (see XBD Chapter 9, on page 179).

2. A <circumflex> ('^') in pattern, when used to specify expression anchoring (see XBD
Section 9.3.8, on page 186), shall match the zero-length string immediately after a
<newline> in string, regardless of the setting of REG_NOTBOL.

3. A <dollar-sign> ('$') in pattern, when used to specify expression anchoring, shall match
the zero-length string immediately before a <newline> in string, regardless of the setting
of REG_NOTEOL.

The regfree() function shall free any memory allocated by regcomp() associated with preg. The
regfree() function shall not modify errno if preg was previously returned by regcomp() and not yet
freed.

The following constants are defined as the minimum set of error return values, although other
errors listed as implementation extensions in <regex.h> are possible:

REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than
two numbers, first larger than second.

REG_BADPAT Invalid regular expression.

REG_BADRPT '?', '*', or '+' not preceded by valid regular expression.

REG_EBRACE "\{\}" imbalance.

REG_EBRACK "[]" imbalance.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing <backslash> character in pattern.

REG_EPAREN "\(\)" or "()" imbalance.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_ESUBREG Number in "\digit" invalid or in error.

REG_NOMATCH regexec() failed to match.

If more than one error occurs in processing a function call, any one of the possible constants may
be returned, as the order of detection is unspecified.

The regerror() function provides a mapping from error codes returned by regcomp() and

1886 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62288

62289

62290

62291

62292

62293

62294

62295

62296

62297

62298

62299

62300

62301

62302

62303

62304

62305

62306

62307

62308

62309

62310

62311

62312

62313

62314

62315

62316

62317

62318

62319

62320

62321

62322

62323

62324

62325

62326

62327

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces regcomp()

regexec() to unspecified printable strings. It generates a string corresponding to the value of the
errcode argument, which the application shall ensure is the last non-zero value returned by
regcomp() or regexec() with the given value of preg. If errcode is not such a value, the content of
the generated string is unspecified.

If preg is a null pointer, but errcode is a value returned by a previous call to regexec() or regcomp(),
the regerror() still generates an error string corresponding to the value of errcode, but it might not
be as detailed under some implementations.

If the errbuf_size argument is not 0, regerror() shall place the generated string into the buffer of
size errbuf_size bytes pointed to by errbuf. If the string (including the terminating null) cannot fit
in the buffer, regerror() shall truncate the string and null-terminate the result.

If errbuf_size is 0, regerror() shall ignore the errbuf argument, and return the size of the buffer
needed to hold the generated string.

If the preg argument to regexec() or regfree() is not a compiled regular expression returned by
regcomp(), the result is undefined. A preg is no longer treated as a compiled regular expression
after it is given to regfree().

RETURN VALUE
Upon successful completion, the regcomp() function shall return 0. Otherwise, it shall return an
integer value indicating an error as described in <regex.h>, and the content of preg is undefined.
If a code is returned, the interpretation shall be as given in <regex.h>.

If regcomp() detects an invalid RE, it may return REG_BADPAT, or it may return one of the error
codes that more precisely describes the error.

Upon successful completion, the regexec() function shall return 0. Otherwise, it shall return
REG_NOMATCH to indicate no match.

Upon successful completion, the regerror() function shall return the number of bytes needed to
hold the entire generated string, including the null termination. If the return value is greater
than errbuf_size, the string returned in the buffer pointed to by errbuf has been truncated.

The regfree() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

#include <regex.h>

/*
* Match string against the extended regular expression in
* pattern, treating errors as no match.
*
* Return 1 for match, 0 for no match.
*/

int
match(const char *string, char *pattern)
{

int status;
regex_t re;

if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
return(0); /* Report error. */

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1887

62328

62329

62330

62331

62332

62333

62334

62335

62336

62337

62338

62339

62340

62341

62342

62343

62344

62345

62346

62347

62348

62349

62350

62351

62352

62353

62354

62355

62356

62357

62358

62359

62360

62361

62362

62363

62364

62365

62366

62367

62368

62369

62370

62371

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

regcomp() System Interfaces

}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {

return(0); /* Report error. */
}
return(1);

}

The following demonstrates how the REG_NOTBOL flag could be used with regexec() to find all
substrings in a line that match a pattern supplied by a user. (For simplicity of the example, very
little error checking is done.)

(void) regcomp (&re, pattern, 0);
/* This call to regexec() finds the first match on the line. */
error = regexec (&re, &buffer[0], 1, &pm, 0);
while (error == 0) { /* While matches found. */

/* Substring found between pm.rm_so and pm.rm_eo. */
/* This call to regexec() finds the next match. */
error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);

}

APPLICATION USAGE
An application could use:

regerror(code,preg,(char *)NULL,(size_t)0)

to find out how big a buffer is needed for the generated string, malloc() a buffer to hold the
string, and then call regerror() again to get the string. Alternatively, it could allocate a fixed,
static buffer that is big enough to hold most strings, and then use malloc() to allocate a larger
buffer if it finds that this is too small.

To match a pattern as described in XCU Section 2.14 (on page 2523), use the fnmatch() function.

RATIONALE
The regexec() function must fill in all nmatch elements of pmatch, where nmatch and pmatch are
supplied by the application, even if some elements of pmatch do not correspond to
subexpressions in pattern. The application developer should note that there is probably no
reason for using a value of nmatch that is larger than preg−>re_nsub+1.

The REG_NEWLINE flag supports a use of RE matching that is needed in some applications like
text editors. In such applications, the user supplies an RE asking the application to find a line
that matches the given expression. An anchor in such an RE anchors at the beginning or end of
any line. Such an application can pass a sequence of <newline>-separated lines to regexec() as a
single long string and specify REG_NEWLINE to regcomp() to get the desired behavior. The
application must ensure that there are no explicit <newline> characters in pattern if it wants to
ensure that any match occurs entirely within a single line.

The REG_NEWLINE flag affects the behavior of regexec(), but it is in the cflags parameter to
regcomp() to allow flexibility of implementation. Some implementations will want to generate
the same compiled RE in regcomp() regardless of the setting of REG_NEWLINE and have
regexec() handle anchors differently based on the setting of the flag. Other implementations will
generate different compiled REs based on the REG_NEWLINE.

The REG_ICASE flag supports the operations taken by the grep −i option and the historical
implementations of ex and vi. Including this flag will make it easier for application code to be
written that does the same thing as these utilities.

1888 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62372

62373

62374

62375

62376

62377

62378

62379

62380

62381

62382

62383

62384

62385

62386

62387

62388

62389

62390

62391

62392

62393

62394

62395

62396

62397

62398

62399

62400

62401

62402

62403

62404

62405

62406

62407

62408

62409

62410

62411

62412

62413

62414

62415

62416

62417

62418

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces regcomp()

The substrings reported in pmatch[] are defined using offsets from the start of the string rather
than pointers. This allows type-safe access to both constant and non-constant strings.

The type regoff_t is used for the elements of pmatch[] to ensure that the application can
represent large arrays in memory (important for an application conforming to the Shell and
Utilities volume of POSIX.1-2024).

The 1992 edition of this standard required regoff_t to be at least as wide as off_t, to facilitate
future extensions in which the string to be searched is taken from a file. However, these future
extensions have not appeared. The requirement rules out popular implementations with 32-bit
regoff_t and 64-bit off_t, so it has been removed.

The standard developers rejected the inclusion of a regsub() function that would be used to do
substitutions for a matched RE. While such a routine would be useful to some applications, its
utility would be much more limited than the matching function described here. Both RE parsing
and substitution are possible to implement without support other than that required by the
ISO C standard, but matching is much more complex than substituting. The only difficult part of
substitution, given the information supplied by regexec(), is finding the next character in a string
when there can be multi-byte characters. That is a much larger issue, and one that needs a more
general solution.

The errno variable has not been used for error returns to avoid filling the errno name space for
this feature.

The interface is defined so that the matched substrings rm_sp and rm_ep are in a separate
regmatch_t structure instead of in regex_t. This allows a single compiled RE to be used
simultaneously in several contexts; in main() and a signal handler, perhaps, or in multiple
threads of lightweight processes. (The preg argument to regexec() is declared with type const, so
the implementation is not permitted to use the structure to store intermediate results.) It also
allows an application to request an arbitrary number of substrings from an RE. The number of
subexpressions in the RE is reported in re_nsub in preg. With this change to regexec(),
consideration was given to dropping the REG_NOSUB flag since the user can now specify this
with a zero nmatch argument to regexec(). However, keeping REG_NOSUB allows an
implementation to use a different (perhaps more efficient) algorithm if it knows in regcomp() that
no subexpressions need be reported. The implementation is only required to fill in pmatch if
nmatch is not zero and if REG_NOSUB is not specified. Note that the size_t type, as defined in
the ISO C standard, is unsigned, so the description of regexec() does not need to address
negative values of nmatch.

REG_NOTBOL was added to allow an application to do repeated searches for the same pattern
in a line. If the pattern contains a <circumflex> character that should match the beginning of a
line, then the pattern should only match when matched against the beginning of the line.
Without the REG_NOTBOL flag, the application could rewrite the expression for subsequent
matches, but in the general case this would require parsing the expression. The need for
REG_NOTEOL is not as clear; it was added for symmetry.

The addition of the regerror() function addresses the historical need for conforming application
programs to have access to error information more than ``Function failed to compile/match your
RE for unknown reasons’’.

This interface provides for two different methods of dealing with error conditions. The specific
error codes (REG_EBRACE, for example), defined in <regex.h>, allow an application to recover
from an error if it is so able. Many applications, especially those that use patterns supplied by a
user, will not try to deal with specific error cases, but will just use regerror() to obtain a human-
readable error message to present to the user.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1889

62419

62420

62421

62422

62423

62424

62425

62426

62427

62428

62429

62430

62431

62432

62433

62434

62435

62436

62437

62438

62439

62440

62441

62442

62443

62444

62445

62446

62447

62448

62449

62450

62451

62452

62453

62454

62455

62456

62457

62458

62459

62460

62461

62462

62463

62464

62465

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

regcomp() System Interfaces

The regerror() function uses a scheme similar to confstr() to deal with the problem of allocating
memory to hold the generated string. The scheme used by strerror() in the ISO C standard was
considered unacceptable since it creates difficulties for multi-threaded applications.

The preg argument is provided to regerror() to allow an implementation to generate a more
descriptive message than would be possible with errcode alone. An implementation might, for
example, save the character offset of the offending character of the pattern in a field of preg, and
then include that in the generated message string. The implementation may also ignore preg.

A REG_FILENAME flag was considered, but omitted. This flag caused regexec() to match
patterns as described in XCU Section 2.14 (on page 2523) instead of REs. This service is now
provided by the fnmatch() function.

Notice that there is a difference in philosophy between the ISO POSIX-2: 1993 standard and
POSIX.1-2024 in how to handle a ``bad’’ regular expression. The ISO POSIX-2: 1993 standard says
that many bad constructs ``produce undefined results’’, or that ``the interpretation is undefined’’.
POSIX.1-2024, however, says that the interpretation of such REs is unspecified. The term
``undefined’’ means that the action by the application is an error, of similar severity to passing a
bad pointer to a function.

The regcomp() and regexec() functions are required to accept any null-terminated string as the
pattern argument. If the meaning of the string is ``undefined’’, the behavior of the function is
``unspecified’’. POSIX.1-2024 does not specify how the functions will interpret the pattern; they
might return error codes, or they might do pattern matching in some completely unexpected
way, but they should not do something like abort the process.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob()

XBD Chapter 9 (on page 179), <regex.h>, <sys/types.h>

XCU Section 2.14 (on page 2523)

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The REG_ENOSYS constant is removed.

The restrict keyword is added to the regcomp(), regerror(), and regexec() prototypes for
alignment with the ISO/IEC 9899: 1999 standard.

1890 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62466

62467

62468

62469

62470

62471

62472

62473

62474

62475

62476

62477

62478

62479

62480

62481

62482

62483

62484

62485

62486

62487

62488

62489

62490

62491

62492

62493

62494

62495

62496

62497

62498

62499

62500

62501

62502

62503

62504

62505

62506

62507

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces regcomp()

Issue 7
Austin Group Interpretation 1003.1-2001 #134 is applied, clarifying that if more than one error
occurs in processing a function call, any one of the possible constants may be returned.

SD5-XBD-ERN-60 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0505 [305] is applied.

Issue 8
Austin Group Defect 385 is applied, adding a requirement that regfree() does not modify errno
when passed a pointer to a regex_t that can be freed.

Austin Group Defects 793 and 1329 are applied, adding REG_MINIMAL.

Austin Group Defect 1031 is applied, changing the description of REG_ICASE.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1891

62508

62509

62510

62511

62512

62513

62514

62515

62516

62517

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

remainder() System Interfaces

NAME
remainder, remainderf, remainderl — remainder function

SYNOPSIS
#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall return the floating-point remainder r=x−ny when y is non-zero. The value
n is the integral value nearest the exact value x/y. When | n−x/y |=½, the value n is chosen to
be even.

The behavior of remainder() shall be independent of the rounding mode.

RETURN VALUE
Upon successful completion, these functions shall return the floating-point remainder r=x−ny
when y is non-zero.

MX When subnormal results are supported, the returned value shall be exact.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is
implementation-defined whether a domain error occurs or zero is returned.

MX If x or y is NaN, a NaN shall be returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error shall occur, and a NaN shall be
returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf, or the y argument is ±0 and the other argument is non-
NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The y argument is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

1892 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62518

62519

62520

62521

62522

62523

62524

62525

62526

62527

62528

62529

62530

62531

62532

62533

62534

62535

62536

62537

62538

62539

62540

62541

62542

62543

62544

62545

62546

62547

62548

62549

62550

62551

62552

62553

62554

62555

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces remainder()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), div(), feclearexcept(), fetestexcept(), ldiv()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The remainder() function is no longer marked as an extension.

The remainderf() and remainderl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #55 (SD5-XSH-ERN-82) is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0506 [320] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1893

62556

62557

62558

62559

62560

62561

62562

62563

62564

62565

62566

62567

62568

62569

62570

62571

62572

62573

62574

62575

62576

62577

62578

62579

62580

62581

62582

62583

62584

62585

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

remove() System Interfaces

NAME
remove — remove a file

SYNOPSIS
#include <stdio.h>

int remove(const char *path);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The remove() function shall cause the file named by the pathname pointed to by path to be no
longer accessible by that name. A subsequent attempt to open that file using that name shall fail,
unless it is created anew.

CX If path does not name a directory, remove(path) shall be equivalent to unlink(path).

If path names a directory, remove(path) shall be equivalent to rmdir(path).

RETURN VALUE
CX Refer to rmdir() or unlink().

ERRORS
CX Refer to rmdir() or unlink().

EXAMPLES

Removing Access to a File

The following example shows how to remove access to a file named /home/cnd/old_mods.

#include <stdio.h>
int status;
...
status = remove("/home/cnd/old_mods");

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
rmdir(), unlink()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard and the ISO C
standard.

Issue 6
Extensions beyond the ISO C standard are marked.

1894 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62586

62587

62588

62589

62590

62591

62592

62593

62594

62595

62596

62597

62598

62599

62600

62601

62602

62603

62604

62605

62606

62607

62608

62609

62610

62611

62612

62613

62614

62615

62616

62617

62618

62619

62620

62621

62622

62623

62624

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces remove()

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION, RETURN VALUE, and ERRORS sections are updated so that if path is
not a directory, remove() is equivalent to unlink(), and if it is a directory, it is equivalent to
rmdir().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1895

62625

62626

62627

62628

62629

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

remque() System Interfaces

NAME
remque — remove an element from a queue

SYNOPSIS
XSI #include <search.h>

void remque(void *element);

DESCRIPTION
Refer to insque().

1896 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62630

62631

62632

62633

62634

62635

62636

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces remquo()

NAME
remquo, remquof, remquol — remainder functions

SYNOPSIS
#include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The remquo(), remquof(), and remquol() functions shall compute the same remainder as the
remainder(), remainderf(), and remainderl() functions, respectively. In the object pointed to by quo,
they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2n to
the magnitude of the integral quotient of x/y, where n is an implementation-defined integer
greater than or equal to 3. If y is zero, the value stored in the object pointed to by quo is
unspecified.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
These functions shall return x REM y.

MX When subnormal results are supported, the returned value shall be exact.

If NaN is supported and a NaN is returned, the value stored in the object pointed to by quo is
unspecified.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is
implementation-defined whether a domain error occurs or zero is returned.

MX If x or y is NaN, a NaN shall be returned.

If x is ±Inf or y is zero and the other argument is non-NaN, a domain error shall occur, and a
NaN shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf, or the y argument is ±0 and the other argument is non-
NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The y argument is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1897

62637

62638

62639

62640

62641

62642

62643

62644

62645

62646

62647

62648

62649

62650

62651

62652

62653

62654

62655

62656

62657

62658

62659

62660

62661

62662

62663

62664

62665

62666

62667

62668

62669

62670

62671

62672

62673

62674

62675

62676

62677

62678

62679

62680

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

remquo() System Interfaces

shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions are intended for implementing argument reductions which can exploit a few
low-order bits of the quotient. Note that x may be so large in magnitude relative to y that an
exact representation of the quotient is not practical.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), remainder()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #56 (SD5-XSH-ERN-83) is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0507 [320] is applied.

Issue 8
Austin Group Defect 713 is applied, clarifying the behavior when a NaN is returned.

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

1898 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62681

62682

62683

62684

62685

62686

62687

62688

62689

62690

62691

62692

62693

62694

62695

62696

62697

62698

62699

62700

62701

62702

62703

62704

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces rename()

NAME
rename, renameat — rename file

SYNOPSIS
#include <stdio.h>

int rename(const char *old, const char *new);

OH CX #include <fcntl.h>

CX int renameat(int oldfd, const char *old, int newfd,
const char *new);

DESCRIPTION
CX For rename(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The rename() function shall change the name of a file. The old argument points to the pathname
CX of the file to be renamed. The new argument points to the new pathname of the file. If the new

argument does not resolve to an existing directory entry for a file of type directory and the new
argument contains at least one non-<slash> character and ends with one or more trailing
<slash> characters after all symbolic links have been processed, rename() shall fail.

If either the old or new argument names a symbolic link, rename() shall operate on the symbolic
link itself, and shall not resolve the last component of the argument. If the old argument and the
new argument resolve to either the same existing directory entry or different directory entries for
the same existing file, rename() shall return successfully and perform no other action.

If the old argument names a file that is not a directory and the new argument names a directory,
or old names a directory and new names a file that is not a directory, or new names a directory
that is not empty, rename() shall fail. Otherwise, if the directory entry named by new exists, it
shall be removed and old renamed to new. In this case, a directory entry named new shall remain
visible to other threads throughout the renaming operation and refer either to the file referred to
by new or old before the operation began.

If either pathname argument refers to a path whose final component is either dot or dot-dot,
rename() shall fail.

If the old argument points to a pathname of a symbolic link, the symbolic link shall be renamed.
If the new argument points to a pathname of a symbolic link, the symbolic link shall be removed.

The old pathname shall not name an ancestor directory of the new pathname. Write access
permission is required for the directory containing old and the directory containing new. If the
old argument points to the pathname of a directory, write access permission may be required for
the directory named by old, and, if it exists, the directory named by new.

If the new argument names an existing file and the file’s link count becomes 0 when it is
removed and no process has the file open, the space occupied by the file shall be freed and the
file shall no longer be accessible. If one or more processes have the file open when the last link is
removed, the link shall be removed before rename() returns, but the removal of the file contents
shall be postponed until all references to the file are closed.

Upon successful completion, rename() shall mark for update the last data modification and last
file status change timestamps of the parent directory of each file.

If the rename() function fails for any reason other than [EIO], any file named by new shall be
unaffected.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1899

62705

62706

62707

62708

62709

62710

62711

62712

62713

62714

62715

62716

62717

62718

62719

62720

62721

62722

62723

62724

62725

62726

62727

62728

62729

62730

62731

62732

62733

62734

62735

62736

62737

62738

62739

62740

62741

62742

62743

62744

62745

62746

62747

62748

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rename() System Interfaces

The renameat() function shall be equivalent to the rename() function except in the case where
either old or new specifies a relative path. If old is a relative path, the file to be renamed is located
relative to the directory associated with the file descriptor oldfd instead of the current working
directory. If new is a relative path, the same happens only relative to the directory associated
with newfd. If the access mode of the open file description associated with the file descriptor is
not O_SEARCH, the function shall check whether directory searches are permitted using the
current permissions of the directory underlying the file descriptor. If the access mode is
O_SEARCH, the function shall not perform the check.

If renameat() is passed the special value AT_FDCWD in the oldfd or newfd parameter, the current
working directory shall be used in the determination of the file for the respective path parameter.

RETURN VALUE
CX Upon successful completion, the rename() function shall return 0. Otherwise, it shall return −1,

errno shall be set to indicate the error, and neither the file named by old nor the file named by
new shall be changed or created.

CX Upon successful completion, the renameat() function shall return 0. Otherwise, it shall return −1
and set errno to indicate the error.

ERRORS
CX The rename() and renameat() functions shall fail if:

CX [EACCES] A component of either path prefix denies search permission; or one of the
directories containing old or new denies write permissions; or, write
permission is required and is denied for a directory pointed to by the old or
new arguments.

CX [EBUSY] The directory named by old or new is currently in use by the system or another
process, and the implementation considers this an error.

CX [EEXIST] or [ENOTEMPTY]
The new argument names a directory that is not empty.

CX [EILSEQ] The last pathname component of the new pathname is not a portable filename,
and cannot be created in the target directory.

CX [EINVAL] The old pathname names an ancestor directory of the new pathname, or either
pathname argument contains a final component that is dot or dot-dot.

CX [EIO] A physical I/O error has occurred.

CX [EISDIR] The new argument points to a directory and the old argument points to a file
that is not a directory.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the old or new
argument.

CX [EMLINK] The file named by old is a directory, and the link count of the parent directory
of new would exceed {LINK_MAX}.

CX [ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

CX [ENOENT] The old argument does not name an existing file, a component of the path
prefix of new does not exist, or either old or new points to an empty string.

1900 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62749

62750

62751

62752

62753

62754

62755

62756

62757

62758

62759

62760

62761

62762

62763

62764

62765

62766

62767

62768

62769

62770

62771

62772

62773

62774

62775

62776

62777

62778

62779

62780

62781

62782

62783

62784

62785

62786

62787

62788

62789

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces rename()

CX [ENOSPC] The directory that would contain new cannot be extended.

CX [ENOTDIR] A component of either path prefix names an existing file that is neither a
directory nor a symbolic link to a directory; or the old argument names a
directory and the new argument names a non-directory file; or the old
argument contains at least one non-<slash> character and ends with one or
more trailing <slash> characters and the last pathname component names an
existing file that is neither a directory nor a symbolic link to a directory; or the
old argument names an existing non-directory file and the new argument
names a nonexistent file, contains at least one non-<slash> character, and ends
with one or more trailing <slash> characters; or the new argument names an
existing non-directory file, contains at least one non-<slash> character, and
ends with one or more trailing <slash> characters.

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by old
and the process does not satisfy the criteria specified in XBD Section 4.5 (on
page 96) with respect to old; or new refers to an existing file, the S_ISVTX flag
is set on the directory containing this file, and the process does not satisfy the
criteria specified in XBD Section 4.5 with respect to this file.

CX [EROFS] The requested operation requires writing in a directory on a read-only file
system.

CX [EXDEV] The file named by old and the directory in which the directory entry named by
new is to be created or replaced are on different file systems and the
implementation does not support hard links between file systems.

CX In addition, the renameat() function shall fail if:

[EACCES] The access mode of the open file description associated with oldfd or newfd is
not O_SEARCH and the permissions of the directory underlying oldfd or
newfd, respectively, do not permit directory searches.

[EBADF] The old argument does not specify an absolute path and the oldfd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching,
or the new argument does not specify an absolute path and the newfd
argument is neither AT_FDCWD nor a valid file descriptor open for reading
or searching.

[ENOTDIR] The old or new argument is not an absolute path and oldfd or newfd,
respectively, is a file descriptor associated with a non-directory file.

CX The rename() and renameat() functions may fail if:

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the old or new argument.

CX [ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

CX [ETXTBSY] The file named by new exists and is the last directory entry to a pure procedure
(shared text) file that is being executed.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1901

62790

62791

62792

62793

62794

62795

62796

62797

62798

62799

62800

62801

62802

62803

62804

62805

62806

62807

62808

62809

62810

62811

62812

62813

62814

62815

62816

62817

62818

62819

62820

62821

62822

62823

62824

62825

62826

62827

62828

62829

62830

62831

62832

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rename() System Interfaces

EXAMPLES

Renaming a File

The following example shows how to rename a file named /home/cnd/mod1 to
/home/cnd/mod2.

#include <stdio.h>

int status;
...
status = rename("/home/cnd/mod1", "/home/cnd/mod2");

APPLICATION USAGE
Some implementations mark for update the last file status change timestamp of renamed files
and some do not. Applications which make use of the last file status change timestamp may
behave differently with respect to renamed files unless they are designed to allow for either
behavior.

RATIONALE
This rename() function is equivalent for regular files to that defined by the ISO C standard. Its
inclusion here expands that definition to include actions on directories and specifies behavior
when the new parameter names a file that already exists. That specification requires that the
action of the function be atomic.

One of the reasons for introducing this function was to have a means of renaming directories
while permitting implementations to prohibit the use of link() and unlink() with directories,
thus constraining links to directories to those made by mkdir().

The specification that if old and new refer to the same file is intended to guarantee that:

rename("x", "x");
does not remove the file.

Renaming dot or dot-dot is prohibited in order to prevent cyclical file system paths.

See also the descriptions of [ENOTEMPTY] and [ENAMETOOLONG] in rmdir() and [EBUSY] in
unlink(). For a discussion of [EXDEV], see link().

The purpose of the renameat() function is to rename files in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to a call to rename(), resulting in unspecified behavior. By opening file
descriptors for the source and target directories and using the renameat() function it can be
guaranteed that that renamed file is located correctly and the resulting file is in the desired
directory.

Implementations are encouraged to have rename() and renameat() report an [EILSEQ] error if the
file named by new does not already exist and the last component of that pathname contains any
bytes that have the encoded value of a <newline> character.

FUTURE DIRECTIONS
None.

SEE ALSO
link(), rmdir(), symlink(), unlink()

XBD Section 4.5 (on page 96), <fcntl.h>, <stdio.h>

1902 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62833

62834

62835

62836

62837

62838

62839

62840

62841

62842

62843

62844

62845

62846

62847

62848

62849

62850

62851

62852

62853

62854

62855

62856

62857

62858

62859

62860

62861

62862

62863

62864

62865

62866

62867

62868

62869

62870

62871

62872

62873

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces rename()

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The [EBUSY] error is added to the optional part of the ERRORS section.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Details are added regarding the treatment of symbolic links.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #016 is applied, changing the definition of the
[ENOTDIR] error.

Austin Group Interpretation 1003.1-2001 #076 is applied, clarifying the behavior if the final
component of a path is either dot or dot-dot, and adding the associated [EINVAL] error case.

Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #145 is applied, clarifying that the [ENOENT] error
condition also applies to the case in which a component of new does not exist.

Austin Group Interpretations 1003.1-2001 #174 and #181 are applied.

The renameat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0508 [324], XSH/TC1-2008/0509 [147],
XSH/TC1-2008/0510 [379], XSH/TC1-2008/0511 [278], and XSH/TC1-2008/0512 [278] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0311 [873], XSH/TC2-2008/0312 [591],
XSH/TC2-2008/0313 [716], XSH/TC2-2008/0314 [817], XSH/TC2-2008/0315 [817], and
XSH/TC2-2008/0316 [591] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 293 is applied, adding the [EILSEQ] error.

Austin Group Defect 1200 is applied, correcting the argument names in the [ELOOP] errors.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1903

62874

62875

62876

62877

62878

62879

62880

62881

62882

62883

62884

62885

62886

62887

62888

62889

62890

62891

62892

62893

62894

62895

62896

62897

62898

62899

62900

62901

62902

62903

62904

62905

62906

62907

62908

62909

62910

62911

62912

62913

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rename() System Interfaces

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1380 is applied, changing text using the term ``link’’ in line with its
updated definition.

1904 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62914

62915

62916

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces rewind()

NAME
rewind — reset the file position indicator in a stream

SYNOPSIS
#include <stdio.h>

void rewind(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The call:

rewind(stream)

shall be equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that rewind() shall also ensure the error indicator is clear when the function returns.

CX Since rewind() does not return a value, an application wishing to detect errors should clear errno,
then call rewind(), and if errno is non-zero, assume an error has occurred.

RETURN VALUE
The rewind() function shall not return a value.

ERRORS
CX Refer to fseek() with the exception of [EINVAL] which does not apply.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fseek()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0513 [14] is applied.

Issue 8
Austin Group Defect 1414 is applied, clarifying that rewind() ensures the error indicator is clear
when the function returns.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1905

62917

62918

62919

62920

62921

62922

62923

62924

62925

62926

62927

62928

62929

62930

62931

62932

62933

62934

62935

62936

62937

62938

62939

62940

62941

62942

62943

62944

62945

62946

62947

62948

62949

62950

62951

62952

62953

62954

62955

62956

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rewinddir() System Interfaces

NAME
rewinddir — reset the position of a directory stream to the beginning of a directory

SYNOPSIS
#include <dirent.h>

void rewinddir(DIR *dirp);

DESCRIPTION
The rewinddir() function shall reset the position of the directory stream to which dirp refers to the
beginning of the directory. It shall also cause the directory stream to refer to the current state of
the corresponding directory, as a call to opendir() would have done. If dirp does not refer to a
directory stream, the effect is undefined.

After a call to the fork() function, either the parent or child (but not both) may continue
XSI processing the directory stream using readdir(), rewinddir(), or seekdir(). If both the parent and

child processes use these functions, the result is undefined.

RETURN VALUE
The rewinddir() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The rewinddir() function should be used in conjunction with opendir(), readdir(), and closedir() to
examine the contents of the directory. This method is recommended for portability.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), fdopendir(), readdir()

XBD <dirent.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1906 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

62957

62958

62959

62960

62961

62962

62963

62964

62965

62966

62967

62968

62969

62970

62971

62972

62973

62974

62975

62976

62977

62978

62979

62980

62981

62982

62983

62984

62985

62986

62987

62988

62989

62990

62991

62992

62993

62994

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces rint()

NAME
rint, rintf, rintl — round-to-nearest integral value

SYNOPSIS
#include <math.h>

double rint(double x);
float rintf(float x);
long double rintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall return the integral value (represented as a double) nearest x in the
direction of the current rounding mode. The current rounding mode is implementation-defined.

If the current rounding mode rounds toward negative infinity, then rint() shall be equivalent to
floor(). If the current rounding mode rounds toward positive infinity, then rint() shall be
equivalent to ceil(). If the current rounding mode rounds towards zero, then rint() shall be

MX equivalent to trunc(). If the current rounding mode rounds towards nearest, then rint() differs
from round() in that halfway cases are rounded to even rather than away from zero.

These functions differ from the nearbyint(), nearbyintf(), and nearbyintl() functions only in that
they may raise the inexact floating-point exception if the result differs in value from the
argument.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the integer (represented as a double

MX precision number) nearest x in the direction of the current rounding mode. The result shall have
the same sign as x.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1907

62995

62996

62997

62998

62999

63000

63001

63002

63003

63004

63005

63006

63007

63008

63009

63010

63011

63012

63013

63014

63015

63016

63017

63018

63019

63020

63021

63022

63023

63024

63025

63026

63027

63028

63029

63030

63031

63032

63033

63034

63035

63036

63037

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rint() System Interfaces

SEE ALSO
abs(), ceil(), feclearexcept(), fetestexcept(), floor(), isnan(), nearbyint()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The rintf() and rintl() functions are added.

• The rint() function is no longer marked as an extension.

• The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard
are marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0514 [346], XSH/TC1-2008/0515 [346],
XSH/TC1-2008/0516 [346], XSH/TC1-2008/0517 [346], and XSH/TC1-2008/0518 [346] are
applied.

1908 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63038

63039

63040

63041

63042

63043

63044

63045

63046

63047

63048

63049

63050

63051

63052

63053

63054

63055

63056

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces rmdir()

NAME
rmdir — remove a directory

SYNOPSIS
#include <unistd.h>

int rmdir(const char *path);

DESCRIPTION
The rmdir() function shall remove a directory whose name is given by path. The directory shall
be removed only if it is an empty directory.

If the directory is the root directory or the current working directory of any process, it is
unspecified whether the function succeeds, or whether it shall fail and set errno to [EBUSY].

If path names a symbolic link, then rmdir() shall fail and set errno to [ENOTDIR].

If the path argument refers to a path whose final component is either dot or dot-dot, rmdir() shall
fail.

If the directory’s link count becomes 0 and no process has the directory open, the space occupied
by the directory shall be freed and the directory shall no longer be accessible. If one or more
processes have the directory open when the last link is removed, the dot and dot-dot entries, if
present, shall be removed before rmdir() returns and no new entries may be created in the
directory, but the directory shall not be removed until all references to the directory are closed.

If the directory is not an empty directory, rmdir() shall fail and set errno to [EEXIST] or
[ENOTEMPTY].

Upon successful completion, rmdir() shall mark for update the last data modification and last
file status change timestamps of the parent directory.

RETURN VALUE
Upon successful completion, the function rmdir() shall return 0. Otherwise, −1 shall be returned,
and errno set to indicate the error. If −1 is returned, the named directory shall not be changed.

ERRORS
The rmdir() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be removed.

[EBUSY] The directory to be removed is currently in use by the system or some process
and the implementation considers this to be an error.

[EEXIST] or [ENOTEMPTY]
The path argument names a directory that is not an empty directory, or there
are hard links to the directory other than dot or a single entry in dot-dot.

[EINVAL] The path argument contains a last component that is dot.

[EIO] A physical I/O error has occurred.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file, or the path argument
names a nonexistent directory or points to an empty string.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1909

63057

63058

63059

63060

63061

63062

63063

63064

63065

63066

63067

63068

63069

63070

63071

63072

63073

63074

63075

63076

63077

63078

63079

63080

63081

63082

63083

63084

63085

63086

63087

63088

63089

63090

63091

63092

63093

63094

63095

63096

63097

63098

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rmdir() System Interfaces

[ENOTDIR] A component of path names an existing file that is neither a directory nor a
symbolic link to a directory.

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by the
path argument and the process does not satisfy the criteria specified in XBD
Section 4.5 (on page 96).

[EROFS] The directory entry to be removed resides on a read-only file system.

The rmdir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Removing a Directory

The following example shows how to remove a directory named /home/cnd/mod1.

#include <unistd.h>

int status;
...
status = rmdir("/home/cnd/mod1");

APPLICATION USAGE
None.

RATIONALE
The rmdir() and rename() functions originated in 4.2 BSD, and they used [ENOTEMPTY] for the
condition when the directory to be removed does not exist or new already exists. When the 1984
/usr/group standard was published, it contained [EEXIST] instead. When these functions were
adopted into System V, the 1984 /usr/group standard was used as a reference. Therefore,
several existing applications and implementations support/use both forms, and no agreement
could be reached on either value. All implementations are required to supply both [EEXIST] and
[ENOTEMPTY] in <errno.h> with distinct values, so that applications can use both values in C-
language case statements.

The meaning of deleting pathname/dot is unclear, because the name of the file (directory) in the
parent directory to be removed is not clear, particularly in the presence of multiple links to a
directory.

The POSIX.1-1990 standard was silent with regard to the behavior of rmdir() when there are
multiple hard links to the directory being removed. The requirement to set errno to [EEXIST] or
[ENOTEMPTY] clarifies the behavior in this case.

If the current working directory of the process is being removed, that should be an allowed
error.

Virtually all existing implementations detect [ENOTEMPTY] or the case of dot-dot. The text in
Section 2.3 (on page 507) about returning any one of the possible errors permits that behavior to
continue. The [ELOOP] error may be returned if more than {SYMLOOP_MAX} symbolic links

1910 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63099

63100

63101

63102

63103

63104

63105

63106

63107

63108

63109

63110

63111

63112

63113

63114

63115

63116

63117

63118

63119

63120

63121

63122

63123

63124

63125

63126

63127

63128

63129

63130

63131

63132

63133

63134

63135

63136

63137

63138

63139

63140

63141

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces rmdir()

are encountered during resolution of the path argument.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.3 (on page 507), mkdir(), remove(), rename(), unlink()

XBD Section 4.5 (on page 96), <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate the results of naming a symbolic link in path.

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the requirements for
operations when the S_ISVTX bit is set.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0519 [324] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1911

63142

63143

63144

63145

63146

63147

63148

63149

63150

63151

63152

63153

63154

63155

63156

63157

63158

63159

63160

63161

63162

63163

63164

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

round() System Interfaces

NAME
round, roundf, roundl — round to the nearest integer value in a floating-point format

SYNOPSIS
#include <math.h>

double round(double x);
float roundf(float x);
long double roundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value in floating-point format,
rounding halfway cases away from zero, regardless of the current rounding direction.

MX These functions may raise the inexact floating-point exception for finite non-integer arguments.

RETURN VALUE
MX Upon successful completion, these functions shall return the rounded integer value. The result

shall have the same sign as x.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0520 [346] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

1912 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63165

63166

63167

63168

63169

63170

63171

63172

63173

63174

63175

63176

63177

63178

63179

63180

63181

63182

63183

63184

63185

63186

63187

63188

63189

63190

63191

63192

63193

63194

63195

63196

63197

63198

63199

63200

63201

63202

63203

63204

63205

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces scalbln()

NAME
scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl — compute exponent using FLT_RADIX

SYNOPSIS
#include <math.h>

double scalbln(double x, long n);
float scalblnf(float x, long n);
long double scalblnl(long double x, long n);
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute x * FLT_RADIXn efficiently, not normally by computing
FLT_RADIXn explicitly.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return x * FLT_RADIXn.

MX If the calculation does not overflow or underflow, the returned value shall be exact and shall be
independent of the current rounding direction mode.

If the result would cause overflow, a range error shall occur and these functions shall return
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the sign of x) as appropriate for
the return type of the function.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and scalbln(), scalblnf(), scalblnl(), scalbn(), scalbnf(), and scalbnl() shall return 0.0, or (if IEC

60559 Floating-Point is not supported) an implementation-defined value no greater in
magnitude than DBL_MIN, FLT_MIN, LDBL_MIN, DBL_MIN, FLT_MIN, and LDBL_MIN,
respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If n is 0, x shall be returned.

MXX If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1913

63206

63207

63208

63209

63210

63211

63212

63213

63214

63215

63216

63217

63218

63219

63220

63221

63222

63223

63224

63225

63226

63227

63228

63229

63230

63231

63232

63233

63234

63235

63236

63237

63238

63239

63240

63241

63242

63243

63244

63245

63246

63247

63248

63249

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

scalbln() System Interfaces

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions are named so as to avoid conflicting with the historical definition of the scalb()
function from the Single UNIX Specification. The difference is that the scalb() function has a
second argument of double instead of int. The scalb() function is not part of the ISO C standard.
The three functions whose second type is long are provided because the factor required to scale
from the smallest positive floating-point value to the largest finite one, on many
implementations, is too large to represent in the minimum-width int format.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0521 [68] and XSH/TC1-2008/0522
[68] are applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

1914 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63250

63251

63252

63253

63254

63255

63256

63257

63258

63259

63260

63261

63262

63263

63264

63265

63266

63267

63268

63269

63270

63271

63272

63273

63274

63275

63276

63277

63278

63279

63280

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces scandir()

NAME
scandir — scan a directory

SYNOPSIS
#include <dirent.h>

int scandir(const char *dir, struct dirent ***namelist,
int (*sel)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
Refer to alphasort().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1915

63281

63282

63283

63284

63285

63286

63287

63288

63289

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

scanf() System Interfaces

NAME
scanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf(const char *restrict format, ...);

DESCRIPTION
Refer to fscanf().

1916 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63290

63291

63292

63293

63294

63295

63296

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sched_get_priority_max()

NAME
sched_get_priority_max, sched_get_priority_min — get priority limits (REALTIME)

SYNOPSIS
PS|TPS #include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

DESCRIPTION
The sched_get_priority_max() and sched_get_priority_min() functions shall return the appropriate
maximum or minimum, respectively, for the scheduling policy specified by policy.

The value of policy shall be one of the scheduling policy values defined in <sched.h>.

RETURN VALUE
If successful, the sched_get_priority_max() and sched_get_priority_min() functions shall return the
appropriate maximum or minimum values, respectively. If unsuccessful, they shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sched_get_priority_max() and sched_get_priority_min() functions shall fail if:

[EINVAL] The value of the policy parameter does not represent a defined scheduling
policy.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_getscheduler(), sched_rr_get_interval(),
sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
These functions are marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The [ESRCH] error condition has been removed since these functions do not take a pid
argument.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/52 is applied, changing the PS margin
code in the SYNOPSIS to PS|TPS.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1917

63297

63298

63299

63300

63301

63302

63303

63304

63305

63306

63307

63308

63309

63310

63311

63312

63313

63314

63315

63316

63317

63318

63319

63320

63321

63322

63323

63324

63325

63326

63327

63328

63329

63330

63331

63332

63333

63334

63335

63336

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sched_getparam() System Interfaces

NAME
sched_getparam — get scheduling parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *param);

DESCRIPTION
The sched_getparam() function shall return the scheduling parameters of a process specified by
pid in the sched_param structure pointed to by param.

If a process specified by pid exists, and if the calling process has permission, the scheduling
parameters for the process whose process ID is equal to pid shall be returned.

If pid is zero, the scheduling parameters for the calling process shall be returned. The behavior of
the sched_getparam() function is unspecified if the value of pid is negative.

RETURN VALUE
Upon successful completion, the sched_getparam() function shall return zero. If the call to
sched_getparam() is unsuccessful, the function shall return a value of −1 and set errno to indicate
the error.

ERRORS
The sched_getparam() function shall fail if:

[EPERM] The requesting process does not have permission to obtain the scheduling
parameters of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getscheduler(), sched_setparam(), sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_getparam() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

1918 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63337

63338

63339

63340

63341

63342

63343

63344

63345

63346

63347

63348

63349

63350

63351

63352

63353

63354

63355

63356

63357

63358

63359

63360

63361

63362

63363

63364

63365

63366

63367

63368

63369

63370

63371

63372

63373

63374

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sched_getscheduler()

NAME
sched_getscheduler — get scheduling policy (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_getscheduler(pid_t pid);

DESCRIPTION
The sched_getscheduler() function shall return the scheduling policy of the process specified by
pid. If the value of pid is negative, the behavior of the sched_getscheduler() function is
unspecified.

The values that can be returned by sched_getscheduler() are defined in the <sched.h> header.

If a process specified by pid exists, and if the calling process has permission, the scheduling
policy shall be returned for the process whose process ID is equal to pid.

If pid is zero, the scheduling policy shall be returned for the calling process.

RETURN VALUE
Upon successful completion, the sched_getscheduler() function shall return the scheduling policy
of the specified process. If unsuccessful, the function shall return −1 and set errno to indicate the
error.

ERRORS
The sched_getscheduler() function shall fail if:

[EPERM] The requesting process does not have permission to determine the scheduling
policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_getscheduler() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1919

63375

63376

63377

63378

63379

63380

63381

63382

63383

63384

63385

63386

63387

63388

63389

63390

63391

63392

63393

63394

63395

63396

63397

63398

63399

63400

63401

63402

63403

63404

63405

63406

63407

63408

63409

63410

63411

63412

63413

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sched_rr_get_interval() System Interfaces

NAME
sched_rr_get_interval — get execution time limits (REALTIME)

SYNOPSIS
PS|TPS #include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *interval);

DESCRIPTION
The sched_rr_get_interval() function shall update the timespec structure referenced by the
interval argument to contain the current execution time limit (that is, time quantum) for the
process specified by pid. If pid is zero, the current execution time limit for the calling process
shall be returned.

RETURN VALUE
If successful, the sched_rr_get_interval() function shall return zero. Otherwise, it shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sched_rr_get_interval() function shall fail if:

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_get_priority_max(), sched_getscheduler(), sched_setparam(),
sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_rr_get_interval() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

IEEE Std 1003.1-2001/Cor 1-2002, XSH/TC1/D6/53 is applied, changing the PS margin code in
the SYNOPSIS to PS|TPS.

1920 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63414

63415

63416

63417

63418

63419

63420

63421

63422

63423

63424

63425

63426

63427

63428

63429

63430

63431

63432

63433

63434

63435

63436

63437

63438

63439

63440

63441

63442

63443

63444

63445

63446

63447

63448

63449

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sched_setparam()

NAME
sched_setparam — set scheduling parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

DESCRIPTION
The sched_setparam() function shall set the scheduling parameters of the process specified by pid
to the values specified by the sched_param structure pointed to by param. The value of the
sched_priority member in the sched_param structure shall be any integer within the inclusive
priority range for the current scheduling policy of the process specified by pid. Higher
numerical values for the priority represent higher priorities. If the value of pid is negative, the
behavior of the sched_setparam() function is unspecified.

If a process specified by pid exists, and if the calling process has permission, the scheduling
parameters shall be set for the process whose process ID is equal to pid.

If pid is zero, the scheduling parameters shall be set for the calling process.

The conditions under which one process has permission to change the scheduling parameters of
another process are implementation-defined.

Implementations may require the requesting process to have appropriate privileges to set its
own scheduling parameters or those of another process.

See Scheduling Policies (on page 531) for a description on how this function affects the
scheduling of the threads within the target process.

SS If the current scheduling policy for the target process is not SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC, the result is implementation-defined; this case includes the
SCHED_OTHER policy.

SS The specified sched_ss_repl_period shall be greater than or equal to the specified
sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail. It is unspecified whether the
sched_ss_repl_period and sched_ss_init_budget values are stored as provided by this function or are
rounded to align with the resolution of the clock being used.

This function is not atomic with respect to other threads in the process. Threads may continue to
execute while this function call is in the process of changing the scheduling policy for the
underlying kernel-scheduled entities used by the process contention scope threads.

RETURN VALUE
If successful, the sched_setparam() function shall return zero.

If the call to sched_setparam() is unsuccessful, the priority shall remain unchanged, and the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sched_setparam() function shall fail if:

[EINVAL] One or more of the requested scheduling parameters is outside the range
defined for the scheduling policy of the specified pid.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1921

63450

63451

63452

63453

63454

63455

63456

63457

63458

63459

63460

63461

63462

63463

63464

63465

63466

63467

63468

63469

63470

63471

63472

63473

63474

63475

63476

63477

63478

63479

63480

63481

63482

63483

63484

63485

63486

63487

63488

63489

63490

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sched_setparam() System Interfaces

[EPERM] The requesting process does not have permission to set the scheduling
parameters for the specified process, or does not have appropriate privileges
to invoke sched_setparam().

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 531), sched_getparam(), sched_getscheduler(), sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_setparam() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect of this function on a thread’s scheduling parameters is
added.

• Sections describing two-level scheduling and atomicity of the function are added.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #100 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #061 is applied, updating the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy requirements
for the sched_ss_repl_period and sched_ss_init_budget values.

1922 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63491

63492

63493

63494

63495

63496

63497

63498

63499

63500

63501

63502

63503

63504

63505

63506

63507

63508

63509

63510

63511

63512

63513

63514

63515

63516

63517

63518

63519

63520

63521

63522

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sched_setscheduler()

NAME
sched_setscheduler — set scheduling policy and parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

DESCRIPTION
The sched_setscheduler() function shall set the scheduling policy and scheduling parameters of
the process specified by pid to policy and the parameters specified in the sched_param structure
pointed to by param, respectively. The value of the sched_priority member in the sched_param
structure shall be any integer within the inclusive priority range for the scheduling policy
specified by policy. If the value of pid is negative, the behavior of the sched_setscheduler()
function is unspecified.

The possible values for the policy parameter are defined in the <sched.h> header.

If a process specified by pid exists, and if the calling process has permission, the scheduling
policy and scheduling parameters shall be set for the process whose process ID is equal to pid.

If pid is zero, the scheduling policy and scheduling parameters shall be set for the calling
process.

The conditions under which one process has appropriate privileges to change the scheduling
parameters of another process are implementation-defined.

Implementations may require that the requesting process have permission to set its own
scheduling parameters or those of another process. Additionally, implementation-defined
restrictions may apply as to the appropriate privileges required to set the scheduling policy of
the process, or the scheduling policy of another process, to a particular value.

The sched_setscheduler() function shall be considered successful if it succeeds in setting the
scheduling policy and scheduling parameters of the process specified by pid to the values
specified by policy and the structure pointed to by param, respectively.

See Scheduling Policies (on page 531) for a description on how this function affects the
scheduling of the threads within the target process.

SS If the current scheduling policy for the target process is not SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC, the result is implementation-defined; this case includes the
SCHED_OTHER policy.

SS The specified sched_ss_repl_period shall be greater than or equal to the specified
sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail. It is unspecified whether the
sched_ss_repl_period and sched_ss_init_budget values are stored as provided by this function or are
rounded to align with the resolution of the clock being used.

This function is not atomic with respect to other threads in the process. Threads may continue to
execute while this function call is in the process of changing the scheduling policy and
associated scheduling parameters for the underlying kernel-scheduled entities used by the
process contention scope threads.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1923

63523

63524

63525

63526

63527

63528

63529

63530

63531

63532

63533

63534

63535

63536

63537

63538

63539

63540

63541

63542

63543

63544

63545

63546

63547

63548

63549

63550

63551

63552

63553

63554

63555

63556

63557

63558

63559

63560

63561

63562

63563

63564

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sched_setscheduler() System Interfaces

RETURN VALUE
Upon successful completion, the function shall return the former scheduling policy of the
specified process. If the sched_setscheduler() function fails to complete successfully, the policy
and scheduling parameters shall remain unchanged, and the function shall return a value of −1
and set errno to indicate the error.

ERRORS
The sched_setscheduler() function shall fail if:

[EINVAL] The value of the policy parameter is invalid, or one or more of the parameters
contained in param is outside the valid range for the specified scheduling
policy.

[EPERM] The requesting process does not have permission to set either or both of the
scheduling parameters or the scheduling policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 531), sched_getparam(), sched_getscheduler(), sched_setparam()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_setscheduler() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect of this function on a thread’s scheduling parameters is
added.

• Sections describing two-level scheduling and atomicity of the function are added.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

Issue 7
Austin Group Interpretation 1003.1-2001 #061 is applied, updating the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy requirements
for the sched_ss_repl_period and sched_ss_init_budget values.

1924 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63565

63566

63567

63568

63569

63570

63571

63572

63573

63574

63575

63576

63577

63578

63579

63580

63581

63582

63583

63584

63585

63586

63587

63588

63589

63590

63591

63592

63593

63594

63595

63596

63597

63598

63599

63600

63601

63602

63603

63604

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sched_yield()

NAME
sched_yield — yield the processor

SYNOPSIS
#include <sched.h>

int sched_yield(void);

DESCRIPTION
The sched_yield() function shall force the running thread to relinquish the processor until it again
becomes the head of its thread list. It takes no arguments.

RETURN VALUE
The sched_yield() function shall return 0 if it completes successfully; otherwise, it shall return a
value of −1 and set errno to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The conceptual model for scheduling semantics in POSIX.1-2024 defines a set of thread lists. This
set of thread lists is always present regardless of the scheduling options supported by the
system. On a system where the Process Scheduling option is not supported, portable
applications should not make any assumptions regarding whether threads from other processes
will be on the same thread list.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
The sched_yield() function is now marked as part of the Process Scheduling and Threads options.

Issue 7
SD5-XSH-ERN-120 is applied, adding APPLICATION USAGE.

The sched_yield() function is moved to the Base.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1925

63605

63606

63607

63608

63609

63610

63611

63612

63613

63614

63615

63616

63617

63618

63619

63620

63621

63622

63623

63624

63625

63626

63627

63628

63629

63630

63631

63632

63633

63634

63635

63636

63637

63638

63639

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

secure_getenv() System Interfaces

NAME
secure_getenv — get value of an environment variable

SYNOPSIS
#include <stdlib.h>

CX char *secure_getenv(const char *name);

DESCRIPTION
Refer to getenv().

1926 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63640

63641

63642

63643

63644

63645

63646

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces seed48()

NAME
seed48 — seed a uniformly distributed pseudo-random non-negative long integer generator

SYNOPSIS
XSI #include <stdlib.h>

unsigned short *seed48(unsigned short seed16v[3]);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1927

63647

63648

63649

63650

63651

63652

63653

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

seekdir() System Interfaces

NAME
seekdir — set the position of a directory stream

SYNOPSIS
XSI #include <dirent.h>

void seekdir(DIR *dirp, long loc);

DESCRIPTION
The seekdir() function shall set the position of the next readdir() operation on the directory
stream specified by dirp to the position specified by loc. The value of loc should have been
returned from an earlier call to telldir() using the same directory stream. The new position
reverts to the one associated with the directory stream when telldir() was performed.

If the value of loc was not obtained from an earlier call to telldir(), or if a call to rewinddir()
occurred between the call to telldir() and the call to seekdir(), the results of subsequent calls to
readdir() are unspecified.

RETURN VALUE
The seekdir() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The original standard developers perceived that there were restrictions on the use of the
seekdir() and telldir() functions related to implementation details, and for that reason these
functions need not be supported on all POSIX-conforming systems. They are required on
implementations supporting the XSI option.

One of the perceived problems of implementation is that returning to a given point in a directory
is quite difficult to describe formally, in spite of its intuitive appeal, when systems that use B-
trees, hashing functions, or other similar mechanisms to order their directories are considered.
The definition of seekdir() and telldir() does not specify whether, when using these interfaces, a
given directory entry will be seen at all, or more than once.

On systems not supporting these functions, their capability can sometimes be accomplished by
saving a filename found by readdir() and later using rewinddir() and a loop on readdir() to
relocate the position from which the filename was saved.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), readdir(), telldir()

XBD <dirent.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

1928 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63654

63655

63656

63657

63658

63659

63660

63661

63662

63663

63664

63665

63666

63667

63668

63669

63670

63671

63672

63673

63674

63675

63676

63677

63678

63679

63680

63681

63682

63683

63684

63685

63686

63687

63688

63689

63690

63691

63692

63693

63694

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces seekdir()

Issue 6
In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
SD5-XSH-ERN-200 is applied, updating the DESCRIPTION to note that the value of loc should
have been returned from an earlier call to telldir() using the same directory stream.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1929

63695

63696

63697

63698

63699

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

select() System Interfaces

NAME
select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

int select(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

DESCRIPTION
Refer to pselect().

1930 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63700

63701

63702

63703

63704

63705

63706

63707

63708

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_clockwait()

NAME
sem_clockwait, sem_timedwait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_clockwait(sem_t *restrict sem, clockid_t clock_id,
const struct timespec *restrict abstime);

int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abstime);

DESCRIPTION
The sem_clockwait() and sem_timedwait() functions shall lock the semaphore referenced by sem as
in the sem_wait() function. However, if the semaphore cannot be locked without waiting for
another process or thread to unlock the semaphore by performing a sem_post() function, this
wait shall be terminated when the specified timeout expires.

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

For sem_timedwait(), the timeout shall be based on the CLOCK_REALTIME clock. For
sem_clockwait(), the timeout shall be based on the clock specified by the clock_id argument. The
resolution of the timeout shall be the resolution of the clock on which it is based.
Implementations shall support passing CLOCK_REALTIME and CLOCK_MONOTONIC to
sem_clockwait() as the clock_id argument.

Under no circumstance shall the function fail with a timeout if the semaphore can be locked
immediately. The validity of the abstime need not be checked if the semaphore can be locked
immediately.

RETURN VALUE
The sem_clockwait() and sem_timedwait() functions shall return zero if the calling process
successfully performed the semaphore lock operation on the semaphore designated by sem. If
the call was unsuccessful, the state of the semaphore shall be unchanged, and the functions shall
return a value of −1 and set errno to indicate the error.

ERRORS
The sem_clockwait() and sem_timedwait() functions shall fail if:

[EINVAL] The process or thread would have blocked, and either the abstime parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million, or the sem_clockwait() function was passed an invalid or
unsupported clock_id value.

[ETIMEDOUT] The semaphore could not be locked before the specified timeout expired.

The sem_clockwait() and sem_timedwait() functions may fail if:

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted the function.

[EINVAL] The sem argument does not refer to a valid semaphore.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1931

63709

63710

63711

63712

63713

63714

63715

63716

63717

63718

63719

63720

63721

63722

63723

63724

63725

63726

63727

63728

63729

63730

63731

63732

63733

63734

63735

63736

63737

63738

63739

63740

63741

63742

63743

63744

63745

63746

63747

63748

63749

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_clockwait() System Interfaces

EXAMPLES
The program shown below operates on an unnamed semaphore. The program expects two
command-line arguments. The first argument specifies a seconds value that is used to set an
alarm timer to generate a SIGALRM signal. This handler performs a sem_post() to increment the
semaphore that is being waited on in main() using sem_clockwait(). The second command-line
argument specifies the length of the timeout, in seconds, for sem_clockwait().

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include <time.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>

sem_t sem;

static void
handler(int sig)
{

int sav_errno = errno;
static const char info_msg[] = "sem_post() from handler\n";
write(STDOUT_FILENO, info_msg, sizeof info_msg - 1);
if (sem_post(&sem) == -1) {

static const char err_msg[] = "sem_post() failed\n";
write(STDERR_FILENO, err_msg, sizeof err_msg - 1);
_exit(EXIT_FAILURE);

}
errno = sav_errno;

}

int
main(int argc, char *argv[])
{

struct sigaction sa;
struct timespec ts;
int s;

if (argc != 3) {
fprintf(stderr, "Usage: %s <alarm-secs> <wait-secs>\n",

argv[0]);
exit(EXIT_FAILURE);

}

if (sem_init(&sem, 0, 0) == -1) {
perror("sem_init");
exit(EXIT_FAILURE);

}

/* Establish SIGALRM handler; set alarm timer using argv[1] */

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGALRM, &sa, NULL) == -1) {

1932 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63750

63751

63752

63753

63754

63755

63756

63757

63758

63759

63760

63761

63762

63763

63764

63765

63766

63767

63768

63769

63770

63771

63772

63773

63774

63775

63776

63777

63778

63779

63780

63781

63782

63783

63784

63785

63786

63787

63788

63789

63790

63791

63792

63793

63794

63795

63796

63797

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_clockwait()

perror("sigaction");
exit(EXIT_FAILURE);

}

alarm(atoi(argv[1]));

/* Calculate relative interval as current time plus
number of seconds given argv[2] */

if (clock_gettime(CLOCK_MONOTONIC, &ts) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);

}
ts.tv_sec += atoi(argv[2]);

printf("main() about to call sem_clockwait()\n");
while ((s = sem_clockwait(&sem, CLOCK_MONOTONIC, &ts)) == -1 &&

errno == EINTR)
continue; /* Restart if interrupted by handler */

/* Check what happened */

if (s == -1) {
if (errno == ETIMEDOUT)

printf("sem_clockwait() timed out\n");
else

perror("sem_clockwait");
} else

printf("sem_clockwait() succeeded\n");

exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE);
}

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sem_post(), sem_trywait(), semctl(), semget(), semop(), time()

XBD Section 3.275 (on page 72), <semaphore.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/120 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The sem_timedwait() function is moved from the Semaphores option to the Base.

Functionality relating to the Timers option is moved to the Base.

An example is added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1933

63798

63799

63800

63801

63802

63803

63804

63805

63806

63807

63808

63809

63810

63811

63812

63813

63814

63815

63816

63817

63818

63819

63820

63821

63822

63823

63824

63825

63826

63827

63828

63829

63830

63831

63832

63833

63834

63835

63836

63837

63838

63839

63840

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_clockwait() System Interfaces

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0529 [138] is applied.

Issue 8
Austin Group Defect 592 is applied, removing text relating to <time.h> from the SYNOPSIS and
DESCRIPTION sections.

Austin Group Defect 1216 is applied, adding sem_clockwait().

1934 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63841

63842

63843

63844

63845

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_close()

NAME
sem_close — close a named semaphore

SYNOPSIS
#include <semaphore.h>

int sem_close(sem_t *sem);

DESCRIPTION
The sem_close() function shall indicate that the calling process is finished using the named
semaphore indicated by sem. The effects of calling sem_close() for an unnamed semaphore (one
created by sem_init()) are undefined. The sem_close() function shall deallocate (that is, make
available for reuse by a subsequent sem_open() by this process) any system resources allocated
by the system for use by this process for this semaphore. If the semaphore indicated by sem is
implemented using a file descriptor, the file descriptor shall be closed. The effect of subsequent
use of the semaphore indicated by sem by this process is undefined. If any threads in the calling
process are currently blocked on the semaphore, the behavior is undefined. If the semaphore
has not been removed with a successful call to sem_unlink(), then sem_close() has no effect on the
state of the semaphore. If the sem_unlink() function has been successfully invoked for name after
the most recent call to sem_open() with O_CREAT for this semaphore, then when all processes
that have opened the semaphore close all semaphore handles to it, the semaphore is no longer
accessible.

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error.

ERRORS
The sem_close() function may fail if:

[EINVAL] The sem argument is not a valid semaphore descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open(), sem_unlink()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_close() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/113 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1935

63846

63847

63848

63849

63850

63851

63852

63853

63854

63855

63856

63857

63858

63859

63860

63861

63862

63863

63864

63865

63866

63867

63868

63869

63870

63871

63872

63873

63874

63875

63876

63877

63878

63879

63880

63881

63882

63883

63884

63885

63886

63887

63888

63889

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_close() System Interfaces

Issue 7
The sem_close() function is moved from the Semaphores option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0523 [37] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0317 [870] is applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement that if sem is implemented using a file
descriptor, sem_close() closes the file descriptor.

Austin Group Defect 1324 is applied, clarifying the circumstances under which an unlinked
semaphore is no longer accessible.

1936 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63890

63891

63892

63893

63894

63895

63896

63897

63898

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_destroy()

NAME
sem_destroy — destroy an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_destroy(sem_t *sem);

DESCRIPTION
The sem_destroy() function shall destroy the unnamed semaphore indicated by sem. If an
unnamed semaphore is implemented using a file descriptor, the file descriptor shall be closed.
Only a semaphore that was created using sem_init() can be destroyed using sem_destroy(); the
effect of calling sem_destroy() with a named semaphore is undefined. The effect of subsequent
use of the semaphore sem is undefined until sem is reinitialized by another call to sem_init().

It is safe to destroy an initialized semaphore upon which no threads are currently blocked. The
effect of destroying a semaphore upon which other threads are currently blocked is undefined.

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error.

ERRORS
The sem_destroy() function may fail if:

[EINVAL] The sem argument is not a valid semaphore.

[EBUSY] There are currently processes blocked on the semaphore.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_destroy() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/114 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1937

63899

63900

63901

63902

63903

63904

63905

63906

63907

63908

63909

63910

63911

63912

63913

63914

63915

63916

63917

63918

63919

63920

63921

63922

63923

63924

63925

63926

63927

63928

63929

63930

63931

63932

63933

63934

63935

63936

63937

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_destroy() System Interfaces

Issue 7
The sem_destroy() function is moved from the Semaphores option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0524 [37] is applied.

Issue 8
Austin Group Defect 368 is applied, adding a requirement that if an unnamed semaphore is
implemented using a file descriptor, sem_destroy() closes the file descriptor.

1938 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63938

63939

63940

63941

63942

63943

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_getvalue()

NAME
sem_getvalue — get the value of a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

DESCRIPTION
The sem_getvalue() function shall update the location referenced by the sval argument to have
the value of the semaphore referenced by sem without affecting the state of the semaphore. The
updated value represents an actual semaphore value that occurred at some unspecified time
during the call, but it need not be the actual value of the semaphore when it is returned to the
calling process.

If sem is locked, then the object to which sval points shall either be set to zero or to a negative
number whose absolute value represents the number of processes waiting for the semaphore at
some unspecified time during the call.

RETURN VALUE
Upon successful completion, the sem_getvalue() function shall return a value of zero. Otherwise,
it shall return a value of −1 and set errno to indicate the error.

ERRORS
The sem_getvalue() function may fail if:

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_clockwait(), sem_post(), sem_trywait()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_getvalue() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

The restrict keyword is added to the sem_getvalue() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/54 is applied.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/115 is applied, updating the ERRORS

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1939

63944

63945

63946

63947

63948

63949

63950

63951

63952

63953

63954

63955

63956

63957

63958

63959

63960

63961

63962

63963

63964

63965

63966

63967

63968

63969

63970

63971

63972

63973

63974

63975

63976

63977

63978

63979

63980

63981

63982

63983

63984

63985

63986

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_getvalue() System Interfaces

section so that the [EINVAL] error becomes optional.

Issue 7
The sem_getvalue() function is moved from the Semaphores option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0525 [37] is applied.

1940 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63987

63988

63989

63990

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_init()

NAME
sem_init — initialize an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned value);

DESCRIPTION
The sem_init() function shall initialize the unnamed semaphore referred to by sem. The value of
the initialized semaphore shall be value. Following a successful call to sem_init(), the semaphore
can be used in subsequent calls to sem_clockwait(), sem_destroy(), sem_post(), sem_timedwait(),
sem_trywait(), and sem_wait(). This semaphore shall remain usable until the semaphore is
destroyed. An unnamed semaphore may be implemented using a file descriptor.

If the pshared argument has a non-zero value, then the semaphore is shared between processes;
in this case, any process that can access the semaphore sem can use sem for performing
sem_clockwait(), sem_destroy(), sem_post(), sem_timedwait(), sem_trywait(), and sem_wait()
operations.

If the pshared argument is zero, then the semaphore is shared between threads of the process; any
thread in this process can use sem for performing sem_clockwait(), sem_destroy(), sem_post(),
sem_timedwait(), sem_trywait(), and sem_wait() operations.

See Section 2.9.9 (on page 548) for further requirements.

Attempting to initialize an already initialized semaphore results in undefined behavior.

RETURN VALUE
Upon successful completion, the sem_init() function shall initialize the semaphore in sem and
return 0. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sem_init() function shall fail if:

[EINVAL] The value argument exceeds {SEM_VALUE_MAX}.

[ENOSPC] A resource required to initialize the semaphore has been exhausted, or the
limit on semaphores ({SEM_NSEMS_MAX}) has been reached.

[EPERM] The process lacks appropriate privileges to initialize the semaphore.

The sem_init() function may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1941

63991

63992

63993

63994

63995

63996

63997

63998

63999

64000

64001

64002

64003

64004

64005

64006

64007

64008

64009

64010

64011

64012

64013

64014

64015

64016

64017

64018

64019

64020

64021

64022

64023

64024

64025

64026

64027

64028

64029

64030

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_init() System Interfaces

SEE ALSO
sem_clockwait(), sem_destroy(), sem_post(), sem_trywait()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_init() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/116 is applied, updating the
DESCRIPTION to add the sem_timedwait() function for alignment with IEEE Std 1003.1d-1999.

Issue 7
SD5-XSH-ERN-176 is applied.

The sem_init() function is moved from the Semaphores option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0526 [37] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0318 [972] is applied.

Issue 8
Austin Group Defect 368 is applied, adding a statement that an unnamed semaphore may be
implemented using a file descriptor and adding the [EMFILE] and [ENFILE] errors.

Austin Group Defect 1216 is applied, adding sem_clockwait().

1942 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64031

64032

64033

64034

64035

64036

64037

64038

64039

64040

64041

64042

64043

64044

64045

64046

64047

64048

64049

64050

64051

64052

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_open()

NAME
sem_open — initialize and open a named semaphore

SYNOPSIS
#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, ...);

DESCRIPTION
The sem_open() function shall establish a connection between a named semaphore and a process.
A named semaphore may be implemented using a file descriptor. Following a call to sem_open()
with semaphore name name, the process may reference the semaphore associated with name
using the semaphore handle returned from the call. This semaphore can be used in subsequent
calls to sem_clockwait(), sem_close(), sem_post(), sem_timedwait(), sem_trywait(), and sem_wait().
The semaphore remains usable by this process until the semaphore is closed by a successful call
to sem_close(), _exit(), or one of the exec functions.

The oflag argument controls whether the semaphore is created or merely accessed by the call to
sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is
set and the semaphore already exists, then O_CREAT has no effect, except as noted
under O_EXCL. Otherwise, sem_open() creates a named semaphore. The O_CREAT
flag requires a third and a fourth argument: mode, which is of type mode_t, and
value, which is of type unsigned. The semaphore is created with an initial value of
value. Valid initial values for semaphores are less than or equal to
{SEM_VALUE_MAX}.

The user ID of the semaphore shall be set to the effective user ID of the process.
The group ID of the semaphore shall be set to the effective group ID of the process;
however, if the name argument is visible in the file system, the group ID may be set
to the group ID of the containing directory. The permission bits of the semaphore
are set to the value of the mode argument except those set in the file mode creation
mask of the process. When bits in mode other than the file permission bits are
specified, the effect is unspecified.

After the semaphore named name has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name exists.
The check for the existence of the semaphore and the creation of the semaphore if it
does not exist are atomic with respect to other processes executing sem_open() with
O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the effect is
undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the
effect is unspecified.

The name argument points to a string naming a semaphore object. It is unspecified whether the
name appears in the file system and is visible to functions that take pathnames as arguments.
The name argument conforms to the construction rules for a pathname, except that the
interpretation of <slash> characters other than the leading <slash> character in name is
implementation-defined, and that the length limits for the name argument are implementation-
defined and need not be the same as the pathname limits {PATH_MAX} and {NAME_MAX}. If
name begins with the <slash> character, then processes calling sem_open() with the same value of
name shall refer to the same semaphore object, as long as that name has not been removed. If

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1943

64053

64054

64055

64056

64057

64058

64059

64060

64061

64062

64063

64064

64065

64066

64067

64068

64069

64070

64071

64072

64073

64074

64075

64076

64077

64078

64079

64080

64081

64082

64083

64084

64085

64086

64087

64088

64089

64090

64091

64092

64093

64094

64095

64096

64097

64098

64099

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_open() System Interfaces

name does not begin with the <slash> character, the effect is implementation-defined.

If a process makes multiple successful calls to sem_open() with the same value for name, there
have been no intervening calls to sem_unlink() for name, and at least one open handle for this
semaphore has not been closed with a sem_close() call, it is implementation-defined whether the
same handle or a unique handle is returned for each such successful call.

References to copies of the semaphore produce undefined results.

RETURN VALUE
Upon successful completion, the sem_open() function shall return the address of the semaphore.
Otherwise, it shall return a value of SEM_FAILED and set errno to indicate the error. The symbol
SEM_FAILED is defined in the <semaphore.h> header. No successful return from sem_open()
shall return the value SEM_FAILED.

ERRORS
If any of the following conditions occur, the sem_open() function shall return SEM_FAILED and
set errno to the corresponding value:

[EACCES] The named semaphore exists and the permissions specified by oflag are
denied, or the named semaphore does not exist and permission to create the
named semaphore is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named semaphore already exists.

[EINTR] The sem_open() operation was interrupted by a signal.

[EINVAL] The sem_open() operation is not supported for the given name, or O_CREAT
was specified in oflag and value was greater than {SEM_VALUE_MAX}.

[ENOENT] O_CREAT is not set and the named semaphore does not exist.

[ENOMEM] There is insufficient memory for the creation of the new named semaphore.

[ENOSPC] There is insufficient space on a storage device for the creation of the new
named semaphore.

If any of the following conditions occur, the sem_open() function may return SEM_FAILED and
set errno to the corresponding value:

[EMFILE] Too many semaphore descriptors or file descriptors are currently in use by this
process.

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

[ENFILE] Too many semaphore descriptors or file descriptors are currently open in the
system.

1944 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64100

64101

64102

64103

64104

64105

64106

64107

64108

64109

64110

64111

64112

64113

64114

64115

64116

64117

64118

64119

64120

64121

64122

64123

64124

64125

64126

64127

64128

64129

64130

64131

64132

64133

64134

64135

64136

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_open()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Early drafts required an error return value of −1 with the type sem_t * for the sem_open()
function, which is not guaranteed to be portable across implementations. The revised text
provides the symbolic error code SEM_FAILED to eliminate the type conflict.

FUTURE DIRECTIONS
A future version might require the sem_open() and sem_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
semctl(), semget(), semop(), sem_clockwait(), sem_close(), sem_post(), sem_trywait(), sem_unlink()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_open() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/117 is applied, updating the
DESCRIPTION to add the sem_timedwait() function for alignment with IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/118 is applied, updating the
DESCRIPTION to describe the conditions to return the same semaphore address on a call to
sem_open(). The words ``and at least one previous successful sem_open() call for this semaphore
has not been matched with a sem_close() call’’ are added.

Issue 7
Austin Group Interpretation 1003.1-2001 #066 is applied, updating the [ENOSPC] error case and
adding the [ENOMEM] error case.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
adding [ENAMETOOLONG] as a ``may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording for setting the
user ID and group ID of the semaphore.

The sem_open() function is moved from the Semaphores option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0527 [37] is applied.

Issue 8
Austin Group Defect 368 is applied, adding a statement that a named semaphore may be
implemented using a file descriptor and changing the ERRORS section.

Austin Group Defect 1216 is applied, adding sem_clockwait().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1945

64137

64138

64139

64140

64141

64142

64143

64144

64145

64146

64147

64148

64149

64150

64151

64152

64153

64154

64155

64156

64157

64158

64159

64160

64161

64162

64163

64164

64165

64166

64167

64168

64169

64170

64171

64172

64173

64174

64175

64176

64177

64178

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_open() System Interfaces

Austin Group Defect 1324 is applied, making it implementation-defined whether the same
handle or a unique handle is returned when multiple successful calls to sem_open() are made
with the same value for name.

1946 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64179

64180

64181

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_post()

NAME
sem_post — unlock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_post(sem_t *sem);

DESCRIPTION
The sem_post() function shall unlock the semaphore referenced by sem by performing a
semaphore unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were blocked
waiting for the semaphore to become unlocked; the semaphore value is simply incremented.

If the value of the semaphore resulting from this operation is zero, then one of the threads
blocked waiting for the semaphore shall be allowed to return successfully from its call to

PS sem_wait(). If the Process Scheduling option is supported, the thread to be unblocked shall be
chosen in a manner appropriate to the scheduling policies and parameters in effect for the
blocked threads. In the case of the schedulers SCHED_FIFO and SCHED_RR, the highest
priority waiting thread shall be unblocked, and if there is more than one highest priority thread
blocked waiting for the semaphore, then the highest priority thread that has been waiting the
longest shall be unblocked. If the Process Scheduling option is not defined, the choice of a thread
to unblock is unspecified.

SS If the Process Sporadic Server option is supported, and the scheduling policy is
SCHED_SPORADIC, the semantics are as per SCHED_FIFO above.

The sem_post() function shall be async-signal-safe and may be invoked from a signal-catching
function.

RETURN VALUE
If successful, the sem_post() function shall return zero; otherwise, the function shall return −1
and set errno to indicate the error.

ERRORS
The sem_post() function shall fail if:

[EOVERFLOW] The maximum allowable value of the semaphore would be exceeded.

The sem_post() function may fail if:

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
See sem_clockwait().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_clockwait(), sem_trywait()

XBD Section 4.15.2 (on page 104), <semaphore.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1947

64182

64183

64184

64185

64186

64187

64188

64189

64190

64191

64192

64193

64194

64195

64196

64197

64198

64199

64200

64201

64202

64203

64204

64205

64206

64207

64208

64209

64210

64211

64212

64213

64214

64215

64216

64217

64218

64219

64220

64221

64222

64223

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_post() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_post() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

SCHED_SPORADIC is added to the list of scheduling policies for which the thread that is to be
unblocked is specified for alignment with IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/119 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The sem_post() function is moved from the Semaphores option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0528 [37] is applied.

Issue 8
Austin Group Defect 315 is applied, adding the [EOVERFLOW] error.

1948 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64224

64225

64226

64227

64228

64229

64230

64231

64232

64233

64234

64235

64236

64237

64238

64239

64240

64241

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_timedwait()

NAME
sem_timedwait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to sem_clockwait().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1949

64242

64243

64244

64245

64246

64247

64248

64249

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_trywait() System Interfaces

NAME
sem_trywait, sem_wait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_trywait(sem_t *sem);
int sem_wait(sem_t *sem);

DESCRIPTION
The sem_trywait() function shall lock the semaphore referenced by sem only if the semaphore is
currently not locked; that is, if the semaphore value is currently positive. Otherwise, it shall not
lock the semaphore.

The sem_wait() function shall lock the semaphore referenced by sem by performing a semaphore
lock operation on that semaphore. If the semaphore value is currently zero, then the calling
thread shall not return from the call to sem_wait() until it either locks the semaphore or the call is
interrupted by a signal.

Upon successful return, the state of the semaphore shall be locked and shall remain locked until
the sem_post() function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

RETURN VALUE
The sem_trywait() and sem_wait() functions shall return zero if the calling process successfully
performed the semaphore lock operation on the semaphore designated by sem. If the call was
unsuccessful, the state of the semaphore shall be unchanged, and the function shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sem_trywait() function shall fail if:

[EAGAIN] The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait() operation.

The sem_trywait() and sem_wait() functions may fail if:

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted this function.

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.275 (on page 72).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_clockwait(), sem_post()

XBD Section 3.275 (on page 72), Section 4.15.2 (on page 104), <semaphore.h>

1950 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64250

64251

64252

64253

64254

64255

64256

64257

64258

64259

64260

64261

64262

64263

64264

64265

64266

64267

64268

64269

64270

64271

64272

64273

64274

64275

64276

64277

64278

64279

64280

64281

64282

64283

64284

64285

64286

64287

64288

64289

64290

64291

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_trywait()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_trywait() and sem_wait() functions are marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/121 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
SD5-XSH-ERN-54 is applied, removing the sem_wait() function from the ``shall fail’’ error cases.

The sem_trywait() and sem_wait() functions are moved from the Semaphores option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0530 [37] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1951

64292

64293

64294

64295

64296

64297

64298

64299

64300

64301

64302

64303

64304

64305

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_unlink() System Interfaces

NAME
sem_unlink — remove a named semaphore

SYNOPSIS
#include <semaphore.h>

int sem_unlink(const char *name);

DESCRIPTION
The sem_unlink() function shall remove the semaphore named by the string name. If the
semaphore named by name is currently referenced by other processes, then sem_unlink() shall
have no effect on the state of the semaphore. If one or more processes have the semaphore open
when sem_unlink() is called, destruction of the semaphore is postponed until all references to the
semaphore have been destroyed by calls to sem_close(), _exit(), or exec. Calls to sem_open() to
recreate or reconnect to the semaphore refer to a new semaphore after sem_unlink() is called. The
sem_unlink() call shall not block until all references have been destroyed; it shall return
immediately.

RETURN VALUE
Upon successful completion, the sem_unlink() function shall return a value of 0. Otherwise, the
semaphore shall not be changed and the function shall return a value of −1 and set errno to
indicate the error.

ERRORS
The sem_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named semaphore.

[ENOENT] The named semaphore does not exist.

The sem_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to sem_unlink()
with a name argument that contains the same semaphore name as was
previously used in a successful sem_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the sem_open() and sem_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_open()

XBD <semaphore.h>

1952 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64306

64307

64308

64309

64310

64311

64312

64313

64314

64315

64316

64317

64318

64319

64320

64321

64322

64323

64324

64325

64326

64327

64328

64329

64330

64331

64332

64333

64334

64335

64336

64337

64338

64339

64340

64341

64342

64343

64344

64345

64346

64347

64348

64349

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sem_unlink()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_unlink() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
``shall fail’’ to a ``may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

The sem_unlink() function is moved from the Semaphores option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0531 [37] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1953

64350

64351

64352

64353

64354

64355

64356

64357

64358

64359

64360

64361

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sem_wait() System Interfaces

NAME
sem_wait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_wait(sem_t *sem);

DESCRIPTION
Refer to sem_trywait().

1954 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64362

64363

64364

64365

64366

64367

64368

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces semctl()

NAME
semctl — XSI semaphore control operations

SYNOPSIS
XSI #include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

DESCRIPTION
The semctl() function operates on XSI semaphores (see XBD Section 4.20, on page 108). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The semctl() function provides a variety of semaphore control operations as specified by cmd.
The fourth argument is optional and depends upon the operation requested. If required, it is of
type union semun, which the application shall explicitly declare:

union semun {
int val;
struct semid_ds *buf;
unsigned short *array;

} arg;

Each operation shall be performed atomically.

The following semaphore control operations as specified by cmd are executed with respect to the
semaphore specified by semid and semnum. The level of permission required for each operation
is shown with each command; see Section 2.7 (on page 526). The symbolic names for the values
of cmd are defined in the <sys/sem.h> header:

GETVAL Return the value of semval; see <sys/sem.h>. Requires read permission.

SETVAL Set the value of semval to arg.val, where arg is the value of the fourth argument
to semctl(). When this command is successfully executed, the semadj value
corresponding to the specified semaphore in all processes is cleared. Also, the
sem_ctime timestamp shall be set to the current time, as described in Section
2.7.1 (on page 526). Requires alter permission; see Section 2.7 (on page 526).

GETPID Return the value of sempid. Requires read permission.

GETNCNT Return the value of semncnt. Requires read permission.

GETZCNT Return the value of semzcnt. Requires read permission.

The following values of cmd operate on each semval in the set of semaphores:

GETALL Return the value of semval for each semaphore in the semaphore set and place
into the array pointed to by arg.array, where arg is the fourth argument to
semctl(). Requires read permission.

SETALL Set the value of semval for each semaphore in the semaphore set according to
the array pointed to by arg.array, where arg is the fourth argument to semctl().
When this command is successfully executed, the semadj values corresponding
to each specified semaphore in all processes are cleared. Also, the sem_ctime
timestamp shall be set to the current time, as described in Section 2.7.1 (on
page 526). Requires alter permission.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1955

64369

64370

64371

64372

64373

64374

64375

64376

64377

64378

64379

64380

64381

64382

64383

64384

64385

64386

64387

64388

64389

64390

64391

64392

64393

64394

64395

64396

64397

64398

64399

64400

64401

64402

64403

64404

64405

64406

64407

64408

64409

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

semctl() System Interfaces

The following values of cmd are also available:

IPC_STAT Place the current value of each member of the semid_ds data structure
associated with semid into the structure pointed to by arg.buf , where arg is the
fourth argument to semctl(). The contents of this structure are defined in
<sys/sem.h>. Requires read permission.

IPC_SET Set the value of the following members of the semid_ds data structure
associated with semid to the corresponding value found in the structure
pointed to by arg.buf , where arg is the fourth argument to semctl():

sem_perm.uid
sem_perm.gid
sem_perm.mode

The mode bits specified in Section 2.7.1 (on page 526) are copied into the
corresponding bits of the sem_perm.mode associated with semid. The stored
values of any other bits are unspecified. The sem_ctime timestamp shall be set
to the current time, as described in Section 2.7.1 (on page 526).

This command can only be executed by a process that has an effective user ID
equal to either that of a process with appropriate privileges or to the value of
sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated with
semid.

IPC_RMID Remove the semaphore identifier specified by semid from the system and
destroy the set of semaphores and semid_ds data structure associated with it.
This command can only be executed by a process that has an effective user ID
equal to either that of a process with appropriate privileges or to the value of
sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated with
semid.

RETURN VALUE
If successful, the value returned by semctl() depends on cmd as follows:

GETVAL The value of semval.

GETPID The value of sempid.

GETNCNT The value of semncnt.

GETZCNT The value of semzcnt.

All others 0.

Otherwise, semctl() shall return −1 and set errno to indicate the error.

ERRORS
The semctl() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
526).

[EINVAL] The value of semid is not a valid semaphore identifier, or the value of semnum
is less than 0 or greater than or equal to sem_nsems, or the value of cmd is not a
valid command.

[EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID
of the calling process is not equal to that of a process with appropriate
privileges and it is not equal to the value of sem_perm.cuid or sem_perm.uid in
the data structure associated with semid.

1956 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64410

64411

64412

64413

64414

64415

64416

64417

64418

64419

64420

64421

64422

64423

64424

64425

64426

64427

64428

64429

64430

64431

64432

64433

64434

64435

64436

64437

64438

64439

64440

64441

64442

64443

64444

64445

64446

64447

64448

64449

64450

64451

64452

64453

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces semctl()

[ERANGE] The argument cmd is equal to SETVAL or SETALL and the value to which
semval is to be set is greater than the system-imposed maximum.

EXAMPLES
Refer to semop().

APPLICATION USAGE
The fourth parameter in the SYNOPSIS section is now specified as "..." in order to avoid a
clash with the ISO C standard when referring to the union semun (as defined in Issue 3) and for
backwards-compatibility.

The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 526) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), semget(), semop(), sem_close(), sem_destroy(),
sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_trywait(), sem_unlink()

XBD Section 4.20 (on page 108), <sys/sem.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to the APPLICATION USAGE section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0532 [345], XSH/TC1-2008/0533 [345],
XSH/TC1-2008/0534 [345], and XSH/TC1-2008/0535 [335] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0319 [532] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1957

64454

64455

64456

64457

64458

64459

64460

64461

64462

64463

64464

64465

64466

64467

64468

64469

64470

64471

64472

64473

64474

64475

64476

64477

64478

64479

64480

64481

64482

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

semget() System Interfaces

NAME
semget — get set of XSI semaphores

SYNOPSIS
XSI #include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

DESCRIPTION
The semget() function operates on XSI semaphores (see XBD Section 4.20, on page 108). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The semget() function shall return the semaphore identifier associated with key.

A semaphore identifier with its associated semid_ds data structure and its associated set of
nsems semaphores (see <sys/sem.h>) is created for key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a semaphore identifier associated with it and
(semflg &IPC_CREAT) is non-zero.

Upon creation, the semid_ds data structure associated with the new semaphore identifier is
initialized as follows:

• In the operation permissions structure sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and
sem_perm.gid shall be set to the effective user ID and effective group ID, respectively, of the
calling process.

• The low-order 9 bits of sem_perm.mode shall be set to the low-order 9 bits of semflg.

• The variable sem_nsems shall be set to the value of nsems.

• The variable sem_otime shall be set to 0 and sem_ctime shall be set to the current time, as
described in Section 2.7.1 (on page 526).

Upon creation, the value of the semval, sempid, semncnt, and semzcnt members of all nsems
semaphores in the associated semaphore set shall be set to zero.

RETURN VALUE
Upon successful completion, semget() shall return a non-negative integer, namely a semaphore
identifier; otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The semget() function shall fail if:

[EACCES] A semaphore identifier exists for key, but operation permission as specified by
the low-order 9 bits of semflg would not be granted; see Section 2.7 (on page
526).

[EEXIST] A semaphore identifier exists for the argument key but ((semflg &IPC_CREAT)
&&(semflg &IPC_EXCL)) is non-zero.

[EINVAL] The value of nsems is either less than or equal to 0 or greater than the system-
imposed limit, or a semaphore identifier exists for the argument key, but the
number of semaphores in the set associated with it is less than nsems and
nsems is not equal to 0.

1958 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64483

64484

64485

64486

64487

64488

64489

64490

64491

64492

64493

64494

64495

64496

64497

64498

64499

64500

64501

64502

64503

64504

64505

64506

64507

64508

64509

64510

64511

64512

64513

64514

64515

64516

64517

64518

64519

64520

64521

64522

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces semget()

[ENOENT] A semaphore identifier does not exist for the argument key and (semflg
&IPC_CREAT) is equal to 0.

[ENOSPC] A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores system-wide would be exceeded.

EXAMPLES
Refer to semop().

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 526) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), ftok(), semctl(), semop(), sem_close(),
sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_trywait(), sem_unlink()

XBD Section 4.20 (on page 108), <sys/sem.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/122 is applied, updating the
DESCRIPTION from ``each semaphore in the set shall not be initialized’’ to ``each semaphore in
the set need not be initialized’’.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0536 [335,439] and
XSH/TC1-2008/0537 [344] are applied.

Issue 8
Austin Group Defect 377 is applied, adding a requirement that the value of the semval, sempid,
semncnt, and semzcnt members of all semaphores in a semaphore set be initialized to zero when a
call to semget() creates a semaphore set.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1959

64523

64524

64525

64526

64527

64528

64529

64530

64531

64532

64533

64534

64535

64536

64537

64538

64539

64540

64541

64542

64543

64544

64545

64546

64547

64548

64549

64550

64551

64552

64553

64554

64555

64556

64557

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

semop() System Interfaces

NAME
semop — XSI semaphore operations

SYNOPSIS
XSI #include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

DESCRIPTION
The semop() function operates on XSI semaphores (see XBD Section 4.20, on page 108). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The semop() function shall perform atomically a user-defined array of semaphore operations in
array order on the set of semaphores associated with the semaphore identifier specified by the
argument semid.

The argument sops is a pointer to a user-defined array of semaphore operation structures. The
implementation shall not modify elements of this array unless the application uses
implementation-defined extensions.

The argument nsops is the number of such structures in the array.

Each structure, sembuf, includes the following members:

Member Type Member Name Description
unsigned short sem_num Semaphore number.
short sem_op Semaphore operation.
short sem_flg Operation flags.

Each semaphore operation specified by sem_op is performed on the corresponding semaphore
specified by semid and sem_num.

If all of the semaphore operations complete successfully, semop() shall return 0. If a semaphore
operation fails or blocks, all changes to semadj and semval values performed by completed
semaphore operations in the array before the operation that failed or blocked shall be undone
before semop() returns or blocks, respectively. When a semaphore operation blocks, the change
to semncnt or semzcnt indicating which semaphore operation blocked shall not be undone until
the operation unblocks.

For each operation in the array of semaphore operations, the variable sem_op specifies one of
three semaphore operations:

1. If sem_op is a negative integer and the calling process has alter permission, one of the
following shall occur:

• If semval (see <sys/sem.h>) is greater than or equal to the absolute value of sem_op,
the absolute value of sem_op shall be subtracted from semval. Also, if (sem_flg &
SEM_UNDO) is non-zero, the absolute value of sem_op shall be added to the semadj
value of the calling process for the specified semaphore. If this is not the last
operation in the array of semaphore operations to be performed, processing shall
continue with the next operation in the array.

• If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is
non-zero, the operation shall fail with errno set to [EAGAIN].

1960 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64558

64559

64560

64561

64562

64563

64564

64565

64566

64567

64568

64569

64570

64571

64572

64573

64574

64575

64576

64577

64578

64579

64580

64581

64582

64583

64584

64585

64586

64587

64588

64589

64590

64591

64592

64593

64594

64595

64596

64597

64598

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces semop()

• If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is 0,
semop() shall increment the semncnt associated with the specified semaphore and
suspend execution of the calling thread (block) until one of the following conditions
occurs:

— The value of semval changes. When this occurs, the value of semncnt associated
with the specified semaphore shall be decremented and the array of
semaphore operations shall be reevaluated.

— The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, the operation shall fail with errno set to [EIDRM].

— The calling thread receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore shall be
decremented, and the calling thread shall resume execution in the manner
prescribed in sigaction().

2. If sem_op is a positive integer and the calling process has alter permission, the value of
sem_op shall be added to semval and, if (sem_flg & SEM_UNDO) is non-zero, the value of
sem_op shall be subtracted from the semadj value of the calling process for the specified
semaphore. If this is not the last operation in the array of semaphore operations to be
performed, processing shall continue with the next operation in the array.

3. If sem_op is 0 and the calling process has read permission, one of the following shall occur:

• If semval is 0, this is a successful operation. If this is not the last operation in the
array of semaphore operations to be performed, processing shall continue with the
next operation in the array.

• If semval is non-zero and (sem_flg & IPC_NOWAIT) is non-zero, the operation shall
fail with errno set to [EAGAIN].

• If semval is non-zero and (sem_flg & IPC_NOWAIT) is 0, semop() shall increment the
semzcnt associated with the specified semaphore and suspend execution of the
calling thread (block) until one of the following occurs:

— The value of semval changes. When this occurs, the value of semzcnt associated
with the specified semaphore shall be decremented and the array of
semaphore operations shall be reevaluated.

— The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, the operation shall fail with errno set to [EIDRM].

— The calling thread receives a signal that is to be caught. When this occurs, the
value of semzcnt associated with the specified semaphore shall be
decremented, and the calling thread shall resume execution in the manner
prescribed in sigaction().

Upon successful completion of all of the semaphore operations specified in the array pointed to
by sops, the value of sempid for each semaphore specified in the array shall be set to the process
ID of the calling process and the sem_otime timestamp associated with the semaphore set shall be
set to the current time, as described in Section 2.7.1 (on page 526).

RETURN VALUE
Upon successful completion, semop() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1961

64599

64600

64601

64602

64603

64604

64605

64606

64607

64608

64609

64610

64611

64612

64613

64614

64615

64616

64617

64618

64619

64620

64621

64622

64623

64624

64625

64626

64627

64628

64629

64630

64631

64632

64633

64634

64635

64636

64637

64638

64639

64640

64641

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

semop() System Interfaces

ERRORS
The semop() function shall fail if:

[E2BIG] The value of nsops is greater than the system-imposed maximum.

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
526).

[EAGAIN] The operation would result in suspension of the calling thread but (sem_flg &
IPC_NOWAIT) is non-zero.

[EFBIG] The value of sem_num is greater than or equal to the number of semaphores in
the set associated with semid.

[EIDRM] The semaphore identifier semid is removed from the system.

[EINTR] The semop() function was interrupted by a signal.

[EINVAL] The value of semid is not a valid semaphore identifier, or the number of
individual semaphores for which the calling process requests a SEM_UNDO
would exceed the system-imposed limit.

[ENOSPC] The limit on the number of individual processes requesting a SEM_UNDO
would be exceeded.

[ERANGE] An operation would cause a semval to overflow the system-imposed limit, or
an operation would cause a semadj value to overflow the system-imposed
limit.

EXAMPLES

Setting Values in Semaphores

The following example sets the values of the two semaphores associated with the semid identifier
to the values contained in the sb array.

#include <sys/sem.h>
...
int semid;
struct sembuf sb[2];
int nsops = 2;
int result;

// Code to initialize semid.
...

// Adjust value of semaphore in the semaphore array semid.
sb[0].sem_num = 0;
sb[0].sem_op = -1;
sb[0].sem_flg = SEM_UNDO | IPC_NOWAIT;
sb[1].sem_num = 1;
sb[1].sem_op = 1;
sb[1].sem_flg = 0;

result = semop(semid, sb, nsops);

1962 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64642

64643

64644

64645

64646

64647

64648

64649

64650

64651

64652

64653

64654

64655

64656

64657

64658

64659

64660

64661

64662

64663

64664

64665

64666

64667

64668

64669

64670

64671

64672

64673

64674

64675

64676

64677

64678

64679

64680

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces semop()

Creating a Semaphore Identifier

The following example gets a semaphore key using the ftok() function, then creates or uses an
existing semaphore set associated with that key using the semget() function.

If this process creates the semaphore set, the program uses a call to semop() to initialize it to the
value in the sbuf array. The number of processes that can execute concurrently is set to 2.

The final call to semop() acquires the semaphore and waits until it is free; the SEM_UNDO
option releases the semaphore when the process exits, waiting until there are less than two
processes running concurrently.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/sem.h>
#include <sys/stat.h>
...
struct sembuf sbuf;
int semid;
key_t semkey;
...
// Get a key for the semaphore set.
if ((semkey = ftok("/tmp", 'a')) == (key_t) -1) {

perror("IPC error: ftok");
exit(1);

}

// Create the semaphore set associated with this key
if ((semid = semget(semkey, 1, IPC_CREAT | IPC_EXCL | S_IRUSR |

S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)) != -1) {

// Initialize the semaphore.
sbuf.sem_num = 0;
sbuf.sem_op = 2; // Set the number of runs without queuing.
sbuf.sem_flg = 0;
if (semop(semid, &sbuf, 1) == -1) {

perror("IPC error: semop");
exit(1);

}
} else if (errno == EEXIST) {

// The semaphore set already exists; get its semaphore ID.
if ((semid = semget(semkey, 0, 0)) == -1) {

perror("IPC error 1: semget");
exit(1);

}
} else {

perror("IPC error 2: semget");
exit(1);

}

// Since the semget() initialized the semaphore to 0, the
// following semop() will block until the creating process

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1963

64681

64682

64683

64684

64685

64686

64687

64688

64689

64690

64691

64692

64693

64694

64695

64696

64697

64698

64699

64700

64701

64702

64703

64704

64705

64706

64707

64708

64709

64710

64711

64712

64713

64714

64715

64716

64717

64718

64719

64720

64721

64722

64723

64724

64725

64726

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

semop() System Interfaces

// completes the initialization above. Processes will also
// block in the following semop() call if two other processes
// have already passed this point and are still running.
sbuf.sem_num = 0;
sbuf.sem_op = -1;
sbuf.sem_flg = SEM_UNDO;
if (semop(semid, &sbuf, 1) == -1) {

perror("IPC Error: semop");
exit(1);

}

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 526) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), exec , exit(), fork(), semctl(), semget(),
sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_trywait(),
sem_unlink()

XBD Section 4.20 (on page 108), <sys/ipc.h>, <sys/sem.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 7
SD5-XSH-ERN-171 is applied, updating the DESCRIPTION to clarify the order in which the
operations in sops will be performed when there are multiple operations.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0538 [329,429], XSH/TC1-2008/0539
[345,428], XSH/TC1-2008/0540 [329,429], XSH/TC1-2008/0541 [335], and XSH/TC1-2008/0542
[291,429] are applied.

Issue 8
Austin Group Defect 377 is applied, changing the EXAMPLES section.

Austin Group Defect 628 is applied, clarifying how semop() behaves when there is more than
one operation in the array specified by sops.

1964 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64727

64728

64729

64730

64731

64732

64733

64734

64735

64736

64737

64738

64739

64740

64741

64742

64743

64744

64745

64746

64747

64748

64749

64750

64751

64752

64753

64754

64755

64756

64757

64758

64759

64760

64761

64762

64763

64764

64765

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces send()

NAME
send — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t send(int socket, const void *buffer, size_t length, int flags);

DESCRIPTION
The send() function shall initiate transmission of a message from the specified socket to its peer.
The send() function shall send a message only when the socket is connected. If the socket is a
connectionless-mode socket, the message shall be sent to the pre-specified peer address.

The send() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer containing the message to send.

length Specifies the length of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are
formed by logically OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
band communications. The significance and semantics
of out-of-band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

The length of the message to be sent is specified by the length argument. If the message is too
long to pass through the underlying protocol, send() shall fail and no data shall be transmitted.

Successful completion of a call to send() does not guarantee delivery of the message. A return
value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted, and the
socket file descriptor does not have O_NONBLOCK set, send() shall block until space is
available or a timeout occurs (see SO_SNDTIMEO in Section 2.10.16, on page 554). If space is
not available at the sending socket to hold the message to be transmitted, and the socket file
descriptor does have O_NONBLOCK set, send() shall fail. The select() and poll() functions can
be used to determine when it is possible to send more data.

The socket in use may require the process to have appropriate privileges to use the send()
function.

RETURN VALUE
Upon successful completion, send() shall return the number of bytes sent. Otherwise, −1 shall be
returned and errno set to indicate the error.

ERRORS
The send() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block. See also SO_SNDTIMEO in Section 2.10.16 (on page
554).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1965

64766

64767

64768

64769

64770

64771

64772

64773

64774

64775

64776

64777

64778

64779

64780

64781

64782

64783

64784

64785

64786

64787

64788

64789

64790

64791

64792

64793

64794

64795

64796

64797

64798

64799

64800

64801

64802

64803

64804

64805

64806

64807

64808

64809

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

send() System Interfaces

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EDESTADDRREQ]
The socket is not connection-mode and no peer address is set.

[EINTR] A signal interrupted send() before any data was transmitted.

[EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

[ENOTCONN] The socket is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM or SOCK_SEQPACKET and the MSG_NOSIGNAL flag is not
set, the SIGPIPE signal is generated to the calling thread.

The send() function may fail if:

[EACCES] The calling process does not have appropriate privileges.

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.
EXAMPLES

None.

APPLICATION USAGE
If the socket argument refers to a connection-mode socket, the send() function is equivalent to
sendto() (with any value for the dest_addr and dest_len arguments, as they are ignored in this
case). If the socket argument refers to a socket and the flags argument is 0, the send() function is
equivalent to write().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), sendmsg(), sendto(),
setsockopt(), shutdown(), socket(), write()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1966 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64810

64811

64812

64813

64814

64815

64816

64817

64818

64819

64820

64821

64822

64823

64824

64825

64826

64827

64828

64829

64830

64831

64832

64833

64834

64835

64836

64837

64838

64839

64840

64841

64842

64843

64844

64845

64846

64847

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces send()

Issue 7
Austin Group Interpretation 1003.1-2001 #035 is applied, updating the DESCRIPTION to clarify
the behavior when the socket is a connectionless-mode socket.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

The [EPIPE] error is modified.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0543 [463] is applied.

Issue 8
Austin Group Defect 1429 is applied, clarifying the behavior on timeout by adding references to
Section 2.10.16 (on page 554).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1967

64848

64849

64850

64851

64852

64853

64854

64855

64856

64857

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sendmsg() System Interfaces

NAME
sendmsg — send a message on a socket using a message structure

SYNOPSIS
#include <sys/socket.h>

ssize_t sendmsg(int socket, const struct msghdr *message, int flags);

DESCRIPTION
The sendmsg() function shall send a message through a connection-mode or connectionless-
mode socket. If the socket is a connectionless-mode socket, the message shall be sent to the
address specified by msghdr if no pre-specified peer address has been set. If a peer address has
been pre-specified, either the message shall be sent to the address specified in msghdr
(overriding the pre-specified peer address), or the function shall return −1 and set errno to
[EISCONN]. If the socket is connection-mode, the destination address in msghdr shall be
ignored.

The sendmsg() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the destination address and the
buffers for the outgoing message. The length and format of the address
depend on the address family of the socket. The msg_flags member is ignored.

flags Specifies the type of message transmission. The application may specify 0 or
the following flag:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
bound data. The significance and semantics of out-of-
band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

The msg_iov and msg_iovlen fields of message specify zero or more buffers containing the data to
be sent. msg_iov points to an array of iovec structures; msg_iovlen shall be set to the dimension of
this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field
gives its size in bytes. Some of these sizes can be zero. The data from each storage area indicated
by msg_iov is sent in turn.

Successful completion of a call to sendmsg() does not guarantee delivery of the message. A
return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, the sendmsg() function shall block until
space is available or a timeout occurs (see SO_SNDTIMEO in Section 2.10.16, on page 554). If
space is not available at the sending socket to hold the message to be transmitted and the socket
file descriptor does have O_NONBLOCK set, the sendmsg() function shall fail.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, sendmsg() shall fail if the SO_BROADCAST option is not set for the socket.

The socket in use may require the process to have appropriate privileges to use the sendmsg()
function.

1968 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64858

64859

64860

64861

64862

64863

64864

64865

64866

64867

64868

64869

64870

64871

64872

64873

64874

64875

64876

64877

64878

64879

64880

64881

64882

64883

64884

64885

64886

64887

64888

64889

64890

64891

64892

64893

64894

64895

64896

64897

64898

64899

64900

64901

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sendmsg()

RETURN VALUE
Upon successful completion, sendmsg() shall return the number of bytes sent. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The sendmsg() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block. See also SO_SNDTIMEO in Section 2.10.16 (on page
554).

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted sendmsg() before any data was transmitted.

[EINVAL] The sum of the iov_len values overflows an ssize_t.

[EMSGSIZE] The message is too large to be sent all at once (as the socket requires), or the
msg_iovlen member of the msghdr structure pointed to by message is less than
or equal to 0 or is greater than {IOV_MAX}.

[ENOTCONN] The socket is connection-mode but is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM or SOCK_SEQPACKET and the MSG_NOSIGNAL flag is not
set, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendmsg() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in the socket address.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the pathname does not name an existing file or the path name
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in the socket address names
an existing file that is neither a directory nor a symbolic link to a directory, or
the pathname in the socket address contains at least one non-<slash> character
and ends with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1969

64902

64903

64904

64905

64906

64907

64908

64909

64910

64911

64912

64913

64914

64915

64916

64917

64918

64919

64920

64921

64922

64923

64924

64925

64926

64927

64928

64929

64930

64931

64932

64933

64934

64935

64936

64937

64938

64939

64940

64941

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sendmsg() System Interfaces

The sendmsg() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

[EDESTADDRREQ]
The socket is not connection-mode and does not have its peer address set, and
no destination address was specified.

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

[EIO] An I/O error occurred while reading from or writing to the file system.

[EISCONN] A destination address was specified and the socket is already connected.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

If the address family of the socket is AF_UNIX, then sendmsg() may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in the socket address.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES
Done.

APPLICATION USAGE
The select() and poll() functions can be used to determine when it is possible to send more data.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), send(), sendto(), setsockopt(),
shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

1970 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64942

64943

64944

64945

64946

64947

64948

64949

64950

64951

64952

64953

64954

64955

64956

64957

64958

64959

64960

64961

64962

64963

64964

64965

64966

64967

64968

64969

64970

64971

64972

64973

64974

64975

64976

64977

64978

64979

64980

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sendmsg()

Issue 7
Austin Group Interpretation 1003.1-2001 #073 is applied, updating the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #143 is applied.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

The [EPIPE] error is modified.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0544 [324] is applied.

Issue 8
Austin Group Defect 1429 is applied, clarifying the behavior on timeout by adding references to
Section 2.10.16 (on page 554).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1971

64981

64982

64983

64984

64985

64986

64987

64988

64989

64990

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sendto() System Interfaces

NAME
sendto — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t sendto(int socket, const void *message, size_t length,
int flags, const struct sockaddr *dest_addr,
socklen_t dest_len);

DESCRIPTION
The sendto() function shall send a message through a connection-mode or connectionless-mode
socket.

If the socket is a connectionless-mode socket, the message shall be sent to the address specified
by dest_addr if no pre-specified peer address has been set. If a peer address has been pre-
specified, either the message shall be sent to the address specified by dest_addr (overriding the
pre-specified peer address), or the function shall return −1 and set errno to [EISCONN].

If the socket is connection-mode, dest_addr shall be ignored.

The sendto() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a buffer containing the message to be sent.

length Specifies the size of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are
formed by logically OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
band data. The significance and semantics of out-of-
band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

dest_addr Points to a sockaddr structure containing the destination address. The length
and format of the address depend on the address family of the socket.

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
argument.

If the address family of the socket is AF_UNIX, the application shall ensure that a null
terminator after the pathname is included in the sun_path member of dest_addr as a sockaddr_un
structure, and that dest_len is at least offsetof(struct sockaddr_un, sun_path) + 1
plus the length of the pathname.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, sendto() shall fail if the SO_BROADCAST option is not set for the socket.

The dest_addr argument specifies the address of the target.

The length argument specifies the length of the message.

Successful completion of a call to sendto() does not guarantee delivery of the message. A return

1972 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64991

64992

64993

64994

64995

64996

64997

64998

64999

65000

65001

65002

65003

65004

65005

65006

65007

65008

65009

65010

65011

65012

65013

65014

65015

65016

65017

65018

65019

65020

65021

65022

65023

65024

65025

65026

65027

65028

65029

65030

65031

65032

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sendto()

value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, sendto() shall block until space is
available or a timeout occurs (see SO_SNDTIMEO in Section 2.10.16, on page 554). If space is
not available at the sending socket to hold the message to be transmitted and the socket file
descriptor does have O_NONBLOCK set, sendto() shall fail.

The socket in use may require the process to have appropriate privileges to use the sendto()
function.

RETURN VALUE
Upon successful completion, sendto() shall return the number of bytes sent. Otherwise, −1 shall
be returned and errno set to indicate the error.

ERRORS
The sendto() function shall fail if:

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block. See also SO_SNDTIMEO in Section 2.10.16 (on page
554).

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted sendto() before any data was transmitted.

[EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

[ENOTCONN] The socket is connection-mode but is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM or SOCK_SEQPACKET and the MSG_NOSIGNAL flag is not
set, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendto() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in the socket address.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the pathname does not name an existing file or the pathname
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in the socket address names
an existing file that is neither a directory nor a symbolic link to a directory, or
the pathname in the socket address contains at least one non-<slash> character

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1973

65033

65034

65035

65036

65037

65038

65039

65040

65041

65042

65043

65044

65045

65046

65047

65048

65049

65050

65051

65052

65053

65054

65055

65056

65057

65058

65059

65060

65061

65062

65063

65064

65065

65066

65067

65068

65069

65070

65071

65072

65073

65074

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sendto() System Interfaces

and ends with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory.

The sendto() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

[EDESTADDRREQ]
The socket is not connection-mode and does not have its peer address set, and
no destination address was specified.

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

[EINVAL] The dest_len argument is not a valid length for the address family.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EISCONN] A destination address was specified and the socket is already connected.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

If the address family of the socket is AF_UNIX, then sendto() may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in the socket address.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when it is possible to send more data.

For AF_UNIX sockets, some implementations support an extension where dest_len does not have
to include a null terminator for the pathname stored in sun_path, which in turn allows a
pathname to be one byte longer. However, such usage is not portable, and carries a risk of
accessing beyond the intended bounds of the pathname length.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1974 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65075

65076

65077

65078

65079

65080

65081

65082

65083

65084

65085

65086

65087

65088

65089

65090

65091

65092

65093

65094

65095

65096

65097

65098

65099

65100

65101

65102

65103

65104

65105

65106

65107

65108

65109

65110

65111

65112

65113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sendto()

SEE ALSO
getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), setsockopt(),
shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretations 1003.1-2001 #035 and #073 are applied, updating the [EISCONN]
error and the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #143 is applied, clarifying the [ENAMETOOLONG]
error condition.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

The [EPIPE] error is modified.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0545 [324] is applied.

Issue 8
Austin Group Defect 561 is applied, changing the requirements for the sun_path member of the
sockaddr_un structure.

Austin Group Defect 1429 is applied, clarifying the behavior on timeout by adding references to
Section 2.10.16 (on page 554).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1975

65114

65115

65116

65117

65118

65119

65120

65121

65122

65123

65124

65125

65126

65127

65128

65129

65130

65131

65132

65133

65134

65135

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setbuf() System Interfaces

NAME
setbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf(FILE *restrict stream, char *restrict buf);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

Except that it returns no value, the function call:

setbuf(stream, buf)

shall be equivalent to:

setvbuf(stream, buf, _IOFBF, BUFSIZ)

if buf is not a null pointer, or to:

setvbuf(stream, buf, _IONBF, BUFSIZ)

if buf is a null pointer.

RETURN VALUE
The setbuf() function shall not return a value.

ERRORS
Although the setvbuf() interface may set errno in defined ways, the value of errno after a call to
setbuf() is unspecified.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ``automatic’’ variable in a code block,
and then failing to close the stream in the same block.

With setbuf(), allocating a buffer of BUFSIZ bytes does not necessarily imply that all of BUFSIZ
bytes are used for the buffer area.

Since errno is not required to be unchanged on success, in order to correctly detect and possibly
recover from errors, applications should use setvbuf() instead of setbuf().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), setvbuf()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

1976 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65136

65137

65138

65139

65140

65141

65142

65143

65144

65145

65146

65147

65148

65149

65150

65151

65152

65153

65154

65155

65156

65157

65158

65159

65160

65161

65162

65163

65164

65165

65166

65167

65168

65169

65170

65171

65172

65173

65174

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setbuf()

Issue 6
The prototype for setbuf() is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0546 [397], XSH/TC1-2008/0547 [397],
and XSH/TC1-2008/0548 [14] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1977

65175

65176

65177

65178

65179

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setegid() System Interfaces

NAME
setegid — set the effective group ID

SYNOPSIS
#include <unistd.h>

int setegid(gid_t gid);

DESCRIPTION
If gid is equal to the real group ID or the saved set-group-ID, or if the process has appropriate
privileges, setegid() shall set the effective group ID of the calling process to gid; the real group
ID, saved set-group-ID, and any supplementary group IDs shall remain unchanged.

The setegid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setegid() function shall fail if:

[EINVAL] The value of the gid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and gid does not match the
real group ID or the saved set-group-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), seteuid(), setgid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

1978 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65180

65181

65182

65183

65184

65185

65186

65187

65188

65189

65190

65191

65192

65193

65194

65195

65196

65197

65198

65199

65200

65201

65202

65203

65204

65205

65206

65207

65208

65209

65210

65211

65212

65213

65214

65215

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setenv()

NAME
setenv — add or change environment variable

SYNOPSIS
CX #include <stdlib.h>

int setenv(const char *envname, const char *envval, int overwrite);

DESCRIPTION
The setenv() function shall update or add a variable in the environment of the calling process.
The envname argument points to a string containing the name of an environment variable to be
added or altered. The environment variable shall be set to the value to which envval points. The
function shall fail if envname points to a string which contains an '=' character. If the
environment variable named by envname already exists and the value of overwrite is non-zero,
the function shall return success and the environment shall be updated. If the environment
variable named by envname already exists and the value of overwrite is zero, the function shall
return success and the environment shall remain unchanged.

The setenv() function shall update the list of pointers to which environ points.

The strings described by envname and envval are copied by this function.

The setenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to
indicate the error, and the environment shall be unchanged.

ERRORS
The setenv() function shall fail if:

[EINVAL] The envname argument points to an empty string or points to a string
containing an '=' character.

[ENOMEM] Insufficient memory was available to add a variable or its value to the
environment.

EXAMPLES
None.

APPLICATION USAGE
See exec() for restrictions on changing the environment in multi-threaded applications.

RATIONALE
Unanticipated results may occur if setenv() changes the external variable environ. In particular, if
the optional envp argument to main() is present, it is not changed, and thus may point to an
obsolete copy of the environment (as may any other copy of environ). However, other than the
aforementioned restriction, the standard developers intended that the traditional method of
walking through the environment by way of the environ pointer must be supported.

It was decided that setenv() should be required by this version because it addresses a piece of
missing functionality, and does not impose a significant burden on the implementor.

There was considerable debate as to whether the System V putenv() function or the BSD setenv()
function should be required as a mandatory function. The setenv() function was chosen because
it permitted the implementation of the unsetenv() function to delete environmental variables,
without specifying an additional interface. The putenv() function is available as part of the XSI
option.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1979

65216

65217

65218

65219

65220

65221

65222

65223

65224

65225

65226

65227

65228

65229

65230

65231

65232

65233

65234

65235

65236

65237

65238

65239

65240

65241

65242

65243

65244

65245

65246

65247

65248

65249

65250

65251

65252

65253

65254

65255

65256

65257

65258

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setenv() System Interfaces

The standard developers considered requiring that setenv() indicate an error when a call to it
would result in exceeding {ARG_MAX}. The requirement was rejected since the condition might
be temporary, with the application eventually reducing the environment size. The ultimate
success or failure depends on the size at the time of a call to exec, which returns an indication of
this error condition.

See also the RATIONALE section in getenv().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getenv(), putenv(), unsetenv()

XBD <stdlib.h>, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/55 is applied, adding references to exec in
the APPLICATION USAGE and SEE ALSO sections.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0549 [167], XSH/TC1-2008/0550 [185],
XSH/TC1-2008/0551 [167], and XSH/TC1-2008/0552 [38] are applied.

1980 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65259

65260

65261

65262

65263

65264

65265

65266

65267

65268

65269

65270

65271

65272

65273

65274

65275

65276

65277

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces seteuid()

NAME
seteuid — set effective user ID

SYNOPSIS
#include <unistd.h>

int seteuid(uid_t uid);

DESCRIPTION
If uid is equal to the real user ID or the saved set-user-ID, or if the process has appropriate
privileges, seteuid() shall set the effective user ID of the calling process to uid; the real user ID
and saved set-user-ID shall remain unchanged.

The seteuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The seteuid() function shall fail if:

[EINVAL] The value of the uid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and uid does not match the
real user ID or the saved set-user-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), setgid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/123 is applied, making an editorial
correction to the [EPERM] error in the ERRORS section.

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1981

65278

65279

65280

65281

65282

65283

65284

65285

65286

65287

65288

65289

65290

65291

65292

65293

65294

65295

65296

65297

65298

65299

65300

65301

65302

65303

65304

65305

65306

65307

65308

65309

65310

65311

65312

65313

65314

65315

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setgid() System Interfaces

NAME
setgid — set-group-ID

SYNOPSIS
#include <unistd.h>

int setgid(gid_t gid);

DESCRIPTION
If the process has appropriate privileges, setgid() shall set the real group ID, effective group ID,
and the saved set-group-ID of the calling process to gid.

If the process does not have appropriate privileges, but gid is equal to the real group ID or the
saved set-group-ID, setgid() shall set the effective group ID to gid; the real group ID and saved
set-group-ID shall remain unchanged.

The setgid() function shall not affect the supplementary group list in any way.

Any supplementary group IDs of the calling process shall remain unchanged.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setgid() function shall fail if:

[EINVAL] The value of the gid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and gid does not match the
real group ID or the saved set-group-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setregid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

1982 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65316

65317

65318

65319

65320

65321

65322

65323

65324

65325

65326

65327

65328

65329

65330

65331

65332

65333

65334

65335

65336

65337

65338

65339

65340

65341

65342

65343

65344

65345

65346

65347

65348

65349

65350

65351

65352

65353

65354

65355

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setgid()

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• Functionality associated with _POSIX_SAVED_IDS is now mandated. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effects of setgid() in processes without appropriate privileges are changed.

• A requirement that the supplementary group list is not affected is added.

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1983

65356

65357

65358

65359

65360

65361

65362

65363

65364

65365

65366

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setgrent() System Interfaces

NAME
setgrent — reset the group database to the first entry

SYNOPSIS
XSI #include <grp.h>

void setgrent(void);

DESCRIPTION
Refer to endgrent().

1984 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65367

65368

65369

65370

65371

65372

65373

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sethostent()

NAME
sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

void sethostent(int stayopen);

DESCRIPTION
Refer to endhostent().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1985

65374

65375

65376

65377

65378

65379

65380

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setjmp() System Interfaces

NAME
setjmp — set jump point for a non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

A call to setjmp() shall save the calling environment in its env argument for later use by
longjmp().

It is unspecified whether setjmp() is a macro or a function. If a macro definition is suppressed in
order to access an actual function, or a program defines an external identifier with the name
setjmp, the behavior is undefined.

An application shall ensure that an invocation of setjmp() appears in one of the following
contexts only:

• The entire controlling expression of a selection or iteration statement

• One operand of a relational or equality operator with the other operand an integral
constant expression, with the resulting expression being the entire controlling expression
of a selection or iteration statement

• The operand of a unary '!' operator with the resulting expression being the entire
controlling expression of a selection or iteration

• The entire expression of an expression statement (possibly cast to void)

If the invocation appears in any other context, the behavior is undefined.

RETURN VALUE
If the return is from a direct invocation, setjmp() shall return 0. If the return is from a call to
longjmp(), setjmp() shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In general, sigsetjmp() is more useful in dealing with errors and interrupts encountered in a low-
level subroutine of a program.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), sigsetjmp()

XBD <setjmp.h>

1986 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65381

65382

65383

65384

65385

65386

65387

65388

65389

65390

65391

65392

65393

65394

65395

65396

65397

65398

65399

65400

65401

65402

65403

65404

65405

65406

65407

65408

65409

65410

65411

65412

65413

65414

65415

65416

65417

65418

65419

65420

65421

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setjmp()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1987

65422

65423

65424

65425

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setkey() System Interfaces

NAME
setkey — set encoding key (CRYPT)

SYNOPSIS
OB XSI #include <stdlib.h>

void setkey(const char *key);

DESCRIPTION
The setkey() function provides access to an implementation-defined encoding algorithm. The
argument of setkey() is an array of length 64 bytes containing only the bytes with numerical
value of 0 and 1. If this string is divided into groups of 8, the low-order bit in each group is
ignored; this gives a 56-bit key which is used by the algorithm. This is the key that shall be used
with the algorithm to encode a string block passed to encrypt().

The setkey() function shall not change the setting of errno if successful. An application wishing to
check for error situations should set errno to 0 before calling setkey(). If errno is non-zero on
return, an error has occurred.

The setkey() function need not be thread-safe.

RETURN VALUE
No values are returned.

ERRORS
The setkey() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
Decoding need not be implemented in all environments. This is related to government
restrictions in some countries on encryption and decryption routines. Historical practice has
been to ship a different version of the encryption library without the decryption feature in the
routines supplied. Thus the exported version of encrypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
The setkey() function may be removed in a future version.

SEE ALSO
crypt(), encrypt()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0320 [899] is applied.

1988 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65426

65427

65428

65429

65430

65431

65432

65433

65434

65435

65436

65437

65438

65439

65440

65441

65442

65443

65444

65445

65446

65447

65448

65449

65450

65451

65452

65453

65454

65455

65456

65457

65458

65459

65460

65461

65462

65463

65464

65465

65466

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setkey()

Issue 8
Austin Group Defect 1192 is applied, marking the setkey() function as obsolescent.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1989

65467

65468

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setlocale() System Interfaces

NAME
setlocale — set program locale

SYNOPSIS
#include <locale.h>

char *setlocale(int category, const char *locale);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The setlocale() function selects the appropriate piece of the global locale, as specified by the
category and locale arguments, and can be used to change or query the entire global locale or
portions thereof. The value LC_ALL for category names the entire global locale; other values for
category name only a part of the global locale:

LC_COLLATE Affects the behavior of regular expressions and the collation functions.

LC_CTYPE Affects the behavior of regular expressions, character classification, character
conversion functions, and wide-character functions.

CX LC_MESSAGES Affects the affirmative and negative response expressions returned by
nl_langinfo() and the way message catalogs are located. It may also affect the
behavior of functions that return or write message strings.

LC_MONETARY Affects the behavior of functions that handle monetary values.

LC_NUMERIC Affects the behavior of functions that handle numeric values.

LC_TIME Affects the behavior of the time conversion functions.

The locale argument is a pointer to a character string containing the required setting of category.
The contents of this string are implementation-defined. In addition, the following preset values
of locale are defined for all settings of category:

CX "POSIX" Specifies the minimal environment for C-language translation called the
POSIX locale. The POSIX locale is the default global locale at entry to main().

"C" Equivalent to "POSIX".

CX " " Specifies an implementation-defined native environment. The determination
of the name of the new locale for the specified category depends on the value
of the associated environment variables, LC_* and LANG; see XBD Chapter 7
(on page 127) and Chapter 8 (on page 167).

A null pointer Directs setlocale() to query the current global locale setting and return the
name of the locale if category is not LC_ALL, or a string which encodes the
locale name(s) for all of the individual categories if category is LC_ALL.

CX Setting all of the categories of the global locale is similar to successively setting each individual
category of the global locale, except that all error checking is done before any actions are
performed. To set all the categories of the global locale, setlocale() can be invoked as:

setlocale(LC_ALL, "");

In this case, setlocale() shall first verify that the values of all the environment variables it needs
according to the precedence rules (described in XBD Chapter 8, on page 167) indicate supported
locales. If the value of any of these environment variable searches yields a locale that is not
supported (and non-null), setlocale() shall return a null pointer and the global locale shall not be

1990 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65469

65470

65471

65472

65473

65474

65475

65476

65477

65478

65479

65480

65481

65482

65483

65484

65485

65486

65487

65488

65489

65490

65491

65492

65493

65494

65495

65496

65497

65498

65499

65500

65501

65502

65503

65504

65505

65506

65507

65508

65509

65510

65511

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setlocale()

changed. If all environment variables name supported locales, setlocale() shall proceed as if it
had been called for each category, using the appropriate value from the associated environment
variable or from the implementation-defined default if there is no such value.

The global locale established using setlocale() shall only be used in threads for which no current
locale has been set using uselocale() or whose current locale has been set to the global locale
using uselocale(LC_GLOBAL_LOCALE).

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
setlocale().

The setlocale() function need not be thread-safe; however, it shall avoid data races with all
function calls that do not affect and are not affected by the global locale.

RETURN VALUE
Upon successful completion, setlocale() shall return the string associated with the specified
category for the new locale. Otherwise, setlocale() shall return a null pointer and the global locale
shall not be changed.

A null pointer for locale shall cause setlocale() to return a pointer to the string associated with the
specified category for the current global locale. The global locale shall not be changed.

The string returned by setlocale() is such that a subsequent call with that string and its associated
category shall restore that part of the global locale. The application shall not modify the string

CX returned. The returned string pointer might be invalidated or the string content might be
CX overwritten by a subsequent call to setlocale(). The returned pointer might also be invalidated if

the calling thread is terminated.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following code illustrates how a program can initialize the international environment for
one language, while selectively modifying the global locale such that regular expressions and
string operations can be applied to text recorded in a different language:

setlocale(LC_ALL, "De");
setlocale(LC_COLLATE, "Fr@dict");

Internationalized programs can initiate language operation according to environment variable
settings (see XBD Section 8.2, on page 169) by calling setlocale() as follows:

setlocale(LC_ALL, "");

Changing the setting of LC_MESSAGES has no effect on catalogs that have already been opened
by calls to catopen().

In order to make use of different locale settings while multiple threads are running, applications
should use uselocale() in preference to setlocale().

RATIONALE
References to the international environment or locale in the following text relate to the global
locale for the process. This can be overridden for individual threads using uselocale().

The ISO C standard defines a collection of functions to support internationalization. One of the
most significant aspects of these functions is a facility to set and query the international
environment. The international environment is a repository of information that affects the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1991

65512

65513

65514

65515

65516

65517

65518

65519

65520

65521

65522

65523

65524

65525

65526

65527

65528

65529

65530

65531

65532

65533

65534

65535

65536

65537

65538

65539

65540

65541

65542

65543

65544

65545

65546

65547

65548

65549

65550

65551

65552

65553

65554

65555

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setlocale() System Interfaces

behavior of certain functionality, namely:

1. Character handling

2. Collating

3. Date/time formatting

4. Numeric editing

5. Monetary formatting

6. Messaging

The setlocale() function provides the application developer with the ability to set all or portions,
called categories, of the international environment. These categories correspond to the areas of
functionality mentioned above. The syntax for setlocale() is as follows:

char *setlocale(int category, const char *locale);

where category is the name of one of following categories, namely:

LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

In addition, a special value called LC_ALL directs setlocale() to set all categories.

There are two primary uses of setlocale():

1. Querying the international environment to find out what it is set to

2. Setting the international environment, or locale, to a specific value

The behavior of setlocale() in these two areas is described below. Since it is difficult to describe
the behavior in words, examples are used to illustrate the behavior of specific uses.

To query the international environment, setlocale() is invoked with a specific category and the
null pointer as the locale. The null pointer is a special directive to setlocale() that tells it to query
rather than set the international environment. The following syntax is used to query the name of
the international environment:

setlocale({LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, \
LC_NUMERIC, LC_TIME},(char *) NULL);

The setlocale() function shall return the string corresponding to the current international
environment. This value may be used by a subsequent call to setlocale() to reset the international
environment to this value. However, it should be noted that the return value from setlocale()
may be a pointer to a static area within the function and is not guaranteed to remain unchanged
(that is, it may be modified by a subsequent call to setlocale()). Therefore, if the purpose of
calling setlocale() is to save the value of the current international environment so it can be
changed and reset later, the return value should be copied to an array of char in the calling
program.

There are three ways to set the international environment with setlocale():

1992 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65556

65557

65558

65559

65560

65561

65562

65563

65564

65565

65566

65567

65568

65569

65570

65571

65572

65573

65574

65575

65576

65577

65578

65579

65580

65581

65582

65583

65584

65585

65586

65587

65588

65589

65590

65591

65592

65593

65594

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setlocale()

setlocale(category, string)
This usage sets a specific category in the international environment to a specific value
corresponding to the value of the string. A specific example is provided below:

setlocale(LC_ALL, "fr_FR.ISO-8859-1");

In this example, all categories of the international environment are set to the locale
corresponding to the string "fr_FR.ISO-8859-1", or to the French language as spoken in
France using the ISO/IEC 8859-1: 1998 standard codeset.

If the string does not correspond to a valid locale, setlocale() shall return a null pointer and
the international environment is not changed. Otherwise, setlocale() shall return the name of
the locale just set.

setlocale(category, "C")
The ISO C standard states that one locale must exist on all conforming implementations.
The name of the locale is C and corresponds to a minimal international environment needed
to support the C programming language.

setlocale(category, "")
This sets a specific category to an implementation-defined default. This corresponds to the
value of the environment variables.

FUTURE DIRECTIONS
None.

SEE ALSO
catopen(), exec , fprintf(), fscanf(), getlocalename_l(), isalnum(), isalpha(), isblank(), iscntrl(),
isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), iswalnum(), iswalpha(),
iswblank(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), isxdigit(), localeconv(), mblen(), mbstowcs(), mbtowc(),
newlocale(), nl_langinfo(), perror(), psiginfo(), strcoll(), strerror(), strfmon(), strsignal(), strtod(),
strxfrm(), tolower(), toupper(), towlower(), towupper(), uselocale(), wcscoll(), wcstod(), wcstombs(),
wcsxfrm(), wctomb()

XBD Chapter 7 (on page 127), Chapter 8 (on page 167), <langinfo.h>, <locale.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/124 is applied, updating the
DESCRIPTION to clarify the behavior of:

setlocale(LC_ALL, "");

Issue 7
Functionality relating to the Threads option is moved to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0553 [302], XSH/TC1-2008/0554 [303],
XSH/TC1-2008/0555 [302], XSH/TC1-2008/0556 [302], XSH/TC1-2008/0557 [302],
XSH/TC1-2008/0558 [302], XSH/TC1-2008/0559 [302], XSH/TC1-2008/0560 [288],
XSH/TC1-2008/0561 [302], XSH/TC1-2008/0562 [302], XSH/TC1-2008/0563 [302],

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1993

65595

65596

65597

65598

65599

65600

65601

65602

65603

65604

65605

65606

65607

65608

65609

65610

65611

65612

65613

65614

65615

65616

65617

65618

65619

65620

65621

65622

65623

65624

65625

65626

65627

65628

65629

65630

65631

65632

65633

65634

65635

65636

65637

65638

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setlocale() System Interfaces

XSH/TC1-2008/0564 [302], XSH/TC1-2008/0565 [302], XSH/TC1-2008/0566 [302],
XSH/TC1-2008/0567 [288], XSH/TC1-2008/0568 [288], and XSH/TC1-2008/0569 [303] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0321 [826], XSH/TC2-2008/0322 [826],
and XSH/TC2-2008/0323 [596] are applied.

Issue 8
Austin Group Defect 1220 is applied, adding getlocalename_l() to the SEE ALSO section.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

1994 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65639

65640

65641

65642

65643

65644

65645

65646

65647

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setlogmask()

NAME
setlogmask — set the log priority mask

SYNOPSIS
XSI #include <syslog.h>

int setlogmask(int maskpri);

DESCRIPTION
Refer to closelog().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1995

65648

65649

65650

65651

65652

65653

65654

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setnetent() System Interfaces

NAME
setnetent — network database function

SYNOPSIS
#include <netdb.h>

void setnetent(int stayopen);

DESCRIPTION
Refer to endnetent().

1996 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65655

65656

65657

65658

65659

65660

65661

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setpgid()

NAME
setpgid — set process group ID for job control

SYNOPSIS
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION
The setpgid() function shall either join an existing process group or create a new process group
within the session of the calling process.

The process group ID of a session leader shall not change.

Upon successful completion, the process group ID of the process with a process ID that matches
pid shall be set to pgid.

As a special case, if pid is 0, the process ID of the calling process shall be used. Also, if pgid is 0,
the process ID of the indicated process shall be used.

RETURN VALUE
Upon successful completion, setpgid() shall return 0; otherwise, −1 shall be returned and errno
shall be set to indicate the error.

ERRORS
The setpgid() function shall fail if:

[EACCES] The value of the pid argument matches the process ID of a child process of the
calling process and the child process has successfully executed one of the exec
functions.

[EINVAL] The value of the pgid argument is less than 0, or is not a value supported by
the implementation.

[EPERM] The process indicated by the pid argument is a session leader.

[EPERM] The value of the pid argument matches the process ID of a child process of the
calling process and the child process is not in the same session as the calling
process.

[EPERM] The value of the pgid argument is valid but does not match the process ID of
the process indicated by the pid argument and there is no process with a
process group ID that matches the value of the pgid argument in the same
session as the calling process.

[ESRCH] The value of the pid argument does not match the process ID of the calling
process or of a child process of the calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The setpgid() function shall group processes together for the purpose of signaling, placement in
foreground or background, and other job control actions.

The setpgid() function is similar to the setpgrp() function of 4.2 BSD, except that 4.2 BSD allowed
the specified new process group to assume any value. This presents certain security problems
and is more flexible than necessary to support job control.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1997

65662

65663

65664

65665

65666

65667

65668

65669

65670

65671

65672

65673

65674

65675

65676

65677

65678

65679

65680

65681

65682

65683

65684

65685

65686

65687

65688

65689

65690

65691

65692

65693

65694

65695

65696

65697

65698

65699

65700

65701

65702

65703

65704

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setpgid() System Interfaces

To provide tighter security, setpgid() only allows the calling process to join a process group
already in use inside its session or create a new process group whose process group ID was
equal to its process ID.

When a job control shell spawns a new job, the processes in the job must be placed into a new
process group via setpgid(). There are two timing constraints involved in this action:

1. The new process must be placed in the new process group before the appropriate
program is launched via one of the exec functions.

2. The new process must be placed in the new process group before the shell can correctly
send signals to the new process group.

To address these constraints, the following actions are performed. The new processes call
setpgid() to alter their own process groups after fork() but before exec. This satisfies the first
constraint. Under 4.3 BSD, the second constraint is satisfied by the synchronization property of
vfork(); that is, the shell is suspended until the child has completed the exec, thus ensuring that
the child has completed the setpgid(). A new version of fork() with this same synchronization
property was considered, but it was decided instead to merely allow the parent shell process to
adjust the process group of its child processes via setpgid(). Both timing constraints are now
satisfied by having both the parent shell and the child attempt to adjust the process group of the
child process; it does not matter which succeeds first.

Since it would be confusing to an application to have its process group change after it began
executing (that is, after exec), and because the child process would already have adjusted its
process group before this, the [EACCES] error was added to disallow this.

One non-obvious use of setpgid() is to allow a job control shell to return itself to its original
process group (the one in effect when the job control shell was executed). A job control shell
does this before returning control back to its parent when it is terminating or suspending itself as
a way of restoring its job control ``state’’ back to what its parent would expect. (Note that the
original process group of the job control shell typically matches the process group of its parent,
but this is not necessarily always the case.)

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getpgrp(), setsid(), tcsetpgrp()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The setpgid() function is mandatory since _POSIX_JOB_CONTROL is required to be
defined in this version. This is a FIPS requirement.

1998 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65705

65706

65707

65708

65709

65710

65711

65712

65713

65714

65715

65716

65717

65718

65719

65720

65721

65722

65723

65724

65725

65726

65727

65728

65729

65730

65731

65732

65733

65734

65735

65736

65737

65738

65739

65740

65741

65742

65743

65744

65745

65746

65747

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setpgid()

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/56 is applied, changing the wording in
the DESCRIPTION from ``the process group ID of the indicated process shall be used’’ to ``the
process ID of the indicated process shall be used’’. This change reverts the wording to as in the
ISO POSIX-1: 1996 standard; it appeared to be an unintentional change.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 1999

65748

65749

65750

65751

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setpriority() System Interfaces

NAME
setpriority — set the nice value

SYNOPSIS
XSI #include <sys/resource.h>

int setpriority(int which, id_t who, int nice);

DESCRIPTION
Refer to getpriority().

2000 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65752

65753

65754

65755

65756

65757

65758

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setprotoent()

NAME
setprotoent — network protocol database functions

SYNOPSIS
#include <netdb.h>

void setprotoent(int stayopen);

DESCRIPTION
Refer to endprotoent().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2001

65759

65760

65761

65762

65763

65764

65765

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setpwent() System Interfaces

NAME
setpwent — user database function

SYNOPSIS
XSI #include <pwd.h>

void setpwent(void);

DESCRIPTION
Refer to endpwent().

2002 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65766

65767

65768

65769

65770

65771

65772

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setregid()

NAME
setregid — set real and effective group IDs

SYNOPSIS
XSI #include <unistd.h>

int setregid(gid_t rgid, gid_t egid);

DESCRIPTION
The setregid() function shall set the real and effective group IDs of the calling process.

If rgid is −1, the real group ID shall not be changed; if egid is −1, the effective group ID shall not
be changed.

The real and effective group IDs may be set to different values in the same call.

Only a process with appropriate privileges can set the real group ID and the effective group ID
to any valid value.

A non-privileged process can set either the real group ID to the saved set-group-ID from one of
the exec family of functions, or the effective group ID to the saved set-group-ID or the real group
ID.

If the real group ID is being set (rgid is not −1), or the effective group ID is being set to a value
not equal to the real group ID, then the saved set-group-ID of the current process shall be set
equal to the new effective group ID.

Any supplementary group IDs of the calling process remain unchanged.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error, and neither of the group IDs are changed.

ERRORS
The setregid() function shall fail if:

[EINVAL] The value of the rgid or egid argument is invalid or out-of-range.

[EPERM] The process does not have appropriate privileges and a change other than
changing the real group ID to the saved set-group-ID, or changing the
effective group ID to the real group ID or the saved set-group-ID, was
requested.

EXAMPLES
None.

APPLICATION USAGE
If a non-privileged set-group-ID process sets its effective group ID to its real group ID, it can
only set its effective group ID back to the previous value if rgid was −1 in the setregid() call, since
the saved-group-ID is not changed in that case. If rgid was equal to the real group ID in the
setregid() call, then the saved set-group-ID will also have been changed to the real user ID.

RATIONALE
Earlier versions of this standard did not specify whether the saved set-group-ID was affected by
setregid() calls. This version specifies common existing practice that constitutes an important
security feature. The ability to set both the effective group ID and saved set-group-ID to be the
same as the real group ID means that any security weakness in code that is executed after that
point cannot result in malicious code being executed with the previous effective group ID.
Privileged applications could already do this using just setgid(), but for non-privileged

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2003

65773

65774

65775

65776

65777

65778

65779

65780

65781

65782

65783

65784

65785

65786

65787

65788

65789

65790

65791

65792

65793

65794

65795

65796

65797

65798

65799

65800

65801

65802

65803

65804

65805

65806

65807

65808

65809

65810

65811

65812

65813

65814

65815

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setregid() System Interfaces

applications the only standard method available is to use this feature of setregid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(),
setresgid(), setresuid(), setreuid(), setuid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the saved set-group-ID can be set by any of the
exec family of functions, not just execve().

Issue 7
SD5-XSH-ERN-177 is applied, adding the ability to set both the effective group ID and saved set-
group-ID to be the same as the real group ID.

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

2004 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65816

65817

65818

65819

65820

65821

65822

65823

65824

65825

65826

65827

65828

65829

65830

65831

65832

65833

65834

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setresgid()

NAME
setresgid — set real group ID, effective group ID, and saved set-group-ID

SYNOPSIS
XSI #include <unistd.h>

int setresgid(gid_t rgid, gid_t egid, gid_t sgid);

DESCRIPTION
The setresgid() function shall set the real group ID, effective group ID, and saved set-group-ID of
the calling process to the values specified by rgid, egid, and sgid, respectively.

If an argument is −1, the corresponding ID shall not be changed.

Only a process with appropriate privileges can set the real group ID, effective group ID, and
saved set-group-ID to any valid value.

A non-privileged process can set its real group ID, effective group ID, and saved set-group-ID,
each to one of the values that it currently holds in its real group ID, effective group ID, or saved
set-group-ID.

The real group ID, effective group ID, and saved set-group-ID can be set to different values in
the same call.

Any supplementary group IDs of the calling process shall remain unchanged.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error, and none of the IDs shall be changed.

ERRORS
The setresgid() function shall fail if:

[EINVAL] The value of the rgid, egid, or sgid argument is invalid or out-of-range.

[EPERM] The calling process does not have appropriate privileges and an attempt was
made to change the real group ID, effective group ID, or saved set-group-ID to
a value that is not currently present in one of those IDs.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(),
setregid(), setresuid(), setreuid(), setuid()

XBD <unistd.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2005

65835

65836

65837

65838

65839

65840

65841

65842

65843

65844

65845

65846

65847

65848

65849

65850

65851

65852

65853

65854

65855

65856

65857

65858

65859

65860

65861

65862

65863

65864

65865

65866

65867

65868

65869

65870

65871

65872

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setresgid() System Interfaces

CHANGE HISTORY
First released in Issue 8.

2006 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65873

65874

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setresuid()

NAME
setresuid — set real user ID, effective user ID, and saved set-user-ID

SYNOPSIS
XSI #include <unistd.h>

int setresuid(uid_t ruid, uid_t euid, uid_t suid);

DESCRIPTION
The setresuid() function shall set the real user ID, effective user ID, and saved set-user-ID of the
calling process to the values specified by ruid, euid, and suid, respectively.

If an argument is −1, the corresponding ID shall not be changed.

Only a process with appropriate privileges can set the real user ID, effective user ID, and saved
set-user-ID to any valid value.

A non-privileged process can set its real user ID, effective user ID, and saved set-user-ID, each to
one of the values that it currently holds in its real user ID, effective user ID, or saved set-user-ID.

The real user ID, effective user ID, and saved set-user-ID can be set to different values in the
same call.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error, and none of the IDs shall be changed.

ERRORS
The setresuid() function shall fail if:

[EINVAL] The value of the ruid, euid, or suid argument is invalid or out-of-range.

[EPERM] The calling process does not have appropriate privileges and an attempt was
made to change the real user ID, effective user ID, or saved set-user-ID to a
value that is not currently present in one of those IDs or an attempt was made
to change the real user ID to a value not permitted by the implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(),
setregid(), setresgid(), setreuid(), setuid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2007

65875

65876

65877

65878

65879

65880

65881

65882

65883

65884

65885

65886

65887

65888

65889

65890

65891

65892

65893

65894

65895

65896

65897

65898

65899

65900

65901

65902

65903

65904

65905

65906

65907

65908

65909

65910

65911

65912

65913

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setreuid() System Interfaces

NAME
setreuid — set real and effective user IDs

SYNOPSIS
XSI #include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

DESCRIPTION
The setreuid() function shall set the real and effective user IDs of the current process to the
values specified by the ruid and euid arguments. If ruid or euid is −1, the corresponding effective
or real user ID of the current process shall be left unchanged.

A process with appropriate privileges can set either ID to any value. An unprivileged process
can only set the effective user ID if the euid argument is equal to either the real, effective, or
saved user ID of the process.

If the real user ID is being set (ruid is not −1), or the effective user ID is being set to a value not
equal to the real user ID, then the saved set-user-ID of the current process shall be set equal to
the new effective user ID.

It is unspecified whether a process without appropriate privileges is permitted to change the real
user ID to match the current effective user ID or saved set-user-ID of the process.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setreuid() function shall fail if:

[EINVAL] The value of the ruid or euid argument is invalid or out-of-range.

[EPERM] The current process does not have appropriate privileges, and either an
attempt was made to change the effective user ID to a value other than the real
user ID or the saved set-user-ID or an attempt was made to change the real
user ID to a value not permitted by the implementation.

EXAMPLES

Setting the Effective User ID to the Real User ID

The following example sets the effective user ID of the calling process to the real user ID, so that
files created later will be owned by the current user. It also sets the saved set-user-ID to the real
user ID, so any future attempt to set the effective user ID back to its previous value will fail.

#include <unistd.h>
#include <sys/types.h>
...
setreuid(getuid(), getuid());
...

APPLICATION USAGE
None.

2008 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65914

65915

65916

65917

65918

65919

65920

65921

65922

65923

65924

65925

65926

65927

65928

65929

65930

65931

65932

65933

65934

65935

65936

65937

65938

65939

65940

65941

65942

65943

65944

65945

65946

65947

65948

65949

65950

65951

65952

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setreuid()

RATIONALE
Earlier versions of this standard did not specify whether the saved set-user-ID was affected by
setreuid() calls. This version specifies common existing practice that constitutes an important
security feature. The ability to set both the effective user ID and saved set-user-ID to be the same
as the real user ID means that any security weakness in code that is executed after that point
cannot result in malicious code being executed with the previous effective user ID. Privileged
applications could already do this using just setuid(), but for non-privileged applications the
only standard method available is to use this feature of setreuid().

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(),
setregid(), setresgid(), setresuid(), setuid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
SD5-XSH-ERN-177 is applied, adding the ability to set both the effective user ID and the saved
set-user-ID to be the same as the real user ID.

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2009

65953

65954

65955

65956

65957

65958

65959

65960

65961

65962

65963

65964

65965

65966

65967

65968

65969

65970

65971

65972

65973

65974

65975

65976

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setrlimit() System Interfaces

NAME
setrlimit — control maximum resource consumption

SYNOPSIS
#include <sys/resource.h>

int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
Refer to getrlimit().

2010 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65977

65978

65979

65980

65981

65982

65983

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setservent()

NAME
setservent — network services database functions

SYNOPSIS
#include <netdb.h>

void setservent(int stayopen);

DESCRIPTION
Refer to endservent().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2011

65984

65985

65986

65987

65988

65989

65990

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setsid() System Interfaces

NAME
setsid — create session and set process group ID

SYNOPSIS
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
The setsid() function shall create a new session, if the calling process is not a process group
leader. Upon return the calling process shall be the session leader of this new session, shall be
the process group leader of a new process group, and shall have no controlling terminal. The
process group ID of the calling process shall be set equal to the process ID of the calling process.
The calling process shall be the only process in the new process group and the only process in
the new session.

RETURN VALUE
Upon successful completion, setsid() shall return the value of the new process group ID of the
calling process. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The setsid() function shall fail if:

[EPERM] The calling process is already a process group leader, or the process group ID
of a process other than the calling process matches the process ID of the
calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The setsid() function is similar to the setpgrp() function of System V. System V, without job
control, groups processes into process groups and creates new process groups via setpgrp(); only
one process group may be part of a login session.

Job control allows multiple process groups within a login session. In order to limit job control
actions so that they can only affect processes in the same login session, this volume of
POSIX.1-2024 adds the concept of a session that is created via setsid(). The setsid() function also
creates the initial process group contained in the session. Additional process groups can be
created via the setpgid() function. A System V process group would correspond to a POSIX
System Interfaces session containing a single POSIX process group. Note that this function
requires that the calling process not be a process group leader. The usual way to ensure this is
true is to create a new process with fork() and have it call setsid(). The fork() function
guarantees that the process ID of the new process does not match any existing process group ID.

FUTURE DIRECTIONS
None.

SEE ALSO
getsid(), setpgid()

XBD <sys/types.h>, <unistd.h>

2012 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

65991

65992

65993

65994

65995

65996

65997

65998

65999

66000

66001

66002

66003

66004

66005

66006

66007

66008

66009

66010

66011

66012

66013

66014

66015

66016

66017

66018

66019

66020

66021

66022

66023

66024

66025

66026

66027

66028

66029

66030

66031

66032

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setsid()

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0570 [421] is applied.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2013

66033

66034

66035

66036

66037

66038

66039

66040

66041

66042

66043

66044

66045

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setsockopt() System Interfaces

NAME
setsockopt — set the socket options

SYNOPSIS
#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,
const void *option_value, socklen_t option_len);

DESCRIPTION
The setsockopt() function shall set the option specified by the option_name argument, at the
protocol level specified by the level argument, to the value pointed to by the option_value
argument for the socket associated with the file descriptor specified by the socket argument.

The level argument specifies the protocol level at which the option resides. To set options at the
socket level, specify the level argument as SOL_SOCKET. To set options at other levels, supply
the appropriate level identifier for the protocol controlling the option. For example, to indicate
that an option is interpreted by the TCP (Transport Control Protocol), set level to IPPROTO_TCP
as defined in the <netinet/in.h> header.

The option_name argument specifies a single option to set. It can be one of the socket-level
options defined in <sys/socket.h> and described in Section 2.10.16 (on page 554). If option_name
is equal to SO_RCVTIMEO or SO_SNDTIMEO and the implementation supports setting the
option, it is unspecified whether the struct timeval pointed to by option_value is stored as
provided by this function or is rounded up to align with the resolution of the clock being used. If
setsockopt() is called with option_name equal to SO_ACCEPTCONN, SO_ERROR, or SO_TYPE,
the behavior is unspecified.

RETURN VALUE
Upon successful completion, setsockopt() shall return 0. Otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
The setsockopt() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EDOM] The send and receive timeout values are too big to fit into the timeout fields in
the socket structure.

[EINVAL] The specified option is invalid at the specified socket level or the socket has
been shut down.

[EISCONN] The socket is already connected, and a specified option cannot be set while the
socket is connected.

[ENOPROTOOPT]
The option is not supported by the protocol.

[ENOTSOCK] The socket argument does not refer to a socket.

The setsockopt() function may fail if:

[ENOMEM] There was insufficient memory available for the operation to complete.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

2014 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66046

66047

66048

66049

66050

66051

66052

66053

66054

66055

66056

66057

66058

66059

66060

66061

66062

66063

66064

66065

66066

66067

66068

66069

66070

66071

66072

66073

66074

66075

66076

66077

66078

66079

66080

66081

66082

66083

66084

66085

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setsockopt()

EXAMPLES
None.

APPLICATION USAGE
The setsockopt() function provides an application program with the means to control socket
behavior. An application program can use setsockopt() to allocate buffer space, control timeouts,
or permit socket data broadcasts. The <sys/socket.h> header defines the socket-level options
available to setsockopt().

Options may exist at multiple protocol levels. The SO_ options are always present at the
uppermost socket level.

It is implementation-defined which socket options, if any, are inherited from a listening socket to
an accepted socket by accept() or accept4().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10 (on page 549), bind(), endprotoent(), getsockopt(), socket()

XBD <netinet/in.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/125 is applied, updating the SO_LINGER
option in the DESCRIPTION to refer to the calling thread rather than the process.

Issue 7
Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to socket options
that is now in Section 2.10.16 (on page 554).

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0571 [369] is applied.

Issue 8
Austin Group Defect 1337 is applied, clarifying socket option default values.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2015

66086

66087

66088

66089

66090

66091

66092

66093

66094

66095

66096

66097

66098

66099

66100

66101

66102

66103

66104

66105

66106

66107

66108

66109

66110

66111

66112

66113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setstate() System Interfaces

NAME
setstate — switch pseudo-random number generator state arrays

SYNOPSIS
XSI #include <stdlib.h>

char *setstate(char *state);

DESCRIPTION
Refer to initstate().

2016 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66114

66115

66116

66117

66118

66119

66120

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setuid()

NAME
setuid — set user ID

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);

DESCRIPTION
If the process has appropriate privileges, setuid() shall set the real user ID, effective user ID, and
the saved set-user-ID of the calling process to uid.

If the process does not have appropriate privileges, but uid is equal to the real user ID or the
saved set-user-ID, setuid() shall set the effective user ID to uid; the real user ID and saved set-
user-ID shall remain unchanged.

The setuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setuid() function shall fail, return −1, and set errno to the corresponding value if one or more
of the following are true:

[EINVAL] The value of the uid argument is invalid and not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and uid does not match the
real user ID or the saved set-user-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The various behaviors of the setuid() and setgid() functions when called by non-privileged
processes reflect the behavior of different historical implementations. For portability, it is
recommended that new non-privileged applications use the seteuid() and setegid() functions
instead.

The saved set-user-ID capability allows a program to regain the effective user ID established at
the last exec call. Similarly, the saved set-group-ID capability allows a program to regain the
effective group ID established at the last exec call. These capabilities are derived from System V.
Without them, a program might have to run as superuser in order to perform the same
functions, because superuser can write on the user’s files. This is a problem because such a
program can write on any user’s files, and so must be carefully written to emulate the
permissions of the calling process properly. In System V, these capabilities have traditionally
been implemented only via the setuid() and setgid() functions for non-privileged processes. The
fact that the behavior of those functions was different for privileged processes made them
difficult to use. The POSIX.1-1990 standard defined the setuid() function to behave differently
for privileged and unprivileged users. When the caller had appropriate privileges, the function
set the real user ID, effective user ID, and saved set-user ID of the calling process on
implementations that supported it. When the caller did not have appropriate privileges, the
function set only the effective user ID, subject to permission checks. The former use is generally
needed for utilities like login and su, which are not conforming applications and thus outside the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2017

66121

66122

66123

66124

66125

66126

66127

66128

66129

66130

66131

66132

66133

66134

66135

66136

66137

66138

66139

66140

66141

66142

66143

66144

66145

66146

66147

66148

66149

66150

66151

66152

66153

66154

66155

66156

66157

66158

66159

66160

66161

66162

66163

66164

66165

66166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setuid() System Interfaces

scope of POSIX.1-2024. These utilities wish to change the user ID irrevocably to a new value,
generally that of an unprivileged user. The latter use is needed for conforming applications that
are installed with the set-user-ID bit and need to perform operations using the real user ID.

POSIX.1-2024 augments the latter functionality with a mandatory feature named
_POSIX_SAVED_IDS. This feature permits a set-user-ID application to switch its effective user
ID back and forth between the values of its exec-time real user ID and effective user ID.
Unfortunately, the POSIX.1-1990 standard did not permit a conforming application using this
feature to work properly when it happened to be executed with (implementation-defined)
appropriate privileges. Furthermore, the application did not even have a means to tell whether it
had this privilege. Since the saved set-user-ID feature is quite desirable for applications, as
evidenced by the fact that NIST required it in FIPS 151-2, it has been mandated by POSIX.1-2024.
However, there are implementors who have been reluctant to support it given the limitation
described above.

The 4.3BSD system handles the problem by supporting separate functions: setuid() (which
always sets both the real and effective user IDs, like setuid() in POSIX.1-2024 for privileged
users), and seteuid() (which always sets just the effective user ID, like setuid() in POSIX.1-2024
for non-privileged users). This separation of functionality into distinct functions seems desirable.
4.3BSD does not support the saved set-user-ID feature. It supports similar functionality of
switching the effective user ID back and forth via setreuid(), which permits reversing the real
and effective user IDs. This model seems less desirable than the saved set-user-ID because the
real user ID changes as a side-effect. The current 4.4BSD includes saved effective IDs and uses
them for seteuid() and setegid() as described above. The setreuid() and setregid() functions will be
deprecated or removed.

The solution here is:

• Require that all implementations support the functionality of the saved set-user-ID, which
is set by the exec functions and by privileged calls to setuid().

• Add the seteuid() and setegid() functions as portable alternatives to setuid() and setgid() for
non-privileged and privileged processes.

Historical systems have provided two mechanisms for a set-user-ID process to change its
effective user ID to be the same as its real user ID in such a way that it could return to the
original effective user ID: the use of the setuid() function in the presence of a saved set-user-ID,
or the use of the BSD setreuid() function, which was able to swap the real and effective user IDs.
The changes included in POSIX.1-2024 provide a new mechanism using seteuid() in conjunction
with a saved set-user-ID. Thus, all implementations with the new seteuid() mechanism will have
a saved set-user-ID for each process, and most of the behavior controlled by
_POSIX_SAVED_IDS has been changed to agree with the case where the option was defined.
The kill() function is an exception. Implementors of the new seteuid() mechanism will generally
be required to maintain compatibility with the older mechanisms previously supported by their
systems. However, compatibility with this use of setreuid() and with the _POSIX_SAVED_IDS
behavior of kill() is unfortunately complicated. If an implementation with a saved set-user-ID
allows a process to use setreuid() to swap its real and effective user IDs, but were to leave the
saved set-user-ID unmodified, the process would then have an effective user ID equal to the
original real user ID, and both real and saved set-user-ID would be equal to the original effective
user ID. In that state, the real user would be unable to kill the process, even though the effective
user ID of the process matches that of the real user, if the kill() behavior of _POSIX_SAVED_IDS
was used. This is obviously not acceptable. The alternative choice, which is used in at least one
implementation, is to change the saved set-user-ID to the effective user ID during most calls to
setreuid(). The standard developers considered that alternative to be less correct than the
retention of the old behavior of kill() in such systems. Current conforming applications shall

2018 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66167

66168

66169

66170

66171

66172

66173

66174

66175

66176

66177

66178

66179

66180

66181

66182

66183

66184

66185

66186

66187

66188

66189

66190

66191

66192

66193

66194

66195

66196

66197

66198

66199

66200

66201

66202

66203

66204

66205

66206

66207

66208

66209

66210

66211

66212

66213

66214

66215

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setuid()

accommodate either behavior from kill(), and there appears to be no strong reason for kill() to
check the saved set-user-ID rather than the effective user ID.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(),
setregid(), setresgid(), setresuid(), setreuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The functionality associated with _POSIX_SAVED_IDS is now mandatory. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effects of setuid() in processes without appropriate privileges are changed.

• A requirement that the supplementary group list is not affected is added.

Issue 8
Austin Group Defect 1344 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
SEE ALSO.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2019

66216

66217

66218

66219

66220

66221

66222

66223

66224

66225

66226

66227

66228

66229

66230

66231

66232

66233

66234

66235

66236

66237

66238

66239

66240

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setutxent() System Interfaces

NAME
setutxent — reset the user accounting database to the first entry

SYNOPSIS
XSI #include <utmpx.h>

void setutxent(void);

DESCRIPTION
Refer to endutxent().

2020 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66241

66242

66243

66244

66245

66246

66247

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces setvbuf()

NAME
setvbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

int setvbuf(FILE *restrict stream, char *restrict buf, int type,
size_t size);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The setvbuf() function may be used after the stream pointed to by stream is associated with an
open file but before any other operation (other than an unsuccessful call to setvbuf()) is
performed on the stream. The argument type determines how stream shall be buffered, as
follows:

• {_IOFBF} shall cause input/output to be fully buffered.

• {_IOLBF} shall cause input/output to be line buffered.

• {_IONBF} shall cause input/output to be unbuffered.

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by
setvbuf() and the argument size specifies the size of the array; otherwise, size may determine the
size of a buffer allocated by the setvbuf() function. The contents of the array at any time are
unspecified.

For information about streams, see Section 2.5 (on page 521).

RETURN VALUE
Upon successful completion, setvbuf() shall return 0. Otherwise, it shall return a non-zero value

CX if an invalid value is given for type or if the request cannot be honored, and may set errno to
indicate the error.

ERRORS
The setvbuf() function may fail if:

CX [EBADF] The stream is not a memory stream and the file descriptor underlying the
stream is not valid.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ``automatic’’ variable in a code block,
and then failing to close the stream in the same block.

With setvbuf(), allocating a buffer of size bytes does not necessarily imply that all of size bytes are
used for the buffer area.

Applications should note that many implementations only provide line buffering on input from
terminal devices.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2021

66248

66249

66250

66251

66252

66253

66254

66255

66256

66257

66258

66259

66260

66261

66262

66263

66264

66265

66266

66267

66268

66269

66270

66271

66272

66273

66274

66275

66276

66277

66278

66279

66280

66281

66282

66283

66284

66285

66286

66287

66288

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

setvbuf() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), setbuf()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The setvbuf() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 1144 is applied, changing the [EBADF] error condition.

2022 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66289

66290

66291

66292

66293

66294

66295

66296

66297

66298

66299

66300

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shm_open()

NAME
shm_open — open a shared memory object (REALTIME)

SYNOPSIS
SHM #include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

DESCRIPTION
The shm_open() function shall establish a connection between a shared memory object and a file
descriptor. It shall create an open file description that refers to the shared memory object and a
file descriptor that refers to that open file description. The file descriptor shall be allocated as
described in Section 2.6 (on page 525), and can be used by other functions to refer to that shared
memory object. The name argument points to a string naming a shared memory object. It is
unspecified whether the name appears in the file system and is visible to other functions that
take pathnames as arguments. The name argument conforms to the construction rules for a
pathname, except that the interpretation of <slash> characters other than the leading <slash>
character in name is implementation-defined, and that the length limits for the name argument
are implementation-defined and need not be the same as the pathname limits {PATH_MAX} and
{NAME_MAX}. If name begins with the <slash> character, then processes calling shm_open()
with the same value of name refer to the same shared memory object, as long as that name has
not been removed. If name does not begin with the <slash> character, the effect is
implementation-defined.

If successful, shm_open() shall return a file descriptor for the shared memory object. The open
file description is new, and therefore the file descriptor does not share it with any other
processes. It is unspecified whether the file offset is set. The FD_CLOEXEC file descriptor flag
associated with the new file descriptor shall be set.

The file status flags and file access modes of the open file description shall be set according to
the value of oflag. The oflag argument is the bitwise-inclusive OR of the following flags.
Applications specify exactly one of the first two values (access modes) below in the value of
oflag:

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags can be specified in the value of oflag:

O_CREAT If the shared memory object exists, this flag has no effect, except as noted
under O_EXCL below. Otherwise, the shared memory object is created. The
user ID of the shared memory object shall be set to the effective user ID of the
process. The group ID of the shared memory object shall be set to the effective
group ID of the process; however, if the name argument is visible in the file
system, the group ID may be set to the group ID of the containing directory.
The permission bits of the shared memory object shall be set to the value of
the mode argument except those set in the file mode creation mask of the
process. When bits in mode other than the file permission bits are set, the effect
is unspecified. The mode argument does not affect whether the shared memory
object is opened for reading, for writing, or for both. The shared memory
object has a size of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared memory
object exists. The check for the existence of the shared memory object and the
creation of the object if it does not exist is atomic with respect to other

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2023

66301

66302

66303

66304

66305

66306

66307

66308

66309

66310

66311

66312

66313

66314

66315

66316

66317

66318

66319

66320

66321

66322

66323

66324

66325

66326

66327

66328

66329

66330

66331

66332

66333

66334

66335

66336

66337

66338

66339

66340

66341

66342

66343

66344

66345

66346

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shm_open() System Interfaces

processes executing shm_open() naming the same shared memory object with
O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the
result is undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the
object shall be truncated to zero length and the mode and owner shall be
unchanged by this function call. The result of using O_TRUNC with
O_RDONLY is undefined.

The following functions shall be atomic with respect to each other in the effects specified in
POSIX.1-2024 when they operate on shared memory objects:

close(), ftruncate(), mmap(), shm_open(), shm_unlink()

If two threads each call one of these functions, each call shall either see all of the specified effects
of the other call, or none of them. The requirement on the close() function shall also apply
whenever a file descriptor is successfully closed, however caused (for example, as a consequence
of calling close(), calling dup2(), or of process termination).

When a shared memory object is created, the state of the shared memory object, including all
data associated with the shared memory object, persists until the shared memory object is
unlinked and all other references are gone. It is unspecified whether the name and shared
memory object state remain valid after a system reboot.

RETURN VALUE
Upon successful completion, the shm_open() function shall return a non-negative integer
representing the file descriptor. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The shm_open() function shall fail if:

[EACCES] The shared memory object exists and the permissions specified by oflag are
denied, or the shared memory object does not exist and permission to create
the shared memory object is denied, or O_TRUNC is specified and write
permission is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named shared memory object already
exists.

[EINTR] The shm_open() operation was interrupted by a signal.

[EINVAL] The shm_open() operation is not supported for the given name.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] Too many shared memory objects are currently open in the system.

[ENOENT] O_CREAT is not set and the named shared memory object does not exist.

[ENOSPC] There is insufficient space for the creation of the new shared memory object.

The shm_open() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

2024 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66347

66348

66349

66350

66351

66352

66353

66354

66355

66356

66357

66358

66359

66360

66361

66362

66363

66364

66365

66366

66367

66368

66369

66370

66371

66372

66373

66374

66375

66376

66377

66378

66379

66380

66381

66382

66383

66384

66385

66386

66387

66388

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shm_open()

EXAMPLES

Creating and Mapping a Shared Memory Object

The following code segment demonstrates the use of shm_open() to create a shared memory
object which is then sized using ftruncate() before being mapped into the process address space
using mmap():

#include <unistd.h>
#include <sys/mman.h>
...

#define MAX_LEN 10000
struct region { /* Defines "structure" of shared memory */

int len;
char buf[MAX_LEN];

};
struct region *rptr;
int fd;

/* Create shared memory object and set its size */

fd = shm_open("/myregion", O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
if (fd == -1)

/* Handle error */;

if (ftruncate(fd, sizeof(struct region)) == -1)
/* Handle error */;

/* Map shared memory object */

rptr = mmap(NULL, sizeof(struct region),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

if (rptr == MAP_FAILED)
/* Handle error */;

/* Now we can refer to mapped region using fields of rptr;
for example, rptr->len */

...

APPLICATION USAGE
None.

RATIONALE
When the Memory Mapped Files option is supported, the normal open() call is used to obtain a
descriptor to a file to be mapped according to existing practice with mmap(). When the Shared
Memory Objects option is supported, the shm_open() function shall obtain a descriptor to the
shared memory object to be mapped.

There is ample precedent for having a file descriptor represent several types of objects. In the
POSIX.1-1990 standard, a file descriptor can represent a file, a pipe, a FIFO, a tty, or a directory.
Many implementations simply have an operations vector, which is indexed by the file descriptor
type and does very different operations. Note that in some cases the file descriptor passed to
generic operations on file descriptors is returned by open() or creat() and in some cases returned
by alternate functions, such as pipe(). The latter technique is used by shm_open().

Note that such shared memory objects can actually be implemented as mapped files. In both
cases, the size can be set after the open using ftruncate(). The shm_open() function itself does not

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2025

66389

66390

66391

66392

66393

66394

66395

66396

66397

66398

66399

66400

66401

66402

66403

66404

66405

66406

66407

66408

66409

66410

66411

66412

66413

66414

66415

66416

66417

66418

66419

66420

66421

66422

66423

66424

66425

66426

66427

66428

66429

66430

66431

66432

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shm_open() System Interfaces

create a shared object of a specified size because this would duplicate an extant function that set
the size of an object referenced by a file descriptor.

On implementations where memory objects are implemented using the existing file system, the
shm_open() function may be implemented using a macro that invokes open(), and the
shm_unlink() function may be implemented using a macro that invokes unlink().

For implementations without a permanent file system, the definition of the name of the memory
objects is allowed not to survive a system reboot. Note that this allows systems with a
permanent file system to implement memory objects as data structures internal to the
implementation as well.

On implementations that choose to implement memory objects using memory directly, a
shm_open() followed by an ftruncate() and close() can be used to preallocate a shared memory
area and to set the size of that preallocation. This may be necessary for systems without virtual
memory hardware support in order to ensure that the memory is contiguous.

The set of valid open flags to shm_open() was restricted to O_RDONLY, O_RDWR, O_CREAT,
and O_TRUNC because these could be easily implemented on most memory mapping systems.
This volume of POSIX.1-2024 is silent on the results if the implementation cannot supply the
requested file access because of implementation-defined reasons, including hardware ones. The
O_CLOEXEC open flag is not listed, because all shared memory objects are created with the
FD_CLOEXEC flag already set; an application can later use fcntl() to clear that flag to allow the
shared memory file descriptor to be preserved across the exec family of functions.

The error conditions [EACCES] and [ENOTSUP] are provided to inform the application that the
implementation cannot complete a request.

[EACCES] indicates for implementation-defined reasons, probably hardware-related, that the
implementation cannot comply with a requested mode because it conflicts with another
requested mode. An example might be that an application desires to open a memory object two
times, mapping different areas with different access modes. If the implementation cannot map a
single area into a process space in two places, which would be required if different access modes
were required for the two areas, then the implementation may inform the application at the time
of the second open.

[ENOTSUP] indicates for implementation-defined reasons, probably hardware-related, that the
implementation cannot comply with a requested mode at all. An example would be that the
hardware of the implementation cannot support write-only shared memory areas.

On all implementations, it may be desirable to restrict the location of the memory objects to
specific file systems for performance (such as a RAM disk) or implementation-defined reasons
(shared memory supported directly only on certain file systems). The shm_open() function may
be used to enforce these restrictions. There are a number of methods available to the application
to determine an appropriate name of the file or the location of an appropriate directory. One way
is from the environment via getenv(). Another would be from a configuration file.

This volume of POSIX.1-2024 specifies that memory objects have initial contents of zero when
created. This is consistent with current behavior for both files and newly allocated memory. For
those implementations that use physical memory, it would be possible that such
implementations could simply use available memory and give it to the process uninitialized.
This, however, is not consistent with standard behavior for the uninitialized data area, the stack,
and of course, files. Finally, it is highly desirable to set the allocated memory to zero for security
reasons. Thus, initializing memory objects to zero is required.

2026 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66433

66434

66435

66436

66437

66438

66439

66440

66441

66442

66443

66444

66445

66446

66447

66448

66449

66450

66451

66452

66453

66454

66455

66456

66457

66458

66459

66460

66461

66462

66463

66464

66465

66466

66467

66468

66469

66470

66471

66472

66473

66474

66475

66476

66477

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shm_open()

FUTURE DIRECTIONS
A future version might require the shm_open() and shm_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
Section 2.6 (on page 525), close(), dup(), exec , fcntl(), mmap(), shmat(), shmctl(), shmdt(),
shm_unlink(), umask()

XBD <fcntl.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The shm_open() function is marked as part of the Shared Memory Objects option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Shared Memory Objects option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/126 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
changing [ENAMETOOLONG] from a ``shall fail’’ to a ``may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording for setting the
user ID and group ID of the shared memory object.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0324 [835], XSH/TC2-2008/0325 [835],
and XSH/TC2-2008/0326 [835] are applied.

Issue 8
Austin Group Defect 411 is applied, adding a sentence about O_CLOEXEC to the RATIONALE
section.

Austin Group Defect 593 is applied, removing a reference to <fcntl.h> from the DESCRIPTION
section.

Austin Group Defect 695 is applied, adding atomicity requirements to operations on shared
memory objects.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2027

66478

66479

66480

66481

66482

66483

66484

66485

66486

66487

66488

66489

66490

66491

66492

66493

66494

66495

66496

66497

66498

66499

66500

66501

66502

66503

66504

66505

66506

66507

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shm_unlink() System Interfaces

NAME
shm_unlink — remove a shared memory object (REALTIME)

SYNOPSIS
SHM #include <sys/mman.h>

int shm_unlink(const char *name);

DESCRIPTION
The shm_unlink() function shall remove the name of the shared memory object named by the
string pointed to by name.

If one or more references to the shared memory object exist when the object is unlinked, the
name shall be removed before shm_unlink() returns, but the removal of the memory object
contents shall be postponed until all open and map references to the shared memory object have
been removed.

Even if the object continues to exist after the last shm_unlink(), reuse of the name shall
subsequently cause shm_open() to behave as if no shared memory object of this name exists (that
is, shm_open() shall fail if O_CREAT is not set, or shall create a new shared memory object if
O_CREAT is set).

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error. If −1 is returned, the named shared memory object
shall not be changed by this function call.

ERRORS
The shm_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named shared memory object.

[ENOENT] The named shared memory object does not exist.

The shm_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to shm_unlink()
with a name argument that contains the same shared memory object name as
was previously used in a successful shm_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
Names of memory objects that were allocated with open() are deleted with unlink() in the usual
fashion. Names of memory objects that were allocated with shm_open() are deleted with
shm_unlink(). Note that the actual memory object is not destroyed until the last close and
unmap on it have occurred if it was already in use.

2028 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66508

66509

66510

66511

66512

66513

66514

66515

66516

66517

66518

66519

66520

66521

66522

66523

66524

66525

66526

66527

66528

66529

66530

66531

66532

66533

66534

66535

66536

66537

66538

66539

66540

66541

66542

66543

66544

66545

66546

66547

66548

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shm_unlink()

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the shm_open() and shm_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
close(), mmap(), munmap(), shmat(), shmctl(), shmdt(), shm_open()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The shm_unlink() function is marked as part of the Shared Memory Objects option.

In the DESCRIPTION, text is added to clarify that reusing the same name after a shm_unlink()
will not attach to the old shared memory object.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Shared Memory Objects option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
``shall fail’’ to a ``may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2029

66549

66550

66551

66552

66553

66554

66555

66556

66557

66558

66559

66560

66561

66562

66563

66564

66565

66566

66567

66568

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shmat() System Interfaces

NAME
shmat — XSI shared memory attach operation

SYNOPSIS
XSI #include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

DESCRIPTION
The shmat() function operates on XSI shared memory (see XBD Section 3.332, on page 80). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The shmat() function attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the address space of the calling process. The segment is attached
at the address specified by one of the following criteria:

• If shmaddr is a null pointer, the segment is attached at the first available address as selected
by the system.

• If shmaddr is not a null pointer and (shmflg & SHM_RND) is non-zero, the segment is
attached at the address given by ((char *)shmaddr − ((uintptr_t)shmaddr % SHMLBA)). The
character '%' is the C-language remainder operator.

• If shmaddr is not a null pointer and (shmflg & SHM_RND) is 0, the segment is attached at
the address given by shmaddr.

• The segment is attached for reading if (shmflg & SHM_RDONLY) is non-zero and the
calling process has read permission; otherwise, if (shmflg & SHM_RDONLY) is 0 and the
calling process has read and write permission, the segment is attached for reading and
writing.

RETURN VALUE
Upon successful completion, shmat() shall increment the value of shm_nattch in the data
structure associated with the shared memory ID of the attached shared memory segment and
return the segment’s start address. Also, the shm_atime timestamp shall be set to the current
time, as described in Section 2.7.1 (on page 526).

Otherwise, the shared memory segment shall not be attached, shmat() shall return
SHM_FAILED, and errno shall be set to indicate the error.

ERRORS
The shmat() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
526).

[EINVAL] The value of shmid is not a valid shared memory identifier, the shmaddr is not a
null pointer, and the value of ((char *)shmaddr − ((uintptr_t)shmaddr %
SHMLBA)) is an illegal address for attaching shared memory; or the shmaddr
is not a null pointer, (shmflg & SHM_RND) is 0, and the value of shmaddr is an
illegal address for attaching shared memory.

[EMFILE] The number of shared memory segments attached to the calling process
would exceed the system-imposed limit.

[ENOMEM] The available data space is not large enough to accommodate the shared
memory segment.

2030 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66569

66570

66571

66572

66573

66574

66575

66576

66577

66578

66579

66580

66581

66582

66583

66584

66585

66586

66587

66588

66589

66590

66591

66592

66593

66594

66595

66596

66597

66598

66599

66600

66601

66602

66603

66604

66605

66606

66607

66608

66609

66610

66611

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shmat()

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 526) can be easily modified to use the
alternative interfaces.

RATIONALE
The symbol SHM_FAILED is used for the failure return of shmat() for consistency with
MAP_FAILED for mmap(). However, SHM_FAILED is required to have the same value as
((void *)(intptr_t)−1) to provide backwards compatibility for applications written to earlier
versions of this standard, where the failure return was specified as (void *)−1. This means that
implementations need to ensure that shmat() cannot return ((void *)(intptr_t)−1) on a successful
call.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), exec , exit(), fork(), shmctl(), shmdt(),
shmget(), shm_open(), shm_unlink()

XBD Section 3.332 (on page 80), <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 6
The Open Group Corrigendum U021/13 is applied.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0572 [345] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0327 [522] is applied.

Issue 8
Austin Group Defect 1237 is applied, changing ``shmaddr − . . .’’ to ``(char *)shmaddr − . . .’’.

Austin Group Defect 1238 is applied, changing the DESCRIPTION to avoid an ambiguous use of
``it’’.

Austin Group Defect 1239 is applied, adding SHM_FAILED.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2031

66612

66613

66614

66615

66616

66617

66618

66619

66620

66621

66622

66623

66624

66625

66626

66627

66628

66629

66630

66631

66632

66633

66634

66635

66636

66637

66638

66639

66640

66641

66642

66643

66644

66645

66646

66647

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shmctl() System Interfaces

NAME
shmctl — XSI shared memory control operations

SYNOPSIS
XSI #include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION
The shmctl() function operates on XSI shared memory (see XBD Section 3.332, on page 80). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The shmctl() function provides a variety of shared memory control operations as specified by
cmd. The following values for cmd are available:

IPC_STAT Place the current value of each member of the shmid_ds data structure
associated with shmid into the structure pointed to by buf . The contents of the
structure are defined in <sys/shm.h>.

IPC_SET Set the value of the following members of the shmid_ds data structure
associated with shmid to the corresponding value found in the structure
pointed to by buf :

shm_perm.uid
shm_perm.gid
shm_perm.mode Low-order nine bits.

Also, the shm_ctime timestamp shall be set to the current time, as described in
Section 2.7.1 (on page 526).

IPC_SET can only be executed by a process that has an effective user ID equal
to either that of a process with appropriate privileges or to the value of
shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated with
shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system. The
shared memory segment and shmid_ds data structure associated with it shall
be destroyed when all processes with the segment attached have either
detached the segment or terminated. If the segment is not attached to any
process, it shall be destroyed immediately. IPC_RMID can only be executed by
a process that has an effective user ID equal to either that of a process with
appropriate privileges or to the value of shm_perm.cuid or shm_perm.uid in the
shmid_ds data structure associated with shmid.

RETURN VALUE
Upon successful completion, shmctl() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The shmctl() function shall fail if:

[EACCES] The argument cmd is equal to IPC_STAT and the calling process does not have
read permission; see Section 2.7 (on page 526).

[EINVAL] The value of shmid is not a valid shared memory identifier, or the value of cmd
is not a valid command.

2032 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66648

66649

66650

66651

66652

66653

66654

66655

66656

66657

66658

66659

66660

66661

66662

66663

66664

66665

66666

66667

66668

66669

66670

66671

66672

66673

66674

66675

66676

66677

66678

66679

66680

66681

66682

66683

66684

66685

66686

66687

66688

66689

66690

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shmctl()

[EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID
of the calling process is not equal to that of a process with appropriate
privileges and it is not equal to the value of shm_perm.cuid or shm_perm.uid in
the data structure associated with shmid.

The shmctl() function may fail if:

[EOVERFLOW] The cmd argument is IPC_STAT and the gid or uid value is too large to be
stored in the structure pointed to by the buf argument.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 526) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), shmat(), shmdt(), shmget(), shm_open(),
shm_unlink()

XBD Section 3.332 (on page 80), <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0573 [345] is applied.

Issue 8
Austin Group Defect 1240 is applied, clarifying the description of IPC_RMID.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2033

66691

66692

66693

66694

66695

66696

66697

66698

66699

66700

66701

66702

66703

66704

66705

66706

66707

66708

66709

66710

66711

66712

66713

66714

66715

66716

66717

66718

66719

66720

66721

66722

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shmdt() System Interfaces

NAME
shmdt — XSI shared memory detach operation

SYNOPSIS
XSI #include <sys/shm.h>

int shmdt(const void *shmaddr);

DESCRIPTION
The shmdt() function operates on XSI shared memory (see XBD Section 3.332, on page 80). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The shmdt() function detaches the shared memory segment located at the address specified by
shmaddr from the address space of the calling process.

RETURN VALUE
Upon successful completion, shmdt() shall decrement the value of shm_nattch in the data
structure associated with the shared memory ID of the attached shared memory segment and
return 0. Also, the shm_dtime timestamp shall be set to the current time, as described in Section
2.7.1 (on page 526).

Otherwise, the shared memory segment shall not be detached, shmdt() shall return −1, and errno
shall be set to indicate the error.

ERRORS
The shmdt() function shall fail if:

[EINVAL] The value of shmaddr is not the data segment start address of a shared memory
segment.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 526) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), exec , exit(), fork(), shmat(), shmctl(),
shmget(), shm_open(), shm_unlink()

XBD Section 3.332 (on page 80), <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

2034 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66723

66724

66725

66726

66727

66728

66729

66730

66731

66732

66733

66734

66735

66736

66737

66738

66739

66740

66741

66742

66743

66744

66745

66746

66747

66748

66749

66750

66751

66752

66753

66754

66755

66756

66757

66758

66759

66760

66761

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shmdt()

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0574 [345] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2035

66762

66763

66764

66765

66766

66767

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shmget() System Interfaces

NAME
shmget — get an XSI shared memory segment

SYNOPSIS
XSI #include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

DESCRIPTION
The shmget() function operates on XSI shared memory (see XBD Section 3.332, on page 80). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 527).

The shmget() function shall return the shared memory identifier associated with key.

A shared memory identifier, associated data structure, and shared memory segment of at least
size bytes (see <sys/shm.h>) are created for key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a shared memory identifier associated with it and
(shmflg &IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new shared memory identifier shall be
initialized as follows:

• The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set to the
effective user ID and effective group ID, respectively, of the calling process.

• The low-order nine bits of shm_perm.mode are set to the low-order nine bits of shmflg.

• The value of shm_segsz is set to the value of size.

• The values of shm_lpid, shm_nattch, shm_atime, and shm_dtime are set to 0.

• The value of shm_ctime is set to the current time, as described in Section 2.7.1 (on page 526).

When the shared memory segment is created, it shall be initialized with all zero values.

RETURN VALUE
Upon successful completion, shmget() shall return a non-negative integer, namely a shared
memory identifier; otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The shmget() function shall fail if:

[EACCES] A shared memory identifier exists for key but operation permission as
specified by the low-order nine bits of shmflg would not be granted; see
Section 2.7 (on page 526).

[EEXIST] A shared memory identifier exists for the argument key but (shmflg
&IPC_CREAT) &&(shmflg &IPC_EXCL) is non-zero.

[EINVAL] A shared memory segment is to be created and the value of size is less than
the system-imposed minimum or greater than the system-imposed maximum.

[EINVAL] No shared memory segment is to be created and a shared memory segment
exists for key but the size of the segment associated with it is less than size.

[ENOENT] A shared memory identifier does not exist for the argument key and (shmflg
&IPC_CREAT) is 0.

2036 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66768

66769

66770

66771

66772

66773

66774

66775

66776

66777

66778

66779

66780

66781

66782

66783

66784

66785

66786

66787

66788

66789

66790

66791

66792

66793

66794

66795

66796

66797

66798

66799

66800

66801

66802

66803

66804

66805

66806

66807

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shmget()

[ENOMEM] A shared memory identifier and associated shared memory segment are to be
created, but the amount of available physical memory is not sufficient to fill
the request.

[ENOSPC] A shared memory identifier is to be created, but the system-imposed limit on
the maximum number of allowed shared memory identifiers system-wide
would be exceeded.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 526) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 526), Section 2.8 (on page 527), ftok(), shmat(), shmctl(), shmdt(), shm_open(),
shm_unlink()

XBD Section 3.332 (on page 80), <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0575 [345], XSH/TC1-2008/0576 [363],
and XSH/TC1-2008/0577 [344] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0328 [640] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2037

66808

66809

66810

66811

66812

66813

66814

66815

66816

66817

66818

66819

66820

66821

66822

66823

66824

66825

66826

66827

66828

66829

66830

66831

66832

66833

66834

66835

66836

66837

66838

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shutdown() System Interfaces

NAME
shutdown — shut down socket send and receive operations

SYNOPSIS
#include <sys/socket.h>

int shutdown(int socket, int how);

DESCRIPTION
The shutdown() function shall cause all or part of a full-duplex connection on the socket
associated with the file descriptor socket to be shut down.

The shutdown() function takes the following arguments:

socket Specifies the file descriptor of the socket.

how Specifies the type of shutdown. The values are as follows:

SHUT_RD Disables further receive operations.

SHUT_WR Disables further send operations.

SHUT_RDWR Disables further send and receive operations.

The shutdown() function disables subsequent send and/or receive operations on a socket,
depending on the value of the how argument.

RETURN VALUE
Upon successful completion, shutdown() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The shutdown() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The how argument is invalid.

[ENOTCONN] The socket is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

The shutdown() function may fail if:

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

EXAMPLES
None.

APPLICATION USAGE
The file descriptor remains open after shutdown() returns to the calling application.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), getsockopt(), pselect(), read(), recv(), recvfrom(), recvmsg(), send(), sendto(), setsockopt(),
socket(), write()

XBD <sys/socket.h>

2038 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66839

66840

66841

66842

66843

66844

66845

66846

66847

66848

66849

66850

66851

66852

66853

66854

66855

66856

66857

66858

66859

66860

66861

66862

66863

66864

66865

66866

66867

66868

66869

66870

66871

66872

66873

66874

66875

66876

66877

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces shutdown()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 8
Austin Group Defect 1475 is applied, changing the APPLICATION USAGE section and adding
close() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2039

66878

66879

66880

66881

66882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sig2str() System Interfaces

NAME
sig2str, str2sig — translate between signal names and numbers

SYNOPSIS
CX #include <signal.h>

int sig2str(int signum, char *str);
int str2sig(const char *restrict str, int *restrict pnum);

DESCRIPTION
The sig2str() function shall translate the signal number specified by signum to a signal name and
shall store this string in the location specified by str. The application shall ensure that str points
to a location that can store the string including the terminating null byte. The symbolic constant
SIG2STR_MAX defined in <signal.h> gives the maximum number of bytes required.

If signum is equal to 0, the behavior is unspecified.

If signum is equal to one of the symbolic constants listed in the table of signal numbers in
<signal.h>, the stored signal name shall be the name of the symbolic constant without the SIG
prefix.

If signum is equal to SIGRTMIN or SIGRTMAX, the stored string shall be "RTMIN" or "RTMAX",
respectively.

If signum is between SIGRTMIN+1 and (SIGRTMIN+SIGRTMAX)/2 inclusive, the stored string
shall be of the form "RTMIN+n", where n is the shortest decimal representation of the value of
signum−SIGRTMIN.

If signum is between (SIGRTMIN+SIGRTMAX)/2 + 1 and SIGRTMAX−1 inclusive, the stored
string shall be either of the form "RTMIN+n" or of the form "RTMAX−m", where n is the shortest
decimal representation of the value of signum−SIGRTMIN and m is the shortest decimal
representation of the value of SIGRTMAX−signum.

If signum is a valid, supported signal number, is either less than SIGRTMIN or greater than
SIGRTMAX, and is not equal to one of the symbolic constants listed in the table of signal
numbers in <signal.h>, the stored string shall uniquely identify the signal number signum in an
unspecified manner.

The str2sig() function shall translate the signal name in the string pointed to by str to a signal
number and shall store this value in the location specified by pnum.

If str points to a string containing the name of one of the symbolic constants listed in the table of
signal numbers in <signal.h>, without the SIG prefix, the stored signal number shall be equal to
the value of the symbolic constant.

If str points to the string "RTMIN" or "RTMAX", the stored value shall be equal to SIGRTMIN or
SIGRTMAX, respectively.

If str points to a string of the form "RTMIN+n", where n is a decimal representation of a number
between 1 and SIGRTMAX−SIGRTMIN−1 inclusive, the stored value shall be equal to
SIGRTMIN+n.

If str points to a string of the form "RTMAX−n", where n is a decimal representation of a number
between 1 and SIGRTMAX−SIGRTMIN−1 inclusive, the stored value shall be equal to
SIGRTMAX−n.

If str points to a string containing a decimal representation of a valid, supported signal number,
the value stored in the location pointed to by pnum shall be equal to that number.

2040 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66883

66884

66885

66886

66887

66888

66889

66890

66891

66892

66893

66894

66895

66896

66897

66898

66899

66900

66901

66902

66903

66904

66905

66906

66907

66908

66909

66910

66911

66912

66913

66914

66915

66916

66917

66918

66919

66920

66921

66922

66923

66924

66925

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sig2str()

If str points to a string containing a decimal representation of the value 0 and the string was not
returned by a previous successful call to sig2str() with a signum argument of 0, the behavior is
unspecified.

If str points to a string returned by a previous successful call to sig2str(signum,str), the value
stored in the location pointed to by pnum shall be equal to signum.

If str points to a string that does not meet any of the above criteria, str2sig() shall store a value in
the location pointed to by pnum if and only if it recognizes the string as an additional
implementation-dependent form of signal name.

RETURN VALUE
If signum is a valid, supported signal number (that is, one for which kill() does not return −1
with errno set to [EINVAL]), the sig2str() function shall return 0; otherwise, if signum is not equal
to 0, it shall return −1.

If str2sig() stores a value in the location pointed to by pnum, it shall return 0; otherwise, it shall
return −1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Historical versions of these functions translated a signum value 0 to "EXIT" (and vice versa), so
that they could be used by the shell for the trap utility. When adding the functions to this
standard, the standard developers felt that they should be aimed at more general-purpose use,
and consequently requiring this behavior did not seem appropriate and so the behavior in this
case has been made unspecified.

FUTURE DIRECTIONS
None.

SEE ALSO
kill(), sigaction(), strsignal()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2041

66926

66927

66928

66929

66930

66931

66932

66933

66934

66935

66936

66937

66938

66939

66940

66941

66942

66943

66944

66945

66946

66947

66948

66949

66950

66951

66952

66953

66954

66955

66956

66957

66958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigaction() System Interfaces

NAME
sigaction — examine and change a signal action

SYNOPSIS
CX #include <signal.h>

int sigaction(int sig, const struct sigaction *restrict act,
struct sigaction *restrict oact);

DESCRIPTION
The sigaction() function allows the calling process to examine and/or specify the action to be
associated with a specific signal. The argument sig specifies the signal; acceptable values are
defined in <signal.h>.

The structure sigaction, used to describe an action to be taken, is defined in the <signal.h>
header to include at least the following members:

Member Type Member Name Description
void(*) (int) sa_handler Pointer to a signal-catching function or

one of the macros SIG_IGN or SIG_DFL.
sigset_t sa_mask Additional set of signals to be blocked

during execution of signal-catching
function.

int sa_flags Special flags to affect behavior of signal.
sa_sigaction Pointer to a signal-catching function.void(*) (int,

siginfo_t *, void *)

The storage occupied by sa_handler and sa_sigaction may overlap, and a conforming application
shall not use both simultaneously.

If the argument act is not a null pointer, it points to a structure specifying the action to be
associated with the specified signal. If the argument oact is not a null pointer, the action
previously associated with the signal is stored in the location pointed to by the argument oact. If
the argument act is a null pointer, signal handling is unchanged; thus, the call can be used to
enquire about the current handling of a given signal. The SIGKILL and SIGSTOP signals shall
not be added to the signal mask using this mechanism; this restriction shall be enforced by the
system without causing an error to be indicated.

If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the
sa_handler field identifies the action to be associated with the specified signal. If the
SA_SIGINFO flag is set in the sa_flags field, the sa_sigaction field specifies a signal-catching
function.

The sa_flags field can be used to modify the behavior of the specified signal.

The following flags, defined in the <signal.h> header, can be set in sa_flags:

XSI SA_NOCLDSTOP Do not generate SIGCHLD when children stop or stopped children
continue.

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags, and
the implementation supports the SIGCHLD signal, then a SIGCHLD
signal shall be generated for the calling process whenever any of its child

XSI processes stop and a SIGCHLD signal may be generated for the calling
process whenever any of its stopped child processes are continued. If sig
is SIGCHLD and the SA_NOCLDSTOP flag is set in sa_flags, then the
implementation shall not generate a SIGCHLD signal in this way.

2042 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

66959

66960

66961

66962

66963

66964

66965

66966

66967

66968

66969

66970

66971

66972

66973

66974

66975

66976

66977

66978

66979

66980

66981

66982

66983

66984

66985

66986

66987

66988

66989

66990

66991

66992

66993

66994

66995

66996

66997

66998

66999

67000

67001

67002

67003

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigaction()

XSI SA_ONSTACK If set and an alternate signal stack has been declared with sigaltstack(), the
signal shall be delivered to the calling process on that stack. Otherwise,
the signal shall be delivered on the current stack.

SA_RESETHAND If set, the disposition of the signal shall be reset to SIG_DFL and the
SA_SIGINFO flag shall be cleared on entry to the signal handler.

Note: SIGILL and SIGTRAP cannot be automatically reset when delivered;
the system silently enforces this restriction.

Otherwise, the disposition of the signal shall not be modified on entry to
the signal handler.

In addition, if this flag is set, sigaction() may behave as if the
SA_NODEFER flag were also set.

SA_RESTART This flag affects the behavior of interruptible functions; that is, those
specified to fail with errno set to [EINTR]. If set, and a function specified
as interruptible is interrupted by this signal, the function shall restart and
shall not fail with [EINTR] unless otherwise specified. If an interruptible
function which uses a timeout is restarted, the duration of the timeout
following the restart is set to an unspecified value that does not exceed
the original timeout value. If the flag is not set, interruptible functions
interrupted by this signal shall fail with errno set to [EINTR].

SA_SIGINFO If cleared and the signal is caught, the signal-catching function shall be
entered as:

void func(int signo);

where signo is the only argument to the signal-catching function. In this
case, the application shall use the sa_handler member to describe the
signal-catching function and the application shall not modify the
sa_sigaction member.

If SA_SIGINFO is set and the signal is caught, the signal-catching
function shall be entered as:

void func(int signo, siginfo_t *info, void *context);

where two additional arguments are passed to the signal-catching
function. The second argument shall point to an object of type siginfo_t
explaining the reason why the signal was generated; the third argument
can be cast to a pointer to an object of type ucontext_t to refer to the
receiving thread’s context that was interrupted when the signal was
delivered. In this case, the application shall use the sa_sigaction member to
describe the signal-catching function and the application shall not modify
the sa_handler member.

The si_signo member contains the system-generated signal number.

XSI The si_errno member may contain implementation-defined additional
error information; if non-zero, it contains an error number identifying the
condition that caused the signal to be generated.

The si_code member contains a code identifying the cause of the signal, as
described in Section 2.4.3 (on page 516).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2043

67004

67005

67006

67007

67008

67009

67010

67011

67012

67013

67014

67015

67016

67017

67018

67019

67020

67021

67022

67023

67024

67025

67026

67027

67028

67029

67030

67031

67032

67033

67034

67035

67036

67037

67038

67039

67040

67041

67042

67043

67044

67045

67046

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigaction() System Interfaces

XSI SA_NOCLDWAIT If sig does not equal SIGCHLD, the behavior is unspecified. Otherwise,
the behavior of the SA_NOCLDWAIT flag is as specified in Consequences
of Process Termination (on page 568).

SA_NODEFER If set and sig is caught, sig shall not be added to the thread’s signal mask
on entry to the signal handler unless it is included in sa_mask. Otherwise,
sig shall always be added to the thread’s signal mask on entry to the
signal handler.

When a signal is caught by a signal-catching function installed by sigaction(), a new signal mask
is calculated and installed for the duration of the signal-catching function (or until a call to either
sigprocmask() or sigsuspend() is made). This mask is formed by taking the union of the current
signal mask and the value of the sa_mask for the signal being delivered, and unless
SA_NODEFER or SA_RESETHAND is set, then including the signal being delivered. If and
when the user’s signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it shall remain installed until another action is
explicitly requested (by another call to sigaction()), until the SA_RESETHAND flag causes
resetting of the handler, or until one of the exec functions is called.

If the previous action for sig had been established by signal(), the values of the fields returned in
the structure pointed to by oact are unspecified, and in particular oact->sa_handler is not
necessarily the same value passed to signal(). However, if a pointer to the same structure or a
copy thereof is passed to a subsequent call to sigaction() via the act argument, handling of the
signal shall be as if the original call to signal() were repeated.

If sigaction() fails, no new signal handler is installed.

It is unspecified whether an attempt to set the action for a signal that cannot be caught or
ignored to SIG_DFL is ignored or causes an error to be returned with errno set to [EINVAL].

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig when
it is already pending is implementation-defined; the signal-catching function shall be invoked
with a single argument. If SA_SIGINFO is set in sa_flags, then subsequent occurrences of sig
generated by sigqueue() or as a result of any signal-generating function that supports the
specification of an application-defined value (when sig is already pending) shall be queued in
FIFO order until delivered or accepted; the signal-catching function shall be invoked with three
arguments. The application specified value is passed to the signal-catching function as the
si_value member of the siginfo_t structure.

The result of the use of sigaction() and a sigwait() function concurrently within a process on the
same signal is unspecified.

RETURN VALUE
Upon successful completion, sigaction() shall return 0; otherwise, −1 shall be returned, errno shall
be set to indicate the error, and no new signal-catching function shall be installed.

2044 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67047

67048

67049

67050

67051

67052

67053

67054

67055

67056

67057

67058

67059

67060

67061

67062

67063

67064

67065

67066

67067

67068

67069

67070

67071

67072

67073

67074

67075

67076

67077

67078

67079

67080

67081

67082

67083

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigaction()

ERRORS
The sigaction() function shall fail if:

[EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a
signal that cannot be caught or ignore a signal that cannot be ignored.

The sigaction() function may fail if:

[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be
caught or ignored (or both).

In addition, on systems that do not support the XSI option, the sigaction() function may fail if the
SA_SIGINFO flag is set in the sa_flags field of the sigaction structure for a signal not in the range
SIGRTMIN to SIGRTMAX.

EXAMPLES

Establishing a Signal Handler

The following example demonstrates the use of sigaction() to establish a handler for the SIGINT
signal.

#include <signal.h>

static void handler(int signum)
{

/* Take appropriate actions for signal delivery */
}

int main(void)
{

struct sigaction sa;

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART; /* Restart functions if

interrupted by handler */
if (sigaction(SIGINT, &sa, NULL) == -1)

/* Handle error */;

/* Further code */
}

APPLICATION USAGE
The sigaction() function supersedes the signal() function, and should be used in preference. In
particular, sigaction() and signal() should not be used in the same process to control the same
signal. The behavior of async-signal-safe functions, as defined in their respective
DESCRIPTION sections, is as specified by this volume of POSIX.1-2024, regardless of invocation
from a signal-catching function. This is the only intended meaning of the statement that async-
signal-safe functions may be used in signal-catching functions without restrictions. Applications
must still consider all effects of such functions on such things as data structures, files, and
process state. In particular, application developers need to consider the restrictions on
interactions when interrupting sleep() and interactions among multiple handles for a file
description. The fact that any specific function is listed as async-signal-safe does not necessarily
mean that invocation of that function from a signal-catching function is recommended.

In order to prevent errors arising from interrupting non-async-signal-safe function calls,
applications should protect calls to these functions either by blocking the appropriate signals or

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2045

67084

67085

67086

67087

67088

67089

67090

67091

67092

67093

67094

67095

67096

67097

67098

67099

67100

67101

67102

67103

67104

67105

67106

67107

67108

67109

67110

67111

67112

67113

67114

67115

67116

67117

67118

67119

67120

67121

67122

67123

67124

67125

67126

67127

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigaction() System Interfaces

through the use of some programmatic semaphore (see semget(), sem_init(), sem_open(), and so
on). Note in particular that even the ``safe’’ functions may modify errno; the signal-catching
function, if not executing as an independent thread, should save and restore its value in order to
avoid the possibility that delivery of a signal in between an error return from a function that sets
errno and the subsequent examination of errno could result in the signal-catching function
changing the value of errno. Naturally, the same principles apply to the async-signal-safety of
application routines and asynchronous data access. Note that longjmp() and siglongjmp() are not
in the list of async-signal-safe functions. This is because the code executing after longjmp() and
siglongjmp() can call any unsafe functions with the same danger as calling those unsafe
functions directly from the signal handler. Applications that use longjmp() and siglongjmp() from
within signal handlers require rigorous protection in order to be portable. Many of the other
functions that are excluded from the list are traditionally implemented using either malloc() or
free() functions or the standard I/O library, both of which traditionally use data structures in a
non-async-signal-safe manner. Since any combination of different functions using a common
data structure can cause async-signal-safety problems, this volume of POSIX.1-2024 does not
define the behavior when any unsafe function is called in a signal handler that interrupts an
unsafe function.

Usually, the signal is executed on the stack that was in effect before the signal was delivered. An
alternate stack may be specified to receive a subset of the signals being caught.

When the signal handler returns, the receiving thread resumes execution at the point it was
interrupted unless the signal handler makes other arrangements. If longjmp() is used to leave the
signal handler, then the signal mask must be explicitly restored.

This volume of POSIX.1-2024 defines the third argument of a signal handling function when
SA_SIGINFO is set as a void * instead of a ucontext_t *, but without requiring type checking.
New applications should explicitly cast the third argument of the signal handling function to
ucontext_t *.

The BSD optional four argument signal handling function is not supported by this volume of
POSIX.1-2024. The BSD declaration would be:

void handler(int sig, int code, struct sigcontext *scp,
char *addr);

where sig is the signal number, code is additional information on certain signals, scp is a pointer
to the sigcontext structure, and addr is additional address information. Much the same
information is available in the objects pointed to by the second argument of the signal handler
specified when SA_SIGINFO is set.

Since the sigaction() function is allowed but not required to set SA_NODEFER when the
application sets the SA_RESETHAND flag, applications which depend on the SA_RESETHAND
functionality for the newly installed signal handler must always explicitly set SA_NODEFER
when they set SA_RESETHAND in order to be portable.

See also the rationale for Realtime Signal Generation and Delivery in XRAT Section B.2.4.2 (on
page 3749).

RATIONALE
Although this volume of POSIX.1-2024 requires that signals that cannot be ignored shall not be
added to the signal mask when a signal-catching function is entered, there is no explicit
requirement that subsequent calls to sigaction() reflect this in the information returned in the oact
argument. In other words, if SIGKILL is included in the sa_mask field of act, it is unspecified
whether or not a subsequent call to sigaction() returns with SIGKILL included in the sa_mask
field of oact.

2046 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67128

67129

67130

67131

67132

67133

67134

67135

67136

67137

67138

67139

67140

67141

67142

67143

67144

67145

67146

67147

67148

67149

67150

67151

67152

67153

67154

67155

67156

67157

67158

67159

67160

67161

67162

67163

67164

67165

67166

67167

67168

67169

67170

67171

67172

67173

67174

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigaction()

The SA_NOCLDSTOP flag, when supplied in the act->sa_flags parameter, allows overloading
SIGCHLD with the System V semantics that each SIGCLD signal indicates a single terminated
child. Most conforming applications that catch SIGCHLD are expected to install signal-catching
functions that repeatedly call the waitpid() function with the WNOHANG flag set, acting on
each child for which status is returned, until waitpid() returns zero. If stopped children are not of
interest, the use of the SA_NOCLDSTOP flag can prevent the overhead from invoking the
signal-catching routine when they stop.

Some historical implementations also define other mechanisms for stopping processes, such as
the ptrace() function. These implementations usually do not generate a SIGCHLD signal when
processes stop due to this mechanism; however, that is beyond the scope of this volume of
POSIX.1-2024.

This volume of POSIX.1-2024 requires that calls to sigaction() that supply a NULL act argument
succeed, even in the case of signals that cannot be caught or ignored (that is, SIGKILL or
SIGSTOP). The System V signal() and BSD sigvec() functions return [EINVAL] in these cases
and, in this respect, their behavior varies from sigaction().

This volume of POSIX.1-2024 requires that sigaction() properly save and restore a signal action
set up by the ISO C standard signal() function. However, there is no guarantee that the reverse is
true, nor could there be given the greater amount of information conveyed by the sigaction
structure. Because of this, applications should avoid using both functions for the same signal in
the same process. Since this cannot always be avoided in case of general-purpose library
routines, they should always be implemented with sigaction().

It was intended that the signal() function should be implementable as a library routine using
sigaction().

The POSIX Realtime Extension extends the sigaction() function as specified by the POSIX.1-1990
standard to allow the application to request on a per-signal basis via an additional signal action
flag that the extra parameters, including the application-defined signal value, if any, be passed to
the signal-catching function.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), exec , _Exit(), kill(), longjmp(), pthread_sigmask(), raise(), semget(),
sem_init(), sem_open(), sig2str(), sigaddset(), sigaltstack(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), signal(), sigsuspend(), wait(), waitid()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and POSIX
Threads Extension.

In the DESCRIPTION, the second argument to func when SA_SIGINFO is set is no longer
permitted to be NULL, and the description of permitted siginfo_t contents is expanded by
reference to <signal.h>.

Since the X/OPEN UNIX Extension functionality is now folded into the BASE, the [ENOTSUP]
error is deleted.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2047

67175

67176

67177

67178

67179

67180

67181

67182

67183

67184

67185

67186

67187

67188

67189

67190

67191

67192

67193

67194

67195

67196

67197

67198

67199

67200

67201

67202

67203

67204

67205

67206

67207

67208

67209

67210

67211

67212

67213

67214

67215

67216

67217

67218

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigaction() System Interfaces

Issue 6
The Open Group Corrigendum U028/7 is applied. In the paragraph entitled ``Signal Effects on
Other Functions’’, a reference to sigpending() is added.

In the DESCRIPTION, the text ``Signal Generation and Delivery’’, ``Signal Actions’’, and ``Signal
Effects on Other Functions’’ are moved to a separate section of this volume of POSIX.1-2024.

Text describing functionality from the Realtime Signals Extension option is marked.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The [ENOTSUP] error condition is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the sigaction() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

References to the wait3() function are removed.

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/57 is applied, changing text in the table
describing the sigaction structure.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/127 is applied, removing text from the
DESCRIPTION duplicated later in the same section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/128 is applied, updating the
DESCRIPTION and APPLICATION USAGE sections. Changes are made to refer to the thread
rather than the process.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/129 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #004 is applied.

Austin Group Interpretations 1003.1-2001 #065 and #084 are applied, clarifying the role of the
SA_NODEFER flag with respect to the signal mask, and clarifying the SA_RESTART flag for
interrupted functions which use timeouts.

Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-167 is applied, updating the APPLICATION USAGE section.

SD5-XSH-ERN-172 is applied, updating the DESCRIPTION to make optional the requirement
that when the SA_RESETHAND flag is set, sigaction() shall behave as if the SA_NODEFER flag
were also set.

Functionality relating to the Realtime Signals Extension option is moved to the Base.

The description of the si_code member is replaced with a reference to Section 2.4.3 (on page 516).

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0578 [66] and XSH/TC1-2008/0579
[140] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0329 [690] and XSH/TC2-2008/0330
[491] are applied.

2048 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67219

67220

67221

67222

67223

67224

67225

67226

67227

67228

67229

67230

67231

67232

67233

67234

67235

67236

67237

67238

67239

67240

67241

67242

67243

67244

67245

67246

67247

67248

67249

67250

67251

67252

67253

67254

67255

67256

67257

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigaction()

Issue 8
Austin Group Defect 1138 is applied, adding sig2str() to the SEE ALSO section.

Austin Group Defect 1195 is applied, changing ``main()’’ to ``main(void)’’.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2049

67258

67259

67260

67261

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigaddset() System Interfaces

NAME
sigaddset — add a signal to a signal set

SYNOPSIS
CX #include <signal.h>

int sigaddset(sigset_t *set, int signo);

DESCRIPTION
The sigaddset() function adds the individual signal specified by the signo to the signal set pointed
to by set.

Applications shall call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigaddset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The sigaddset() function may fail if:

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), pthread_sigmask(), sigaction(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

2050 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67262

67263

67264

67265

67266

67267

67268

67269

67270

67271

67272

67273

67274

67275

67276

67277

67278

67279

67280

67281

67282

67283

67284

67285

67286

67287

67288

67289

67290

67291

67292

67293

67294

67295

67296

67297

67298

67299

67300

67301

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigaltstack()

NAME
sigaltstack — set and get signal alternate stack context

SYNOPSIS
XSI #include <signal.h>

int sigaltstack(const stack_t *restrict ss, stack_t *restrict oss);

DESCRIPTION
The sigaltstack() function allows a process to define and examine the state of an alternate stack
for signal handlers for the current thread. Signals that have been explicitly declared to execute
on the alternate stack shall be delivered on the alternate stack.

If ss is not a null pointer, it points to a stack_t structure that specifies the alternate signal stack
that shall take effect upon return from sigaltstack(). The ss_flags member specifies the new stack
state. If it is set to SS_DISABLE, the stack is disabled and ss_sp and ss_size are ignored.
Otherwise, the stack shall be enabled, and the ss_sp and ss_size members specify the new address
and size of the stack.

The range of addresses starting at ss_sp up to but not including ss_sp+ss_size is available to the
implementation for use as the stack. This function makes no assumptions regarding which end
is the stack base and in which direction the stack grows as items are pushed.

If oss is not a null pointer, upon successful completion it shall point to a stack_t structure that
specifies the alternate signal stack that was in effect prior to the call to sigaltstack(). The ss_sp
and ss_size members specify the address and size of that stack. The ss_flags member specifies the
stack’s state, and may contain one of the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts to
modify the alternate signal stack while the process is executing on it fail. This
flag shall not be modified by processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value SIGSTKSZ is a system default specifying the number of bytes that would be used to
cover the usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ
is defined to be the minimum stack size for a signal handler. In computing an alternate stack
size, a program should add that amount to its stack requirements to allow for the system
implementation overhead. The constants SS_ONSTACK, SS_DISABLE, SIGSTKSZ, and
MINSIGSTKSZ are defined in <signal.h>.

After a successful call to one of the exec functions, there are no alternate signal stacks in the new
process image.

In some implementations, a signal (whether or not indicated to execute on the alternate stack)
shall always execute on the alternate stack if it is delivered while another signal is being caught
using the alternate stack.

Use of this function by library threads that are not bound to kernel-scheduled entities results in
undefined behavior.

RETURN VALUE
Upon successful completion, sigaltstack() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2051

67302

67303

67304

67305

67306

67307

67308

67309

67310

67311

67312

67313

67314

67315

67316

67317

67318

67319

67320

67321

67322

67323

67324

67325

67326

67327

67328

67329

67330

67331

67332

67333

67334

67335

67336

67337

67338

67339

67340

67341

67342

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigaltstack() System Interfaces

ERRORS
The sigaltstack() function shall fail if:

[EINVAL] The ss argument is not a null pointer, and the ss_flags member pointed to by ss
has SS_ONSTACK or invalid flags set.

[ENOMEM] The size of the alternate stack area is less than MINSIGSTKSZ.

[EPERM] An attempt was made to modify an active stack.

EXAMPLES

Allocating Memory for an Alternate Stack

The following example illustrates a method for allocating memory for an alternate stack.

#include <signal.h>
...
if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)

/* Error return. */
sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk,(stack_t *)0) < 0)

perror("sigaltstack");

APPLICATION USAGE
On some implementations, stack space is automatically extended as needed. On those
implementations, automatic extension is typically not available for an alternate stack. If the stack
overflows, the behavior is undefined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), exec , sigaction(), sigsetjmp()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last sentence of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the sigaltstack() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/58 is applied, updating the first sentence
to include ``for the current thread’’.

2052 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67343

67344

67345

67346

67347

67348

67349

67350

67351

67352

67353

67354

67355

67356

67357

67358

67359

67360

67361

67362

67363

67364

67365

67366

67367

67368

67369

67370

67371

67372

67373

67374

67375

67376

67377

67378

67379

67380

67381

67382

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigaltstack()

Issue 8
Austin Group Defect 1187 is applied, changing the description of the [EINVAL] error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2053

67383

67384

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigdelset() System Interfaces

NAME
sigdelset — delete a signal from a signal set

SYNOPSIS
CX #include <signal.h>

int sigdelset(sigset_t *set, int signo);

DESCRIPTION
The sigdelset() function deletes the individual signal specified by signo from the signal set
pointed to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigdelset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The sigdelset() function may fail if:

[EINVAL] The signo argument is not a valid signal number, or is an unsupported signal
number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), pthread_sigmask(), sigaction(), sigaddset(), sigemptyset(), sigfillset(),
sigismember(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

2054 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67385

67386

67387

67388

67389

67390

67391

67392

67393

67394

67395

67396

67397

67398

67399

67400

67401

67402

67403

67404

67405

67406

67407

67408

67409

67410

67411

67412

67413

67414

67415

67416

67417

67418

67419

67420

67421

67422

67423

67424

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigemptyset()

NAME
sigemptyset — initialize and empty a signal set

SYNOPSIS
CX #include <signal.h>

int sigemptyset(sigset_t *set);

DESCRIPTION
The sigemptyset() function initializes the signal set pointed to by set, such that all signals defined
in POSIX.1-2024 are excluded.

RETURN VALUE
Upon successful completion, sigemptyset() shall return 0; otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The implementation of the sigemptyset() (or sigfillset()) function could quite trivially clear (or set)
all the bits in the signal set. Alternatively, it would be reasonable to initialize part of the
structure, such as a version field, to permit binary-compatibility between releases where the size
of the set varies. For such reasons, either sigemptyset() or sigfillset() must be called prior to any
other use of the signal set, even if such use is read-only (for example, as an argument to
sigpending()). This function is not intended for dynamic allocation.

The sigfillset() and sigemptyset() functions require that the resulting signal set include (or
exclude) all the signals defined in this volume of POSIX.1-2024. Although it is outside the scope
of this volume of POSIX.1-2024 to place this requirement on signals that are implemented as
extensions, it is recommended that implementation-defined signals also be affected by these
functions. However, there may be a good reason for a particular signal not to be affected. For
example, blocking or ignoring an implementation-defined signal may have undesirable side-
effects, whereas the default action for that signal is harmless. In such a case, it would be
preferable for such a signal to be excluded from the signal set returned by sigfillset().

In early proposals there was no distinction between invalid and unsupported signals (the names
of optional signals that were not supported by an implementation were not defined by that
implementation). The [EINVAL] error was thus specified as a required error for invalid signals.
With that distinction, it is not necessary to require implementations of these functions to
determine whether an optional signal is actually supported, as that could have a significant
performance impact for little value. The error could have been required for invalid signals and
optional for unsupported signals, but this seemed unnecessarily complex. Thus, the error is
optional in both cases.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2055

67425

67426

67427

67428

67429

67430

67431

67432

67433

67434

67435

67436

67437

67438

67439

67440

67441

67442

67443

67444

67445

67446

67447

67448

67449

67450

67451

67452

67453

67454

67455

67456

67457

67458

67459

67460

67461

67462

67463

67464

67465

67466

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigemptyset() System Interfaces

SEE ALSO
Section 2.4 (on page 513), pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigfillset(),
sigismember(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

2056 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67467

67468

67469

67470

67471

67472

67473

67474

67475

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigfillset()

NAME
sigfillset — initialize and fill a signal set

SYNOPSIS
CX #include <signal.h>

int sigfillset(sigset_t *set);

DESCRIPTION
The sigfillset() function shall initialize the signal set pointed to by set, such that all signals
defined in this volume of POSIX.1-2024 are included.

RETURN VALUE
Upon successful completion, sigfillset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to sigemptyset() (on page 2055).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigismember(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2057

67476

67477

67478

67479

67480

67481

67482

67483

67484

67485

67486

67487

67488

67489

67490

67491

67492

67493

67494

67495

67496

67497

67498

67499

67500

67501

67502

67503

67504

67505

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigismember() System Interfaces

NAME
sigismember — test for a signal in a signal set

SYNOPSIS
CX #include <signal.h>

int sigismember(const sigset_t *set, int signo);

DESCRIPTION
The sigismember() function shall test whether the signal specified by signo is a member of the set
pointed to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigismember() shall return 1 if the specified signal is a member of
the specified set, or 0 if it is not. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sigismember() function may fail if:

[EINVAL] The signo argument is not a valid signal number, or is an unsupported signal
number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigfillset(),
sigemptyset(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

2058 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67506

67507

67508

67509

67510

67511

67512

67513

67514

67515

67516

67517

67518

67519

67520

67521

67522

67523

67524

67525

67526

67527

67528

67529

67530

67531

67532

67533

67534

67535

67536

67537

67538

67539

67540

67541

67542

67543

67544

67545

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces siglongjmp()

NAME
siglongjmp — non-local goto with signal handling

SYNOPSIS
CX #include <setjmp.h>

_Noreturn void siglongjmp(sigjmp_buf env, int val);

DESCRIPTION
The siglongjmp() function shall be equivalent to the longjmp() function, except as follows:

• References to setjmp() shall be equivalent to sigsetjmp().

• The siglongjmp() function shall restore the saved signal mask if and only if the env
argument was initialized by a call to sigsetjmp() with a non-zero savemask argument.

RETURN VALUE
After siglongjmp() is completed, thread execution shall continue as if the corresponding
invocation of sigsetjmp() had just returned the value specified by val. The siglongjmp() function
shall not cause sigsetjmp() to return 0; if val is 0, sigsetjmp() shall return the value 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp() or longjmp() and sigsetjmp() or siglongjmp() is only significant
for programs which use sigaction(), sigprocmask(), or sigsuspend().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), pthread_sigmask(), setjmp(), sigsetjmp(), sigsuspend()

XBD <setjmp.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ISO POSIX-1 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The DESCRIPTION is rewritten in terms of longjmp().

The SYNOPSIS is marked CX since the presence of this function in the <setjmp.h> header is an
extension over the ISO C standard.

Issue 8
Austin Group Defect 1302 is applied, adding _Noreturn to the SYNOPSIS.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2059

67546

67547

67548

67549

67550

67551

67552

67553

67554

67555

67556

67557

67558

67559

67560

67561

67562

67563

67564

67565

67566

67567

67568

67569

67570

67571

67572

67573

67574

67575

67576

67577

67578

67579

67580

67581

67582

67583

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

signal() System Interfaces

NAME
signal — signal management

SYNOPSIS
#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The signal() function chooses one of three ways in which receipt of the signal number sig is to be
subsequently handled. If the value of func is SIG_DFL, default handling for that signal shall
occur. If the value of func is SIG_IGN, the signal shall be ignored. Otherwise, the application
shall ensure that func points to a function to be called when that signal occurs. An invocation of
such a function because of a signal, or (recursively) of any further functions called by that
invocation (other than functions in the standard library), is called a ``signal handler’’.

When a signal occurs, and func points to a function, it is implementation-defined whether the
equivalent of a:

signal(sig, SIG_DFL);

is executed or the implementation prevents some implementation-defined set of signals (at least
including sig) from occurring until the current signal handling has completed. (If the value of sig
is SIGILL, the implementation may alternatively define that no action is taken.) Next the
equivalent of:

(*func)(sig);

is executed. If and when the function returns, if the value of sig was SIGFPE, SIGILL, or
SIGSEGV or any other implementation-defined value corresponding to a computational
exception, the behavior is undefined. Otherwise, the program shall resume execution at the
point it was interrupted. The ISO C standard places a restriction on applications relating to the

CX use of raise() from signal handlers. This restriction does not apply to POSIX applications, as
POSIX.1-2024 requires raise() to be async-signal-safe (see Section 2.4.3, on page 516).

CX If the process is multi-threaded, or if the process is single-threaded and a signal handler is
executed other than as the result of:

CX • The process calling abort(), raise(), kill(), pthread_kill(), or sigqueue() to generate a signal
that is not blocked

CX • A pending signal being unblocked and being delivered before the call that unblocked it
returns

the behavior is undefined if:

CX • The signal handler refers to any object other than errno with static or thread storage
CX duration that is not a lock-free atomic object, and not a non-modifiable object (for

example, string literals, objects that were defined with a const-qualified type, and objects
in memory that is mapped read-only), other than by assigning a value to an object

CX declared as volatile sig_atomic_t, unless the previous modification (if any) to the object
happens before the signal handler is called and the return from the signal handler happens
before the next modification (if any) to the object.

2060 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67584

67585

67586

67587

67588

67589

67590

67591

67592

67593

67594

67595

67596

67597

67598

67599

67600

67601

67602

67603

67604

67605

67606

67607

67608

67609

67610

67611

67612

67613

67614

67615

67616

67617

67618

67619

67620

67621

67622

67623

67624

67625

67626

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces signal()

CX • The signal handler calls any function defined in this standard other than one of the
functions listed in Section 2.4 (on page 513).

At program start-up, the equivalent of:

signal(sig, SIG_IGN);

is executed for some signals, and the equivalent of:

signal(sig, SIG_DFL);

CX is executed for all other signals (see exec).

The signal() function shall not change the setting of errno if successful.

CX The signal() function is required to be thread-safe. (See Section 2.9.1 (on page 537).)

RETURN VALUE
If the request can be honored, signal() shall return the value of func for the most recent call to
signal() for the specified signal sig. Otherwise, SIG_ERR shall be returned and a positive value
shall be stored in errno.

ERRORS
The signal() function shall fail if:

CX [EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a
signal that cannot be caught or ignore a signal that cannot be ignored.

The signal() function may fail if:

CX [EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be
caught or ignored (or both).

EXAMPLES
None.

APPLICATION USAGE
The sigaction() function provides a more comprehensive and reliable mechanism for controlling
signals; new applications should use sigaction() rather than signal().

RATIONALE
The ISO C standard says that the use of signal() in a multi-threaded program results in
undefined behavior. However, POSIX.1 has required signal() to be thread-safe since before
threads were added to the ISO C standard.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), exec , pause(), raise(), sigaction(), sigsuspend(), waitid()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the sigpause() function restores the signal mask of
the process to its original state before returning.

The RETURN VALUE section is updated to indicate that the sigpause() function suspends

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2061

67627

67628

67629

67630

67631

67632

67633

67634

67635

67636

67637

67638

67639

67640

67641

67642

67643

67644

67645

67646

67647

67648

67649

67650

67651

67652

67653

67654

67655

67656

67657

67658

67659

67660

67661

67662

67663

67664

67665

67666

67667

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

signal() System Interfaces

execution of the process until a signal is received, whereupon it returns −1 and sets errno to
[EINTR].

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

References to the wait3() function are removed.

The sighold(), sigignore(), sigrelse(), and sigset() functions are split out onto their own reference
page.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0580 [275], XSH/TC1-2008/0581 [66],
and XSH/TC1-2008/0582 [105] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0331 [785] is applied.

Issue 8
Austin Group Defect 728 is applied, reducing the set of circumstances in which undefined
behavior results when a signal handler refers to an object with static or thread storage duration.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

2062 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67668

67669

67670

67671

67672

67673

67674

67675

67676

67677

67678

67679

67680

67681

67682

67683

67684

67685

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces signbit()

NAME
signbit — test sign

SYNOPSIS
#include <math.h>

int signbit(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The signbit() macro shall determine whether the sign of its argument value is negative. NaNs,
zeros, and infinities have a sign bit.

RETURN VALUE
The signbit() macro shall return a non-zero value if and only if the sign of its argument value is
negative.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnan(), isnormal()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2063

67686

67687

67688

67689

67690

67691

67692

67693

67694

67695

67696

67697

67698

67699

67700

67701

67702

67703

67704

67705

67706

67707

67708

67709

67710

67711

67712

67713

67714

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

signgam() System Interfaces

NAME
signgam — log gamma function

SYNOPSIS
XSI #include <math.h>

extern int signgam;

DESCRIPTION
Refer to lgamma().

2064 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67715

67716

67717

67718

67719

67720

67721

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigpending()

NAME
sigpending — examine pending signals

SYNOPSIS
CX #include <signal.h>

int sigpending(sigset_t *set);

DESCRIPTION
The sigpending() function shall store, in the location referenced by the set argument, the set of
signals that are blocked from delivery to the calling thread and that are pending on the process
or the calling thread.

RETURN VALUE
Upon successful completion, sigpending() shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , pthread_sigmask(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2065

67722

67723

67724

67725

67726

67727

67728

67729

67730

67731

67732

67733

67734

67735

67736

67737

67738

67739

67740

67741

67742

67743

67744

67745

67746

67747

67748

67749

67750

67751

67752

67753

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigprocmask() System Interfaces

NAME
sigprocmask — examine and change blocked signals

SYNOPSIS
CX #include <signal.h>

int sigprocmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

DESCRIPTION
Refer to pthread_sigmask().

2066 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67754

67755

67756

67757

67758

67759

67760

67761

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigqueue()

NAME
sigqueue — queue a signal to a process

SYNOPSIS
CX #include <signal.h>

int sigqueue(pid_t pid, int signo, union sigval value);

DESCRIPTION
The sigqueue() function shall cause the signal specified by signo to be sent with the value
specified by value to the process specified by pid. If signo is zero (the null signal), error checking
is performed but no signal is actually sent. The null signal can be used to check the validity of
pid.

The conditions required for a process to have permission to queue a signal to another process are
the same as for the kill() function.

The sigqueue() function shall return immediately. If SA_SIGINFO is set for signo and if the
resources were available to queue the signal, the signal shall be queued and sent to the receiving
process. If SA_SIGINFO is not set for signo, then signo shall be sent at least once to the receiving
process; it is unspecified whether value shall be sent to the receiving process as a result of this
call.

If the value of pid causes signo to be generated for the sending process, and if signo is not blocked
for the calling thread and if no other thread has signo unblocked or is waiting in a sigwait()
function for signo, either signo or at least the pending, unblocked signal shall be delivered to the
calling thread before the sigqueue() function returns. Should any multiple pending signals in the
range SIGRTMIN to SIGRTMAX be selected for delivery, it shall be the lowest numbered one.
The selection order between realtime and non-realtime signals, or between multiple pending
non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, the specified signal shall have been queued, and the sigqueue()
function shall return a value of zero. Otherwise, the function shall return a value of −1 and set
errno to indicate the error.

ERRORS
The sigqueue() function shall fail if:

[EAGAIN] No resources are available to queue the signal. The process has already
queued {SIGQUEUE_MAX} signals that are still pending at the receiver(s), or
a system-wide resource limit has been exceeded.

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

[EPERM] The process does not have appropriate privileges to send the signal to the
receiving process.

[ESRCH] The process pid does not exist.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2067

67762

67763

67764

67765

67766

67767

67768

67769

67770

67771

67772

67773

67774

67775

67776

67777

67778

67779

67780

67781

67782

67783

67784

67785

67786

67787

67788

67789

67790

67791

67792

67793

67794

67795

67796

67797

67798

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigqueue() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The sigqueue() function allows an application to queue a realtime signal to itself or to another
process, specifying the application-defined value. This is common practice in realtime
applications on existing realtime systems. It was felt that specifying another function in the
sig. . . name space already carved out for signals was preferable to extending the interface to
kill().

Such a function became necessary when the put/get event function of the message queues was
removed. It should be noted that the sigqueue() function implies reduced performance in a
security-conscious implementation as the access permissions between the sender and receiver
have to be checked on each send when the pid is resolved into a target process. Such access
checks were necessary only at message queue open in the previous interface.

The standard developers required that sigqueue() have the same semantics with respect to the
null signal as kill(), and that the same permission checking be used. But because of the difficulty
of implementing the ``broadcast’’ semantic of kill() (for example, to process groups) and the
interaction with resource allocation, this semantic was not adopted. The sigqueue() function
queues a signal to a single process specified by the pid argument.

The sigqueue() function can fail if the system has insufficient resources to queue the signal. An
explicit limit on the number of queued signals that a process could send was introduced. While
the limit is ``per-sender ’’, this volume of POSIX.1-2024 does not specify that the resources be part
of the state of the sender. This would require either that the sender be maintained after exit until
all signals that it had sent to other processes were handled or that all such signals that had not
yet been acted upon be removed from the queue(s) of the receivers. This volume of
POSIX.1-2024 does not preclude this behavior, but an implementation that allocated queuing
resources from a system-wide pool (with per-sender limits) and that leaves queued signals
pending after the sender exits is also permitted.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.8.1 (on page 528)

XBD <signal.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
The sigqueue() function is marked as part of the Realtime Signals Extension option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Realtime Signals Extension option.

Issue 7
The sigqueue() function is moved from the Realtime Signals Extension option to the Base.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0332 [844] is applied.

2068 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67799

67800

67801

67802

67803

67804

67805

67806

67807

67808

67809

67810

67811

67812

67813

67814

67815

67816

67817

67818

67819

67820

67821

67822

67823

67824

67825

67826

67827

67828

67829

67830

67831

67832

67833

67834

67835

67836

67837

67838

67839

67840

67841

67842

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigsetjmp()

NAME
sigsetjmp — set jump point for a non-local goto

SYNOPSIS
CX #include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

DESCRIPTION
The sigsetjmp() function shall be equivalent to the setjmp() function, except as follows:

• References to setjmp() are equivalent to sigsetjmp().

• References to longjmp() are equivalent to siglongjmp().

• If the value of the savemask argument is not 0, sigsetjmp() shall also save the current signal
mask of the calling thread as part of the calling environment.

RETURN VALUE
If the return is from a successful direct invocation, sigsetjmp() shall return 0. If the return is from
a call to siglongjmp(), sigsetjmp() shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp()/longjmp() and sigsetjmp()/siglongjmp() is only significant for
programs which use sigaction(), sigprocmask(), or sigsuspend().

Note that since this function is defined in terms of setjmp(), if savemask is zero, it is unspecified
whether the signal mask is saved.

RATIONALE
The ISO C standard specifies various restrictions on the usage of the setjmp() macro in order to
permit implementors to recognize the name in the compiler and not implement an actual
function. These same restrictions apply to the sigsetjmp() macro.

There are processors that cannot easily support these calls, but this was not considered a
sufficient reason to exclude them.

4.2 BSD and 4.3 BSD provided functions named _setjmp() and _longjmp() that, together with
setjmp() and longjmp(), provided the same functionality as sigsetjmp() and siglongjmp(). On
those systems, setjmp() and longjmp() saved and restored signal masks, while _setjmp() and
_longjmp() did not. On System V Release 3 and in corresponding issues of the SVID, setjmp()
and longjmp() were explicitly defined not to save and restore signal masks. In order to permit
existing practice in both cases, the relation of setjmp() and longjmp() to signal masks is not
specified, and a new set of functions is defined instead.

The longjmp() and siglongjmp() functions operate as in the previous issue provided the matching
setjmp() or sigsetjmp() has been performed in the same thread. Non-local jumps into contexts
saved by other threads would be at best a questionable practice and were not considered worthy
of standardization.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2069

67843

67844

67845

67846

67847

67848

67849

67850

67851

67852

67853

67854

67855

67856

67857

67858

67859

67860

67861

67862

67863

67864

67865

67866

67867

67868

67869

67870

67871

67872

67873

67874

67875

67876

67877

67878

67879

67880

67881

67882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigsetjmp() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_sigmask(), siglongjmp(), signal(), sigsuspend()

XBD <setjmp.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The DESCRIPTION is reworded in terms of setjmp().

The SYNOPSIS is marked CX since the presence of this function in the <setjmp.h> header is an
extension over the ISO C standard.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

2070 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67883

67884

67885

67886

67887

67888

67889

67890

67891

67892

67893

67894

67895

67896

67897

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigsuspend()

NAME
sigsuspend — wait for a signal

SYNOPSIS
CX #include <signal.h>

int sigsuspend(const sigset_t *sigmask);

DESCRIPTION
The sigsuspend() function shall atomically both replace the current signal mask of the calling
thread with the set of signals pointed to by sigmask and suspend the thread until delivery of a
signal whose action is either to execute a signal-catching function or to terminate the process.
This shall not cause any other signals that may have been pending on the process to become
pending on the thread.

If the action is to terminate the process then sigsuspend() shall never return. If the action is to
execute a signal-catching function, then sigsuspend() shall return after the signal-catching
function returns, with the signal mask restored to the set that existed prior to the sigsuspend()
call.

It is not possible to block signals that cannot be ignored. This is enforced by the system without
causing an error to be indicated.

RETURN VALUE
Since sigsuspend() suspends thread execution indefinitely, there is no successful completion
return value. If a return occurs, −1 shall be returned and errno set to indicate the error.

ERRORS
The sigsuspend() function shall fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

EXAMPLES
None.

APPLICATION USAGE
Normally, at the beginning of a critical code section, a specified set of signals is blocked using
the sigprocmask() function. When the thread has completed the critical section and needs to wait
for the previously blocked signal(s), it pauses by calling sigsuspend() with the mask that was
returned by the sigprocmask() call.

RATIONALE
Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers
can install an additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_sigsuspend(const sigset_t *mask)
{

sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);
pthread_cleanup_push(cleanup, &oldmask);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2071

67898

67899

67900

67901

67902

67903

67904

67905

67906

67907

67908

67909

67910

67911

67912

67913

67914

67915

67916

67917

67918

67919

67920

67921

67922

67923

67924

67925

67926

67927

67928

67929

67930

67931

67932

67933

67934

67935

67936

67937

67938

67939

67940

67941

67942

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigsuspend() System Interfaces

result = sigsuspend(mask);
pthread_cleanup_pop(0);
return result;

}

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), pause(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The text in the RETURN VALUE section has been changed from ``suspends process execution’’
to ``suspends thread execution’’. This reflects IEEE PASC Interpretation 1003.1c #40.

Text in the APPLICATION USAGE section has been replaced.

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

Issue 7
SD5-XSH-ERN-122 is applied, adding the example code in the RATIONALE.

Issue 8
Austin Group Defect 1201 is applied, clarifying the atomicity requirements for sigsuspend().

Austin Group Defect 1223 is applied, changing the example code in the RATIONALE.

2072 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

67943

67944

67945

67946

67947

67948

67949

67950

67951

67952

67953

67954

67955

67956

67957

67958

67959

67960

67961

67962

67963

67964

67965

67966

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigtimedwait()

NAME
sigtimedwait, sigwaitinfo — wait for queued signals

SYNOPSIS
CX #include <signal.h>

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *restrict info,
const struct timespec *restrict timeout);

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *restrict info);

DESCRIPTION
The sigtimedwait() function shall be equivalent to sigwaitinfo() except that if none of the signals
specified by set are pending, sigtimedwait() shall wait for the time interval specified in the
timespec structure referenced by timeout. If the timespec structure pointed to by timeout is zero-
valued and if none of the signals specified by set are pending, then sigtimedwait() shall return
immediately with an error. If timeout is the null pointer, the behavior is unspecified. The
CLOCK_MONOTONIC clock shall be used to measure the time interval specified by the timeout
argument.

The sigwaitinfo() function selects the pending signal from the set specified by set. Should any of
multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it shall be the
lowest numbered one. The selection order between realtime and non-realtime signals, or
between multiple pending non-realtime signals, is unspecified. If no signal in set is pending at
the time of the call, the calling thread shall be suspended until one or more signals in set become
pending or until it is interrupted by an unblocked, caught signal.

The sigwaitinfo() function shall be equivalent to the sigwait() function, except that the return
value and the error reporting method are different (see RETURN VALUE), and that if the info
argument is non-NULL, the selected signal number shall be stored in the si_signo member, and
the cause of the signal shall be stored in the si_code member. If any value is queued to the
selected signal, the first such queued value shall be dequeued and, if the info argument is non-
NULL, the value shall be stored in the si_value member of info. The system resource used to
queue the signal shall be released and returned to the system for other use. If no value is
queued, the content of the si_value member is undefined. If no further signals are queued for the
selected signal, the pending indication for that signal shall be reset.

RETURN VALUE
Upon successful completion (that is, one of the signals specified by set is pending or is
generated) sigwaitinfo() and sigtimedwait() shall return the selected signal number. Otherwise,
the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sigtimedwait() function shall fail if:

[EAGAIN] No signal specified by set was generated within the specified timeout period.

The sigtimedwait() and sigwaitinfo() functions may fail if:

[EINTR] The wait was interrupted by an unblocked, caught signal. It shall be
documented in system documentation whether this error causes these
functions to fail.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2073

67967

67968

67969

67970

67971

67972

67973

67974

67975

67976

67977

67978

67979

67980

67981

67982

67983

67984

67985

67986

67987

67988

67989

67990

67991

67992

67993

67994

67995

67996

67997

67998

67999

68000

68001

68002

68003

68004

68005

68006

68007

68008

68009

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigtimedwait() System Interfaces

The sigtimedwait() function may also fail if:

[EINVAL] The timeout argument specified a tv_nsec value less than zero or greater than
or equal to 1 000 million.

An implementation should only check for this error if no signal is pending in set and it is
necessary to wait.

EXAMPLES
None.

APPLICATION USAGE
The sigtimedwait() function times out and returns an [EAGAIN] error. Application developers
should note that this is inconsistent with other functions such as pthread_cond_timedwait() that
return [ETIMEDOUT].

Note that in order to ensure that generated signals are queued and signal values passed to
sigqueue() are available in si_value, applications which use sigwaitinfo() or sigtimedwait() need to
set the SA_SIGINFO flag for each signal in the set (see Section 2.4, on page 513). This means
setting each signal to be handled by a three-argument signal-catching function, even if the
handler will never be called. It is not possible (portably) to set a signal handler to SIG_DFL
while setting the SA_SIGINFO flag, because assigning to the sa_handler member of struct
sigaction instead of the sa_sigaction member would result in undefined behavior, and SIG_DFL
need not be assignment-compatible with sa_sigaction. Even if an assignment of SIG_DFL to
sa_sigaction is accepted by the compiler, the implementation need not treat this value as special—
it could just be taken as the address of a signal-catching function.

RATIONALE
Existing programming practice on realtime systems uses the ability to pause waiting for a
selected set of events and handle the first event that occurs in-line instead of in a signal-handling
function. This allows applications to be written in an event-directed style similar to a state
machine. This style of programming is useful for largescale transaction processing in which the
overall throughput of an application and the ability to clearly track states are more important
than the ability to minimize the response time of individual event handling.

It is possible to construct a signal-waiting macro function out of the realtime signal function
mechanism defined in this volume of POSIX.1-2024. However, such a macro has to include the
definition of a generalized handler for all signals to be waited on. A significant portion of the
overhead of handler processing can be avoided if the signal-waiting function is provided by the
kernel. This volume of POSIX.1-2024 therefore provides two signal-waiting functions—one that
waits indefinitely and one with a timeout—as part of the overall realtime signal function
specification.

The specification of a function with a timeout allows an application to be written that can be
broken out of a wait after a set period of time if no event has occurred. It was argued that setting
a timer event before the wait and recognizing the timer event in the wait would also implement
the same functionality, but at a lower performance level. Because of the performance
degradation associated with the user-level specification of a timer event and the subsequent
cancellation of that timer event after the wait completes for a valid event, and the complexity
associated with handling potential race conditions associated with the user-level method, the
separate function has been included.

Note that the semantics of the sigwaitinfo() function are nearly identical to that of the sigwait()
function defined by this volume of POSIX.1-2024. The only difference is that sigwaitinfo() returns
the queued signal value in the value argument. The return of the queued value is required so that
applications can differentiate between multiple events queued to the same signal number.

2074 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68010

68011

68012

68013

68014

68015

68016

68017

68018

68019

68020

68021

68022

68023

68024

68025

68026

68027

68028

68029

68030

68031

68032

68033

68034

68035

68036

68037

68038

68039

68040

68041

68042

68043

68044

68045

68046

68047

68048

68049

68050

68051

68052

68053

68054

68055

68056

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigtimedwait()

The two distinct functions are being maintained because some implementations may choose to
implement the POSIX Threads Extension functions and not implement the queued signals
extensions. Note, though, that sigwaitinfo() does not return the queued value if the value
argument is NULL, so the POSIX Threads Extension sigwait() function can be implemented as a
macro on sigwaitinfo().

The sigtimedwait() function was separated from the sigwaitinfo() function to address concerns
regarding the overloading of the timeout pointer to indicate indefinite wait (no timeout), timed
wait, and immediate return, and concerns regarding consistency with other functions where the
conditional and timed waits were separate functions from the pure blocking function. The
semantics of sigtimedwait() are specified such that sigwaitinfo() could be implemented as a macro
with a null pointer for timeout.

The sigwait functions provide a synchronous mechanism for threads to wait for asynchronously-
generated signals. One important question was how many threads that are suspended in a call
to a sigwait() function for a signal should return from the call when the signal is sent. Four
choices were considered:

1. Return an error for multiple simultaneous calls to sigwait functions for the same signal.

2. One or more threads return.

3. All waiting threads return.

4. Exactly one thread returns.

Prohibiting multiple calls to sigwait() for the same signal was felt to be overly restrictive. The
``one or more’’ behavior made implementation of conforming packages easy at the expense of
forcing POSIX threads clients to protect against multiple simultaneous calls to sigwait() in
application code in order to achieve predictable behavior. There was concern that the ``all
waiting threads’’ behavior would result in ``signal broadcast storms’’, consuming excessive CPU
resources by replicating the signals in the general case. Furthermore, no convincing examples
could be presented that delivery to all was either simpler or more powerful than delivery to one.

Thus, the consensus was that exactly one thread that was suspended in a call to a sigwait
function for a signal should return when that signal occurs. This is not an onerous restriction as:

• A multi-way signal wait can be built from the single-way wait.

• Signals should only be handled by application-level code, as library routines cannot guess
what the application wants to do with signals generated for the entire process.

• Applications can thus arrange for a single thread to wait for any given signal and call any
needed routines upon its arrival.

In an application that is using signals for interprocess communication, signal processing is
typically done in one place. Alternatively, if the signal is being caught so that process cleanup
can be done, the signal handler thread can call separate process cleanup routines for each
portion of the application. Since the application main line started each portion of the application,
it is at the right abstraction level to tell each portion of the application to clean up.

Certainly, there exist programming styles where it is logical to consider waiting for a single
signal in multiple threads. A simple sigwait_multiple() routine can be constructed to achieve this
goal. A possible implementation would be to have each sigwait_multiple() caller registered as
having expressed interest in a set of signals. The caller then waits on a thread-specific condition
variable. A single server thread calls a sigwait() function on the union of all registered signals.
When the sigwait() function returns, the appropriate state is set and condition variables are
broadcast. New sigwait_multiple() callers may cause the pending sigwait() call to be canceled

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2075

68057

68058

68059

68060

68061

68062

68063

68064

68065

68066

68067

68068

68069

68070

68071

68072

68073

68074

68075

68076

68077

68078

68079

68080

68081

68082

68083

68084

68085

68086

68087

68088

68089

68090

68091

68092

68093

68094

68095

68096

68097

68098

68099

68100

68101

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigtimedwait() System Interfaces

and reissued in order to update the set of signals being waited for.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), Section 2.8.1 (on page 528), pause(), pthread_sigmask(), sigaction(),
sigpending(), sigsuspend(), sigwait()

XBD <signal.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
These functions are marked as part of the Realtime Signals Extension option.

The Open Group Corrigendum U035/3 is applied. The SYNOPSIS of the sigwaitinfo() function
has been corrected so that the second argument is of type siginfo_t *.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Realtime Signals Extension option.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that the
CLOCK_MONOTONIC clock, if supported, is used to measure timeout intervals.

The restrict keyword is added to the sigtimedwait() and sigwaitinfo() prototypes for alignment
with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/130 is applied, restoring wording in the
RETURN VALUE section to that in the original base document (``An implementation should
only check for this error if no signal is pending in set and it is necessary to wait’’).

Issue 7
The sigtimedwait() and sigwaitinfo() functions are moved from the Realtime Signals Extension
option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0583 [392] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0333 [815] is applied.

Issue 8

Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

2076 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68102

68103

68104

68105

68106

68107

68108

68109

68110

68111

68112

68113

68114

68115

68116

68117

68118

68119

68120

68121

68122

68123

68124

68125

68126

68127

68128

68129

68130

68131

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigwait()

NAME
sigwait — wait for queued signals

SYNOPSIS
CX #include <signal.h>

int sigwait(const sigset_t *restrict set, int *restrict sig);

DESCRIPTION
The sigwait() function shall select a pending signal from set, atomically clear it from the system’s
set of pending signals, and return that signal number in the location referenced by sig. If prior to
the call to sigwait() there are multiple pending instances of a single signal number, it is
implementation-defined whether upon successful return there are any remaining pending
signals for that signal number. If the implementation supports queued signals and there are
multiple signals queued for the signal number selected, the first such queued signal shall cause a
return from sigwait() and the remainder shall remain queued. If no signal in set is pending at the
time of the call, the thread shall be suspended until one or more becomes pending. The signals
defined by set shall have been blocked at the time of the call to sigwait(); otherwise, the behavior
is undefined. The effect of sigwait() on the signal actions for the signals in set is unspecified.

If more than one thread is using sigwait() to wait for the same signal, no more than one of these
threads shall return from sigwait() with the signal number. If more than a single thread is
blocked in sigwait() for a signal when that signal is generated for the process, it is unspecified
which of the waiting threads returns from sigwait(). If the signal is generated for a specific
thread, as by pthread_kill(), only that thread shall return.

Should any of the multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it
shall be the lowest numbered one. The selection order between realtime and non-realtime
signals, or between multiple pending non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, sigwait() shall store the signal number of the received signal at the
location referenced by sig and return zero. Otherwise, an error number shall be returned to
indicate the error.

ERRORS
The sigwait() function may fail if:

[EINVAL] The set argument contains an invalid or unsupported signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
To provide a convenient way for a thread to wait for a signal, this volume of POSIX.1-2024
provides the sigwait() function. For most cases where a thread has to wait for a signal, the
sigwait() function should be quite convenient, efficient, and adequate.

However, requests were made for a lower-level primitive than sigwait() and for semaphores that
could be used by threads. After some consideration, threads were allowed to use semaphores
and sem_post() was defined to be async-signal-safe.

In summary, when it is necessary for code run in response to an asynchronous signal to notify a
thread, sigwait() should be used to handle the signal. Alternatively, if the implementation
provides semaphores, they also can be used, either following sigwait() or from within a signal

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2077

68132

68133

68134

68135

68136

68137

68138

68139

68140

68141

68142

68143

68144

68145

68146

68147

68148

68149

68150

68151

68152

68153

68154

68155

68156

68157

68158

68159

68160

68161

68162

68163

68164

68165

68166

68167

68168

68169

68170

68171

68172

68173

68174

68175

68176

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sigwait() System Interfaces

handling routine previously registered with sigaction().

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 513), Section 2.8.1 (on page 528), pause(), pthread_sigmask(), sigaction(),
sigpending(), sigsuspend(), sigtimedwait()

XBD <signal.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
The restrict keyword is added to the sigwait() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/131 is applied, updating the
DESCRIPTION to state that if more than a single thread is blocked in sigwait(), it is unspecified
which of the waiting threads returns, and that if a signal is generated for a specific thread only
that thread shall return.

Issue 7
Functionality relating to the Realtime Signals Extension option is moved to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0584 [76] is applied.

2078 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68177

68178

68179

68180

68181

68182

68183

68184

68185

68186

68187

68188

68189

68190

68191

68192

68193

68194

68195

68196

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sigwaitinfo()

NAME
sigwaitinfo — wait for queued signals

SYNOPSIS
#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set, siginfo_t *restrict info);

DESCRIPTION
Refer to sigtimedwait().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2079

68197

68198

68199

68200

68201

68202

68203

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sin() System Interfaces

NAME
sin, sinf, sinl — sine function

SYNOPSIS
#include <math.h>

double sin(double x);
float sinf(float x);
long double sinl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the sine of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the sine of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, sin(), sinf(), and sinl() shall

return an implementation-defined value no greater in magnitude than DBL_MIN, FLT_MIN,
and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

2080 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68204

68205

68206

68207

68208

68209

68210

68211

68212

68213

68214

68215

68216

68217

68218

68219

68220

68221

68222

68223

68224

68225

68226

68227

68228

68229

68230

68231

68232

68233

68234

68235

68236

68237

68238

68239

68240

68241

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sin()

EXAMPLES

Taking the Sine of a 45-Degree Angle

#include <math.h>
...
double radians = 45.0 * M_PI / 180;
double result;
...
result = sin(radians);

APPLICATION USAGE
These functions may lose accuracy when their argument is near a multiple of π or is far from 0.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asin(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
The sinf() and sinl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0585 [68] and XSH/TC1-2008/0586
[320] are applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2081

68242

68243

68244

68245

68246

68247

68248

68249

68250

68251

68252

68253

68254

68255

68256

68257

68258

68259

68260

68261

68262

68263

68264

68265

68266

68267

68268

68269

68270

68271

68272

68273

68274

68275

68276

68277

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sinh() System Interfaces

NAME
sinh, sinhf, sinhl — hyperbolic sine functions

SYNOPSIS
#include <math.h>

double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the hyperbolic sine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic sine of x.

If the result would cause an overflow, a range error shall occur and ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) shall be returned as appropriate for
the type of the function.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, sinh(), sinhf(), and sinhl()

shall return an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The value x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

2082 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68278

68279

68280

68281

68282

68283

68284

68285

68286

68287

68288

68289

68290

68291

68292

68293

68294

68295

68296

68297

68298

68299

68300

68301

68302

68303

68304

68305

68306

68307

68308

68309

68310

68311

68312

68313

68314

68315

68316

68317

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sinh()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asinh(), cosh(), feclearexcept(), fetestexcept(), isnan(), tanh()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The sinhf() and sinhl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0587 [68] is applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2083

68318

68319

68320

68321

68322

68323

68324

68325

68326

68327

68328

68329

68330

68331

68332

68333

68334

68335

68336

68337

68338

68339

68340

68341

68342

68343

68344

68345

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sinl() System Interfaces

NAME
sinl — sine function

SYNOPSIS
#include <math.h>

long double sinl(long double x);

DESCRIPTION
Refer to sin().

2084 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68346

68347

68348

68349

68350

68351

68352

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sleep()

NAME
sleep — suspend execution for an interval of time

SYNOPSIS
#include <unistd.h>

unsigned sleep(unsigned seconds);

DESCRIPTION
The sleep() function shall cause the calling thread to be suspended from execution until either
the number of realtime seconds specified by the argument seconds has elapsed or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function or to
terminate the process. The suspension time may be longer than requested due to the scheduling
of other activity by the system.

In single-threaded programs, sleep() may make use of SIGALRM. In multi-threaded programs,
sleep() shall not make use of SIGALRM and the remainder of this DESCRIPTION does not apply.

If a SIGALRM signal is generated for the calling process during execution of sleep() and if the
SIGALRM signal is being ignored or blocked from delivery, it is unspecified whether sleep()
returns when the SIGALRM signal is scheduled. If the signal is being blocked, it is also
unspecified whether it remains pending after sleep() returns or it is discarded.

If a SIGALRM signal is generated for the calling process during execution of sleep(), except as a
result of a prior call to alarm(), and if the SIGALRM signal is not being ignored or blocked from
delivery, it is unspecified whether that signal has any effect other than causing sleep() to return.

If a signal-catching function interrupts sleep() and examines or changes either the time a
SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal, or
whether the SIGALRM signal is blocked from delivery, the results are unspecified.

If a signal-catching function interrupts sleep() and calls siglongjmp() or longjmp() to restore an
environment saved prior to the sleep() call, the action associated with the SIGALRM signal and
the time at which a SIGALRM signal is scheduled to be generated are unspecified. It is also
unspecified whether the SIGALRM signal is blocked, unless the signal mask of the process is
restored as part of the environment.

RETURN VALUE
If sleep() returns because the requested time has elapsed, the value returned shall be 0. If sleep()
returns due to delivery of a signal, the return value shall be the ``unslept’’ amount (the requested
time minus the time actually slept) in seconds.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There are two general approaches to the implementation of the sleep() function. One is to use the
alarm() function to schedule a SIGALRM signal and then suspend the calling thread waiting for
that signal. The other is to implement an independent facility. This volume of POSIX.1-2024
permits either approach in single-threaded programs, but the simple alarm/suspend
implementation is not appropriate for multi-threaded programs.

In order to comply with the requirement that no primitive shall change a process attribute unless

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2085

68353

68354

68355

68356

68357

68358

68359

68360

68361

68362

68363

68364

68365

68366

68367

68368

68369

68370

68371

68372

68373

68374

68375

68376

68377

68378

68379

68380

68381

68382

68383

68384

68385

68386

68387

68388

68389

68390

68391

68392

68393

68394

68395

68396

68397

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sleep() System Interfaces

explicitly described by this volume of POSIX.1-2024, an implementation using SIGALRM must
carefully take into account any SIGALRM signal scheduled by previous alarm() calls, the action
previously established for SIGALRM, and whether SIGALRM was blocked. If a SIGALRM has
been scheduled before the sleep() would ordinarily complete, the sleep() must be shortened to
that time and a SIGALRM generated (possibly simulated by direct invocation of the signal-
catching function) before sleep() returns. If a SIGALRM has been scheduled after the sleep()
would ordinarily complete, it must be rescheduled for the same time before sleep() returns. The
action and blocking for SIGALRM must be saved and restored.

Historical implementations often implement the SIGALRM-based version using alarm() and
pause(). One such implementation is prone to infinite hangups, as described in pause().
Another such implementation uses the C-language setjmp() and longjmp() functions to avoid
that window. That implementation introduces a different problem: when the SIGALRM signal
interrupts a signal-catching function installed by the user to catch a different signal, the
longjmp() aborts that signal-catching function. An implementation based on sigprocmask(),
alarm(), and sigsuspend() can avoid these problems.

Despite all reasonable care, there are several very subtle, but detectable and unavoidable,
differences between the two types of implementations. These are the cases mentioned in this
volume of POSIX.1-2024 where some other activity relating to SIGALRM takes place, and the
results are stated to be unspecified. All of these cases are sufficiently unusual as not to be of
concern to most applications.

See also the discussion of the term realtime in alarm().

Since sleep() can be implemented using alarm(), the discussion about alarms occurring early
under alarm() applies to sleep() as well.

Application developers should note that the type of the argument seconds and the return value of
sleep() is unsigned. That means that a Strictly Conforming POSIX System Interfaces Application
cannot pass a value greater than the minimum guaranteed value for {UINT_MAX}, which the
ISO C standard sets as 65 535, and any application passing a larger value is restricting its
portability. A different type was considered, but historical implementations, including those
with a 16-bit int type, consistently use either unsigned or int.

Scheduling delays may cause the process to return from the sleep() function significantly after
the requested time. In such cases, the return value should be set to zero, since the formula
(requested time minus the time actually spent) yields a negative number and sleep() returns an
unsigned.

FUTURE DIRECTIONS
A future version of this standard may require that sleep() does not make use of SIGALRM in all
programs, not just multi-threaded programs.

SEE ALSO
alarm(), nanosleep(), pause(), sigaction(), sigsetjmp(), timer_create()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

2086 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68398

68399

68400

68401

68402

68403

68404

68405

68406

68407

68408

68409

68410

68411

68412

68413

68414

68415

68416

68417

68418

68419

68420

68421

68422

68423

68424

68425

68426

68427

68428

68429

68430

68431

68432

68433

68434

68435

68436

68437

68438

68439

68440

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sleep()

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/132 is applied, making a correction in the
RATIONALE section.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0334 [625] is applied.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2087

68441

68442

68443

68444

68445

68446

68447

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

snprintf() System Interfaces

NAME
snprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int snprintf(char *restrict s, size_t n,
const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

2088 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68448

68449

68450

68451

68452

68453

68454

68455

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sockatmark()

NAME
sockatmark — determine whether a socket is at the out-of-band mark

SYNOPSIS
#include <sys/socket.h>

int sockatmark(int s);

DESCRIPTION
The sockatmark() function shall determine whether the socket specified by the descriptor s is at
the out-of-band data mark (see Section 2.10.12, on page 552). If the protocol for the socket
supports out-of-band data by marking the stream with an out-of-band data mark, the
sockatmark() function shall return 1 when all data preceding the mark has been read and the out-
of-band data mark is the first element in the receive queue. The sockatmark() function shall not
remove the mark from the stream.

RETURN VALUE
Upon successful completion, the sockatmark() function shall return a value indicating whether
the socket is at an out-of-band data mark. If the protocol has marked the data stream and all data
preceding the mark has been read, the return value shall be 1; if there is no mark, or if data
precedes the mark in the receive queue, the sockatmark() function shall return 0. Otherwise, it
shall return a value of −1 and set errno to indicate the error.

ERRORS
The sockatmark() function shall fail if:

[EBADF] The s argument is not a valid file descriptor.

[ENOTTY] The file associated with the s argument is not a socket.

EXAMPLES
None.

APPLICATION USAGE
The use of this function between receive operations allows an application to determine which
received data precedes the out-of-band data and which follows the out-of-band data.

There is an inherent race condition in the use of this function. On an empty receive queue, the
current read of the location might well be at the ``mark’’, but the system has no way of knowing
that the next data segment that will arrive from the network will carry the mark, and
sockatmark() will return false, and the next read operation will silently consume the mark.

Hence, this function can only be used reliably when the application already knows that the out-
of-band data has been seen by the system or that it is known that there is data waiting to be read
at the socket (via SIGURG or select()). See Section 2.10.11 (on page 552), Section 2.10.12 (on page
552), Section 2.10.14 (on page 553), and pselect() for details.

RATIONALE
The sockatmark() function replaces the historical SIOCATMARK command to ioctl() which
implemented the same functionality on many implementations. Using a wrapper function
follows the adopted conventions to avoid specifying commands to the ioctl() function. The
sockatmark() function could be implemented as follows:

#include <sys/ioctl.h>

int sockatmark(int s)
{

int val;
if (ioctl(s,SIOCATMARK,&val)==-1)

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2089

68456

68457

68458

68459

68460

68461

68462

68463

68464

68465

68466

68467

68468

68469

68470

68471

68472

68473

68474

68475

68476

68477

68478

68479

68480

68481

68482

68483

68484

68485

68486

68487

68488

68489

68490

68491

68492

68493

68494

68495

68496

68497

68498

68499

68500

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sockatmark() System Interfaces

return(-1);
return(val);

}

The use of [ENOTTY] to indicate an incorrect descriptor type matches the historical behavior of
SIOCATMARK.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10.12 (on page 552), pselect(), recv(), recvmsg()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7
SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

2090 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68501

68502

68503

68504

68505

68506

68507

68508

68509

68510

68511

68512

68513

68514

68515

68516

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces socket()

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
The socket() function shall create an unbound socket in a communications domain, and return a
file descriptor that can be used in later function calls that operate on sockets. The file descriptor
shall be allocated as described in Section 2.6 (on page 525).

The socket() function takes the following arguments:

domain Specifies the communications domain in which a socket is to be created.

type Specifies the type of socket to be created.

protocol Specifies a particular protocol to be used with the socket. Specifying a protocol
of 0 causes socket() to use an unspecified default protocol appropriate for the
requested socket type.

The domain argument specifies the address family used in the communications domain. The
address families supported by the system are implementation-defined.

Symbolic constants that can be used for the domain argument are defined in the <sys/socket.h>
header.

The type argument specifies the socket type, which determines the semantics of communication
over the socket. The following socket types are defined; implementations may specify additional
socket types:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte streams,
and may provide a transmission mechanism for out-of-band data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages of
fixed maximum length.

SOCK_SEQPACKET
Provides sequenced, reliable, bidirectional, connection-mode transmission
paths for records. A record can be sent using one or more output operations
and received using one or more input operations, but a single operation never
transfers part of more than one record. Record boundaries are visible to the
receiver via the MSG_EOR flag.

Additionally, the type argument can contain the bitwise-inclusive OR of flags from the following
list:

SOCK_CLOEXEC Atomically set the FD_CLOEXEC flag on the new file descriptor.

SOCK_CLOFORK Atomically set the FD_CLOFORK flag on the new file descriptor.

SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the new file description.

Implementations may define additional flags.

If the protocol argument is non-zero, it shall specify a protocol that is supported by the address
family. If the protocol argument is zero, the default protocol for this address family and type shall
be used. The protocols supported by the system are implementation-defined.

The process may need to have appropriate privileges to use the socket() function or to create

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2091

68517

68518

68519

68520

68521

68522

68523

68524

68525

68526

68527

68528

68529

68530

68531

68532

68533

68534

68535

68536

68537

68538

68539

68540

68541

68542

68543

68544

68545

68546

68547

68548

68549

68550

68551

68552

68553

68554

68555

68556

68557

68558

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

socket() System Interfaces

some sockets.

RETURN VALUE
Upon successful completion, socket() shall return a non-negative integer, the socket file
descriptor. Otherwise, a value of −1 shall be returned and errno set to indicate the error.

ERRORS
The socket() function shall fail if:

[EAFNOSUPPORT]
The implementation does not support the specified address family.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] No more file descriptors are available for the system.

[EPROTONOSUPPORT]
The value of protocol is non-zero and either the protocol is not supported by
the address family or the protocol is not supported by the implementation.

[EPROTOTYPE] The value of protocol is non-zero and the socket type is not supported by the
protocol.

[ESOCKTNOSUPPORT] or [EPROTONOSUPPORT] or [EPROTOTYPE]OB

The socket type is not supported by the address family, or the socket type is
not supported by the implementation.

The socket() function may fail if:

[EACCES] The process does not have appropriate privileges.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.
EXAMPLES

None.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family
supports. The documentation for specific protocols specifies which socket types each protocol
supports.

The application can determine whether an address family is supported by trying to create a
socket with domain set to the protocol in question.

RATIONALE
The use of the SOCK_CLOEXEC and SOCK_CLOFORK flags in the type argument of socket() is
necessary to avoid a data race in multi-threaded applications. Without SOCK_CLOFORK, a file
descriptor is leaked into a child process created by one thread in the window between another
thread calling socket() and using fcntl() to set the FD_CLOFORK flag. Without
SOCK_CLOEXEC, a file descriptor intentionally inherited by child processes is similarly leaked
into an executed program if FD_CLOEXEC is not set atomically. The SOCK_NONBLOCK flag is
for convenience in avoiding additional fcntl() calls.

Historically the standard did not specify the errno value to be used when the socket type is not
supported, and there were differences between implementations. Some reused the existing
standard [EPROTONOSUPPORT] or [EPROTOTYPE] values while others set errno to a (then)
non-standard value of [ESOCKTNOSUPPORT]. All three values are permitted in this version of
the standard, but the use of [EPROTONOSUPPORT] or [EPROTOTYPE] is considered to be
misleading when no protocol is specified (that is, the value of protocol is zero) and consequently

2092 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68559

68560

68561

68562

68563

68564

68565

68566

68567

68568

68569

68570

68571

68572

68573

68574

68575

68576

68577

68578

68579

68580

68581

68582

68583

68584

68585

68586

68587

68588

68589

68590

68591

68592

68593

68594

68595

68596

68597

68598

68599

68600

68601

68602

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces socket()

those alternatives have been marked obsolescent. If protocol is non-zero, since there is no
precedence between error conditions, all three values will still be permitted even after the
obsolescent alternatives for the [ESOCKTNOSUPPORT] condition have been removed.

FUTURE DIRECTIONS
A future version of this standard may disallow setting errno to [EPROTONOSUPPORT] or
[EPROTOTYPE] when the socket type is not supported and protocol is zero.

SEE ALSO
Section 2.6 (on page 525), accept(), bind(), close(), connect(), getsockname(), getsockopt(), listen(),
recv(), recvfrom(), recvmsg(), send(), sendmsg(), setsockopt(), shutdown(), socketpair()

XBD <netinet/in.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0335 [835] is applied.

Issue 8
Austin Group Defects 411 and 1318 are applied, adding SOCK_CLOEXEC, SOCK_CLOFORK,
and SOCK_NONBLOCK.

Austin Group Defect 1067 is applied, adding the [ESOCKTNOSUPPORT] error and changing the
[EPROTONOSUPPORT] and [EPROTOTYPE] errors.

Austin Group Defect 1475 is applied, adding close() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2093

68603

68604

68605

68606

68607

68608

68609

68610

68611

68612

68613

68614

68615

68616

68617

68618

68619

68620

68621

68622

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

socketpair() System Interfaces

NAME
socketpair — create a pair of connected sockets

SYNOPSIS
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol,
int socket_vector[2]);

DESCRIPTION
The socketpair() function shall create an unbound pair of connected sockets in a specified domain,
of a specified type, under the protocol optionally specified by the protocol argument. The two
sockets shall be identical. The file descriptors used in referencing the created sockets shall be
returned in socket_vector[0] and socket_vector[1]. The file descriptors shall be allocated as
described in Section 2.6 (on page 525).

The socketpair() function takes the following arguments:

domain Specifies the communications domain in which the sockets are to be created.

type Specifies the type of sockets to be created.

protocol Specifies a particular protocol to be used with the sockets. Specifying a
protocol of 0 causes socketpair() to use an unspecified default protocol
appropriate for the requested socket type.

socket_vector Specifies a 2-integer array to hold the file descriptors of the created socket pair.

The type argument specifies the socket type, which determines the semantics of communications
over the socket. The following socket types are defined; implementations may specify additional
socket types:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
streams, and may provide a transmission mechanism for out-of-band
data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages
of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode transmission
paths for records. A record can be sent using one or more output
operations and received using one or more input operations, but a single
operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

Additionally, the type argument can contain the bitwise-inclusive OR of flags from the following
list:

SOCK_CLOEXEC Atomically set the FD_CLOEXEC flag on the new file descriptors.

SOCK_CLOFORK Atomically set the FD_CLOFORK flag on the new file descriptors.

SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the new file descriptions.

Implementations may define additional flags.

If the protocol argument is non-zero, it shall specify a protocol that is supported by the address
family. If the protocol argument is zero, the default protocol for this address family and type shall
be used. The protocols supported by the system are implementation-defined.

The process may need to have appropriate privileges to use the socketpair() function or to create
some sockets.

2094 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68623

68624

68625

68626

68627

68628

68629

68630

68631

68632

68633

68634

68635

68636

68637

68638

68639

68640

68641

68642

68643

68644

68645

68646

68647

68648

68649

68650

68651

68652

68653

68654

68655

68656

68657

68658

68659

68660

68661

68662

68663

68664

68665

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces socketpair()

RETURN VALUE
Upon successful completion, this function shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error, no file descriptors shall be allocated, and the contents of
socket_vector shall be left unmodified.

ERRORS
The socketpair() function shall fail if:

[EAFNOSUPPORT]
The implementation does not support the specified address family.

[EMFILE] All, or all but one, of the file descriptors available to the process are currently
open.

[ENFILE] No more file descriptors are available for the system.

[EOPNOTSUPP] The specified protocol does not permit creation of socket pairs.

[EPROTONOSUPPORT]
The protocol is not supported by the address family, or the protocol is not
supported by the implementation.

[EPROTOTYPE] The socket type is not supported by the protocol.

The socketpair() function may fail if:

[EACCES] The process does not have appropriate privileges.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family
supports. The documentation for specific protocols specifies which socket types each protocol
supports.

The socketpair() function is used primarily with UNIX domain sockets and need not be
supported for other domains.

RATIONALE
The use of the SOCK_CLOEXEC and SOCK_CLOFORK flags in the type argument of socketpair()
is necessary to avoid a data race in multi-threaded applications. Without SOCK_CLOFORK, a
file descriptor is leaked into a child process created by one thread in the window between
another using socketpair() and using using fcntl() to set the FD_CLOFORK flag. Without
SOCK_CLOEXEC, a file descriptor intentionally inherited by child processes is similarly leaked
into an executed program if FD_CLOEXEC is not set atomically.

Since socket pairs are often used for communication between a parent and child process,
SOCK_CLOFORK has to be used with care in order for the pair to be usable. If the parent will be
writing and the child will be reading, SOCK_CLOFORK should be used when creating the pair,
and then fcntl() should be used to clear FD_CLOFORK for the read side of the pair. This
prevents the write side from leaking into other children, ensuring the child will get end-of-file
when the parent closes the write side (although the read side can still be leaked). If the parent
will be reading and the child will be writing, or if the socket pair will be used bidirectionally,
there is no way to prevent the write side(s) being leaked (short of preventing other threads from
creating child processes) in order to ensure the parent gets end-of-file when the child closes its

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2095

68666

68667

68668

68669

68670

68671

68672

68673

68674

68675

68676

68677

68678

68679

68680

68681

68682

68683

68684

68685

68686

68687

68688

68689

68690

68691

68692

68693

68694

68695

68696

68697

68698

68699

68700

68701

68702

68703

68704

68705

68706

68707

68708

68709

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

socketpair() System Interfaces

side, and so the two processes should use an alternative method of indicating the end of
communications, for example using shutdown().

Arranging for FD_CLOEXEC to be set appropriately is more straightforward. The parent should
use SOCK_CLOEXEC when creating the socket pair and the child should clear FD_CLOEXEC
on the side to be passed to the new program before calling an exec family function to execute it.

The SOCK_NONBLOCK flag is for convenience in avoiding additional fcntl() calls.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 525), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
The description of the [EMFILE] error condition is aligned with the pipe() function.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0336 [835] and XSH/TC2-2008/0337
[483,835] are applied.

Issue 8
Austin Group Defects 411 and 1318 are applied, adding SOCK_CLOEXEC, SOCK_CLOFORK,
and SOCK_NONBLOCK.

2096 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68710

68711

68712

68713

68714

68715

68716

68717

68718

68719

68720

68721

68722

68723

68724

68725

68726

68727

68728

68729

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sprintf()

NAME
sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int sprintf(char *restrict s, const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2097

68730

68731

68732

68733

68734

68735

68736

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sqrt() System Interfaces

NAME
sqrt, sqrtf, sqrtl — square root function

SYNOPSIS
#include <math.h>

double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the square root of their argument x, √⎯ ⎯x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the square root of x.

MX The returned value shall be dependent on the current rounding direction mode.

MX For finite values of x < −0, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or +Inf, x shall be returned.

If x is −Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is < −0, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES

Taking the Square Root of 9.0

#include <math.h>
...
double x = 9.0;
double result;
...
result = sqrt(x);

2098 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68737

68738

68739

68740

68741

68742

68743

68744

68745

68746

68747

68748

68749

68750

68751

68752

68753

68754

68755

68756

68757

68758

68759

68760

68761

68762

68763

68764

68765

68766

68767

68768

68769

68770

68771

68772

68773

68774

68775

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sqrt()

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan()

XBD Section 4.23 (on page 109), <math.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The sqrtf() and sqrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0588 [320] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2099

68776

68777

68778

68779

68780

68781

68782

68783

68784

68785

68786

68787

68788

68789

68790

68791

68792

68793

68794

68795

68796

68797

68798

68799

68800

68801

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

srand() System Interfaces

NAME
srand — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

void srand(unsigned seed);

DESCRIPTION
Refer to rand().

2100 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68802

68803

68804

68805

68806

68807

68808

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces srand48()

NAME
srand48 — seed the uniformly distributed double-precision pseudo-random number generator

SYNOPSIS
XSI #include <stdlib.h>

void srand48(long seedval);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2101

68809

68810

68811

68812

68813

68814

68815

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

srandom() System Interfaces

NAME
srandom — seed pseudo-random number generator

SYNOPSIS
XSI #include <stdlib.h>

void srandom(unsigned seed);

DESCRIPTION
Refer to initstate().

2102 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68816

68817

68818

68819

68820

68821

68822

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sscanf()

NAME
sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int sscanf(const char *restrict s, const char *restrict format, ...);

DESCRIPTION
Refer to fscanf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2103

68823

68824

68825

68826

68827

68828

68829

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

stat() System Interfaces

NAME
stat — get file status

SYNOPSIS
#include <sys/stat.h>

int stat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
Refer to fstatat().

2104 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68830

68831

68832

68833

68834

68835

68836

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces statvfs()

NAME
statvfs — get file system information

SYNOPSIS
#include <sys/statvfs.h>

int statvfs(const char *restrict path, struct statvfs *restrict buf);

DESCRIPTION
Refer to fstatvfs().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2105

68837

68838

68839

68840

68841

68842

68843

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

stdin System Interfaces

NAME
stderr, stdin, stdout — standard I/O streams

SYNOPSIS
#include <stdio.h>

extern FILE *stderr, *stdin, *stdout;

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type
FILE. The fopen() function shall create certain descriptive data for a stream and return a pointer
to designate the stream in all further transactions. Normally, there are three open streams with
constant pointers declared in the <stdio.h> header and associated with the standard open files.

At program start-up, three streams shall be predefined and already open: stdin (standard input,
for conventional input) for reading, stdout (standard output, for conventional output) for
writing, and stderr (standard error, for diagnostic output) for writing. When opened, stderr shall

CX not be fully buffered; stdin and stdout shall be fully buffered if and only if the file descriptor
associated with the stream is determined not to be associated with an interactive device.

CX The following symbolic values in <unistd.h> define the file descriptors that shall be associated
with the C-language stdin, stdout, and stderr when the application is started:

STDIN_FILENO Standard input value, stdin. Its value is 0.

STDOUT_FILENO Standard output value, stdout. Its value is 1.

STDERR_FILENO Standard error value, stderr. Its value is 2.

These file descriptors are often all associated with a single open file description which has access
mode O_RDWR (e.g., in the case of a terminal device for a login shell). However, the stderr, stdin,
and stdout streams need not be opened for both reading and writing at program start-up in this
case.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), feof(), ferror(), fileno(), fopen(), fprintf(), fread(), fscanf(), fseek(), getc(), isatty(), popen(),
putc(), puts(), read(), setbuf(), setvbuf(), tmpfile(), ungetc(), vfprintf()

XBD <stdio.h>, <unistd.h>

2106 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68844

68845

68846

68847

68848

68849

68850

68851

68852

68853

68854

68855

68856

68857

68858

68859

68860

68861

68862

68863

68864

68865

68866

68867

68868

68869

68870

68871

68872

68873

68874

68875

68876

68877

68878

68879

68880

68881

68882

68883

68884

68885

68886

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces stdin

CHANGE HISTORY
First released in Issue 1.

Issue 6
Extensions beyond the ISO C standard are marked.

A note that stderr is expected to be open for reading and writing is added to the DESCRIPTION.

Issue 8
Austin Group Defect 1347 is applied, clarifying the requirements for how stderr, stdin, and stdout
are opened at program start-up.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2107

68887

68888

68889

68890

68891

68892

68893

68894

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

stpcpy() System Interfaces

NAME
stpcpy — copy a string and return a pointer to the end of the result

SYNOPSIS
CX #include <string.h>

char *stpcpy(char *restrict s1, const char *restrict s2);

DESCRIPTION
Refer to strcpy().

2108 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68895

68896

68897

68898

68899

68900

68901

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces stpncpy()

NAME
stpncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
CX #include <string.h>

char *stpncpy(char *restrict s1, const char *restrict s2, size_t size);

DESCRIPTION
Refer to strncpy().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2109

68902

68903

68904

68905

68906

68907

68908

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

str2sig() System Interfaces

NAME
str2sig — translate between signal names and numbers

SYNOPSIS
CX #include <signal.h>

int str2sig(const char *restrict str, int *restrict pnum);

DESCRIPTION
Refer to sig2str().

2110 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68909

68910

68911

68912

68913

68914

68915

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strcasecmp()

NAME
strcasecmp, strcasecmp_l, strncasecmp, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
#include <strings.h>

int strcasecmp(const char *s1, const char *s2);
int strcasecmp_l(const char *s1, const char *s2,

locale_t locale);
int strncasecmp(const char *s1, const char *s2, size_t n);
int strncasecmp_l(const char *s1, const char *s2,

size_t n, locale_t locale);

DESCRIPTION
The strcasecmp() and strcasecmp_l() functions shall compare, while ignoring differences in case,
the string pointed to by s1 to the string pointed to by s2. The strncasecmp() and strncasecmp_l()
functions shall compare, while ignoring differences in case, not more than n bytes from the
string pointed to by s1 to the string pointed to by s2.

The strcasecmp() and strncasecmp() functions use the current locale to determine the case of the
characters.

The strcasecmp_l() and strncasecmp_l() functions use the locale represented by locale to determine
the case of the characters.

When the LC_CTYPE category of the locale being used is from the POSIX locale, these functions
shall behave as if the strings had been converted to lowercase and then a byte comparison
performed, and errno shall not be changed on valid input. Otherwise, the results are unspecified.

The behavior is undefined if the locale argument to strcasecmp_l() or strncasecmp_l() is the special
locale object LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon completion, strcasecmp() and strcasecmp_l() shall return an integer greater than, equal to,
or less than 0, if the string pointed to by s1 is, ignoring case, greater than, equal to, or less than
the string pointed to by s2, respectively.

Upon successful completion, strncasecmp() and strncasecmp_l() shall return an integer greater
than, equal to, or less than 0, if the possibly null-terminated array pointed to by s1 is, ignoring
case, greater than, equal to, or less than the possibly null-terminated array pointed to by s2,
respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2111

68916

68917

68918

68919

68920

68921

68922

68923

68924

68925

68926

68927

68928

68929

68930

68931

68932

68933

68934

68935

68936

68937

68938

68939

68940

68941

68942

68943

68944

68945

68946

68947

68948

68949

68950

68951

68952

68953

68954

68955

68956

68957

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strcasecmp() System Interfaces

SEE ALSO
wcscasecmp()

XBD <strings.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The strcasecmp() and strncasecmp() functions are moved from the XSI option to the Base.

The strcasecmp_l() and strncasecmp_l() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0589 [302], XSH/TC1-2008/0590 [294],
XSH/TC1-2008/0591 [283], and XSH/TC1-2008/0592 [283] are applied.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that errno is not changed on valid
input.

2112 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

68958

68959

68960

68961

68962

68963

68964

68965

68966

68967

68968

68969

68970

68971

68972

68973

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strcat()

NAME
strcat — concatenate two strings

SYNOPSIS
#include <string.h>

char *strcat(char *restrict s1, const char *restrict s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strcat() function shall append a copy of the string pointed to by s2 (including the
terminating NUL character) to the end of the string pointed to by s1. The initial byte of s2
overwrites the NUL character at the end of s1. If copying takes place between objects that
overlap, the behavior is undefined.

CX The strcat() function shall not change the setting of errno on valid input.

RETURN VALUE
The strcat() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This version is aligned with the ISO C standard; this does not affect compatibility with XPG3
applications. Reliable error detection by this function was never guaranteed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncat()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The strcat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strcat() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2113

68974

68975

68976

68977

68978

68979

68980

68981

68982

68983

68984

68985

68986

68987

68988

68989

68990

68991

68992

68993

68994

68995

68996

68997

68998

68999

69000

69001

69002

69003

69004

69005

69006

69007

69008

69009

69010

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strchr() System Interfaces

NAME
strchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strchr(const char *s, int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strchr() function shall locate the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating NUL character is considered to be part of the string.

CX The strchr() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon completion, strchr() shall return a pointer to the byte, or a null pointer if the byte was not
found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strrchr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strchr() does not change the
setting of errno on valid input.

2114 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69011

69012

69013

69014

69015

69016

69017

69018

69019

69020

69021

69022

69023

69024

69025

69026

69027

69028

69029

69030

69031

69032

69033

69034

69035

69036

69037

69038

69039

69040

69041

69042

69043

69044

69045

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strcmp()

NAME
strcmp — compare two strings

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strcmp() function shall compare the string pointed to by s1 to the string pointed to by s2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared.

CX The strcmp() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon completion, strcmp() shall return an integer greater than, equal to, or less than 0, if the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2,
respectively.

ERRORS
No errors are defined.

EXAMPLES

Checking a Password Entry

The following example compares the information read from standard input to the value of the
name of the user entry. If the strcmp() function returns 0 (indicating a match), a further check
will be made to see if the user entered the proper old password. The crypt() function shall
encrypt the old password entered by the user, using the value of the encrypted password in the
passwd structure as the salt. If this value matches the value of the encrypted passwd in the
structure, the entered password oldpasswd is the correct user’s password. Finally, the program
encrypts the new password so that it can store the information in the passwd structure.

#include <string.h>
#include <unistd.h>
#include <stdio.h>
...
int valid_change;
struct passwd *p;
char user[100];
char oldpasswd[100];
char newpasswd[100];
char savepasswd[100];
...
if (strcmp(p->pw_name, user) == 0) {

if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd;
valid_change = 1;

}

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2115

69046

69047

69048

69049

69050

69051

69052

69053

69054

69055

69056

69057

69058

69059

69060

69061

69062

69063

69064

69065

69066

69067

69068

69069

69070

69071

69072

69073

69074

69075

69076

69077

69078

69079

69080

69081

69082

69083

69084

69085

69086

69087

69088

69089

69090

69091

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strcmp() System Interfaces

else {
fprintf(stderr, "Old password is not valid\n");

}
}
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncmp()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strcmp() does not change the
setting of errno on valid input.

2116 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69092

69093

69094

69095

69096

69097

69098

69099

69100

69101

69102

69103

69104

69105

69106

69107

69108

69109

69110

69111

69112

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strcoll()

NAME
strcoll, strcoll_l — string comparison using collating information

SYNOPSIS
#include <string.h>

int strcoll(const char *s1, const char *s2);
CX int strcoll_l(const char *s1, const char *s2,

locale_t locale);

DESCRIPTION
CX For strcoll(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The strcoll() and strcoll_l() functions shall compare the string pointed to by s1 to the string
pointed to by s2, both interpreted as appropriate to the LC_COLLATE category of the current

CX locale, or of the locale represented by locale, respectively.

CX The strcoll() and strcoll_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
CX situations should set errno to 0, then call strcoll(), or strcoll_l() then check errno.

CX The behavior is undefined if the locale argument to strcoll_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon successful completion, strcoll() shall return an integer greater than, equal to, or less than 0,
according to whether the string pointed to by s1 is greater than, equal to, or less than the string

CX pointed to by s2 when both are interpreted as appropriate to the current locale. On error,
strcoll() may set errno, but no return value is reserved to indicate an error.

Upon successful completion, strcoll_l() shall return an integer greater than, equal to, or less than
0, according to whether the string pointed to by s1 is greater than, equal to, or less than the
string pointed to by s2 when both are interpreted as appropriate to the locale represented by
locale. On error, strcoll_l() may set errno, but no return value is reserved to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The s1 or s2 arguments contain characters outside the domain of the collating
sequence.

EXAMPLES

Comparing Nodes

The following example uses an application-defined function, node_compare(), to compare two
nodes based on an alphabetical ordering of the string field.

#include <string.h>
...
struct node { /* These are stored in the table. */

char *string;
int length;

};
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2117

69113

69114

69115

69116

69117

69118

69119

69120

69121

69122

69123

69124

69125

69126

69127

69128

69129

69130

69131

69132

69133

69134

69135

69136

69137

69138

69139

69140

69141

69142

69143

69144

69145

69146

69147

69148

69149

69150

69151

69152

69153

69154

69155

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strcoll() System Interfaces

int node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1)->string,
((const struct node *)node2)->string);

}
...

APPLICATION USAGE
The strxfrm() and strcmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort(), strcmp(), strxfrm()

XBD <string.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate that errno does not change if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] optional error condition is added.

An example is added.

Issue 7
The strcoll_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0593 [283] and XSH/TC1-2008/0594
[283] are applied.

2118 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69156

69157

69158

69159

69160

69161

69162

69163

69164

69165

69166

69167

69168

69169

69170

69171

69172

69173

69174

69175

69176

69177

69178

69179

69180

69181

69182

69183

69184

69185

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strcpy()

NAME
stpcpy, strcpy — copy a string

SYNOPSIS
#include <string.h>

CX char *stpcpy(char *restrict s1, const char *restrict s2);
char *strcpy(char *restrict s1, const char *restrict s2);

DESCRIPTION
CX For strcpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The stpcpy() and strcpy() functions shall copy the string pointed to by s2 (including the
terminating NUL character) into the array pointed to by s1.

If copying takes place between objects that overlap, the behavior is undefined.

CX The strcpy() and stpcpy() functions shall not change the setting of errno on valid input.

RETURN VALUE
CX The stpcpy() function shall return a pointer to the terminating NUL character copied into the s1

buffer.

The strcpy() function shall return s1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES

Construction of a Multi-Part Message in a Single Buffer

#include <string.h>
#include <stdio.h>

int
main (void)
{

char buffer [10];
char *name = buffer;

name = stpcpy (stpcpy (stpcpy (name, "ice"),"-"), "cream");
puts (buffer);
return 0;

}

Initializing a String

The following example copies the string "----------" into the permstring variable.

#include <string.h>
...
static char permstring[11];
...
strcpy(permstring, "----------");
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2119

69186

69187

69188

69189

69190

69191

69192

69193

69194

69195

69196

69197

69198

69199

69200

69201

69202

69203

69204

69205

69206

69207

69208

69209

69210

69211

69212

69213

69214

69215

69216

69217

69218

69219

69220

69221

69222

69223

69224

69225

69226

69227

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strcpy() System Interfaces

Storing a Key and Data

The following example allocates space for a key using malloc() then uses strcpy() to place the
key there. Then it allocates space for data using malloc(), and uses strcpy() to place data there.
(The user-defined function dbfree() frees memory previously allocated to an array of type struct
element *.)

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
...
/* Structure used to read data and store it. */
struct element {

char *key;
char *data;

};

struct element *tbl, *curtbl;
char *key, *data;
int count;
...
void dbfree(struct element *, int);
...
if ((curtbl->key = malloc(strlen(key) + 1)) == NULL) {

perror("malloc"); dbfree(tbl, count); return NULL;
}
strcpy(curtbl->key, key);

if ((curtbl->data = malloc(strlen(data) + 1)) == NULL) {
perror("malloc"); free(curtbl->key); dbfree(tbl, count); return NULL;

}
strcpy(curtbl->data, data);
...

APPLICATION USAGE
Character movement is performed differently in different implementations. Thus, overlapping
moves may yield surprises.

This version is aligned with the ISO C standard; this does not affect compatibility with XPG3
applications. Reliable error detection by this function was never guaranteed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), wcscpy()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

2120 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69228

69229

69230

69231

69232

69233

69234

69235

69236

69237

69238

69239

69240

69241

69242

69243

69244

69245

69246

69247

69248

69249

69250

69251

69252

69253

69254

69255

69256

69257

69258

69259

69260

69261

69262

69263

69264

69265

69266

69267

69268

69269

69270

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strcpy()

Issue 6
The strcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The stpcpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strcpy() and stpcpy() do not
change the setting of errno on valid input.

Austin Group Defect 1787 is applied, changing the NAME section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2121

69271

69272

69273

69274

69275

69276

69277

69278

69279

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strcspn() System Interfaces

NAME
strcspn — get the length of a complementary substring

SYNOPSIS
#include <string.h>

size_t strcspn(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strcspn() function shall compute the length (in bytes) of the maximum initial segment of the
string pointed to by s1 which consists entirely of bytes not from the string pointed to by s2.

CX The strcspn() function shall not change the setting of errno on valid input.

RETURN VALUE
The strcspn() function shall return the length of the computed segment of the string pointed to
by s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strspn()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strcspn() returns the length of s1, and
not s1 itself as was previously stated.

Issue 6
The Open Group Corrigendum U030/1 is applied. The text of the RETURN VALUE section is
updated to indicate that the computed segment length is returned, not the s1 length.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strcspn() does not change the
setting of errno on valid input.

2122 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69280

69281

69282

69283

69284

69285

69286

69287

69288

69289

69290

69291

69292

69293

69294

69295

69296

69297

69298

69299

69300

69301

69302

69303

69304

69305

69306

69307

69308

69309

69310

69311

69312

69313

69314

69315

69316

69317

69318

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strdup()

NAME
strdup, strndup — duplicate a specific number of bytes from a string

SYNOPSIS
CX #include <string.h>

char *strdup(const char *s);
char *strndup(const char *s, size_t size);

DESCRIPTION
The strdup() function shall return a pointer to a new string, which is a duplicate of the string
pointed to by s. The returned pointer can be passed to free(). A null pointer is returned if the
new string cannot be created.

The strndup() function shall be equivalent to the strdup() function, duplicating the provided s in
a new block of memory allocated as if by using malloc(), with the exception being that strndup()
copies at most size bytes from the array s into the newly allocated memory, terminating the new
string with a null byte. If s contains a null terminator within the first size bytes, all bytes in s up
to and including the null terminator shall be copied into the new memory buffer. The strndup()
function shall not examine more than size bytes of the array pointed to by s. The newly created
string shall always be properly terminated.

RETURN VALUE
The strdup() function shall return a pointer to a new string on success. Otherwise, it shall return
a null pointer and set errno to indicate the error.

Upon successful completion, the strndup() function shall return a pointer to the newly allocated
memory containing the duplicated string. Otherwise, it shall return a null pointer and set errno
to indicate the error.

ERRORS
These functions shall fail if:

[ENOMEM] Storage space available is insufficient.

EXAMPLES
None.

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For strdup() and strndup(), this is the return
value.

Implementations are free to malloc() a buffer containing either (size + 1) bytes or (strnlen(s, size)
+ 1) bytes. Applications should not assume that strndup() will allocate (size + 1) bytes when
strlen(s) is smaller than size.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), wcsdup()

XBD <string.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2123

69319

69320

69321

69322

69323

69324

69325

69326

69327

69328

69329

69330

69331

69332

69333

69334

69335

69336

69337

69338

69339

69340

69341

69342

69343

69344

69345

69346

69347

69348

69349

69350

69351

69352

69353

69354

69355

69356

69357

69358

69359

69360

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strdup() System Interfaces

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ``may fail’’ [ENOMEM]
error to become a ``shall fail’’ error.

The strdup() function is moved from the XSI option to the Base.

The strndup() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

The APPLICATION USAGE section is updated to clarify that memory is allocated as if by
malloc().

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0338 [738] is applied.

Issue 8
Austin Group Defect 1019 is applied, clarifying that the strndup() argument s need not point to a
null-terminated string.

2124 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69361

69362

69363

69364

69365

69366

69367

69368

69369

69370

69371

69372

69373

69374

69375

69376

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strerror()

NAME
strerror, strerror_l, strerror_r — get error message string

SYNOPSIS
#include <string.h>

char *strerror(int errnum);
CX char *strerror_l(int errnum, locale_t locale);

int strerror_r(int errnum, char *strerrbuf, size_t buflen);

DESCRIPTION
CX For strerror(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The strerror() function shall map the error number in errnum to a locale-dependent error
message string and shall return a pointer to it. Typically, the values for errnum come from errno,
but strerror() shall map any value of type int to a message.

CX The application shall not modify the string returned. The returned string pointer might be
CX invalidated or the string content might be overwritten by a subsequent call to strerror(), or by a

subsequent call to strerror_l() in the same thread. The returned pointer and the string content
might also be invalidated if the calling thread is terminated.

CX The string may be overwritten by a subsequent call to strerror_l() in the same thread.

The contents of the error message strings returned by strerror() should be determined by the
setting of the LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
strerror().

CX The strerror() and strerror_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error of strerror(), an application wishing to
check for error situations should set errno to 0, then call strerror(), then check errno. Similarly,
since strerror_l() is required to return a string for some errors, an application wishing to check
for all error situations should set errno to 0, then call strerror_l(), then check errno.

The strerror() function need not be thread-safe; however, strerror() shall avoid data races with all
other functions.

CX The strerror_l() function shall map the error number in errnum to a locale-dependent error
message string in the locale represented by locale and shall return a pointer to it.

The strerror_r() function shall map the error number in errnum to a locale-dependent error
message string and shall return the string in the buffer pointed to by strerrbuf , with length
buflen.

CX If the value of errnum is a valid error number, the message string shall indicate what error
occurred; if the value of errnum is zero, the message string shall either be an empty string or
indicate that no error occurred; otherwise, if these functions complete successfully, the message
string shall indicate that an unknown error occurred.

CX The behavior is undefined if the locale argument to strerror_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2125

69377

69378

69379

69380

69381

69382

69383

69384

69385

69386

69387

69388

69389

69390

69391

69392

69393

69394

69395

69396

69397

69398

69399

69400

69401

69402

69403

69404

69405

69406

69407

69408

69409

69410

69411

69412

69413

69414

69415

69416

69417

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strerror() System Interfaces

RETURN VALUE
Upon completion, whether successful or not, strerror() shall return a pointer to the generated

CX message string. On error errno may be set, but no return value is reserved to indicate an error.

Upon successful completion, strerror_l() shall return a pointer to the generated message string. If
errnum is not a valid error number, errno may be set to [EINVAL], but a pointer to a message
string shall still be returned. If any other error occurs, errno shall be set to indicate the error and
a null pointer shall be returned.

Upon successful completion, strerror_r() shall return 0. Otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions may fail if:

CX [EINVAL] The value of errnum is neither a valid error number nor zero.

The strerror_r() function shall fail if:

CX [ERANGE] Insufficient storage was supplied via strerrbuf and buflen to contain the
generated message string.

EXAMPLES
None.

APPLICATION USAGE
Historically in some implementations, calls to perror() would overwrite the string that the
pointer returned by strerror() points to. Such implementations did not conform to the ISO C
standard; however, application developers should be aware of this behavior if they wish their
applications to be portable to such implementations.

Applications should use strerror_l() rather than strerror() or strerror_r() to avoid thread safety
and possible alternative (non-conforming) versions of these functions in some implementations.

RATIONALE
The strerror_l() function is required to be thread-safe, thereby eliminating the need for an
equivalent to the strerror_r() function.

Earlier versions of this standard did not explicitly require that the error message strings returned
by strerror() and strerror_r() provide any information about the error. This version of the
standard requires a meaningful message for any successful completion.

Since no return value is reserved to indicate a strerror() error, but all calls (whether successful or
not) must return a pointer to a message string, on error strerror() can return a pointer to an
empty string or a pointer to a meaningful string that can be printed.

Note that the [EINVAL] error condition is a may fail error. If an invalid error number is supplied
as the value of errnum, applications should be prepared to handle any of the following:

1. Error (with no meaningful message): errno is set to [EINVAL], the return value is a pointer
to an empty string.

2. Successful completion: errno is unchanged and the return value points to a string like
"unknown error" or "error number xxx" (where xxx is the value of errnum).

3. Combination of #1 and #2: errno is set to [EINVAL] and the return value points to a string
like "unknown error" or "error number xxx" (where xxx is the value of errnum).
Since applications frequently use the return value of strerror() as an argument to
functions like fprintf() (without checking the return value) and since applications have no
way to parse an error message string to determine whether errnum represents a valid

2126 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69418

69419

69420

69421

69422

69423

69424

69425

69426

69427

69428

69429

69430

69431

69432

69433

69434

69435

69436

69437

69438

69439

69440

69441

69442

69443

69444

69445

69446

69447

69448

69449

69450

69451

69452

69453

69454

69455

69456

69457

69458

69459

69460

69461

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strerror()

error number, implementations are encouraged to implement #3. Similarly,
implementations are encouraged to have strerror_r() return [EINVAL] and put a string
like "unknown error" or "error number xxx" in the buffer pointed to by strerrbuf
when the value of errnum is not a valid error number.

Additionally, implementations are encouraged to null terminate strerrbuf when failing with
[ERANGE] for any size other than buflen of zero.

Some applications rely on being able to set errno to 0 before calling a function with no reserved
value to indicate an error, then call strerror(errno) afterwards to detect whether an error occurred
(because errno changed) or to indicate success (because errno remained zero). This usage pattern
requires that strerror(0) succeed with useful results. Previous versions of the standard did not
specify the behavior when errnum is zero.

FUTURE DIRECTIONS
None.

SEE ALSO
perror()

XBD <string.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

A note indicating that the strerror() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the fact that errno may be set is added.

• The [EINVAL] optional error condition is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The strerror_r() function is added in response to IEEE PASC Interpretation 1003.1c #39.

The strerror_r() function is marked as part of the Thread-Safe Functions option.

Issue 7
Austin Group Interpretation 1003.1-2001 #072 is applied, updating the ERRORS section.

Austin Group Interpretation 1003.1-2001 #156 is applied.

Austin Group Interpretation 1003.1-2001 #187 is applied, clarifying the behavior when the
generated error message is an empty string.

SD5-XSH-ERN-191 is applied, updating the APPLICATION USAGE section.

The strerror_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

The strerror_r() function is moved from the Thread-Safe Functions option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0595 [75], XSH/TC1-2008/0596 [447],

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2127

69462

69463

69464

69465

69466

69467

69468

69469

69470

69471

69472

69473

69474

69475

69476

69477

69478

69479

69480

69481

69482

69483

69484

69485

69486

69487

69488

69489

69490

69491

69492

69493

69494

69495

69496

69497

69498

69499

69500

69501

69502

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strerror() System Interfaces

XSH/TC1-2008/0597 [382,428], XSH/TC1-2008/0598 [283], XSH/TC1-2008/0599 [382,428],
XSH/TC1-2008/0600 [283], and XSH/TC1-2008/0601 [382,428] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0339 [656] is applied.

Issue 8
Austin Group Defect 398 is applied, changing the [ERANGE] error from ``may fail’’ to ``shall
fail’’.

Austin Group Defect 655 is applied, changing the APPLICATION USAGE section.

Austin Group Defect 1302 is applied, aligning the strerror() function with the
ISO/IEC 9899: 2018 standard.

2128 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69503

69504

69505

69506

69507

69508

69509

69510

69511

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strfmon()

NAME
strfmon, strfmon_l — convert monetary value to a string

SYNOPSIS
#include <monetary.h>

ssize_t strfmon(char *restrict s, size_t maxsize,
const char *restrict format, ...);

ssize_t strfmon_l(char *restrict s, size_t maxsize,
locale_t locale, const char *restrict format, ...);

DESCRIPTION
The strfmon() function shall place characters into the array pointed to by s as controlled by the
string pointed to by format. No more than maxsize bytes are placed into the array.

The format is a character string, beginning and ending in its initial state, if any, that contains two
types of objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which shall result in the fetching of zero or more arguments which are
converted and formatted. The results are undefined if there are insufficient arguments for the
format. If the format is exhausted while arguments remain, the excess arguments are simply
ignored.

The application shall ensure that a conversion specification consists of the following sequence:

• A '%' character

• Optional flags

• Optional field width

• Optional left precision

• Optional right precision

• A required conversion specifier character that determines the conversion to be performed

The strfmon_l() function shall be equivalent to the strfmon() function, except that the locale data
used is from the locale represented by locale.

Flags

One or more of the following optional flags can be specified to control the conversion:

=f An '=' followed by a single character f which is used as the numeric fill character. In
order to work with precision or width counts, the fill character shall be a single byte
character; if not, the behavior is undefined. The default numeric fill character is the
<space>. This flag does not affect field width filling which always uses the <space>.
This flag is ignored unless a left precision (see below) is specified.

ˆ Do not format the currency amount with grouping characters. The default is to insert
the grouping characters if defined for the current locale.

+ or (Specify the style of representing positive and negative currency amounts. Only one of
'+' or '(' may be specified.

If '+' is specified, the locale’s positive_sign and negative_sign values shall be used
(for example, in many locales, the empty string if positive and '-' if negative).
However, if both values would be returned by localeconv() as empty strings, strfmon()
shall fail. The placement of the signs (if not empty) shall depend on the locale settings:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2129

69512

69513

69514

69515

69516

69517

69518

69519

69520

69521

69522

69523

69524

69525

69526

69527

69528

69529

69530

69531

69532

69533

69534

69535

69536

69537

69538

69539

69540

69541

69542

69543

69544

69545

69546

69547

69548

69549

69550

69551

69552

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strfmon() System Interfaces

• For the n conversion specifier, the placement specified by the locale’s
p_sign_posn and n_sign_posn values shall be used.

• For the i conversion specifier, the placement specified by the locale’s
int_p_sign_posn and int_n_sign_posn values shall be used.

If a sign’s placement cannot be determined from these locale values because a value
that needs to be used would be returned by localeconv() as 0 or {CHAR_MAX}, the sign
shall be placed as if the relevant value was 1.

If '(' is specified, negative amounts shall be enclosed within parentheses and the
locale’s positive_sign and negative_sign values shall not be used.

If neither flag is specified, the style used shall depend on the locale settings:

• For the n conversion specifier, the style specified by the locale’s p_sign_posn and
n_sign_posn values shall be used.

• For the i conversion specifier, the style specified by the locale’s int_p_sign_posn
and int_n_sign_posn values shall be used.

If the style cannot be determined from these locale values because a value that needs to
be used would be returned by localeconv() as {CHAR_MAX}, the style used shall be that
specified for the '+' flag; if this would cause strfmon() to fail because the locale’s
positive_sign and negative_sign values would both be returned by localeconv() as
empty strings, strfmon() shall behave as if the negative_sign value was the string "-".

! Suppress the currency symbol from the output conversion.

− Specify the alignment. If this flag is present the result of the conversion is left-justified
(padded to the right) rather than right-justified. This flag shall be ignored unless a field
width (see below) is specified.

Field Width

w A decimal digit string w specifying a minimum field width in bytes in which the result
of the conversion is right-justified (or left-justified if the flag '−' is specified). The
default is 0.

Left Precision

#n A '#' followed by a decimal digit string n specifying a maximum number of digits
expected to be formatted to the left of the radix character. This option can be used to
keep the formatted output from multiple calls to the strfmon() function aligned in the
same columns. It can also be used to fill unused positions with a special character as in
"$***123.45". This option causes an amount to be formatted as if it has the number
of digits specified by n. If more than n digit positions are required, this conversion
specification is ignored. Digit positions in excess of those actually required are filled
with the numeric fill character (see the =f flag above).

If grouping has not been suppressed with the '^' flag, and it is defined for the current
locale, grouping separators are inserted before the fill characters (if any) are added.
Grouping separators are not applied to fill characters even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in the
formatted output such as currency or sign symbols are padded as necessary with
<space> characters to make their positive and negative formats an equal length.

2130 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69553

69554

69555

69556

69557

69558

69559

69560

69561

69562

69563

69564

69565

69566

69567

69568

69569

69570

69571

69572

69573

69574

69575

69576

69577

69578

69579

69580

69581

69582

69583

69584

69585

69586

69587

69588

69589

69590

69591

69592

69593

69594

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strfmon()

Right Precision

.p A <period> followed by a decimal digit string p specifying the number of digits after
the radix character. If the value of the right precision p is 0, no radix character appears.
If a right precision is not included, a default specified by the current locale is used. The
amount being formatted is rounded to the specified number of digits prior to
formatting.

Conversion Specifier Characters

The conversion specifier characters and their meanings are:

i The double argument is formatted according to the locale’s international currency
format (for example, in the US: USD 1,234.56). If the argument is ±Inf or NaN, the result
of the conversion is unspecified.

n The double argument is formatted according to the locale’s national currency format
(for example, in the US: $1,234.56). If the argument is ±Inf or NaN, the result of the
conversion is unspecified.

% Convert to a '%'; no argument is converted. The entire conversion specification shall
be %%.

Locale Information

The LC_MONETARY category of the current locale affects the behavior of this function including
the monetary radix character (which may be different from the numeric radix character affected
by the LC_NUMERIC category), the grouping separator, the currency symbols, and formats. The
international currency symbol should be conformant with the ISO 4217: 2015 standard.

If the value of maxsize is greater than {SSIZE_MAX}, the result is implementation-defined.

The behavior is undefined if the locale argument to strfmon_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
If all conversions are successful and the total number of resulting bytes including the
terminating null byte is not more than maxsize, these functions shall return the number of bytes
placed into the array pointed to by s, not including the terminating NUL character. Otherwise,
−1 shall be returned, the contents of the array are unspecified, and errno shall be set to indicate
the error.

ERRORS
These functions shall fail if:

[E2BIG] Conversion stopped due to lack of space in the buffer.

[EINVAL] The '+' flag was included in a conversion specification and the locale’s
positive_sign and negative_sign values would both be returned by
localeconv() as empty strings.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2131

69595

69596

69597

69598

69599

69600

69601

69602

69603

69604

69605

69606

69607

69608

69609

69610

69611

69612

69613

69614

69615

69616

69617

69618

69619

69620

69621

69622

69623

69624

69625

69626

69627

69628

69629

69630

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strfmon() System Interfaces

EXAMPLES
Given a locale for the US and the values 123.45, −123.45, and 3456.781, the following output
might be produced. Square brackets ("[]") are used in this example to delimit the output.

%n [$123.45] Default formatting
[-$123.45]
[$3,456.78]

%11n [$123.45] Right align within an 11-character field
[-$123.45]
[$3,456.78]

%#5n [$ 123.45] Aligned columns for values up to 99 999
[-$ 123.45]
[$ 3,456.78]

%=*#5n [$***123.45] Specify a fill character
[-$***123.45]
[$*3,456.78]

%=0#5n [$000123.45] Fill characters do not use grouping
[-$000123.45] even if the fill character is a digit
[$03,456.78]

%^#5n [$ 123.45] Disable the grouping separator
[-$ 123.45]
[$ 3456.78]

%^#5.0n [$ 123] Round off to whole units
[-$ 123]
[$ 3457]

%^#5.4n [$ 123.4500] Increase the precision
[-$ 123.4500]
[$ 3456.7810]

%(#5n [$ 123.45] Use an alternative pos/neg style
[($ 123.45)]
[$ 3,456.78]

%!(#5n [123.45] Disable the currency symbol
[(123.45)]
[3,456.78]

%-14#5.4n [$ 123.4500] Left-justify the output
[-$ 123.4500]
[$ 3,456.7810]

%14#5.4n [$ 123.4500] Corresponding right-justified output
[-$ 123.4500]
[$ 3,456.7810]

See also the EXAMPLES section in fprintf().

APPLICATION USAGE
The '+' flag should be used with care, because if the locale’s positive_sign and negative_sign
values are both empty strings, there is no way to distinguish negative from positive values with
signs and therefore strfmon() fails. If the application has a preference for signs but parentheses
are acceptable, it should try strfmon() with the '+' flag first, and if it fails with [EINVAL] then

2132 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69631

69632

69633

69634

69635

69636

69637

69638

69639

69640

69641

69642

69643

69644

69645

69646

69647

69648

69649

69650

69651

69652

69653

69654

69655

69656

69657

69658

69659

69660

69661

69662

69663

69664

69665

69666

69667

69668

69669

69670

69671

69672

69673

69674

69675

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strfmon()

repeat the call without the '+' flag.

RATIONALE
The [EINVAL] error condition applies only when the '+' flag is used because this flag indicates
that the application requires the use of signs, and if there are no signs in the locale data then this
requirement cannot be satisfied. When neither '+' nor '(' is used, the application is requesting
whatever formatting is appropriate for the locale, and so strfmon() has a fallback of using a '-'
sign for negative values in cases where the locale data does not indicate parentheses should be
used and has no signs.

FUTURE DIRECTIONS
Lowercase conversion characters are reserved for future standards use and uppercase for
implementation-defined use.

SEE ALSO
fprintf(), localeconv()

XBD <monetary.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE.

The [ENOSYS] error is removed.

Text is added to the DESCRIPTION warning about values of maxsize that are greater than
{SSIZE_MAX}.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the strfmon() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The EXAMPLES section is reworked, clarifying the output format.

Issue 7
SD5-XSH-ERN-29 is applied, updating the examples for %(#5n and %!(#5n.

SD5-XSH-ERN-233 is applied, changing the definition of the '+' or '(' flags to refer to
multiple locales.

The strfmon() function is moved from the XSI option to the Base.

The strfmon_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0602 [302], XSH/TC1-2008/0603 [283],
and XSH/TC1-2008/0604 [283] are applied.

Issue 8
Austin Group Defect 1199 is applied, changing the requirements for the '+' and '(' flags and
adding the [EINVAL] error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2133

69676

69677

69678

69679

69680

69681

69682

69683

69684

69685

69686

69687

69688

69689

69690

69691

69692

69693

69694

69695

69696

69697

69698

69699

69700

69701

69702

69703

69704

69705

69706

69707

69708

69709

69710

69711

69712

69713

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strftime() System Interfaces

NAME
strftime, strftime_l — convert date and time to a string

SYNOPSIS
#include <time.h>

size_t strftime(char *restrict s, size_t maxsize,
const char *restrict format, const struct tm *restrict timeptr);

CX size_t strftime_l(char *restrict s, size_t maxsize,
const char *restrict format, const struct tm *restrict timeptr,
locale_t locale);

DESCRIPTION
CX For strftime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The strftime() function shall place bytes into the array pointed to by s as controlled by the string
pointed to by format. The application shall ensure that the format is a character string, beginning
and ending in its initial shift state, if any. The format string consists of zero or more conversion
specifications and ordinary characters.

Each conversion specification is introduced by the '%' character after which the following
appear in sequence:

CX • An optional flag:

0 The zero character ('0'), which specifies that the character used as the padding
character is '0',

+ The <plus-sign> character ('+'), which specifies that the character used as the
padding character is '0', and that if and only if the field being produced consumes
more than four bytes to represent a year (for %F, %G, or %Y) or more than two bytes to
represent the year divided by 100 (for %C) then a leading <plus-sign> character shall
be included if the year being processed is greater than or equal to zero or a leading
<hyphen-minus> character ('−') shall be included if the year is less than zero.

The default padding character is unspecified.

• An optional minimum field width. If the converted value, including any leading '+' or
'−' sign, has fewer bytes than the minimum field width and the padding character is not
the NUL character, the output shall be padded on the left (after any leading '+' or '−'
sign) with the padding character.

• An optional E or O modifier.

• A terminating conversion specifier character that indicates the type of conversion to be
applied.

CX The results are unspecified if more than one flag character is specified, a flag character is
specified without a minimum field width; a minimum field width is specified without a flag
character; a modifier is specified with a flag or with a minimum field width; or if a minimum
field width is specified for any conversion specifier other than C, F, G, or Y.

All ordinary characters (including the terminating NUL character) are copied unchanged into
the array. If copying takes place between objects that overlap, the behavior is undefined. No
more than maxsize bytes are placed into the array. Each conversion specifier is replaced by
appropriate characters as described in the following list. The appropriate characters are

2134 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69714

69715

69716

69717

69718

69719

69720

69721

69722

69723

69724

69725

69726

69727

69728

69729

69730

69731

69732

69733

69734

69735

69736

69737

69738

69739

69740

69741

69742

69743

69744

69745

69746

69747

69748

69749

69750

69751

69752

69753

69754

69755

69756

69757

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strftime()

determined using the LC_TIME category of the current locale and by the values of zero or more
members of the broken-down time structure pointed to by timeptr, as specified in brackets in the
description. If any of the specified values are outside the normal range, the characters stored are
unspecified.

CX The strftime_l() function shall be equivalent to the strftime() function, except that the locale data
used is from the locale represented by locale.

Local timezone information shall be set as though strftime() called tzset().

The following conversion specifiers shall be supported:

a Replaced by the locale’s abbreviated weekday name. [tm_wday]

A Replaced by the locale’s full weekday name. [tm_wday]

b Replaced by the locale’s abbreviated month name. [tm_mon]

B Replaced by the locale’s full month name. [tm_mon]

c Replaced by the locale’s appropriate date and time representation. (See the Base
Definitions volume of POSIX.1-2024, <time.h>.)

C Replaced by the year divided by 100 and truncated to an integer, as a decimal number.
[tm_year]

If a minimum field width is not specified:

• If the year is between 0 and 9999 inclusive, two characters shall be placed into the
array pointed to by s, including a leading '0' if there would otherwise be only a
single digit.

CX • If the year is less than 0 or greater than 9999, the number of characters placed into
the array pointed to by s shall be the number of digits and leading sign characters
(if any) in the result of dividing the year by 100 and truncating, or two, whichever
is greater.

CX If a minimum field width is specified, the number of characters placed into the array
pointed to by s shall be the number of digits and leading sign characters (if any) in the
result of dividing the year by 100 and truncating, or the minimum field width,
whichever is greater.

d Replaced by the day of the month as a decimal number [01,31]. [tm_mday]

D Equivalent to %m/%d/%y. [tm_mon, tm_mday, tm_year]

e Replaced by the day of the month as a decimal number [1,31]; a single digit is preceded
by a space. [tm_mday]

F Equivalent to %Y-%m-%d if no flag and no minimum field width are specified. (For
years between 1000 and 9999 inclusive this provides the ISO 8601-1: 2019 standard
complete representation, extended format date representation of a specific day.)
[tm_year, tm_mon, tm_mday]

CX If a minimum field width of x is specified, the year shall be output as if by the Y
specifier (described below) with whatever flag was given and a minimum field width
of x−6. If x is less than 6, the behavior shall be as if x equalled 6.

If the minimum field width is specified to be 10, and the year is four digits long, then
the output string produced shall match the ISO 8601-1: 2019 standard subclause 4.1.2.2
complete representation, extended format date representation of a specific day. If a +

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2135

69758

69759

69760

69761

69762

69763

69764

69765

69766

69767

69768

69769

69770

69771

69772

69773

69774

69775

69776

69777

69778

69779

69780

69781

69782

69783

69784

69785

69786

69787

69788

69789

69790

69791

69792

69793

69794

69795

69796

69797

69798

69799

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strftime() System Interfaces

flag is specified, a minimum field width of x is specified, and x−7 bytes are sufficient to
hold the digits of the year (not including any needed sign character), then the output
shall match the ISO 8601-1: 2019 standard subclause 4.1.2.4 complete representation,
expanded format date representation of a specific day.

g Replaced by the last 2 digits of the week-based year (see below) as a decimal number
[00,99]. [tm_year, tm_wday, tm_yday]

G Replaced by the week-based year (see below) as a decimal number (for example, 1977).
[tm_year, tm_wday, tm_yday]

CX If a minimum field width is specified, the number of characters placed into the array
pointed to by s shall be the number of digits and leading sign characters (if any) in the
year, or the minimum field width, whichever is greater.

h Equivalent to %b. [tm_mon]

H Replaced by the hour (24-hour clock) as a decimal number [00,23]. [tm_hour]

I Replaced by the hour (12-hour clock) as a decimal number [01,12]. [tm_hour]

j Replaced by the day of the year as a decimal number [001,366]. [tm_yday]

m Replaced by the month as a decimal number [01,12]. [tm_mon]

M Replaced by the minute as a decimal number [00,59]. [tm_min]

n Replaced by a <newline>.

p Replaced by the locale’s equivalent of either a.m. or p.m. [tm_hour]

CX r Replaced by the time in 12-hour clock notation; if the 12-hour format is not supported
in the locale, this shall be either an empty string or the time in a 24-hour clock notation.
In the POSIX locale this shall be equivalent to %I:%M:%S %p. [tm_hour, tm_min, tm_sec]

R Replaced by the time in 24-hour notation (%H:%M). [tm_hour, tm_min]

CX s Replaced by the number of seconds since the Epoch as a decimal number, calculated as
described for mktime(). [tm_year, tm_mon, tm_mday, tm_hour, tm_min, tm_sec, tm_isdst]

S Replaced by the second as a decimal number [00,60]. [tm_sec]

t Replaced by a <tab>.

T Replaced by the time (%H:%M:%S). [tm_hour, tm_min, tm_sec]

u Replaced by the weekday as a decimal number [1,7], with 1 representing Monday.
[tm_wday]

U Replaced by the week number of the year as a decimal number [00,53]. The first
Sunday of January is the first day of week 1; days in the new year before this are in
week 0. [tm_year, tm_wday, tm_yday]

V Replaced by the week number of the year (Monday as the first day of the week) as a
decimal number [01,53]. If the week containing 1 January has four or more days in the
new year, then it is considered week 1. Otherwise, it is the last week of the previous
year, and the next week is week 1. Both January 4th and the first Thursday of January
are always in week 1. [tm_year, tm_wday, tm_yday]

w Replaced by the weekday as a decimal number [0,6], with 0 representing Sunday.
[tm_wday]

2136 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69800

69801

69802

69803

69804

69805

69806

69807

69808

69809

69810

69811

69812

69813

69814

69815

69816

69817

69818

69819

69820

69821

69822

69823

69824

69825

69826

69827

69828

69829

69830

69831

69832

69833

69834

69835

69836

69837

69838

69839

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strftime()

W Replaced by the week number of the year as a decimal number [00,53]. The first
Monday of January is the first day of week 1; days in the new year before this are in
week 0. [tm_year, tm_wday, tm_yday]

x Replaced by the locale’s appropriate date representation. (See the Base Definitions
volume of POSIX.1-2024, <time.h>.)

X Replaced by the locale’s appropriate time representation. (See the Base Definitions
volume of POSIX.1-2024, <time.h>.)

y Replaced by the last two digits of the year as a decimal number [00,99]. [tm_year]

Y Replaced by the year as a decimal number (for example, 1997). [tm_year]

CX If a minimum field width is specified, the number of characters placed into the array
pointed to by s shall be the number of digits and leading sign characters (if any) in the
year, or the minimum field width, whichever is greater.

z Replaced by the offset from UTC in the ISO 8601-1: 2019 standard format (+hhmm or
−hhmm), or by no characters if no timezone is determinable. For example, "-0430"

CX means 4 hours 30 minutes behind UTC (west of Greenwich). If tm_isdst is zero, the
standard time offset is used. If tm_isdst is greater than zero, the daylight saving time
offset is used. If tm_isdst is negative, no characters are returned.

CX [tm_isdst, tm_gmtoff]

Z Replaced by the timezone name or abbreviation, or by no bytes if no timezone
CX information exists. [tm_isdst, tm_zone]

% Replaced by %.

If a conversion specification does not correspond to any of the above, the behavior is undefined.

CX If a struct tm broken-down time structure is created by localtime() or localtime_r(), or modified
by mktime(), and the value of TZ is subsequently modified, the results of the %Z and %z
strftime() conversion specifiers are undefined, when strftime() is called with such a broken-down
time structure.

If a struct tm broken-down time structure is created or modified by gmtime() or gmtime_r(), it is
unspecified whether the result of the %Z and %z conversion specifiers shall refer to UTC or the
current local timezone, when strftime() is called with such a broken-down time structure.

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E or O modifier characters to indicate that an
alternative format or specification should be used rather than the one normally used by the
unmodified conversion specifier. If the alternative format or specification does not exist for the
current locale (see ERA in XBD Section 7.3.5, on page 152), the behavior shall be as if the
unmodified conversion specification were used.

%Ec Replaced by the locale’s alternative appropriate date and time representation.

%EC Replaced by the name of the base year (period) in the locale’s alternative
representation.

%Ex Replaced by the locale’s alternative date representation.

%EX Replaced by the locale’s alternative time representation.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2137

69840

69841

69842

69843

69844

69845

69846

69847

69848

69849

69850

69851

69852

69853

69854

69855

69856

69857

69858

69859

69860

69861

69862

69863

69864

69865

69866

69867

69868

69869

69870

69871

69872

69873

69874

69875

69876

69877

69878

69879

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strftime() System Interfaces

%Ey Replaced by the offset from %EC (year only) in the locale’s alternative representation.

%EY Replaced by the full alternative year representation.

CX %Ob Replaced by the locale’s abbreviated alternative month name.

CX %OB Replaced by the locale’s alternative appropriate full month name.

%Od Replaced by the day of the month, using the locale’s alternative numeric symbols, filled
as needed with leading zeros if there is any alternative symbol for zero; otherwise, with
leading <space> characters.

%Oe Replaced by the day of the month, using the locale’s alternative numeric symbols, filled
as needed with leading <space> characters.

%OH Replaced by the hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI Replaced by the hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om Replaced by the month using the locale’s alternative numeric symbols.

%OM Replaced by the minutes using the locale’s alternative numeric symbols.

%OS Replaced by the seconds using the locale’s alternative numeric symbols.

%Ou Replaced by the weekday as a number in the locale’s alternative representation
(Monday=1).

%OU Replaced by the week number of the year (Sunday as the first day of the week, rules
corresponding to %U) using the locale’s alternative numeric symbols.

%OV Replaced by the week number of the year (Monday as the first day of the week, rules
corresponding to %V) using the locale’s alternative numeric symbols.

%Ow Replaced by the number of the weekday (Sunday=0) using the locale’s alternative
numeric symbols.

%OW Replaced by the week number of the year (Monday as the first day of the week) using
the locale’s alternative numeric symbols.

%Oy Replaced by the year (offset from %C) using the locale’s alternative numeric symbols.

%g, %G, and %V give values according to the ISO 8601-1: 2019 standard week-based year. In this
system, weeks begin on a Monday and week 1 of the year is the week that includes January 4th,
which is also the week that includes the first Thursday of the year, and is also the first week that
contains at least four days in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the
preceding days are part of the last week of the preceding year; thus, for Saturday 2nd January
1999, %G is replaced by 1998 and %V is replaced by 53. If December 29th, 30th, or 31st is a
Monday, it and any following days are part of week 1 of the following year. Thus, for Tuesday
30th December 1997, %G is replaced by 1998 and %V is replaced by 01.

If a conversion specifier is not one of the above, the behavior is undefined.

CX The behavior is undefined if the locale argument to strftime_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
If successful, these functions shall return the number of bytes placed into the array pointed to by

CX s, not including the terminating NUL character. If successful, errno shall not be changed.
CX Otherwise, 0 shall be returned, errno shall be set to indicate the error, and the contents of the

array are unspecified.

2138 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69880

69881

69882

69883

69884

69885

69886

69887

69888

69889

69890

69891

69892

69893

69894

69895

69896

69897

69898

69899

69900

69901

69902

69903

69904

69905

69906

69907

69908

69909

69910

69911

69912

69913

69914

69915

69916

69917

69918

69919

69920

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strftime()

ERRORS
CX These functions shall fail if:

[ERANGE] The total number of resulting bytes including the terminating NUL character
is more than maxsize.

These functions may fail if:

[EINVAL] The format string includes a %s conversion and the number of seconds since
the Epoch would be negative.

[EOVERFLOW] The format string includes a %s conversion and the number of seconds since
the Epoch cannot be represented in a time_t.

EXAMPLES

Getting a Localized Date String

The following example first sets the locale to the user’s default. The locale information will be
used in the nl_langinfo() and strftime() functions. The nl_langinfo() function returns the localized
date string which specifies how the date is laid out. The strftime() function takes this
information and, using the tm structure for values, places the date and time information into
datestring.

#include <time.h>
#include <locale.h>
#include <langinfo.h>
...
struct tm *tm;
char datestring[256];
...
setlocale (LC_ALL, "");
...
strftime (datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);
...

APPLICATION USAGE
A return value of 0 may indicate either success or failure if a format is the empty string or
consists of conversion specifications such as %p or %Z that are replaced by no characters in the
current locale or because of the current setting of tzname[], respectively. To distinguish between
success and failure when strftime()() returns 0, an application can set errno to 0 before calling
strftime() and test whether errno is 0 afterwards.

The range of values for %S is [00,60] rather than [00,59] to allow for the occasional leap second.

Some of the conversion specifications are duplicates of others. They are included for
compatibility with nl_cxtime() and nl_ascxtime(), which were published in Issue 2.

The %C, %F, %G, and %Y format specifiers in strftime() always print full values, but the strptime()
%C, %F, and %Y format specifiers only scan two digits (assumed to be the first two digits of a
four-digit year) for %C and four digits (assumed to be the entire (four-digit) year) for %F and %Y.
This mimics the behavior of printf() and scanf(); that is:

printf("%2d", x = 1000);

prints "1000", but:

scanf(%2d", &x);

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2139

69921

69922

69923

69924

69925

69926

69927

69928

69929

69930

69931

69932

69933

69934

69935

69936

69937

69938

69939

69940

69941

69942

69943

69944

69945

69946

69947

69948

69949

69950

69951

69952

69953

69954

69955

69956

69957

69958

69959

69960

69961

69962

69963

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strftime() System Interfaces

when given "1000" as input will only store 10 in x). Applications using extended ranges of
years must be sure that the number of digits specified for scanning years with strptime() matches
the number of digits that will actually be present in the input stream. Historic implementations
of the %Y conversion specification (with no flags and no minimum field width) produced
different output formats. Some always produced at least four digits (with 0 fill for years from 0
through 999) while others only produced the number of digits present in the year (with no fill
and no padding). These two forms can be produced with the '0' flag and a minimum field
width options using the conversions specifications %04Y and %01Y, respectively. Similarly,
because %Y is part of %F, field widths of 10 and 7 (%010F, %07F), respectively, produce the same
effect in the year portion of the %F conversion result.

In the past, the C and POSIX standards specified that %F produced an ISO 8601-1: 2019 standard
date format, but didn’t specify which one. For years in the range [1000,9999], POSIX.1-2024
requires that the output produced match the ISO 8601-1: 2019 standard complete representation
extended format (YYYY-MM-DD) and for years greater than 9999 produce output that matches
the ISO 8601-1: 2019 standard expanded representation extended format ±YYYYY-MM-DD). For
years less than 1000, %F is not required to produce an ISO 8601-1: 2019 standard format when
used without specifying at least a minimum field width. As stated above, some implementations
pad %Y conversions with zeros to four digits, in which case %F produces an ISO 8601-1: 2019
standard format; other implementations do not pad %Y with zeros, in which case %F does not
produce an ISO 8601-1: 2019 standard format. To fully meet ISO 8601-1: 2019 standard
requirements, the producer and consumer must agree on a date format that has a specific
number of bytes reserved to hold the characters used to represent the years that is sufficiently
large to hold all values that will be shared. For example, the %+13F conversion specification will
produce output matching the format "±YYYYYY-MM-DD" (a leading '+' or '−' sign; a six-digit,
0-filled year; a '−'; a two-digit, leading 0-filled month; another '−'; and the two-digit, leading
0-filled day within the month).

Note that if the year being printed is greater than 9999, the resulting string from the unadorned
%F conversion specifications will not conform to the ISO 8601-1: 2019 standard extended format,
complete representation for a date and will instead be an extended format, expanded
representation (presumably without the required agreement between the date’s producer and
consumer).

In the C or POSIX locale, the E and O modifiers are ignored and the replacement strings for the
following specifiers are:

%a The first three characters of %A.

%A One of Sunday, Monday, . . ., Saturday.

%b The first three characters of %B.

%B One of January, February, . . ., December.

%c Equivalent to %a %b %e %T %Y.

%p One of AM or PM.

%r Equivalent to %I:%M:%S %p.

%x Equivalent to %m/%d/%y.

%X Equivalent to %T.

%Z Implementation-defined.

2140 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

69964

69965

69966

69967

69968

69969

69970

69971

69972

69973

69974

69975

69976

69977

69978

69979

69980

69981

69982

69983

69984

69985

69986

69987

69988

69989

69990

69991

69992

69993

69994

69995

69996

69997

69998

69999

70000

70001

70002

70003

70004

70005

70006

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strftime()

RATIONALE
The %Y conversion specification to strftime() was frequently assumed to be a four-digit year, but
the ISO C standard does not specify that %Y is restricted to any subset of allowed values from the
tm_year field. Similarly, the %C conversion specification was assumed to be a two-digit field and
the first part of the output from the %F conversion specification was assumed to be a four-digit
field. Since tm_year is a signed int with a width of at least 32 bits and time_t is required to have a
width of at least 64 bits (in conforming programming environments), these assumptions no
longer hold.

POSIX.1-2024 now allows the format specifications %0xC, %0xF, %0xG, and %0xY (where 'x' is
a string of decimal digits used to specify printing and scanning of a string of x decimal digits)
with leading zero fill characters. Allowing applications to set the field width enables them to
agree on the number of digits to be printed and scanned in the ISO 8601-1: 2019 standard
expanded representation of a year (for %F, %G, and %Y) or all but the last two digits of the year
(for %C). This is based on a feature in some versions of GNU libc’s strftime(). The GNU version
allows specifying space, zero, or no-fill characters in strftime() format strings, but does not allow
any flags to be specified in strptime() format strings. These implementations also allow these
flags to be specified for any numeric field. POSIX.1-2024 only requires the zero fill flag ('0') and
only requires that it be recognized when processing %C, %F, %G, and %Y specifications when a
minimum field width is also specified. The '0' flag is the only flag needed to produce and scan
the ISO 8601-1: 2019 standard year fields using the extended format forms. POSIX.1-2024 also
allows applications to specify the same flag and field width specifiers to be used in both
strftime() and strptime() format strings for symmetry. Systems may provide other flag characters
and may accept flags in conjunction with conversion specifiers other than %C, %F, %G, and %Y;
but portable applications cannot depend on such extensions.

POSIX.1-2024 now also allows the format specifications %+xC, %+xF, %+xG, and %+xY (where
'x' is a string of decimal digits used to specify printing and scanning of a string of 'x' decimal
digits) with leading zero fill characters and a leading '+' sign character if the year being
converted is more than four digits or a minimum field width is specified that allows room for
more than four digits for the year. This allows date providers and consumers to agree on a
specific number of digits to represent a year as required by the ISO 8601-1: 2019 standard
expanded representation formats. The expanded representation formats all require the year to
begin with a leading '+' or '−' sign. (All of these specifiers can also provide a leading '−'
sign for negative years. Since negative years and the year 0 don’t fit well with the Gregorian or
Julian calendars, the normal ranges of dates start with year 1. The ISO C standard allows tm_year
to assume values corresponding to years before year 1, but the use of such years provided
unspecified results.)

Some earlier version of this standard specified that applications wanting to use strptime() to scan
dates and times printed by strftime() should provide non-digit characters between fields to
separate years from months and days. It also supported %F to print and scan the
ISO 8601-1: 2019 standard extended format, complete representation date for years 1 through
9999 (i.e., YYYY-MM-DD). However, many applications were written to print (using strftime())
and scan (using strptime()) dates written using the basic format complete representation (four-
digit years) and truncated representation (two-digit years) specified by the ISO 8601-1: 2019
standard representation of dates and times which do not have any separation characters
between fields. The ISO 8601-1: 2019 standard also specifies basic format expanded
representation where the creator and consumer of these fields agree beforehand to represent
years as leading zero-filled strings of an agreed length of more than four digits to represent a
year (again with no separation characters when year, month, and day are all displayed).
Applications producing and consuming expanded representations are encouraged to use the
'+' flag and an appropriate maximum field width to scan the year including the leading sign.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2141

70007

70008

70009

70010

70011

70012

70013

70014

70015

70016

70017

70018

70019

70020

70021

70022

70023

70024

70025

70026

70027

70028

70029

70030

70031

70032

70033

70034

70035

70036

70037

70038

70039

70040

70041

70042

70043

70044

70045

70046

70047

70048

70049

70050

70051

70052

70053

70054

70055

70056

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strftime() System Interfaces

Note that even without the '+' flag, years less than zero may be represented with a leading
<hyphen-minus> for %F, %G, and %Y conversion specifications. Using negative years results in
unspecified behavior.

If a format specification %+xF with the field width x greater than 11 is specified and the width is
large enough to display the full year, the output string produced will match the ISO 8601-1: 2019
standard subclause 4.1.2.4 expanded representation, extended format date representation for a
specific day. (For years in the range [1,99 999], %+12F is sufficient for an agreed five-digit year
with a leading sign using the ISO 8601-1: 2019 standard expanded representation, extended
format for a specific day "±YYYYY-MM-DD".) Note also that years less than 0 may produce a
leading <hyphen-minus> character ('−') when using %Y or %C whether or not the '0' or '+'
flags are used.

The difference between the '0' flag and the '+' flag is whether the leading '+' character will
be provided for years >9999 as required for the ISO 8601-1: 2019 standard extended
representation format containing a year. For example:

strftime() strptime()
Year Conversion Specification Output Scan Back

1970 %Y 1970 1970
1970 %+4Y 1970 1970
27 %Y 27 or 0027 27
270 %Y 270 or 0270 270
270 %+4Y 0270 270
17 %C%y 0017 17
270 %C%y 0270 270
12345 %Y 12345 1234*
12345 %+4Y +12345 123*
12345 %05Y 12345 12345
270 %+5Y or %+3C%y +0270 270
12345 %+5Y or %+3C%y +12345 1234*
12345 %06Y or %04C%y 012345 12345
12345 %+6Y or %+4C%y +12345 12345
123456 %08Y or %06C%y 00123456 123456
123456 %+8Y or %+6C%y +0123456 123456

In the cases above marked with a * in the strptime() scan back field, the implied or specified
number of characters scanned by strptime() was less than the number of characters output by
strftime() using the same format; so the remaining digits of the year were dropped when the
output date produced by strftime() was scanned back in by strptime().

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), futimens(), getdate(), gmtime(), localtime(), mktime(),
strptime(), time(), tzset(), uselocale()

XBD Section 7.3.5 (on page 152), <time.h>

2142 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70057

70058

70059

70060

70061

70062

70063

70064

70065

70066

70067

70068

70069

70070

70071

70072

70073

70074

70075

70076

70077

70078

70079

70080

70081

70082

70083

70084

70085

70086

70087

70088

70089

70090

70091

70092

70093

70094

70095

70096

70097

70098

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strftime()

CHANGE HISTORY
First released in Issue 3.

Issue 5
The description of %OV is changed to be consistent with %V and defines Monday as the first day
of the week.

The description of %Oy is clarified.

Issue 6
Extensions beyond the ISO C standard are marked.

The Open Group Corrigendum U033/8 is applied. The %V conversion specifier is changed from
``Otherwise, it is week 53 of the previous year, and the next week is week 1’’ to ``Otherwise, it is
the last week of the previous year, and the next week is week 1’’.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The %C, %D, %e, %h, %n, %r, %R, %t, and %T conversion specifiers are added.

• The modified conversion specifiers are added for consistency with the ISO POSIX-2
standard date utility.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strftime() prototype is updated.

• The DESCRIPTION is extensively revised.

• The %z conversion specifier is added.

An example is added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/60 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #163 is applied.

The strftime_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0605 [283], XSH/TC1-2008/0606 [283],
XSH/TC1-2008/0607 [193], and XSH/TC1-2008/0608 [193] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0340 [584], XSH/TC2-2008/0341 [796],
XSH/TC2-2008/0342 [584], and XSH/TC2-2008/0343 [584] are applied.

Issue 8
Austin Group Defects 169, 1386, and 1612 are applied, adding the s conversion and requiring
errno to be unchanged on success and set on error.

Austin Group Defects 258 and 1166 are applied, adding the OB and Ob modified conversions.

Austin Group Defect 472 is applied, changing the description of the C conversion.

Austin Group Defect 739 is applied, changing the %F conversion to match the ISO C standard
when no flag and no minimum field width are specified.

Austin Group Defect 1125 is applied, changing ``Local timezone information is used’’ to ``Local
timezone information shall be set’’.

Austin Group Defect 1253 is applied, changing ``daylight savings’’ to ``daylight saving’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2143

70099

70100

70101

70102

70103

70104

70105

70106

70107

70108

70109

70110

70111

70112

70113

70114

70115

70116

70117

70118

70119

70120

70121

70122

70123

70124

70125

70126

70127

70128

70129

70130

70131

70132

70133

70134

70135

70136

70137

70138

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strftime() System Interfaces

Austin Group Defect 1307 is applied, changing the r conversion in relation to locales that do not
support the 12-hour clock format.

Austin Group Defects 1313 and 1354 are applied, changing text relating to the ISO 8601-1: 2019
standard in the APPLICATION USAGE section.

Austin Group Defect 1462 is applied, changing the RATIONALE section.

Austin Group Defect 1533 is applied, adding tm_gmtoff and tm_zone to the tm structure.

Austin Group Defect 1562 is applied, clarifying that it is the application’s responsibility to
ensure that the format is a character string, beginning and ending in its initial shift state, if any.

2144 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70139

70140

70141

70142

70143

70144

70145

70146

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strlcat()

NAME
strlcat, strlcpy — size-bounded string concatenation and copying

SYNOPSIS
CX #include <string.h>

size_t strlcat(char *restrict dst, const char *restrict src,
size_t dstsize);

size_t strlcpy(char *restrict dst, const char *restrict src,
size_t dstsize);

DESCRIPTION
The strlcpy() and strlcat() functions copy and concatenate strings, stopping when either a NUL
terminator in the source string is encountered or the specified full size of the destination buffer is
reached. They NUL terminate the result if there is room. The application should ensure that
room for the NUL terminator is included in dstsize.

The strlcpy() function shall copy not more than dstsize − 1 bytes from the string pointed to by src
to the array pointed to by dst; a NUL byte in src and bytes that follow it shall not be copied. A
terminating NUL byte shall be appended to the result, unless dstsize is 0. If copying takes place
between objects that overlap, the behavior is undefined.

The strlcat() function shall append not more than dstsize − strlen(dst) − 1 bytes from the string
pointed to by src to the end of the string pointed to by dst; a NUL byte in src and bytes that
follow it shall not be appended. The initial byte of src shall overwrite the NUL byte at the end of
dst. A terminating NUL byte shall be appended to the result, unless its location would be at or
beyond dst + dstsize. If copying takes place between objects that overlap, the behavior is
undefined.

The strlcpy() and strlcat() functions shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, the strlcpy() function shall return the length of the string pointed to
by src; that is, the number of bytes in the string, not including the terminating NUL byte.

Upon successful completion, the strlcat() function shall return the initial length of the string (if
any) pointed to by dst, as limited by dstsize, plus the length of the string pointed to by src; that is,
the value that would be returned by strnlen(dst, dstsize) + strlen(src) before the strlcat() call.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
The following example detects truncation while combining a path prefix (including trailing
<slash>) and a filename to produce a portable pathname:

char *prefix, *filenam, pathnam[_POSIX_PATH_MAX];

if (strlcpy(pathnam, prefix, sizeof pathnam) >= sizeof pathnam ||
strlcat(pathnam, filenam, sizeof pathnam) >= sizeof pathnam)

{
// truncation occurred
...

}

This code ensures there is room for the NUL terminator by:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2145

70147

70148

70149

70150

70151

70152

70153

70154

70155

70156

70157

70158

70159

70160

70161

70162

70163

70164

70165

70166

70167

70168

70169

70170

70171

70172

70173

70174

70175

70176

70177

70178

70179

70180

70181

70182

70183

70184

70185

70186

70187

70188

70189

70190

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strlcat() System Interfaces

• Calling strlcpy() with a non-zero dstsize argument.

• Only calling strlcat() if the return value of strlcpy() indicated that truncation did not occur.

APPLICATION USAGE
The return value of the strlcpy() and strlcat() functions follows the same convention as
snprintf(); that is, they return the total length of the string they tried to create. If the return value
is greater than or equal to dstsize, the output string has been truncated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), strlen(), strncat(), strncpy(), wcslcat()

XBD <string.h>

CHANGE HISTORY
First released in Issue 8.

2146 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70191

70192

70193

70194

70195

70196

70197

70198

70199

70200

70201

70202

70203

70204

70205

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strlen()

NAME
strlen, strnlen — get length of fixed size string

SYNOPSIS
#include <string.h>

size_t strlen(const char *s);
CX size_t strnlen(const char *s, size_t maxlen);

DESCRIPTION
CX For strlen(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The strlen() function shall compute the number of bytes in the string to which s points, not
including the terminating NUL character.

CX The strnlen() function shall compute the smaller of the number of bytes in the array to which s
points, not including any terminating NUL character, or the value of the maxlen argument. The
strnlen() function shall never examine more than maxlen bytes of the array pointed to by s.

CX The strlen() and strnlen() functions shall not change the setting of errno on valid input.

RETURN VALUE
The strlen() function shall return the length of s; no return value shall be reserved to indicate an
error.

CX The strnlen() function shall return the number of bytes preceding the first null byte in the array
to which s points, if s contains a null byte within the first maxlen bytes; otherwise, it shall return
maxlen.

ERRORS
No errors are defined.

EXAMPLES

Getting String Lengths

The following example sets the maximum length of key and data by using strlen() to get the
lengths of those strings.

#include <string.h>
...
struct element {

char *key;
char *data;

};
...
char *key, *data;
int len;

*keylength = *datalength = 0;
...
if ((len = strlen(key)) > *keylength)

*keylength = len;
if ((len = strlen(data)) > *datalength)

*datalength = len;
...

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2147

70206

70207

70208

70209

70210

70211

70212

70213

70214

70215

70216

70217

70218

70219

70220

70221

70222

70223

70224

70225

70226

70227

70228

70229

70230

70231

70232

70233

70234

70235

70236

70237

70238

70239

70240

70241

70242

70243

70244

70245

70246

70247

70248

70249

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strlen() System Interfaces

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strlcat(), wcslen()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strlen() returns the length of s, and not
s itself as was previously stated.

Issue 7
The strnlen() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0344 [560] is applied.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strlen() and strnlen() do not
change the setting of errno on valid input.

Austin Group Defect 986 is applied, adding strlcat() to the SEE ALSO section.

2148 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70250

70251

70252

70253

70254

70255

70256

70257

70258

70259

70260

70261

70262

70263

70264

70265

70266

70267

70268

70269

70270

70271

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strncasecmp()

NAME
strncasecmp, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
#include <strings.h>

int strncasecmp(const char *s1, const char *s2, size_t n);
int strncasecmp_l(const char *s1, const char *s2,

size_t n, locale_t locale);

DESCRIPTION
Refer to strcasecmp().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2149

70272

70273

70274

70275

70276

70277

70278

70279

70280

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strncat() System Interfaces

NAME
strncat — concatenate a string with part of another

SYNOPSIS
#include <string.h>

char *strncat(char *restrict s1, const char *restrict s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strncat() function shall append not more than n bytes (a NUL character and bytes that
follow it are not appended) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial byte of s2 overwrites the NUL character at the end of s1. A terminating NUL
character is always appended to the result. If copying takes place between objects that overlap,
the behavior is undefined.

CX The strncat() function shall not change the setting of errno on valid input.

RETURN VALUE
The strncat() function shall return s1; no return value shall be reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcat(), strlcat()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The strncat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strncat() does not change the
setting of errno on valid input.

Austin Group Defect 986 is applied, adding strlcat() to the SEE ALSO section.

2150 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70281

70282

70283

70284

70285

70286

70287

70288

70289

70290

70291

70292

70293

70294

70295

70296

70297

70298

70299

70300

70301

70302

70303

70304

70305

70306

70307

70308

70309

70310

70311

70312

70313

70314

70315

70316

70317

70318

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strncmp()

NAME
strncmp — compare part of two strings

SYNOPSIS
#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strncmp() function shall compare not more than n bytes (bytes that follow a NUL character
are not compared) from the array pointed to by s1 to the array pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared.

CX The strncmp() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, strncmp() shall return an integer greater than, equal to, or less than
0, if the possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the
possibly null-terminated array pointed to by s2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strncmp() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2151

70319

70320

70321

70322

70323

70324

70325

70326

70327

70328

70329

70330

70331

70332

70333

70334

70335

70336

70337

70338

70339

70340

70341

70342

70343

70344

70345

70346

70347

70348

70349

70350

70351

70352

70353

70354

70355

70356

70357

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strncpy() System Interfaces

NAME
stpncpy, strncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
#include <string.h>

CX char *stpncpy(char *restrict s1, const char *restrict s2, size_t n);
char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

DESCRIPTION
CX For strncpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The stpncpy() and strncpy() functions shall copy not more than n bytes (bytes that follow a NUL
character are not copied) from the array pointed to by s2 to the array pointed to by s1.

If the array pointed to by s2 is a string that is shorter than n bytes, NUL characters shall be
appended to the copy in the array pointed to by s1, until n bytes in all are written.

If copying takes place between objects that overlap, the behavior is undefined.

CX The strncpy() and stpncpy() functions shall not change the setting of errno on valid input.

RETURN VALUE
CX If a NUL character is written to the destination, the stpncpy() function shall return the address of

the first such NUL character. Otherwise, it shall return &s1[n].

The strncpy() function shall return s1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications must provide the space in s1 for the n bytes to be transferred, as well as ensure that
the s2 and s1 arrays do not overlap.

Character movement is performed differently in different implementations. Thus, overlapping
moves may yield surprises.

If there is no NUL character byte in the first n bytes of the array pointed to by s2, the result is not
null-terminated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), strlcat(), wcsncpy()

XBD <string.h>

2152 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70358

70359

70360

70361

70362

70363

70364

70365

70366

70367

70368

70369

70370

70371

70372

70373

70374

70375

70376

70377

70378

70379

70380

70381

70382

70383

70384

70385

70386

70387

70388

70389

70390

70391

70392

70393

70394

70395

70396

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strncpy()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The strncpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The stpncpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strncpy() and stpncpy() do not
change the setting of errno on valid input.

Austin Group Defect 986 is applied, adding strlcat() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2153

70397

70398

70399

70400

70401

70402

70403

70404

70405

70406

70407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strndup() System Interfaces

NAME
strndup — duplicate a specific number of bytes from a string

SYNOPSIS
CX #include <string.h>

char *strndup(const char *s, size_t size);

DESCRIPTION
Refer to strdup().

2154 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70408

70409

70410

70411

70412

70413

70414

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strnlen()

NAME
strnlen — get length of fixed size string

SYNOPSIS
CX #include <string.h>

size_t strnlen(const char *s, size_t maxlen);

DESCRIPTION
Refer to strlen().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2155

70415

70416

70417

70418

70419

70420

70421

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strpbrk() System Interfaces

NAME
strpbrk — scan a string for a byte

SYNOPSIS
#include <string.h>

char *strpbrk(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strpbrk() function shall locate the first occurrence in the string pointed to by s1 of any byte
from the string pointed to by s2.

CX The strpbrk() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, strpbrk() shall return a pointer to the byte or a null pointer if no
byte from s2 occurs in s1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), strrchr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strpbrk() does not change the
setting of errno on valid input.

2156 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70422

70423

70424

70425

70426

70427

70428

70429

70430

70431

70432

70433

70434

70435

70436

70437

70438

70439

70440

70441

70442

70443

70444

70445

70446

70447

70448

70449

70450

70451

70452

70453

70454

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strptime()

NAME
strptime — date and time conversion

SYNOPSIS
XSI #include <time.h>

char *strptime(const char *restrict buf, const char *restrict format,
struct tm *restrict tm);

DESCRIPTION
The strptime() function shall convert the character string pointed to by buf to values which are
stored in the tm structure pointed to by tm, using the format specified by format.

The application shall ensure that the format is a character string, beginning and ending in its
initial shift state, if any. The format is composed of zero or more directives. Each directive is
composed of one of the following: one or more white-space bytes; an ordinary character (neither
'%' nor a white-space byte); or a conversion specification.

Each conversion specification is introduced by the '%' character after which the following
appear in sequence:

• An optional flag, the zero character ('0') or the <plus-sign> character ('+'), which is
ignored.

• An optional field width. If a field width is specified, it shall be interpreted as a string of
decimal digits that determine the maximum number of bytes converted for the conversion
rather than the number of bytes specified below in the description of the conversion
specifiers.

• An optional E or O modifier.

• A terminating conversion specifier character that indicates the type of conversion to be
applied.

The conversions are determined using the LC_TIME category of the current locale. The
application shall ensure that there are white-space bytes or other non-alphanumeric bytes
between any two conversion specifications unless all of the adjacent conversion specifications
convert a known, fixed number of characters. In the following list, the maximum number of
characters scanned (excluding the one matching the next directive) is as follows:

• If a maximum field width is specified, then that number

• Otherwise, the pattern "{x}" indicates that the maximum is x

• Otherwise, the pattern "[x,y]" indicates that the value shall fall within the range given
(both bounds being inclusive), and the maximum number of characters scanned shall be
the maximum required to represent any value in the range without leading zeros and
without a leading <plus-sign>

The following conversion specifiers are supported.

The results are unspecified if a modifier is specified with a flag or with a minimum field width,
or if a field width is specified for any conversion specifier other than C, F, G, Y, or Z.

a The day of the week, using the locale’s weekday names; either the abbreviated or full
name can be specified. The tm_wday member of the tm structure pointed to by tm shall
be set to the corresponding day of the week number (Sunday=0).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2157

70455

70456

70457

70458

70459

70460

70461

70462

70463

70464

70465

70466

70467

70468

70469

70470

70471

70472

70473

70474

70475

70476

70477

70478

70479

70480

70481

70482

70483

70484

70485

70486

70487

70488

70489

70490

70491

70492

70493

70494

70495

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strptime() System Interfaces

A Equivalent to %a.

b The month, using the locale’s month names; either the abbreviated or full version of
either the default or the alternative month name can be specified. The tm_mon member
of the tm structure pointed to by tm shall be set to the corresponding month number.

B Equivalent to %b.

c Replaced by the locale’s appropriate date and time representation. The members of the
tm structure pointed to by tm shall be set as specified for the conversions present in the
locale’s d_t_fmt value.

C All but the last two digits of the year {2}; leading zeros shall be permitted but shall not
be required. A leading '+' or '−' character shall be permitted before any leading zeros
but shall not be required. The tm_year member of the tm structure pointed to by tm
shall be set to the number formed by appending the last two digits of the year to these
digits, minus 1900. If a y conversion is also performed, the last two digits of the year
shall be those processed by the y conversion; otherwise, they shall be 00.

d The day of the month [01,31]; leading zeros shall be permitted but shall not be required.
The tm_mday member of the tm structure pointed to by tm shall be set to this number.

D Equivalent to %m/%d/%y.

e Equivalent to %d.

F This specifier is similar to %Y-%m-%d where the characters up to the first <hyphen-
minus> separator shall be converted as for %Y but with unlimited field width, the
characters between the two <hyphen-minus> separators shall be converted as for %m,
and the characters after the last <hyphen-minus> separator shall be converted as for
%d. If a field width is specified, each of the %Y, %m, and %d conversions shall not
convert any characters past the overall %F field width. The members of the tm structure
pointed to by tm shall be set as specified for the Y, m, and d conversions.

g The last 2 digits of the week-based year (see below) as a decimal number (for example,
77). Leading zeros shall be permitted but shall not be required. A leading '+' or '-'
character shall be permitted before any leading zeros but shall not be required. The
effect of this year, if any, on the tm structure pointed to by tm is unspecified.

G The week-based year (see below) as a decimal number (for example, 1977). Leading
zeros shall be permitted but shall not be required. A leading '+' or '-' character shall
be permitted before any leading zeros but shall not be required. The effect of this year,
if any, on the tm structure pointed to by tm is unspecified.

h Equivalent to %b.

H The hour (24-hour clock) [00,23]; leading zeros shall be permitted but shall not be
required. The tm_hour member of the tm structure pointed to by tm shall be set to this
number.

I The hour (12-hour clock) [01,12]; leading zeros shall be permitted but shall not be
required. If a p conversion is also performed, the tm_hour member of the tm structure
pointed to by tm shall be set to the hour, by the 24-hour clock, corresponding to the
combined results of the I and p conversions. If a p conversion is not also performed,
the behavior is unspecified.

j The day number of the year [001,366]; leading zeros shall be permitted but shall not be
required. The tm_yday member of the tm structure pointed to by tm shall be set to this
number minus 1.

2158 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70496

70497

70498

70499

70500

70501

70502

70503

70504

70505

70506

70507

70508

70509

70510

70511

70512

70513

70514

70515

70516

70517

70518

70519

70520

70521

70522

70523

70524

70525

70526

70527

70528

70529

70530

70531

70532

70533

70534

70535

70536

70537

70538

70539

70540

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strptime()

m The month number [01,12]; leading zeros shall be permitted but shall not be required.
The tm_mon member of the tm structure pointed to by tm shall be set to this number
minus 1.

M The minute [00,59]; leading zeros shall be permitted but shall not be required. The
tm_min member of the tm structure pointed to by tm shall be set to this number.

n Any white-space bytes.

p The locale’s equivalent of a.m. or p.m. If an I conversion is also performed, the tm_hour
member of the tm structure pointed to by tm shall be set as specified for the I
conversion; otherwise, the behavior is unspecified.

r 12-hour clock time, if the 12-hour format is supported in the locale (see XBD Section
7.3.5, on page 152); in the POSIX locale, this shall be equivalent to %I:%M:%S %p. The
members of the tm structure pointed to by tm shall be set as specified for the
conversions present in the locale’s t_fmt_ampm value.

R Equivalent to %H:%M.

s The number of seconds since the Epoch as a decimal number (see XBD Section 4.19, on
page 107); leading zeros shall be permitted but shall not be required. The effect of this
number, if any, on the tm structure pointed to by tm is unspecified.

S The seconds [00,60]; leading zeros shall be permitted but shall not be required. The
tm_sec member of the tm structure pointed to by tm shall be set to this number.

t Any white-space bytes.

T Equivalent to %H:%M:%S.

u The weekday as a decimal number [1,7], with 1 representing Monday. The tm_wday
member of the tm structure pointed to by tm shall be set to this number modulo 7.

U The week number of the year (Sunday as the first day of the week) as a decimal
number [00,53]; leading zeros shall be permitted but shall not be required. The effect of
this week number, if any, on the tm structure pointed to by tm is unspecified.

V The week number of the week-based year (see below) as a decimal number [01,53].
Leading zeros shall be permitted but shall not be required. The effect of this week
number, if any, on the tm structure pointed to by tm is unspecified.

w The weekday as a decimal number [0,6], with 0 representing Sunday. The tm_wday
member of the tm structure pointed to by tm shall be set to this number.

W The week number of the year (Monday as the first day of the week) as a decimal
number [00,53]; leading zeros shall be permitted but shall not be required. The effect of
this week number, if any, on the tm structure pointed to by tm is unspecified.

x The date, using the locale’s date format. The members of the tm structure pointed to by
tm shall be set as specified for the conversions present in the locale’s d_fmt value.

X The time, using the locale’s time format. The members of the tm structure pointed to by
tm shall be set as specified for the conversions present in the locale’s t_fmt value.

y The last two digits of the year; leading zeros shall be permitted but shall not be
required. A leading '+' or '−' character shall be permitted before any leading zeros
but shall not be required. If a C conversion is not also performed, values in the range
[69,99] shall refer to years 1969 to 1999 inclusive and values in the range [00,68] shall
refer to years 2000 to 2068 inclusive. If a C conversion is also performed, the tm_year

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2159

70541

70542

70543

70544

70545

70546

70547

70548

70549

70550

70551

70552

70553

70554

70555

70556

70557

70558

70559

70560

70561

70562

70563

70564

70565

70566

70567

70568

70569

70570

70571

70572

70573

70574

70575

70576

70577

70578

70579

70580

70581

70582

70583

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strptime() System Interfaces

member of the tm structure pointed to by tm shall be set as specified for the C
conversion; otherwise, the tm_year member shall be set to the calculated year minus
1900.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

Y The full year {4}; leading zeros shall be permitted but shall not be required. A leading
'+' or '−' character shall be permitted before any leading zeros but shall not be
required. The tm_year member of the tm structure pointed to by tm shall be set to this
number minus 1900.

z The offset from UTC in the ISO 8601-1: 2019 standard format (+hhmm or -hhmm). For
example, "-0430" means 4 hours 30 minutes behind UTC (west of Greenwich). The
effect of this offset, if any, on the tm structure pointed to by tm is unspecified.

Z The timezone name. If this name matches the name pointed to by tzname[1], and the
names pointed to by tzname[0] and tzname[1] differ, then the tm_isdst member of the tm
structure pointed to by tm shall be set to 1. Otherwise, if this name matches the name
pointed to by tzname[0] then the tm_isdst member of the tm structure pointed to by tm
shall be set to 0. The tm_zone and tm_gmtoff members of the structure may also be set in
an unspecified manner. Members other than tm_isdst, tm_zone, and tm_gmtoff may be
affected if an s conversion is also performed but shall otherwise not be affected.

% Replaced by %.

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E and O modifier characters to indicate that
an alternative format or specification should be used rather than the one normally used by the
unmodified conversion specifier. If the alternative format or specification does not exist in the
current locale, the behavior shall be as if the unmodified conversion specification were used.

%Ec The locale’s alternative appropriate date and time representation.

%EC The name of the base year (period) in the locale’s alternative representation.

%Ex The locale’s alternative date representation.

%EX The locale’s alternative time representation.

%Ey The offset from %EC (year only) in the locale’s alternative representation.

%EY The full alternative year representation.

%Ob Equivalent to %b.

%OB Equivalent to %b.

%Od The day of the month using the locale’s alternative numeric symbols; leading zeros
shall be permitted but shall not be required.

%Oe Equivalent to %Od.

%Oh Equivalent to %b.

%OH The hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI The hour (12-hour clock) using the locale’s alternative numeric symbols.

2160 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70584

70585

70586

70587

70588

70589

70590

70591

70592

70593

70594

70595

70596

70597

70598

70599

70600

70601

70602

70603

70604

70605

70606

70607

70608

70609

70610

70611

70612

70613

70614

70615

70616

70617

70618

70619

70620

70621

70622

70623

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strptime()

%Om The month using the locale’s alternative numeric symbols.

%OM The minutes using the locale’s alternative numeric symbols.

%OS The seconds using the locale’s alternative numeric symbols.

%OU The week number of the year (Sunday as the first day of the week) using the locale’s
alternative numeric symbols.

%OV The same as %V but using the locale’s alternative numeric symbols.

%Ow The number of the weekday (Sunday=0) using the locale’s alternative numeric
symbols.

%OW The week number of the year (Monday as the first day of the week) using the locale’s
alternative numeric symbols.

%Oy The year (offset from %C) using the locale’s alternative numeric symbols.

%g, %G, and %V convert values according to the ISO 8601-1: 2019 standard week-based year. In
this system, weeks begin on a Monday and week 1 of the week-based year is the week that
includes January 4th, which is also the week that includes the first Thursday of the year, and is
also the first week that contains at least four days in the year. If the first Monday of January is
the 2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding week-based
year (thus, the string "1998 53 6" with format specifier "%G %V %u" represents Saturday 2nd
January 1999). If December 29th, 30th, or 31st is a Monday, it and any following days are part of
week 1 of the following week-based year (thus, the string "1998 01 2" with format specifier
"%G %V %u" represents Tuesday 30th December 1997).

A conversion specification composed of white-space bytes is executed by scanning input up to
the first non-white-space byte (which remains unscanned), or until no more characters can be
scanned.

A conversion specification that is an ordinary character is executed by scanning the next
character from the buffer. If the character scanned from the buffer differs from the one
comprising the directive, the directive fails, and the differing and subsequent characters remain
unscanned.

A series of conversion specifications composed of %n, %t, white-space bytes, or any combination
is executed by scanning up to the first non-white-space byte (which remains unscanned), or until
no more characters can be scanned.

Any other conversion specification is executed by scanning characters until a character matching
the next directive is scanned, or until no more characters can be scanned. These characters,
except the one matching the next directive, are then compared to the locale values associated
with the conversion specifier. If a match is found, values for the affected tm structure members
are set as specified in the description of the conversion specification. Case is ignored when
matching items in buf such as month or weekday names. If no match is found, strptime() fails
and no more characters are scanned.

RETURN VALUE
Upon successful completion, strptime() shall return a pointer to the character following the last
character parsed. Otherwise, a null pointer shall be returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2161

70624

70625

70626

70627

70628

70629

70630

70631

70632

70633

70634

70635

70636

70637

70638

70639

70640

70641

70642

70643

70644

70645

70646

70647

70648

70649

70650

70651

70652

70653

70654

70655

70656

70657

70658

70659

70660

70661

70662

70663

70664

70665

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strptime() System Interfaces

EXAMPLES

Convert a Date-Plus-Time String to Broken-Down Time and Then into Seconds

The following example demonstrates the use of strptime() to convert a string into broken-down
time. The broken-down time is then converted into seconds since the Epoch using mktime().

#include <time.h>
...

struct tm tm;
time_t t;

if (strptime("6 Dec 2001 12:33:45", "%d %b %Y %H:%M:%S", &tm) == NULL)
/* Handle error */;

printf("year: %d; month: %d; day: %d;\n",
tm.tm_year, tm.tm_mon, tm.tm_mday);

printf("hour: %d; minute: %d; second: %d\n",
tm.tm_hour, tm.tm_min, tm.tm_sec);

printf("week day: %d; year day: %d\n", tm.tm_wday, tm.tm_yday);

tm.tm_isdst = -1; /* Not set by strptime(); tells mktime()
to determine whether daylight saving time
is in effect */

t = mktime(&tm);
if (t == -1)

/* Handle error */;
printf("seconds since the Epoch: %ld\n", (long) t);"

APPLICATION USAGE
Several ``equivalent to’’ formats and the special processing of white-space characters are
provided in order to ease the use of identical format strings for strftime() and strptime().

It should be noted that dates constructed by the strftime() function with the %Y or %C%y
conversion specifiers may have values larger than 9 999. If the strptime() function is used to read
such values using %C%y or %Y, the year values will be truncated to four digits. Applications
should use %+w%y or %+xY with w and x set large enough to contain the full value of any years
that will be printed or scanned.

The effect of the s conversion is unspecified because existing implementations differ in behavior.
Some do a conversion equivalent to gmtime(), ignoring all available timezone information; some
do a conversion equivalent to localtime(), using the same timezone it would use and ignoring
any timezone information provided by a z or Z conversion. Although none has been observed,
there may be existing (or future) implementations that use timezone information provided by a
z or Z conversion, although using the latter would not be reliable as timezone names are often
ambiguous. Applications that need to convert a seconds since the Epoch value to a tm structure
should call gmtime() or localtime() (or their thread-safe equivalents) directly.

The effect of the z conversion is unspecified because existing implementations differ in behavior.
Some just use it to set the tm_gmtoff member of the tm structure; some use the value to adjust the
other field members to represent UTC, convert the resulting time to a seconds since the Epoch
value, and then convert back to a tm structure by the equivalent of localtime(). An application
that needs either of these behaviors should perform the necessary processing explicitly itself.

Although the Z conversion might be expected to set the tm_zone member of the tm structure, no
existing implementation has been found that sets it. Applications that need it set should set it

2162 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70666

70667

70668

70669

70670

70671

70672

70673

70674

70675

70676

70677

70678

70679

70680

70681

70682

70683

70684

70685

70686

70687

70688

70689

70690

70691

70692

70693

70694

70695

70696

70697

70698

70699

70700

70701

70702

70703

70704

70705

70706

70707

70708

70709

70710

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strptime()

explicitly after calling strptime().

See also the APPLICATION USAGE section in strftime().

It is unspecified whether multiple calls to strptime() using the same tm structure will update the
current contents of the structure or overwrite all contents of the structure. Conforming
applications should make a single call to strptime() with a format and all data needed to
completely specify the date and time being converted.

RATIONALE
See the RATIONALE section for strftime().

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), fscanf(), strftime(), time()

XBD <time.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE.

The [ENOSYS] error is removed.

The exact meaning of the %y and %Oy specifiers is clarified in the DESCRIPTION.

Issue 6
The Open Group Corrigendum U033/5 is applied. The %r specifier description is reworded.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the strptime() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The Open Group Corrigendum U047/2 is applied.

The DESCRIPTION is updated to use the terms ``conversion specifier’’ and ``conversion
specification’’ for consistency with strftime().

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/133 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #041 is applied, updating the DESCRIPTION and
APPLICATION USAGE sections.

Austin Group Interpretation 1003.1-2001 #163 is applied.

SD5-XSH-ERN-67 is applied, correcting the APPLICATION USAGE to remove the impression
that %Y is 4-digit years.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0345 [920] and XSH/TC2-2008/0346
[919] are applied.

Issue 8
Austin Group Defect 169 is applied, adding the s conversion.

Austin Group Defects 258 and 1166 are applied, adding the Ob, OB, and Oh modified
conversions.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2163

70711

70712

70713

70714

70715

70716

70717

70718

70719

70720

70721

70722

70723

70724

70725

70726

70727

70728

70729

70730

70731

70732

70733

70734

70735

70736

70737

70738

70739

70740

70741

70742

70743

70744

70745

70746

70747

70748

70749

70750

70751

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strptime() System Interfaces

Austin Group Defect 879 is applied, adding the F, g, G, u, V, z, and Z conversions and the OV
modified conversion, and adding a statement to the week number conversions that their effect
on the tm structure pointed to by tm is unspecified.

Austin Group Defect 1163 is applied, clarifying the handling of white space in the format string.

Austin Group Defect 1307 is applied, changing the r conversion in relation to locales that do not
support the 12-hour clock format.

Austin Group Defect 1562 is applied, clarifying that it is the application’s responsibility to
ensure that the format is a character string, beginning and ending in its initial shift state, if any.

Austin Group Defect 1727 is applied, clarifying which members of the tm structure are updated
by each conversion.

2164 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70752

70753

70754

70755

70756

70757

70758

70759

70760

70761

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strrchr()

NAME
strrchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strrchr(const char *s, int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strrchr() function shall locate the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating NUL character is considered to be part of the string.

CX The strrchr() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, strrchr() shall return a pointer to the byte or a null pointer if c does
not occur in the string.

ERRORS
No errors are defined.

EXAMPLES

Finding the Base Name of a File

The following example uses strrchr() to get a pointer to the base name of a file. The strrchr()
function searches backwards through the name of the file to find the last '/' character in name.
This pointer (plus one) will point to the base name of the file.

#include <string.h>
...
const char *name;
char *basename;
...
basename = strrchr(name, '/') + 1;
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2165

70762

70763

70764

70765

70766

70767

70768

70769

70770

70771

70772

70773

70774

70775

70776

70777

70778

70779

70780

70781

70782

70783

70784

70785

70786

70787

70788

70789

70790

70791

70792

70793

70794

70795

70796

70797

70798

70799

70800

70801

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strrchr() System Interfaces

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strrchr() does not change the
setting of errno on valid input.

2166 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70802

70803

70804

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strsignal()

NAME
strsignal — get signal message string

SYNOPSIS
CX #include <string.h>

char *strsignal(int signum);

DESCRIPTION
The strsignal() function shall map the signal number in signum to an implementation-defined
string and shall return a pointer to it. It shall use the same set of messages as the psignal()
function.

The application shall not modify the string returned. The returned pointer might be invalidated
or the string content might be overwritten by a subsequent call to strsignal() or setlocale(). The
returned pointer might also be invalidated if the calling thread is terminated.

The contents of the message strings returned by strsignal() should be determined by the setting
of the LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this standard calls strsignal().

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strsignal(), then check errno.

The strsignal() function need not be thread-safe.

RETURN VALUE
Upon successful completion, strsignal() shall return a pointer to a string. Otherwise, if signum is
not a valid signal number, the return value is unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If signum is not a valid signal number, some implementations return NULL, while for others the
strsignal() function returns a pointer to a string containing an unspecified message denoting an
unknown signal. POSIX.1-2024 leaves this return value unspecified.

FUTURE DIRECTIONS
None.

SEE ALSO
psiginfo(), setlocale(), sig2str()

XBD <string.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0609 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0347 [656] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2167

70805

70806

70807

70808

70809

70810

70811

70812

70813

70814

70815

70816

70817

70818

70819

70820

70821

70822

70823

70824

70825

70826

70827

70828

70829

70830

70831

70832

70833

70834

70835

70836

70837

70838

70839

70840

70841

70842

70843

70844

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strsignal() System Interfaces

Issue 8
Austin Group Defect 1138 is applied, adding sig2str() to the SEE ALSO section.

Austin Group Defect 1474 is applied, changing the NAME section.

2168 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70845

70846

70847

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strspn()

NAME
strspn — get length of a substring

SYNOPSIS
#include <string.h>

size_t strspn(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strspn() function shall compute the length (in bytes) of the maximum initial segment of the
string pointed to by s1 which consists entirely of bytes from the string pointed to by s2.

CX The strspn() function shall not change the setting of errno on valid input.

RETURN VALUE
The strspn() function shall return the computed length; no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcspn()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strspn() returns the length of s, and not
s itself as was previously stated.

Issue 7
SD5-XSH-ERN-182 is applied.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strspn() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2169

70848

70849

70850

70851

70852

70853

70854

70855

70856

70857

70858

70859

70860

70861

70862

70863

70864

70865

70866

70867

70868

70869

70870

70871

70872

70873

70874

70875

70876

70877

70878

70879

70880

70881

70882

70883

70884

70885

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strstr() System Interfaces

NAME
strstr — find a substring

SYNOPSIS
#include <string.h>

char *strstr(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The strstr() function shall locate the first occurrence in the string pointed to by s1 of the
sequence of bytes (excluding the terminating NUL character) in the string pointed to by s2.

CX The strstr() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, strstr() shall return a pointer to the located string or a null pointer
if the string is not found.

If s2 points to a string with zero length, the function shall return s1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
memmem(), strchr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ANSI C standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strstr() does not change the
setting of errno on valid input.

Austin Group Defect 1061 is applied, adding memmem() to the SEE ALSO section.

2170 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70886

70887

70888

70889

70890

70891

70892

70893

70894

70895

70896

70897

70898

70899

70900

70901

70902

70903

70904

70905

70906

70907

70908

70909

70910

70911

70912

70913

70914

70915

70916

70917

70918

70919

70920

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtod()

NAME
strtod, strtof, strtold — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double strtod(const char *restrict nptr, char **restrict endptr);
float strtof(const char *restrict nptr, char **restrict endptr);
long double strtold(const char *restrict nptr, char **restrict endptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by nptr to double, float,
and long double representation, respectively. First, they decompose the input string into three
parts:

1. An initial, possibly empty, sequence of white-space bytes

2. A subject sequence interpreted as a floating-point constant or representing infinity or
NaN

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string

Then they shall attempt to convert the subject sequence to a floating-point number, and return
the result.

The expected form of the subject sequence is an optional '+' or '−' sign, then one of the
following:

• A non-empty sequence of decimal digits optionally containing a radix character; then an
optional exponent part consisting of the character 'e' or the character 'E', optionally
followed by a '+' or '−' character, and then followed by one or more decimal digits

• A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix
character; then an optional binary exponent part consisting of the character 'p' or the
character 'P', optionally followed by a '+' or '−' character, and then followed by one or
more decimal digits

• One of INF or INFINITY, ignoring case

• One of NAN or NAN(n-char-sequenceopt), ignoring case in the NAN part, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space byte, that is of the expected form. The subject sequence contains
no characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs first)
shall be interpreted as a floating constant of the C language, except that the radix character shall
be used in place of a period, and that if neither an exponent part nor a radix character appears in

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2171

70921

70922

70923

70924

70925

70926

70927

70928

70929

70930

70931

70932

70933

70934

70935

70936

70937

70938

70939

70940

70941

70942

70943

70944

70945

70946

70947

70948

70949

70950

70951

70952

70953

70954

70955

70956

70957

70958

70959

70960

70961

70962

70963

70964

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtod() System Interfaces

a decimal floating-point number, or if a binary exponent part does not appear in a hexadecimal
floating-point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a <hyphen-minus>, the
sequence shall be interpreted as negated. A character sequence INF or INFINITY shall be
interpreted as an infinity, if representable in the return type, else as if it were a floating constant
that is too large for the range of the return type. A character sequence NAN or NAN(n-char-
sequenceopt) shall be interpreted as a quiet NaN, if supported in the return type, else as if it were a
subject sequence part that does not have the expected form; the meaning of the n-char sequences
is implementation-defined. A pointer to the final string is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value
resulting from the conversion is correctly rounded.

CX The radix character is defined in the current locale (category LC_NUMERIC). In the POSIX
locale, or in a locale where the radix character is not defined, the radix character shall default to
a <period> ('.').

CX In other than the C or POSIX locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check
for error situations should set errno to 0, then call strtod(), strtof(), or strtold(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value. If no conversion
could be performed, 0 shall be returned, and errno may be set to [EINVAL].

If the correct value would cause an overflow and default rounding is in effect, ±HUGE_VAL,
±HUGE_VALF, or ±HUGE_VALL shall be returned (according to the sign of the value), and errno
shall be set to [ERANGE].

If the correct value would cause an underflow, a value whose magnitude is no greater than the
CX smallest normalized positive number in the return type shall be returned and errno set to

[ERANGE].

ERRORS
These functions shall fail if:

[ERANGE] The value to be returned would cause overflow and default rounding is in
CX effect or the value to be returned would cause underflow.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

2172 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

70965

70966

70967

70968

70969

70970

70971

70972

70973

70974

70975

70976

70977

70978

70979

70980

70981

70982

70983

70984

70985

70986

70987

70988

70989

70990

70991

70992

70993

70994

70995

70996

70997

70998

70999

71000

71001

71002

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtod()

EXAMPLES
None.

APPLICATION USAGE
If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, and the
result is not exactly representable, the result should be one of the two numbers in the
appropriate internal format that are adjacent to the hexadecimal floating source value, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>)
significant digits, the result should be correctly rounded. If the subject sequence D has the
decimal form and more than DECIMAL_DIG significant digits, consider the two bounding,
adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the
values of L, D, and U satisfy L <= D <= U. The result should be one of the (equal or adjacent)
values that would be obtained by correctly rounding L and U according to the current rounding
direction, with the extra stipulation that the error with respect to D should have a correct sign
for the current rounding direction.

The changes to strtod() introduced by the ISO/IEC 9899: 1999 standard can alter the behavior of
well-formed applications complying with the ISO/IEC 9899: 1990 standard and thus earlier
versions of this standard. One such example would be:

int
what_kind_of_number (char *s)
{

char *endp;
double d;
long l;

d = strtod(s, &endp);
if (s != endp && *endp == '\0')

printf("It's a float with value %g\n", d);
else
{

l = strtol(s, &endp, 0);
if (s != endp && *endp == '\0')

printf("It's an integer with value %ld\n", l);
else

return 1;
}
return 0;

}

If the function is called with:

what_kind_of_number ("0x10")

an ISO/IEC 9899: 1990 standard-compliant library will result in the function printing:

It's an integer with value 16

With the ISO/IEC 9899: 1999 standard, the result is:

It's a float with value 16

The change in behavior is due to the inclusion of floating-point numbers in hexadecimal
notation without requiring that either a decimal point or the binary exponent be present.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2173

71003

71004

71005

71006

71007

71008

71009

71010

71011

71012

71013

71014

71015

71016

71017

71018

71019

71020

71021

71022

71023

71024

71025

71026

71027

71028

71029

71030

71031

71032

71033

71034

71035

71036

71037

71038

71039

71040

71041

71042

71043

71044

71045

71046

71047

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtod() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isspace(), localeconv(), setlocale(), strtol()

XBD Chapter 7 (on page 127), <float.h>, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strtod() function is updated.

• The strtof() and strtold() functions are added.

• The DESCRIPTION is extensively revised.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/61 is applied, correcting the second
paragraph in the RETURN VALUE section. This change clarifies the sign of the return value.

Issue 7
Austin Group Interpretation 1003.1-2001 #015 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0610 [302], XSH/TC1-2008/0611 [94],
and XSH/TC1-2008/0612 [105] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0348 [584] and XSH/TC2-2008/0349
[796] are applied.

Issue 8
Austin Group Defect 1163 is applied, clarifying the handling of white space in the input string.

Austin Group Defect 1213 is applied, correcting some typographic errors in the APPLICATION
USAGE section.

Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1686 is applied, adding CX shading to some text in the RETURN VALUE
section.

2174 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71048

71049

71050

71051

71052

71053

71054

71055

71056

71057

71058

71059

71060

71061

71062

71063

71064

71065

71066

71067

71068

71069

71070

71071

71072

71073

71074

71075

71076

71077

71078

71079

71080

71081

71082

71083

71084

71085

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtoimax()

NAME
strtoimax, strtoumax — convert string to integer type

SYNOPSIS
#include <inttypes.h>

intmax_t strtoimax(const char *restrict nptr, char **restrict endptr,
int base);

uintmax_t strtoumax(const char *restrict nptr, char **restrict endptr,
int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall be equivalent to the strtol(), strtoll(), strtoul(), and strtoull() functions,
except that the initial portion of the string shall be converted to intmax_t and uintmax_t
representation, respectively.

RETURN VALUE
These functions shall return the converted value, if any.

CX If no conversion could be performed, zero shall be returned and errno may be set to [EINVAL].

CX If the value of base is not supported, 0 shall be returned and errno shall be set to [EINVAL].

If the correct value is outside the range of representable values, {INTMAX_MAX},
{INTMAX_MIN}, or {UINTMAX_MAX} shall be returned (according to the return type and sign
of the value, if any), and errno shall be set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

[EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
Since the value of *endptr is unspecified if the value of base is not supported, applications should
either ensure that base has a supported value (0 or between 2 and 36) before the call, or check for
an [EINVAL] error before examining *endptr.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol(), strtoul()

XBD <inttypes.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2175

71086

71087

71088

71089

71090

71091

71092

71093

71094

71095

71096

71097

71098

71099

71100

71101

71102

71103

71104

71105

71106

71107

71108

71109

71110

71111

71112

71113

71114

71115

71116

71117

71118

71119

71120

71121

71122

71123

71124

71125

71126

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtoimax() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0613 [453] and XSH/TC1-2008/0614
[453] are applied.

2176 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71127

71128

71129

71130

71131

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtok()

NAME
strtok, strtok_r — split string into tokens

SYNOPSIS
#include <string.h>

char *strtok(char *restrict s, const char *restrict sep);
CX char *strtok_r(char *restrict s, const char *restrict sep,

char **restrict state);

DESCRIPTION
CX For strtok(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

A sequence of calls to strtok() breaks the string pointed to by s into a sequence of tokens, each of
which is delimited by a byte from the string pointed to by sep. The first call in the sequence has s
as its first argument, and is followed by calls with a null pointer as their first argument. The
separator string pointed to by sep may be different from call to call.

The first call in the sequence searches the string pointed to by s for the first byte that is not
contained in the current separator string pointed to by sep. If no such byte is found, then there
are no tokens in the string pointed to by s and strtok() shall return a null pointer. If such a byte is
found, it is the start of the first token.

The strtok() function then searches from there for a byte that is contained in the current separator
string. If no such byte is found, the current token extends to the end of the string pointed to by s,
and subsequent searches for a token shall return a null pointer. If such a byte is found, it is
overwritten by a NUL character, which terminates the current token. The strtok() function saves
a pointer to the following byte, from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from
the saved pointer and behaves as described above.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
strtok().

The strtok() function need not be thread-safe; however, strtok() shall avoid data races with all
other functions.

CX The strtok_r() function shall be equivalent to strtok(), except that strtok_r() shall be thread-safe
and the argument state points to a user-provided pointer that allows strtok_r() to maintain state
between calls which scan the same string. The application shall ensure that the pointer pointed
to by state is unique for each string (s) being processed concurrently by strtok_r() calls. The
application need not initialize the pointer pointed to by state to any particular value. The
implementation shall not update the pointer pointed to by state to point (directly or indirectly) to
resources, other than within the string s, that need to be freed or released by the caller.

CX The strtok() and strtok_r() functions shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, strtok() shall return a pointer to the first byte of a token. Otherwise,
if there is no token, strtok() shall return a null pointer.

CX The strtok_r() function shall return a pointer to the token found, or a null pointer when no token
is found.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2177

71132

71133

71134

71135

71136

71137

71138

71139

71140

71141

71142

71143

71144

71145

71146

71147

71148

71149

71150

71151

71152

71153

71154

71155

71156

71157

71158

71159

71160

71161

71162

71163

71164

71165

71166

71167

71168

71169

71170

71171

71172

71173

71174

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtok() System Interfaces

ERRORS
No errors are defined.

EXAMPLES

Searching for Word Separators

The following example searches for tokens separated by <space> characters.

#include <string.h>
...
char *token;
char line[] = "LINE TO BE SEPARATED";
char *search = " ";

/* Token will point to "LINE". */
token = strtok(line, search);

/* Token will point to "TO". */
token = strtok(NULL, search);

Find First two Fields in a Buffer

The following example uses strtok() to find two character strings (a key and data associated with
that key) separated by any combination of <space>, <tab>, or <newline> characters at the start
of the array of characters pointed to by buffer.

#include <string.h>
...
char *buffer;
...
struct element {

char *key;
char *data;

} e;
...
// Load the buffer...
...
// Get the key and its data...
e.key = strtok(buffer, " \t\n");
e.data = strtok(NULL, " \t\n");
// Process the rest of the contents of the buffer...
...

APPLICATION USAGE
Note that if sep is the empty string, strtok() and strtok_r() return a pointer to the remainder of the
string being tokenized.

The strtok_r() function is thread-safe and stores its state in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by an unrelated call from another
thread.

RATIONALE
The strtok() function searches for a separator string within a larger string. It returns a pointer to
the last substring between separator strings. This function uses static storage to keep track of
the current string position between calls. The new function, strtok_r(), takes an additional

2178 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71175

71176

71177

71178

71179

71180

71181

71182

71183

71184

71185

71186

71187

71188

71189

71190

71191

71192

71193

71194

71195

71196

71197

71198

71199

71200

71201

71202

71203

71204

71205

71206

71207

71208

71209

71210

71211

71212

71213

71214

71215

71216

71217

71218

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtok()

argument, state, to keep track of the current position in the string.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The strtok_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the strtok() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The strtok_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the strtok() and strtok_r() prototypes for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-235 is applied, correcting an example.

The strtok_r() function is moved from the Thread-Safe Functions option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0615 [177] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0350 [878] is applied.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that strtok() and strtok_r() do not
change the setting of errno on valid input.

Austin Group Defect 1302 is applied, aligning the strtok() function with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2179

71219

71220

71221

71222

71223

71224

71225

71226

71227

71228

71229

71230

71231

71232

71233

71234

71235

71236

71237

71238

71239

71240

71241

71242

71243

71244

71245

71246

71247

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtol() System Interfaces

NAME
strtol, strtoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long strtol(const char *restrict nptr, char **restrict endptr, int base);
long long strtoll(const char *restrict nptr, char **restrict endptr,

int base)

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by nptr to a type long
and long long representation, respectively. First, they decompose the input string into three
parts:

1. An initial, possibly empty, sequence of white-space bytes

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string.

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant, or hexadecimal constant, any of which may be preceded by a '+' or '−' sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix '0' optionally followed by a sequence of the digits '0' to
'7' only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters 'a' (or 'A') to 'f' (or 'F') with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a '+' or '−' sign. The letters from 'a' (or 'A') to 'z' (or 'Z') inclusive are ascribed the
values 10 to 35; only letters whose ascribed values are less than that of base are permitted. If the
value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space byte, that is of the expected form. The subject sequence shall
contain no characters if the input string is empty or consists entirely of white-space bytes, or if
the first non-white-space byte is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit shall be interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it shall be used as the
base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a <hyphen-minus>, the resulting value shall be the negative of the converted value.
A pointer to the final string shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

CX In other than the C or POSIX locale, additional locale-specific subject sequence forms may be
accepted.

2180 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71248

71249

71250

71251

71252

71253

71254

71255

71256

71257

71258

71259

71260

71261

71262

71263

71264

71265

71266

71267

71268

71269

71270

71271

71272

71273

71274

71275

71276

71277

71278

71279

71280

71281

71282

71283

71284

71285

71286

71287

71288

71289

71290

71291

71292

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtol()

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr shall be stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

These functions shall not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN}, and {LONG_MAX} or {LLONG_MAX} are returned
on error and are also valid returns on success, an application wishing to check for error
situations should set errno to 0, then call strtol() or strtoll(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to [EINVAL].

CX If the value of base is not supported, 0 shall be returned and errno shall be set to [EINVAL].

If the correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX},
{LLONG_MIN}, or {LLONG_MAX} shall be returned (according to the sign of the value), and
errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

[EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
Since the value of *endptr is unspecified if the value of base is not supported, applications should
either ensure that base has a supported value (0 or between 2 and 36) before the call, or check for
an [EINVAL] error before examining *endptr.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isalpha(), strtod()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2181

71293

71294

71295

71296

71297

71298

71299

71300

71301

71302

71303

71304

71305

71306

71307

71308

71309

71310

71311

71312

71313

71314

71315

71316

71317

71318

71319

71320

71321

71322

71323

71324

71325

71326

71327

71328

71329

71330

71331

71332

71333

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtol() System Interfaces

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strtol() prototype is updated.

• The strtoll() function is added.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0616 [453], XSH/TC1-2008/0617 [105],
XSH/TC1-2008/0618 [453], XSH/TC1-2008/0619 [453], and XSH/TC1-2008/0620 [453] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0351 [892], XSH/TC2-2008/0352 [584],
XSH/TC2-2008/0353 [796], and XSH/TC2-2008/0354 [892] are applied.

Issue 8
Austin Group Defect 700 is applied, clarifying how a subject sequence beginning with <hyphen-
minus> is converted.

Austin Group Defect 1163 is applied, clarifying the handling of white space in the input string.

2182 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71334

71335

71336

71337

71338

71339

71340

71341

71342

71343

71344

71345

71346

71347

71348

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtold()

NAME
strtold — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

long double strtold(const char *restrict nptr, char **restrict endptr);

DESCRIPTION
Refer to strtod().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2183

71349

71350

71351

71352

71353

71354

71355

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtoll() System Interfaces

NAME
strtoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long long strtoll(const char *restrict str, char **restrict endptr,
int base);

DESCRIPTION
Refer to strtol().

2184 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71356

71357

71358

71359

71360

71361

71362

71363

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtoul()

NAME
strtoul, strtoull — convert a string to an unsigned long

SYNOPSIS
#include <stdlib.h>

unsigned long strtoul(const char *restrict str,
char **restrict endptr, int base);

unsigned long long strtoull(const char *restrict str,
char **restrict endptr, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by str to a type unsigned
long and unsigned long long representation, respectively. First, they decompose the input string
into three parts:

1. An initial, possibly empty, sequence of white-space bytes

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant, or hexadecimal constant, any of which may be preceded by a '+' or '−' sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix '0' optionally followed by a sequence of the digits '0' to
'7' only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters 'a' (or 'A') to 'f' (or 'F') with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a '+' or '−' sign. The letters from 'a' (or 'A') to 'z' (or 'Z') inclusive are ascribed the
values 10 to 35; only letters whose ascribed values are less than that of base are permitted. If the
value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space byte, that is of the expected form. The subject sequence shall
contain no characters if the input string is empty or consists entirely of white-space bytes, or if
the first non-white-space byte is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit shall be interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it shall be used as the
base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a <hyphen-minus>, the resulting value shall be the negative of the converted value;
this action shall be performed in the return type. A pointer to the final string shall be stored in
the object pointed to by endptr, provided that endptr is not a null pointer.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2185

71364

71365

71366

71367

71368

71369

71370

71371

71372

71373

71374

71375

71376

71377

71378

71379

71380

71381

71382

71383

71384

71385

71386

71387

71388

71389

71390

71391

71392

71393

71394

71395

71396

71397

71398

71399

71400

71401

71402

71403

71404

71405

71406

71407

71408

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtoul() System Interfaces

CX In other than the C or POSIX locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of str shall be stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and are also valid returns
on success, an application wishing to check for error situations should set errno to 0, then call
strtoul() or strtoull(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to [EINVAL].

CX If the value of base is not supported, 0 shall be returned and errno shall be set to [EINVAL].

If the correct value is outside the range of representable values, {ULONG_MAX} or
{ULLONG_MAX} shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
Since the value of *endptr is unspecified if the value of base is not supported, applications should
either ensure that base has a supported value (0 or between 2 and 36) before the call, or check for
an [EINVAL] error before examining *endptr.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isalpha(), strtod(), strtol()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

2186 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71409

71410

71411

71412

71413

71414

71415

71416

71417

71418

71419

71420

71421

71422

71423

71424

71425

71426

71427

71428

71429

71430

71431

71432

71433

71434

71435

71436

71437

71438

71439

71440

71441

71442

71443

71444

71445

71446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strtoul()

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added for when the value of base is not supported.

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strtoul() prototype is updated.

• The strtoull() function is added.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0621 [105], XSH/TC1-2008/0622 [453],
and XSH/TC1-2008/0623 [453] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0355 [584] and XSH/TC2-2008/0356
[796] are applied.

Issue 8
Austin Group Defect 700 is applied, clarifying how a subject sequence beginning with <hyphen-
minus> is converted.

Austin Group Defect 1163 is applied, clarifying the handling of white space in the input string.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2187

71447

71448

71449

71450

71451

71452

71453

71454

71455

71456

71457

71458

71459

71460

71461

71462

71463

71464

71465

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strtoumax() System Interfaces

NAME
strtoumax — convert a string to an integer type

SYNOPSIS
#include <inttypes.h>

uintmax_t strtoumax(const char *restrict nptr, char **restrict endptr,
int base);

DESCRIPTION
Refer to strtoimax().

2188 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71466

71467

71468

71469

71470

71471

71472

71473

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces strxfrm()

NAME
strxfrm, strxfrm_l — string transformation

SYNOPSIS
#include <string.h>

size_t strxfrm(char *restrict s1, const char *restrict s2, size_t n);
CX size_t strxfrm_l(char *restrict s1, const char *restrict s2,

size_t n, locale_t locale);

DESCRIPTION
CX For strxfrm(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The strxfrm() and strxfrm_l() functions shall transform the string pointed to by s2 and place the
resulting string into the array pointed to by s1. The transformation is such that if strcmp() is
applied to two transformed strings, it shall return a value greater than, equal to, or less than 0,

CX corresponding to the result of strcoll() or strcoll_l(), respectively, applied to the same two
CX original strings with the same locale. No more than n bytes are placed into the resulting array

pointed to by s1, including the terminating NUL character. If n is 0, s1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is undefined.

CX The strxfrm() and strxfrm_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
CX situations should set errno to 0, then call strxfrm() or strxfrm_l(), then check errno.

CX The behavior is undefined if the locale argument to strxfrm_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX Upon successful completion, strxfrm() and strxfrm_l() shall return the length of the

transformed string (not including the terminating NUL character). If the value returned is n or
more, the contents of the array pointed to by s1 are unspecified.

CX On error, strxfrm() and strxfrm_l() may set errno but no return value is reserved to indicate an
error.

ERRORS
These functions may fail if:

CX [EINVAL] The string pointed to by the s2 argument contains characters outside the
domain of the collating sequence.

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed strings can be ordered by strcmp() as
appropriate to collating sequence information in the current locale (category LC_COLLATE).

The fact that when n is 0 s1 is permitted to be a null pointer is useful to determine the size of the
s1 array prior to making the transformation.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2189

71474

71475

71476

71477

71478

71479

71480

71481

71482

71483

71484

71485

71486

71487

71488

71489

71490

71491

71492

71493

71494

71495

71496

71497

71498

71499

71500

71501

71502

71503

71504

71505

71506

71507

71508

71509

71510

71511

71512

71513

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strxfrm() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), strcoll()

XBD <string.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ISO C standard.

Issue 5
The DESCRIPTION is updated to indicate that errno does not change if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The strxfrm() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The strxfrm_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0624 [283], XSH/TC1-2008/0625 [283],
and XSH/TC1-2008/0626 [302] are applied.

2190 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71514

71515

71516

71517

71518

71519

71520

71521

71522

71523

71524

71525

71526

71527

71528

71529

71530

71531

71532

71533

71534

71535

71536

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces swab()

NAME
swab — swap bytes

SYNOPSIS
XSI #include <unistd.h>

void swab(const void *restrict src, void *restrict dest,
ssize_t nbytes);

DESCRIPTION
The swab() function shall copy nbytes bytes, which are pointed to by src, to the object pointed to
by dest, exchanging adjacent bytes. The nbytes argument should be even. If nbytes is odd, swab()
copies and exchanges nbytes−1 bytes and the disposition of the last byte is unspecified. If
copying takes place between objects that overlap, the behavior is undefined. If nbytes is
negative, swab() does nothing.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The restrict keyword is added to the swab() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2191

71537

71538

71539

71540

71541

71542

71543

71544

71545

71546

71547

71548

71549

71550

71551

71552

71553

71554

71555

71556

71557

71558

71559

71560

71561

71562

71563

71564

71565

71566

71567

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

swprintf() System Interfaces

NAME
swprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwprintf().

2192 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71568

71569

71570

71571

71572

71573

71574

71575

71576

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces swscanf()

NAME
swscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swscanf(const wchar_t *restrict ws,
const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwscanf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2193

71577

71578

71579

71580

71581

71582

71583

71584

71585

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

symlink() System Interfaces

NAME
symlink, symlinkat — make a symbolic link

SYNOPSIS
#include <unistd.h>

int symlink(const char *path1, const char *path2);

OH #include <fcntl.h>

int symlinkat(const char *path1, int fd, const char *path2);

DESCRIPTION
The symlink() function shall create a symbolic link called path2 that contains the string pointed to
by path1 (path2 is the name of the symbolic link created, path1 is the string contained in the
symbolic link).

The string pointed to by path1 shall be treated only as a string and shall not be validated as a
pathname.

If the symlink() function fails for any reason other than [EIO], any file named by path2 shall be
unaffected.

If path2 names a symbolic link, symlink() shall fail and set errno to [EEXIST].

The symbolic link’s user ID shall be set to the process’ effective user ID. The symbolic link’s
group ID shall be set to the group ID of the parent directory or to the effective group ID of the
process. Implementations shall provide a way to initialize the symbolic link’s group ID to the
group ID of the parent directory. Implementations may, but need not, provide an
implementation-defined way to initialize the symbolic link’s group ID to the effective group ID
of the calling process.

The values of the file mode bits for the created symbolic link are unspecified. All interfaces
specified by POSIX.1-2024 shall behave as if the contents of symbolic links can always be read,
except that the value of the file mode bits returned in the st_mode field of the stat structure is
unspecified.

Upon successful completion, symlink() shall mark for update the last data access, last data
modification, and last file status change timestamps of the symbolic link. Also, the last data
modification and last file status change timestamps of the directory that contains the new entry
shall be marked for update.

The symlinkat() function shall be equivalent to the symlink() function except in the case where
path2 specifies a relative path. In this case the symbolic link is created relative to the directory
associated with the file descriptor fd instead of the current working directory. If the access mode
of the open file description associated with the file descriptor is not O_SEARCH, the function
shall check whether directory searches are permitted using the current permissions of the
directory underlying the file descriptor. If the access mode is O_SEARCH, the function shall not
perform the check.

If symlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to symlink().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

2194 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71586

71587

71588

71589

71590

71591

71592

71593

71594

71595

71596

71597

71598

71599

71600

71601

71602

71603

71604

71605

71606

71607

71608

71609

71610

71611

71612

71613

71614

71615

71616

71617

71618

71619

71620

71621

71622

71623

71624

71625

71626

71627

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces symlink()

ERRORS
These functions shall fail if:

[EACCES] Write permission is denied in the directory where the symbolic link is being
created, or search permission is denied for a component of the path prefix of
path2.

[EEXIST] The path2 argument names an existing file.

[EILSEQ] The last pathname component of path2 is not a portable filename, and cannot
be created in the target directory.

[EIO] An I/O error occurs while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path2
argument.

[ENAMETOOLONG]
The length of a component of the pathname specified by the path2 argument is
longer than {NAME_MAX} or the length of the path1 argument is longer than
{SYMLINK_MAX}.

[ENOENT] A component of the path prefix of path2 does not name an existing file or path2
is an empty string.

[ENOENT] or [ENOTDIR]
The path2 argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters. If path2 without the trailing <slash>
characters would name an existing file, an [ENOENT] error shall not occur.

[ENOSPC] The directory in which the entry for the new symbolic link is being placed
cannot be extended because no space is left on the file system containing the
directory, or the new symbolic link cannot be created because no space is left
on the file system which shall contain the link, or the file system is out of file-
allocation resources.

[ENOTDIR] A component of the path prefix of path2 names an existing file that is neither a
directory nor a symbolic link to a directory.

[EROFS] The new symbolic link would reside on a read-only file system.

The symlinkat() function shall fail if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path2 argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path2 argument is not an absolute path and fd is a file descriptor
associated with a non-directory file.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path2 argument.

[ENAMETOOLONG]
The length of the path2 argument exceeds {PATH_MAX} or pathname
resolution of a symbolic link in the path2 argument produced an intermediate

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2195

71628

71629

71630

71631

71632

71633

71634

71635

71636

71637

71638

71639

71640

71641

71642

71643

71644

71645

71646

71647

71648

71649

71650

71651

71652

71653

71654

71655

71656

71657

71658

71659

71660

71661

71662

71663

71664

71665

71666

71667

71668

71669

71670

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

symlink() System Interfaces

result with a length that exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
Like a hard link, a symbolic link allows a file to have multiple logical names. The presence of a
hard link guarantees the existence of a file, even after the original name has been removed. A
symbolic link provides no such assurance; in fact, the file named by the path1 argument need not
exist when the link is created. A symbolic link can cross file system boundaries.

Normal permission checks are made on each component of the symbolic link pathname during
its resolution.

RATIONALE
The purpose of the symlinkat() function is to create symbolic links in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to symlink(), resulting in unspecified behavior. By opening
a file descriptor for the target directory and using the symlinkat() function it can be guaranteed
that the created symbolic link is located relative to the desired directory.

Implementations are encouraged to have symlink() and symlinkat() report an [EILSEQ] error if
the last component of path2 contains any bytes that have the encoded value of a <newline>
character.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), fstatat(), lchown(), link(), open(), readlink(), rename(), unlink()

XBD <fcntl.h>, <unistd.h>
CHANGE HISTORY

First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION text is updated.

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The symlinkat() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

Additions have been made describing how symlink() sets the user and group IDs and file mode
of the symbolic link, and its effect on timestamps.

Changes are made to allow a directory to be opened for searching.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0627 [146,428], XSH/TC1-2008/0628
[461], XSH/TC1-2008/0629 [146,428], XSH/TC1-2008/0630 [146,428,436], XSH/TC1-2008/0631
[324], XSH/TC1-2008/0632 [278], XSH/TC1-2008/0633 [278], and XSH/TC1-2008/0634 [151] are
applied.

2196 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71671

71672

71673

71674

71675

71676

71677

71678

71679

71680

71681

71682

71683

71684

71685

71686

71687

71688

71689

71690

71691

71692

71693

71694

71695

71696

71697

71698

71699

71700

71701

71702

71703

71704

71705

71706

71707

71708

71709

71710

71711

71712

71713

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces symlink()

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0357 [873], XSH/TC2-2008/0358 [591],
XSH/TC2-2008/0359 [641], XSH/TC2-2008/0360 [817], XSH/TC2-2008/0361 [822],
XSH/TC2-2008/0362 [817], and XSH/TC2-2008/0363 [591] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 293 is applied, adding the [EILSEQ] error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2197

71714

71715

71716

71717

71718

71719

71720

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sync() System Interfaces

NAME
sync — schedule file system updates

SYNOPSIS
XSI #include <unistd.h>

void sync(void);

DESCRIPTION
The sync() function shall cause all information in memory that updates file systems to be
scheduled for writing out to all file systems.

The writing, although scheduled, is not necessarily complete upon return from sync().

RETURN VALUE
The sync() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fsync()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

2198 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71721

71722

71723

71724

71725

71726

71727

71728

71729

71730

71731

71732

71733

71734

71735

71736

71737

71738

71739

71740

71741

71742

71743

71744

71745

71746

71747

71748

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sysconf()

NAME
sysconf — get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
The sysconf() function provides a method for the application to determine the current value of a
configurable system limit or option (variable). The implementation shall support all of the
variables listed in the following table and may support others.

The name argument represents the system variable to be queried. The following table lists the
minimal set of system variables from <limits.h> or <unistd.h> that can be returned by sysconf(),
and the symbolic constants defined in <unistd.h> that are the corresponding values used for
name.

Variable Value of Name
{AIO_LISTIO_MAX} _SC_AIO_LISTIO_MAX
{AIO_MAX} _SC_AIO_MAX
{AIO_PRIO_DELTA_MAX} _SC_AIO_PRIO_DELTA_MAX
{ARG_MAX} _SC_ARG_MAX
{ATEXIT_MAX} _SC_ATEXIT_MAX
{BC_BASE_MAX} _SC_BC_BASE_MAX
{BC_DIM_MAX} _SC_BC_DIM_MAX
{BC_SCALE_MAX} _SC_BC_SCALE_MAX
{BC_STRING_MAX} _SC_BC_STRING_MAX
{CHILD_MAX} _SC_CHILD_MAX
Clock ticks/second _SC_CLK_TCK
{COLL_WEIGHTS_MAX} _SC_COLL_WEIGHTS_MAX
{DELAYTIMER_MAX} _SC_DELAYTIMER_MAX
{EXPR_NEST_MAX} _SC_EXPR_NEST_MAX
{HOST_NAME_MAX} _SC_HOST_NAME_MAX
{IOV_MAX} _SC_IOV_MAX
{LINE_MAX} _SC_LINE_MAX
{LOGIN_NAME_MAX} _SC_LOGIN_NAME_MAX
{NGROUPS_MAX} _SC_NGROUPS_MAX
Initial size of getgrgid_r() and _SC_GETGR_R_SIZE_MAX
getgrnam_r() data buffers
Initial size of getpwuid_r() and _SC_GETPW_R_SIZE_MAX
getpwnam_r() data buffers
{MQ_OPEN_MAX} _SC_MQ_OPEN_MAX
{MQ_PRIO_MAX} _SC_MQ_PRIO_MAX

_SC_NPROCESSORS_CONFMaximum number of execution units that can
be made available to run threads†

_SC_NPROCESSORS_ONLNMaximum number of execution units
currently available to run threads†
Highest supported signal number +1 _SC_NSIG
{OPEN_MAX} _SC_OPEN_MAX
{PAGE_SIZE} _SC_PAGE_SIZE
{PAGESIZE} _SC_PAGESIZE
{PTHREAD_DESTRUCTOR_ITERATIONS} _SC_THREAD_DESTRUCTOR_ITERATIONS

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2199

71749

71750

71751

71752

71753

71754

71755

71756

71757

71758

71759

71760

71761

71762

71763

71764

71765

71766

71767

71768

71769

71770

71771

71772

71773

71774

71775

71776

71777

71778

71779

71780

71781

71782

71783

71784

71785

71786

71787

71788

71789

71790

71791

71792

71793

71794

71795

71796

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sysconf() System Interfaces

Variable Value of Name
{PTHREAD_KEYS_MAX} _SC_THREAD_KEYS_MAX
{PTHREAD_STACK_MIN} _SC_THREAD_STACK_MIN
{PTHREAD_THREADS_MAX} _SC_THREAD_THREADS_MAX
{RE_DUP_MAX} _SC_RE_DUP_MAX
{RTSIG_MAX} _SC_RTSIG_MAX
{SEM_NSEMS_MAX} _SC_SEM_NSEMS_MAX
{SEM_VALUE_MAX} _SC_SEM_VALUE_MAX
{SIGQUEUE_MAX} _SC_SIGQUEUE_MAX
{STREAM_MAX} _SC_STREAM_MAX
{SYMLOOP_MAX} _SC_SYMLOOP_MAX
{TIMER_MAX} _SC_TIMER_MAX
{TTY_NAME_MAX} _SC_TTY_NAME_MAX
{TZNAME_MAX} _SC_TZNAME_MAX
_POSIX_ADVISORY_INFO _SC_ADVISORY_INFO
_POSIX_BARRIERS _SC_BARRIERS
_POSIX_ASYNCHRONOUS_IO _SC_ASYNCHRONOUS_IO
_POSIX_CLOCK_SELECTION _SC_CLOCK_SELECTION
_POSIX_CPUTIME _SC_CPUTIME
_POSIX_DEVICE_CONTROL _SC_DEVICE_CONTROL
_POSIX_FSYNC _SC_FSYNC
_POSIX_IPV6 _SC_IPV6
_POSIX_JOB_CONTROL _SC_JOB_CONTROL
_POSIX_MAPPED_FILES _SC_MAPPED_FILES
_POSIX_MEMLOCK _SC_MEMLOCK
_POSIX_MEMLOCK_RANGE _SC_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION _SC_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING _SC_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK _SC_MONOTONIC_CLOCK
_POSIX_PRIORITIZED_IO _SC_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING _SC_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS _SC_RAW_SOCKETS
_POSIX_READER_WRITER_LOCKS _SC_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS _SC_REALTIME_SIGNALS
_POSIX_REGEXP _SC_REGEXP
_POSIX_SAVED_IDS _SC_SAVED_IDS
_POSIX_SEMAPHORES _SC_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS _SC_SHARED_MEMORY_OBJECTS
_POSIX_SHELL _SC_SHELL
_POSIX_SPAWN _SC_SPAWN
_POSIX_SPIN_LOCKS _SC_SPIN_LOCKS
_POSIX_SPORADIC_SERVER _SC_SPORADIC_SERVER
_POSIX_SS_REPL_MAX _SC_SS_REPL_MAX
_POSIX_SYNCHRONIZED_IO _SC_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR _SC_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE _SC_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME _SC_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT _SC_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT _SC_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING _SC_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED _SC_THREAD_PROCESS_SHARED

2200 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71797

71798

71799

71800

71801

71802

71803

71804

71805

71806

71807

71808

71809

71810

71811

71812

71813

71814

71815

71816

71817

71818

71819

71820

71821

71822

71823

71824

71825

71826

71827

71828

71829

71830

71831

71832

71833

71834

71835

71836

71837

71838

71839

71840

71841

71842

71843

71844

71845

71846

71847

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sysconf()

Variable Value of Name
_POSIX_THREAD_ROBUST_PRIO_INHERIT _SC_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT _SC_THREAD_ROBUST_PRIO_PROTECT
_POSIX_THREAD_SAFE_FUNCTIONS _SC_THREAD_SAFE_FUNCTIONS
_POSIX_THREAD_SPORADIC_SERVER _SC_THREAD_SPORADIC_SERVER
_POSIX_THREADS _SC_THREADS
_POSIX_TIMEOUTS _SC_TIMEOUTS
_POSIX_TIMERS _SC_TIMERS
_POSIX_TYPED_MEMORY_OBJECTS _SC_TYPED_MEMORY_OBJECTS
_POSIX_VERSION _SC_VERSION
_POSIX_V8_ILP32_OFF32 _SC_V8_ILP32_OFF32
_POSIX_V8_ILP32_OFFBIG _SC_V8_ILP32_OFFBIG
_POSIX_V8_LP64_OFF64 _SC_V8_LP64_OFF64
_POSIX_V8_LPBIG_OFFBIG _SC_V8_LPBIG_OFFBIG

OB _POSIX_V7_ILP32_OFF32 _SC_V7_ILP32_OFF32
_POSIX_V7_ILP32_OFFBIG _SC_V7_ILP32_OFFBIG
_POSIX_V7_LP64_OFF64 _SC_V7_LP64_OFF64
_POSIX_V7_LPBIG_OFFBIG _SC_V7_LPBIG_OFFBIG
_POSIX2_C_BIND _SC_2_C_BIND
_POSIX2_C_DEV _SC_2_C_DEV
_POSIX2_CHAR_TERM _SC_2_CHAR_TERM
_POSIX2_FORT_RUN _SC_2_FORT_RUN
_POSIX2_LOCALEDEF _SC_2_LOCALEDEF
_POSIX2_SW_DEV _SC_2_SW_DEV
_POSIX2_UPE _SC_2_UPE
_POSIX2_VERSION _SC_2_VERSION
_XOPEN_CRYPT _SC_XOPEN_CRYPT
_XOPEN_ENH_I18N _SC_XOPEN_ENH_I18N
_XOPEN_REALTIME _SC_XOPEN_REALTIME
_XOPEN_REALTIME_THREADS _SC_XOPEN_REALTIME_THREADS
_XOPEN_SHM _SC_XOPEN_SHM
_XOPEN_UNIX _SC_XOPEN_UNIX
_XOPEN_UUCP _SC_XOPEN_UUCP
_XOPEN_VERSION _SC_XOPEN_VERSION

† The nature of an execution unit and the precise conditions under which an execution unit is
considered to be available, or can be made available, or how many threads it can execute in
parallel, are implementation-defined.

RETURN VALUE
If name is an invalid value, sysconf() shall return −1 and set errno to indicate the error. If the
variable corresponding to name is described in <limits.h> as a maximum or minimum value and
the variable has no limit, sysconf() shall return −1 without changing the value of errno. Note that
indefinite limits do not imply infinite limits; see <limits.h>.

Otherwise, sysconf() shall return the current variable value on the system. The value returned
shall not be more restrictive than the corresponding value described to the application when it
was compiled with the implementation’s <limits.h> or <unistd.h>. The value returned for name
arguments other than _SC_NPROCESSORS_ONLN shall not change during the lifetime of the
calling process, except that sysconf (_SC_OPEN_MAX) may return different values before and
after a call to setrlimit() which changes the RLIMIT_NOFILE soft limit.

If the variable corresponding to name is dependent on an unsupported option, the results are
unspecified.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2201

71848

71849

71850

71851

71852

71853

71854

71855

71856

71857

71858

71859

71860

71861

71862

71863

71864

71865

71866

71867

71868

71869

71870

71871

71872

71873

71874

71875

71876

71877

71878

71879

71880

71881

71882

71883

71884

71885

71886

71887

71888

71889

71890

71891

71892

71893

71894

71895

71896

71897

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sysconf() System Interfaces

ERRORS
The sysconf() function shall fail if:

[EINVAL] The value of the name argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
As −1 is a permissible return value in a successful situation, an application wishing to check for
error situations should set errno to 0, then call sysconf(), and, if it returns −1, check to see if errno
is non-zero.

Application developers should check whether an option, such as _POSIX_SPORADIC_SERVER,
is supported prior to obtaining and using values for related variables, such as
_POSIX_SS_REPL_MAX.

Although the queries _SC_NPROCESSORS_CONF and _SC_NPROCESSORS_ONLN provide a
way for a class of ``heavy-load’’ application to estimate the optimal number of threads that can
be created to maximize throughput, real-world environments have complications that affect the
actual efficiency that can be achieved. For example:

• There may be more than one ``heavy-load’’ application running on the system.

• The system may be on battery power, and applications should co-ordinate with the system
to ensure that a long-running task can pause, resume, and successfully complete even in
the event of a power outage.

In case a portable ``heavy-load’’ application wants to avoid the use of extensions, its developers
may wish to create threads based on the logical partition of the long-running task, or utilize
heuristics such as the ratio between CPU time and real time.

RATIONALE
This functionality was added in response to requirements of application developers and of
system vendors who deal with many international system configurations. It is closely related to
pathconf() and fpathconf().

Although a conforming application can run on all systems by never demanding more resources
than the minimum values published in this volume of POSIX.1-2024, it is useful for that
application to be able to use the actual value for the quantity of a resource available on any
given system. To do this, the application makes use of the value of a symbolic constant in
<limits.h> or <unistd.h>.

However, once compiled, the application must still be able to cope if the amount of resource
available is increased. To that end, an application may need a means of determining the quantity
of a resource, or the presence of an option, at execution time.

Two examples are offered:

1. Applications may wish to act differently on systems with or without job control.
Applications vendors who wish to distribute only a single binary package to all instances
of a computer architecture would be forced to assume job control is never available if it
were to rely solely on the <unistd.h> value published in this volume of POSIX.1-2024.

2. International applications vendors occasionally require knowledge of the number of clock
ticks per second. Without these facilities, they would be required to either distribute their
applications partially in source form or to have 50 Hz and 60 Hz versions for the various
countries in which they operate.

2202 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71898

71899

71900

71901

71902

71903

71904

71905

71906

71907

71908

71909

71910

71911

71912

71913

71914

71915

71916

71917

71918

71919

71920

71921

71922

71923

71924

71925

71926

71927

71928

71929

71930

71931

71932

71933

71934

71935

71936

71937

71938

71939

71940

71941

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sysconf()

It is the knowledge that many applications are actually distributed widely in executable form
that leads to this facility. If limited to the most restrictive values in the headers, such applications
would have to be prepared to accept the most limited environments offered by the smallest
microcomputers. Although this is entirely portable, there was a consensus that they should be
able to take advantage of the facilities offered by large systems, without the restrictions
associated with source and object distributions.

During the discussions of this feature, it was pointed out that it is almost always possible for an
application to discern what a value might be at runtime by suitably testing the various functions
themselves. And, in any event, it could always be written to adequately deal with error returns
from the various functions. In the end, it was felt that this imposed an unreasonable level of
complication and sophistication on the application developer.

This runtime facility is not meant to provide ever-changing values that applications have to
check multiple times. The values are seen as changing no more frequently than once per system
initialization, such as by a system administrator or operator with an automatic configuration
program. This volume of POSIX.1-2024 specifies that they shall not change within the lifetime of
the process.

Some values apply to the system overall and others vary at the file system or directory level. The
latter are described in fpathconf().

Note that all values returned must be expressible as integers. String values were considered, but
the additional flexibility of this approach was rejected due to its added complexity of
implementation and use.

Some values, such as {PATH_MAX}, are sometimes so large that they must not be used to, say,
allocate arrays. The sysconf() function returns a negative value to show that this symbolic
constant is not even defined in this case.

Similar to pathconf(), this permits the implementation not to have a limit. When one resource is
infinite, returning an error indicating that some other resource limit has been reached is
conforming behavior.

FUTURE DIRECTIONS
None.

SEE ALSO
confstr(), fpathconf()

XBD <limits.h>, <unistd.h>

XCU getconf

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

The _XBS_ variables and name values are added to the table of system variables in the
DESCRIPTION. These are all marked EX.

Issue 6
The symbol CLK_TCK is obsolescent and removed. It is replaced with the phrase ``clock ticks
per second’’.

The symbol {PASS_MAX} is removed.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2203

71942

71943

71944

71945

71946

71947

71948

71949

71950

71951

71952

71953

71954

71955

71956

71957

71958

71959

71960

71961

71962

71963

71964

71965

71966

71967

71968

71969

71970

71971

71972

71973

71974

71975

71976

71977

71978

71979

71980

71981

71982

71983

71984

71985

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sysconf() System Interfaces

The following changes were made to align with the IEEE P1003.1a draft standard:

• Table entries are added for the following variables: _SC_REGEXP, _SC_SHELL,
_SC_REGEX_VERSION, _SC_SYMLOOP_MAX.

The following sysconf() variables and their associated names are added for alignment with
IEEE Std 1003.1d-1999:

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TIMEOUTS

The following changes are made to the DESCRIPTION for alignment with IEEE Std 1003.1j-2000:

• A statement expressing the dependency of support for some system variables on
implementation options is added.

• The following system variables are added:

_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MONOTONIC_CLOCK
_POSIX_READER_WRITER_LOCKS
_POSIX_SPIN_LOCKS
_POSIX_TYPED_MEMORY_OBJECTS

The following system variables are added for alignment with IEEE Std 1003.2d-1994:

_POSIX2_PBS
_POSIX2_PBS_ACCOUNTING
_POSIX2_PBS_LOCATE
_POSIX2_PBS_MESSAGE
_POSIX2_PBS_TRACK

The following sysconf() variables and their associated names are added for alignment with
IEEE Std 1003.1q-2000:

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_INHERIT
_POSIX_TRACE_LOG

The macros associated with the c89 programming models are marked LEGACY, and new
equivalent macros associated with c99 are introduced.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/62 is applied, updating the
DESCRIPTION to denote that the _PC* and _SC* symbols are now required to be supported. A
corresponding change has been made in the Base Definitions volume of POSIX.1-2024. The
deletion in the second paragraph removes some duplicated text. Additional symbols that were
erroneously omitted from this reference page have been added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/63 is applied, making it clear in the
RETURN VALUE section that the value returned for sysconf(_SC_OPEN_MAX) may change if a

2204 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71986

71987

71988

71989

71990

71991

71992

71993

71994

71995

71996

71997

71998

71999

72000

72001

72002

72003

72004

72005

72006

72007

72008

72009

72010

72011

72012

72013

72014

72015

72016

72017

72018

72019

72020

72021

72022

72023

72024

72025

72026

72027

72028

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces sysconf()

call to setrlimit() adjusts the RLIMIT_NOFILE soft limit.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/134 is applied, updating the
DESCRIPTION to remove an erroneous entry for _POSIX_SYMLOOP_MAX. This corrects an
error in IEEE Std 1003.1-2001/Cor 1-2002.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/135 is applied, removing
_POSIX_FILE_LOCKING, _POSIX_MULTI_PROCESS, _POSIX2_C_VERSION, and
_XOPEN_XCU_VERSION (and their associated _SC_* variables) from the DESCRIPTION and
APPLICATION USAGE sections.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/136 is applied, adding the following
constants (and their associated _SC_* variables) to the DESCRIPTION:

_POSIX_SS_REPL_MAX
_POSIX_TRACE_EVENT_NAME_MAX
_POSIX_TRACE_NAME_MAX
_POSIX_TRACE_SYS_MAX
_POSIX_TRACE_USER_EVENT_MAX

The RETURN VALUE and APPLICATION USAGE sections are updated to note that if variables
are dependent on unsupported options, the results are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/137 is applied, removing
_REGEX_VERSION and _SC_REGEX_VERSION.

Issue 7
Austin Group Interpretation 1003.1-2001 #160 is applied.

SD5-XSH-ERN-166 is applied, changing ``Maximum size’’ to ``Initial size’’ for the ``Maximum
size of ...’’ entries in the table in the DESCRIPTION.

The variables for the supported programming environments are updated to be V7 and the
LEGACY variables are removed.

The following constants are added:

_POSIX_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT

The _XOPEN_UUCP variable and its associated _SC_XOPEN_UUCP value is added to the table
of system variables.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0364 [752] is applied.

Issue 8
Austin Group Defect 51 is applied, moving the getrlimit() and setrlimit() functions, excluding
the RLIMIT_CPU and RLIMIT_FSIZE limits, from the XSI option to the Base.

Austin Group Defects 339 and 1608 are applied, adding _SC_NPROCESSORS_CONF and
_SC_NPROCESSORS_ONLN.

Austin Group Defect 729 is applied, adding _SC_DEVICE_CONTROL.

Austin Group Defect 741 is applied, adding _SC_NSIG.

Austin Group Defect 1330 is applied, removing obsolescent interfaces and changing ``_V7_’’ to
``_V8_’’ and ``_V6_’’ to ``_V7_’’.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2205

72029

72030

72031

72032

72033

72034

72035

72036

72037

72038

72039

72040

72041

72042

72043

72044

72045

72046

72047

72048

72049

72050

72051

72052

72053

72054

72055

72056

72057

72058

72059

72060

72061

72062

72063

72064

72065

72066

72067

72068

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

syslog() System Interfaces

NAME
syslog — log a message

SYNOPSIS
XSI #include <syslog.h>

void syslog(int priority, const char *message, ... /* argument */);

DESCRIPTION
Refer to closelog().

2206 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72069

72070

72071

72072

72073

72074

72075

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces system()

NAME
system — issue a command

SYNOPSIS
#include <stdlib.h>

int system(const char *command);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If command is a null pointer, the system() function shall determine whether the host environment
has a command processor. If command is not a null pointer, the system() function shall pass the
string pointed to by command to that command processor to be executed in an implementation-
defined manner; this might then cause the program calling system() to behave in a non-
conforming manner or to terminate.

CX The system() function shall behave as if a child process were created using fork(), and the child
process invoked the sh utility using execl() as follows:

execl(<shell path>, "sh", "-c", "--", command, (char *)0);

where <shell path> is an unspecified pathname for the sh utility. It is implementation-defined
whether the handlers registered with pthread_atfork() are called as part of the creation of the
child process.

The system() function shall ignore the SIGINT and SIGQUIT signals, and shall block the
SIGCHLD signal, while waiting for the command to terminate. If this might cause the
application to miss a signal that would have killed it, then the application should examine the
return value from system() and take whatever action is appropriate to the application if the
command terminated due to receipt of a signal.

The system() function shall not affect the termination status of any child of the calling processes
other than the process or processes it itself creates.

The system() function shall not return until the child process has terminated.

If concurrent calls to system() are made from multiple threads, it is unspecified whether:

• each call saves and restores the dispositions of the SIGINT and SIGQUIT signals
independently, or

• in a set of concurrent calls the dispositions in effect after the last call returns are those that
were in effect on entry to the first call.

If a thread is cancelled while it is in a call to system(), it is unspecified whether the child process
is terminated and waited for, or is left running.

RETURN VALUE
If command is a null pointer, system() shall return non-zero to indicate that a command processor

CX is available, or zero if none is available. The system() function shall always return non-zero
when command is NULL.

CX If command is not a null pointer, system() shall return the termination status of the command
language interpreter in the format specified by waitpid(). The termination status shall be as
defined for the sh utility; otherwise, the termination status is unspecified. If some error prevents
the command language interpreter from executing after the child process is created, the return
value from system() shall be as if the command language interpreter had terminated using

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2207

72076

72077

72078

72079

72080

72081

72082

72083

72084

72085

72086

72087

72088

72089

72090

72091

72092

72093

72094

72095

72096

72097

72098

72099

72100

72101

72102

72103

72104

72105

72106

72107

72108

72109

72110

72111

72112

72113

72114

72115

72116

72117

72118

72119

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

system() System Interfaces

exit(127) or _exit(127). If a child process cannot be created, or if the termination status for the
command language interpreter cannot be obtained, system() shall return −1 and set errno to
indicate the error.

ERRORS
CX The system() function may set errno values as described by fork().

In addition, system() may fail if:

CX [ECHILD] The status of the child process created by system() is no longer available.

EXAMPLES
None.

APPLICATION USAGE
If the return value of system() is not −1, its value can be decoded through the use of the macros
described in <sys/wait.h>. For convenience, these macros are also provided in <stdlib.h>.

Note that, while system() must ignore SIGINT and SIGQUIT and block SIGCHLD while waiting
for the child to terminate, the handling of signals in the executed command is as specified by
fork() and exec. For example, if SIGINT is being caught or is set to SIG_DFL when system() is
called, then the child is started with SIGINT handling set to SIG_DFL.

Ignoring SIGINT and SIGQUIT in the parent process prevents coordination problems (two
processes reading from the same terminal, for example) when the executed command ignores or
catches one of the signals. It is also usually the correct action when the user has given a
command to the application to be executed synchronously (as in the '!' command in many
interactive applications). In either case, the signal should be delivered only to the child process,
not to the application itself. There is one situation where ignoring the signals might have less
than the desired effect. This is when the application uses system() to perform some task invisible
to the user. If the user typed the interrupt character ("^C", for example) while system() is being
used in this way, one would expect the application to be killed, but only the executed command
is killed. Applications that use system() in this way should carefully check the return status from
system() to see if the executed command was successful, and should take appropriate action
when the command fails.

Blocking SIGCHLD while waiting for the child to terminate prevents the application from
catching the signal and obtaining status from system()’s child process before system() can get the
status itself.

The context in which the utility is ultimately executed may differ from that in which system()
was called. For example, file descriptors that have the FD_CLOEXEC or FD_CLOFORK flag set
are closed, and the process ID and parent process ID are different. Also, if the executed utility
changes its environment variables or its current working directory, that change is not reflected in
the caller’s context.

There is no defined way for an application to find the specific path for the shell. However,
confstr() can provide a value for PA TH that is guaranteed to find the sh utility.

Although system() is required to be thread-safe, it is recommended that concurrent calls from
multiple threads are avoided, since system() is not required to coordinate the saving and
restoring of the dispositions of the SIGINT and SIGQUIT signals across a set of overlapping
calls, and therefore the signals might end up being set to ignored after the last call returns.
Applications should also avoid cancelling a thread while it is in a call to system() as the child
process may be left running in that event. In addition, if another thread alters the disposition of
the SIGCHLD signal, a call to signal() may produce unexpected results.

2208 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72120

72121

72122

72123

72124

72125

72126

72127

72128

72129

72130

72131

72132

72133

72134

72135

72136

72137

72138

72139

72140

72141

72142

72143

72144

72145

72146

72147

72148

72149

72150

72151

72152

72153

72154

72155

72156

72157

72158

72159

72160

72161

72162

72163

72164

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces system()

RATIONALE
The system() function should not be used by programs that have set user (or group) ID
privileges. The fork() and exec family of functions (except execlp() and execvp()), should be used
instead. This prevents any unforeseen manipulation of the environment of the user that could
cause execution of commands not anticipated by the calling program.

There are three levels of specification for the system() function. The ISO C standard gives the
most basic. It requires that the function exists, and defines a way for an application to query
whether a command language interpreter exists. It says nothing about the command language
or the environment in which the command is interpreted.

POSIX.1-2024 places additional restrictions on system(). It requires that if there is a command
language interpreter, the environment must be as specified by fork() and exec. This ensures, for
example, that close-on-exec works, that process-owned file locks are not inherited, and that the
process ID is different. It also specifies the return value from system() when the command line
can be run, thus giving the application some information about the command’s completion
status.

Finally, POSIX.1-2024 requires the command to be interpreted as in the shell command language
defined in the Shell and Utilities volume of POSIX.1-2024.

Note that, system(NULL) is required to return non-zero, indicating that there is a command
language interpreter. At first glance, this would seem to conflict with the ISO C standard which
allows system(NULL) to return zero. There is no conflict, however. A system must have a
command language interpreter, and is non-conforming if none is present. It is therefore
permissible for the system() function on such a system to implement the behavior specified by
the ISO C standard as long as it is understood that the implementation does not conform to
POSIX.1-2024 if system(NULL) returns zero.

It was explicitly decided that when command is NULL, system() should not be required to check
to make sure that the command language interpreter actually exists with the correct mode, that
there are enough processes to execute it, and so on. The call system(NULL) could, theoretically,
check for such problems as too many existing child processes, and return zero. However, it
would be inappropriate to return zero due to such a (presumably) transient condition. If some
condition exists that is not under the control of this application and that would cause any
system() call to fail, that system has been rendered non-conforming.

Early drafts required, or allowed, system() to return with errno set to [EINTR] if it was
interrupted with a signal. This error return was removed, and a requirement that system() not
return until the child has terminated was added. This means that if a waitpid() call in system()
exits with errno set to [EINTR], system() must reissue the waitpid(). This change was made for
two reasons:

1. There is no way for an application to clean up if system() returns [EINTR], short of calling
wait(), and that could have the undesirable effect of returning the status of children other
than the one started by system().

2. While it might require a change in some historical implementations, those
implementations already have to be changed because they use wait() instead of waitpid().

Note that if the application is catching SIGCHLD signals, it will receive such a signal before a
successful system() call returns.

To conform to POSIX.1-2024, system() must use waitpid(), or some similar function, instead of
wait().

The following code sample illustrates how system() might be implemented on an

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2209

72165

72166

72167

72168

72169

72170

72171

72172

72173

72174

72175

72176

72177

72178

72179

72180

72181

72182

72183

72184

72185

72186

72187

72188

72189

72190

72191

72192

72193

72194

72195

72196

72197

72198

72199

72200

72201

72202

72203

72204

72205

72206

72207

72208

72209

72210

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

system() System Interfaces

implementation conforming to POSIX.1-2024.

int system(const char *cmd)
{

int stat;
pid_t pid;
struct sigaction sa, savintr, savequit;
sigset_t saveblock;
if (cmd == NULL)

return(1);
sa.sa_handler = SIG_IGN;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sigemptyset(&savintr.sa_mask);
sigemptyset(&savequit.sa_mask);
sigaction(SIGINT, &sa, &savintr);
sigaction(SIGQUIT, &sa, &savequit);
sigaddset(&sa.sa_mask, SIGCHLD);
pthread_sigmask(SIG_BLOCK, &sa.sa_mask, &saveblock);
if ((pid = fork()) == 0) {

sigaction(SIGINT, &savintr, (struct sigaction *)0);
sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
execl("/bin/sh", "sh", "-c", "--", cmd, (char *)0);
_exit(127);

}
if (pid == -1) {

stat = -1; /* errno comes from fork() */
} else {

while (waitpid(pid, &stat, 0) == -1) {
if (errno != EINTR){

stat = -1;
break;

}
}

}
sigaction(SIGINT, &savintr, (struct sigaction *)0);
sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
return(stat);

}

Note that, while a particular implementation of system() (such as the one above) can assume a
particular path for the shell, such a path is not necessarily valid on another system. The above
example is not portable, and is not intended to be.

Earlier versions of this standard did not require system() to be thread-safe because it alters the
process-wide disposition of the SIGINT and SIGQUIT signals. It is now required to be thread-
safe to align with the ISO C standard, which (since the introduction of threads in 2011) requires
that it avoids data races. However, the function is not required to coordinate the saving and
restoring of the dispositions of the SIGINT and SIGQUIT signals across a set of overlapping
calls, and the above example does not do so. The example also does not terminate and wait for
the child process if the calling thread is cancelled, and so would leak a process ID in that event.

2210 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72211

72212

72213

72214

72215

72216

72217

72218

72219

72220

72221

72222

72223

72224

72225

72226

72227

72228

72229

72230

72231

72232

72233

72234

72235

72236

72237

72238

72239

72240

72241

72242

72243

72244

72245

72246

72247

72248

72249

72250

72251

72252

72253

72254

72255

72256

72257

72258

72259

72260

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces system()

One reviewer suggested that an implementation of system() might want to use an environment
variable such as SHELL to determine which command interpreter to use. The supposed
implementation would use the default command interpreter if the one specified by the
environment variable was not available. This would allow a user, when using an application that
prompts for command lines to be processed using system(), to specify a different command
interpreter. Such an implementation is discouraged. If the alternate command interpreter did not
follow the command line syntax specified in the Shell and Utilities volume of POSIX.1-2024, then
changing SHELL would render system() non-conforming. This would affect applications that
expected the specified behavior from system(), and since the Shell and Utilities volume of
POSIX.1-2024 does not mention that SHELL affects system(), the application would not know
that it needed to unset SHELL.

Earlier versions of this standard required the command string to be passed as the next argument
after "-c" (omitting "--"). This meant that portable applications needed to take care not to
pass a command string beginning with <hyphen-minus> ('-') or <plus-sign> ('+'), as it
would then be interpreted as containing options. Now that implementations are required to pass
the "--", applications no longer need to do this.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.5.2 (on page 543), exec , pipe(), pthread_atfork(), wait()

XBD <limits.h>, <signal.h>, <stdlib.h>, <sys/wait.h>

XCU sh

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #055 is applied, clarifying the thread-safety of this
function and treatment of at_fork() handlers.

Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-30 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0365 [627] is applied.

Issue 8
Austin Group Defect 768 is applied, adding OFD-owned file locks.

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1317 is applied, making it implementation-defined whether the handlers
registered with pthread_atfork() are called.

Austin Group Defect 1318 is applied, adding FD_CLOFORK.

Austin Group Defect 1440 is applied, adding a "--" argument to the specified execl() call.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2211

72261

72262

72263

72264

72265

72266

72267

72268

72269

72270

72271

72272

72273

72274

72275

72276

72277

72278

72279

72280

72281

72282

72283

72284

72285

72286

72287

72288

72289

72290

72291

72292

72293

72294

72295

72296

72297

72298

72299

72300

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tan() System Interfaces

NAME
tan, tanf, tanl — tangent function

SYNOPSIS
#include <math.h>

double tan(double x);
float tanf(float x);
long double tanl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the tangent of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the tangent of x.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and tan(), tanf(), and tanl() shall return 0.0, or (if IEC 60559 Floating-Point is not supported) an

implementation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and
LDBL_MIN, respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, tan(), tanf(), and tanl() shall

return an implementation-defined value no greater in magnitude than DBL_MIN, FLT_MIN,
and LDBL_MIN, respectively.

MXX If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and tan(), tanf(), and tanl()
shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively, with the same sign
as the correct value of the function.

ERRORS
These functions shall fail if:

MX Domain Error The value of x is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

2212 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72301

72302

72303

72304

72305

72306

72307

72308

72309

72310

72311

72312

72313

72314

72315

72316

72317

72318

72319

72320

72321

72322

72323

72324

72325

72326

72327

72328

72329

72330

72331

72332

72333

72334

72335

72336

72337

72338

72339

72340

72341

72342

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tan()

XSI Range Error The result overflows

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The result underflows, or the value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES

Taking the Tangent of a 45-Degree Angle

#include <math.h>
...
double radians = 45.0 * M_PI / 180;
double result;
...
result = tan (radians);

APPLICATION USAGE
There are no known floating-point representations such that for a normal argument, tan(x) is
either overflow or underflow.

These functions may lose accuracy when their argument is near a multiple of π/2 or is far from
0.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
The tanf() and tanl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2213

72343

72344

72345

72346

72347

72348

72349

72350

72351

72352

72353

72354

72355

72356

72357

72358

72359

72360

72361

72362

72363

72364

72365

72366

72367

72368

72369

72370

72371

72372

72373

72374

72375

72376

72377

72378

72379

72380

72381

72382

72383

72384

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tan() System Interfaces

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/64 is applied, correcting the last
paragraph in the RETURN VALUE section.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0635 [68], XSH/TC1-2008/0636 [68],
and XSH/TC1-2008/0637 [68] are applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

2214 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72385

72386

72387

72388

72389

72390

72391

72392

72393

72394

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tanh()

NAME
tanh, tanhf, tanhl — hyperbolic tangent functions

SYNOPSIS
#include <math.h>

double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute the hyperbolic tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic tangent of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, ±1 shall be returned.

MXX If x is subnormal, x should be returned.
MX If x is subnormal, a range error may occur and, if x is not returned, tanh(), tanhf(), and tanhl()

shall return an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2215

72395

72396

72397

72398

72399

72400

72401

72402

72403

72404

72405

72406

72407

72408

72409

72410

72411

72412

72413

72414

72415

72416

72417

72418

72419

72420

72421

72422

72423

72424

72425

72426

72427

72428

72429

72430

72431

72432

72433

72434

72435

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tanh() System Interfaces

SEE ALSO
atanh(), feclearexcept(), fetestexcept(), isnan(), tan()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The tanhf() and tanhl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0638 [68] is applied.

Issue 8
Austin Group Defect 1382 is applied, rearranging the text describing the behavior when x is
subnormal to avoid the need for two shading changes.

2216 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72436

72437

72438

72439

72440

72441

72442

72443

72444

72445

72446

72447

72448

72449

72450

72451

72452

72453

72454

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tanl()

NAME
tanl — tangent function

SYNOPSIS
#include <math.h>

long double tanl(long double x);

DESCRIPTION
Refer to tan().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2217

72455

72456

72457

72458

72459

72460

72461

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcdrain() System Interfaces

NAME
tcdrain — wait for transmission of output

SYNOPSIS
#include <termios.h>

int tcdrain(int fildes);

DESCRIPTION
The tcdrain() function shall block until all output written to the object referred to by fildes is
transmitted. The fildes argument is an open file descriptor associated with a terminal.

Any attempts to use tcdrain() from a process which is a member of a background process group
on a fildes associated with its controlling terminal, shall cause the process group to be sent a
SIGTTOU signal. If the calling thread is blocking SIGTTOU signals or the process is ignoring
SIGTTOU signals, the process shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcdrain() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcdrain().

[EIO] The process group of the writing process is orphaned, the calling thread is not
blocking SIGTTOU, and the process is not ignoring SIGTTOU.

[ENOTTY] The file associated with fildes is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcflush()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

2218 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72462

72463

72464

72465

72466

72467

72468

72469

72470

72471

72472

72473

72474

72475

72476

72477

72478

72479

72480

72481

72482

72483

72484

72485

72486

72487

72488

72489

72490

72491

72492

72493

72494

72495

72496

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcdrain()

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the final paragraph is no longer conditional on
_POSIX_JOB_CONTROL. This is a FIPS requirement.

• The [EIO] error is added.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0639 [79], XSH/TC1-2008/0640 [79],
and XSH/TC1-2008/0641 [79] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2219

72497

72498

72499

72500

72501

72502

72503

72504

72505

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcflow() System Interfaces

NAME
tcflow — suspend or restart the transmission or reception of data

SYNOPSIS
#include <termios.h>

int tcflow(int fildes, int action);

DESCRIPTION
The tcflow() function shall suspend or restart transmission or reception of data on the object
referred to by fildes, depending on the value of action. The fildes argument is an open file
descriptor associated with a terminal.

• If action is TCOOFF, output shall be suspended.

• If action is TCOON, suspended output shall be restarted.

• If action is TCIOFF and fildes refers to a terminal device, the system shall transmit a STOP
character, which is intended to cause the terminal device to stop transmitting data to the
system. If fildes is associated with a pseudo-terminal, the STOP character need not be
transmitted.

• If action is TCION and fildes refers to a terminal device, the system shall transmit a START
character, which is intended to cause the terminal device to start transmitting data to the
system. If fildes is associated with a pseudo-terminal, the START character need not be
transmitted.

The default on the opening of a terminal file is that neither its input nor its output are
suspended.

Attempts to use tcflow() from a process which is a member of a background process group on a
fildes associated with its controlling terminal, shall cause the process group to be sent a
SIGTTOU signal. If the calling thread is blocking SIGTTOU signals or the process is ignoring
SIGTTOU signals, the process shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcflow() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The action argument is not a supported value.

[EIO] The process group of the writing process is orphaned, the calling thread is not
blocking SIGTTOU, and the process is not ignoring SIGTTOU.

[ENOTTY] The file associated with fildes is not a terminal.

2220 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72506

72507

72508

72509

72510

72511

72512

72513

72514

72515

72516

72517

72518

72519

72520

72521

72522

72523

72524

72525

72526

72527

72528

72529

72530

72531

72532

72533

72534

72535

72536

72537

72538

72539

72540

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcflow()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcsendbreak()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] error is added.

Issue 7
SD5-XSH-ERN-190 is applied, clarifying in the DESCRIPTION the transmission of START and
STOP characters.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0642 [79], XSH/TC1-2008/0643 [79],
and XSH/TC1-2008/0644 [79] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2221

72541

72542

72543

72544

72545

72546

72547

72548

72549

72550

72551

72552

72553

72554

72555

72556

72557

72558

72559

72560

72561

72562

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcflush() System Interfaces

NAME
tcflush — flush non-transmitted output data, non-read input data, or both

SYNOPSIS
#include <termios.h>

int tcflush(int fildes, int queue_selector);

DESCRIPTION
Upon successful completion, tcflush() shall discard data written to the object referred to by fildes
(an open file descriptor associated with a terminal) but not transmitted, or data received but not
read, depending on the value of queue_selector:

• If queue_selector is TCIFLUSH, it shall flush data received but not read.

• If queue_selector is TCOFLUSH, it shall flush data written but not transmitted.

• If queue_selector is TCIOFLUSH, it shall flush both data received but not read and data
written but not transmitted.

Attempts to use tcflush() from a process which is a member of a background process group on a
fildes associated with its controlling terminal shall cause the process group to be sent a SIGTTOU
signal. If the calling thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU
signals, the process shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcflush() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The queue_selector argument is not a supported value.

[EIO] The process group of the writing process is orphaned, the calling thread is not
blocking SIGTTOU, and the process is not ignoring SIGTTOU.

[ENOTTY] The file associated with fildes is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcdrain()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

2222 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72563

72564

72565

72566

72567

72568

72569

72570

72571

72572

72573

72574

72575

72576

72577

72578

72579

72580

72581

72582

72583

72584

72585

72586

72587

72588

72589

72590

72591

72592

72593

72594

72595

72596

72597

72598

72599

72600

72601

72602

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcflush()

Issue 6
The Open Group Corrigendum U035/1 is applied. In the ERRORS and APPLICATION USAGE
sections, references to tcflow() are replaced with tcflush().

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the final paragraph is no longer conditional on
_POSIX_JOB_CONTROL. This is a FIPS requirement.

• The [EIO] error is added.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0645 [79], XSH/TC1-2008/0646 [79],
and XSH/TC1-2008/0647 [79] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2223

72603

72604

72605

72606

72607

72608

72609

72610

72611

72612

72613

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcgetattr() System Interfaces

NAME
tcgetattr — get the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

DESCRIPTION
The tcgetattr() function shall get the parameters associated with the terminal referred to by fildes
and store them in the termios structure referenced by termios_p. The fildes argument is an open
file descriptor associated with a terminal.

The termios_p argument is a pointer to a termios structure.

The tcgetattr() operation is allowed from any process.

If the terminal device supports different input and output baud rates, the baud rates stored in
the termios structure returned by tcgetattr() shall reflect the actual baud rates, even if they are
equal. If differing baud rates are not supported, the rate returned as the output baud rate shall
be the actual baud rate. If the terminal device does not support split baud rates, the input baud
rate stored in the termios structure shall be the output rate (as one of the symbolic values).

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcgetattr() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Care must be taken when changing the terminal attributes. Applications should always do a
tcgetattr(), save the termios structure values returned, and then do a tcsetattr(), changing only
the necessary fields. The application should use the values saved from the tcgetattr() to reset the
terminal state whenever it is done with the terminal. This is necessary because terminal
attributes apply to the underlying port and not to each individual open instance; that is, all
processes that have used the terminal see the latest attribute changes.

A program that uses these functions should be written to catch all signals and take other
appropriate actions to ensure that when the program terminates, whether planned or not, the
terminal device’s state is restored to its original state.

Existing practice dealing with error returns when only part of a request can be honored is based
on calls to the ioctl() function. In historical BSD and System V implementations, the
corresponding ioctl() returns zero if the requested actions were semantically correct, even if
some of the requested changes could not be made. Many existing applications assume this
behavior and would no longer work correctly if the return value were changed from zero to −1
in this case.

Note that either specification has a problem. When zero is returned, it implies everything

2224 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72614

72615

72616

72617

72618

72619

72620

72621

72622

72623

72624

72625

72626

72627

72628

72629

72630

72631

72632

72633

72634

72635

72636

72637

72638

72639

72640

72641

72642

72643

72644

72645

72646

72647

72648

72649

72650

72651

72652

72653

72654

72655

72656

72657

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcgetattr()

succeeded even if some of the changes were not made. When −1 is returned, it implies
everything failed even though some of the changes were made.

Applications that need all of the requested changes made to work properly should follow
tcsetattr() with a call to tcgetattr() and compare the appropriate field values.

FUTURE DIRECTIONS
None.

SEE ALSO
tcsetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the DESCRIPTION, the rate returned as the input baud rate shall be the output rate.
Previously, the number zero was also allowed but was obsolescent.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2225

72658

72659

72660

72661

72662

72663

72664

72665

72666

72667

72668

72669

72670

72671

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcgetpgrp() System Interfaces

NAME
tcgetpgrp — get the foreground process group ID

SYNOPSIS
#include <unistd.h>

pid_t tcgetpgrp(int fildes);

DESCRIPTION
The tcgetpgrp() function shall return the value of the process group ID of the foreground process
group associated with the terminal.

If there is no foreground process group, tcgetpgrp() shall return a value greater than 1 that does
not match the process group ID of any existing process group.

The tcgetpgrp() function is allowed from a process that is a member of a background process
group; however, the information may be subsequently changed by a process that is a member of
a foreground process group.

RETURN VALUE
Upon successful completion, tcgetpgrp() shall return the value of the process group ID of the
foreground process associated with the terminal. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcgetpgrp() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setsid(), setpgid(), tcsetpgrp()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

2226 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72672

72673

72674

72675

72676

72677

72678

72679

72680

72681

72682

72683

72684

72685

72686

72687

72688

72689

72690

72691

72692

72693

72694

72695

72696

72697

72698

72699

72700

72701

72702

72703

72704

72705

72706

72707

72708

72709

72710

72711

72712

72713

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcgetpgrp()

• In the DESCRIPTION, text previously conditional on support for _POSIX_JOB_CONTROL
is now mandatory. This is a FIPS requirement.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2227

72714

72715

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcgetsid() System Interfaces

NAME
tcgetsid — get the process group ID for the session leader for the controlling terminal

SYNOPSIS
#include <termios.h>

pid_t tcgetsid(int fildes);

DESCRIPTION
The tcgetsid() function shall obtain the process group ID of the session for which the terminal
specified by fildes is the controlling terminal.

RETURN VALUE
Upon successful completion, tcgetsid() shall return the process group ID of the session
associated with the terminal. Otherwise, a value of −1 shall be returned and errno set to indicate
the error.

ERRORS
The tcgetsid() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <termios.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The [EACCES] error has been removed from the list of mandatory errors, and the description of
[ENOTTY] has been reworded.

Issue 7
SD5-XSH-ERN-180 is applied, clarifying the RETURN VALUE section.

The tcgetsid() function is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0648 [421] is applied.

2228 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72716

72717

72718

72719

72720

72721

72722

72723

72724

72725

72726

72727

72728

72729

72730

72731

72732

72733

72734

72735

72736

72737

72738

72739

72740

72741

72742

72743

72744

72745

72746

72747

72748

72749

72750

72751

72752

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcgetwinsize()

NAME
tcgetwinsize — get the size of a terminal window

SYNOPSIS
#include <termios.h>

int tcgetwinsize(int fildes, struct winsize *winsize_p);

DESCRIPTION
The tcgetwinsize() function shall get the terminal window size associated with the terminal
referred to by fildes and store it in the winsize structure pointed to by winsize_p. The fildes
argument is an open file descriptor associated with a terminal. The winsize_p argument is a
pointer to a winsize structure.

If the terminal referred to by fildes was opened without O_TTY_INIT and is not a pseudo-
terminal, and the terminal window size has not been set by a call to tcsetwinsize(), the terminal
window size is unspecified.

If the terminal was opened with O_TTY_INIT or is a pseudo-terminal, and the terminal window
size has not been set by a call to tcsetwinsize(), the terminal window size shall be set to an
appropriate default (see open()).

If the terminal window size has been set by a call to tcsetwinsize(), the values set by that call
shall be returned.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcgetwinsize() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not a terminal.

EXAMPLES

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
#include <termios.h>
#include <unistd.h>

static volatile sig_atomic_t vrow;
static volatile sig_atomic_t vcol;
static volatile sig_atomic_t newsize;

static void winch_handler(int signum)
{

struct winsize ws;
int sav_errno = errno;

(void)signum; // prevent compiler warning that signum is unused

// set volatile vars to new winsize, or 0 if unavailable or

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2229

72753

72754

72755

72756

72757

72758

72759

72760

72761

72762

72763

72764

72765

72766

72767

72768

72769

72770

72771

72772

72773

72774

72775

72776

72777

72778

72779

72780

72781

72782

72783

72784

72785

72786

72787

72788

72789

72790

72791

72792

72793

72794

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcgetwinsize() System Interfaces

// too large

if (tcgetwinsize(STDERR_FILENO, &ws) == -1)
{

vrow = vcol = 0;
}
else
{

if (ws.ws_row <= SIG_ATOMIC_MAX && ws.ws_col <= SIG_ATOMIC_MAX)
{

vrow = ws.ws_row;
vcol = ws.ws_col;

}
else
{

vrow = vcol = 0;
}

}

newsize = 1;

errno = sav_errno;
}

int main(void)
{

struct sigaction sa;
struct winsize ws;
sigset_t winch_set;
char inbuf[512];

sa.sa_handler = winch_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sigaction(SIGWINCH, &sa, NULL);

sigemptyset(&winch_set);
sigaddset(&winch_set, SIGWINCH);

raise(SIGWINCH); // gets the initial winsize

for (;;)
{

if (fgets(inbuf, sizeof inbuf, stdin) == NULL)
{

if (feof(stdin))
exit(0);

else if (errno == EINTR)
continue;

else
{

perror("Error reading stdin");

2230 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72795

72796

72797

72798

72799

72800

72801

72802

72803

72804

72805

72806

72807

72808

72809

72810

72811

72812

72813

72814

72815

72816

72817

72818

72819

72820

72821

72822

72823

72824

72825

72826

72827

72828

72829

72830

72831

72832

72833

72834

72835

72836

72837

72838

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcgetwinsize()

exit(1);
}

}
else
{

if (newsize)
{

// prevent updates to volatile vars while we read them
sigprocmask(SIG_BLOCK, &winch_set, NULL);
ws.ws_row = vrow;
ws.ws_col = vcol;
sigprocmask(SIG_UNBLOCK, &winch_set, NULL);
newsize = 0;

}
printf("row = %3hu, col = %3hu\n", ws.ws_row, ws.ws_col);

// process inbuf ...
}

}
}

APPLICATION USAGE
Applications should take care to avoid race conditions and other undefined behavior when
calling tcgetwinsize() from signal handlers. A common but incorrect idiom is to establish a signal
handler for SIGWINCH from which tcgetwinsize() is called to update a global winsize structure.
This usage is incorrect as accessing a winsize structure is not guaranteed to be an atomic
operation. Instead, applications should have tcgetwinsize() write to a local structure and copy
each member the application is interested in to a global variable of type volatile sig_atomic_t.
Furthermore, SIGWINCH should be blocked from delivery while the terminal size is read from
these global variables to further avoid race conditions. A simpler alternative, if the application is
structured in a suitable way, is just to set a flag in the signal handler and then call tcgetwinsize()
(and clear the flag) at an appropriate place in the code if the flag has been set.

Multi-threaded applications should avoid the signal handler idiom in general. Instead, it is
advised to use sigwait() to wait for the delivery of a SIGWINCH signal.

If the terminal window size changes while a process is in the background, it is not notified via
SIGWINCH (which is sent only to the foreground process group). Applications can handle this
case by calling tcgetwinsize() if the process receives SIGCONT, to check whether the terminal
window size changed while the process was stopped.

If a background process writes to a terminal and the TOSTOP flag is clear (see XBD Section
11.2.5, on page 210), the process might not receive SIGTTOU or SIGWINCH signals and thus
might not be notified when the terminal window size might have changed. Such processes must
periodically poll the current terminal window size if needed.

RATIONALE
The tcgetwinsize() function is provided to allow applications to query the current terminal
window size. This is necessary for applications intended to be run in terminals whose terminal
window size can be changed at runtime. Conventionally, a SIGWINCH signal is delivered to a
controlling terminal’s foreground process group whenever its terminal window size is changed.
By installing a signal handler for SIGWINCH, a process can detect the change to the controlling
terminal’s window size and take action, e.g. by redrawing its user interface to the new size.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2231

72839

72840

72841

72842

72843

72844

72845

72846

72847

72848

72849

72850

72851

72852

72853

72854

72855

72856

72857

72858

72859

72860

72861

72862

72863

72864

72865

72866

72867

72868

72869

72870

72871

72872

72873

72874

72875

72876

72877

72878

72879

72880

72881

72882

72883

72884

72885

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcgetwinsize() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
tcsetwinsize()

XBD <termios.h>

CHANGE HISTORY
First released in Issue 8.

2232 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72886

72887

72888

72889

72890

72891

72892

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcsendbreak()

NAME
tcsendbreak — send a break for a specific duration

SYNOPSIS
#include <termios.h>

int tcsendbreak(int fildes, int duration);

DESCRIPTION
If the terminal is using asynchronous serial data transmission, tcsendbreak() shall cause
transmission of a continuous stream of zero-valued bits for a specific duration. If duration is 0, it
shall cause transmission of zero-valued bits for at least 0.25 seconds, and not more than 0.5
seconds. If duration is not 0, it shall send zero-valued bits for an implementation-defined period
of time.

The fildes argument is an open file descriptor associated with a terminal.

If the terminal is not using asynchronous serial data transmission, it is implementation-defined
whether tcsendbreak() sends data to generate a break condition or returns without taking any
action.

Attempts to use tcsendbreak() from a process which is a member of a background process group
on a fildes associated with its controlling terminal shall cause the process group to be sent a
SIGTTOU signal. If the calling thread is blocking SIGTTOU signals or the process is ignoring
SIGTTOU signals, the process shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcsendbreak() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EIO] The process group of the writing process is orphaned, the calling thread is not
blocking SIGTTOU, and the process is not ignoring SIGTTOU.

[ENOTTY] The file associated with fildes is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2233

72893

72894

72895

72896

72897

72898

72899

72900

72901

72902

72903

72904

72905

72906

72907

72908

72909

72910

72911

72912

72913

72914

72915

72916

72917

72918

72919

72920

72921

72922

72923

72924

72925

72926

72927

72928

72929

72930

72931

72932

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcsendbreak() System Interfaces

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text previously conditional on _POSIX_JOB_CONTROL is now
mandated. This is a FIPS requirement.

• The [EIO] error is added.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0649 [79], XSH/TC1-2008/0650 [79],
and XSH/TC1-2008/0651 [79] are applied.

2234 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72933

72934

72935

72936

72937

72938

72939

72940

72941

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcsetattr()

NAME
tcsetattr — set the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcsetattr(int fildes, int optional_actions,
const struct termios *termios_p);

DESCRIPTION
The tcsetattr() function shall set the parameters associated with the terminal referred to by the
open file descriptor fildes (an open file descriptor associated with a terminal) from the termios
structure referenced by termios_p as follows:

• If optional_actions is TCSANOW, the change shall occur immediately.

• If optional_actions is TCSADRAIN, the change shall occur after all output written to fildes is
transmitted. This function should be used when changing parameters that affect output.

• If optional_actions is TCSAFLUSH, the change shall occur after all output written to fildes is
transmitted, and all input so far received but not read shall be discarded before the change
is made.

If the output baud rate stored in the termios structure pointed to by termios_p is the zero baud
rate, B0, the modem control lines shall no longer be asserted. Normally, this shall disconnect the
line.

If the input baud rate stored in the termios structure pointed to by termios_p is 0, the input baud
rate given to the hardware is the same as the output baud rate stored in the termios structure.

The tcsetattr() function shall return successfully if it was able to perform any of the requested
actions, even if some of the requested actions could not be performed. It shall set all the
attributes that the implementation supports as requested and leave all the attributes not
supported by the implementation unchanged. If no part of the request can be honored, it shall
return −1 and set errno to [EINVAL]. If the input and output baud rates differ and are a
combination that is not supported, neither baud rate shall be changed. A subsequent call to
tcgetattr() shall return the actual state of the terminal device (reflecting both the changes made
and not made in the previous tcsetattr() call). The tcsetattr() function shall not change the values
found in the termios structure under any circumstances.

The effect of tcsetattr() is undefined if the value of the termios structure pointed to by termios_p
was not derived from the result of a call to tcgetattr() on fildes; an application should modify
only fields and flags defined by this volume of POSIX.1-2024 between the call to tcgetattr() and
tcsetattr(), leaving all other fields and flags unmodified.

No actions defined by this volume of POSIX.1-2024, other than a call to tcsetattr(), a close of the
last file descriptor in the system associated with this terminal device, or an open of the first file
descriptor in the system associated with this terminal device (using the O_TTY_INIT flag if it is
non-zero and the device is not a pseudo-terminal), shall cause any of the terminal attributes
defined by this volume of POSIX.1-2024 to change.

If tcsetattr() is called from a process which is a member of a background process group on a fildes
associated with its controlling terminal:

• If the calling thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU
signals, the operation completes normally and no signal is sent.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2235

72942

72943

72944

72945

72946

72947

72948

72949

72950

72951

72952

72953

72954

72955

72956

72957

72958

72959

72960

72961

72962

72963

72964

72965

72966

72967

72968

72969

72970

72971

72972

72973

72974

72975

72976

72977

72978

72979

72980

72981

72982

72983

72984

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcsetattr() System Interfaces

• Otherwise, a SIGTTOU signal shall be sent to the process group.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcsetattr() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcsetattr().

[EINVAL] The optional_actions argument is not a supported value, or an attempt was
made to change an attribute represented in the termios structure to an
unsupported value.

[EIO] The process group of the writing process is orphaned, the calling thread is not
blocking SIGTTOU, and the process is not ignoring SIGTTOU.

[ENOTTY] The file associated with fildes is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
If trying to change baud rates, applications should call tcsetattr() then call tcgetattr() in order to
determine what baud rates were actually selected.

In general, there are two reasons for an application to change the parameters associated with a
terminal device:

1. The device already has working parameter settings but the application needs a different
behavior, such as non-canonical mode instead of canonical mode. The application sets (or
clears) only a few flags or c_cc[] values. Typically, the terminal device in this case is either
the controlling terminal for the process or a pseudo-terminal.

2. The device is a modem or similar piece of equipment connected by a serial line, and it
was not open before the application opened it. In this case, the application needs to
initialize all of the parameter settings ``from scratch’’. However, since the termios
structure may include both standard and non-standard parameters, the application
cannot just initialize the whole structure in an arbitrary way (e.g., using memset()) as this
may cause some of the non-standard parameters to be set incorrectly, resulting in non-
conforming behavior of the terminal device. Conversely, the application cannot just set
the standard parameters, assuming that the non-standard parameters will already have
suitable values, as the device might previously have been used with non-conforming
parameter settings (and some implementations retain the settings from one use to the
next). The solution is to open the terminal device using the O_TTY_INIT flag to initialize
the terminal device to have conforming parameter settings, obtain those settings using
tcgetattr(), and then set all of the standard parameters to the desired settings.

RATIONALE
The tcsetattr() function can be interrupted in the following situations:

• It is interrupted while waiting for output to drain.

• It is called from a process in a background process group and SIGTTOU is caught.

See also the RATIONALE section in tcgetattr().

2236 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

72985

72986

72987

72988

72989

72990

72991

72992

72993

72994

72995

72996

72997

72998

72999

73000

73001

73002

73003

73004

73005

73006

73007

73008

73009

73010

73011

73012

73013

73014

73015

73016

73017

73018

73019

73020

73021

73022

73023

73024

73025

73026

73027

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcsetattr()

FUTURE DIRECTIONS
Using an input baud rate of 0 to set the input rate equal to the output rate may not necessarily be
supported in a future version of this volume of POSIX.1-2024.

SEE ALSO
cfgetispeed(), tcgetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text previously conditional on _POSIX_JOB_CONTROL is now
mandated. This is a FIPS requirement.

• The [EIO] error is added.

In the DESCRIPTION, the text describing use of tcsetattr() from a process which is a member of
a background process group is clarified.

Issue 7
Austin Group Interpretation 1003.1-2001 #144 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0652 [79], XSH/TC1-2008/0653 [79],
and XSH/TC1-2008/0654 [79] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2237

73028

73029

73030

73031

73032

73033

73034

73035

73036

73037

73038

73039

73040

73041

73042

73043

73044

73045

73046

73047

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcsetpgrp() System Interfaces

NAME
tcsetpgrp — set the foreground process group ID

SYNOPSIS
#include <unistd.h>

int tcsetpgrp(int fildes, pid_t pgid_id);

DESCRIPTION
If the process has a controlling terminal, tcsetpgrp() shall set the foreground process group ID
associated with the terminal to pgid_id. The application shall ensure that the file associated with
fildes is the controlling terminal of the calling process and the controlling terminal is currently
associated with the session of the calling process. The application shall ensure that the value of
pgid_id matches a process group ID of a process in the same session as the calling process.

Attempts to use tcsetpgrp() from a process which is a member of a background process group on
a fildes associated with its controlling terminal shall cause the process group to be sent a
SIGTTOU signal. If the calling thread is blocking SIGTTOU signals or the process is ignoring
SIGTTOU signals, the process shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcsetpgrp() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcsetpgrp().

[EINVAL] This implementation does not support the value in the pgid_id argument.

[EIO] The process group of the writing process is orphaned, the calling thread is not
blocking SIGTTOU, and the process is not ignoring SIGTTOU.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal, or the controlling terminal is no longer associated with
the session of the calling process.

[EPERM] The value of pgid_id is a value supported by the implementation, but does not
match the process group ID of a process in the same session as the calling
process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcgetpgrp()

XBD <sys/types.h>, <unistd.h>

2238 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73048

73049

73050

73051

73052

73053

73054

73055

73056

73057

73058

73059

73060

73061

73062

73063

73064

73065

73066

73067

73068

73069

73070

73071

73072

73073

73074

73075

73076

73077

73078

73079

73080

73081

73082

73083

73084

73085

73086

73087

73088

73089

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcsetpgrp()

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the DESCRIPTION and ERRORS sections, text previously conditional on
_POSIX_JOB_CONTROL is now mandated. This is a FIPS requirement.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The Open Group Corrigendum U047/4 is applied.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0655 [79] and XSH/TC1-2008/0656
[79] are applied.

Issue 8
Austin Group Defect 1126 is applied, adding the [EINTR] error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2239

73090

73091

73092

73093

73094

73095

73096

73097

73098

73099

73100

73101

73102

73103

73104

73105

73106

73107

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tcsetwinsize() System Interfaces

NAME
tcsetwinsize — set the size of a terminal window

SYNOPSIS
#include <termios.h>

int tcsetwinsize(int fildes, const struct winsize *winsize_p);

DESCRIPTION
The tcsetwinsize() function shall set the terminal window size associated with the terminal
referred to by the open file descriptor fildes (an open file descriptor associated with a terminal)
from the winsize structure referenced by winsize_p. The change shall occur immediately.

If the terminal size was changed successfully, a SIGWINCH shall be delivered to the foreground
process group associated with the terminal. No signal shall be delivered if the terminal size was
changed to the same value it had before the tcsetwinsize() call. A SIGWINCH may also be
delivered to an implementation-defined set of other processes.

The tcsetwinsize() function shall return successfully if it was able to update all members of the
winsize structure associated with the terminal.

It is unspecified whether changing the terminal window size causes any changes to the size of
the terminal’s font.

The effect of tcsetwinsize() is undefined if the value of the winsize structure pointed to by
winsize_p was not derived from the result of a call to tcgetwinsize() on fildes; an application
should modify only fields defined by this volume of POSIX.1-2024 between the call to
tcgetwinsize() and tcsetwinsize(), leaving all other fields unmodified.

No actions defined by this volume of POSIX.1-2024, other than a call to tcsetwinsize(), a close of
the last file descriptor in the system associated with this terminal device, or an open of the first
file descriptor in the system associated with this terminal device (using the O_TTY_INIT flag if it
is non-zero and the device is not a pseudo-terminal), shall cause the terminal window size to
change.

If tcsetwinsize() is called from a process which is a member of a background process group on a
fildes associated with its controlling terminal:

• If the calling thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU
signals, the operation completes normally and no signal is sent.

• Otherwise, a SIGTTOU signal shall be sent to the process group.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned, the terminal
window size shall not be changed, and errno shall be set to indicate the error.

ERRORS
The tcsetwinsize() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EIO] The process group of the writing process is orphaned, the calling thread is not
blocking SIGTTOU, and the process is not ignoring SIGTTOU.

[ENOTTY] The file associated with fildes is not a terminal.

The tcsetwinsize() function may fail if:

2240 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73108

73109

73110

73111

73112

73113

73114

73115

73116

73117

73118

73119

73120

73121

73122

73123

73124

73125

73126

73127

73128

73129

73130

73131

73132

73133

73134

73135

73136

73137

73138

73139

73140

73141

73142

73143

73144

73145

73146

73147

73148

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tcsetwinsize()

[EINVAL] An attempt was made to change an attribute represented in the winsize
structure to an unsupported value.

EXAMPLES
None.

APPLICATION USAGE
If the terminal window of a pseudo terminal is resized, the attached manager process should
invoke tcsetwinsize() to relay the new terminal window size to the foreground process group.

If a process attached to the subsidiary device of a pseudo-terminal calls tcsetwinsize(), the
attached manager process should attempt to change the screen to reflect the new size.

RATIONALE
This standard does not mention the ws_xpixel and ws_ypixel fields that appear in the winsize
structure of some historical implementations. With current hardware, it is not obvious that the
unsigned short type used for these fields is sufficient and no uses of these fields in portable code
were found. However, since these and other fields may be included in the winsize structure, the
standard requires that applications use tcgetwinsize() to initialize any fields that may be
provided by an implementation before setting the ws_cols and ws_rows fields using tcsetwinsize()
to avoid unintentionally destroying data in other fields in this structure.

FUTURE DIRECTIONS
None.

SEE ALSO
tcgetwinsize()

XBD <termios.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2241

73149

73150

73151

73152

73153

73154

73155

73156

73157

73158

73159

73160

73161

73162

73163

73164

73165

73166

73167

73168

73169

73170

73171

73172

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tdelete() System Interfaces

NAME
tdelete, tfind, tsearch, twalk — manage a binary search tree

SYNOPSIS
XSI #include <search.h>

void *tdelete(const void *restrict key,
posix_tnode **restrict rootp,
int(*compar)(const void *, const void *));

posix_tnode *tfind(const void *key,
posix_tnode *const *rootp,
int(*compar)(const void *, const void *));

posix_tnode *tsearch(const void *key,
posix_tnode **rootp,
int (*compar)(const void *, const void *));

void twalk(const posix_tnode *root,
void (*action)(const posix_tnode *, VISIT, int));

DESCRIPTION
The tdelete(), tfind(), tsearch(), and twalk() functions manipulate binary search trees.
Comparisons are made with a user-supplied routine, the address of which is passed as the
compar argument. This routine is called with two arguments, which are the pointers to the
elements being compared. The application shall ensure that the user-supplied routine returns an
integer less than, equal to, or greater than 0, according to whether the first argument is to be
considered less than, equal to, or greater than the second argument. The comparison function
need not compare every byte, so arbitrary data may be contained in the elements in addition to
the values being compared.

The tsearch() function shall build and access the tree. The key argument is a pointer to an element
to be accessed or stored. If there is a node in the tree whose element is equal to the value pointed
to by key, a pointer to this found node shall be returned. Otherwise, the value pointed to by key
shall be inserted (that is, a new node is created and the value of key is copied to this node), and a
pointer to this node returned. Only pointers are copied, so the application shall ensure that the
calling routine stores the data. The rootp argument points to a variable that points to the root
node of the tree. A null pointer value for the variable pointed to by rootp denotes an empty tree;
in this case, the variable shall be set to point to the node which shall be at the root of the new
tree.

Like tsearch(), tfind() shall search for a node in the tree, returning a pointer to it if found.
However, if it is not found, tfind() shall return a null pointer. The arguments for tfind() are the
same as for tsearch().

The tdelete() function shall delete a node from a binary search tree. The arguments are the same
as for tsearch(). The variable pointed to by rootp shall be set to a pointer to the new root of the
tree if the root of the tree was changed. If the deleted node was the root of the tree and had no
children, the variable pointed to by rootp shall be set to a null pointer. The tdelete() function shall
return a pointer to the parent of the deleted node, or an unspecified non-null pointer if the
deleted node was the root node, or a null pointer if the node is not found.

If tsearch() adds an element to a tree, or tdelete() successfully deletes an element from a tree, the
concurrent use of that tree in another thread, or use of pointers produced by a previous call to
tfind() or tsearch(), produces undefined results.

The twalk() function shall traverse a binary search tree. The root argument is a pointer to the root
node of the tree to be traversed. (Any node in a tree may be used as the root for a walk below

2242 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73173

73174

73175

73176

73177

73178

73179

73180

73181

73182

73183

73184

73185

73186

73187

73188

73189

73190

73191

73192

73193

73194

73195

73196

73197

73198

73199

73200

73201

73202

73203

73204

73205

73206

73207

73208

73209

73210

73211

73212

73213

73214

73215

73216

73217

73218

73219

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tdelete()

that node.) The argument action is the name of a routine to be invoked at each node. This routine
is, in turn, called with three arguments. The first argument shall be the address of the node being
visited. The structure pointed to by this argument is unspecified and shall not be modified by
the application, but it shall be possible to cast a pointer-to-node into a pointer-to-pointer-to-
element to access the element stored in the node. The second argument shall be a value from an
enumeration data type:

typedef enum { preorder, postorder, endorder, leaf } VISIT;

(defined in <search.h>), depending on whether this is the first, second, or third time that the
node is visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a
leaf. The third argument shall be the level of the node in the tree, with the root being level 0.

If the calling function alters the pointer to the root, the result is undefined.

If the functions pointed to by action or compar (for any of these binary search functions) change
the tree, the results are undefined.

These functions are thread-safe only as long as multiple threads do not access the same tree.

RETURN VALUE
If the node is found, both tsearch() and tfind() shall return a pointer to it. If not, tfind() shall
return a null pointer, and tsearch() shall return a pointer to the inserted item.

A null pointer shall be returned by tsearch() if there is not enough space available to create a new
node.

A null pointer shall be returned by tdelete(), tfind(), and tsearch() if rootp is a null pointer on
entry.

The tdelete() function shall return a pointer to the parent of the deleted node, or an unspecified
non-null pointer if the deleted node was the root node, or a null pointer if the node is not found.

The twalk() function shall not return a value.

In all cases where a pointer to a node is returned, the structure pointed to by the return value is
unspecified and shall not be modified by the application, but it shall be possible to cast a
pointer-to-node into a pointer-to-pointer-to-element to access the element stored in the node.

ERRORS
No errors are defined.

EXAMPLES
The following code reads in strings and stores structures containing a pointer to each string and
a count of its length. It then walks the tree, printing out the stored strings and their lengths in
alphabetical order.

#include <limits.h>
#include <search.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

struct element { /* Pointers to these are stored in the tree. */
int count;
char string[];

};

posix_tnode *root = NULL; /* This points to the root. */

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2243

73220

73221

73222

73223

73224

73225

73226

73227

73228

73229

73230

73231

73232

73233

73234

73235

73236

73237

73238

73239

73240

73241

73242

73243

73244

73245

73246

73247

73248

73249

73250

73251

73252

73253

73254

73255

73256

73257

73258

73259

73260

73261

73262

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tdelete() System Interfaces

int main(void)
{

char str[_POSIX2_LINE_MAX+1];
int length = 0;
struct element *elementptr;
posix_tnode *node;
void print_node(const posix_tnode *, VISIT, int);
int node_compare(const void *, const void *);

while (fgets(str, sizeof(str), stdin)) {
/* Set element. */
length = strlen(str);
if (str[length-1] == '\n')

str[--length] = '\0';
elementptr = malloc(sizeof(struct element) + length + 1);
strcpy(elementptr->string, str);
elementptr->count = 1;
/* Put element into the tree. */
node = tsearch((void *)elementptr, &root, node_compare);
if (node == NULL) {

fprintf(stderr,
"tsearch: Not enough space available\n");

exit(EXIT_FAILURE);
}
else if (*(struct element **)node != elementptr) {

/* A node containing the element already exists */
(*(struct element **)node)->count++;
free(elementptr);

}
}
twalk(root, print_node);

/* Delete all nodes in the tree */
while (root != NULL) {

elementptr = *(struct element **)root;
printf("deleting node: string = %s, count = %d\n",

elementptr->string,
elementptr->count);

tdelete((void *)elementptr, &root, node_compare);
free(elementptr);

}

return 0;
}

/*
* This routine compares two nodes, based on an
* alphabetical ordering of the string field.
*/
int
node_compare(const void *node1, const void *node2)
{

return strcmp(((const struct element *) node1)->string,
((const struct element *) node2)->string);

2244 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73263

73264

73265

73266

73267

73268

73269

73270

73271

73272

73273

73274

73275

73276

73277

73278

73279

73280

73281

73282

73283

73284

73285

73286

73287

73288

73289

73290

73291

73292

73293

73294

73295

73296

73297

73298

73299

73300

73301

73302

73303

73304

73305

73306

73307

73308

73309

73310

73311

73312

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tdelete()

}

/*
* This routine prints out a node, the second time
* twalk encounters it or if it is a leaf.
*/
void
print_node(const posix_tnode *ptr, VISIT order, int level)
{

const struct element *p = *(const struct element **) ptr;

if (order == postorder || order == leaf) {
(void) printf("string = %s, count = %d\n",

p->string, p->count);
}

}

APPLICATION USAGE
The root argument to twalk() is one level of indirection less than the rootp arguments to tdelete()
and tsearch().

There are two nomenclatures used to refer to the order in which tree nodes are visited. The
twalk() function uses preorder, postorder, and endorder to refer respectively to visiting a node
before any of its children, after its left child and before its right, and after both its children. The
alternative nomenclature uses preorder, inorder, and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

Since the return value of tdelete() is an unspecified non-null pointer in the case that the root of
the tree has been deleted, applications should only use the return value of tdelete() as indication
of success or failure in this case and should not assume it can be dereferenced. However, the
only way that applications can tell if this case may have occurred is by checking whether the
variable pointed to by rootp changed. Since this variable can change for other reasons (for
example, tree balancing), using the return value of tdelete() as anything other than a boolean
indicator is unreliable at best and is discouraged. Some implementations in this case will return
a pointer to the new root of the tree (or to an empty tree if the deleted root node was the only
node in the tree); other implementations return arbitrary non-null pointers.

RATIONALE
Implementations are encouraged to use balanced trees to reduce the depth of the trees that are
created and improve tree search times.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch()

XBD <search.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2245

73313

73314

73315

73316

73317

73318

73319

73320

73321

73322

73323

73324

73325

73326

73327

73328

73329

73330

73331

73332

73333

73334

73335

73336

73337

73338

73339

73340

73341

73342

73343

73344

73345

73346

73347

73348

73349

73350

73351

73352

73353

73354

73355

73356

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tdelete() System Interfaces

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the tdelete() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #149 is applied, clarifying concurrent use of the tree in
another thread.

Austin Group Interpretation 1003.1-2001 #151 is applied, clarifying behavior for tdelete() when
the deleted node is the root node.

Austin Group Interpretation 1003.1-2001 #153 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0366 [551] is applied.

Issue 8
Austin Group Defect 1011 is applied, changing some prototypes to use posix_tnode instead of
void, and changing the required behavior for tdelete() when the root of the tree changes.

Austin Group Defect 1470 is applied, changing the EXAMPLES section.

2246 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73357

73358

73359

73360

73361

73362

73363

73364

73365

73366

73367

73368

73369

73370

73371

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces telldir()

NAME
telldir — current location of a named directory stream

SYNOPSIS
XSI #include <dirent.h>

long telldir(DIR *dirp);

DESCRIPTION
The telldir() function shall obtain the current location associated with the directory stream
specified by dirp.

If the most recent operation on the directory stream was a seekdir(), the directory position
returned from the telldir() shall be the same as that supplied as a loc argument for seekdir().

RETURN VALUE
Upon successful completion, telldir() shall return the current location of the specified directory
stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), readdir(), seekdir()

XBD <dirent.h>

CHANGE HISTORY
First released in Issue 2.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2247

73372

73373

73374

73375

73376

73377

73378

73379

73380

73381

73382

73383

73384

73385

73386

73387

73388

73389

73390

73391

73392

73393

73394

73395

73396

73397

73398

73399

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

textdomain() System Interfaces

NAME
textdomain — text domain manipulation function

SYNOPSIS
#include <libintl.h>

char *textdomain(const char *domainname);

DESCRIPTION
Refer to bindtextdomain().

2248 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73400

73401

73402

73403

73404

73405

73406

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tfind()

NAME
tfind — search binary search tree

SYNOPSIS
XSI #include <search.h>

void *tfind(const void *key, void *const *rootp,
int (*compar)(const void *, const void *));

DESCRIPTION
Refer to tdelete().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2249

73407

73408

73409

73410

73411

73412

73413

73414

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tgamma() System Interfaces

NAME
tgamma, tgammaf, tgammal — compute gamma() function

SYNOPSIS
#include <math.h>

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall compute Γ(x) where Γ(x) is defined as
∞

0
∫ e−ttx−1dt.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the gamma of x.

If x is a negative integer, either a domain error or a pole error may occur and either a NaN (if
supported) or ±Inf (if supported), respectively, or an implementation-defined value shall be

MX returned. On systems that support the IEC 60559 Floating-Point option, a domain error shall
occur and a NaN shall be returned.

If x is ±0, tgamma(), tgammaf(), and tgammal() shall return ±HUGE_VAL, ±HUGE_VALF, and
MX ±HUGE_VALL, respectively. On systems that support the IEC 60559 Floating-Point option, a
CX pole error shall occur; otherwise, a pole error may occur.

If the correct value would cause overflow, a range error shall occur and tgamma(), tgammaf(),
and tgammal() shall return ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL, respectively, with
the same sign as the correct value of the function.

MXX If the correct value would cause underflow, and is not representable, a range error may occur,
MXX and tgamma(), tgammaf(), and tgammal() shall return 0.0, or (if IEC 60559 Floating-Point is not

supported) an implementation-defined value no greater in magnitude than DBL_MIN,
FLT_MIN, and LDBL_MIN, respectively.

MXX If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

If x is subnormal and 1/x is representable, 1/x should be returned.

MX If x is NaN, a NaN shall be returned.

If x is +Inf, x shall be returned.

If x is −Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

2250 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73415

73416

73417

73418

73419

73420

73421

73422

73423

73424

73425

73426

73427

73428

73429

73430

73431

73432

73433

73434

73435

73436

73437

73438

73439

73440

73441

73442

73443

73444

73445

73446

73447

73448

73449

73450

73451

73452

73453

73454

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tgamma()

MX Domain Error The value of x is a negative integer, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The value overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Domain Error The value of x is a negative integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero or a negative integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
This function is named tgamma() in order to avoid conflicts with the historical gamma() and
lgamma() functions.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2251

73455

73456

73457

73458

73459

73460

73461

73462

73463

73464

73465

73466

73467

73468

73469

73470

73471

73472

73473

73474

73475

73476

73477

73478

73479

73480

73481

73482

73483

73484

73485

73486

73487

73488

73489

73490

73491

73492

73493

73494

73495

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tgamma() System Interfaces

SEE ALSO
feclearexcept(), fetestexcept(), lgamma()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/65 is applied, correcting the third
paragraph in the RETURN VALUE section.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #52 (SD5-XSH-ERN-85) is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0660 [68], XSH/TC1-2008/0661 [320],
and XSH/TC1-2008/0662 [68] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0367 [604] and XSH/TC2-2008/0368
[630] are applied.

Issue 8
Austin Group Defect 1461 is applied, changing the requirements for a negative integer argument
to match the ISO C standard.

2252 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73496

73497

73498

73499

73500

73501

73502

73503

73504

73505

73506

73507

73508

73509

73510

73511

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces thrd_create()

NAME
thrd_create — thread creation

SYNOPSIS
#include <threads.h>

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The thrd_create() function shall create a new thread executing func(arg). If the thrd_create()
function succeeds, it shall set the object pointed to by thr to the identifier of the newly created
thread. (A thread’s identifier might be reused for a different thread once the original thread has
exited and either been detached or joined to another thread.) The completion of the thrd_create()
function shall synchronize with the beginning of the execution of the new thread.

CX The signal state of the new thread shall be initialized as follows:

• The signal mask shall be inherited from the creating thread.

• The set of signals pending for the new thread shall be empty.

The thread-local current locale shall not be inherited from the creating thread.

The floating-point environment shall be inherited from the creating thread.

XSI The alternate stack shall not be inherited from the creating thread.

Returning from func shall have the same behavior as invoking thrd_exit() with the value
returned from func.

If thrd_create() fails, no new thread shall be created and the contents of the location referenced
by thr are undefined.

CX The thrd_create() function shall not be affected if the calling thread executes a signal handler
during the call.

RETURN VALUE
The thrd_create() function shall return thrd_success on success, or thrd_nomem if no
memory could be allocated for the thread requested, or thrd_error if the request could not be

CX honored, such as if the system-imposed limit on the total number of threads in a process
{PTHREAD_THREADS_MAX} would be exceeded.

ERRORS
See RETURN VALUE.

EXAMPLES
None.

APPLICATION USAGE
There is no requirement on the implementation that the ID of the created thread be available
before the newly created thread starts executing. The calling thread can obtain the ID of the
created thread through the thr argument of the thrd_create() function, and the newly created
thread can obtain its ID by a call to thrd_current().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2253

73512

73513

73514

73515

73516

73517

73518

73519

73520

73521

73522

73523

73524

73525

73526

73527

73528

73529

73530

73531

73532

73533

73534

73535

73536

73537

73538

73539

73540

73541

73542

73543

73544

73545

73546

73547

73548

73549

73550

73551

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

thrd_create() System Interfaces

RATIONALE
The thrd_create() function is not affected by signal handlers for the reasons stated in XRAT
Section B.2.3 (on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), thrd_current(), thrd_detach(), thrd_exit(), thrd_join()

XBD Section 4.15.2 (on page 104), <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

2254 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73552

73553

73554

73555

73556

73557

73558

73559

73560

73561

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces thrd_current()

NAME
thrd_current — get the calling thread ID

SYNOPSIS
#include <threads.h>

thrd_t thrd_current(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The thrd_current() function shall identify the thread that called it.

RETURN VALUE
The thrd_current() function shall return the thread ID of the thread that called it.

The thrd_current() function shall always be successful. No return value is reserved to indicate
an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_self(), thrd_create(), thrd_equal()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2255

73562

73563

73564

73565

73566

73567

73568

73569

73570

73571

73572

73573

73574

73575

73576

73577

73578

73579

73580

73581

73582

73583

73584

73585

73586

73587

73588

73589

73590

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

thrd_detach() System Interfaces

NAME
thrd_detach — detach a thread

SYNOPSIS
#include <threads.h>

int thrd_detach(thrd_t thr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The thrd_detach() function shall change the thread thr from joinable to detached, indicating to
the implementation that any resources allocated to the thread can be reclaimed when that thread
terminates. The application shall ensure that the thread identified by thr has not been previously
detached or joined with another thread.

CX The thrd_detach() function shall not be affected if the calling thread executes a signal handler
during the call.

RETURN VALUE
The thrd_detach() function shall return thrd_success on success or thrd_error if the request
could not be honored.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The thrd_detach() function is not affected by signal handlers for the reasons stated in XRAT
Section B.2.3 (on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_detach(), thrd_create(), thrd_join()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

2256 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73591

73592

73593

73594

73595

73596

73597

73598

73599

73600

73601

73602

73603

73604

73605

73606

73607

73608

73609

73610

73611

73612

73613

73614

73615

73616

73617

73618

73619

73620

73621

73622

73623

73624

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces thrd_equal()

NAME
thrd_equal — compare thread IDs

SYNOPSIS
#include <threads.h>

int thrd_equal(thrd_t thr0, thrd_t thr1);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The thrd_equal() function shall determine whether the thread identified by thr0 refers to the
thread identified by thr1.

CX The thrd_equal() function shall not be affected if the calling thread executes a signal handler
during the call.

RETURN VALUE
The thrd_equal() function shall return a non-zero value if thr0 and thr1 are equal; otherwise, zero
shall be returned.

CX If either thr0 or thr1 is not a valid thread ID and is not equal to PTHREAD_NULL (which is
defined in <pthread.h>), the behavior is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See the RATIONALE section for pthread_equal().

The thrd_equal() function is not affected by signal handlers for the reasons stated in XRAT
Section B.2.3 (on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_equal(), thrd_current()

XBD <pthread.h>, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2257

73625

73626

73627

73628

73629

73630

73631

73632

73633

73634

73635

73636

73637

73638

73639

73640

73641

73642

73643

73644

73645

73646

73647

73648

73649

73650

73651

73652

73653

73654

73655

73656

73657

73658

73659

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

thrd_exit() System Interfaces

NAME
thrd_exit — thread termination

SYNOPSIS
#include <threads.h>

_Noreturn void thrd_exit(int res);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

CX For every thread-specific storage key (regardless of whether it has type tss_t or pthread_key_t)
which was created with a non-null destructor and for which the value is non-null, thrd_exit()
shall set the value associated with the key to a null pointer value and then invoke the destructor
with its previous value. The order in which destructors are invoked is unspecified.

If after this process there remain keys with both non-null destructors and values, the
CX implementation shall repeat this process up to {PTHREAD_DESTRUCTOR_ITERATIONS}

times.

Following this, the thrd_exit() function shall terminate execution of the calling thread and shall
CX set its exit status to res. Thread termination shall not release any application visible process

resources, including, but not limited to, mutexes and file descriptors, nor shall it perform any
process-level cleanup actions, including, but not limited to, calling any atexit() routines that
might exist.

An implicit call to thrd_exit() is made when a thread that was created using thrd_create() returns
from the start routine that was used to create it (see thrd_create()).

CX The behavior of thrd_exit() is undefined if called from a destructor function that was invoked as
a result of either an implicit or explicit call to thrd_exit().

The process shall exit with an exit status of zero after the last thread has been terminated. The
behavior shall be as if the implementation called exit() with a zero argument at thread
termination time.

RETURN VALUE
This function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Calls to thrd_exit() should not be made from threads created using pthread_create() or via a
SIGEV_THREAD notification, as their exit status has a different type (void * instead of int). If
thrd_exit() is called from the initial thread and it is not the last thread to terminate, other threads
should not try to obtain its exit status using pthread_join().

RATIONALE
The normal mechanism by which a thread that was started using thrd_create() terminates is to
return from the function that was specified in the thrd_create() call that started it. The thrd_exit()
function provides the capability for such a thread to terminate without requiring a return from
the start routine of that thread, thereby providing a function analogous to exit().

Regardless of the method of thread termination, the destructors for any existing thread-specific

2258 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73660

73661

73662

73663

73664

73665

73666

73667

73668

73669

73670

73671

73672

73673

73674

73675

73676

73677

73678

73679

73680

73681

73682

73683

73684

73685

73686

73687

73688

73689

73690

73691

73692

73693

73694

73695

73696

73697

73698

73699

73700

73701

73702

73703

73704

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces thrd_exit()

data are executed.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), pthread_create(), thrd_join()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2259

73705

73706

73707

73708

73709

73710

73711

73712

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

thrd_join() System Interfaces

NAME
thrd_join — wait for thread termination

SYNOPSIS
#include <threads.h>

int thrd_join(thrd_t thr, int *res);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The thrd_join() function shall join the thread identified by thr with the current thread by
blocking until the other thread has terminated. If the parameter res is not a null pointer,
thrd_join() shall store the thread’s exit status in the integer pointed to by res. The termination of
the other thread shall synchronize with the completion of the thrd_join() function. The
application shall ensure that the thread identified by thr has not been previously detached or
joined with another thread.

The results of multiple simultaneous calls to thrd_join() specifying the same target thread are
undefined.

The behavior is undefined if the value specified by the thr argument to thrd_join() refers to the
calling thread.

CX It is unspecified whether a zombie thread counts against {PTHREAD_THREADS_MAX}.

If thr refers to a thread that was created using pthread_create() or via a SIGEV_THREAD
notification and the thread terminates, or has already terminated, by returning from its start
routine, the behavior of thrd_join() is undefined. If thr refers to a thread that terminates, or has
already terminated, by calling pthread_exit() or by being cancelled, the behavior of thrd_join() is
undefined.

The thrd_join() function shall not be affected if the calling thread executes a signal handler
during the call.

RETURN VALUE
The thrd_join() function shall return thrd_success on success or thrd_error if the request
could not be honored.

CX It is implementation-defined whether thrd_join() detects deadlock situations; if it does detect
them, it shall return thrd_error when one is detected.

ERRORS
See RETURN VALUE.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The thrd_join() function provides a simple mechanism allowing an application to wait for a
thread to terminate. After the thread terminates, the application may then choose to clean up
resources that were used by the thread. For instance, after thrd_join() returns, any application-
provided stack storage could be reclaimed.

The thrd_join() or thrd_detach() function should eventually be called for every thread that is

2260 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73713

73714

73715

73716

73717

73718

73719

73720

73721

73722

73723

73724

73725

73726

73727

73728

73729

73730

73731

73732

73733

73734

73735

73736

73737

73738

73739

73740

73741

73742

73743

73744

73745

73746

73747

73748

73749

73750

73751

73752

73753

73754

73755

73756

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces thrd_join()

created using thrd_create() so that storage associated with the thread may be reclaimed.

The thrd_join() function cannot be used to obtain the exit status of a thread that was created
using pthread_create() or via a SIGEV_THREAD notification and which terminates by returning
from its start routine, or of a thread that terminates by calling pthread_exit(), because such
threads have a void * exit status, instead of the int that thrd_join() returns via its res argument.

The thrd_join() function cannot be used to obtain the exit status of a thread that terminates by
being cancelled because it has no way to indicate that a thread was cancelled. (The pthread_join()
function does this by returning a reserved void * exit status; it is not possible to reserve an int
value for this purpose without introducing a conflict with the ISO C standard.) The standard
developers considered adding a thrd_canceled enumeration constant that thrd_join() would
return in this case. However, this return would be unexpected in code that is written to conform
to the ISO C standard, and it would also not solve the problem that threads which use only ISO
C <threads.h> interfaces (such as ones created by third party libraries written to conform to the
ISO C standard) have no way to handle being cancelled, as the ISO C standard does not provide
cancellation cleanup handlers.

The thrd_join() function is not affected by signal handlers for the reasons stated in XRAT Section
B.2.3 (on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_exit(), pthread_join(), thrd_create(), thrd_exit()

XBD Section 4.15.2 (on page 104), <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2261

73757

73758

73759

73760

73761

73762

73763

73764

73765

73766

73767

73768

73769

73770

73771

73772

73773

73774

73775

73776

73777

73778

73779

73780

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

thrd_sleep() System Interfaces

NAME
thrd_sleep — suspend execution for an interval

SYNOPSIS
#include <threads.h>

int thrd_sleep(const struct timespec *duration,
struct timespec *remaining);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The thrd_sleep() function shall suspend execution of the calling thread until either the interval
specified by duration has elapsed or a signal is delivered to the calling thread whose action is to
invoke a signal-catching function or to terminate the process. If interrupted by a signal and the
remaining argument is not null, the amount of time remaining (the requested interval minus the
time actually slept) shall be stored in the interval it points to. The duration and remaining
arguments can point to the same object.

The suspension time may be longer than requested because the interval is rounded up to an
integer multiple of the sleep resolution or because of the scheduling of other activity by the
system. But, except for the case of being interrupted by a signal, the suspension time shall not be
less than that specified, as measured by the system clock TIME_UTC.

RETURN VALUE
The thrd_sleep() function shall return zero if the requested time has elapsed, −1 if it has been
interrupted by a signal, or a negative value (which may also be −1) if it fails for any other reason.

CX If it returns a negative value, it shall set errno to indicate the error.

ERRORS
CX The thrd_sleep() function shall fail if:

[EINTR] The thrd_sleep() function was interrupted by a signal.

[EINVAL] The duration argument specified a nanosecond value less than zero or greater
than or equal to 1 000 million.

EXAMPLES
None.

APPLICATION USAGE
Since the return value may be −1 for errors other than [EINTR], applications should examine
errno to distinguish [EINTR] from other errors (and thus determine whether the unslept time is
available in the interval pointed to by remaining).

RATIONALE
The thrd_sleep() function is identical to the nanosleep() function except that the return value may
be any negative value when it fails with an error other than [EINTR].

FUTURE DIRECTIONS
None.

SEE ALSO
nanosleep()

XBD <threads.h>, <time.h>

2262 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73781

73782

73783

73784

73785

73786

73787

73788

73789

73790

73791

73792

73793

73794

73795

73796

73797

73798

73799

73800

73801

73802

73803

73804

73805

73806

73807

73808

73809

73810

73811

73812

73813

73814

73815

73816

73817

73818

73819

73820

73821

73822

73823

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces thrd_sleep()

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2263

73824

73825

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

thrd_yield() System Interfaces

NAME
thrd_yield — yield the processor

SYNOPSIS
#include <threads.h>

void thrd_yield(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

CX The thrd_yield() function shall force the running thread to relinquish the processor until it again
becomes the head of its thread list.

RETURN VALUE
This function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
See the APPLICATION USAGE section for sched_yield().

RATIONALE
The thrd_yield() function is identical to the sched_yield() function except that it does not return a
value.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_yield()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

2264 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73826

73827

73828

73829

73830

73831

73832

73833

73834

73835

73836

73837

73838

73839

73840

73841

73842

73843

73844

73845

73846

73847

73848

73849

73850

73851

73852

73853

73854

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces time()

NAME
time — get time

SYNOPSIS
#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

CX The time() function shall return the value of time in seconds since the Epoch.

The tloc argument points to an area where the return value is also stored. If tloc is a null pointer,
no value is stored.

RETURN VALUE
Upon successful completion, time() shall return the value of time. Otherwise, (time_t)−1 shall be
returned.

ERRORS
The time() function may fail if:

CX [EOVERFLOW] The number of seconds since the Epoch will not fit in an object of type time_t.

EXAMPLES

Getting the Current Time

The following example uses the time() function to calculate the time elapsed, in seconds, since
the Epoch, localtime() to convert that value to a broken-down time, and asctime() to convert the
broken-down time values into a printable string.

#include <stdio.h>
#include <time.h>

int main(void)
{
time_t result;

result = time(NULL);
printf("%s%ju secs since the Epoch\n",

asctime(localtime(&result)),
(uintmax_t)result);

return(0);
}

This example writes the current time to stdout in a form like this:

Wed Jun 26 10:32:15 1996
835810335 secs since the Epoch

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2265

73855

73856

73857

73858

73859

73860

73861

73862

73863

73864

73865

73866

73867

73868

73869

73870

73871

73872

73873

73874

73875

73876

73877

73878

73879

73880

73881

73882

73883

73884

73885

73886

73887

73888

73889

73890

73891

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

time() System Interfaces

Timing an Event

The following example gets the current time, prints it out in the user’s format, and prints the
number of minutes to an event being timed.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
minutes_to_event = ...;
printf("The time is ");
puts(asctime(localtime(&now)));
printf("There are %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
None.

RATIONALE
The time() function returns a value in seconds while clock_gettime() returns a struct timespec
(seconds and nanoseconds) and is therefore capable of returning more precise times. The times()
function is also capable of more precision than time() as it returns a value in clock ticks,
although it returns the elapsed time since an arbitrary point such as system boot time, not since
the epoch.

Earlier versions of this standard allowed the width of time_t to be less than 64 bits. A 32-bit
signed integer (as used in many historical implementations) fails in the year 2038, and although
a 32-bit unsigned integer does not fail until 2106 the preferred solution is to make time_t wider
rather than to make it unsigned.

On some systems the time() function is implemented using a system call that does not return an
error condition in addition to the return value. On these systems it is impossible to differentiate
between valid and invalid return values and hence overflow conditions cannot be reliably
detected.

The use of the <time.h> header instead of <sys/types.h> allows compatibility with the ISO C
standard.

Many historical implementations (including Version 7) and the 1984 /usr/group standard use
long instead of time_t. This volume of POSIX.1-2024 uses the latter type in order to agree with
the ISO C standard.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), clock_getres(), ctime(), difftime(), futimens(), gmtime(), localtime(), mktime(),
strftime(), strptime(), times()

XBD <time.h>

2266 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73892

73893

73894

73895

73896

73897

73898

73899

73900

73901

73902

73903

73904

73905

73906

73907

73908

73909

73910

73911

73912

73913

73914

73915

73916

73917

73918

73919

73920

73921

73922

73923

73924

73925

73926

73927

73928

73929

73930

73931

73932

73933

73934

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces time()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The EXAMPLES, RATIONALE, and FUTURE DIRECTIONS sections are added.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0663 [106], XSH/TC1-2008/0664 [350],
XSH/TC1-2008/0665 [106], XSH/TC1-2008/0666 [350], and XSH/TC1-2008/0667 [350] are
applied.

Issue 8
Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1462 is applied, changing the RATIONALE and FUTURE DIRECTIONS
sections.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2267

73935

73936

73937

73938

73939

73940

73941

73942

73943

73944

73945

73946

73947

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

timer_create() System Interfaces

NAME
timer_create — create a per-process timer

SYNOPSIS
CX #include <signal.h>

#include <time.h>

int timer_create(clockid_t clockid, struct sigevent *restrict evp,
timer_t *restrict timerid);

DESCRIPTION
The timer_create() function shall create a per-process timer using the specified clock, clock_id, as
the timing base. The timer_create() function shall return, in the location referenced by timerid, a
timer ID of type timer_t used to identify the timer in timer requests. This timer ID shall be
unique within the calling process until the timer is deleted. The particular clock, clock_id, is
defined in <time.h>. The timer whose ID is returned shall be in a disarmed state upon return
from timer_create().

The evp argument, if non-NULL, points to a sigevent structure. This structure, allocated by the
application, defines the asynchronous notification to occur as specified in Section 2.4.1 (on page
513) when the timer expires. If the evp argument is NULL, the effect is as if the evp argument
pointed to a sigevent structure with the sigev_notify member having the value SIGEV_SIGNAL,
the sigev_signo having a default signal number, and the sigev_value member having the value of
the timer ID.

Each implementation shall define a set of clocks that can be used as timing bases for per-process
timers. All implementations shall support CLOCK_REALTIME and CLOCK_MONOTONIC as
values for clock_id.

Per-process timers shall not be inherited by a child process across a fork() and shall be disarmed
and deleted by an exec.

CPT If _POSIX_CPUTIME is defined, implementations shall support clock_id values representing the
CPU-time clock of the calling process.

TCT If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock_id values
representing the CPU-time clock of the calling thread.

CPT|TCT It is implementation-defined whether a timer_create() function will succeed if the value defined
by clock_id corresponds to the CPU-time clock of a process or thread different from the process
or thread invoking the function.

TSA If evp−>sigev_sigev_notify is SIGEV_THREAD and sev−>sigev_notify_attributes is not NULL, if the
attribute pointed to by sev−>sigev_notify_attributes has a thread stack address specified by a call
to pthread_attr_setstack(), the results are unspecified if the signal is generated more than once.

RETURN VALUE
If the call succeeds, timer_create() shall return zero and update the location referenced by timerid
to a timer_t, which can be passed to the per-process timer calls. If an error occurs, the function
shall return a value of −1 and set errno to indicate the error. The value of timerid is undefined if
an error occurs.

ERRORS
The timer_create() function shall fail if:

[EAGAIN] The system lacks sufficient signal queuing resources to honor the request.

2268 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

73948

73949

73950

73951

73952

73953

73954

73955

73956

73957

73958

73959

73960

73961

73962

73963

73964

73965

73966

73967

73968

73969

73970

73971

73972

73973

73974

73975

73976

73977

73978

73979

73980

73981

73982

73983

73984

73985

73986

73987

73988

73989

73990

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces timer_create()

[EAGAIN] The calling process has already created all of the timers it is allowed by this
implementation.

[EINVAL] The specified clock ID is not defined.

CPT|TCT [ENOTSUP] The implementation does not support the creation of a timer attached to the
CPU-time clock that is specified by clock_id and associated with a process or
thread different from the process or thread invoking timer_create().

EXAMPLES
None.

APPLICATION USAGE
If a timer is created which has evp−>sigev_sigev_notify set to SIGEV_THREAD and the attribute
pointed to by evp−>sigev_notify_attributes has a thread stack address specified by a call to
pthread_attr_setstack(), the memory dedicated as a thread stack cannot be recovered. The reason
for this is that the threads created in response to a timer expiration are created detached, or in an
unspecified way if the thread attribute’s detachstate is PTHREAD_CREATE_JOINABLE. In
neither case is it valid to call pthread_join(), which makes it impossible to determine the lifetime
of the created thread which thus means the stack memory cannot be reused.

RATIONALE

Periodic Timer Overrun and Resource Allocation

The specified timer facilities may deliver realtime signals (that is, queued signals) on
implementations that support this option. Since realtime applications cannot afford to lose
notifications of asynchronous events, like timer expirations or asynchronous I/O completions, it
must be possible to ensure that sufficient resources exist to deliver the signal when the event
occurs. In general, this is not a difficulty because there is a one-to-one correspondence between a
request and a subsequent signal generation. If the request cannot allocate the signal delivery
resources, it can fail the call with an [EAGAIN] error.

Periodic timers are a special case. A single request can generate an unspecified number of
signals. This is not a problem if the requesting process can service the signals as fast as they are
generated, thus making the signal delivery resources available for delivery of subsequent
periodic timer expiration signals. But, in general, this cannot be assured—processing of periodic
timer signals may ``overrun’’; that is, subsequent periodic timer expirations may occur before the
currently pending signal has been delivered.

Also, for signals, according to the POSIX.1-1990 standard, if subsequent occurrences of a
pending signal are generated, it is implementation-defined whether a signal is delivered for each
occurrence. This is not adequate for some realtime applications. So a mechanism is required to
allow applications to detect how many timer expirations were delayed without requiring an
indefinite amount of system resources to store the delayed expirations.

The specified facilities provide for an overrun count. The overrun count is defined as the
number of extra timer expirations that occurred between the time a timer expiration signal is
generated and the time the signal is delivered. The signal-catching function, if it is concerned
with overruns, can retrieve this count on entry. With this method, a periodic timer only needs
one ``signal queuing resource’’ that can be allocated at the time of the timer_create() function call.

A function is defined to retrieve the overrun count so that an application need not allocate static
storage to contain the count, and an implementation need not update this storage
asynchronously on timer expirations. But, for some high-frequency periodic applications, the
overhead of an additional system call on each timer expiration may be prohibitive. The
functions, as defined, permit an implementation to maintain the overrun count in user space,

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2269

73991

73992

73993

73994

73995

73996

73997

73998

73999

74000

74001

74002

74003

74004

74005

74006

74007

74008

74009

74010

74011

74012

74013

74014

74015

74016

74017

74018

74019

74020

74021

74022

74023

74024

74025

74026

74027

74028

74029

74030

74031

74032

74033

74034

74035

74036

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

timer_create() System Interfaces

associated with the timerid. The timer_getoverrun() function can then be implemented as a macro
that uses the timerid argument (which may just be a pointer to a user space structure containing
the counter) to locate the overrun count with no system call overhead. Other implementations,
less concerned with this class of applications, can avoid the asynchronous update of user space
by maintaining the count in a system structure at the cost of the extra system call to obtain it.

Timer Expiration Signal Parameters

The realtime signals functionality supports an application-specific datum that is delivered to the
extended signal handler. This value is explicitly specified by the application, along with the
signal number to be delivered, in a sigevent structure. The type of the application-defined value
can be either an integer constant or a pointer. This explicit specification of the value, as opposed
to always sending the timer ID, was selected based on existing practice.

It is common practice for realtime applications (on non-POSIX systems or realtime extended
POSIX systems) to use the parameters of event handlers as the case label of a switch statement or
as a pointer to an application-defined data structure. Since timer_ids are dynamically allocated
by the timer_create() function, they can be used for neither of these functions without additional
application overhead in the signal handler; for example, to search an array of saved timer IDs to
associate the ID with a constant or application data structure.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_delete(), timer_getoverrun()

XBD <signal.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_create() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

CPU-time clocks are added for alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding the
requirement for the CLOCK_MONOTONIC clock under the Monotonic Clock option.

The restrict keyword is added to the timer_create() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/138 is applied, updating the
DESCRIPTION and APPLICATION USAGE sections to describe the case when a timer is created
with the notification method set to SIGEV_THREAD.

Issue 7
The timer_create() function is moved from the Timers option to the Base.

Issue 8
Austin Group Defect 1116 is applied, removing a reference to the Realtime Signals Extension
option that existed in earlier versions of this standard.

Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

2270 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74037

74038

74039

74040

74041

74042

74043

74044

74045

74046

74047

74048

74049

74050

74051

74052

74053

74054

74055

74056

74057

74058

74059

74060

74061

74062

74063

74064

74065

74066

74067

74068

74069

74070

74071

74072

74073

74074

74075

74076

74077

74078

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces timer_delete()

NAME
timer_delete — delete a per-process timer

SYNOPSIS
CX #include <time.h>

int timer_delete(timer_t timerid);

DESCRIPTION
The timer_delete() function deletes the specified timer, timerid, previously created by the
timer_create() function. If the timer is armed when timer_delete() is called, the behavior shall be
as if the timer is automatically disarmed before removal. The disposition of pending signals for
the deleted timer is unspecified.

The behavior is undefined if the value specified by the timerid argument to timer_delete() does
not correspond to a timer ID returned by timer_create() but not yet deleted by timer_delete().

RETURN VALUE
If successful, the timer_delete() function shall return a value of zero. Otherwise, the function shall
return a value of −1 and set errno to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the timerid argument to timer_delete()
does not correspond to a timer ID returned by timer_create() but not yet deleted by
timer_delete(), it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
timer_create()

XBD <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_delete() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/139 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The timer_delete() function is moved from the Timers option to the Base.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0369 [659] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2271

74079

74080

74081

74082

74083

74084

74085

74086

74087

74088

74089

74090

74091

74092

74093

74094

74095

74096

74097

74098

74099

74100

74101

74102

74103

74104

74105

74106

74107

74108

74109

74110

74111

74112

74113

74114

74115

74116

74117

74118

74119

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

timer_getoverrun() System Interfaces

NAME
timer_getoverrun, timer_gettime, timer_settime — per-process timers

SYNOPSIS
CX #include <time.h>

int timer_getoverrun(timer_t timerid);
int timer_gettime(timer_t timerid, struct itimerspec *value);
int timer_settime(timer_t timerid, int flags,

const struct itimerspec *restrict value,
struct itimerspec *restrict ovalue);

DESCRIPTION
The timer_gettime() function shall store the amount of time until the specified timer, timerid,
expires and the reload value of the timer into the space pointed to by the value argument. The
it_value member of this structure shall contain the amount of time before the timer expires, or
zero if the timer is disarmed. This value is returned as the interval until timer expiration, even if
the timer was armed with absolute time. The it_interval member of value shall contain the reload
value last set by timer_settime().

The timer_settime() function shall set the time until the next expiration of the timer specified by
timerid from the it_value member of the value argument and arm the timer if the it_value member
of value is non-zero. If the specified timer was already armed when timer_settime() is called, this
call shall reset the time until next expiration to the value specified. If the it_value member of value
is zero, the timer shall be disarmed. The effect of disarming or resetting a timer with pending
expiration notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() shall behave as if the
time until next expiration is set to be equal to the interval specified by the it_value member of
value. That is, the timer shall expire in it_value nanoseconds from when the call is made. If the
flag TIMER_ABSTIME is set in the argument flags, timer_settime() shall behave as if the time
until next expiration is set to be equal to the difference between the absolute time specified by
the it_value member of value and the current value of the clock associated with timerid. That is,
the timer shall expire when the clock reaches the value specified by the it_value member of value.
If the specified time has already passed, the function shall succeed and the expiration
notification shall be made.

The reload value of the timer shall be set to the value specified by the it_interval member of
value. When a timer is armed with a non-zero it_interval, a periodic (or repetitive) timer is
specified.

Time values that are between two consecutive non-negative integer multiples of the resolution of
the specified timer shall be rounded up to the larger multiple of the resolution. Quantization
error shall not cause the timer to expire earlier than the rounded time value.

If the argument ovalue is not NULL, the timer_settime() function shall store, in the location
referenced by ovalue, a value representing the previous amount of time before the timer would
have expired, or zero if the timer was disarmed, together with the previous timer reload value.
Timers shall not expire before their scheduled time.

Only a single signal shall be queued to the process for a given timer at any point in time. When a
timer for which a signal is still pending expires, no signal shall be queued, and a timer overrun
shall occur. When a timer expiration signal is delivered to or accepted by a process, the
timer_getoverrun() function shall return the timer expiration overrun count for the specified
timer. The overrun count returned contains the number of extra timer expirations that occurred
between the time the signal was generated (queued) and when it was delivered or accepted, up

2272 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74120

74121

74122

74123

74124

74125

74126

74127

74128

74129

74130

74131

74132

74133

74134

74135

74136

74137

74138

74139

74140

74141

74142

74143

74144

74145

74146

74147

74148

74149

74150

74151

74152

74153

74154

74155

74156

74157

74158

74159

74160

74161

74162

74163

74164

74165

74166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces timer_getoverrun()

to but not including an implementation-defined maximum of {DELAYTIMER_MAX}. If the
number of such extra expirations is greater than or equal to {DELAYTIMER_MAX}, then the
overrun count shall be set to {DELAYTIMER_MAX}. The value returned by timer_getoverrun()
shall apply to the most recent expiration signal delivery or acceptance for the timer. If no
expiration signal has been delivered for the timer, the return value of timer_getoverrun() is
unspecified.

The behavior is undefined if the value specified by the timerid argument to timer_getoverrun(),
timer_gettime(), or timer_settime() does not correspond to a timer ID returned by timer_create()
but not yet deleted by timer_delete().

RETURN VALUE
If the timer_getoverrun() function succeeds, it shall return the timer expiration overrun count as
explained above.

If the timer_gettime() or timer_settime() functions succeed, a value of 0 shall be returned.

If an error occurs for any of these functions, the value −1 shall be returned, and errno set to
indicate the error.

ERRORS
The timer_settime() function shall fail if:

[EINVAL] A value structure specified a nanosecond value less than zero or greater than
or equal to 1 000 million, and the it_value member of that structure did not
specify zero seconds and nanoseconds.

The timer_settime() function may fail if:

[EINVAL] The it_interval member of value is not zero and the timer was created with
notification by creation of a new thread (sigev_sigev_notify was
SIGEV_THREAD) and a fixed stack address has been set in the thread
attribute pointed to by sigev_notify_attributes.

EXAMPLES
None.

APPLICATION USAGE
Using fixed stack addresses is problematic when timer expiration is signaled by the creation of a
new thread. Since it cannot be assumed that the thread created for one expiration is finished
before the next expiration of the timer, it could happen that two threads use the same memory as
a stack at the same time. This is invalid and produces undefined results.

RATIONALE
Practical clocks tick at a finite rate, with rates of 100 hertz and 1 000 hertz being common. The
inverse of this tick rate is the clock resolution, also called the clock granularity, which in either
case is expressed as a time duration, being 10 milliseconds and 1 millisecond respectively for
these common rates. The granularity of practical clocks implies that if one reads a given clock
twice in rapid succession, one may get the same time value twice; and that timers must wait for
the next clock tick after the theoretical expiration time, to ensure that a timer never returns too
soon. Note also that the granularity of the clock may be significantly coarser than the resolution
of the data format used to set and get time and interval values. Also note that some
implementations may choose to adjust time and/or interval values to exactly match the ticks of
the underlying clock.

This volume of POSIX.1-2024 defines functions that allow an application to determine the
implementation-supported resolution for the clocks and requires an implementation to
document the resolution supported for timers and nanosleep() if they differ from the supported

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2273

74167

74168

74169

74170

74171

74172

74173

74174

74175

74176

74177

74178

74179

74180

74181

74182

74183

74184

74185

74186

74187

74188

74189

74190

74191

74192

74193

74194

74195

74196

74197

74198

74199

74200

74201

74202

74203

74204

74205

74206

74207

74208

74209

74210

74211

74212

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

timer_getoverrun() System Interfaces

clock resolution. This is more of a procurement issue than a runtime application issue.

If an implementation detects that the value specified by the timerid argument to
timer_getoverrun(), timer_gettime(), or timer_settime() does not correspond to a timer ID returned
by timer_create() but not yet deleted by timer_delete(), it is recommended that the function
should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_create()

XBD <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_getoverrun(), timer_gettime(), and timer_settime() functions are marked as part of the
Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

The [EINVAL] error condition is updated to include the following: ``and the it_value member of
that structure did not specify zero seconds and nanoseconds.’’ This change is for IEEE PASC
Interpretation 1003.1 #89.

The DESCRIPTION for timer_getoverrun() is updated to clarify that ``If no expiration signal has
been delivered for the timer, or if the Realtime Signals Extension is not supported, the return
value of timer_getoverrun() is unspecified’’.

The restrict keyword is added to the timer_settime() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/140 is applied, updating the ERRORS
section so that the mandatory [EINVAL] error (``The timerid argument does not correspond to an
ID returned by timer_create() but not yet deleted by timer_delete()’’) becomes optional.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/141 is applied, updating the ERRORS
section to include an optional [EINVAL] error for the case when a timer is created with the
notification method set to SIGEV_THREAD. APPLICATION USAGE text is also added.

Issue 7
The timer_getoverrun(), timer_gettime(), and timer_settime() functions are moved from the Timers
option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the Base.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0370 [659] is applied.

2274 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74213

74214

74215

74216

74217

74218

74219

74220

74221

74222

74223

74224

74225

74226

74227

74228

74229

74230

74231

74232

74233

74234

74235

74236

74237

74238

74239

74240

74241

74242

74243

74244

74245

74246

74247

74248

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces times()

NAME
times — get process and waited-for child process times

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
The times() function shall fill the tms structure pointed to by buffer with time-accounting
information. The tms structure is defined in <sys/times.h>.

All times are measured in terms of the number of clock ticks used.

The times of a terminated child process shall be included in the tms_cutime and tms_cstime
elements of the parent when wait(), waitid(), or waitpid() returns the process ID of this
terminated child. If a child process has not waited for its children, their times shall not be
included in its times.

• The tms_utime structure member is the CPU time charged for the execution of user
instructions of the calling process.

• The tms_stime structure member is the CPU time charged for execution by the system on
behalf of the calling process.

• The tms_cutime structure member is the sum of the tms_utime and tms_cutime times of the
child processes.

• The tms_cstime structure member is the sum of the tms_stime and tms_cstime times of the
child processes.

RETURN VALUE
Upon successful completion, times() shall return the elapsed real time, in clock ticks, since an
arbitrary point in the past (for example, system start-up time). This point does not change from
one invocation of times() within the process to another. The return value may overflow the
possible range of type clock_t. If times() fails, (clock_t)−1 shall be returned and errno set to
indicate the error.

ERRORS
The times() function shall fail if:

[EOVERFLOW] The return value would overflow the range of clock_t.

EXAMPLES

Timing a Database Lookup

The following example defines two functions, start_clock() and end_clock(), that are used to time
a lookup. It also defines variables of type clock_t and tms to measure the duration of
transactions. The start_clock() function saves the beginning times given by the times() function.
The end_clock() function gets the ending times and prints the difference between the two times.

#include <sys/times.h>
#include <stdio.h>
...
void start_clock(void);
void end_clock(char *msg);
...
static clock_t st_time;
static clock_t en_time;

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2275

74249

74250

74251

74252

74253

74254

74255

74256

74257

74258

74259

74260

74261

74262

74263

74264

74265

74266

74267

74268

74269

74270

74271

74272

74273

74274

74275

74276

74277

74278

74279

74280

74281

74282

74283

74284

74285

74286

74287

74288

74289

74290

74291

74292

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

times() System Interfaces

static struct tms st_cpu;
static struct tms en_cpu;
...
void
start_clock()
{

st_time = times(&st_cpu);
}

/* This example assumes that the result of each subtraction
is within the range of values that can be represented in
an integer type. */

void
end_clock(char *msg)
{

en_time = times(&en_cpu);

fputs(msg,stdout);
printf("Real Time: %jd, User Time %jd, System Time %jd\n",

(intmax_t)(en_time - st_time),
(intmax_t)(en_cpu.tms_utime - st_cpu.tms_utime),
(intmax_t)(en_cpu.tms_stime - st_cpu.tms_stime));

}

APPLICATION USAGE
Applications should use sysconf(_SC_CLK_TCK) to determine the number of clock ticks per
second as it may vary from system to system.

RATIONALE
The accuracy of the times reported is intentionally left unspecified to allow implementations
flexibility in design, from uniprocessor to multi-processor networks.

The inclusion of times of child processes is recursive, so that a parent process may collect the
total times of all of its descendants. But the times of a child are only added to those of its parent
when its parent successfully waits on the child. Thus, it is not guaranteed that a parent process
can always see the total times of all its descendants; see also the discussion of the term
``realtime’’ in alarm().

If the type clock_t is defined to be a signed 32-bit integer, it overflows in somewhat more than a
year if there are 60 clock ticks per second, or less than a year if there are 100. There are individual
systems that run continuously for longer than that. This volume of POSIX.1-2024 permits an
implementation to make the reference point for the returned value be the start-up time of the
process, rather than system start-up time.

The term ``charge’’ in this context has nothing to do with billing for services. The operating
system accounts for time used in this way. That information must be correct, regardless of how
that information is used.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fork(), sysconf(), time(), wait(), waitid()

XBD <sys/times.h>

2276 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74293

74294

74295

74296

74297

74298

74299

74300

74301

74302

74303

74304

74305

74306

74307

74308

74309

74310

74311

74312

74313

74314

74315

74316

74317

74318

74319

74320

74321

74322

74323

74324

74325

74326

74327

74328

74329

74330

74331

74332

74333

74334

74335

74336

74337

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces times()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0371 [644] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2277

74338

74339

74340

74341

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

timespec_get() System Interfaces

NAME
timespec_get — get time

SYNOPSIS
#include <time.h>

int timespec_get(struct timespec *ts, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The timespec_get() function shall set the interval pointed to by ts to hold the current calendar
time based on the specified time base.

CX If base is TIME_UTC, the members of ts shall be set to the same values as would be set by a call
to clock_gettime(CLOCK_REALTIME, ts). If the number of seconds will not fit in an object of
type time_t, the function shall return zero.

RETURN VALUE
If the timespec_get() function is successful it shall return the non-zero value base; otherwise, it
shall return zero.

ERRORS
See DESCRIPTION.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), time()

XBD <time.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

2278 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74342

74343

74344

74345

74346

74347

74348

74349

74350

74351

74352

74353

74354

74355

74356

74357

74358

74359

74360

74361

74362

74363

74364

74365

74366

74367

74368

74369

74370

74371

74372

74373

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces timezone()

NAME
timezone — difference from UTC and local standard time

SYNOPSIS
XSI #include <time.h>

extern long timezone;

DESCRIPTION
Refer to tzset().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2279

74374

74375

74376

74377

74378

74379

74380

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tmpfile() System Interfaces

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The tmpfile() function shall create a temporary file and open a corresponding stream. The file
shall be automatically deleted when all references to the file are closed. The file shall be opened
as in fopen() for update (wb+), except that implementations may restrict the permissions, either
by clearing the file mode bits or setting them to the value S_IRUSR | S_IWUSR.

CX In some implementations, a permanent file may be left behind if the process calling tmpfile() is
killed while it is processing a call to tmpfile().

An error message may be written to standard error if the stream cannot be opened.

RETURN VALUE
Upon successful completion, tmpfile() shall return a pointer to the stream of the file that is

CX created. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The tmpfile() function shall fail if:

CX [EINTR] A signal was caught during tmpfile().

CX [EMFILE] All file descriptors available to the process are currently open.

CX [EMFILE] {STREAM_MAX} streams are currently open in the calling process.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOSPC] The directory or file system which would contain the new file cannot be
expanded.

The tmpfile() function may fail if:

CX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

CX [ENOMEM] Insufficient storage space is available.

EXAMPLES

Creating a Temporary File

The following example creates a temporary file for update, and returns a pointer to a stream for
the created file in the fp variable.

#include <stdio.h>
...
FILE *fp;

fp = tmpfile ();

2280 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74381

74382

74383

74384

74385

74386

74387

74388

74389

74390

74391

74392

74393

74394

74395

74396

74397

74398

74399

74400

74401

74402

74403

74404

74405

74406

74407

74408

74409

74410

74411

74412

74413

74414

74415

74416

74417

74418

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tmpfile()

APPLICATION USAGE
It should be possible to open at least {TMP_MAX} temporary files during the lifetime of the
program (this limit may be shared with tmpnam()) and there should be no limit on the number
simultaneously open other than this limit and any limit on the number of open file descriptors
or streams ({OPEN_MAX}, {FOPEN_MAX}, {STREAM_MAX}).

In multi-threaded applications, the tmpfile() function can leak file descriptors into child
processes. Applications should instead use mkostemp() with the O_CLOEXEC or O_CLOFORK
flag, or both, followed by fdopen(), to avoid the leak.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fopen(), mkdtemp(), tmpnam(), unlink()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [EMFILE] optional error condition is added.

The APPLICATION USAGE section is added for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying that implementations may
restrict the permissions of the file created.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, adding the mandatory [EMFILE] error condition for
{STREAM_MAX} streams open.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0668 [14] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0372 [678] is applied.

Issue 8
Austin Group Defects 411 and 1318 are applied, changing the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2281

74419

74420

74421

74422

74423

74424

74425

74426

74427

74428

74429

74430

74431

74432

74433

74434

74435

74436

74437

74438

74439

74440

74441

74442

74443

74444

74445

74446

74447

74448

74449

74450

74451

74452

74453

74454

74455

74456

74457

74458

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tmpfile() System Interfaces

Austin Group Defect 1296 is applied, removing [EOVERFLOW] from the ERRORS section.

2282 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74459

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tmpnam()

NAME
tmpnam — create a name for a temporary file

SYNOPSIS
OB #include <stdio.h>

char *tmpnam(char *s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The tmpnam() function shall generate a string that is a valid pathname that does not name an
existing file. The function is potentially capable of generating {TMP_MAX} different strings, but
any or all of them may already be in use by existing files and thus not be suitable return values.

The tmpnam() function generates a different string each time it is called from the same process,
up to {TMP_MAX} times. If it is called more than {TMP_MAX} times, the behavior is
implementation-defined.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
tmpnam().

If called with a null pointer argument, the tmpnam() function need not be thread-safe; however,
such calls shall avoid data races with calls to tmpnam() with a non-null argument and with calls
to all other functions.

RETURN VALUE
Upon successful completion, tmpnam() shall return a pointer to a string. If no suitable string can
be generated, the tmpnam() function shall return a null pointer.

If the argument s is a null pointer, tmpnam() shall leave its result in an internal static object and
return a pointer to that object. Subsequent calls to tmpnam() may modify the same object. If the
argument s is not a null pointer, it is presumed to point to an array of at least L_tmpnam chars;
tmpnam() shall write its result in that array and shall return the argument as its value.

ERRORS
No errors are defined.

EXAMPLES

Generating a Pathname

The following example generates a unique pathname and stores it in the array pointed to by ptr.

#include <stdio.h>
...
char pathname[L_tmpnam+1];
char *ptr;

ptr = tmpnam(pathname);

APPLICATION USAGE
This function only creates pathnames. It is the application’s responsibility to create and remove
the files.

Between the time a pathname is created and the file is opened, it is possible for some other
process to create a file with the same name. Applications may find tmpfile() more useful.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2283

74460

74461

74462

74463

74464

74465

74466

74467

74468

74469

74470

74471

74472

74473

74474

74475

74476

74477

74478

74479

74480

74481

74482

74483

74484

74485

74486

74487

74488

74489

74490

74491

74492

74493

74494

74495

74496

74497

74498

74499

74500

74501

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tmpnam() System Interfaces

Applications should use the tmpfile(), mkostemp(), mkstemp(), or mkdtemp() functions instead of
the obsolescent tmpnam() function.

RATIONALE
None.

FUTURE DIRECTIONS
The tmpnam() function may be removed in a future version, but not until after it has been
removed from the ISO C standard.

SEE ALSO
fopen(), open(), mkdtemp(), tmpfile(), unlink()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The DESCRIPTION is expanded for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/142 is applied, updating the
DESCRIPTION to allow implementations of the tempnam() function to call tmpnam().

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the tmpnam() function
need not be thread-safe if called with a NULL parameter.

The tmpnam() function is marked obsolescent.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0669 [291] and XSH/TC1-2008/0670
[291,429] are applied.

Issue 8
Austin Group Defect 411 is applied, adding mkostemp().

Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

Austin Group Defect 1330 is applied, changing the FUTURE DIRECTIONS section and
removing obsolescent interfaces.

2284 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74502

74503

74504

74505

74506

74507

74508

74509

74510

74511

74512

74513

74514

74515

74516

74517

74518

74519

74520

74521

74522

74523

74524

74525

74526

74527

74528

74529

74530

74531

74532

74533

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tolower()

NAME
tolower, tolower_l — transliterate uppercase characters to lowercase

SYNOPSIS
#include <ctype.h>

int tolower(int c);
CX int tolower_l(int c, locale_t locale);

DESCRIPTION
CX For tolower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The tolower() and tolower_l() functions have as a domain a type int, the value of which is
representable as an unsigned char or the value of EOF. If the argument has any other value, the

CX behavior is undefined. If the argument of tolower() or tolower_l() represents an uppercase letter,
and there exists a corresponding lowercase letter as defined by character type information in the

CX current locale or in the locale represented by locale, respectively (category LC_CTYPE), the
result shall be the corresponding lowercase letter. All other arguments in the domain are
returned unchanged.

CX The behavior is undefined if the locale argument to tolower_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX Upon successful completion, the tolower() and tolower_l() functions shall return the lowercase

letter corresponding to the argument passed; otherwise, they shall return the argument
unchanged.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2285

74534

74535

74536

74537

74538

74539

74540

74541

74542

74543

74544

74545

74546

74547

74548

74549

74550

74551

74552

74553

74554

74555

74556

74557

74558

74559

74560

74561

74562

74563

74564

74565

74566

74567

74568

74569

74570

74571

74572

74573

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tolower() System Interfaces

Issue 7
The tolower_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0671 [283] and XSH/TC1-2008/0672
[283] are applied.

2286 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74574

74575

74576

74577

74578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces toupper()

NAME
toupper, toupper_l — transliterate lowercase characters to uppercase

SYNOPSIS
#include <ctype.h>

int toupper(int c);
CX int toupper_l(int c, locale_t locale);

DESCRIPTION
CX For toupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The toupper() and toupper_l() functions have as a domain a type int, the value of which is
representable as an unsigned char or the value of EOF. If the argument has any other value, the
behavior is undefined.

CX If the argument of toupper() or toupper_l() represents a lowercase letter, and there exists a
CX corresponding uppercase letter as defined by character type information in the current locale or

in the locale represented by locale, respectively (category LC_CTYPE), the result shall be the
corresponding uppercase letter.

All other arguments in the domain are returned unchanged.

CX The behavior is undefined if the locale argument to toupper_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX Upon successful completion, toupper() and toupper_l() shall return the uppercase letter

corresponding to the argument passed; otherwise, they shall return the argument unchanged.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 127), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2287

74579

74580

74581

74582

74583

74584

74585

74586

74587

74588

74589

74590

74591

74592

74593

74594

74595

74596

74597

74598

74599

74600

74601

74602

74603

74604

74605

74606

74607

74608

74609

74610

74611

74612

74613

74614

74615

74616

74617

74618

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

toupper() System Interfaces

Issue 7
SD5-XSH-ERN-181 is applied, clarifying the RETURN VALUE section.

The toupper_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0673 [283] and XSH/TC1-2008/0674
[283] are applied.

2288 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74619

74620

74621

74622

74623

74624

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces towctrans()

NAME
towctrans, towctrans_l — wide-character transliteration

SYNOPSIS
#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);
CX wint_t towctrans_l(wint_t wc, wctrans_t desc,

locale_t locale);

DESCRIPTION
CX For towctrans(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The towctrans() and towctrans_l() functions shall transliterate the wide-character code wc using
the mapping described by desc.

CX The current setting of the LC_CTYPE category in the current locale or in the locale represented
CX by locale, respectively, should be the same as during the call to wctrans() or wctrans_l() that

returned the value desc.

If the value of desc is invalid (that is, not obtained by a call to wctrans() or desc is invalidated by a
subsequent call to setlocale() that has affected category LC_CTYPE), the result is unspecified.

CX If the value of desc is invalid (that is, not obtained by a call to wctrans_l() with the same locale
object locale) the result is unspecified.

CX An application wishing to check for error situations should set errno to 0 before calling
towctrans() or towctrans_l().

If errno is non-zero on return, an error has occurred.

The behavior is undefined if the locale argument to towctrans_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX If successful, the towctrans() and towctrans_l() functions shall return the mapped value of wc
CX using the mapping described by desc, or the value of wc unchanged if desc is zero. Otherwise,

they shall return wc unchanged.

ERRORS
These functions may fail if:

CX [EINVAL] desc contains an invalid transliteration descriptor.

EXAMPLES
None.

APPLICATION USAGE
The strings "tolower" and "toupper" are reserved for the standard mapping names. In the
table below, the functions in the left column are equivalent to the functions in the right column.

towlower(wc) towctrans(wc, wctrans("tolower"))
towlower_l(wc, locale) towctrans_l(wc, wctrans("tolower"), locale)
towupper(wc) towctrans(wc, wctrans("toupper"))
towupper_l(wc, locale) towctrans_l(wc, wctrans("toupper"), locale)

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2289

74625

74626

74627

74628

74629

74630

74631

74632

74633

74634

74635

74636

74637

74638

74639

74640

74641

74642

74643

74644

74645

74646

74647

74648

74649

74650

74651

74652

74653

74654

74655

74656

74657

74658

74659

74660

74661

74662

74663

74664

74665

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

towctrans() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
towlower(), towupper(), wctrans()

XBD <wctype.h>

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
The towctrans_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0675 [302], XSH/TC1-2008/0676 [283],
and XSH/TC1-2008/0677 [283] are applied.

Issue 8
Austin Group Defect 1302 is applied, aligning the towctrans() function with the
ISO/IEC 9899: 2018 standard.

2290 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74666

74667

74668

74669

74670

74671

74672

74673

74674

74675

74676

74677

74678

74679

74680

74681

74682

74683

74684

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces towlower()

NAME
towlower, towlower_l — transliterate uppercase wide-character code to lowercase

SYNOPSIS
#include <wctype.h>

wint_t towlower(wint_t wc);
CX wint_t towlower_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For towlower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The towlower() and towlower_l() functions have as a domain a type wint_t, the value of which
the application shall ensure is a character representable as a wchar_t, and a wide-character code
corresponding to a valid character in the locale used by the function or the value of WEOF. If

CX the argument has any other value, the behavior is undefined. If the argument of towlower() or
towlower_l() represents an uppercase wide-character code, and there exists a corresponding

CX lowercase wide-character code as defined by character type information in the current locale or
in the locale represented by locale, respectively (category LC_CTYPE), the result shall be the
corresponding lowercase wide-character code. All other arguments in the domain are returned
unchanged.

CX The behavior is undefined if the locale argument to towlower_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX Upon successful completion, the towlower() and towlower_l() functions shall return the

lowercase letter corresponding to the argument passed; otherwise, they shall return the
argument unchanged.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2291

74685

74686

74687

74688

74689

74690

74691

74692

74693

74694

74695

74696

74697

74698

74699

74700

74701

74702

74703

74704

74705

74706

74707

74708

74709

74710

74711

74712

74713

74714

74715

74716

74717

74718

74719

74720

74721

74722

74723

74724

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

towlower() System Interfaces

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The towlower_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0678 [302], XSH/TC1-2008/0679 [283],
and XSH/TC1-2008/0680 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0373 [685] is applied.

2292 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74725

74726

74727

74728

74729

74730

74731

74732

74733

74734

74735

74736

74737

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces towupper()

NAME
towupper, towupper_l — transliterate lowercase wide-character code to uppercase

SYNOPSIS
#include <wctype.h>

wint_t towupper(wint_t wc);
CX wint_t towupper_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For towupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The towupper() and towupper_l() functions have as a domain a type wint_t, the value of which
the application shall ensure is a character representable as a wchar_t, and a wide-character code
corresponding to a valid character in the locale used by the function or the value of WEOF. If

CX the argument has any other value, the behavior is undefined. If the argument of towupper() or
towupper_l() represents a lowercase wide-character code, and there exists a corresponding

CX uppercase wide-character code as defined by character type information in the current locale or
in the locale represented by locale, respectively (category LC_CTYPE), the result shall be the
corresponding uppercase wide-character code. All other arguments in the domain are returned
unchanged.

CX The behavior is undefined if the locale argument to towupper_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX Upon successful completion, the towupper() and towupper_l() functions shall return the

uppercase letter corresponding to the argument passed. Otherwise, they shall return the
argument unchanged.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 127), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2293

74738

74739

74740

74741

74742

74743

74744

74745

74746

74747

74748

74749

74750

74751

74752

74753

74754

74755

74756

74757

74758

74759

74760

74761

74762

74763

74764

74765

74766

74767

74768

74769

74770

74771

74772

74773

74774

74775

74776

74777

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

towupper() System Interfaces

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
The towupper_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0681 [302], XSH/TC1-2008/0682 [283],
and XSH/TC1-2008/0683 [283] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0374 [685] is applied.

2294 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74778

74779

74780

74781

74782

74783

74784

74785

74786

74787

74788

74789

74790

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces trunc()

NAME
trunc, truncf, truncl — round to truncated integer value

SYNOPSIS
#include <math.h>

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall round their argument to the integer value, in floating format, nearest to but
no larger in magnitude than the argument.

MX These functions may raise the inexact floating-point exception for finite non-integer arguments.

RETURN VALUE
Upon successful completion, these functions shall return the truncated integer value.

MX The returned value shall be exact, shall be independent of the current rounding direction mode,
and shall have the same sign as x.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0684 [346] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2295

74791

74792

74793

74794

74795

74796

74797

74798

74799

74800

74801

74802

74803

74804

74805

74806

74807

74808

74809

74810

74811

74812

74813

74814

74815

74816

74817

74818

74819

74820

74821

74822

74823

74824

74825

74826

74827

74828

74829

74830

74831

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

truncate() System Interfaces

NAME
truncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int truncate(const char *path, off_t length);

DESCRIPTION
The truncate() function shall cause the regular file named by path to have a size which shall be
equal to length bytes.

If the file previously was larger than length, the extra data is discarded. If the file was previously
shorter than length, its size is increased, and the extended area appears as if it were zero-filled.

The application shall ensure that the process has write permission for the file.

If the request would cause the file size to exceed the soft file size limit for the process, the
XSI request shall fail and the implementation shall generate a SIGXFSZ signal for the thread.

The truncate() function shall not modify the file offset for any open file descriptions associated
with the file. Upon successful completion, truncate() shall mark for update the last data
modification and last file status change timestamps of the file, and the S_ISUID and S_ISGID bits
of the file mode may be cleared.

RETURN VALUE
Upon successful completion, truncate() shall return 0. Otherwise, −1 shall be returned, and errno
set to indicate the error.

ERRORS
The truncate() function shall fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the file.

[EFBIG] or [EINVAL]
The length argument is greater than the maximum file size.

XSI [EFBIG] The length argument exceeds the file size limit of the process. A SIGFSZ
signal shall also be generated for the thread.

[EINTR] A signal was caught during execution.

[EINVAL] The length argument is less than 0 or the path argument refers to a file, other
than a directory, on which this operation is not possible (for example, a FIFO
or socket).

[EIO] An I/O error occurred while reading from or writing to a file system.

[EISDIR] The named file is a directory.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>

2296 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74832

74833

74834

74835

74836

74837

74838

74839

74840

74841

74842

74843

74844

74845

74846

74847

74848

74849

74850

74851

74852

74853

74854

74855

74856

74857

74858

74859

74860

74861

74862

74863

74864

74865

74866

74867

74868

74869

74870

74871

74872

74873

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces truncate()

characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

[EROFS] The named file resides on a read-only file system.

The truncate() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added.

Issue 6
This reference page is split out from the ftruncate() reference page.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The truncate() function is moved from the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0685 [324] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0375 [489] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2297

74874

74875

74876

74877

74878

74879

74880

74881

74882

74883

74884

74885

74886

74887

74888

74889

74890

74891

74892

74893

74894

74895

74896

74897

74898

74899

74900

74901

74902

74903

74904

74905

74906

74907

74908

74909

74910

74911

74912

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

truncate() System Interfaces

Issue 8
Austin Group Defects 308 and 1087 are applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1381 is applied, adding a second condition to the [EINVAL] error and
rearranging the ERRORS section into alphabetical order.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

2298 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74913

74914

74915

74916

74917

74918

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces truncf()

NAME
truncf, truncl — round to truncated integer value

SYNOPSIS
#include <math.h>

float truncf(float x);
long double truncl(long double x);

DESCRIPTION
Refer to trunc().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2299

74919

74920

74921

74922

74923

74924

74925

74926

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tsearch() System Interfaces

NAME
tsearch — search a binary search tree

SYNOPSIS
XSI #include <search.h>

void *tsearch(const void *key, void **rootp,
int (*compar)(const void *, const void *));

DESCRIPTION
Refer to tdelete().

2300 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74927

74928

74929

74930

74931

74932

74933

74934

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tss_create()

NAME
tss_create — thread-specific data key creation

SYNOPSIS
#include <threads.h>

int tss_create(tss_t *key, tss_dtor_t dtor);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The tss_create() function shall create a thread-specific storage pointer with destructor dtor, which
can be null.

A null pointer value shall be associated with the newly created key in all existing threads. Upon
subsequent thread creation, the value associated with all keys shall be initialized to a null
pointer value in the new thread.

Destructors associated with thread-specific storage shall not be invoked at process termination.

The behavior is undefined if the tss_create() function is called from within a destructor.

CX The tss_create() function shall not be affected if the calling thread executes a signal handler
during the call.

RETURN VALUE
If the tss_create() function is successful, it shall set the thread-specific storage pointed to by key to
a value that uniquely identifies the newly created pointer and shall return thrd_success;
otherwise, thrd_error shall be returned and the thread-specific storage pointed to by key has
an indeterminate value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The tss_create() function performs no implicit synchronization. It is the responsibility of the
application writer to ensure that it is called exactly once per key before use of the key.

RATIONALE
If the value associated with a key needs to be updated during the lifetime of the thread, it may
be necessary to release the storage associated with the old value before the new value is bound.
Although the tss_set() function could do this automatically, this feature is not needed often
enough to justify the added complexity. Instead, the application is responsible for freeing the
stale storage:

old = tss_get(key);
new = allocate();
destructor(old);
tss_set(key, new);

There is no notion of a destructor-safe function. If an application does not call thrd_exit() or
pthread_exit() from a signal handler, or if, while calling async-unsafe functions, it blocks any
signal whose handler might call thrd_exit() or pthread_exit(), all functions can be safely called
from destructors.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2301

74935

74936

74937

74938

74939

74940

74941

74942

74943

74944

74945

74946

74947

74948

74949

74950

74951

74952

74953

74954

74955

74956

74957

74958

74959

74960

74961

74962

74963

74964

74965

74966

74967

74968

74969

74970

74971

74972

74973

74974

74975

74976

74977

74978

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tss_create() System Interfaces

The tss_create() function is not affected by signal handlers for the reasons stated in XRAT Section
B.2.3 (on page 3742).

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit(), pthread_key_create(), thrd_exit(), tss_delete(), tss_get()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

2302 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

74979

74980

74981

74982

74983

74984

74985

74986

74987

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tss_delete()

NAME
tss_delete — thread-specific data key deletion

SYNOPSIS
#include <threads.h>

void tss_delete(tss_t key);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The tss_delete() function shall release any resources used by the thread-specific storage identified
by key. The thread-specific data values associated with key need not be null at the time
tss_delete() is called. It is the responsibility of the application to free any application storage or
perform any cleanup actions for data structures related to the deleted key or associated thread-
specific data in any threads; this cleanup can be done either before or after tss_delete() is called.

The application shall ensure that the tss_delete() function is only called with a value for key that
was returned by a call to tss_create() before the thread commenced executing destructors.

If tss_delete() is called while another thread is executing destructors, whether this will affect the
number of invocations of the destructor associated with key on that thread is unspecified.

The tss_delete() function shall be callable from within destructor functions. Calling tss_delete()
shall not result in the invocation of any destructors. Any destructor function that was associated
with key shall no longer be called upon thread exit.

Any attempt to use key following the call to tss_delete() results in undefined behavior.

CX The tss_delete() function shall not be affected if the calling thread executes a signal handler
during the call.

RETURN VALUE
This function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A thread-specific data key deletion function has been included in order to allow the resources
associated with an unused thread-specific data key to be freed. Unused thread-specific data keys
can arise, among other scenarios, when a dynamically loaded module that allocated a key is
unloaded.

Conforming applications are responsible for performing any cleanup actions needed for data
structures associated with the key to be deleted, including data referenced by thread-specific
data values. No such cleanup is done by tss_delete(). In particular, destructor functions are not
called. See the RATIONALE for pthread_key_delete() for the reasons for this division of
responsibility.

The tss_delete() function is not affected by signal handlers for the reasons stated in XRAT Section
B.2.3 (on page 3742).

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2303

74988

74989

74990

74991

74992

74993

74994

74995

74996

74997

74998

74999

75000

75001

75002

75003

75004

75005

75006

75007

75008

75009

75010

75011

75012

75013

75014

75015

75016

75017

75018

75019

75020

75021

75022

75023

75024

75025

75026

75027

75028

75029

75030

75031

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tss_delete() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_delete(), tss_create()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

2304 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75032

75033

75034

75035

75036

75037

75038

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tss_get()

NAME
tss_get, tss_set — thread-specific data management

SYNOPSIS
#include <threads.h>

void *tss_get(tss_t key);
int tss_set(tss_t key, void *val);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The tss_get() function shall return the value for the current thread held in the thread-specific
storage identified by key.

The tss_set() function shall set the value for the current thread held in the thread-specific storage
identified by key to val. This action shall not invoke the destructor associated with the key on the
value being replaced.

The application shall ensure that the tss_get() and tss_set() functions are only called with a value
for key that was returned by a call to tss_create() before the thread commenced executing
destructors.

The effect of calling tss_get() or tss_set() after key has been deleted with tss_delete() is undefined.

CX Both tss_get() and tss_set() can be called from a thread-specific data destructor function. A call
to tss_get() for the thread-specific data key being destroyed shall return a null pointer, unless the
value is changed (after the destructor starts) by a call to tss_set(). Calling tss_set() from a
thread-specific data destructor function may result either in lost storage (after at least
{PTHREAD_DESTRUCTOR_ITERATIONS} attempts at destruction) or in an infinite loop.

These functions shall not be affected if the calling thread executes a signal handler during the
call.

RETURN VALUE
The tss_get() function shall return the value for the current thread. If no thread-specific data
value is associated with key, then a null pointer shall be returned.

The tss_set() function shall return thrd_success on success or thrd_error if the request
could not be honored.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
These functions are not affected by signal handlers for the reasons stated in XRAT Section B.2.3
(on page 3742).

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2305

75039

75040

75041

75042

75043

75044

75045

75046

75047

75048

75049

75050

75051

75052

75053

75054

75055

75056

75057

75058

75059

75060

75061

75062

75063

75064

75065

75066

75067

75068

75069

75070

75071

75072

75073

75074

75075

75076

75077

75078

75079

75080

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tss_get() System Interfaces

SEE ALSO
pthread_getspecific(), tss_create()

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

2306 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75081

75082

75083

75084

75085

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ttyname()

NAME
ttyname, ttyname_r — find the pathname of a terminal

SYNOPSIS
#include <unistd.h>

char *ttyname(int fildes);
int ttyname_r(int fildes, char *name, size_t namesize);

DESCRIPTION
The ttyname() function shall return a pointer to a string containing a null-terminated pathname
of the terminal associated with file descriptor fildes. The application shall not modify the string
returned. The returned pointer might be invalidated or the string content might be overwritten
by a subsequent call to ttyname(). The returned pointer and the string content might also be
invalidated if the calling thread is terminated.

The ttyname() function need not be thread-safe.

The ttyname_r() function shall store the null-terminated pathname of the terminal associated
with the file descriptor fildes in the character array referenced by name. The array is namesize
characters long and should have space for the name and the terminating null character. The
maximum length of the terminal name shall be {TTY_NAME_MAX}.

RETURN VALUE
Upon successful completion, ttyname() shall return a pointer to a string. Otherwise, a null
pointer shall be returned and errno set to indicate the error.

If successful, the ttyname_r() function shall return zero. Otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with the fildes argument is not a terminal.

The ttyname_r() function shall fail if:

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ``terminal’’ is used instead of the historical term ``terminal device’’ in order to avoid a
reference to an undefined term.

The thread-safe version places the terminal name in a user-supplied buffer and returns a non-
zero value if it fails. The non-thread-safe version may return the name in a static data area that
may be overwritten by each call.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2307

75086

75087

75088

75089

75090

75091

75092

75093

75094

75095

75096

75097

75098

75099

75100

75101

75102

75103

75104

75105

75106

75107

75108

75109

75110

75111

75112

75113

75114

75115

75116

75117

75118

75119

75120

75121

75122

75123

75124

75125

75126

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ttyname() System Interfaces

SEE ALSO
XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The ttyname_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the ttyname() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The ttyname_r() function is marked as part of the Thread-Safe Functions option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The statement that errno is set on error is added.

• The [EBADF] and [ENOTTY] optional error conditions are added.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

The ttyname_r() function is moved from the Thread-Safe Functions option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0686 [75] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0376 [656] is applied.

Issue 8
Austin Group Defect 398 is applied, combining the duplicated [EBADF] and [ENOTTY] errors
and changing the [ERANGE] error from ``may fail’’ to ``shall fail’’.

2308 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75127

75128

75129

75130

75131

75132

75133

75134

75135

75136

75137

75138

75139

75140

75141

75142

75143

75144

75145

75146

75147

75148

75149

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces twalk()

NAME
twalk — traverse a binary search tree

SYNOPSIS
XSI #include <search.h>

void twalk(const void *root,
void (*action)(const void *, VISIT, int));

DESCRIPTION
Refer to tdelete().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2309

75150

75151

75152

75153

75154

75155

75156

75157

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tzset() System Interfaces

NAME
daylight, timezone, tzname, tzset — set timezone conversion information

SYNOPSIS
#include <time.h>

XSI extern int daylight;
extern long timezone;

CX extern char *tzname[2];
void tzset(void);

DESCRIPTION
The tzset() function shall use the value of the environment variable TZ to set time conversion
information used by ctime(), localtime(), mktime(), and strftime(). If TZ is absent from the
environment, implementation-defined default timezone information shall be used.

The tzset() function shall set the external variable tzname as follows:

tzname[0] = "std";
tzname[1] = "dst";

where std and dst are as described in XBD Chapter 8 (on page 167).

XSI The tzset() function also shall set the external variable daylight to 0 if Daylight Saving Time
conversions should never be applied for the timezone in use; otherwise, non-zero. The external
variable timezone shall be set to the difference, in seconds, between Coordinated Universal Time
(UTC) and local standard time.

XSI If a thread accesses tzname, daylight, or timezone directly while another thread is in a call to
tzset(), or to any function that is required or allowed to set timezone information as if by calling
tzset(), the behavior is undefined.

RETURN VALUE
The tzset() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
Example TZ variables and their timezone differences are given in the table below:

TZ timezone
EST5EDT 5*60*60
GMT0 0*60*60
JST-9 −9*60*60
MET-1MEST −1*60*60
MST7MDT 7*60*60
PST8PDT 8*60*60

APPLICATION USAGE
Since the ctime(), localtime(), mktime(), strftime(), and strftime_l() functions are required to set
timezone information as if by calling tzset(), there is no need for an explicit tzset() call before
using these functions. However, portable applications should call tzset() explicitly before using
localtime_r() because setting timezone information is optional for that function.

2310 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75158

75159

75160

75161

75162

75163

75164

75165

75166

75167

75168

75169

75170

75171

75172

75173

75174

75175

75176

75177

75178

75179

75180

75181

75182

75183

75184

75185

75186

75187

75188

75189

75190

75191

75192

75193

75194

75195

75196

75197

75198

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces tzset()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), localtime(), mktime(), strftime()

XBD Chapter 8 (on page 167), <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The example is corrected.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0377 [880] is applied.

Issue 8
Austin Group Defect 1253 is applied, changing ``Daylight Savings’’ to ``Daylight Saving’’.

Austin Group Defect 1410 is applied, removing the ctime_r() function.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2311

75199

75200

75201

75202

75203

75204

75205

75206

75207

75208

75209

75210

75211

75212

75213

75214

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

umask() System Interfaces

NAME
umask — set and get the file mode creation mask

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION
The umask() function shall set the file mode creation mask of the process to cmask and return the
previous value of the mask. Only the file permission bits of cmask (see <sys/stat.h>) shall be

XSI used; the S_ISVTX bit shall be ignored, and the meaning of the other bits is implementation-
defined.

The file mode creation mask of the process is used to turn off permission bits in the mode
argument supplied during calls to the following functions:

• open(), openat(), creat(), mkdir(), mkdirat(), mkfifo(), and mkfifoat()

XSI • mknod(), mknodat()

MSG • mq_open()

• sem_open()

Permission bit positions that are set in cmask are cleared in the mode of the created file.

RETURN VALUE
The file permission bits in the value returned by umask() shall be the previous value of the file

XSI mode creation mask. The S_ISVTX bit in the returned value shall be clear. The state of any
other bits in the returned value is unspecified, except that a subsequent call to umask() with the
returned value as cmask shall leave the state of the mask the same as its state before the first call,
including any unspecified use of those bits.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Unsigned argument and return types for umask() were proposed. The return type and the
argument were both changed to mode_t.

Historical implementations have made use of additional bits in cmask for their implementation-
defined purposes. The addition of the text that the meaning of other bits of the field is
implementation-defined permits these implementations to conform to this volume of
POSIX.1-2024.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), exec , mkdir(), mkfifo(), mknod(), mq_open(), open(), sem_open()

XBD <sys/stat.h>, <sys/types.h>

2312 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75215

75216

75217

75218

75219

75220

75221

75222

75223

75224

75225

75226

75227

75228

75229

75230

75231

75232

75233

75234

75235

75236

75237

75238

75239

75240

75241

75242

75243

75244

75245

75246

75247

75248

75249

75250

75251

75252

75253

75254

75255

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces umask()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/143 is applied, adding the mknod(),
mq_open(), and sem_open() functions to the DESCRIPTION and SEE ALSO sections.

Issue 8
Austin Group Defect 1522 is applied, adding requirements relating to the S_ISVTX bit.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2313

75256

75257

75258

75259

75260

75261

75262

75263

75264

75265

75266

75267

75268

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uname() System Interfaces

NAME
uname — get the name of the current system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name);

DESCRIPTION
The uname() function shall store information identifying the current system in the structure
pointed to by name.

The uname() function uses the utsname structure defined in <sys/utsname.h>.

The uname() function shall return a string naming the current system in the character array
sysname. Similarly, nodename shall contain the name of this node within an implementation-
defined communications network. The arrays release and version shall further identify the
operating system. The array machine shall contain a name that identifies the hardware that the
system is running on.

The format of each member is implementation-defined.

RETURN VALUE
Upon successful completion, a non-negative value shall be returned. Otherwise, −1 shall be
returned and errno set to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The inclusion of the nodename member in this structure does not imply that it is sufficient
information for interfacing to communications networks.

RATIONALE
The values of the structure members are not constrained to have any relation to the version of
this volume of POSIX.1-2024 implemented in the operating system. An application should
instead depend on _POSIX_VERSION and related constants defined in <unistd.h>.

This volume of POSIX.1-2024 does not define the sizes of the members of the structure and
permits them to be of different sizes, although most implementations define them all to be the
same size: eight bytes plus one byte for the string terminator. That size for nodename is not
enough for use with many networks.

The uname() function originated in System III, System V, and related implementations, and it
does not exist in Version 7 or 4.3 BSD. The values it returns are set at system compile time in
those historical implementations.

4.3 BSD has gethostname() and gethostid(), which return a symbolic name and a numeric value,
respectively. There are related sethostname() and sethostid() functions that are used to set the
values the other two functions return. The former functions are included in this specification, the
latter are not.

FUTURE DIRECTIONS
None.

2314 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75269

75270

75271

75272

75273

75274

75275

75276

75277

75278

75279

75280

75281

75282

75283

75284

75285

75286

75287

75288

75289

75290

75291

75292

75293

75294

75295

75296

75297

75298

75299

75300

75301

75302

75303

75304

75305

75306

75307

75308

75309

75310

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces uname()

SEE ALSO
XBD <sys/utsname.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2315

75311

75312

75313

75314

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ungetc() System Interfaces

NAME
ungetc — push byte back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc(int c, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The ungetc() function shall push the byte specified by c (converted to an unsigned char) back
onto the input stream pointed to by stream. The pushed-back bytes shall be returned by
subsequent reads on that stream in the reverse order of their pushing. A successful intervening

CX call (with the stream pointed to by stream) to a file-positioning function (fseek(), fseeko(),
CX fsetpos(), or rewind()) or fflush() shall discard any pushed-back bytes for the stream. The

external storage corresponding to the stream shall be unchanged.

One byte of push-back shall be provided. If ungetc() is called too many times on the same stream
without an intervening read or file-positioning operation on that stream, the operation may fail.

If the value of c equals that of the macro EOF, the operation shall fail and the input stream shall
be left unchanged.

A successful call to ungetc() shall clear the end-of-file indicator for the stream. The file-position
indicator for the stream shall be decremented by each successful call to ungetc(); if its value was
0 before a call, its value is unspecified after the call. The value of the file-position indicator after
all pushed-back bytes have been read shall be the same as it was before the bytes were pushed
back.

RETURN VALUE
Upon successful completion, ungetc() shall return the byte pushed back after conversion.
Otherwise, it shall return EOF.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard includes the text ``The value of the file position indicator for the stream after
reading or discarding all pushed-back characters shall be the same as it was before the characters
were pushed back.’’ POSIX.1 omits ``or discarding’’ from this because it is redundant—in the
ISO C standard the discarding is done by file positioning functions and does not affect the
position set by those functions. In particular, a relative seek using fseek() or fseeko() with
SEEK_CUR adjusts the position relative to the position on entry to the function, not the position
after the pushed-back bytes have been discarded. POSIX.1 also requires fflush() to discard
pushed back bytes in situations where the ISO C standard says the behavior of fflush() is
undefined.

2316 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75315

75316

75317

75318

75319

75320

75321

75322

75323

75324

75325

75326

75327

75328

75329

75330

75331

75332

75333

75334

75335

75336

75337

75338

75339

75340

75341

75342

75343

75344

75345

75346

75347

75348

75349

75350

75351

75352

75353

75354

75355

75356

75357

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ungetc()

FUTURE DIRECTIONS
The ISO C standard states that the use of ungetc() on a binary stream where the file position
indicator is zero prior to the call is an obsolescent feature. In POSIX.1 there is no distinction
between binary and text streams, so this applies to all streams. This feature may be removed in
a future version of this standard.

SEE ALSO
Section 2.5 (on page 521), fseek(), getc(), fsetpos(), read(), rewind(), setbuf()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0687 [87,93], XSH/TC1-2008/0688
[87], and XSH/TC1-2008/0689 [14] are applied.

Issue 8
Austin Group Defect 701 is applied, clarifying how the file-position indicator for the stream is
updated.

Austin Group Defect 1302 is applied, changing the FUTURE DIRECTIONS section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2317

75358

75359

75360

75361

75362

75363

75364

75365

75366

75367

75368

75369

75370

75371

75372

75373

75374

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ungetwc() System Interfaces

NAME
ungetwc — push wide-character code back into the input stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The ungetwc() function shall push the character corresponding to the wide-character code
specified by wc back onto the input stream pointed to by stream. The pushed-back characters
shall be returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to by stream) to a file-positioning function

CXCX (fseek(), fseeko(), fsetpos(), or rewind()) or fflush() shall discard any pushed-back characters for
the stream. The external storage corresponding to the stream is unchanged.

At least one character of push-back shall be provided. If ungetwc() is called too many times on
the same stream without an intervening read or file-positioning operation on that stream, the
operation may fail.

If the value of wc equals that of the macro WEOF, the operation shall fail and the input stream
shall be left unchanged.

A successful call to ungetwc() shall clear the end-of-file indicator for the stream. The value of the
file-position indicator for the stream after a successful call to ungetwc() is unspecified until all
pushed-back wide characters are read or discarded; its value after all pushed-back wide
characters have been read shall be the same as it was before the wide characters were pushed
back.

RETURN VALUE
Upon successful completion, ungetwc() shall return the wide-character code corresponding to
the pushed-back character. Otherwise, it shall return WEOF.

ERRORS
The ungetwc() function may fail if:

CX [EILSEQ] An invalid character sequence is detected, or a wide-character code does not
correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard includes the text ``The value of the file position indicator for the stream after
reading or discarding all pushed-back wide characters shall be the same as it was before the
wide characters were pushed back.’’ POSIX.1 omits ``or discarding’’ from this because it is
redundant—in the ISO C standard the discarding is done by file positioning functions and does
not affect the position set by those functions. In particular, a relative seek using fseek() or fseeko()
with SEEK_CUR adjusts the position relative to the position on entry to the function, not the
position after the pushed-back wide characters have been discarded. POSIX.1 also requires
fflush() to discard pushed back wide characters in situations where the ISO C standard says the

2318 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75375

75376

75377

75378

75379

75380

75381

75382

75383

75384

75385

75386

75387

75388

75389

75390

75391

75392

75393

75394

75395

75396

75397

75398

75399

75400

75401

75402

75403

75404

75405

75406

75407

75408

75409

75410

75411

75412

75413

75414

75415

75416

75417

75418

75419

75420

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces ungetwc()

behavior of fflush() is undefined.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fseek(), fsetpos(), read(), rewind(), setbuf()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
The [EILSEQ] optional error condition is marked CX.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0690 [87,93], XSH/TC1-2008/0691
[87], and XSH/TC1-2008/0692 [14] are applied.

Issue 8
Austin Group Defect 701 is applied, clarifying how the file-position indicator for the stream is
updated.

Austin Group Defect 1374 is applied, correcting a conflict with the ISO C standard regarding the
value of the file-position indicator for the stream after a successful call to ungetwc().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2319

75421

75422

75423

75424

75425

75426

75427

75428

75429

75430

75431

75432

75433

75434

75435

75436

75437

75438

75439

75440

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unlink() System Interfaces

NAME
unlink, unlinkat — remove a directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);

OH #include <fcntl.h>

int unlinkat(int fd, const char *path, int flag);

DESCRIPTION
The unlink() function shall remove the directory entry named by path and shall decrement the
link count of the file referenced by the directory entry. If path names a symbolic link, unlink()
shall remove the symbolic link and shall not affect any file named by the contents of the
symbolic link.

When the file’s link count becomes 0 and no process has a reference to the file via an open file
descriptor or a memory mapping (see mmap()), the space occupied by the file shall be freed and
the file shall no longer be accessible. If one or more processes have such a reference to the file
when the last link is removed, the link shall be removed before unlink() returns, but the removal
of the file contents shall be postponed until there are no such references to the file. When the
space occupied by the file has been freed, the file’s serial number (st_ino), and therefore the file
identity (see XBD <sys/stat.h>), shall become available for reuse.

The path argument shall not name a directory unless the process has appropriate privileges and
the implementation supports using unlink() on directories.

Upon successful completion, unlink() shall mark for update the last data modification and last
file status change timestamps of the parent directory. Also, if the file’s link count is not 0, the last
file status change timestamp of the file shall be marked for update.

The unlinkat() function shall be equivalent to the unlink() or rmdir() function except in the case
where path specifies a relative path. In this case the directory entry to be removed is determined
relative to the directory associated with the file descriptor fd instead of the current working
directory. If the access mode of the open file description associated with the file descriptor is not
O_SEARCH, the function shall check whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the access mode is O_SEARCH, the
function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_REMOVEDIR
Remove the directory entry specified by fd and path as a directory, not a normal file.

If unlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used and the behavior shall be identical to a call to unlink() or rmdir()
respectively, depending on whether or not the AT_REMOVEDIR bit is set in flag.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the named file shall not be changed.

ERRORS
These functions shall fail and shall not unlink the file if:

2320 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75441

75442

75443

75444

75445

75446

75447

75448

75449

75450

75451

75452

75453

75454

75455

75456

75457

75458

75459

75460

75461

75462

75463

75464

75465

75466

75467

75468

75469

75470

75471

75472

75473

75474

75475

75476

75477

75478

75479

75480

75481

75482

75483

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces unlink()

[EACCES] Search permission is denied for a component of the path prefix, or write
permission is denied on the directory containing the directory entry to be
removed.

[EBUSY] The file named by the path argument cannot be unlinked because it is being
used by the system or another process and the implementation considers this
an error.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix names an existing file that is neither a
directory nor a symbolic link to a directory, or the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash>
characters and the last pathname component names an existing file that is
neither a directory nor a symbolic link to a directory.

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by the
path argument and the process does not satisfy the criteria specified in XBD
Section 4.5 (on page 96).

[EROFS] The directory entry to be unlinked is part of a read-only file system.

The unlink() function shall fail and shall not unlink the file if:

[EPERM] The file named by path is a directory, and either the calling process does not
have appropriate privileges or the implementation prohibits using unlink() on
directories.

The unlinkat() function shall fail and shall not unlink the file if:

[EACCES] The access mode of the open file description associated with fd is not
O_SEARCH and the permissions of the directory underlying fd do not permit
directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[ENOTDIR] The path argument is not an absolute path and fd is a file descriptor associated
with a non-directory file.

[EEXIST] or [ENOTEMPTY]
The flag parameter has the AT_REMOVEDIR bit set and the path argument
names a directory that is not an empty directory, or there are hard links to the
directory other than dot or a single entry in dot-dot.

[ENOTDIR] The flag parameter has the AT_REMOVEDIR bit set and path does not name a
directory.

[EPERM] The file named by path is a directory, the flag parameter does not have the
AT_REMOVEDIR bit set, and either the calling process does not have
appropriate privileges or the implementation prohibits using unlink() on
directories.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2321

75484

75485

75486

75487

75488

75489

75490

75491

75492

75493

75494

75495

75496

75497

75498

75499

75500

75501

75502

75503

75504

75505

75506

75507

75508

75509

75510

75511

75512

75513

75514

75515

75516

75517

75518

75519

75520

75521

75522

75523

75524

75525

75526

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unlink() System Interfaces

These functions may fail and not unlink the file if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ETXTBSY] The entry to be unlinked is the last directory entry to a pure procedure (shared
text) file that is being executed.

The unlinkat() function may fail and not unlink the file if:

[EINVAL] The value of the flag argument is not valid.

EXAMPLES

Removing a Link to a File

The following example shows how to remove a link to a file named /home/cnd/mod1 by
removing the entry named /modules/pass1.

#include <unistd.h>

char *path = "/modules/pass1";
int status;
...
status = unlink(path);

Checking for an Error

The following example fragment creates a temporary password lock file named LOCKFILE,
which is defined as /etc/ptmp, and gets a file descriptor for it. If the file cannot be opened for
writing, unlink() is used to remove the link between the file descriptor and LOCKFILE.

#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>

#define LOCKFILE "/etc/ptmp"

int pfd; /* Integer for file descriptor returned by open call. */
FILE *fpfd; /* File pointer for use in putpwent(). */
...
/* Open password Lock file. If it exists, this is an error. */
if ((pfd = open(LOCKFILE, O_WRONLY| O_CREAT | O_EXCL, S_IRUSR

| S_IWUSR | S_IRGRP | S_IROTH)) == -1) {
fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}

/* Lock file created; proceed with fdopen of lock file so that
putpwent() can be used.

2322 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75527

75528

75529

75530

75531

75532

75533

75534

75535

75536

75537

75538

75539

75540

75541

75542

75543

75544

75545

75546

75547

75548

75549

75550

75551

75552

75553

75554

75555

75556

75557

75558

75559

75560

75561

75562

75563

75564

75565

75566

75567

75568

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces unlink()

*/
if ((fpfd = fdopen(pfd, "w")) == NULL) {

close(pfd);
unlink(LOCKFILE);
exit(1);

}

Replacing Files

The following example fragment uses unlink() to discard links to files, so that they can be
replaced with new versions of the files. The first call removes the link to LOCKFILE if an error
occurs. Successive calls remove the links to SAVEFILE and PASSWDFILE so that new links can
be created, then removes the link to LOCKFILE when it is no longer needed.

#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
#define SAVEFILE "/etc/opasswd"
...
/* If no change was made, assume error and leave passwd unchanged. */
if (!valid_change) {

fprintf(stderr, "Could not change password for user %s\n", user);
unlink(LOCKFILE);
exit(1);

}

/* Change permissions on new password file. */
chmod(LOCKFILE, S_IRUSR | S_IRGRP | S_IROTH);

/* Remove saved password file. */
unlink(SAVEFILE);

/* Save current password file. */
link(PASSWDFILE, SAVEFILE);

/* Remove current password file. */
unlink(PASSWDFILE);

/* Save new password file as current password file. */
link(LOCKFILE,PASSWDFILE);

/* Remove lock file. */
unlink(LOCKFILE);

exit(0);

APPLICATION USAGE
Applications should use rmdir() to remove a directory.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2323

75569

75570

75571

75572

75573

75574

75575

75576

75577

75578

75579

75580

75581

75582

75583

75584

75585

75586

75587

75588

75589

75590

75591

75592

75593

75594

75595

75596

75597

75598

75599

75600

75601

75602

75603

75604

75605

75606

75607

75608

75609

75610

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unlink() System Interfaces

RATIONALE
Unlinking a directory is restricted to the superuser in many historical implementations for
reasons given in link() (see also rename()).

The meaning of [EBUSY] in historical implementations is ``mount point busy’’. Since this volume
of POSIX.1-2024 does not cover the system administration concepts of mounting and
unmounting, the description of the error was changed to ``resource busy’’. (This meaning is used
by some device drivers when a second process tries to open an exclusive use device.) The
wording is also intended to allow implementations to refuse to remove a directory if it is the root
or current working directory of any process.

The standard developers reviewed TR 24715-2006 and noted that LSB-conforming
implementations may return [EISDIR] instead of [EPERM] when unlinking a directory. A change
to permit this behavior by changing the requirement for [EPERM] to [EPERM] or [EISDIR] was
considered, but decided against since it would break existing strictly conforming and
conforming applications. Applications written for portability to both POSIX.1-2024 and the LSB
should be prepared to handle either error code.

The purpose of the unlinkat() function is to remove directory entries in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to unlink(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the unlinkat() function it can be guaranteed that
the removed directory entry is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), link(), remove(), rename(), rmdir(), symlink()

XBD Section 4.5 (on page 96), <fcntl.h>, <sys/stat.h>, <unistd.h>
CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The [EBUSY] error is added to the optional part of the ERRORS section.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect is specified if path specifies a symbolic link.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the requirements for
operations when the S_ISVTX bit is set.

2324 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75611

75612

75613

75614

75615

75616

75617

75618

75619

75620

75621

75622

75623

75624

75625

75626

75627

75628

75629

75630

75631

75632

75633

75634

75635

75636

75637

75638

75639

75640

75641

75642

75643

75644

75645

75646

75647

75648

75649

75650

75651

75652

75653

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces unlink()

Text arising from the LSB Conflicts TR is added to the RATIONALE about the use of [EPERM]
and [EISDIR].

The unlinkat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0693 [461], XSH/TC1-2008/0694 [324],
XSH/TC1-2008/0695 [278], and XSH/TC1-2008/0696 [278] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0378 [873], XSH/TC2-2008/0379 [591],
XSH/TC2-2008/0380 [817], and XSH/TC2-2008/0381 [817] are applied.

Issue 8
Austin Group Defect 1314 is applied, clarifying that file identities become available for reuse
after the space occupied by the file has been freed.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1380 is applied, changing text using the term ``link’’ in line with its
updated definition.

Austin Group Defect 1385 is applied, clarifying that the file contents are not removed until there
are no references to the file via open file descriptors or memory mappings.

Austin Group Defect 1574 is applied, splitting the [EPERM] error into separate entries for
unlink() and unlinkat().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2325

75654

75655

75656

75657

75658

75659

75660

75661

75662

75663

75664

75665

75666

75667

75668

75669

75670

75671

75672

75673

75674

75675

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unlockpt() System Interfaces

NAME
unlockpt — unlock a pseudo-terminal manager/subsidiary pair

SYNOPSIS
XSI #include <stdlib.h>

int unlockpt(int fildes);

DESCRIPTION
The unlockpt() function shall unlock the subsidiary pseudo-terminal device associated with the
manager device to which fildes refers.

Conforming applications shall ensure that they call unlockpt() before opening the subsidiary side
of a pseudo-terminal device.

RETURN VALUE
Upon successful completion, unlockpt() shall return 0. Otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The unlockpt() function may fail if:

[EBADF] The fildes argument is not a file descriptor open for writing.

[EINVAL] The fildes argument is not associated with a manager pseudo-terminal device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See the RATIONALE section for posix_openpt().

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), posix_openpt(), ptsname()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0697 [96] is applied.

Issue 8
Austin Group Defect 1466 is applied, changing the terminology used for pseudo-terminal
devices.

2326 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75676

75677

75678

75679

75680

75681

75682

75683

75684

75685

75686

75687

75688

75689

75690

75691

75692

75693

75694

75695

75696

75697

75698

75699

75700

75701

75702

75703

75704

75705

75706

75707

75708

75709

75710

75711

75712

75713

75714

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces unsetenv()

NAME
unsetenv — remove an environment variable

SYNOPSIS
CX #include <stdlib.h>

int unsetenv(const char *name);

DESCRIPTION
The unsetenv() function shall remove an environment variable from the environment of the
calling process. The name argument points to a string, which is the name of the variable to be
removed. The named argument shall not contain an '=' character. If the named variable does
not exist in the current environment, the environment shall be unchanged and the function is
considered to have completed successfully.

The unsetenv() function shall update the list of pointers to which environ points.

The unsetenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to
indicate the error, and the environment shall be unchanged.

ERRORS
The unsetenv() function shall fail if:

[EINVAL] The name argument points to an empty string, or points to a string containing
an '=' character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setenv().

FUTURE DIRECTIONS
None.

SEE ALSO
getenv(), setenv()

XBD <stdlib.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0698 [167] and XSH/TC1-2008/0699
[185] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2327

75715

75716

75717

75718

75719

75720

75721

75722

75723

75724

75725

75726

75727

75728

75729

75730

75731

75732

75733

75734

75735

75736

75737

75738

75739

75740

75741

75742

75743

75744

75745

75746

75747

75748

75749

75750

75751

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uselocale() System Interfaces

NAME
uselocale — use locale in current thread

SYNOPSIS
CX #include <locale.h>

locale_t uselocale(locale_t newloc);

DESCRIPTION
The uselocale() function shall set or query the current locale for the calling thread.

The value for the newloc argument shall be one of the following:

1. A value returned by the newlocale() or duplocale() functions

2. The special locale object descriptor LC_GLOBAL_LOCALE

3. (locale_t)0

If the newloc argument is (locale_t)0, the current locale shall not be changed; this value can be
used to query the current locale setting. If the newloc argument is LC_GLOBAL_LOCALE, any
thread-local locale for the calling thread shall be uninstalled; the thread shall again use the
global locale as the current locale, and changes to the global locale shall affect the thread.
Otherwise, the locale represented by newloc shall be installed as a thread-local locale to be used
as the current locale for the calling thread.

Once the uselocale() function has been called to install a thread-local locale, the behavior of every
interface using data from the current locale shall be affected for the calling thread. The current
locale for other threads shall remain unchanged.

RETURN VALUE
Upon successful completion, the uselocale() function shall return a handle for the thread-local
locale that was in use as the current locale for the calling thread on entry to the function, or
LC_GLOBAL_LOCALE if no thread-local locale was in use. Otherwise, uselocale() shall return
(locale_t)0 and set errno to indicate the error.

ERRORS
The uselocale() function may fail if:

[EINVAL] newloc is not a valid locale object and is not (locale_t)0.

EXAMPLES
None.

APPLICATION USAGE
Unlike the setlocale() function, the uselocale() function does not allow replacing some locale
categories only. Applications that need to install a locale which differs only in a few categories
must use newlocale() to change a locale object equivalent to the currently used locale and install
it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

2328 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75752

75753

75754

75755

75756

75757

75758

75759

75760

75761

75762

75763

75764

75765

75766

75767

75768

75769

75770

75771

75772

75773

75774

75775

75776

75777

75778

75779

75780

75781

75782

75783

75784

75785

75786

75787

75788

75789

75790

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces uselocale()

SEE ALSO
duplocale(), freelocale(), getlocalename_l(), newlocale(), setlocale()

XBD <locale.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0700 [290] and XSH/TC1-2008/0701
[334] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0382 [582] is applied.

Issue 8
Austin Group Defect 1220 is applied, adding getlocalename_l() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2329

75791

75792

75793

75794

75795

75796

75797

75798

75799

75800

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

utimensat() System Interfaces

NAME
utimensat, utimes — set file access and modification times

SYNOPSIS
#include <sys/stat.h>

int utimensat(int fd, const char *path, const struct timespec times[2],
int flag);

XSI #include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

DESCRIPTION
Refer to futimens().

2330 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75801

75802

75803

75804

75805

75806

75807

75808

75809

75810

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces va_arg()

NAME
va_arg, va_copy, va_end, va_start — handle variable argument list

SYNOPSIS
#include <stdarg.h>

type va_arg(va_list ap, type);
void va_copy(va_list dest, va_list src);
void va_end(va_list ap);
void va_start(va_list ap, argN);

DESCRIPTION
Refer to XBD <stdarg.h>

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2331

75811

75812

75813

75814

75815

75816

75817

75818

75819

75820

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vasprintf() System Interfaces

NAME
vasprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vasprintf(char **restrict ptr, const char *restrict format,
va_list ap);

DESCRIPTION
Refer to vfprintf().

2332 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75821

75822

75823

75824

75825

75826

75827

75828

75829

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces vfprintf()

NAME
vasprintf, vdprintf, vfprintf, vprintf, vsnprintf, vsprintf — format output of a stdarg argument
list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

CX int vasprintf(char **restrict ptr, const char *restrict format,
va_list ap);

int vdprintf(int fildes, const char *restrict format, va_list ap);
int vfprintf(FILE *restrict stream, const char *restrict format,

va_list ap);
int vprintf(const char *restrict format, va_list ap);
int vsnprintf(char *restrict s, size_t n, const char *restrict format,

va_list ap);
int vsprintf(char *restrict s, const char *restrict format, va_list ap);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

CX The vasprintf(), vdprintf(), vfprintf(), vprintf(), vsnprintf(), and vsprintf() functions shall be
CX equivalent to the asprintf(), dprintf(), fprintf(), printf(), snprintf(), and sprintf() functions

respectively, except that instead of being called with a variable number of arguments, they are
called with an argument list as defined by <stdarg.h>.

These functions shall not invoke the va_end macro. As these functions invoke the va_arg macro,
the value of ap after the return is unspecified.

RETURN VALUE
Refer to fprintf().

ERRORS
Refer to fprintf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fprintf()

XBD <stdarg.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2333

75830

75831

75832

75833

75834

75835

75836

75837

75838

75839

75840

75841

75842

75843

75844

75845

75846

75847

75848

75849

75850

75851

75852

75853

75854

75855

75856

75857

75858

75859

75860

75861

75862

75863

75864

75865

75866

75867

75868

75869

75870

75871

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vfprintf() System Interfaces

Issue 5
The vsnprintf() function is added.

Issue 6
The vfprintf(), vprintf(), vsnprintf(), and vsprintf() functions are updated for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The vdprintf() function is added to complement the dprintf() function from The Open Group
Technical Standard, 2006, Extended API Set Part 1.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0703 [14] is applied.

Issue 8
Austin Group Defect 1496 is applied, adding the vasprintf() function.

2334 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75872

75873

75874

75875

75876

75877

75878

75879

75880

75881

75882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces vfscanf()

NAME
vfscanf, vscanf, vsscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vfscanf(FILE *restrict stream, const char *restrict format,
va_list arg);

int vscanf(const char *restrict format, va_list arg);
int vsscanf(const char *restrict s, const char *restrict format,

va_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The vscanf(), vfscanf(), and vsscanf() functions shall be equivalent to the scanf(), fscanf(), and
sscanf() functions, respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined in the <stdarg.h> header. These
functions shall not invoke the va_end macro. As these functions invoke the va_arg macro, the
value of ap after the return is unspecified.

RETURN VALUE
Refer to fscanf().

ERRORS
Refer to fscanf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fscanf()

XBD <stdarg.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0704 [14] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2335

75883

75884

75885

75886

75887

75888

75889

75890

75891

75892

75893

75894

75895

75896

75897

75898

75899

75900

75901

75902

75903

75904

75905

75906

75907

75908

75909

75910

75911

75912

75913

75914

75915

75916

75917

75918

75919

75920

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vfwprintf() System Interfaces

NAME
vfwprintf, vswprintf, vwprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *restrict stream, const wchar_t *restrict format,
va_list arg);

int vswprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, va_list arg);

int vwprintf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The vfwprintf(), vswprintf(), and vwprintf() functions shall be equivalent to fwprintf(), swprintf(),
and wprintf() respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by <stdarg.h>.

These functions shall not invoke the va_end macro. However, as these functions do invoke the
va_arg macro, the value of ap after the return is unspecified.

RETURN VALUE
Refer to fwprintf().

ERRORS
Refer to fwprintf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fwprintf()

XBD <stdarg.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The vfwprintf(), vswprintf(), and vwprintf() prototypes are updated for alignment with the
ISO/IEC 9899: 1999 standard.

2336 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75921

75922

75923

75924

75925

75926

75927

75928

75929

75930

75931

75932

75933

75934

75935

75936

75937

75938

75939

75940

75941

75942

75943

75944

75945

75946

75947

75948

75949

75950

75951

75952

75953

75954

75955

75956

75957

75958

75959

75960

75961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces vfwprintf()

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0705 [14] is applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2337

75962

75963

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vfwscanf() System Interfaces

NAME
vfwscanf, vswscanf, vwscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwscanf(FILE *restrict stream, const wchar_t *restrict format,
va_list arg);

int vswscanf(const wchar_t *restrict ws, const wchar_t *restrict format,
va_list arg);

int vwscanf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The vfwscanf(), vswscanf(), and vwscanf() functions shall be equivalent to the fwscanf(),
swscanf(), and wscanf() functions, respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined in the <stdarg.h> header.
These functions shall not invoke the va_end macro. As these functions invoke the va_arg macro,
the value of ap after the return is unspecified.

RETURN VALUE
Refer to fwscanf().

ERRORS
Refer to fwscanf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 521), fwscanf()

XBD <stdarg.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0706 [14] is applied.

2338 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

75964

75965

75966

75967

75968

75969

75970

75971

75972

75973

75974

75975

75976

75977

75978

75979

75980

75981

75982

75983

75984

75985

75986

75987

75988

75989

75990

75991

75992

75993

75994

75995

75996

75997

75998

75999

76000

76001

76002

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces vprintf()

NAME
vprintf — format the output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vprintf(const char *restrict format, va_list ap);

DESCRIPTION
Refer to vfprintf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2339

76003

76004

76005

76006

76007

76008

76009

76010

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vscanf() System Interfaces

NAME
vscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vscanf(const char *restrict format, va_list arg);

DESCRIPTION
Refer to vfscanf().

2340 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76011

76012

76013

76014

76015

76016

76017

76018

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces vsnprintf()

NAME
vsnprintf, vsprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char *restrict s, size_t n,
const char *restrict format, va_list ap);

int vsprintf(char *restrict s, const char *restrict format,
va_list ap);

DESCRIPTION
Refer to vfprintf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2341

76019

76020

76021

76022

76023

76024

76025

76026

76027

76028

76029

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vsscanf() System Interfaces

NAME
vsscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsscanf(const char *restrict s, const char *restrict format,
va_list arg);

DESCRIPTION
Refer to vfscanf().

2342 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76030

76031

76032

76033

76034

76035

76036

76037

76038

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces vswprintf()

NAME
vswprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwprintf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2343

76039

76040

76041

76042

76043

76044

76045

76046

76047

76048

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vswscanf() System Interfaces

NAME
vswscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswscanf(const wchar_t *restrict ws, const wchar_t *restrict format,
va_list arg);

DESCRIPTION
Refer to vfwscanf().

2344 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76049

76050

76051

76052

76053

76054

76055

76056

76057

76058

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces vwprintf()

NAME
vwprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwprintf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwprintf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2345

76059

76060

76061

76062

76063

76064

76065

76066

76067

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vwscanf() System Interfaces

NAME
vwscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwscanf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwscanf().

2346 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76068

76069

76070

76071

76072

76073

76074

76075

76076

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wait()

NAME
wait, waitpid — wait for a child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION
The wait() and waitpid() functions shall obtain status information (see Section 2.12, on page 563)
pertaining to one of the caller’s child processes. The wait() function obtains status information
for process termination from any child process. The waitpid() function obtains status information
for process termination, and optionally process stop and/or continue, from a specified subset of
the child processes.

The wait() function shall cause the calling thread to become blocked until status information
generated by child process termination is made available to the thread, or until delivery of a
signal whose action is either to execute a signal-catching function or to terminate the process, or
an error occurs. If termination status information is available prior to the call to wait(), return
shall be immediate. If termination status information is available for two or more child
processes, the order in which their status is reported is unspecified.

As described in Section 2.12 (on page 563), the wait() and waitpid() functions consume the status
information they obtain.

The behavior when multiple threads are blocked in wait(), waitid(), or waitpid() is described in
Section 2.12 (on page 563).

The waitpid() function shall be equivalent to wait() if the pid argument is (pid_t)−1 and the
options argument is 0. Otherwise, its behavior shall be modified by the values of the pid and
options arguments.

The pid argument specifies a set of child processes for which status is requested. The waitpid()
function shall only return the status of a child process from this set:

• If pid is equal to (pid_t)−1, status is requested for any child process. In this respect,
waitpid() is then equivalent to wait().

• If pid is greater than 0, it specifies the process ID of a single child process for which status is
requested.

• If pid is 0, status is requested for any child process whose process group ID is equal to that
of the calling process.

• If pid is less than (pid_t)−1, status is requested for any child process whose process group
ID is equal to the absolute value of pid.

The options argument is constructed from the bitwise-inclusive OR of zero or more of the
following flags, defined in the <sys/wait.h> header:

XSI WCONTINUED The waitpid() function shall report the status of any continued child process
specified by pid whose status has not been reported since it continued from a
job control stop.

WNOHANG The waitpid() function shall not suspend execution of the calling thread if
status is not immediately available for one of the child processes specified by
pid.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2347

76077

76078

76079

76080

76081

76082

76083

76084

76085

76086

76087

76088

76089

76090

76091

76092

76093

76094

76095

76096

76097

76098

76099

76100

76101

76102

76103

76104

76105

76106

76107

76108

76109

76110

76111

76112

76113

76114

76115

76116

76117

76118

76119

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wait() System Interfaces

WUNTRACED The status of any child processes specified by pid that are stopped, and whose
status has not yet been reported since they stopped, shall also be reported to
the requesting process.

If wait() or waitpid() return because the status of a child process is available, these functions
shall return a value equal to the process ID of the child process. In this case, if the value of the
argument stat_loc is not a null pointer, information shall be stored in the location pointed to by
stat_loc. The value stored at the location pointed to by stat_loc shall be 0 if and only if the status
returned is from a terminated child process that terminated by one of the following means:

1. The process returned 0 from main().

2. The process called _exit() or exit() with a status argument of 0.

3. The process was terminated because the last thread in the process terminated.

Regardless of its value, this information may be interpreted using the following macros, which
are defined in <sys/wait.h> and evaluate to integral expressions; the stat_val argument is the
integer value pointed to by stat_loc.

WIFEXITED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that terminated
normally.

WEXITSTATUS(stat_val)
If the value of WIFEXITED(stat_val) is non-zero, this macro shall evaluate to the low-order 8
bits of the status argument that the child process passed to _exit() or exit(), or the value the
child process returned from main().

WIFSIGNALED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that terminated due
to the receipt of a signal that was not caught (see <signal.h>).

WCOREDUMP(stat_val)
If the value of WIFSIGNALED(stat_val) is non-zero, this macro shall evaluate to a non-zero
value if the creation of a core image of the terminated child was attempted.

WTERMSIG(stat_val)
If the value of WIFSIGNALED(stat_val) is non-zero, this macro shall evaluate to the number
of the signal that caused the termination of the child process.

WIFSTOPPED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that stopped due to
the receipt of a signal that was not caught (see <signal.h>).

WSTOPSIG(stat_val)
If the value of WIFSTOPPED(stat_val) is non-zero, this macro shall evaluate to the number
of the signal that caused the child process to stop.

XSI WIFCONTINUED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that has continued
from a job control stop.

SPN It is unspecified whether the status value returned by calls to wait() or waitpid() for processes
created by posix_spawn() or posix_spawnp() can indicate a WIFSTOPPED(stat_val) before
subsequent calls to wait() or waitpid() indicate WIFEXITED(stat_val) as the result of an error
detected before the new process image starts executing.

It is unspecified whether the status value returned by calls to wait() or waitpid() for processes

2348 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76120

76121

76122

76123

76124

76125

76126

76127

76128

76129

76130

76131

76132

76133

76134

76135

76136

76137

76138

76139

76140

76141

76142

76143

76144

76145

76146

76147

76148

76149

76150

76151

76152

76153

76154

76155

76156

76157

76158

76159

76160

76161

76162

76163

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wait()

created by posix_spawn() or posix_spawnp() can indicate a WIFSIGNALED(stat_val) if a signal is
sent to the parent’s process group after posix_spawn() or posix_spawnp() is called.

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the
XSI WUNTRACED flag and did not specify the WCONTINUED flag, exactly one of the macros

WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and WIFSTOPPED(*stat_loc) shall evaluate to a
non-zero value.

XSI If the information pointed to by stat_loc was stored by a call to waitpid() that specified the
WUNTRACED and WCONTINUED flags, exactly one of the macros WIFEXITED(*stat_loc),
WIFSIGNALED(*stat_loc), WIFSTOPPED(*stat_loc), and WIFCONTINUED(*stat_loc) shall
evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the
XSI WUNTRACED or WCONTINUED flags, or by a call to the wait() function, exactly one of the

macros WIFEXITED(*stat_loc) and WIFSIGNALED(*stat_loc) shall evaluate to a non-zero value.

XSI If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the
WUNTRACED flag and specified the WCONTINUED flag, exactly one of the macros
WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and WIFCONTINUED(*stat_loc) shall evaluate
to a non-zero value.

If the implementation queues the SIGCHLD signal, then if wait() or waitpid() returns because
the status of a child process is available, any pending SIGCHLD signal associated with the
process ID of the child process shall be discarded. Any other pending SIGCHLD signals shall
remain pending.

Otherwise, if SIGCHLD is blocked, if wait() or waitpid() return because the status of a child
process is available, any pending SIGCHLD signal shall be cleared unless the status of another
child process is available.

For all other conditions, it is unspecified whether child status will be available when a SIGCHLD
signal is delivered.

There may be additional implementation-defined circumstances under which wait() or waitpid()
report status. This shall not occur unless the calling process or one of its child processes
explicitly makes use of a non-standard extension. In these cases the interpretation of the
reported status is implementation-defined.

If a parent process terminates without waiting for all of its child processes to terminate, the
remaining child processes shall be assigned a new parent process ID corresponding to an
implementation-defined system process.

RETURN VALUE
If wait() or waitpid() returns because the status of a child process is available, these functions
shall return a value equal to the process ID of the child process for which status is reported. If
wait() or waitpid() returns due to the delivery of a signal to the calling process, −1 shall be
returned and errno set to [EINTR]. If waitpid() was invoked with WNOHANG set in options, it
has at least one child process specified by pid for which status is not available, and status is not
available for any process specified by pid, 0 is returned. Otherwise, −1 shall be returned, and
errno set to indicate the error.

ERRORS
The wait() function shall fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2349

76164

76165

76166

76167

76168

76169

76170

76171

76172

76173

76174

76175

76176

76177

76178

76179

76180

76181

76182

76183

76184

76185

76186

76187

76188

76189

76190

76191

76192

76193

76194

76195

76196

76197

76198

76199

76200

76201

76202

76203

76204

76205

76206

76207

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wait() System Interfaces

[EINTR] The function was interrupted by a signal. The value of the location pointed to
by stat_loc is undefined.

The waitpid() function shall fail if:

[ECHILD] The process specified by pid does not exist or is not a child of the calling
process, or the process group specified by pid does not exist or does not have
any member process that is a child of the calling process.

[EINTR] The function was interrupted by a signal. The value of the location pointed to
by stat_loc is undefined.

[EINVAL] The options argument is not valid.

EXAMPLES

Waiting for a Child Process and then Checking its Status

The following example demonstrates the use of waitpid(), fork(), and the macros used to
interpret the status value returned by waitpid() (and wait()). The code segment creates a child
process which does some unspecified work. Meanwhile the parent loops performing calls to
waitpid() to monitor the status of the child. The loop terminates when child termination is
detected.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
...

pid_t child_pid, wpid;
int status;
child_pid = fork();
if (child_pid == -1) { /* fork() failed */

perror("fork");
exit(EXIT_FAILURE);

}

if (child_pid == 0) { /* This is the child */
/* Child does some work and then terminates */
...

} else { /* This is the parent */
do {

wpid = waitpid(child_pid, &status, WUNTRACED
#ifdef WCONTINUED /* Not all implementations support this */

| WCONTINUED
#endif

);
if (wpid == -1) {

perror("waitpid");
exit(EXIT_FAILURE);

}

if (WIFEXITED(status)) {
printf("child exited, status=%d\n", WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {

2350 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76208

76209

76210

76211

76212

76213

76214

76215

76216

76217

76218

76219

76220

76221

76222

76223

76224

76225

76226

76227

76228

76229

76230

76231

76232

76233

76234

76235

76236

76237

76238

76239

76240

76241

76242

76243

76244

76245

76246

76247

76248

76249

76250

76251

76252

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wait()

printf("child killed (signal %d)\n", WTERMSIG(status));

} else if (WIFSTOPPED(status)) {
printf("child stopped (signal %d)\n", WSTOPSIG(status));

#ifdef WIFCONTINUED /* Not all implementations support this */
} else if (WIFCONTINUED(status)) {

printf("child continued\n");
#endif

} else { /* Non-standard case -- may never happen */
printf("Unexpected status (0x%x)\n", status);

}
} while (!WIFEXITED(status) && !WIFSIGNALED(status));

}

Waiting for a Child Process in a Signal Handler for SIGCHLD

The following example demonstrates how to use waitpid() in a signal handler for SIGCHLD
without passing −1 as the pid argument. (See the APPLICATION USAGE section below for the
reasons why passing a pid of −1 is not recommended.) The method used here relies on the
standard behavior of waitpid() when SIGCHLD is blocked. On historical non-conforming
systems, the status of some child processes might not be reported.

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#define CHILDREN 10

static void
handle_sigchld(int signum, siginfo_t *sinfo, void *unused)
{

int sav_errno = errno;
int status;

/*
* Obtain status information for the child which
* caused the SIGCHLD signal and write its exit code
* to stdout.
*/
if (sinfo->si_code != CLD_EXITED)
{

static char msg[] = "wrong si_code\n";
write(2, msg, sizeof msg - 1);

}
else if (waitpid(sinfo->si_pid, &status, 0) == -1)
{

static char msg[] = "waitpid() failed\n";
write(2, msg, sizeof msg - 1);

}
else if (!WIFEXITED(status))
{

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2351

76253

76254

76255

76256

76257

76258

76259

76260

76261

76262

76263

76264

76265

76266

76267

76268

76269

76270

76271

76272

76273

76274

76275

76276

76277

76278

76279

76280

76281

76282

76283

76284

76285

76286

76287

76288

76289

76290

76291

76292

76293

76294

76295

76296

76297

76298

76299

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wait() System Interfaces

static char msg[] = "WIFEXITED was false\n";
write(2, msg, sizeof msg - 1);

}
else
{

int code = WEXITSTATUS(status);
char buf[2];
buf[0] = '0' + code;
buf[1] = '\n';
write(1, buf, 2);

}
errno = sav_errno;

}

int
main(void)
{

int i;
pid_t pid;
struct sigaction sa;

sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = handle_sigchld;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == -1)
{

perror("sigaction");
exit(EXIT_FAILURE);

}
for (i = 0; i < CHILDREN; i++)
{

switch (pid = fork())
{
case -1:

perror("fork");
exit(EXIT_FAILURE);

case 0:
sleep(2);
_exit(i);

}
}

/* Wait for all the SIGCHLD signals, then terminate on SIGALRM */
alarm(3);
for (;;)

pause();

return 0; /* NOTREACHED */
}

2352 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76300

76301

76302

76303

76304

76305

76306

76307

76308

76309

76310

76311

76312

76313

76314

76315

76316

76317

76318

76319

76320

76321

76322

76323

76324

76325

76326

76327

76328

76329

76330

76331

76332

76333

76334

76335

76336

76337

76338

76339

76340

76341

76342

76343

76344

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wait()

APPLICATION USAGE
Calls to wait() will collect information about any child process. This may result in interactions
with other interfaces that may be waiting for their own children (such as by use of system()). For
this and other reasons it is recommended that portable applications not use wait(), but instead
use waitpid(). For these same reasons, the use of waitpid() with a pid argument of −1, and the use
of waitid() with the idtype argument set to P_ALL, are also not recommended for portable
applications.

XSI As specified in Consequences of Process Termination (on page 568), if the calling process has
SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN, then the termination of a child process
will not cause status information to become available to a thread blocked in wait(), waitid(), or
waitpid(). Thus, a thread blocked in one of the wait functions will remain blocked unless some
other condition causes the thread to resume execution (such as an [ECHILD] failure due to no
remaining children in the set of waited-for children).

RATIONALE
A call to the wait() or waitpid() function only returns status on an immediate child process of the
calling process; that is, a child that was produced by a single fork() call (perhaps followed by an
exec or other function calls) from the parent. If a child produces grandchildren by further use of
fork(), none of those grandchildren nor any of their descendants affect the behavior of a wait()
from the original parent process. Nothing in this volume of POSIX.1-2024 prevents an
implementation from providing extensions that permit a process to get status from a grandchild
or any other process, but a process that does not use such extensions must be guaranteed to see
status from only its direct children.

The waitpid() function is provided for three reasons:

1. To support job control

2. To permit a non-blocking version of the wait() function

3. To permit a library routine, such as system() or pclose(), to wait for its children without
interfering with other terminated children for which the process has not waited

The first two of these facilities are based on the wait3() function provided by 4.3 BSD. The
function uses the options argument, which is equivalent to an argument to wait3(). The
WUNTRACED flag is used only in conjunction with job control on systems supporting job
control. Its name comes from 4.3 BSD and refers to the fact that there are two types of stopped
processes in that implementation: processes being traced via the ptrace() debugging facility and
(untraced) processes stopped by job control signals. Since ptrace() is not part of this volume of
POSIX.1-2024, only the second type is relevant. The name WUNTRACED was retained because
its usage is the same, even though the name is not intuitively meaningful in this context.

The third reason for the waitpid() function is to permit independent sections of a process to
spawn and wait for children without interfering with each other. For example, the following
problem occurs in developing a portable shell, or command interpreter:

stream = popen("/bin/true");
(void) system("sleep 100");
(void) pclose(stream);

On all historical implementations, the final pclose() fails to reap the wait() status of the popen().

The status values are retrieved by macros, rather than given as specific bit encodings as they are
in most historical implementations (and thus expected by existing programs). This was
necessary to eliminate a limitation on the number of signals an implementation can support that
was inherent in the traditional encodings. This volume of POSIX.1-2024 does require that a status

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2353

76345

76346

76347

76348

76349

76350

76351

76352

76353

76354

76355

76356

76357

76358

76359

76360

76361

76362

76363

76364

76365

76366

76367

76368

76369

76370

76371

76372

76373

76374

76375

76376

76377

76378

76379

76380

76381

76382

76383

76384

76385

76386

76387

76388

76389

76390

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wait() System Interfaces

value of zero corresponds to a process calling _exit(0), as this is the most common encoding
expected by existing programs. Some of the macro names were adopted from 4.3 BSD.

These macros syntactically operate on an arbitrary integer value. The behavior is undefined
unless that value is one stored by a successful call to wait() or waitpid() in the location pointed to
by the stat_loc argument. An early proposal attempted to make this clearer by specifying each
argument as *stat_loc rather than stat_val. However, that did not follow the conventions of other
specifications in this volume of POSIX.1-2024 or traditional usage. It also could have implied
that the argument to the macro must literally be *stat_loc; in fact, that value can be stored or
passed as an argument to other functions before being interpreted by these macros.

The extension that affects wait() and waitpid() and is common in historical implementations is
the ptrace() function. It is called by a child process and causes that child to stop and return a
status that appears identical to the status indicated by WIFSTOPPED. The status of ptrace()
children is traditionally returned regardless of the WUNTRACED flag (or by the wait()
function). Most applications do not need to concern themselves with such extensions because
they have control over what extensions they or their children use. However, applications, such
as command interpreters, that invoke arbitrary processes may see this behavior when those
arbitrary processes misuse such extensions.

On implementations that support the creation of a file containing a core image on some process
terminations, the WCOREDUMP(stat_val) macro indicates whether creation of a core image was
attempted. If it returns a non-zero value this does not necessarily mean that the core image was
created, only that it was attempted. For example, if the RLIMIT_CORE limit for the process is 0,
this prevents creation of the file; WCOREDUMP(stat_val) returning non-zero in this case
indicates that the file would have been created if the limit had not been 0.

Allowing the wait() family of functions to discard a pending SIGCHLD signal that is associated
with a successfully waited-for child process puts them into the sigwait() and sigwaitinfo()
category with respect to SIGCHLD.

This definition allows implementations to treat a pending SIGCHLD signal as accepted by the
process in wait(), with the same meaning of ``accepted’’ as when that word is applied to the
sigwait() family of functions.

Allowing the wait() family of functions to behave this way permits an implementation to be able
to deal precisely with SIGCHLD signals.

In particular, an implementation that does accept (discard) the SIGCHLD signal can make the
following guarantees regardless of the queuing depth of signals in general (the list of waitable
children can hold the SIGCHLD queue):

1. If a SIGCHLD signal handler is established via sigaction() without the SA_RESETHAND
flag, SIGCHLD signals can be accurately counted; that is, exactly one SIGCHLD signal
will be delivered to or accepted by the process for every child process that terminates.

2. A single wait() issued from a SIGCHLD signal handler can be guaranteed to return
immediately with status information for a child process.

3. When SA_SIGINFO is requested, the SIGCHLD signal handler can be guaranteed to
receive a non-null pointer to a siginfo_t structure that describes a child process for which
a wait via waitpid() or waitid() will not block or fail.

4. The system() function will not cause the SIGCHLD handler of a process to be called as a
result of the fork()/exec executed within system() because system() will accept the
SIGCHLD signal when it performs a waitpid() for its child process. This is a desirable
behavior of system() so that it can be used in a library without causing side-effects to the

2354 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76391

76392

76393

76394

76395

76396

76397

76398

76399

76400

76401

76402

76403

76404

76405

76406

76407

76408

76409

76410

76411

76412

76413

76414

76415

76416

76417

76418

76419

76420

76421

76422

76423

76424

76425

76426

76427

76428

76429

76430

76431

76432

76433

76434

76435

76436

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wait()

application linked with the library.

An implementation that does not permit the wait() family of functions to accept (discard) a
pending SIGCHLD signal associated with a successfully waited-for child, cannot make the
guarantees described above for the following reasons:

Guarantee #1
Although it might be assumed that reliable queuing of all SIGCHLD signals generated by
the system can make this guarantee, the counter-example is the case of a process that blocks
SIGCHLD and performs an indefinite loop of fork()/wait() operations. If the
implementation supports queued signals, then eventually the system will run out of
memory for the queue. The guarantee cannot be made because there must be some limit to
the depth of queuing.

Guarantees #2 and #3
These cannot be guaranteed unless the wait() family of functions accepts the SIGCHLD
signal. Otherwise, a fork()/wait() executed while SIGCHLD is blocked (as in the system()
function) will result in an invocation of the handler when SIGCHLD is unblocked, after the
process has disappeared.

Guarantee #4
Although possible to make this guarantee, system() would have to set the SIGCHLD
handler to SIG_DFL so that the SIGCHLD signal generated by its fork() would be discarded
(the SIGCHLD default action is to be ignored), then restore it to its previous setting. This
would have the undesirable side-effect of discarding all SIGCHLD signals pending to the
process.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.12 (on page 563), exec , exit(), fork(), system(), waitid()

XBD Section 4.15.2 (on page 104), <signal.h>, <sys/wait.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The processing of the SIGCHLD signal and the [ECHILD] error is clarified.

The semantics of WIFSTOPPED(stat_val), WIFEXITED(stat_val), and WIFSIGNALED(stat_val)
are defined with respect to posix_spawn() or posix_spawnp() for alignment with IEEE Std
1003.1d-1999.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/145 is applied, adding the example to the

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2355

76437

76438

76439

76440

76441

76442

76443

76444

76445

76446

76447

76448

76449

76450

76451

76452

76453

76454

76455

76456

76457

76458

76459

76460

76461

76462

76463

76464

76465

76466

76467

76468

76469

76470

76471

76472

76473

76474

76475

76476

76477

76478

76479

76480

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wait() System Interfaces

EXAMPLES section.

Issue 7
SD5-XSH-ERN-202 is applied.

APPLICATION USAGE is added, recommending that the wait() function not be used.

An additional example for waitpid() is added.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0707 [421], XSH/TC1-2008/0708 [166],
XSH/TC1-2008/0709 [166], and XSH/TC1-2008/0710 [69] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0384 [690], XSH/TC2-2008/0385 [691],
and XSH/TC2-2008/0386 [690] are applied.

Issue 8
Austin Group Defect 1116 is applied, removing text related to the Realtime Signals Extension
option that existed in earlier versions of this standard.

Austin Group Defects 1141 and 1363 are applied, adding WCOREDUMP, changing the
description of WIFSTOPPED, and changing the RATIONALE section.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

2356 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76481

76482

76483

76484

76485

76486

76487

76488

76489

76490

76491

76492

76493

76494

76495

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces waitid()

NAME
waitid — wait for a child process to change state

SYNOPSIS
#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

DESCRIPTION
The waitid() function shall obtain status information (see Section 2.12, on page 563) pertaining to
termination, stop, and/or continue events in one of the caller’s child processes.

The waitid() function shall cause the calling thread to become blocked until an error occurs or
status information becomes available to the calling thread that satisfies all of the following
properties (``matching status information’’):

• The status information is from one of the child processes in the set of child processes
specified by the idtype and id arguments.

• The state change in the status information matches one of the state change flags set in the
options argument.

If matching status information is available prior to the call to waitid(), return shall be immediate.
If matching status information is available for two or more child processes, the order in which
their status is reported is unspecified.

As described in Section 2.12 (on page 563), the waitid() function consumes the status information
it obtains unless the WNOWAIT flag is set in the options argument.

The behavior when multiple threads are blocked in wait(), waitid(), or waitpid() is described in
Section 2.12 (on page 563).

The waitid() function shall record the obtained status information in the structure pointed to by
infop. The fields of the structure pointed to by infop shall be filled in as described under ``Pointer
to a Function’’ in Section 2.4.3 (on page 516).

The idtype and id arguments are used to specify which children waitid() waits for.

If idtype is P_PID, waitid() shall wait for the child with a process ID equal to (pid_t)id.

If idtype is P_PGID, waitid() shall wait for any child with a process group ID equal to (pid_t)id.

If idtype is P_ALL, waitid() shall wait for any children and id is ignored.

The options argument is used to specify which state changes waitid() shall wait for. It is formed
by OR’ing together the following flags:

WCONTINUED Status shall be returned for any continued child process whose status either
has not been reported since it continued from a job control stop or has been
reported only by calls to waitid() with the WNOWAIT flag set.

WEXITED Wait for processes that have terminated.

WNOHANG Do not hang if no status is available; return immediately.

WNOWAIT Keep the process whose status is returned in infop in a waitable state. This
shall not affect the state of the process; the process may be waited for again
after this call completes.

WSTOPPED Status shall be returned for any child that has stopped upon receipt of a signal,
and whose status either has not been reported since it stopped or has been
reported only by calls to waitid() with the WNOWAIT flag set.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2357

76496

76497

76498

76499

76500

76501

76502

76503

76504

76505

76506

76507

76508

76509

76510

76511

76512

76513

76514

76515

76516

76517

76518

76519

76520

76521

76522

76523

76524

76525

76526

76527

76528

76529

76530

76531

76532

76533

76534

76535

76536

76537

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

waitid() System Interfaces

Applications shall specify at least one of the flags WEXITED, WSTOPPED, or WCONTINUED to
be OR’ed in with the options argument.

The application shall ensure that the infop argument points to a siginfo_t structure. If waitid()
returns because a child process was found that satisfied the conditions indicated by the
arguments idtype and options, then the structure pointed to by infop shall be filled in by the
system with the status of the process; the si_signo member shall be set equal to SIGCHLD. If
waitid() returns because WNOHANG was specified and status is not available for any process
specified by idtype and id, then the si_signo and si_pid members of the structure pointed to by
infop shall be set to zero and the values of other members of the structure are unspecified.

RETURN VALUE
If WNOHANG was specified and status is not available for any process specified by idtype and
id, 0 shall be returned. If waitid() returns due to the change of state of one of its children, 0 shall
be returned. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The waitid() function shall fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The waitid() function was interrupted by a signal. The values of the fields of
the structure pointed to by infop are undefined.

[EINVAL] An invalid value was specified for options, or idtype and id specify an invalid
set of processes.

EXAMPLES
None.

APPLICATION USAGE
Calls to waitid() with idtype equal to P_ALL will collect information about any child process.
This may result in interactions with other interfaces that may be waiting for their own children
(such as by use of system()). For this reason it is recommended that portable applications not
use waitid() with idtype of P_ALL. See also APPLICATION USAGE for wait().

XSI As specified in Consequences of Process Termination (on page 568), if the calling process has
SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN, then the termination of a child process
will not cause status information to become available to a thread blocked in wait(), waitid(), or
waitpid(). Thus, a thread blocked in one of the wait functions will remain blocked unless some
other condition causes the thread to resume execution (such as an [ECHILD] failure due to no
remaining children in the set of waited-for children).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4.3 (on page 516), Section 2.12 (on page 563), exec , exit(), wait()

XBD <signal.h>, <sys/wait.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

2358 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76538

76539

76540

76541

76542

76543

76544

76545

76546

76547

76548

76549

76550

76551

76552

76553

76554

76555

76556

76557

76558

76559

76560

76561

76562

76563

76564

76565

76566

76567

76568

76569

76570

76571

76572

76573

76574

76575

76576

76577

76578

76579

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces waitid()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #060 is applied, updating the DESCRIPTION.

The waitid() function is moved from the XSI option to the Base.

APPLICATION USAGE is added, recommending that the waitid() function not be used with
idtype equal to P_ALL.

The description of the WNOHANG flag is updated.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0711 [154], XSH/TC1-2008/0712 [154],
and XSH/TC1-2008/0713 [153] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0387 [690] is applied.

Issue 8
Austin Group Defect 1332 is applied, changing the description of WEXITED.

Austin Group Defect 1547 is applied, changing the description of [EINTR].

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2359

76580

76581

76582

76583

76584

76585

76586

76587

76588

76589

76590

76591

76592

76593

76594

76595

76596

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

waitpid() System Interfaces

NAME
waitpid — wait for a child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION
Refer to wait().

2360 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76597

76598

76599

76600

76601

76602

76603

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcpcpy()

NAME
wcpcpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcpcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
Refer to wcscpy().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2361

76604

76605

76606

76607

76608

76609

76610

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcpncpy() System Interfaces

NAME
wcpncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcpncpy(wchar_t restrict *ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
Refer to wcsncpy().

2362 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76611

76612

76613

76614

76615

76616

76617

76618

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcrtomb()

NAME
wcrtomb — convert a wide-character code to a character (restartable)

SYNOPSIS
#include <wchar.h>

size_t wcrtomb(char *restrict s, wchar_t wc, mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

If s is a null pointer, the wcrtomb() function shall be equivalent to the call:

wcrtomb(buf, L'\0', ps)

where buf is an internal buffer.

If s is not a null pointer, the wcrtomb() function shall determine the number of bytes needed to
represent the character that corresponds to the wide character given by wc (including any shift
sequences), and store the resulting bytes in the array whose first element is pointed to by s. At
most {MB_CUR_MAX} bytes are stored. If wc is a null wide character, a null byte shall be stored,
preceded by any shift sequence needed to restore the initial shift state. The resulting state
described shall be the initial conversion state.

If ps is a null pointer, the wcrtomb() function shall use its own internal mbstate_t object, which is
initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in this
volume of POSIX.1-2024 calls wcrtomb().

If called with a null ps argument, the wcrtomb() function need not be thread-safe; however, such
calls shall avoid data races with calls to wcrtomb() with a non-null argument and with calls to all
other functions.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

The wcrtomb() function shall not change the setting of errno if successful.

RETURN VALUE
The wcrtomb() function shall return the number of bytes stored in the array object (including any
shift sequences). When wc is not a valid wide character, an encoding error shall occur. In this
case, the function shall store the value of the macro [EILSEQ] in errno and shall return (size_t)−1;
the conversion state shall be undefined.

ERRORS
The wcrtomb() function shall fail if:

[EILSEQ] An invalid wide-character code is detected.

The wcrtomb() function may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2363

76619

76620

76621

76622

76623

76624

76625

76626

76627

76628

76629

76630

76631

76632

76633

76634

76635

76636

76637

76638

76639

76640

76641

76642

76643

76644

76645

76646

76647

76648

76649

76650

76651

76652

76653

76654

76655

76656

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcrtomb() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), wcsrtombs()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
In the DESCRIPTION, a note on using this function in a threaded application is added.

Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The wcrtomb() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the wcrtomb() function
need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0714 [88] and XSH/TC1-2008/0715
[105] are applied.

Issue 8
Austin Group Defect 1302 is applied, aligning this function with the ISO/IEC 9899: 2018
standard.

2364 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76657

76658

76659

76660

76661

76662

76663

76664

76665

76666

76667

76668

76669

76670

76671

76672

76673

76674

76675

76676

76677

76678

76679

76680

76681

76682

76683

76684

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcscasecmp()

NAME
wcscasecmp, wcscasecmp_l, wcsncasecmp, wcsncasecmp_l — case-insensitive wide-character
string comparison

SYNOPSIS
CX #include <wchar.h>

int wcscasecmp(const wchar_t *ws1, const wchar_t *ws2);
int wcscasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

locale_t locale);
int wcsncasecmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);
int wcsncasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

size_t n, locale_t locale);

DESCRIPTION
The wcscasecmp() and wcsncasecmp() functions are the wide-character equivalent of the
strcasecmp() and strncasecmp() functions, respectively.

The wcscasecmp() and wcscasecmp_l() functions shall compare, while ignoring differences in case,
the wide-character string pointed to by ws1 to the wide-character string pointed to by ws2.

The wcsncasecmp() and wcsncasecmp_l() functions shall compare, while ignoring differences in
case, not more than n wide-characters from the wide-character string pointed to by ws1 to the
wide-character string pointed to by ws2.

The wcscasecmp() and wcsncasecmp() functions use the current locale to determine the case of the
wide characters.

The wcscasecmp_l() and wcsncasecmp_l() functions use the locale represented by locale to
determine the case of the wide characters.

When the LC_CTYPE category of the locale being used is from the POSIX locale, these functions
shall behave as if the wide-character strings had been converted to lowercase and then a
comparison of wide-character codes performed. Otherwise, the results are unspecified.

The information for wcscasecmp_l() and wcsncasecmp_l() about the case of the characters comes
from the locale represented by locale.

The behavior is undefined if the locale argument to wcscasecmp_l() or wcsncasecmp_l() is the
special locale object LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon completion, the wcscasecmp() and wcscasecmp_l() functions shall return an integer greater
than, equal to, or less than 0 if the wide-character string pointed to by ws1 is, ignoring case,
greater than, equal to, or less than the wide-character string pointed to by ws2, respectively.

Upon completion, the wcsncasecmp() and wcsncasecmp_l() functions shall return an integer
greater than, equal to, or less than 0 if the possibly null wide-character terminated string pointed
to by ws1 is, ignoring case, greater than, equal to, or less than the possibly null wide-character
terminated string pointed to by ws2, respectively.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2365

76685

76686

76687

76688

76689

76690

76691

76692

76693

76694

76695

76696

76697

76698

76699

76700

76701

76702

76703

76704

76705

76706

76707

76708

76709

76710

76711

76712

76713

76714

76715

76716

76717

76718

76719

76720

76721

76722

76723

76724

76725

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcscasecmp() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcasecmp(), wcscmp(), wcsncmp()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 7.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0716 [294], XSH/TC1-2008/0717 [283],
and XSH/TC1-2008/0718 [283] are applied.

2366 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76726

76727

76728

76729

76730

76731

76732

76733

76734

76735

76736

76737

76738

76739

76740

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcscat()

NAME
wcscat — concatenate two wide-character strings

SYNOPSIS
#include <wchar.h>

wchar_t *wcscat(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcscat() function shall append a copy of the wide-character string pointed to by ws2
(including the terminating null wide-character code) to the end of the wide-character string
pointed to by ws1. The initial wide-character code of ws2 shall overwrite the null wide-character
code at the end of ws1. If copying takes place between objects that overlap, the behavior is
undefined.

CX The wcscat() function shall not change the setting of errno on valid input.

RETURN VALUE
The wcscat() function shall return ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsncat()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The Open Group Corrigendum U040/2 is applied. In the RETURN VALUE section, s1 is
changed to ws1.

The wcscat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcscat() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2367

76741

76742

76743

76744

76745

76746

76747

76748

76749

76750

76751

76752

76753

76754

76755

76756

76757

76758

76759

76760

76761

76762

76763

76764

76765

76766

76767

76768

76769

76770

76771

76772

76773

76774

76775

76776

76777

76778

76779

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcschr() System Interfaces

NAME
wcschr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcschr() function shall locate the first occurrence of wc in the wide-character string pointed
to by ws. The application shall ensure that the value of wc is a character representable as a type
wchar_t and a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character code is considered to be part of the wide-character string.

CX The wcschr() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon completion, wcschr() shall return a pointer to the wide-character code, or a null pointer if
the wide-character code is not found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsrchr()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcschr() does not change the
setting of errno on valid input.

2368 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76780

76781

76782

76783

76784

76785

76786

76787

76788

76789

76790

76791

76792

76793

76794

76795

76796

76797

76798

76799

76800

76801

76802

76803

76804

76805

76806

76807

76808

76809

76810

76811

76812

76813

76814

76815

76816

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcscmp()

NAME
wcscmp — compare two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcscmp(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcscmp() function shall compare the wide-character string pointed to by ws1 to the wide-
character string pointed to by ws2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

CX The wcscmp() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon completion, wcscmp() shall return an integer greater than, equal to, or less than 0, if the
wide-character string pointed to by ws1 is greater than, equal to, or less than the wide-character
string pointed to by ws2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp(), wcsncmp()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcscmp() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2369

76817

76818

76819

76820

76821

76822

76823

76824

76825

76826

76827

76828

76829

76830

76831

76832

76833

76834

76835

76836

76837

76838

76839

76840

76841

76842

76843

76844

76845

76846

76847

76848

76849

76850

76851

76852

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcscoll() System Interfaces

NAME
wcscoll, wcscoll_l — wide-character string comparison using collating information

SYNOPSIS
#include <wchar.h>

int wcscoll(const wchar_t *ws1, const wchar_t *ws2);
CX int wcscoll_l(const wchar_t *ws1, const wchar_t *ws2,

locale_t locale);

DESCRIPTION
CX For wcscoll(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The wcscoll() and wcscoll_l() functions shall compare the wide-character string pointed to by
ws1 to the wide-character string pointed to by ws2, both interpreted as appropriate to the

CX LC_COLLATE category of the current locale, or the locale represented by locale, respectively.

CX The wcscoll() and wcscoll_l() functions shall not change the setting of errno if successful.

CX An application wishing to check for error situations should set errno to 0 before calling wcscoll()
or wcscoll_l(). If errno is non-zero on return, an error has occurred.

CX The behavior is undefined if the locale argument to wcscoll_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX Upon successful completion, wcscoll() and wcscoll_l() shall return an integer greater than, equal

to, or less than 0, according to whether the wide-character string pointed to by ws1 is greater
than, equal to, or less than the wide-character string pointed to by ws2, when both are

CX interpreted as appropriate to the current locale, or to the locale represented by locale,
CX respectively. On error, wcscoll() and wcscoll_l() shall set errno, but no return value is reserved

to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The ws1 or ws2 arguments contain wide-character codes outside the domain of
the collating sequence.

EXAMPLES
None.

APPLICATION USAGE
The wcsxfrm() and wcscmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcsxfrm()

XBD <wchar.h>

2370 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76853

76854

76855

76856

76857

76858

76859

76860

76861

76862

76863

76864

76865

76866

76867

76868

76869

76870

76871

76872

76873

76874

76875

76876

76877

76878

76879

76880

76881

76882

76883

76884

76885

76886

76887

76888

76889

76890

76891

76892

76893

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcscoll()

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 7
The wcscoll_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0719 [302], XSH/TC1-2008/0720 [283],
and XSH/TC1-2008/0721 [283] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2371

76894

76895

76896

76897

76898

76899

76900

76901

76902

76903

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcscpy() System Interfaces

NAME
wcpcpy, wcscpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

CX wchar_t *wcpcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);
wchar_t *wcscpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
CX For wcscpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The wcpcpy() and wcscpy() functions shall copy the wide-character string pointed to by ws2
(including the terminating null wide-character code) into the array pointed to by ws1.

The application shall ensure that there is room for at least wcslen(ws2)+1 wide characters in the
ws1 array, and that the ws2 and ws1 arrays do not overlap.

If copying takes place between objects that overlap, the behavior is undefined.

CX The wcscpy() and wcpcpy() functions shall not change the setting of errno on valid input.

RETURN VALUE
CX The wcpcpy() function shall return a pointer to the terminating null wide-character code copied

into the ws1 buffer.

The wcscpy() function shall return ws1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), wcsdup(), wcsncpy()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The wcscpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcpcpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

2372 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76904

76905

76906

76907

76908

76909

76910

76911

76912

76913

76914

76915

76916

76917

76918

76919

76920

76921

76922

76923

76924

76925

76926

76927

76928

76929

76930

76931

76932

76933

76934

76935

76936

76937

76938

76939

76940

76941

76942

76943

76944

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcscpy()

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcscpy() and wcpcpy() do not
change the setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2373

76945

76946

76947

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcscspn() System Interfaces

NAME
wcscspn — get the length of a complementary wide substring

SYNOPSIS
#include <wchar.h>

size_t wcscspn(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcscspn() function shall compute the length (in wide characters) of the maximum initial
segment of the wide-character string pointed to by ws1 which consists entirely of wide-character
codes not from the wide-character string pointed to by ws2.

CX The wcscspn() function shall not change the setting of errno on valid input.

RETURN VALUE
The wcscspn() function shall return the length of the initial substring of ws1; no return value is
reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsspn()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The RETURN VALUE section is updated to indicate that wcscspn() returns the length of ws1,
rather than ws1 itself.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcscspn() does not change the
setting of errno on valid input.

2374 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

76948

76949

76950

76951

76952

76953

76954

76955

76956

76957

76958

76959

76960

76961

76962

76963

76964

76965

76966

76967

76968

76969

76970

76971

76972

76973

76974

76975

76976

76977

76978

76979

76980

76981

76982

76983

76984

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcsdup()

NAME
wcsdup — duplicate a wide-character string

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcsdup(const wchar_t *string);

DESCRIPTION
The wcsdup() function is the wide-character equivalent of the strdup() function.

The wcsdup() function shall return a pointer to a new wide-character string, allocated as if by a
call to malloc(), which is the duplicate of the wide-character string string. The returned pointer
can be passed to free(). A null pointer is returned if the new wide-character string cannot be
created.

RETURN VALUE
Upon successful completion, the wcsdup() function shall return a pointer to the newly allocated
wide-character string. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The wcsdup() function shall fail if:

[ENOMEM] Memory large enough for the duplicate string could not be allocated.

EXAMPLES
None.

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For wcsdup(), this is the return value.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), strdup(), wcscpy()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 7.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2375

76985

76986

76987

76988

76989

76990

76991

76992

76993

76994

76995

76996

76997

76998

76999

77000

77001

77002

77003

77004

77005

77006

77007

77008

77009

77010

77011

77012

77013

77014

77015

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsftime() System Interfaces

NAME
wcsftime — convert date and time to a wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcsftime(wchar_t *restrict wcs, size_t maxsize,
const wchar_t *restrict format, const struct tm *restrict timeptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcsftime() function shall be equivalent to the strftime() function, except that:

• The argument wcs points to the initial element of an array of wide characters into which
the generated output is to be placed.

• The argument maxsize indicates the maximum number of wide characters to be placed in
the output array.

• The argument format is a wide-character string and the conversion specifications are
replaced by corresponding sequences of wide characters. It is unspecified whether an
encoding error occurs if the format string contains wchar_t values that do not correspond
to members of the character set of the current locale.

CX • Field widths specify the number of wide characters instead of the number of bytes.

• The return value indicates the number of wide characters placed in the output array.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
If the total number of resulting wide-character codes including the terminating null wide-
character code is no more than maxsize, wcsftime() shall return the number of wide-character
codes placed into the array pointed to by wcs, not including the terminating null wide-character
code. Otherwise, zero is returned and the contents of the array are unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strftime()

XBD <wchar.h>

2376 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77016

77017

77018

77019

77020

77021

77022

77023

77024

77025

77026

77027

77028

77029

77030

77031

77032

77033

77034

77035

77036

77037

77038

77039

77040

77041

77042

77043

77044

77045

77046

77047

77048

77049

77050

77051

77052

77053

77054

77055

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcsftime()

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of the format
argument is changed from const char * to const wchar_t *.

Issue 6
The wcsftime() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0388 [73] and XSH/TC2-2008/0389
[740] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2377

77056

77057

77058

77059

77060

77061

77062

77063

77064

77065

77066

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcslcat() System Interfaces

NAME
wcslcat, wcslcpy — size-bounded wide string concatenation and copying

SYNOPSIS
CX #include <wchar.h>

size_t wcslcat(wchar_t *restrict dst, const wchar_t *restrict src,
size_t dstsize);

size_t wcslcpy(wchar_t *restrict dst, const wchar_t *restrict src,
size_t dstsize);

DESCRIPTION
The wcslcpy() and wcslcat() functions copy and concatenate wide strings, stopping when either a
terminating null wide-character code in the source wide string is encountered or the specified
full size (in wide-character codes) of the destination buffer is reached. They null terminate the
result if there is room. The application should ensure that room for the terminating null wide-
character code is included in dstsize.

The wcslcpy() function shall copy not more than dstsize − 1 wide-character codes from the wide
string pointed to by src to the array pointed to by dst; a terminating null wide-character code in
src and wide-character codes that follow it shall not be copied. A terminating null wide-
character code shall be appended to the result, unless dstsize is 0. If copying takes place between
objects that overlap, the behavior is undefined.

The wcslcat() function shall append not more than dstsize − wcslen(dst) − 1 wide-character codes
from the wide string pointed to by src to the end of the wide string pointed to by dst; a
terminating null wide-character code in src and wide-character codes that follow it shall not be
appended. The initial wide-character code of src shall overwrite the null wide-character code at
the end of dst. A terminating null wide-character code shall be appended to the result, unless its
location would be at or beyond dst + dstsize. If copying takes place between objects that overlap,
the behavior is undefined.

The wcslcpy() and wcslcat() functions shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, the wcslcpy() function shall return the length of the wide string
pointed to by src; that is, the number of wide-character codes in the wide string, not including
the terminating null wide-character code.

Upon successful completion, the wcslcat() function shall return the initial length of the wide
string pointed to by dst plus the length of the wide string pointed to by src.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The return value of the wcslcpy() and wcslcat() functions follows the same convention as
snprintf(); that is, they return the total length (in wide-character codes) of the wide string they
tried to create. If the return value is greater than or equal to dstsize, the output wide string has
been truncated.

2378 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77067

77068

77069

77070

77071

77072

77073

77074

77075

77076

77077

77078

77079

77080

77081

77082

77083

77084

77085

77086

77087

77088

77089

77090

77091

77092

77093

77094

77095

77096

77097

77098

77099

77100

77101

77102

77103

77104

77105

77106

77107

77108

77109

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcslcat()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), strlcat(), wcslen(), wcsncat(), wcsncpy()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 8.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2379

77110

77111

77112

77113

77114

77115

77116

77117

77118

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcslen() System Interfaces

NAME
wcslen, wcsnlen — get length of a fixed-sized wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcslen(const wchar_t *ws);
CX size_t wcsnlen(const wchar_t *ws, size_t maxlen);

DESCRIPTION
CX For wcslen(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The wcslen() function shall compute the number of wide-character codes in the wide-character
string to which ws points, not including the terminating null wide-character code.

CX The wcsnlen() function shall compute the smaller of the number of wide characters in the array
to which ws points, not including any terminating null wide-character code, and the value of
maxlen. The wcsnlen() function shall never examine more than the first maxlen characters of the
wide-character array pointed to by ws.

CX The wcslen() and wcsnlen() functions shall not change the setting of errno on valid input.

RETURN VALUE
The wcslen() function shall return the length of ws.

CX The wcsnlen() function shall return the number of wide characters preceding the first null wide-
character code in the array to which ws points, if ws contains a null wide-character code within
the first maxlen wide characters; otherwise, it shall return maxlen.

No return values are reserved to indicate an error.
ERRORS

No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strlen(), wcslcat()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 7
The wcsnlen() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0390 [560] is applied.

2380 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77119

77120

77121

77122

77123

77124

77125

77126

77127

77128

77129

77130

77131

77132

77133

77134

77135

77136

77137

77138

77139

77140

77141

77142

77143

77144

77145

77146

77147

77148

77149

77150

77151

77152

77153

77154

77155

77156

77157

77158

77159

77160

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcslen()

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcslen() and wcsnlen() do not
change the setting of errno on valid input.

Austin Group Defect 986 is applied, adding wcslcat() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2381

77161

77162

77163

77164

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsncasecmp() System Interfaces

NAME
wcsncasecmp, wcsncasecmp_l — case-insensitive wide-character string comparison

SYNOPSIS
CX #include <wchar.h>

int wcsncasecmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);
int wcsncasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

size_t n, locale_t locale);

DESCRIPTION
Refer to wcscasecmp().

2382 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77165

77166

77167

77168

77169

77170

77171

77172

77173

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcsncat()

NAME
wcsncat — concatenate a wide-character string with part of another

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncat(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcsncat() function shall append not more than n wide-character codes (a null wide-
character code and wide-character codes that follow it are not appended) from the array pointed
to by ws2 to the end of the wide-character string pointed to by ws1. The initial wide-character
code of ws2 shall overwrite the null wide-character code at the end of ws1. A terminating null
wide-character code shall always be appended to the result. If copying takes place between
objects that overlap, the behavior is undefined.

CX The wcsncat() function shall not change the setting of errno on valid input.

RETURN VALUE
The wcsncat() function shall return ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscat(), wcslcat()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The wcsncat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcsncat() does not change the
setting of errno on valid input.

Austin Group Defect 986 is applied, adding wcslcat() to the SEE ALSO section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2383

77174

77175

77176

77177

77178

77179

77180

77181

77182

77183

77184

77185

77186

77187

77188

77189

77190

77191

77192

77193

77194

77195

77196

77197

77198

77199

77200

77201

77202

77203

77204

77205

77206

77207

77208

77209

77210

77211

77212

77213

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsncmp() System Interfaces

NAME
wcsncmp — compare part of two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcsncmp() function shall compare not more than n wide-character codes (wide-character
codes that follow a null wide-character code are not compared) from the array pointed to by ws1
to the array pointed to by ws2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

CX The wcsncmp() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, wcsncmp() shall return an integer greater than, equal to, or less
than 0, if the possibly null-terminated array pointed to by ws1 is greater than, equal to, or less
than the possibly null-terminated array pointed to by ws2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp(), wcscmp()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcsncmp() does not change the
setting of errno on valid input.

2384 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77214

77215

77216

77217

77218

77219

77220

77221

77222

77223

77224

77225

77226

77227

77228

77229

77230

77231

77232

77233

77234

77235

77236

77237

77238

77239

77240

77241

77242

77243

77244

77245

77246

77247

77248

77249

77250

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcsncpy()

NAME
wcpncpy, wcsncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

CX wchar_t *wcpncpy(wchar_t restrict *ws1, const wchar_t *restrict ws2,
size_t n);

wchar_t *wcsncpy(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX For wcsncpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The wcpncpy() and wcsncpy() functions shall copy not more than n wide-character codes (wide-
character codes that follow a null wide-character code are not copied) from the array pointed to
by ws2 to the array pointed to by ws1. If copying takes place between objects that overlap, the
behavior is undefined.

If the array pointed to by ws2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes shall be appended to the copy in the array pointed to by ws1,
until n wide-character codes in all are written.

CX The wcsncpy() and wcpncpy() functions shall not change the setting of errno on valid input.

RETURN VALUE
CX If any null wide-character codes were written into the destination, the wcpncpy() function shall

return the address of the first such null wide-character code. Otherwise, it shall return &ws1[n].

The wcsncpy() function shall return ws1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If there is no null wide-character code in the first n wide-character codes of the array pointed to
by ws2, the result is not null-terminated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), wcscpy(), wcslcat()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2385

77251

77252

77253

77254

77255

77256

77257

77258

77259

77260

77261

77262

77263

77264

77265

77266

77267

77268

77269

77270

77271

77272

77273

77274

77275

77276

77277

77278

77279

77280

77281

77282

77283

77284

77285

77286

77287

77288

77289

77290

77291

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsncpy() System Interfaces

Issue 6
The wcsncpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcpncpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcsncpy() and wcpncpy() do not
change the setting of errno on valid input.

Austin Group Defect 986 is applied, adding wcslcat() to the SEE ALSO section.

2386 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77292

77293

77294

77295

77296

77297

77298

77299

77300

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcsnlen()

NAME
wcsnlen — get length of a fixed-sized wide-character string

SYNOPSIS
CX #include <wchar.h>

size_t wcsnlen(const wchar_t *ws, size_t maxlen);

DESCRIPTION
Refer to wcslen().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2387

77301

77302

77303

77304

77305

77306

77307

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsnrtombs() System Interfaces

NAME
wcsnrtombs — convert wide-character string to multi-byte string

SYNOPSIS
CX #include <wchar.h>

size_t wcsnrtombs(char *restrict dst, const wchar_t **restrict src,
size_t nwc, size_t len, mbstate_t *restrict ps);

DESCRIPTION
Refer to wcsrtombs().

2388 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77308

77309

77310

77311

77312

77313

77314

77315

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcspbrk()

NAME
wcspbrk — scan a wide-character string for a wide-character code

SYNOPSIS
#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcspbrk() function shall locate the first occurrence in the wide-character string pointed to by
ws1 of any wide-character code from the wide-character string pointed to by ws2.

CX The wcspbrk() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, wcspbrk() shall return a pointer to the wide-character code or a null
pointer if no wide-character code from ws2 occurs in ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), wcsrchr()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcspbrk() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2389

77316

77317

77318

77319

77320

77321

77322

77323

77324

77325

77326

77327

77328

77329

77330

77331

77332

77333

77334

77335

77336

77337

77338

77339

77340

77341

77342

77343

77344

77345

77346

77347

77348

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsrchr() System Interfaces

NAME
wcsrchr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcsrchr() function shall locate the last occurrence of wc in the wide-character string pointed
to by ws. The application shall ensure that the value of wc is a character representable as a type
wchar_t and a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character code shall be considered to be part of the wide-character string.

CX The wcsrchr() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, wcsrchr() shall return a pointer to the wide-character code or a null
pointer if wc does not occur in the wide-character string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcsrchr() does not change the
setting of errno on valid input.

2390 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77349

77350

77351

77352

77353

77354

77355

77356

77357

77358

77359

77360

77361

77362

77363

77364

77365

77366

77367

77368

77369

77370

77371

77372

77373

77374

77375

77376

77377

77378

77379

77380

77381

77382

77383

77384

77385

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcsrtombs()

NAME
wcsnrtombs, wcsrtombs — convert a wide-character string to a character string (restartable)

SYNOPSIS
#include <wchar.h>

CX size_t wcsnrtombs(char *restrict dst, const wchar_t **restrict src,
size_t nwc, size_t len, mbstate_t *restrict ps);

size_t wcsrtombs(char *restrict dst, const wchar_t **restrict src,
size_t len, mbstate_t *restrict ps);

DESCRIPTION
CX For wcsrtombs(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

The wcsrtombs() function shall convert a sequence of wide characters from the array indirectly
pointed to by src into a sequence of corresponding characters, beginning in the conversion state
described by the object pointed to by ps. If dst is not a null pointer, the converted characters
shall then be stored into the array pointed to by dst. Conversion continues up to and including a
terminating null wide character, which shall also be stored. Conversion shall stop earlier in the
following cases:

• When a code is reached that does not correspond to a valid character

• When the next character would exceed the limit of len total bytes to be stored in the array
pointed to by dst (and dst is not a null pointer)

Each conversion shall take place as if by a call to the wcrtomb() function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null
pointer (if conversion stopped due to reaching a terminating null wide character) or the address
just past the last wide character converted (if any). If conversion stopped due to reaching a
terminating null wide character, the resulting state described shall be the initial conversion state.

If ps is a null pointer, the wcsrtombs() function shall use its own internal mbstate_t object, which
is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

If called with a null ps argument, the wcsrtombs() function need not be thread-safe; however,
such calls shall avoid data races with calls to wcsrtombs() with a non-null argument and with
calls to all other functions.

CX The wcsnrtombs() function shall be equivalent to the wcsrtombs() function, except that the
conversion is limited to the first nwc wide characters.

If called with a null ps argument, the wcsnrtombs() function need not be thread-safe; however,
such calls shall avoid data races with calls to wcsnrtombs() with a non-null argument and with
calls to all other functions.

These functions shall not change the setting of errno if successful.

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

The implementation shall behave as if no function defined in System Interfaces volume of
POSIX.1-2024 calls these functions.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2391

77386

77387

77388

77389

77390

77391

77392

77393

77394

77395

77396

77397

77398

77399

77400

77401

77402

77403

77404

77405

77406

77407

77408

77409

77410

77411

77412

77413

77414

77415

77416

77417

77418

77419

77420

77421

77422

77423

77424

77425

77426

77427

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsrtombs() System Interfaces

RETURN VALUE
If conversion stops because a code is reached that does not correspond to a valid character, an
encoding error occurs. In this case, these functions shall store the value of the macro [EILSEQ] in
errno and return (size_t)−1; the conversion state is undefined. Otherwise, these functions shall
return the number of bytes in the resulting character sequence, not including the terminating
null (if any).

ERRORS
These functions shall fail if:

[EILSEQ] A wide-character code does not correspond to a valid character.

These functions may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), wcrtomb()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
In the DESCRIPTION, a note on using this function in a threaded application is added.

Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

The wcsrtombs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the wcsrtombs() function
need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied.

The wcsnrtombs() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0722 [109,105] is applied.

Issue 8
Austin Group Defect 1302 is applied, aligning these functions with the ISO/IEC 9899: 2018
standard.

2392 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77428

77429

77430

77431

77432

77433

77434

77435

77436

77437

77438

77439

77440

77441

77442

77443

77444

77445

77446

77447

77448

77449

77450

77451

77452

77453

77454

77455

77456

77457

77458

77459

77460

77461

77462

77463

77464

77465

77466

77467

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcsspn()

NAME
wcsspn — get the length of a wide substring

SYNOPSIS
#include <wchar.h>

size_t wcsspn(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcsspn() function shall compute the length (in wide characters) of the maximum initial
segment of the wide-character string pointed to by ws1 which consists entirely of wide-character
codes from the wide-character string pointed to by ws2.

CX The wcsspn() function shall not change the setting of errno on valid input.

RETURN VALUE
The wcsspn() function shall return the length of the initial substring of ws1; no return value is
reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscspn()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The RETURN VALUE section is updated to indicate that wcsspn() returns the length of ws1
rather that ws1 itself.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcsspn() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2393

77468

77469

77470

77471

77472

77473

77474

77475

77476

77477

77478

77479

77480

77481

77482

77483

77484

77485

77486

77487

77488

77489

77490

77491

77492

77493

77494

77495

77496

77497

77498

77499

77500

77501

77502

77503

77504

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsstr() System Interfaces

NAME
wcsstr — find a wide-character substring

SYNOPSIS
#include <wchar.h>

wchar_t *wcsstr(const wchar_t *restrict ws1,
const wchar_t *restrict ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcsstr() function shall locate the first occurrence in the wide-character string pointed to by
ws1 of the sequence of wide characters (excluding the terminating null wide character) in the
wide-character string pointed to by ws2.

CX The wcsstr() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, wcsstr() shall return a pointer to the located wide-character string,
or a null pointer if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function shall return ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The wcsstr() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcsstr() does not change the
setting of errno on valid input.

2394 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77505

77506

77507

77508

77509

77510

77511

77512

77513

77514

77515

77516

77517

77518

77519

77520

77521

77522

77523

77524

77525

77526

77527

77528

77529

77530

77531

77532

77533

77534

77535

77536

77537

77538

77539

77540

77541

77542

77543

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstod()

NAME
wcstod, wcstof, wcstold — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

double wcstod(const wchar_t *restrict nptr, wchar_t **restrict endptr);
float wcstof(const wchar_t *restrict nptr, wchar_t **restrict endptr);
long double wcstold(const wchar_t *restrict nptr,

wchar_t **restrict endptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall convert the initial portion of the wide-character string pointed to by nptr to
double, float, and long double representation, respectively. First, they shall decompose the
input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide characters

2. A subject sequence interpreted as a floating-point constant or representing infinity or
NaN

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to a floating-point number, and return
the result.

The expected form of the subject sequence is an optional '+' or '−' sign, then one of the
following:

• A non-empty sequence of decimal digits optionally containing a radix character; then an
optional exponent part consisting of the wide character 'e' or the wide character 'E',
optionally followed by a '+' or '−' wide character, and then followed by one or more
decimal digits

• A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix
character; then an optional binary exponent part consisting of the wide character 'p' or
the wide character 'P', optionally followed by a '+' or '−' wide character, and then
followed by one or more decimal digits

• One of INF or INFINITY, or any other wide string equivalent except for case

• One of NAN or NAN(n-wchar-sequenceopt), or any other wide string ignoring case in the
NAN part, where:

n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string,
starting with the first non-white-space wide character, that is of the expected form. The subject
sequence contains no wide characters if the input wide string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the radix character (whichever occurs first) shall be

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2395

77544

77545

77546

77547

77548

77549

77550

77551

77552

77553

77554

77555

77556

77557

77558

77559

77560

77561

77562

77563

77564

77565

77566

77567

77568

77569

77570

77571

77572

77573

77574

77575

77576

77577

77578

77579

77580

77581

77582

77583

77584

77585

77586

77587

77588

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstod() System Interfaces

interpreted as a floating constant according to the rules of the C language, except that the radix
character shall be used in place of a period, and that if neither an exponent part nor a radix
character appears in a decimal floating-point number, or if a binary exponent part does not
appear in a hexadecimal floating-point number, an exponent part of the appropriate type with
value zero shall be assumed to follow the last digit in the string. If the subject sequence begins
with a <hyphen-minus>, the sequence shall be interpreted as negated. A wide-character
sequence INF or INFINITY shall be interpreted as an infinity, if representable in the return type,
else as if it were a floating constant that is too large for the range of the return type. A wide-
character sequence NAN or NAN(n-wchar-sequenceopt) shall be interpreted as a quiet NaN, if
supported in the return type, else as if it were a subject sequence part that does not have the
expected form; the meaning of the n-wchar sequences is implementation-defined. A pointer to
the final wide string shall be stored in the object pointed to by endptr, provided that endptr is not
a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the
conversion shall be rounded in an implementation-defined manner.

CX The radix character shall be as defined in the current locale (category LC_NUMERIC). In the
POSIX locale, or in a locale where the radix character is not defined, the radix character shall
default to a <period> ('.').

CX In other than the C or POSIX locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check
for error situations should set errno to 0, then call wcstod(), wcstof(), or wcstold(), then check
errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value. If no conversion

CX could be performed, 0 shall be returned and errno may be set to [EINVAL].

If the correct value would cause an overflow and default rounding is in effect, ±HUGE_VAL,
±HUGE_VALF, or ±HUGE_VALL shall be returned (according to the sign of the value), and errno
shall be set to [ERANGE].

If the correct value would cause underflow, a value whose magnitude is no greater than the
CX smallest normalized positive number in the return type shall be returned and errno set to

[ERANGE].

ERRORS
The wcstod() function shall fail if:

[ERANGE] The value to be returned would cause overflow and default rounding is in
CX effect or the value to be returned would cause underflow.

The wcstod() function may fail if:

CX [EINVAL] No conversion could be performed.

2396 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77589

77590

77591

77592

77593

77594

77595

77596

77597

77598

77599

77600

77601

77602

77603

77604

77605

77606

77607

77608

77609

77610

77611

77612

77613

77614

77615

77616

77617

77618

77619

77620

77621

77622

77623

77624

77625

77626

77627

77628

77629

77630

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstod()

EXAMPLES
None.

APPLICATION USAGE
If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, and the
result is not exactly representable, the result should be one of the two numbers in the
appropriate internal format that are adjacent to the hexadecimal floating source value, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>)
significant digits, the result should be correctly rounded. If the subject sequence D has the
decimal form and more than DECIMAL_DIG significant digits, consider the two bounding,
adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the
values of L, D, and U satisfy "L <= D <= U". The result should be one of the (equal or
adjacent) values that would be obtained by correctly rounding L and U according to the current
rounding direction, with the extra stipulation that the error with respect to D should have a
correct sign for the current rounding direction.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswspace(), localeconv(), setlocale(), wcstol()

XBD Chapter 7 (on page 127), <float.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The wcstod() prototype is updated.

• The wcstof() and wcstold() functions are added.

• If the correct value for wcstod() would cause underflow, the return value changed from 0
(as specified in Issue 5) to the smallest normalized positive number.

• The DESCRIPTION, RETURN VALUE, and APPLICATION USAGE sections are
extensively updated.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/66 is applied, correcting the second
paragraph in the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2397

77631

77632

77633

77634

77635

77636

77637

77638

77639

77640

77641

77642

77643

77644

77645

77646

77647

77648

77649

77650

77651

77652

77653

77654

77655

77656

77657

77658

77659

77660

77661

77662

77663

77664

77665

77666

77667

77668

77669

77670

77671

77672

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstod() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #015 is applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0723 [302] and XSH/TC1-2008/0724
[105] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0391 [584] and XSH/TC2-2008/0392
[796] are applied.

Issue 8
Austin Group Defect 1163 is applied, clarifying the handling of white space in the input string.

Austin Group Defect 1686 is applied, addressing some inconsistencies with strtod().

2398 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77673

77674

77675

77676

77677

77678

77679

77680

77681

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstoimax()

NAME
wcstoimax, wcstoumax — convert a wide-character string to an integer type

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall be equivalent to the wcstol(), wcstoll(), wcstoul(), and wcstoull() functions,
respectively, except that the initial portion of the wide string shall be converted to intmax_t and
uintmax_t representation, respectively.

RETURN VALUE
These functions shall return the converted value, if any.

If no conversion could be performed, zero shall be returned. If the correct value is outside the
range of representable values, {INTMAX_MAX}, {INTMAX_MIN}, or {UINTMAX_MAX} shall
be returned (according to the return type and sign of the value, if any), and errno shall be set to
[ERANGE].

ERRORS
These functions shall fail if:

[EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

[EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcstol(), wcstoul()

XBD <inttypes.h>, <stddef.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2399

77682

77683

77684

77685

77686

77687

77688

77689

77690

77691

77692

77693

77694

77695

77696

77697

77698

77699

77700

77701

77702

77703

77704

77705

77706

77707

77708

77709

77710

77711

77712

77713

77714

77715

77716

77717

77718

77719

77720

77721

77722

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstok() System Interfaces

NAME
wcstok — split a wide-character string into tokens

SYNOPSIS
#include <wchar.h>

wchar_t *wcstok(wchar_t *restrict ws1, const wchar_t *restrict ws2,
wchar_t **restrict ptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

A sequence of calls to wcstok() shall break the wide-character string pointed to by ws1 into a
sequence of tokens, each of which shall be delimited by a wide-character code from the wide-
character string pointed to by ws2. The ptr argument points to a caller-provided wchar_t pointer
into which the wcstok() function shall store information necessary for it to continue scanning the
same wide-character string.

The first call in the sequence has ws1 as its first argument, and is followed by calls with a null
pointer as their first argument. The separator string pointed to by ws2 may be different from call
to call.

The first call in the sequence shall search the wide-character string pointed to by ws1 for the first
wide-character code that is not contained in the current separator string pointed to by ws2. If no
such wide-character code is found, then there are no tokens in the wide-character string pointed
to by ws1 and wcstok() shall return a null pointer. If such a wide-character code is found, it shall
be the start of the first token.

The wcstok() function shall then search from there for a wide-character code that is contained in
the current separator string. If no such wide-character code is found, the current token extends
to the end of the wide-character string pointed to by ws1, and subsequent searches for a token
shall return a null pointer. If such a wide-character code is found, it shall be overwritten by a
null wide character, which terminates the current token. The wcstok() function shall save a
pointer to the following wide-character code, from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, shall start searching
from the saved pointer and behave as described above.

The implementation shall behave as if no function calls wcstok().

CX The wcstok() function shall not change the setting of errno on valid input.

RETURN VALUE
Upon successful completion, the wcstok() function shall return a pointer to the first wide-
character code of a token. Otherwise, if there is no token, wcstok() shall return a null pointer.

ERRORS
No errors are defined.

2400 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77723

77724

77725

77726

77727

77728

77729

77730

77731

77732

77733

77734

77735

77736

77737

77738

77739

77740

77741

77742

77743

77744

77745

77746

77747

77748

77749

77750

77751

77752

77753

77754

77755

77756

77757

77758

77759

77760

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstok()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, a third argument is
added to the definition of wcstok() in the SYNOPSIS.

Issue 6
The wcstok() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcstok() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2401

77761

77762

77763

77764

77765

77766

77767

77768

77769

77770

77771

77772

77773

77774

77775

77776

77777

77778

77779

77780

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstol() System Interfaces

NAME
wcstol, wcstoll — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long wcstol(const wchar_t *restrict nptr, wchar_t **restrict endptr,
int base);

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

These functions shall convert the initial portion of the wide-character string pointed to by nptr to
long and long long, respectively. First, they shall decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space wide characters

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant,
or hexadecimal constant, any of which may be preceded by a '+' or '−' sign. A decimal
constant begins with a non-zero digit, and consists of a sequence of decimal digits. An octal
constant consists of the prefix '0' optionally followed by a sequence of the digits '0' to '7'
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters 'a' (or 'A') to 'f' (or 'F') with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a '+' or '−' sign, but not including an integer suffix. The letters from 'a' (or 'A') to 'z'
(or 'Z') inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
than that of base shall be permitted. If the value of base is 16, the wide-character code
representations of 0x or 0X may optionally precede the sequence of letters and digits, following
the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first non-white-space wide character, that is of the expected form. The
subject sequence contains no wide-character codes if the input wide-character string is empty or
consists entirely of white-space wide characters, or if the first non-white-space wide character is
other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
starting with the first digit shall be interpreted as an integer constant. If the subject sequence has
the expected form and the value of base is between 2 and 36, it shall be used as the base for
conversion, ascribing to each letter its value as given above. If the subject sequence begins with a
<hyphen-minus>, the resulting value shall be the negative of the converted value. A pointer to
the final wide-character string shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

2402 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77781

77782

77783

77784

77785

77786

77787

77788

77789

77790

77791

77792

77793

77794

77795

77796

77797

77798

77799

77800

77801

77802

77803

77804

77805

77806

77807

77808

77809

77810

77811

77812

77813

77814

77815

77816

77817

77818

77819

77820

77821

77822

77823

77824

77825

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstol()

CX In other than the C or POSIX locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN} and {LONG_MAX} or {LLONG_MAX} are returned on
error and are also valid returns on success, an application wishing to check for error situations
should set errno to 0, then call wcstol() or wcstoll(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to indicate the error. If
the correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX},
{LLONG_MIN}, or {LLONG_MAX} shall be returned (according to the sign of the value), and
errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswalpha(), wcstod()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2403

77826

77827

77828

77829

77830

77831

77832

77833

77834

77835

77836

77837

77838

77839

77840

77841

77842

77843

77844

77845

77846

77847

77848

77849

77850

77851

77852

77853

77854

77855

77856

77857

77858

77859

77860

77861

77862

77863

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstol() System Interfaces

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The wcstol() prototype is updated.

• The wcstoll() function is added.

Issue 7
SD5-XSH-ERN-56 is applied, removing the reference to unsigned long and unsigned long long
from the DESCRIPTION.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0725 [105] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0393 [584] and XSH/TC2-2008/0394
[796] are applied.

Issue 8
Austin Group Defect 700 is applied, clarifying how a subject sequence beginning with <hyphen-
minus> is converted.

Austin Group Defect 1163 is applied, clarifying the handling of white space in the input string.

2404 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77864

77865

77866

77867

77868

77869

77870

77871

77872

77873

77874

77875

77876

77877

77878

77879

77880

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstold()

NAME
wcstold — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

long double wcstold(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

DESCRIPTION
Refer to wcstod().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2405

77881

77882

77883

77884

77885

77886

77887

77888

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstoll() System Interfaces

NAME
wcstoll — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
Refer to wcstol().

2406 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77889

77890

77891

77892

77893

77894

77895

77896

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstombs()

NAME
wcstombs — convert a wide-character string to a character string

SYNOPSIS
#include <stdlib.h>

size_t wcstombs(char *restrict s, const wchar_t *restrict pwcs,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcstombs() function shall convert the sequence of wide-character codes that are in the array
pointed to by pwcs into a sequence of characters that begins in the initial shift state and store
these characters into the array pointed to by s, stopping if a character would exceed the limit of n
total bytes or if a null byte is stored. Each wide-character code shall be converted as if by a call to
wctomb(), except that the shift state of wctomb() shall not be affected.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

No more than n bytes shall be modified in the array pointed to by s. If copying takes place
CX between objects that overlap, the behavior is undefined. If s is a null pointer, wcstombs() shall

return the length required to convert the entire array regardless of the value of n, but no values
are stored.

RETURN VALUE
If a wide-character code is encountered that does not correspond to a valid character (of one or
more bytes each), wcstombs() shall return (size_t)−1. Otherwise, wcstombs() shall return the
number of bytes stored in the character array, not including any terminating null byte. The array
shall not be null-terminated if the value returned is n.

ERRORS
The wcstombs() function shall fail if:

CX [EILSEQ] A wide-character code does not correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wctomb()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2407

77897

77898

77899

77900

77901

77902

77903

77904

77905

77906

77907

77908

77909

77910

77911

77912

77913

77914

77915

77916

77917

77918

77919

77920

77921

77922

77923

77924

77925

77926

77927

77928

77929

77930

77931

77932

77933

77934

77935

77936

77937

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstombs() System Interfaces

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION states the effect of when s is a null pointer.

• The [EILSEQ] error condition is added.

The wcstombs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretations 1003.1-2001 #156 and #170 are applied.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0726 [109] is applied.

2408 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77938

77939

77940

77941

77942

77943

77944

77945

77946

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstoul()

NAME
wcstoul, wcstoull — convert a wide-character string to an unsigned long

SYNOPSIS
#include <wchar.h>

unsigned long wcstoul(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

unsigned long long wcstoull(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wcstoul() and wcstoull() functions shall convert the initial portion of the wide-character
string pointed to by nptr to unsigned long and unsigned long long representation, respectively.
First, they shall decompose the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide characters

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the
result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant,
or hexadecimal constant, any of which may be preceded by a '+' or '−' sign. A decimal
constant begins with a non-zero digit, and consists of a sequence of decimal digits. An octal
constant consists of the prefix '0' optionally followed by a sequence of the digits '0' to '7'
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters 'a' (or 'A') to 'f' (or 'F') with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a '+' or '−' sign, but not including an integer suffix. The letters from 'a' (or 'A') to 'z'
(or 'Z') inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
than that of base shall be permitted. If the value of base is 16, the wide-character codes 0x or 0X
may optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first non-white-space wide character, that is of the expected form. The
subject sequence contains no wide-character codes if the input wide-character string is empty or
consists entirely of white-space wide characters, or if the first non-white-space wide character is
other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
starting with the first digit shall be interpreted as an integer constant. If the subject sequence has
the expected form and the value of base is between 2 and 36, it shall be used as the base for
conversion, ascribing to each letter its value as given above. If the subject sequence begins with a
<hyphen-minus>, the resulting value shall be the negative of the converted value; this action
shall be performed in the return type. A pointer to the final wide-character string shall be stored
in the object pointed to by endptr, provided that endptr is not a null pointer.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2409

77947

77948

77949

77950

77951

77952

77953

77954

77955

77956

77957

77958

77959

77960

77961

77962

77963

77964

77965

77966

77967

77968

77969

77970

77971

77972

77973

77974

77975

77976

77977

77978

77979

77980

77981

77982

77983

77984

77985

77986

77987

77988

77989

77990

77991

77992

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstoul() System Interfaces

CX In other than the C or POSIX locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and 0 is also a valid return
on success, an application wishing to check for error situations should set errno to 0, then call
wcstoul() or wcstoull(), then check errno.

RETURN VALUE
Upon successful completion, the wcstoul() and wcstoull() functions shall return the converted

CX value, if any. If no conversion could be performed, 0 shall be returned and errno may be set to
indicate the error. If the correct value is outside the range of representable values,
{ULONG_MAX} or {ULLONG_MAX} respectively shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswalpha(), wcstod(), wcstol()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

2410 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

77993

77994

77995

77996

77997

77998

77999

78000

78001

78002

78003

78004

78005

78006

78007

78008

78009

78010

78011

78012

78013

78014

78015

78016

78017

78018

78019

78020

78021

78022

78023

78024

78025

78026

78027

78028

78029

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcstoul()

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added for when the value of base is not supported.

In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The wcstoul() prototype is updated.

• The wcstoull() function is added.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0727 [105] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0395 [584] and XSH/TC2-2008/0396
[796] are applied.

Issue 8
Austin Group Defect 700 is applied, clarifying how a subject sequence beginning with <hyphen-
minus> is converted.

Austin Group Defect 1163 is applied, clarifying the handling of white space in the input string.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2411

78030

78031

78032

78033

78034

78035

78036

78037

78038

78039

78040

78041

78042

78043

78044

78045

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcstoumax() System Interfaces

NAME
wcstoumax — convert a wide-character string to an integer type

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
Refer to wcstoimax().

2412 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78046

78047

78048

78049

78050

78051

78052

78053

78054

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcswidth()

NAME
wcswidth — number of column positions of a wide-character string

SYNOPSIS
XSI #include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

DESCRIPTION
The wcswidth() function shall determine the number of column positions required for n wide-
character codes (or fewer than n wide-character codes if a null wide-character code is
encountered before n wide-character codes are exhausted) in the string pointed to by pwcs.

The wcswidth() function shall not change the setting of errno on valid input.

RETURN VALUE
The wcswidth() function either shall return 0 (if pwcs points to a null wide-character code), or
return the number of column positions to be occupied by the wide-character string pointed to by
pwcs, or return −1 (if any of the first n wide-character codes in the wide-character string pointed
to by pwcs is not a printable wide-character code).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the
return value for a non-printable wide character is not specified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcwidth()

XBD Section 3.75 (on page 42), <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The Open Group Corrigendum U021/11 is applied. The function is marked as an extension.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcswidth() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2413

78055

78056

78057

78058

78059

78060

78061

78062

78063

78064

78065

78066

78067

78068

78069

78070

78071

78072

78073

78074

78075

78076

78077

78078

78079

78080

78081

78082

78083

78084

78085

78086

78087

78088

78089

78090

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wcsxfrm() System Interfaces

NAME
wcsxfrm, wcsxfrm_l — wide-character string transformation

SYNOPSIS
#include <wchar.h>

size_t wcsxfrm(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

CX size_t wcsxfrm_l(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n, locale_t locale);

DESCRIPTION
CX For wcsxfrm(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The wcsxfrm() and wcsxfrm_l() functions shall transform the wide-character string pointed to
by ws2 and place the resulting wide-character string into the array pointed to by ws1. The
transformation shall be such that if wcscmp() is applied to two transformed wide strings, it shall

CX return a value greater than, equal to, or less than 0, corresponding to the result of wcscoll() and
wcscoll_l() applied to the same two original wide-character strings, and the same LC_COLLATE

CX category of the current locale or the locale object locale, respectively. No more than n wide-
character codes shall be placed into the resulting array pointed to by ws1, including the
terminating null wide-character code. If n is 0, ws1 is permitted to be a null pointer. If copying
takes place between objects that overlap, the behavior is undefined.

CX The wcsxfrm() and wcsxfrm_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call wcsxfrm() or wcsxfrm_l(), then check errno.

The behavior is undefined if the locale argument to wcsxfrm_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The wcsxfrm() and wcsxfrm_l() functions shall return the length of the transformed wide-

character string (not including the terminating null wide-character code). If the value returned is
n or more, the contents of the array pointed to by ws1 are unspecified.

CX On error, the wcsxfrm() and wcsxfrm_l() functions may set errno, but no return value is reserved
to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The wide-character string pointed to by ws2 contains wide-character codes
outside the domain of the collating sequence.

2414 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78091

78092

78093

78094

78095

78096

78097

78098

78099

78100

78101

78102

78103

78104

78105

78106

78107

78108

78109

78110

78111

78112

78113

78114

78115

78116

78117

78118

78119

78120

78121

78122

78123

78124

78125

78126

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcsxfrm()

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed wide-character strings can be ordered
by wcscmp() as appropriate to collating sequence information in the current locale (category
LC_COLLATE).

The fact that when n is 0 ws1 is permitted to be a null pointer is useful to determine the size of
the ws1 array prior to making the transformation.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcscoll()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
In earlier versions, this function was required to return −1 on error.

Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The wcsxfrm() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcsxfrm_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0728 [302], XSH/TC1-2008/0729 [283],
XSH/TC1-2008/0730 [283], and XSH/TC1-2008/0731 [302] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2415

78127

78128

78129

78130

78131

78132

78133

78134

78135

78136

78137

78138

78139

78140

78141

78142

78143

78144

78145

78146

78147

78148

78149

78150

78151

78152

78153

78154

78155

78156

78157

78158

78159

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wctob() System Interfaces

NAME
wctob — wide-character to single-byte conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wctob(wint_t c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wctob() function shall determine whether c corresponds to a member of the extended
character set whose character representation is a single byte when in the initial shift state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

CX The wctob() function shall not change the setting of errno on valid input.

RETURN VALUE
The wctob() function shall return EOF if c does not correspond to a character with length one in
the initial shift state. Otherwise, it shall return the single-byte representation of that character as
an unsigned char converted to int.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wctob() does not change the
setting of errno on valid input.

2416 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78160

78161

78162

78163

78164

78165

78166

78167

78168

78169

78170

78171

78172

78173

78174

78175

78176

78177

78178

78179

78180

78181

78182

78183

78184

78185

78186

78187

78188

78189

78190

78191

78192

78193

78194

78195

78196

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wctomb()

NAME
wctomb — convert a wide-character code to a character

SYNOPSIS
#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

DESCRIPTION
CX Except for requirements relating to data races, the functionality described on this reference page

is aligned with the ISO C standard. Any other conflict between the requirements described here
and the ISO C standard is unintentional. This volume of POSIX.1-2024 defers to the ISO C
standard for all wctomb() functionality except in relation to data races.

The wctomb() function shall determine the number of bytes needed to represent the character
corresponding to the wide-character code whose value is wchar (including any change in the
shift state). It shall store the character representation (possibly multiple bytes and any special
bytes to change shift state) in the array object pointed to by s (if s is not a null pointer). At most
{MB_CUR_MAX} bytes shall be stored. If wchar is 0, a null byte shall be stored, preceded by any
shift sequence needed to restore the initial shift state, and wctomb() shall be left in the initial shift
state.

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function shall be placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer shall cause the internal state of the function to be altered as necessary. A call with s as a
null pointer shall cause this function to return a non-zero value if encodings have state
dependency, and 0 otherwise. Changing the LC_CTYPE category causes the shift state of this
function to be unspecified.

CX The wctomb() function need not be thread-safe; however, it shall avoid data races with all other
functions.

The implementation shall behave as if no function defined in this volume of POSIX.1-2024 calls
wctomb().

RETURN VALUE
If s is a null pointer, wctomb() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, wctomb()
shall return −1 if the value of wchar does not correspond to a valid character, or return the
number of bytes that constitute the character corresponding to the value of wchar.

In no case shall the value returned be greater than the value of the {MB_CUR_MAX} macro.

ERRORS
The wctomb() function shall fail if:

CX [EILSEQ] An invalid wide-character code is detected.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2417

78197

78198

78199

78200

78201

78202

78203

78204

78205

78206

78207

78208

78209

78210

78211

78212

78213

78214

78215

78216

78217

78218

78219

78220

78221

78222

78223

78224

78225

78226

78227

78228

78229

78230

78231

78232

78233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wctomb() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
When the ISO C standard introduced threads in C11, it required wctomb() to avoid data races
(with itself as well as with other functions), whereas POSIX.1-2008 did not require it to be
thread-safe, and in many implementations it did not avoid data races with itself and still does
not. The ISO C committee intend to change the requirements in a future version of the ISO C
standard, but since POSIX.1 currently refers to C17 it is necessary for it not to defer to the ISO C
standard regarding data races in order to continue to allow this function not to avoid data races
with itself.

FUTURE DIRECTIONS
It is expected that a change in a future version of the ISO C standard will allow a future version
of this standard to remove the data race exception from the statement that it defers to the ISO C
standard.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wcstombs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.
Issue 7

Austin Group Interpretations 1003.1-2001 #156 and #170 are applied.

Issue 8
Austin Group Defects 708 and 1302 are applied, aligning this function with the
ISO/IEC 9899: 2018 standard, except in relation to data races.

Austin Group Defect 1572 is applied, removing CX shading from some text derived from the
ISO C standard.

2418 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78234

78235

78236

78237

78238

78239

78240

78241

78242

78243

78244

78245

78246

78247

78248

78249

78250

78251

78252

78253

78254

78255

78256

78257

78258

78259

78260

78261

78262

78263

78264

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wctrans()

NAME
wctrans, wctrans_l — define character mapping

SYNOPSIS
#include <wctype.h>

wctrans_t wctrans(const char *charclass);
CX wctrans_t wctrans_l(const char *charclass, locale_t locale);

DESCRIPTION
CX For wctrans(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The wctrans() and wctrans_l() functions are defined for valid character mapping names
identified in the current locale. The charclass is a string identifying a generic character mapping
name for which codeset-specific information is required. The following character mapping
names are defined in all locales: tolower and toupper.

These functions shall return a value of type wctrans_t, which can be used as the second
CX argument to subsequent calls of towctrans() and towctrans_l().

CX The wctrans() and wctrans_l() functions shall determine values of wctrans_t according to the
CX rules of the coded character set defined by character mapping information in the current locale

or in the locale represented by locale, respectively (category LC_CTYPE).

The values returned by wctrans() shall be valid until a call to setlocale() that modifies the
category LC_CTYPE.

CX The values returned by wctrans_l() shall be valid only in calls to towctrans_l() with a locale
represented by locale with the same LC_CTYPE category value.

The behavior is undefined if the locale argument to wctrans_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The wctrans() and wctrans_l() functions shall return 0 and may set errno to indicate the error if

the given character mapping name is not valid for the current locale (category LC_CTYPE);
otherwise, they shall return a non-zero object of type wctrans_t that can be used in calls to

CX towctrans() and towctrans_l().

ERRORS
These functions may fail if:

CX [EINVAL] The character mapping name pointed to by charclass is not valid in the current
locale.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2419

78265

78266

78267

78268

78269

78270

78271

78272

78273

78274

78275

78276

78277

78278

78279

78280

78281

78282

78283

78284

78285

78286

78287

78288

78289

78290

78291

78292

78293

78294

78295

78296

78297

78298

78299

78300

78301

78302

78303

78304

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wctrans() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
towctrans()

XBD <wctype.h>

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 7
The wctrans_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0732 [302], XSH/TC1-2008/0733 [289],
XSH/TC1-2008/0734 [283], and XSH/TC1-2008/0735 [283] are applied.

2420 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78305

78306

78307

78308

78309

78310

78311

78312

78313

78314

78315

78316

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wctype()

NAME
wctype, wctype_l — define character class

SYNOPSIS
#include <wctype.h>

wctype_t wctype(const char *property);
CX wctype_t wctype_l(const char *property, locale_t locale);

DESCRIPTION
CX For wctype(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2024 defers to the ISO C standard.

CX The wctype() and wctype_l() functions are defined for valid character class names as defined in
CX the current locale or in the locale represented by locale, respectively.

The property argument is a string identifying a generic character class for which codeset-specific
type information is required. The following character class names shall be defined in all locales:

alnum
alpha
blank
cntrl

digit
graph
lower
print

punct
space
upper
xdigit

Additional character class names defined in the locale definition file (category LC_CTYPE) can
also be specified.

These functions shall return a value of type wctype_t, which can be used as the second
CX argument to subsequent calls of iswctype() and iswctype_l().

CX The wctype() and wctype_l() functions shall determine values of wctype_t according to the
CX rules of the coded character set defined by character type information in the current locale or in

the locale represented by locale, respectively (category LC_CTYPE).

The values returned by wctype() shall be valid until a call to setlocale() that modifies the category
LC_CTYPE.

CX The values returned by wctype_l() shall be valid only in calls to iswctype_l() with a locale
represented by locale with the same LC_CTYPE category value.

The behavior is undefined if the locale argument to wctype_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
CX The wctype() and wctype_l() functions shall return 0 if the given character class name is not

valid for the current locale (category LC_CTYPE); otherwise, they shall return an object of type
CX wctype_t that can be used in calls to iswctype() and iswctype_l().

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2421

78317

78318

78319

78320

78321

78322

78323

78324

78325

78326

78327

78328

78329

78330

78331

78332

78333

78334

78335

78336

78337

78338

78339

78340

78341

78342

78343

78344

78345

78346

78347

78348

78349

78350

78351

78352

78353

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wctype() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswctype()

XBD <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 7
The wctype_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0736 [302], XSH/TC1-2008/0737 [283],
and XSH/TC1-2008/0738 [283] are applied.

2422 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78354

78355

78356

78357

78358

78359

78360

78361

78362

78363

78364

78365

78366

78367

78368

78369

78370

78371

78372

78373

78374

78375

78376

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wcwidth()

NAME
wcwidth — number of column positions of a wide-character code

SYNOPSIS
XSI #include <wchar.h>

int wcwidth(wchar_t wc);

DESCRIPTION
The wcwidth() function shall determine the number of column positions required for the wide
character wc. The application shall ensure that the value of wc is a character representable as a
wchar_t, and is a wide-character code corresponding to a valid character in the current locale.

The wcwidth() function shall not change the setting of errno on valid input.

RETURN VALUE
The wcwidth() function shall either return 0 (if wc is a null wide-character code), or return the
number of column positions to be occupied by the wide-character code wc, or return −1 (if wc
does not correspond to a printable wide-character code).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the
return value for a non-printable wide character is not specified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcswidth()

XBD <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

Issue 6
The Open Group Corrigendum U021/12 is applied. This function is marked as an extension.

The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wcwidth() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2423

78377

78378

78379

78380

78381

78382

78383

78384

78385

78386

78387

78388

78389

78390

78391

78392

78393

78394

78395

78396

78397

78398

78399

78400

78401

78402

78403

78404

78405

78406

78407

78408

78409

78410

78411

78412

78413

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wmemchr() System Interfaces

NAME
wmemchr — find a wide character in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemchr(const wchar_t *ws, wchar_t wc, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wmemchr() function shall locate the first occurrence of wc in the initial n wide characters of
the object pointed to by ws. This function shall not be affected by locale and all wchar_t values
shall be treated identically. The null wide character and wchar_t values not corresponding to
valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws is a valid pointer and the function behaves as if
no valid occurrence of wc is found.

CX The wmemchr() function shall not change the setting of errno on valid input.

RETURN VALUE
The wmemchr() function shall return a pointer to the located wide character, or a null pointer if
the wide character does not occur in the object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemcmp(), wmemcpy(), wmemmove(), wmemset()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wmemchr() does not change the
setting of errno on valid input.

2424 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78414

78415

78416

78417

78418

78419

78420

78421

78422

78423

78424

78425

78426

78427

78428

78429

78430

78431

78432

78433

78434

78435

78436

78437

78438

78439

78440

78441

78442

78443

78444

78445

78446

78447

78448

78449

78450

78451

78452

78453

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wmemcmp()

NAME
wmemcmp — compare wide characters in memory

SYNOPSIS
#include <wchar.h>

int wmemcmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wmemcmp() function shall compare the first n wide characters of the object pointed to by
ws1 to the first n wide characters of the object pointed to by ws2. This function shall not be
affected by locale and all wchar_t values shall be treated identically. The null wide character and
wchar_t values not corresponding to valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
shall behave as if the two objects compare equal.

CX The wmemcmp() function shall not change the setting of errno on valid input.

RETURN VALUE
The wmemcmp() function shall return an integer greater than, equal to, or less than zero,
respectively, as the object pointed to by ws1 is greater than, equal to, or less than the object
pointed to by ws2.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcpy(), wmemmove(), wmemset()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wmemcmp() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2425

78454

78455

78456

78457

78458

78459

78460

78461

78462

78463

78464

78465

78466

78467

78468

78469

78470

78471

78472

78473

78474

78475

78476

78477

78478

78479

78480

78481

78482

78483

78484

78485

78486

78487

78488

78489

78490

78491

78492

78493

78494

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wmemcpy() System Interfaces

NAME
wmemcpy — copy wide characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wmemcpy() function shall copy n wide characters from the object pointed to by ws2 to the
object pointed to by ws1. This function shall not be affected by locale and all wchar_t values
shall be treated identically. The null wide character and wchar_t values not corresponding to
valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
shall copy zero wide characters.

CX The wmemcpy() function shall not change the setting of errno on valid input.

RETURN VALUE
The wmemcpy() function shall return the value of ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemmove(), wmemset()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The wmemcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wmemcpy() does not change the
setting of errno on valid input.

2426 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78495

78496

78497

78498

78499

78500

78501

78502

78503

78504

78505

78506

78507

78508

78509

78510

78511

78512

78513

78514

78515

78516

78517

78518

78519

78520

78521

78522

78523

78524

78525

78526

78527

78528

78529

78530

78531

78532

78533

78534

78535

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wmemmove()

NAME
wmemmove — copy wide characters in memory with overlapping areas

SYNOPSIS
#include <wchar.h>

wchar_t *wmemmove(wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wmemmove() function shall copy n wide characters from the object pointed to by ws2 to the
object pointed to by ws1. Copying shall take place as if the n wide characters from the object
pointed to by ws2 are first copied into a temporary array of n wide characters that does not
overlap the objects pointed to by ws1 or ws2, and then the n wide characters from the temporary
array are copied into the object pointed to by ws1.

This function shall not be affected by locale and all wchar_t values shall be treated identically.
The null wide character and wchar_t values not corresponding to valid characters shall not be
treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
shall copy zero wide characters.

CX The wmemmove() function shall not change the setting of errno on valid input.

RETURN VALUE
The wmemmove() function shall return the value of ws1.

ERRORS
No errors are defined

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemcpy(), wmemset()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2427

78536

78537

78538

78539

78540

78541

78542

78543

78544

78545

78546

78547

78548

78549

78550

78551

78552

78553

78554

78555

78556

78557

78558

78559

78560

78561

78562

78563

78564

78565

78566

78567

78568

78569

78570

78571

78572

78573

78574

78575

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wmemmove() System Interfaces

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wmemmove() does not change the
setting of errno on valid input.

2428 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78576

78577

78578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wmemset()

NAME
wmemset — set wide characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemset(wchar_t *ws, wchar_t wc, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2024 defers to the ISO C standard.

The wmemset() function shall copy the value of wc into each of the first n wide characters of the
object pointed to by ws. This function shall not be affected by locale and all wchar_t values shall
be treated identically. The null wide character and wchar_t values not corresponding to valid
characters shall not be treated specially.

If n is zero, the application shall ensure that ws is a valid pointer, and the function shall copy
zero wide characters.

CX The wmemset() function shall not change the setting of errno on valid input.

RETURN VALUE
The wmemset() functions shall return the value of ws.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemcpy(), wmemmove()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 8
Austin Group Defect 448 is applied, adding a requirement that wmemset() does not change the
setting of errno on valid input.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2429

78579

78580

78581

78582

78583

78584

78585

78586

78587

78588

78589

78590

78591

78592

78593

78594

78595

78596

78597

78598

78599

78600

78601

78602

78603

78604

78605

78606

78607

78608

78609

78610

78611

78612

78613

78614

78615

78616

78617

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wordexp() System Interfaces

NAME
wordexp, wordfree — perform word expansions

SYNOPSIS
#include <wordexp.h>

int wordexp(const char *restrict words, wordexp_t *restrict pwordexp,
int flags);

void wordfree(wordexp_t *pwordexp);

DESCRIPTION
The wordexp() function shall perform word expansions as described in XCU Section 2.6 (on page
2483), subject to quoting as described in XCU Section 2.2 (on page 2472), and place the list of
expanded words into the structure pointed to by pwordexp.

The words argument is a pointer to a string containing one or more words to be expanded. The
expansions shall be the same as would be performed by the command line interpreter if words
were the part of a command line representing the arguments to a utility. Therefore, the
application shall ensure that words does not contain an unquoted <newline> character or any of
the unquoted shell special characters '|', '&', ';', '<', '>' except in the context of command
substitution as specified in XCU Section 2.6.3 (on page 2489). It also shall not contain unquoted
parentheses or braces, except in the context of command or variable substitution. The
application shall ensure that every member of words which it expects to have expanded by
wordexp() does not contain an unquoted initial comment character. The application shall also
ensure that any words which it intends to be ignored (because they begin or continue a
comment) are deleted from words. If the argument words contains an unquoted comment
character (<number-sign>) that is the beginning of a token, wordexp() shall either treat the
comment character as a regular character, or interpret it as a comment indicator and ignore the
remainder of words.

The structure type wordexp_t is defined in the <wordexp.h> header and includes at least the
following members:

Member Type Member Name Description
size_t we_wordc Count of words matched by words.
char ** we_wordv Pointer to list of expanded words.
size_t we_offs Slots to reserve at the beginning of

pwordexp−>we_wordv.

The wordexp() function shall store the number of generated words into pwordexp−>we_wordc and
a pointer to a list of pointers to words in pwordexp−>we_wordv. Each individual field created
during field splitting (see XCU Section 2.6.5, on page 2491) or pathname expansion (see XCU
Section 2.6.6, on page 2493) shall be a separate word in the pwordexp−>we_wordv list. The words
shall be in order as described in XCU Section 2.6 (on page 2483). The first pointer after the last
word pointer shall be a null pointer. The expansion of special parameters described in XCU
Section 2.5.2 (on page 2479) is unspecified.

It is the caller’s responsibility to allocate the storage pointed to by pwordexp. The wordexp()
function shall allocate other space as needed, including memory pointed to by
pwordexp−>we_wordv. The wordfree() function shall free any memory associated with pwordexp
from a previous call to wordexp(). The wordfree() function shall not modify errno if pwordexp was
previously modified by wordexp() and not yet freed.

The flags argument is used to control the behavior of wordexp(). The value of flags is the bitwise-
inclusive OR of zero or more of the following constants, which are defined in <wordexp.h>:

2430 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78618

78619

78620

78621

78622

78623

78624

78625

78626

78627

78628

78629

78630

78631

78632

78633

78634

78635

78636

78637

78638

78639

78640

78641

78642

78643

78644

78645

78646

78647

78648

78649

78650

78651

78652

78653

78654

78655

78656

78657

78658

78659

78660

78661

78662

78663

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wordexp()

WRDE_APPEND Append words generated to the ones from a previous call to wordexp().

WRDE_DOOFFS Make use of pwordexp−>we_offs. If this flag is set, pwordexp−>we_offs is
used to specify how many null pointers to add to the beginning of
pwordexp−>we_wordv. In other words, pwordexp−>we_wordv shall point to
pwordexp−>we_offs null pointers, followed by pwordexp−>we_wordc word
pointers, followed by a null pointer.

WRDE_NOCMD If the implementation supports the utilities defined in the Shell and
Utilities volume of POSIX.1-2024, fail if command substitution, as
specified in XCU Section 2.6.3 (on page 2489), is requested.

WRDE_REUSE The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result shall be the
same as if the application had called wordfree() and then called wordexp()
without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new set of words to those generated by a
previous call to wordexp(). The following rules apply to applications when two or more calls to
wordexp() are made with the same value of pwordexp and without intervening calls to wordfree():

1. The first such call shall not set WRDE_APPEND. All subsequent calls shall set it.

2. All of the calls shall set WRDE_DOOFFS, or all shall not set it.

3. After the second and each subsequent call, pwordexp−>we_wordv shall point to a list
containing the following:

a. Zero or more null pointers, as specified by WRDE_DOOFFS and
pwordexp−>we_offs

b. Pointers to the words that were in the pwordexp−>we_wordv list before the call, in
the same order as before

c. Pointers to the new words generated by the latest call, in the specified order

4. The count returned in pwordexp−>we_wordc shall be the total number of words from all of
the calls.

5. The application can change any of the fields after a call to wordexp(), but if it does it shall
reset them to the original value before a subsequent call, using the same pwordexp value,
to wordfree() or wordexp() with the WRDE_APPEND or WRDE_REUSE flag.

If the implementation supports the utilities defined in the Shell and Utilities volume of
POSIX.1-2024, and words contains an unquoted character—<newline>, '|', '&', ';', '<', '>',
'(', ')', '{', '}'—in an inappropriate context, wordexp() shall fail, and the number of
expanded words shall be 0.

Unless WRDE_SHOWERR is set in flags, wordexp() shall redirect stderr to /dev/null for any
utilities executed as a result of command substitution while expanding words. If
WRDE_SHOWERR is set, wordexp() may write messages to stderr if syntax errors are detected
while expanding words, unless the stderr stream has wide orientation in which case the behavior
is undefined. It is unspecified whether any write errors encountered while outputting such
messages will affect the stderr error indicator or the value of errno.

The application shall ensure that if WRDE_DOOFFS is set, then pwordexp−>we_offs has the same

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2431

78664

78665

78666

78667

78668

78669

78670

78671

78672

78673

78674

78675

78676

78677

78678

78679

78680

78681

78682

78683

78684

78685

78686

78687

78688

78689

78690

78691

78692

78693

78694

78695

78696

78697

78698

78699

78700

78701

78702

78703

78704

78705

78706

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wordexp() System Interfaces

value for each wordexp() call and wordfree() call using a given pwordexp.

The results are unspecified if WRDE_APPEND and WRDE_REUSE are both specified.

The following constants are defined as error return values:

WRDE_BADCHAR One of the unquoted characters—<newline>, '|', '&', ';', '<', '>',
'(', ')', '{', '}'—appears in words in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
string.

RETURN VALUE
Upon successful completion, wordexp() shall return 0. Otherwise, a non-zero value, as described
in <wordexp.h>, shall be returned to indicate an error. If wordexp() returns the value
WRDE_NOSPACE, then pwordexp−>we_wordc and pwordexp−>we_wordv shall be updated to
reflect any words that were successfully expanded. In other error cases, if the WRDE_APPEND
flag was specified, pwordexp->we_wordc and pwordexp->we_wordv shall not be modified.

The wordfree() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wordexp() function is intended to be used by an application that wants to do all of the shell’s
expansions on a word or words obtained from a user. For example, if the application prompts
for a pathname (or list of pathnames) and then uses wordexp() to process the input, the user
could respond with anything that would be valid as input to the shell.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to
prevent a user from executing shell commands. Disallowing unquoted shell special characters
also prevents unwanted side-effects, such as executing a command or writing a file.

POSIX.1-2024 does not require the wordexp() function to be thread-safe if passed an expression
referencing an environment variable while any other thread is concurrently modifying any
environment variable; see exec (on page 866).

Even though the WRDE_SHOWERR flag allows the implementation to write messages to stderr
during command substitution or syntax errors, this standard does not provide any way to detect
write failures during the output of such messages.

Applications which use wide-character output functions with stderr should ensure that any calls
to wordexp() do not write to stderr, by avoiding use of the WRDE_SHOWERR flag.

RATIONALE
This function was included as an alternative to glob(). There had been continuing controversy
over exactly what features should be included in glob(). It is hoped that by providing wordexp()
(which provides all of the shell word expansions, but which may be slow to execute) and glob()
(which is faster, but which only performs pathname expansion, without tilde or parameter
expansion) this will satisfy the majority of applications.

2432 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78707

78708

78709

78710

78711

78712

78713

78714

78715

78716

78717

78718

78719

78720

78721

78722

78723

78724

78725

78726

78727

78728

78729

78730

78731

78732

78733

78734

78735

78736

78737

78738

78739

78740

78741

78742

78743

78744

78745

78746

78747

78748

78749

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wordexp()

While wordexp() could be implemented entirely as a library routine, it is expected that most
implementations run a shell in a subprocess to do the expansion.

Two different approaches have been proposed for how the required information might be
presented to the shell and the results returned. They are presented here as examples.

One proposal is to extend the echo utility by adding a −q option. This option would cause echo to
add a <backslash> before each <backslash> and <blank> that occurs within an argument. The
wordexp() function could then invoke the shell as follows:

(void) strcpy(buffer, "echo -q");
(void) strcat(buffer, words);
if ((flags & WRDE_SHOWERR) == 0)

(void) strcat(buffer, "2>/dev/null");
f = popen(buffer, "r");

The wordexp() function would read the resulting output, remove unquoted <backslash>
characters, and break into words at unquoted <blank> characters. If the WRDE_NOCMD flag
was set, wordexp() would have to scan words before starting the subshell to make sure that there
would be no command substitution. In any case, it would have to scan words for unquoted
special characters.

Another proposal is to add the following options to sh:

−w wordlist
This option provides a wordlist expansion service to applications. The words in wordlist
shall be expanded and the following written to standard output:

1. The count of the number of words after expansion, in decimal, followed by a null
byte

2. The number of bytes needed to represent the expanded words (not including null
separators), in decimal, followed by a null byte

3. The expanded words, each terminated by a null byte

If an error is encountered during word expansion, sh exits with a non-zero status after
writing the former to report any words successfully expanded

−P Run in ``protected’’ mode. If specified with the −w option, no command substitution shall
be performed.

With these options, wordexp() could be implemented fairly simply by creating a subprocess
using fork() and executing sh using the line:

execl(<shell path>, "sh", "-P", "-w", words, (char *)0);

after directing standard error to /dev/null.

It seemed objectionable for a library routine to write messages to standard error, unless explicitly
requested, so wordexp() is required to redirect standard error to /dev/null to ensure that no
messages are generated, even for commands executed for command substitution. The
WRDE_SHOWERR flag can be specified to request that error messages be written.

The WRDE_REUSE flag allows the implementation to avoid the expense of freeing and
reallocating memory, if that is possible. A minimal implementation can call wordfree() when
WRDE_REUSE is set.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2433

78750

78751

78752

78753

78754

78755

78756

78757

78758

78759

78760

78761

78762

78763

78764

78765

78766

78767

78768

78769

78770

78771

78772

78773

78774

78775

78776

78777

78778

78779

78780

78781

78782

78783

78784

78785

78786

78787

78788

78789

78790

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wordexp() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fnmatch(), glob()

XBD <wordexp.h>

XCU Chapter 2 (on page 2472)

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The restrict keyword is added to the wordexp() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, adding APPLICATION USAGE.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0739 [460], XSH/TC1-2008/0740 [291],
and XSH/TC1-2008/0741 [460] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0397 [608], XSH/TC2-2008/0398 [704],
XSH/TC2-2008/0399 [704], and XSH/TC2-2008/0400 [608] are applied.

Issue 8
Austin Group Defect 385 is applied, adding a requirement that wordfree() does not modify errno
when passed a pointer to a wordexp_t that can be freed.

2434 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78791

78792

78793

78794

78795

78796

78797

78798

78799

78800

78801

78802

78803

78804

78805

78806

78807

78808

78809

78810

78811

78812

78813

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces wprintf()

NAME
wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wprintf(const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwprintf().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2435

78814

78815

78816

78817

78818

78819

78820

78821

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

write() System Interfaces

NAME
pwrite, write — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

ssize_t write(int fildes, const void *buf, size_t nbyte);

DESCRIPTION
The write() function shall attempt to write nbyte bytes from the buffer pointed to by buf to the
file associated with the open file descriptor, fildes.

Before any action described below is taken, and if nbyte is zero and the file is a regular file, the
write() function may detect and return errors as described below. In the absence of errors, or if
error detection is not performed, the write() function shall return zero and have no other results.
If nbyte is zero and the file is not a regular file, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data shall proceed from
the position in the file indicated by the file offset associated with fildes. Before successful return
from write(), the file offset shall be incremented by the number of bytes actually written. On a
regular file, if the position of the last byte written is greater than or equal to the length of the file,
the length of the file shall be set to this position plus one.

On a file not capable of seeking, writing shall always take place starting at the current position.
The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset shall be set to the end of the file
prior to each write and no intervening file modification operation shall occur between changing
the file offset and the write operation.

If a write() requests that more bytes be written than there is room for (for example, the file size
limit of the process or the physical end of a medium), only as many bytes as there is room for
shall be written. For example, suppose there is space for 20 bytes more in a file before reaching a
limit. A write of 512 bytes will return 20. The next write of a non-zero number of bytes would
give a failure return (except as noted below).

If the request would cause the file size to exceed the soft file size limit for the process and there
XSI is no room for any bytes to be written, the request shall fail and the implementation shall

generate a SIGXFSZ signal for the thread.

If write() is interrupted by a signal before it writes any data, it shall return −1 with errno set to
[EINTR].

If write() is interrupted by a signal after it successfully writes some data, it shall return the
number of bytes written.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined.

After a write() to a regular file has successfully returned:

• Any successful read() from each byte position in the file that was modified by that write
shall return the data specified by the write() for that position until such byte positions are
again modified.

• Any subsequent successful write() to the same byte position in the file shall overwrite that
file data.

2436 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78822

78823

78824

78825

78826

78827

78828

78829

78830

78831

78832

78833

78834

78835

78836

78837

78838

78839

78840

78841

78842

78843

78844

78845

78846

78847

78848

78849

78850

78851

78852

78853

78854

78855

78856

78857

78858

78859

78860

78861

78862

78863

78864

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces write()

Write requests to a pipe or FIFO shall be handled in the same way as a regular file with the
following exceptions:

• There is no file offset associated with a pipe or FIFO, hence each write request shall
append to the end of the pipe or FIFO.

• Write requests of {PIPE_BUF} bytes or less shall not be interleaved with data from other
threads performing write operations on the same pipe or FIFO. Writes of greater than
{PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with write
operations by other threads, whether or not the O_NONBLOCK flag of the file status flags
is set.

• If the O_NONBLOCK flag is clear, a write request may cause the thread to block, but on
normal completion it shall return nbyte.

• If the O_NONBLOCK flag is set, write() requests shall be handled differently, in the
following ways:

— The write() function shall not block the thread.

— A write request for {PIPE_BUF} or fewer bytes shall have the following effect: if there
is sufficient space available in the pipe or FIFO, write() shall transfer all the data and
return the number of bytes requested. Otherwise, write() shall transfer no data and
return −1 with errno set to [EAGAIN].

— A write request for more than {PIPE_BUF} bytes shall cause one of the following:

— When at least one byte can be written, transfer what it can and return the
number of bytes written. When all data previously written to the pipe or FIFO
is read, it shall transfer at least {PIPE_BUF} bytes.

— When no data can be written, transfer no data, and return −1 with errno set to
[EAGAIN].

When attempting to write to a file descriptor (other than a pipe or FIFO) that supports non-
blocking writes and cannot accept the data immediately:

• If the O_NONBLOCK flag is clear, write() shall block the calling thread until the data can
be accepted.

• If the O_NONBLOCK flag is set, write() shall not block the thread. If some data can be
written without blocking the thread, write() shall write what it can and return the number
of bytes written. Otherwise, it shall return −1 and set errno to [EAGAIN].

Upon successful completion, where nbyte is greater than 0, write() shall mark for update the last
data modification and last file status change timestamps of the file, and if the file is a regular file,
the S_ISUID and S_ISGID bits of the file mode may be cleared.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with fildes.

If fildes refers to a socket, write() shall be equivalent to send() with no flags set.

SIO If the O_DSYNC bit has been set, write I/O operations on the file descriptor shall complete as
defined by synchronized I/O data integrity completion.

If the O_SYNC bit has been set, write I/O operations on the file descriptor shall complete as
defined by synchronized I/O file integrity completion.

SHM If fildes refers to a shared memory object, the result of the write() function is unspecified.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2437

78865

78866

78867

78868

78869

78870

78871

78872

78873

78874

78875

78876

78877

78878

78879

78880

78881

78882

78883

78884

78885

78886

78887

78888

78889

78890

78891

78892

78893

78894

78895

78896

78897

78898

78899

78900

78901

78902

78903

78904

78905

78906

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

write() System Interfaces

TYM If fildes refers to a typed memory object, the result of the write() function is unspecified.

The pwrite() function shall be equivalent to write(), except that it writes into a given position
and does not change the file offset (regardless of whether O_APPEND is set). The first three
arguments to pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file. An attempt to perform a pwrite() on a file that is incapable of
seeking shall result in an error.

RETURN VALUE
Upon successful completion, these functions shall return the number of bytes actually written to
the file associated with fildes. This number shall never be greater than nbyte. Otherwise, −1 shall
be returned and errno set to indicate the error.

ERRORS
These functions shall fail if:

[EAGAIN] The file is neither a pipe, nor a FIFO, nor a socket, the O_NONBLOCK flag is
set for the file descriptor, and the thread would be delayed in the write()
operation.

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EFBIG] An attempt was made to write a file that exceeds the implementation-defined
maximum file size and there was no room for any bytes to be written.

[EFBIG] An attempt was made to write a file that exceeds the file size limit of the
XSI process, and there was no room for any bytes to be written. A SIGXFSZ

signal shall also be generated for the thread.

[EFBIG] The file is a regular file, nbyte is greater than 0, and the starting position is
greater than or equal to the offset maximum established in the open file
description associated with fildes.

[EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

[EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the calling thread is not blocking
SIGTTOU, the process is not ignoring SIGTTOU, and the process group of the
process is orphaned. This error may also be returned under implementation-
defined conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

The pwrite() function shall fail if:

[EINVAL] The file is a regular file or block special file, and the offset argument is
negative. The file offset shall remain unchanged.

[ESPIPE] The file is incapable of seeking.

The write() function shall fail if:

[EAGAIN] The file is a pipe or FIFO, the O_NONBLOCK flag is set for the file descriptor,
and the thread would be delayed in the write operation.

[EAGAIN] or [EWOULDBLOCK]
The file is a socket, the O_NONBLOCK flag is set for the file descriptor, and
the thread would be delayed in the write operation.

2438 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78907

78908

78909

78910

78911

78912

78913

78914

78915

78916

78917

78918

78919

78920

78921

78922

78923

78924

78925

78926

78927

78928

78929

78930

78931

78932

78933

78934

78935

78936

78937

78938

78939

78940

78941

78942

78943

78944

78945

78946

78947

78948

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces write()

[ECONNRESET] A write was attempted on a socket that is not connected.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process, or that only has one end open. A SIGPIPE signal shall also be sent
to the thread.

[EPIPE] A write was attempted on a socket that is shut down for writing, or is no
longer connected. In the latter case, if the socket is of type SOCK_STREAM, a
SIGPIPE signal shall also be sent to the thread.

These functions may fail if:

[EIO] A physical I/O error has occurred.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

The write() function may fail if:

[EACCES] A write was attempted on a socket and the calling process does not have
appropriate privileges.

[ENETDOWN] A write was attempted on a socket and the local network interface used to
reach the destination is down.

[ENETUNREACH]
A write was attempted on a socket and no route to the network is present.

EXAMPLES

Writing from a Buffer

The following example writes data from the buffer pointed to by buf to the file associated with
the file descriptor fd.

#include <sys/types.h>
#include <string.h>
...
char buf[20];
size_t nbytes;
ssize_t bytes_written;
int fd;
...
strcpy(buf, "This is a test\n");
nbytes = strlen(buf);

bytes_written = write(fd, buf, nbytes);
...

APPLICATION USAGE
None.

RATIONALE
See also the RATIONALE section in read().

An attempt to write to a pipe or FIFO has several major characteristics:

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2439

78949

78950

78951

78952

78953

78954

78955

78956

78957

78958

78959

78960

78961

78962

78963

78964

78965

78966

78967

78968

78969

78970

78971

78972

78973

78974

78975

78976

78977

78978

78979

78980

78981

78982

78983

78984

78985

78986

78987

78988

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

write() System Interfaces

• Atomic/non-atomic: A write is atomic if the whole amount written in one operation is not
interleaved with data from any other thread. This is useful when there are multiple
writers sending data to a single reader. Applications need to know how large a write
request can be expected to be performed atomically. This maximum is called {PIPE_BUF}.
This volume of POSIX.1-2024 does not say whether write requests for more than
{PIPE_BUF} bytes are atomic, but requires that writes of {PIPE_BUF} or fewer bytes shall
be atomic.

• Blocking/immediate: Blocking is only possible with O_NONBLOCK clear. If there is enough
space for all the data requested to be written immediately, the implementation should do
so. Otherwise, the calling thread may block; that is, pause until enough space is available
for writing. The effective size of a pipe or FIFO (the maximum amount that can be written
in one operation without blocking) may vary dynamically, depending on the
implementation, so it is not possible to specify a fixed value for it.

• Complete/partial/deferred: A write request:

int fildes;
size_t nbyte;
ssize_t ret;
char *buf;

ret = write(fildes, buf, nbyte);

may return:

Complete ret=nbyte

Partial ret<nbyte

This shall never happen if nbyte≤{PIPE_BUF}. If it does happen (with
nbyte>{PIPE_BUF}), this volume of POSIX.1-2024 does not guarantee
atomicity, even if ret≤{PIPE_BUF}, because atomicity is guaranteed according
to the amount requested, not the amount written.

Deferred: ret=−1, errno=[EAGAIN]

This error indicates that a later request may succeed. It does not indicate that
it shall succeed, even if nbyte≤{PIPE_BUF}, because if no process reads from
the pipe or FIFO, the write never succeeds. An application could usefully
count the number of times [EAGAIN] is caused by a particular value of
nbyte>{PIPE_BUF} and perhaps do later writes with a smaller value, on the
assumption that the effective size of the pipe or FIFO may have decreased.

Partial and deferred writes are only possible with O_NONBLOCK set.

The relations of these properties are shown in the following tables:

Write to a Pipe or FIFO with O_NONBLOCK clear
Immediately Writable: None Some nbyte
nbyte≤{PIPE_BUF} Atomic blocking Atomic blocking Atomic immediate

nbyte nbyte nbyte
nbyte>{PIPE_BUF} Blocking nbyte Blocking nbyte Blocking nbyte

If the O_NONBLOCK flag is clear, a write request shall block if the amount writable
immediately is less than that requested. If the flag is set (by fcntl()), a write request shall never
block.

2440 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

78989

78990

78991

78992

78993

78994

78995

78996

78997

78998

78999

79000

79001

79002

79003

79004

79005

79006

79007

79008

79009

79010

79011

79012

79013

79014

79015

79016

79017

79018

79019

79020

79021

79022

79023

79024

79025

79026

79027

79028

79029

79030

79031

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces write()

Write to a Pipe or FIFO with O_NONBLOCK set
Immediately Writable: None Some nbyte
nbyte≤{PIPE_BUF} −1, [EAGAIN] −1, [EAGAIN] Atomic nbyte
nbyte>{PIPE_BUF} −1, [EAGAIN] <nbyte or −1, ≤nbyte or −1,

[EAGAIN] [EAGAIN]

There is no exception regarding partial writes when O_NONBLOCK is set. With the exception
of writing to an empty pipe or FIFO, this volume of POSIX.1-2024 does not specify exactly when
a partial write is performed since that would require specifying internal details of the
implementation. Every application should be prepared to handle partial writes when
O_NONBLOCK is set and the requested amount is greater than {PIPE_BUF}, just as every
application should be prepared to handle partial writes on other kinds of file descriptors.

The intent of forcing writing at least one byte if any can be written is to assure that each write
makes progress if there is any room in the pipe or FIFO. If the pipe or FIFO is empty,
{PIPE_BUF} bytes must be written; if not, at least some progress must have been made.

Where this volume of POSIX.1-2024 requires −1 to be returned and errno set to [EAGAIN], most
historical implementations return zero (with the O_NDELAY flag set, which is the historical
predecessor of O_NONBLOCK, but is not itself in this volume of POSIX.1-2024). The error
indications in this volume of POSIX.1-2024 were chosen so that an application can distinguish
these cases from end-of-file. While write() cannot receive an indication of end-of-file, read() can,
and the two functions have similar return values. Also, some existing systems (for example,
Eighth Edition) permit a write of zero bytes to mean that the reader should get an end-of-file
indication; for those systems, a return value of zero from write() indicates a successful write of
an end-of-file indication.

Implementations are allowed, but not required, to perform error checking for write() requests of
zero bytes.

The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes that can be
written to a pipe or FIFO in a single operation) was considered, but rejected, because this
concept would unnecessarily limit application writing.

See also the discussion of O_NONBLOCK in read().

Writes can be serialized with respect to other reads and writes. If a read() of file data can be
proven (by any means) to occur after a write() of the data, it must reflect that write(), even if the
calls are made by different threads. A similar requirement applies to multiple write operations to
the same file position. This is needed to guarantee the propagation of data from write() calls to
subsequent read() calls. This requirement is particularly significant for networked file systems,
where some caching schemes violate these semantics.

Note that this is specified in terms of read() and write(). The XSI extensions readv() and writev()
also obey these semantics. A new ``high-performance’’ write analog that did not follow these
serialization requirements would also be permitted by this wording. This volume of
POSIX.1-2024 is also silent about any effects of application-level caching (such as that done by
stdio).

This volume of POSIX.1-2024 does not specify the value of the file offset after an error is
returned; there are too many cases. For programming errors, such as [EBADF], the concept is
meaningless since no file is involved. For errors that are detected immediately, such as
[EAGAIN], clearly the pointer should not change. After an interrupt or hardware error, however,
an updated value would be very useful and is the behavior of many implementations.

This volume of POSIX.1-2024 does not specify the behavior of concurrent writes to a regular file

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2441

79032

79033

79034

79035

79036

79037

79038

79039

79040

79041

79042

79043

79044

79045

79046

79047

79048

79049

79050

79051

79052

79053

79054

79055

79056

79057

79058

79059

79060

79061

79062

79063

79064

79065

79066

79067

79068

79069

79070

79071

79072

79073

79074

79075

79076

79077

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

write() System Interfaces

from multiple threads, except that each write is atomic (see Section 2.9.7, on page 547).
Applications should use some form of concurrency control.

This volume of POSIX.1-2024 intentionally does not specify any pwrite() errors related to pipes,
FIFOs, and sockets other than [ESPIPE].

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), dup(), fcntl(), getrlimit(), lseek(), open(), pipe(), read(), writev()

XBD <limits.h>, <sys/uio.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

The pwrite() function is added.

Issue 6
The DESCRIPTION states that the write() function does not block the thread. Previously this
said ``process’’ rather than ``thread’’.

The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now states that if write() is interrupted by a signal after it has
successfully written some data, it returns the number of bytes written. In the POSIX.1-1988
standard, it was optional whether write() returned the number of bytes written, or whether
it returned −1 with errno set to [EINTR]. This is a FIPS requirement.

• The following changes are made to support large files:

— For regular files, no data transfer occurs past the offset maximum established in the
open file description associated with the fildes.

— A second [EFBIG] error condition is added.

• The [EIO] error condition is added.

• The [EPIPE] error condition is added for when a pipe has only one end open.

• The [ENXIO] optional error condition is added.

Text referring to sockets is added to the DESCRIPTION.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of reading zero bytes is clarified.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
write() results are unspecified for typed memory objects.

The following error conditions are added for operations on sockets: [EAGAIN],

2442 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

79078

79079

79080

79081

79082

79083

79084

79085

79086

79087

79088

79089

79090

79091

79092

79093

79094

79095

79096

79097

79098

79099

79100

79101

79102

79103

79104

79105

79106

79107

79108

79109

79110

79111

79112

79113

79114

79115

79116

79117

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces write()

[EWOULDBLOCK], [ECONNRESET], [ENOTCONN], and [EPIPE].

The [EIO] error is made optional.

The [ENOBUFS] error is added for sockets.

The following error conditions are added for operations on sockets: [EACCES], [ENETDOWN],
and [ENETUNREACH].

The writev() function is split out into a separate reference page.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/146 is applied, updating text in the
ERRORS section from ``a SIGPIPE signal is generated to the calling process’’ to ``a SIGPIPE
signal shall also be sent to the thread’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/147 is applied, making a correction to the
RATIONALE.

Issue 7
The pwrite() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

SD5-XSH-ERN-160 is applied, updating the DESCRIPTION to clarify the requirements for the
pwrite() function, and to change the use of the phrase ``file pointer’’ to ``file offset’’.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0742 [219], XSH/TC1-2008/0743 [215],
XSH/TC1-2008/0744 [79], and XSH/TC1-2008/0745 [215] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0401 [676,710] and
XSH/TC2-2008/0402 [966] are applied.

Issue 8
Austin Group Defect 308 is applied, clarifying the handling of [EFBIG] errors.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1430 is applied, clarifying that requirements relating to data interleaving
on pipes and FIFOs apply to write operations in other threads, not just other processes, and
changing some uses of ``pipe’’ to ``pipe or FIFO’’.

Austin Group Defect 1669 is applied, removing XSI shading from part of the [EFBIG] error
relating to the file size limit for the process.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2443

79118

79119

79120

79121

79122

79123

79124

79125

79126

79127

79128

79129

79130

79131

79132

79133

79134

79135

79136

79137

79138

79139

79140

79141

79142

79143

79144

79145

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

writev() System Interfaces

NAME
writev — write a vector

SYNOPSIS
XSI #include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The writev() function shall be equivalent to write(), except as described below. The writev()
function shall gather output data from the iovcnt buffers specified by the members of the iov
array: iov[0], iov[1], . . ., iov[iovcnt−1]. The iovcnt argument is valid if greater than 0 and less than
or equal to {IOV_MAX}, as defined in <limits.h>.

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. The writev() function shall always write a complete area before proceeding to
the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0,
writev() shall return 0 and have no other effect. For other file types, the behavior is unspecified.

If the sum of the iov_len values is greater than {SSIZE_MAX}, the operation shall fail and no data
shall be transferred.

RETURN VALUE
Upon successful completion, writev() shall return the number of bytes actually written.
Otherwise, it shall return a value of −1, the file-pointer shall remain unchanged, and errno shall
be set to indicate an error.

ERRORS
Refer to write().

In addition, the writev() function shall fail if:

[EINVAL] The sum of the iov_len values in the iov array would overflow an ssize_t.

The writev() function may fail and set errno to:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

EXAMPLES

Writing Data from an Array

The following example writes data from the buffers specified by members of the iov array to the
file associated with the file descriptor fd.

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
...
ssize_t bytes_written;
int fd;
char *buf0 = "short string\n";
char *buf1 = "This is a longer string\n";
char *buf2 = "This is the longest string in this example\n";
int iovcnt;
struct iovec iov[3];

2444 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

79146

79147

79148

79149

79150

79151

79152

79153

79154

79155

79156

79157

79158

79159

79160

79161

79162

79163

79164

79165

79166

79167

79168

79169

79170

79171

79172

79173

79174

79175

79176

79177

79178

79179

79180

79181

79182

79183

79184

79185

79186

79187

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces writev()

iov[0].iov_base = buf0;
iov[0].iov_len = strlen(buf0);
iov[1].iov_base = buf1;
iov[1].iov_len = strlen(buf1);
iov[2].iov_base = buf2;
iov[2].iov_len = strlen(buf2);
...
iovcnt = sizeof(iov) / sizeof(struct iovec);

bytes_written = writev(fd, iov, iovcnt);
...

APPLICATION USAGE
None.

RATIONALE
Refer to write().

FUTURE DIRECTIONS
None.

SEE ALSO
readv(), write()

XBD <limits.h>, <sys/uio.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
Split out from the write() reference page.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2445

79188

79189

79190

79191

79192

79193

79194

79195

79196

79197

79198

79199

79200

79201

79202

79203

79204

79205

79206

79207

79208

79209

79210

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wscanf() System Interfaces

NAME
wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wscanf(const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwscanf().

2446 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

79211

79212

79213

79214

79215

79216

79217

79218

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces y0()

NAME
y0, y1, yn — Bessel functions of the second kind

SYNOPSIS
XSI #include <math.h>

double y0(double x);
double y1(double x);
double yn(int n, double x);

DESCRIPTION
The y0(), y1(), and yn() functions shall compute Bessel functions of x of the second kind of
orders 0, 1, and n, respectively. y0(x) shall be equivalent to yn(0, x), and y1(x) shall be equivalent
to yn(1, x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the relevant Bessel value of x of the
second kind.

MXX If x is NaN, NaN shall be returned.

MXX If the x argument to these functions is negative, either NaN (if supported) or the same return
value as when x is 0.0 (see below) shall be returned, and a domain error may occur.

If x is 0.0, y0() and y1() shall return −HUGE_VAL and a pole error may occur. If x is 0.0 and n is
not both negative and odd, yn() shall return −HUGE_VAL and a pole error may occur. If x is 0.0
and n is negative and odd, yn() shall return +HUGE_VAL and a pole error may occur.

MXX If x is +Inf, +0 shall be returned.

MXX If the correct result would cause underflow and is not representable, a range error may occur,
MXX and the function shall return 0.0, or (if the IEC 60559 Floating-Point option is not supported) an

implementation-defined value no greater in magnitude than DBL_MIN.
MXX If the correct result would cause underflow, and is representable, a range error may occur and

the correct value shall be returned.

If the correct result of calling y1() would cause overflow, −HUGE_VAL shall be returned and a
range error may occur. If n is not both negative and odd, and the correct result of calling yn()
would cause overflow, −HUGE_VAL shall be returned and a range error may occur. If n is
negative and odd, and the correct result of calling yn() would cause overflow, +HUGE_VAL
shall be returned and a range error may occur.

ERRORS
These functions may fail if:

Domain Error The value of x is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2447

79219

79220

79221

79222

79223

79224

79225

79226

79227

79228

79229

79230

79231

79232

79233

79234

79235

79236

79237

79238

79239

79240

79241

79242

79243

79244

79245

79246

79247

79248

79249

79250

79251

79252

79253

79254

79255

79256

79257

79258

79259

79260

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

y0() System Interfaces

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The value of x is too large in magnitude, or the correct result would cause
underflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

The y1() and yn() functions may fail if:

Range Error The correct result would cause overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), j0()

XBD Section 4.23 (on page 109), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

The RETURN VALUE and ERRORS sections are reworked for alignment of the error handling
with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/148 is applied, updating the RETURN
VALUE and ERRORS sections. The changes are made for consistency with the general rules
stated in ``Treatment of Error Conditions for Mathematical Functions’’ in the Base Definitions
volume of POSIX.1-2024.

2448 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

79261

79262

79263

79264

79265

79266

79267

79268

79269

79270

79271

79272

79273

79274

79275

79276

79277

79278

79279

79280

79281

79282

79283

79284

79285

79286

79287

79288

79289

79290

79291

79292

79293

79294

79295

79296

79297

79298

79299

79300

79301

79302

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces y0()

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0746 [68] is applied.

Issue 8
Austin Group Defect 714 is applied, changing the behavior of these functions for special cases to
be a better match for their mathematical behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2449

79303

79304

79305

79306

79307

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces

2450 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Open Group Standard

Vol. 3:

Shell and Utilities, Issue 8

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2451

79308

79309

79310

79311

79312

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

2452 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 1

Introduction

The Shell and Utilities volume of POSIX.1-2024 describes the commands and utilities offered to
application programs by POSIX-conformant systems.

1.1 Relationship to Other Documents

1.1.1 System Interfaces

This subsection describes some of the features provided by the System Interfaces volume of
POSIX.1-2024 that are assumed to be globally available on all systems conforming to this volume
of POSIX.1-2024. This subsection does not attempt to detail all of the features defined in the
System Interfaces volume of POSIX.1-2024 that are required by all of the utilities defined in this
volume of POSIX.1-2024; the utility and function descriptions point out additional functionality
required to provide the corresponding specific features needed by each.

The following subsections describe frequently used concepts. Many of these concepts are
described in the Base Definitions volume of POSIX.1-2024. Utility and function description
statements override these defaults when appropriate.

1.1.1.1 Process Attributes

The following process attributes, as described in the System Interfaces volume of POSIX.1-2024,
are assumed to be supported for all processes in this volume of POSIX.1-2024:

Controlling Terminal
Current Working Directory
Effective Group ID
Effective User ID
File Descriptors
File Mode Creation Mask
Process Group ID
Process ID

Real Group ID
Real User ID
Root Directory
Saved Set-Group-ID
Saved Set-User-ID
Session Membership
Supplementary Group IDs

A conforming implementation may include additional process attributes.

1.1.1.2 Concurrent Execution of Processes

The following functionality of the fork() function defined in the System Interfaces volume of
POSIX.1-2024 shall be available on all systems conforming to this volume of POSIX.1-2024:

1. Independent processes shall be capable of executing independently without either
process terminating.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2453

79313

79314

79315

79316

79317

79318

79319

79320

79321

79322

79323

79324

79325

79326

79327

79328

79329

79330

79331

79332

79333

79334

79335

79336

79337

79338

79339

79340

79341

79342

79343

79344

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Relationship to Other Documents Introduction

2. A process shall be able to create a new process with all of the attributes referenced in
Section 1.1.1.1 (on page 2453), determined according to the semantics of a call to the fork()
function defined in the System Interfaces volume of POSIX.1-2024 followed by a call in
the child process to one of the exec functions defined in the System Interfaces volume of
POSIX.1-2024.

1.1.1.3 File Access Permissions

The file access control mechanism described by XBD Section 4.7 (on page 97) shall apply to all
files on an implementation conforming to this volume of POSIX.1-2024.

1.1.1.4 File Read, Write, and Creation

If a file that does not exist is to be written, it shall be created as described below, unless the
utility description states otherwise.

When a file that does not exist is created, the following features defined in the System Interfaces
volume of POSIX.1-2024 shall apply unless the utility or function description states otherwise:

1. The user ID of the file shall be set to the effective user ID of the calling process.

2. The group ID of the file shall be set to the effective group ID of the calling process or the
group ID of the directory in which the file is being created.

3. If the file is a regular file, the permission bits of the file shall be set to:

S_IROTH | S_IWOTH | S_IRGRP | S_IWGRP | S_IRUSR | S_IWUSR

(see the description of File Modes in XBD Chapter 14 (on page 221), <sys/stat.h>) except
that the bits specified by the file mode creation mask of the process shall be cleared. If the
file is a directory, the permission bits shall be set to:

S_IRWXU | S_IRWXG | S_IRWXO

except that the bits specified by the file mode creation mask of the process shall be
cleared.

4. The last data access, last data modification, and last file status change timestamps of the
file shall be updated as specified in XBD Section 4.12 (on page 98).

5. If the file is a directory, it shall be an empty directory; otherwise, the file shall have length
zero.

6. If the file is a symbolic link, the effect shall be undefined unless the {POSIX2_SYMLINKS}
variable is in effect for the directory in which the symbolic link would be created.

7. Unless otherwise specified, the file created shall be a regular file.

When an attempt is made to create a file that already exists, the utility shall take the action
indicated in Table 1-1 (on page 2455) corresponding to the type of the file the utility is trying to
create and the type of the existing file, unless the utility description states otherwise.

2454 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

79345

79346

79347

79348

79349

79350

79351

79352

79353

79354

79355

79356

79357

79358

79359

79360

79361

79362

79363

79364

79365

79366

79367

79368

79369

79370

79371

79372

79373

79374

79375

79376

79377

79378

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Relationship to Other Documents

Table 1-1 Actions when Creating a File that Already Exists

New Type Function
Existing Type B C D F L M P Q R S T Creating New

B Block Special F F F F F U U U OF U U mknod()**
C Character Special F F F F F U U U OF U U mknod()**
D Directory F F F F F — — — F — U mkdir()
F FIFO Special File F F F F F — — — O — U mkfifo()
L Symbolic Link F F F F F — — — FL — U symlink()
M Shared Memory F F F F F — — — — — U shm_open()
P Semaphore F F F F F — — — — — U sem_open()
Q Message Queue F F F F F — — — — — U mq_open()
R Regular File F F F F F — — — RF — U open()
S Socket F F F F F — — — — — U bind()
T Typed Memory F F F F F U U U U U U *

The following codes are used in Table 1-1:

F Fail. The attempt to create the new file shall fail and the utility shall either continue with its
operation or exit immediately with an exit status that indicates an error occurred,
depending on the description of the utility.

FL Follow link. Unless otherwise specified, the symbolic link shall be followed as specified for
pathname resolution, and the operation performed shall be as if the target of the symbolic
link (after all resolution) had been named. If the target of the symbolic link does not exist, it
shall be as if that nonexistent target had been named directly.

O Open FIFO. When attempting to create a regular file, and the existing file is a FIFO special
file:

1. If the FIFO is not already open for reading, the attempt shall block until the FIFO is
opened for reading.

2. Once the FIFO is open for reading, the utility shall open the FIFO for writing and
continue with its operation.

OF The named file shall be opened with the consequences defined for that file type.

RF Regular file. When attempting to create a regular file, and the existing file is a regular file:

1. The user ID, group ID, and permission bits of the file shall not be changed.

2. The file shall be truncated to zero length.

3. The last data modification and last file status change timestamps shall be marked for
update.

— The effect is implementation-defined unless specified by the utility description.

U The effect is unspecified unless specified by the utility description.

* There is no portable way to create a file of this type.

** Not portable.

When a file is to be appended, the file shall be opened in a manner equivalent to using the
O_APPEND flag, without the O_TRUNC flag, in the open() function defined in the System
Interfaces volume of POSIX.1-2024.

When a file is to be read or written, the file shall be opened with an access mode corresponding

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2455

79379

79380

79381

79382

79383

79384

79385

79386

79387

79388

79389

79390

79391

79392

79393

79394

79395

79396

79397

79398

79399

79400

79401

79402

79403

79404

79405

79406

79407

79408

79409

79410

79411

79412

79413

79414

79415

79416

79417

79418

79419

79420

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Relationship to Other Documents Introduction

to the operation to be performed. If file access permissions deny access, the requested operation
shall fail.

1.1.1.5 File Removal

When a directory that is the root directory or current working directory of any process is
removed, the effect is implementation-defined. If file access permissions deny access, the
requested operation shall fail. Otherwise, when a file is removed:

1. Its directory entry shall be removed from the file system.

2. The link count of the file shall be decremented.

3. If the file is an empty directory (see XBD Section 3.119, on page 48):

a. If no process has the directory open, the space occupied by the directory shall be
freed and the directory shall no longer be accessible.

b. If one or more processes have the directory open, the directory contents shall be
preserved until all references to the file have been closed.

4. If the file is a directory that is not empty, the last file status change timestamp shall be
marked for update.

5. If the file is not a directory:

a. If the link count becomes zero:

i. If no process has the file open, the space occupied by the file shall be freed
and the file shall no longer be accessible.

ii. If one or more processes have the file open, the file contents shall be
preserved until all references to the file have been closed.

b. If the link count is not reduced to zero, the last file status change timestamp shall
be marked for update.

6. The last data modification and last file status change timestamps of the containing
directory shall be marked for update.

1.1.1.6 File Time Values

All files shall have the three time values described by XBD Section 4.12 (on page 98).

1.1.1.7 File Contents

When a reference is made to the contents of a file, pathname, this means the equivalent of all of
the data placed in the space pointed to by buf when performing the read() function calls in the
following operations defined in the System Interfaces volume of POSIX.1-2024:

while (read (fildes, buf, nbytes) > 0)
;

If the file is indicated by a pathname pathname, the file descriptor shall be determined by the
equivalent of the following operation defined in the System Interfaces volume of POSIX.1-2024:

fildes = open (pathname, O_RDONLY);

The value of nbytes in the above sequence is unspecified; if the file is of a type where the data
returned by read() would vary with different values, the value shall be one that results in the

2456 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

79421

79422

79423

79424

79425

79426

79427

79428

79429

79430

79431

79432

79433

79434

79435

79436

79437

79438

79439

79440

79441

79442

79443

79444

79445

79446

79447

79448

79449

79450

79451

79452

79453

79454

79455

79456

79457

79458

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Relationship to Other Documents

most data being returned.

If the read() function calls would return an error, it is unspecified whether the contents of the file
are considered to include any data from offsets in the file beyond where the error would be
returned.

1.1.1.8 Pathname Resolution

The pathname resolution algorithm, described by XBD Section 4.16 (on page 105), shall be used
by implementations conforming to this volume of POSIX.1-2024; see also XBD Section 4.8 (on
page 97).

1.1.1.9 Changing the Current Working Directory

When the current working directory (see XBD Section 3.94, on page 45) is to be changed, unless
the utility or function description states otherwise, the operation shall succeed unless a call to
the chdir() function defined in the System Interfaces volume of POSIX.1-2024 would fail when
invoked with the new working directory pathname as its argument.

1.1.1.10 Establish the Locale

The functionality of the setlocale() function defined in the System Interfaces volume of
POSIX.1-2024 shall be available on all systems conforming to this volume of POSIX.1-2024; that
is, utilities that require the capability of establishing an international operating environment
shall be permitted to set the specified category of the international environment.

1.1.1.11 Actions Equivalent to Functions

Some utility descriptions specify that a utility performs actions equivalent to a function defined
in the System Interfaces volume of POSIX.1-2024. Such specifications require only that the
external effects be equivalent, not that any effect within the utility and visible only to the utility
be equivalent.

1.1.2 Concepts Derived from the ISO C Standard

Some of the standard utilities perform complex data manipulation using their own procedure
and arithmetic languages, as defined in their EXTENDED DESCRIPTION or OPERANDS
sections. Unless otherwise noted, the arithmetic and semantic concepts (precision, type
conversion, control flow, and so on) shall be equivalent to those defined in the ISO C standard,
as described in the following sections. Note that there is no requirement that the standard
utilities be implemented in any particular programming language.

1.1.2.1 Arithmetic Precision and Operations

Integer variables and constants, including the values of operands and option-arguments, used
by the standard utilities listed in this volume of POSIX.1-2024 shall be implemented as
equivalent to the ISO C standard signed long data type; floating point shall be implemented as
equivalent to the ISO C standard double type. Conversions between types shall be as described
in the ISO C standard. All variables shall be initialized to zero if they are not otherwise assigned
by the input to the application.

Arithmetic operators and control flow keywords shall be implemented as equivalent to those in

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2457

79459

79460

79461

79462

79463

79464

79465

79466

79467

79468

79469

79470

79471

79472

79473

79474

79475

79476

79477

79478

79479

79480

79481

79482

79483

79484

79485

79486

79487

79488

79489

79490

79491

79492

79493

79494

79495

79496

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Relationship to Other Documents Introduction

the cited ISO C standard section, as listed in Table 1-2.

Note: The comma operator (section 6.5.17 of the ISO C standard) is intentionally not included in the
table. It need not be supported by implementations.

Table 1-2 Selected ISO C Standard Operators and Control Flow Keywords

Operation ISO C Standard Equivalent Reference
() Section 6.5.1, Primary Expressions
postfix ++ Section 6.5.2, Postfix Operators
postfix - -
unary + Section 6.5.3, Unary Operators
unary -
prefix ++
prefix - -
˜
!
sizeof()
* Section 6.5.5, Multiplicative Operators
/
%
+ Section 6.5.6, Additive Operators
-
<< Section 6.5.7, Bitwise Shift Operators
>>
<, <= Section 6.5.8, Relational Operators
>, >=
== Section 6.5.9, Equality Operators
!=
& Section 6.5.10, Bitwise AND Operator
ˆ Section 6.5.11, Bitwise Exclusive OR Operator
| Section 6.5.12, Bitwise Inclusive OR Operator
&& Section 6.5.13, Logical AND Operator
| | Section 6.5.14, Logical OR Operator
expr?expr:expr Section 6.5.15, Conditional Operator
=, *=, /=, %=, +=, -= Section 6.5.16, Assignment Operators
<<=, >>=, &=, ˆ=, |=
if () Section 6.8.4, Selection Statements
if () . . . else
switch ()
while () Section 6.8.5, Iteration Statements
do . . . while ()
for ()
goto Section 6.8.6, Jump Statements
continue
break
return

2458 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

79497

79498

79499

79500

79501

79502

79503

79504

79505

79506

79507

79508

79509

79510

79511

79512

79513

79514

79515

79516

79517

79518

79519

79520

79521

79522

79523

79524

79525

79526

79527

79528

79529

79530

79531

79532

79533

79534

79535

79536

79537

79538

79539

79540

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Relationship to Other Documents

The evaluation of arithmetic expressions shall be equivalent to that described in Section 6.5,
Expressions, of the ISO C standard.

1.1.2.2 Mathematical Functions

Any mathematical functions with the same names as those in the following sections of the ISO C
standard:

• Section 7.12, Mathematics, <math.h>

• Section 7.22.2, Pseudo-Random Sequence Generation Functions

shall be implemented to return the results equivalent to those returned from a call to the
corresponding function described in the ISO C standard.

1.2 Utility Limits
This section lists magnitude limitations imposed by a specific implementation. The braces
notation, {LIMIT}, is used in this volume of POSIX.1-2024 to indicate these values, but the braces
are not part of the name.

Table 1-3 Utility Limit Minimum Values

Name Description Value
{POSIX2_BC_BASE_MAX} 99The maximum obase value allowed by the bc

utility.
{POSIX2_BC_DIM_MAX} 2 048The maximum number of elements permitted in

an array by the bc utility.
{POSIX2_BC_SCALE_MAX} 99The maximum scale value allowed by the bc

utility.
{POSIX2_BC_STRING_MAX} 1 000The maximum length of a string constant

accepted by the bc utility.
{POSIX2_COLL_WEIGHTS_MAX} 2The maximum number of weights that can be

assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see the
border_start keyword in XBD Section 7.3.2 (on
page 139).

{POSIX2_EXPR_NEST_MAX} 32The maximum number of expressions that can
be nested within parentheses by the expr utility.

{POSIX2_LINE_MAX} 2 048Unless otherwise noted, the maximum length, in
bytes, of the input line of a utility (either
standard input or another file), when the utility
is described as processing text files. The length
includes room for the trailing <newline>.

{POSIX_RE_DUP_MAX} 255Maximum number of repeated occurrences of a
BRE or ERE interval expression; see XBD Section
9.3.6 (on page 185) and Section 9.4.6 (on page
189).

The values specified in Table 1-3 represent the lowest values conforming implementations shall
provide and, consequently, the largest values on which an application can rely without further
enquiries, as described below. These values shall be accessible to applications via the getconf

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2459

79541

79542

79543

79544

79545

79546

79547

79548

79549

79550

79551

79552

79553

79554

79555

79556

79557

79558

79559

79560

79561

79562

79563

79564

79565

79566

79567

79568

79569

79570

79571

79572

79573

79574

79575

79576

79577

79578

79579

79580

79581

79582

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Limits Introduction

utility (see getconf , on page 2973).

Implementations may provide more liberal, or less restrictive, values than shown in Table 1-3
(on page 2459). These possibly more liberal values are accessible using the symbols in Table 1-4.

The sysconf() function defined in the System Interfaces volume of POSIX.1-2024 or the getconf
utility return the value of each symbol on each specific implementation. The value so retrieved is
the largest, or most liberal, value that is available throughout the session lifetime, as determined
at session creation. The literal names shown in the table apply only to the getconf utility; the
high-level language binding describes the exact form of each name to be used by the interfaces
in that binding.

All numeric limits defined by the System Interfaces volume of POSIX.1-2024, such as
{PATH_MAX}, shall also apply to this volume of POSIX.1-2024. All the utilities defined by this
volume of POSIX.1-2024 are implicitly limited by these values, unless otherwise noted in the
utility descriptions.

It is not guaranteed that the application can actually reach the specified limit of an
implementation in any given case, or at all, as a lack of virtual memory or other resources may
prevent this. The limit value indicates only that the implementation does not specifically impose
any arbitrary, more restrictive limit.

Table 1-4 Symbolic Utility Limits

Name Description Minimum Value
{BC_BASE_MAX} {POSIX2_BC_BASE_MAX}The maximum obase value

allowed by the bc utility.
{BC_DIM_MAX} {POSIX2_BC_DIM_MAX}The maximum number of

elements permitted in an
array by the bc utility.

{BC_SCALE_MAX} {POSIX2_BC_SCALE_MAX}The maximum scale value
allowed by the bc utility.

{BC_STRING_MAX} {POSIX2_BC_STRING_MAX}The maximum length of a
string constant accepted by
the bc utility.

{COLL_WEIGHTS_MAX} {POSIX2_COLL_WEIGHTS_MAX}The maximum number of
weights that can be
assigned to an entry of the
LC_COLLATE order
keyword in the locale
definition file; see the
order_start keyword in XBD
Section 7.3.2 (on page 139).

{EXPR_NEST_MAX} {POSIX2_EXPR_NEST_MAX}The maximum number of
expressions that can be
nested within parentheses
by the expr utility.

2460 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

79583

79584

79585

79586

79587

79588

79589

79590

79591

79592

79593

79594

79595

79596

79597

79598

79599

79600

79601

79602

79603

79604

79605

79606

79607

79608

79609

79610

79611

79612

79613

79614

79615

79616

79617

79618

79619

79620

79621

79622

79623

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Utility Limits

Name Description Minimum Value
{LINE_MAX} {POSIX2_LINE_MAX}Unless otherwise noted, the

maximum length, in bytes,
of the input line of a utility
(either standard input or
another file), when the
utility is described as
processing text files. The
length includes room for the
trailing <newline>.

{RE_DUP_MAX} {POSIX_RE_DUP_MAX}Maximum number of
repeated occurrences of a
BRE or ERE interval
expression; see XBD Section
9.3.6 (on page 185) and
Section 9.4.6 (on page 189).

The following value may be a constant within an implementation or may vary from one
pathname to another.

{POSIX2_SYMLINKS}
When referring to a directory, the system supports the creation of symbolic links within that
directory; for non-directory files, the meaning of {POSIX2_SYMLINKS} is undefined.

1.3 Grammar Conventions
Portions of this volume of POSIX.1-2024 are expressed in terms of a special grammar notation. It
is used to portray the complex syntax of certain program input. The grammar is based on the
syntax used by the yacc utility. However, it does not represent fully functional yacc input,
suitable for program use; the lexical processing and all semantic requirements are described only
in textual form. The grammar is not based on source used in any traditional implementation and
has not been tested with the semantic code that would normally be required to accompany it.
Furthermore, there is no implication that the partial yacc code presented represents the most
efficient, or only, means of supporting the complex syntax within the utility. Implementations
may use other programming languages or algorithms, as long as the syntax supported is the
same as that represented by the grammar.

The following typographical conventions are used in the grammar; they have no significance
except to aid in reading.

• The identifiers for the reserved words of the language are shown with a leading capital
letter. (These are terminals in the grammar; for example, While, Case.)

• The identifiers for terminals in the grammar are all named with uppercase letters and
underscores; for example, NEWLINE, ASSIGN_OP, NAME.

• The identifiers for non-terminals are all lowercase.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2461

79624

79625

79626

79627

79628

79629

79630

79631

79632

79633

79634

79635

79636

79637

79638

79639

79640

79641

79642

79643

79644

79645

79646

79647

79648

79649

79650

79651

79652

79653

79654

79655

79656

79657

79658

79659

79660

79661

79662

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Description Defaults Introduction

1.4 Utility Description Defaults
This section describes all of the subsections used within the utility descriptions, including:

• Intended usage of the section

• Global defaults that affect all the standard utilities

• The meanings of notations used in this volume of POSIX.1-2024 that are specific to
individual utility sections

NAME
This section gives the name or names of the utility and briefly states its purpose.

SYNOPSIS
The SYNOPSIS section summarizes the syntax of the calling sequence for the utility,
including options, option-arguments, and operands. Standards for utility naming are
described in XBD Section 12.2 (on page 215); for describing the utility’s arguments in
XBD Section 12.1 (on page 213).

DESCRIPTION
The DESCRIPTION section describes the actions of the utility. If the utility has a very
complex set of subcommands or its own procedural language, an EXTENDED
DESCRIPTION section is also provided. Most explanations of optional functionality are
omitted here, as they are usually explained in the OPTIONS section.

As stated in Section 1.1.1.11 (on page 2457), some functions are described in terms of
equivalent functionality. When specific functions are cited, the implementation shall
provide equivalent functionality including side-effects associated with successful
execution of the function. The treatment of errors and intermediate results from the
individual functions cited is generally not specified by this volume of POSIX.1-2024.
See the utility’s EXIT STATUS and CONSEQUENCES OF ERRORS sections for all
actions associated with errors encountered by the utility.

A standard utility shall not be treated as a declaration utility unless explicitly stated in
this section.

OPTIONS
The OPTIONS section describes the utility options and option-arguments, and how
they modify the actions of the utility. Standard utilities that have options either fully
comply with XBD Section 12.2 (on page 215) or describe all deviations. Apparent
disagreements between functionality descriptions in the OPTIONS and DESCRIPTION
(or EXTENDED DESCRIPTION) sections are always resolved in favor of the OPTIONS
section.

Each OPTIONS section that uses the phrase ``The . . . utility shall conform to the Utility
Syntax Guidelines . . .’’ refers only to the use of the utility as specified by this volume of
POSIX.1-2024; implementation extensions should also conform to the guidelines, but
may allow exceptions for historical practice.

Unless otherwise stated in the utility description, when given an option unrecognized
by the implementation, or when a required option-argument is not provided, standard
utilities shall issue a diagnostic message to standard error and exit with an exit status
that indicates an error occurred.

All utilities in this volume of POSIX.1-2024 shall be capable of processing arguments
using eight-bit transparency.

Default Behavior: When this section is listed as ``None.’’, it means that the
implementation need not support any options. Standard utilities that do not accept

2462 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

79663

79664

79665

79666

79667

79668

79669

79670

79671

79672

79673

79674

79675

79676

79677

79678

79679

79680

79681

79682

79683

79684

79685

79686

79687

79688

79689

79690

79691

79692

79693

79694

79695

79696

79697

79698

79699

79700

79701

79702

79703

79704

79705

79706

79707

79708

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Utility Description Defaults

options, but that do accept operands, shall recognize "--" as a first argument to be
discarded.

The requirement for recognizing "--" is because conforming applications need a way
to shield their operands from any arbitrary options that the implementation may
provide as an extension. For example, if the standard utility foo is listed as taking no
options, and the application needed to give it a pathname with a leading <hyphen-
minus>, it could safely do it as:

foo -- -myfile

and avoid any problems with −m used as an extension.

OPERANDS
The OPERANDS section describes the utility operands, and how they affect the actions
of the utility. Apparent disagreements between functionality descriptions in the
OPERANDS and DESCRIPTION (or EXTENDED DESCRIPTION) sections shall be
resolved in favor of the OPERANDS section.

If an operand naming a file can be specified as '−', which means to use the standard
input instead of a named file, this is explicitly stated in this section. Unless otherwise
stated, the use of multiple instances of '−' to mean standard input in a single
command produces unspecified results.

Unless otherwise stated, the standard utilities that accept operands shall process those
operands in the order specified in the command line.

Default Behavior: When this section is listed as ``None.’’, it means that the
implementation need not support any operands.

STDIN
The STDIN section describes the standard input of the utility. This section is frequently
merely a reference to the following section, as many utilities treat standard input and
input files in the same manner. Unless otherwise stated, all restrictions described in the
INPUT FILES section shall apply to this section as well.

Use of a terminal for standard input can cause any of the standard utilities that read
standard input to stop when used in the background. For this reason, applications
should not use interactive features in scripts to be placed in the background.

The specified standard input format of the standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of POSIX.1-2024,
except as provided by this volume of POSIX.1-2024.

Default Behavior: When this section is listed as ``Not used.’’, it means that the standard
input shall not be read when the utility is used as described by this volume of
POSIX.1-2024.

INPUT FILES
The INPUT FILES section describes the files, other than the standard input, used as
input by the utility. It includes files named as operands and option-arguments as well
as other files that are referred to, such as start-up and initialization files, databases, and
so on. Commonly-used files are generally described in one place and cross-referenced
by other utilities.

All utilities in this volume of POSIX.1-2024 shall be capable of processing input files
using eight-bit transparency.

When a standard utility reads a seekable input file and terminates without an error
before it reaches end-of-file, the utility shall ensure that the file offset in the open file

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2463

79709

79710

79711

79712

79713

79714

79715

79716

79717

79718

79719

79720

79721

79722

79723

79724

79725

79726

79727

79728

79729

79730

79731

79732

79733

79734

79735

79736

79737

79738

79739

79740

79741

79742

79743

79744

79745

79746

79747

79748

79749

79750

79751

79752

79753

79754

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Description Defaults Introduction

description is properly positioned just past the last byte processed by the utility. For
files that are not seekable, the state of the file offset in the open file description for that
file is unspecified. A conforming application shall not assume that the following three
commands are equivalent:

tail -n +2 file
(sed -n 1q; cat) < file
cat file | (sed -n 1q; cat)

The second command is equivalent to the first only when the file is seekable. The third
command leaves the file offset in the open file description in an unspecified state. Other
utilities, such as head, read, and sh, have similar properties.

Some of the standard utilities, such as filters, process input files a line or a block at a
time and have no restrictions on the maximum input file size. Some utilities may have
size limitations that are not as obvious as file space or memory limitations. Such
limitations should reflect resource limitations of some sort, not arbitrary limits set by
implementors. Implementations shall document those utilities that are limited by
constraints other than file system space, available memory, and other limits specifically
cited by this volume of POSIX.1-2024, and identify what the constraint is and indicate a
way of estimating when the constraint would be reached. Similarly, some utilities
descend the directory tree (recursively). Implementations shall also document any
limits that they may have in descending the directory tree that are beyond limits cited
by this volume of POSIX.1-2024.

When an input file is described as a ``text file’’, the utility produces undefined results if
given input that is not from a text file, unless otherwise stated. Some utilities (for
example, make, read, sh) allow for continued input lines using an escaped <newline>
convention; unless otherwise stated, the utility need not be able to accumulate more
than {LINE_MAX} bytes from a set of multiple, continued input lines. Thus, for a
conforming application the total of all the continued lines in a set cannot exceed
{LINE_MAX}. If a utility using the escaped <newline> convention detects an end-of-
file condition immediately after an escaped <newline>, the results are unspecified.

Record formats are described in a notation similar to that used by the C-language
function, printf(). See XBD Chapter 5 (on page 113) for a description of this notation.
The format description is intended to be sufficiently rigorous to allow other
applications to generate these input files. However, since <blank>s can legitimately be
included in some of the fields described by the standard utilities, particularly in locales
other than the POSIX locale, this intent is not always realized.

Default Behavior: When this section is listed as ``None.’’, it means that no input files
are required to be supplied when the utility is used as described by this volume of
POSIX.1-2024.

ENVIRONMENT VARIABLES
The ENVIRONMENT VARIABLES section lists what variables affect the utility’s
execution.

The entire manner in which environment variables described in this volume of
POSIX.1-2024 affect the behavior of each utility is described in the ENVIRONMENT
VARIABLES section for that utility, in conjunction with the global effects of the LANG,

XSI LC_ALL, and NLSPATH environment variables described in XBD Chapter 8 (on page
167). The existence or value of environment variables described in this volume of
POSIX.1-2024 shall not otherwise affect the specified behavior of the standard utilities.
Any effects of the existence or value of environment variables not described by this
volume of POSIX.1-2024 upon the standard utilities are unspecified.

2464 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

79755

79756

79757

79758

79759

79760

79761

79762

79763

79764

79765

79766

79767

79768

79769

79770

79771

79772

79773

79774

79775

79776

79777

79778

79779

79780

79781

79782

79783

79784

79785

79786

79787

79788

79789

79790

79791

79792

79793

79794

79795

79796

79797

79798

79799

79800

79801

79802

79803

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Utility Description Defaults

For those standard utilities that use environment variables as a means for selecting a
utility to execute (such as CC in make), the string provided to the utility is subjected to
the path search described for PA TH in XBD Chapter 8 (on page 167).

All utilities in this volume of POSIX.1-2024 shall be capable of processing environment
variable names and values using eight-bit transparency.

Default Behavior: When this section is listed as ``None.’’, it means that the behavior of
the utility is not directly affected by environment variables described by this volume of
POSIX.1-2024 when the utility is used as described by this volume of POSIX.1-2024.

ASYNCHRONOUS EVENTS
The ASYNCHRONOUS EVENTS section lists how the utility reacts to such events as
signals and what signals are caught.

Default Behavior: When this section is listed as ``Default.’’, or it refers to ``the standard
action’’ for any signal, it means that the action taken as a result of the signal shall be as
follows:

• If the action inherited from the invoking process, according to the rules of
inheritance of signal actions defined in the System Interfaces volume of
POSIX.1-2024, is for the signal to be ignored, the utility shall ignore the signal.

• If the action inherited from the invoking process, according to the rules of
inheritance of signal actions defined in System Interfaces volume of
POSIX.1-2024, is the default signal action, the result of the utility’s execution shall
be as if the default signal action had been taken.

When the required action is for the signal to terminate the utility, the utility may catch
the signal, perform some additional processing (such as deleting temporary files),
restore the default signal action, and resignal itself.

STDOUT
The STDOUT section completely describes the standard output of the utility. This
section is frequently merely a reference to the following section, OUTPUT FILES,
because many utilities treat standard output and output files in the same manner.

Use of a terminal for standard output may cause any of the standard utilities that write
standard output to stop when used in the background. For this reason, applications
should not use interactive features in scripts to be placed in the background.

Record formats are described in a notation similar to that used by the C-language
function, printf(). See XBD Chapter 5 (on page 113) for a description of this notation.

The specified standard output of the standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of POSIX.1-2024,
except as provided by this volume of POSIX.1-2024.

Some of the standard utilities describe their output using the verb display, defined in
XBD Section 3.107 (on page 46). Output described in the STDOUT sections of such
utilities may be produced using means other than standard output. When standard
output is directed to a terminal, the output described shall be written directly to the
terminal. Otherwise, the results are undefined.

Default Behavior: When this section is listed as ``Not used.’’, it means that the standard
output shall not be written when the utility is used as described by this volume of
POSIX.1-2024.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2465

79804

79805

79806

79807

79808

79809

79810

79811

79812

79813

79814

79815

79816

79817

79818

79819

79820

79821

79822

79823

79824

79825

79826

79827

79828

79829

79830

79831

79832

79833

79834

79835

79836

79837

79838

79839

79840

79841

79842

79843

79844

79845

79846

79847

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Description Defaults Introduction

STDERR
The STDERR section describes the standard error output of the utility. Only those
messages that are purposely sent by the utility are described.

Use of a terminal for standard error may cause any of the standard utilities that write
standard error output to stop when used in the background. For this reason,
applications should not use interactive features in scripts to be placed in the
background.

The format of diagnostic messages for most utilities is unspecified, but the language
and cultural conventions of diagnostic and informative messages whose format is
unspecified by this volume of POSIX.1-2024 should be affected by the setting of

XSI LC_MESSAGES and NLSPATH.

The specified standard error output of standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of POSIX.1-2024,
except as provided by this volume of POSIX.1-2024.

Default Behavior: When this section is listed as ``The standard error shall be used only
for diagnostic messages.’’, it means that, unless otherwise stated, the diagnostic
messages shall be sent to the standard error only when the exit status indicates that an
error occurred and the utility is used as described by this volume of POSIX.1-2024.

When this section is listed as ``Not used.’’, it means that the standard error shall not be
used when the utility is used as described in this volume of POSIX.1-2024.

OUTPUT FILES
The OUTPUT FILES section completely describes the files created or modified by the
utility. Temporary or system files that are created for internal usage by this utility or
other parts of the implementation (for example, spool, log, and audit files) are not
described in this, or any, section. The utilities creating such files and the names of such
files are unspecified. If applications are written to use temporary or intermediate files,
they should use the TMPDIR environment variable, if it is set and represents an
accessible directory, to select the location of temporary files.

Implementations shall ensure that temporary files, when used by the standard utilities,
are named so that different utilities or multiple instances of the same utility can operate
simultaneously without regard to their working directories, or any other process
characteristic other than process ID. There are two exceptions to this rule:

1. Resources for temporary files other than the name space (for example, disk
space, available directory entries, or number of processes allowed) are not
guaranteed.

2. Certain standard utilities generate output files that are intended as input for
other utilities (for example, lex generates lex.yy.c), and these cannot have unique
names. These cases are explicitly identified in the descriptions of the respective
utilities.

Any temporary file created by the implementation shall be removed by the
implementation upon a utility’s successful exit, exit because of errors, or before
termination by any of the SIGHUP, SIGINT, or SIGTERM signals, unless specified
otherwise by the utility description.

Receipt of the SIGQUIT signal should generally cause termination (unless in some
debugging mode) that would bypass any attempted recovery actions.

Record formats are described in a notation similar to that used by the C-language
function, printf(); see XBD Chapter 5 (on page 113) for a description of this notation.

2466 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

79848

79849

79850

79851

79852

79853

79854

79855

79856

79857

79858

79859

79860

79861

79862

79863

79864

79865

79866

79867

79868

79869

79870

79871

79872

79873

79874

79875

79876

79877

79878

79879

79880

79881

79882

79883

79884

79885

79886

79887

79888

79889

79890

79891

79892

79893

79894

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Utility Description Defaults

Default Behavior: When this section is listed as ``None.’’, it means that no files are
created or modified as a consequence of direct action on the part of the utility when the
utility is used as described by this volume of POSIX.1-2024. However, the utility may
create or modify system files, such as log files, that are outside the utility’s normal
execution environment.

EXTENDED DESCRIPTION
The EXTENDED DESCRIPTION section provides a place for describing the actions of
very complicated utilities, such as text editors or language processors, which typically
have elaborate command languages.

Default Behavior: When this section is listed as ``None.’’, no further description is
necessary.

EXIT STATUS
The EXIT STATUS section describes the values the utility shall return to the calling
program, or shell, and the conditions that cause these values to be returned. Usually,
utilities return zero for successful completion and values greater than zero for various
error conditions. If specific numeric values are listed in this section, the system shall
use those values for the errors described. In some cases, status values are listed more
loosely, such as >0. A strictly conforming application shall not rely on any specific
value in the range shown and shall be prepared to receive any value in the range.

For example, a utility may list zero as a successful return, 1 as a failure for a specific
reason, and >1 as ``an error occurred’’. In this case, unspecified conditions may cause a
2 or 3, or other value, to be returned. A conforming application should be written so
that it tests for successful exit status values (zero in this case), rather than relying upon
the single specific error value listed in this volume of POSIX.1-2024. In that way, it has
maximum portability, even on implementations with extensions.

Unspecified error conditions may be represented by specific values not listed in this
volume of POSIX.1-2024.

Default Behavior: When the description of exit status 0 is ``Successful completion’’, it
means that exit status 0 shall indicate that all of the actions the utility is required to
perform were completed successfully.

CONSEQUENCES OF ERRORS
The CONSEQUENCES OF ERRORS section describes the effects on the environment,
file systems, process state, and so on, when error conditions occur. It does not describe
error messages produced or exit status values used.

The many reasons for failure of a utility are generally not specified by the utility
descriptions. Utilities may terminate prematurely if they encounter: invalid usage of
options, arguments, or environment variables; invalid usage of the complex syntaxes
expressed in EXTENDED DESCRIPTION sections; resource exhaustion; difficulties
accessing, creating, reading, or writing files; or difficulties associated with the
privileges of the process.

The following shall apply to each utility, unless otherwise stated:

• If the requested action cannot be performed on an operand representing a file,
directory, user, process, and so on, the utility shall issue a diagnostic message to
standard error and continue processing the next operand in sequence, but the
final exit status shall be one that indicates an error occurred.

For a utility that recursively traverses a file hierarchy (such as find or chown −R), if
the requested action cannot be performed on a file or directory encountered in the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2467

79895

79896

79897

79898

79899

79900

79901

79902

79903

79904

79905

79906

79907

79908

79909

79910

79911

79912

79913

79914

79915

79916

79917

79918

79919

79920

79921

79922

79923

79924

79925

79926

79927

79928

79929

79930

79931

79932

79933

79934

79935

79936

79937

79938

79939

79940

79941

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Description Defaults Introduction

hierarchy, the utility shall issue a diagnostic message to standard error and
continue processing the remaining files in the hierarchy, but the final exit status
shall be one that indicates an error occurred.

Note: If the requested action is to write one or more pathnames in a format that has
<newline> as a terminator or separator, and a pathname to be written contains
any bytes that have the encoded value of a <newline> character, this should be
treated as an action that cannot be performed. A future version of this standard
may require that utilities treat this as an error.

• If the requested action characterized by an option or option-argument cannot be
performed, the utility shall issue a diagnostic message to standard error and the
exit status returned shall be one that indicates an error occurred.

• When an unrecoverable error condition is encountered, the utility shall exit with
an exit status that indicates an error occurred.

• A diagnostic message shall be written to standard error whenever an error
condition occurs.

When a utility encounters an error condition several actions are possible, depending on
the severity of the error and the state of the utility. Included in the possible actions of
various utilities are: deletion of temporary or intermediate work files; deletion of
incomplete files; validity checking of the file system or directory.

Default Behavior: When this section is listed as ``Default.’’, it means that any changes
to the environment, file systems, process state, and so on are unspecified.

APPLICATION USAGE
This section is informative.

The APPLICATION USAGE section gives advice to the application programmer or
user about the way the utility should be used.

EXAMPLES
This section is informative.

The EXAMPLES section gives one or more examples of usage, where appropriate. In
the event of conflict between an example and a normative part of the specification, the
normative material is to be taken as correct.

In all examples, quoting has been used, showing how sample commands (utility names
combined with arguments) could be passed correctly to a shell (see sh) or as a string to
the system() function defined in the System Interfaces volume of POSIX.1-2024. Such
quoting would not be used if the utility is invoked using one of the exec functions
defined in the System Interfaces volume of POSIX.1-2024.

RATIONALE
This section is informative.

This section contains historical information concerning the contents of this volume of
POSIX.1-2024 and why features were included or discarded by the standard
developers.

FUTURE DIRECTIONS
This section is informative.

The FUTURE DIRECTIONS section should be used as a guide to current thinking; there
is not necessarily a commitment to implement all of these future directions in their
entirety.

2468 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

79942

79943

79944

79945

79946

79947

79948

79949

79950

79951

79952

79953

79954

79955

79956

79957

79958

79959

79960

79961

79962

79963

79964

79965

79966

79967

79968

79969

79970

79971

79972

79973

79974

79975

79976

79977

79978

79979

79980

79981

79982

79983

79984

79985

79986

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Utility Description Defaults

SEE ALSO
This section is informative.

The SEE ALSO section lists related entries.

CHANGE HISTORY
This section is informative.

This section shows the derivation of the entry and any significant changes that have
been made to it.

Certain of the standard utilities describe how they can invoke other utilities or applications, such
as by passing a command string to the command interpreter. The external influences (STDIN,
ENVIRONMENT VARIABLES, and so on) and external effects (STDOUT, CONSEQUENCES OF
ERRORS, and so on) of such invoked utilities are not described in the section concerning the
standard utility that invokes them.

1.5 Considerations for Utilities in Support of Files of Arbitrary Size
The following utilities support files of any size up to the maximum that can be created by the
implementation. This support includes correct writing of file size-related values (such as file
sizes and offsets, line numbers, and block counts) and correct interpretation of command line
arguments that contain such values.

basename Return non-directory portion of pathname.

cat Concatenate and print files.

cd Change working directory.

chgrp Change file group ownership.

chmod Change file modes.

chown Change file ownership.

cksum Write file checksums and sizes.

cmp Compare two files.

cp Copy files.

dd Convert and copy a file.

df Report free disk space.

dirname Return directory portion of pathname.

du Estimate file space usage.

find Find files.

ln Link files.

ls List directory contents.

mkdir Make directories.

mv Move files.

pathchk Check pathnames.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2469

79987

79988

79989

79990

79991

79992

79993

79994

79995

79996

79997

79998

79999

80000

80001

80002

80003

80004

80005

80006

80007

80008

80009

80010

80011

80012

80013

80014

80015

80016

80017

80018

80019

80020

80021

80022

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Considerations for Utilities in Support of Files of Arbitrary Size Introduction

pwd Return working directory name.

rm Remove directory entries.

rmdir Remove directories.

sh Shell, the standard command language interpreter.

test Evaluate expression.

touch Change file access and modification times.

ulimit Set or report file size limit.

Exceptions to the requirement that utilities support files of any size up to the maximum are as
follows:

1. Uses of files as command scripts, or for configuration or control, are exempt. For example,
it is not required that sh be able to read an arbitrarily large .profile.

2. Shell input and output redirection are exempt. For example, it is not required that the
redirections sum < file or echo foo > file succeed for an arbitrarily large existing file.

1.6 Built-In Utilities
Any of the standard utilities may be implemented as regular built-in utilities within the
command language interpreter. This is usually done to increase the performance of frequently
used utilities or to achieve functionality that would be more difficult in a separate environment.
The intrinsic utilities described in Section 1.7 below are frequently provided as regular built-ins.

However, all of the standard utilities other than:

• The special built-ins described in Section 2.15 (on page 2526)

• The intrinsic utilities named in Table 1-5, except for kill

shall be implemented, regardless of whether they are also implemented as regular built-ins, in a
manner so that they can be accessed via the exec family of functions as defined in the System
Interfaces volume of POSIX.1-2024 and can be invoked directly by those standard utilities that
require it (env, find, nice, nohup, time, xargs).

1.7 Intrinsic Utilities
As described in Section 2.9.1.4 (on page 2502), intrinsic utilities are not subject to a PA TH search
during command search and execution. The utilities named in Table 1-5 shall be intrinsic
utilities.

Table 1-5 Intrinsic Utilities

alias
bg
cd

command
fc
fg

getopts
hash
jobs

kill
read
type

ulimit
umask
unalias

wait

Whether any additional utility is considered an intrinsic utility is implementation-defined.
Because applications are unable to override an intrinsic utility with a utility from PA TH,
implementations should not make any utility an intrinsic utility beyond the utilities in Table 1-5.

2470 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80023

80024

80025

80026

80027

80028

80029

80030

80031

80032

80033

80034

80035

80036

80037

80038

80039

80040

80041

80042

80043

80044

80045

80046

80047

80048

80049

80050

80051

80052

80053

80054

80055

80056

80057

80058

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2471

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 2

Shell Command Language

This chapter contains the definition of the Shell Command Language.

2.1 Shell Introduction
The shell is a command language interpreter. This chapter describes the syntax of that command
language as it is used by the sh utility and the system() and popen() functions defined in the
System Interfaces volume of POSIX.1-2024.

The shell operates according to the following general overview of operations. The specific
details are included in the cited sections of this chapter.

1. The shell reads its input from a file (see sh), from the −c option or from the system() and
popen() functions defined in the System Interfaces volume of POSIX.1-2024. If the first
line of a file of shell commands starts with the characters "#!", the results are
unspecified.

2. The shell breaks the input into tokens: words and operators; see Section 2.3.

3. The shell parses the input into simple commands (see Section 2.9.1) and compound
commands (see Section 2.9.4).

4. For each word within a command, the shell processes <backslash>-escape sequences
inside dollar-single-quotes (see Section 2.2.4) and then performs various word expansions
(see Section 2.6). In the case of a simple command, the results usually include a list of
pathnames and fields to be treated as a command name and arguments; see Section 2.9.

5. The shell performs redirection (see Section 2.7) and removes redirection operators and
their operands from the parameter list.

6. The shell executes a function (see Section 2.9.5), built-in (see Section 2.15), executable file,
or script, giving the names of the arguments as positional parameters numbered 1 to n,
and the name of the command (or in the case of a function within a script, the name of the
script) as special parameter 0 (see Section 2.9.1.4).

7. The shell optionally waits for the command to complete and collects the exit status (see
Section 2.8.2).

2.2 Quoting
Quoting is used to remove the special meaning of certain characters or words to the shell.
Quoting can be used to preserve the literal meaning of the special characters in the next
paragraph, prevent reserved words from being recognized as such, and prevent parameter
expansion and command substitution within here-document processing (see Section 2.7.4).

The application shall quote the following characters if they are to represent themselves:

| & ; < > () $ ` \ " ' <space> <tab> <newline>

and the following might need to be quoted under certain circumstances. That is, these

2472 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80059

80060

80061

80062

80063

80064

80065

80066

80067

80068

80069

80070

80071

80072

80073

80074

80075

80076

80077

80078

80079

80080

80081

80082

80083

80084

80085

80086

80087

80088

80089

80090

80091

80092

80093

80094

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Quoting

characters are sometimes special depending on conditions described elsewhere in this volume of
POSIX.1-2024:

* ? [] ^ - ! # ~ = % { , }

Note: A future version of this standard may extend the conditions under which these characters are
special. Therefore applications should quote them whenever they are intended to represent
themselves. This does not apply to <hyphen-minus> ('-') since it is in the portable filename
character set.

The various quoting mechanisms are the escape character, single-quotes, double-quotes, and
dollar-single-quotes. The here-document represents another form of quoting; see Section 2.7.4.

2.2.1 Escape Character (Backslash)

A <backslash> that is not quoted shall preserve the literal value of the following character, with
the exception of a <newline>. If a <newline> immediately follows the <backslash>, the shell
shall interpret this as line continuation. The <backslash> and <newline> shall be removed before
splitting the input into tokens. Since the escaped <newline> is removed entirely from the input
and is not replaced by any white space, it cannot serve as a token separator.

2.2.2 Single-Quotes

Enclosing characters in single-quotes ('') shall preserve the literal value of each character
within the single-quotes. A single-quote cannot occur within single-quotes.

2.2.3 Double-Quotes

Enclosing characters in double-quotes ("") shall preserve the literal value of all characters
within the double-quotes, with the exception of the characters backquote, <dollar-sign>, and
<backslash>, as follows:

$ The <dollar-sign> shall retain its special meaning introducing parameter expansion (see
Section 2.6.2), a form of command substitution (see Section 2.6.3), and arithmetic expansion
(see Section 2.6.4), but shall not retain its special meaning introducing the dollar-single-
quotes form of quoting (see Section 2.2.4).

The input characters within the quoted string that are also enclosed between "$(" and the
matching ')' shall not be affected by the double-quotes, but rather shall define the
command(s) whose output replaces the "$(...)" when the word is expanded. The
tokenizing rules in Section 2.3 shall be applied recursively to find the matching ')'.

For the four varieties of parameter expansion that provide for substring processing (see
Section 2.6.2), within the string of characters from an enclosed "${" to the matching '}',
the double-quotes within which the expansion occurs shall have no effect on the handling
of any special characters.

For parameter expansions other than the four varieties that provide for substring
processing, within the string of characters from an enclosed "${" to the matching '}', the
double-quotes within which the expansion occurs shall preserve the literal value of all
characters, with the exception of the characters double-quote, backquote, <dollar-sign>, and
<backslash>. If any unescaped double-quote characters occur within the string, other than
in embedded command substitutions, the behavior is unspecified. The backquote and
<dollar-sign> characters shall follow the same rules as for characters in double-quotes
described in this section. The <backslash> character shall follow the same rules as for

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2473

80095

80096

80097

80098

80099

80100

80101

80102

80103

80104

80105

80106

80107

80108

80109

80110

80111

80112

80113

80114

80115

80116

80117

80118

80119

80120

80121

80122

80123

80124

80125

80126

80127

80128

80129

80130

80131

80132

80133

80134

80135

80136

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Quoting Shell Command Language

characters in double-quotes described in this section except that it shall additionally retain
its special meaning as an escape character when followed by '}' and this shall prevent the
escaped '}' from being considered when determining the matching '}' (using the rule in
Section 2.6.2).

` The backquote shall retain its special meaning introducing the other form of command
substitution (see Section 2.6.3). The portion of the quoted string from the initial backquote
and the characters up to the next backquote that is not preceded by a <backslash>, having
escape characters removed, defines that command whose output replaces "`...`" when
the word is expanded. Either of the following cases produces undefined results:

• A quoted (single-quoted, double-quoted, or dollar-single-quoted) string that begins,
but does not end, within the "`...`" sequence

• A "`...`" sequence that begins, but does not end, within the same double-quoted
string

\ Outside of "$(...)" and "${...}" the <backslash> shall retain its special meaning as an
escape character (see Section 2.2.1) only when immediately followed by one of the following
characters:

$ ` \ <newline>

or by a double-quote character that would otherwise be considered special (see Section 2.6.4
(on page 2490) and Section 2.7.4, on page 2495).

When double-quotes are used to quote a parameter expansion, command substitution, or
arithmetic expansion, the literal value of all characters within the result of the expansion shall be
preserved.

The application shall ensure that a double-quote that is not within "$(...)" nor within
"${...}" is immediately preceded by a <backslash> in order to be included within double-
quotes. The parameter '@' has special meaning inside double-quotes and is described in Section
2.5.2.

2.2.4 Dollar-Single-Quotes

A sequence of characters starting with a <dollar-sign> immediately followed by a single-quote
($') shall preserve the literal value of all characters up to an unescaped terminating single-quote
('), with the exception of certain <backslash>-escape sequences, as follows:

• \" yields a <quotation-mark> (double-quote) character, but note that <quotation-mark>
can be included unescaped.

• \' yields an <apostrophe> (single-quote) character.

• \\ yields a <backslash> character.

• \a yields an <alert> character.

• \b yields a <backspace> character.

• \e yields an <ESC> character.

• \f yields a <form-feed> character.

• \n yields a <newline> character.

• \r yields a <carriage-return> character.

2474 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80137

80138

80139

80140

80141

80142

80143

80144

80145

80146

80147

80148

80149

80150

80151

80152

80153

80154

80155

80156

80157

80158

80159

80160

80161

80162

80163

80164

80165

80166

80167

80168

80169

80170

80171

80172

80173

80174

80175

80176

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Quoting

• \t yields a <tab> character.

• \v yields a <vertical-tab> character.

• \cX yields the control character listed in the Value column of Table 3-21 in the
OPERANDS section of the stty utility when X is one of the characters listed in the ^c
column of the same table, except that \c\\ yields the <FS> control character since the
<backslash> character has to be escaped.

• \xXX yields the byte whose value is the hexadecimal value XX (one or more hexadecimal
digits). If more than two hexadecimal digits follow \x, the results are unspecified.

• \ddd yields the byte whose value is the octal value ddd (one to three octal digits).

• The behavior of an unescaped <backslash> immediately followed by any other character,
including <newline>, is unspecified.

In cases where a variable number of characters can be used to specify an escape sequence (\xXX
and \ddd), the escape sequence shall be terminated by the first character that is not of the
expected type or, for \ddd sequences, when the maximum number of characters specified has
been found, whichever occurs first.

These <backslash>-escape sequences shall be processed (replaced with the bytes or characters
they yield) immediately prior to word expansion (see Section 2.6) of the word in which the
dollar-single-quotes sequence occurs.

If a \xXX or \ddd escape sequence yields a byte whose value is 0, it is unspecified whether that
null byte is included in the result or if that byte and any following regular characters and escape
sequences up to the terminating unescaped single-quote are evaluated and discarded.

If the octal value specified by \ddd will not fit in a byte, the results are unspecified.

If a \e or \cX escape sequence specifies a character that does not have an encoding in the locale
in effect when these <backslash>-escape sequences are processed, the result is implementation-
defined. However, implementations shall not replace an unsupported character with bytes that
do not form valid characters in that locale’s character set.

If a <backslash>-escape sequence represents a single-quote character (for example \'), that
sequence shall not terminate the dollar-single-quote sequence.

2.3 Token Recognition
The shell shall read its input in terms of lines. (For details about how the shell reads its input, see
the description of sh .) The input lines can be of unlimited length. These lines shall be parsed
using two major modes: ordinary token recognition and processing of here-documents.

When an io_here token has been recognized by the grammar (see Section 2.10), one or more of
the subsequent lines immediately following the next NEWLINE token form the body of a here-
document and shall be parsed according to the rules of Section 2.7.4. Any non-NEWLINE
tokens (including more io_here tokens) that are recognized while searching for the next
NEWLINE token shall be saved for processing after the here-document has been parsed. If a
saved token is an io_here token, the corresponding here-document shall start on the line
immediately following the line containing the trailing delimiter of the previous here-document.
If any saved token includes a <newline> character, the behavior is unspecified.

When it is not processing an io_here, the shell shall break its input into tokens by applying the
first applicable rule below to each character in turn in its input. At the start of input or after a
previous token has just been delimited, the first or next token, respectively, shall start with the
first character that has not already been included in a token and is not discarded according to

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2475

80177

80178

80179

80180

80181

80182

80183

80184

80185

80186

80187

80188

80189

80190

80191

80192

80193

80194

80195

80196

80197

80198

80199

80200

80201

80202

80203

80204

80205

80206

80207

80208

80209

80210

80211

80212

80213

80214

80215

80216

80217

80218

80219

80220

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Token Recognition Shell Command Language

the rules below. Once a token has started, zero or more characters from the input shall be
appended to the token until the end of the token is delimited according to one of the rules below.
When both the start and end of a token have been delimited, the characters forming the token
shall be exactly those in the input between the two delimiters, including any quoting characters.
If a rule below indicates that a token is delimited, and no characters have been included in the
token, that empty token shall be discarded.

1. If the end of input is recognized, the current token (if any) shall be delimited.

2. If the previous character was used as part of an operator and the current character is not
quoted and can be used with the previous characters to form an operator, it shall be used
as part of that (operator) token.

3. If the previous character was used as part of an operator and the current character cannot
be used with the previous characters to form an operator, the operator containing the
previous character shall be delimited.

4. If the current character is an unquoted <backslash>, single-quote, or double-quote or is
the first character of an unquoted <dollar-sign> single-quote sequence, it shall affect
quoting for subsequent characters up to the end of the quoted text. The rules for quoting
are as described in Section 2.2. During token recognition no substitutions shall be
actually performed, and the result token shall contain exactly the characters that appear
in the input unmodified, including any embedded or enclosing quotes or substitution
operators, between the start and the end of the quoted text. The token shall not be
delimited by the end of the quoted field.

5. If the current character is an unquoted '$' or '`', the shell shall identify the start of any
candidates for parameter expansion (Section 2.6.2), command substitution (Section 2.6.3),
or arithmetic expansion (Section 2.6.4) from their introductory unquoted character
sequences: '$' or "${", "$(" or '`', and "$((", respectively. The shell shall read
sufficient input to determine the end of the unit to be expanded (as explained in the cited
sections). While processing the characters, if instances of expansions or quoting are
found nested within the substitution, the shell shall recursively process them in the
manner specified for the construct that is found. For "$(" and '`' only, if instances of
io_here tokens are found nested within the substitution, they shall be parsed according to
the rules of Section 2.7.4; if the terminating ')' or '`' of the substitution occurs before
the NEWLINE token marking the start of the here-document, the behavior is unspecified.
The characters found from the beginning of the substitution to its end, allowing for any
recursion necessary to recognize embedded constructs, shall be included unmodified in
the result token, including any embedded or enclosing substitution operators or quotes.
The token shall not be delimited by the end of the substitution.

6. If the current character is not quoted and can be used as the first character of a new
operator, the current token (if any) shall be delimited. The current character shall be used
as the beginning of the next (operator) token.

7. If the current character is an unquoted <blank>, any token containing the previous
character is delimited and the current character shall be discarded.

8. If the previous character was part of a word, the current character shall be appended to
that word.

9. If the current character is a '#', it and all subsequent characters up to, but excluding, the
next <newline> shall be discarded as a comment. The <newline> that ends the line is not
considered part of the comment.

2476 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80221

80222

80223

80224

80225

80226

80227

80228

80229

80230

80231

80232

80233

80234

80235

80236

80237

80238

80239

80240

80241

80242

80243

80244

80245

80246

80247

80248

80249

80250

80251

80252

80253

80254

80255

80256

80257

80258

80259

80260

80261

80262

80263

80264

80265

80266

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Token Recognition

10. The current character is used as the start of a new word.

Once a token is delimited, it is categorized as required by the grammar in Section 2.10.

In situations where the shell parses its input as a program, once a complete_command has been
recognized by the grammar (see Section 2.10), the complete_command shall be executed before the
next complete_command is tokenized and parsed.

2.3.1 Alias Substitution

After a token has been categorized as type TOKEN (see Section 2.10.1), including (recursively)
any token resulting from an alias substitution, the TOKEN shall be subject to alias substitution if
all of the following conditions are true:

• The TOKEN does not contain any quoting characters.

• The TOKEN is a valid alias name (see XBD Section 3.10).

• An alias with that name is in effect.

• The TOKEN did not either fully or, optionally, partially result from an alias substitution of
the same alias name at any earlier recursion level.

• Either the TOKEN is being considered for alias substitution because it follows an alias
substitution whose replacement value ended with a <blank> (see below) or the TOKEN
could be parsed as the command name word of a simple command (see Section 2.10),
based on this TOKEN and the tokens (if any) that preceded it, but ignoring whether any
subsequent characters would allow that.

except that if the TOKEN meets the above conditions and would be recognized as a reserved
word (see Section 2.4) if it occurred in an appropriate place in the input, it is unspecified
whether the TOKEN is subject to alias substitution.

When a TOKEN is subject to alias substitution, the value of the alias shall be processed as if it
had been read from the input instead of the TOKEN, with token recognition (see Section 2.3)
resuming at the start of the alias value. When the end of the alias value is reached, the shell may
behave as if an additional <space> character had been read from the input after the TOKEN that
was replaced. If it does not add this <space>, it is unspecified whether the current token is
delimited before token recognition is applied to the character (if any) that followed the TOKEN
in the input.

Note: A future version of this standard may disallow adding this <space>.

If the value of the alias replacing the TOKEN ends in a <blank> that would be unquoted after
substitution, and optionally if it ends in a <blank> that would be quoted after substitution, the
shell shall check the next token in the input, if it is a TOKEN, for alias substitution; this process
shall continue until a TOKEN is found that is not a valid alias or an alias value does not end in
such a <blank>.

An implementation may defer the effect of a change to an alias but the change shall take effect
no later than the completion of the currently executing complete_command (see Section 2.10).
Changes to aliases shall not take effect out of order. Implementations may provide predefined
aliases that are in effect when the shell is invoked.

When used as specified by this volume of POSIX.1-2024, alias definitions shall not be inherited
by separate invocations of the shell or by the utility execution environments invoked by the
shell; see Section 2.13.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2477

80267

80268

80269

80270

80271

80272

80273

80274

80275

80276

80277

80278

80279

80280

80281

80282

80283

80284

80285

80286

80287

80288

80289

80290

80291

80292

80293

80294

80295

80296

80297

80298

80299

80300

80301

80302

80303

80304

80305

80306

80307

80308

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Reserved Words Shell Command Language

2.4 Reserved Words
Reserved words are words that have special meaning to the shell; see Section 2.9. The following
words shall be recognized as reserved words:

!
{
}
case

do
done
elif
else

esac
fi
for
if

in
then
until
while

This recognition shall only occur when none of the characters is quoted and when the word is
used as:

• The first word of a command

• The first word following one of the reserved words other than case, for, or in

• The third word in a case command (only in is valid in this case)

• The third word in a for command (only in and do are valid in this case)

See the grammar in Section 2.10.

When used in circumstances where reserved words are recognized (described above), the
following words may be recognized as reserved words, in which case the results are unspecified
except as described below for time:

[[]] function namespace select time

When the word time is recognized as a reserved word in circumstances where it would, if it
were not a reserved word, be the command name (see Section 2.9.1.1) of a simple command that
would execute the time utility in a manner other than one for which time states that the results
are unspecified, the behavior shall be as specified for the time utility.

When used in circumstances where reserved words are recognized (described above), all words
whose final character is a <colon> (':') are reserved; their use in those circumstances produces
unspecified results.

2.5 Parameters and Variables
A parameter can be denoted by a name, a number, or one of the special characters listed in
Section 2.5.2. A variable is a parameter denoted by a name.

A parameter is set if it has an assigned value (null is a valid value). Once a variable is set, it can
only be unset by using the unset special built-in command.

Parameters can contain arbitrary byte sequences, except for the null byte. The shell shall process
their values as characters only when performing operations that are described in this standard in
terms of characters.

2478 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80309

80310

80311

80312

80313

80314

80315

80316

80317

80318

80319

80320

80321

80322

80323

80324

80325

80326

80327

80328

80329

80330

80331

80332

80333

80334

80335

80336

80337

80338

80339

80340

80341

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Parameters and Variables

2.5.1 Positional Parameters

A positional parameter is a parameter denoted by a decimal representation of a positive integer.
The digits denoting the positional parameters shall always be interpreted as a decimal value,
even if there is a leading zero. When a positional parameter with more than one digit is
specified, the application shall enclose the digits in braces (see Section 2.6.2).

Examples:

• "$8", "${8}", "${08}", "${008}", etc. all expand to the value of the eighth positional
parameter.

• "${10}" expands to the value of the tenth positional parameter.

• "$10" expands to the value of the first positional parameter followed by the character ’0’.

Note: 0 is a special parameter, not a positional parameter, and therefore the results of expanding
${00} are unspecified.

Positional parameters are initially assigned when the shell is invoked (see sh), temporarily
replaced when a shell function is invoked (see Section 2.9.5), and can be reassigned with the set
special built-in command.

2.5.2 Special Parameters

Listed below are the special parameters and the values to which they shall expand. Only the
values of the special parameters are listed; see Section 2.6 for a detailed summary of all the
stages involved in expanding words.

@ Expands to the positional parameters, starting from one, initially producing one field for
each positional parameter that is set. When the expansion occurs in a context where field
splitting will be performed, any empty fields may be discarded and each of the non-empty
fields shall be further split as described in Section 2.6.5. When the expansion occurs within
double-quotes, the behavior is unspecified unless one of the following is true:

• Field splitting as described in Section 2.6.5 would be performed if the expansion were
not within double-quotes (regardless of whether field splitting would have any effect;
for example, if IFS is null).

• The double-quotes are within the word of a ${parameter :−word} or a ${parameter :+word}
expansion (with or without the <colon>; see Section 2.6.2) which would have been
subject to field splitting if parameter had been expanded instead of word.

If one of these conditions is true, the initial fields shall be retained as separate fields, except
that if the parameter being expanded was embedded within a word, the first field shall be
joined with the beginning part of the original word and the last field shall be joined with the
end part of the original word. In all other contexts the results of the expansion are
unspecified. If there are no positional parameters, the expansion of '@' shall generate zero
fields, even when '@' is within double-quotes; however, if the expansion is embedded
within a word which contains one or more other parts that expand to a quoted null string,
these null string(s) shall still produce an empty field, except that if the other parts are all
within the same double-quotes as the '@', it is unspecified whether the result is zero fields
or one empty field.

* Expands to the positional parameters, starting from one, initially producing one field for
each positional parameter that is set. When the expansion occurs in a context where field
splitting will be performed, any empty fields may be discarded and each of the non-empty
fields shall be further split as described in Section 2.6.5. When the expansion occurs in a

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2479

80342

80343

80344

80345

80346

80347

80348

80349

80350

80351

80352

80353

80354

80355

80356

80357

80358

80359

80360

80361

80362

80363

80364

80365

80366

80367

80368

80369

80370

80371

80372

80373

80374

80375

80376

80377

80378

80379

80380

80381

80382

80383

80384

80385

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Parameters and Variables Shell Command Language

context where field splitting will not be performed, the initial fields shall be joined to form a
single field with the value of each parameter separated by the first character of the IFS
variable if IFS contains at least one character, or separated by a <space> if IFS is unset, or
with no separation if IFS is set to a null string.

Expands to the shortest representation of the decimal number of positional parameters. The
command name (parameter 0) shall not be counted in the number given by '#' because it is
a special parameter, not a positional parameter.

? Expands to the shortest representation of the decimal exit status (see Section 2.8.2) of the
pipeline (see Section 2.9.2) executed from the current shell execution environment (not a
subshell environment) that most recently either terminated or, optionally but only if the
shell is interactive and job control is enabled, was stopped by a signal. If this pipeline
terminated, the status value shall be its exit status; otherwise, the status value shall be the
same as the exit status that would have resulted if the pipeline had been terminated by a
signal with the same number as the signal that stopped it. The value of the special
parameter '?' shall be set to 0 during initialization of the shell. When a subshell
environment is created, the value of the special parameter '?' from the invoking shell
environment shall be preserved in the subshell.

Note: In var=$(some_command); echo $? the output is the exit status of some_command,
which is executed in a subshell environment, but this is because its exit status becomes the
exit status of the assignment command var=$(some_command) (see Section 2.9.1) and
this assignment command is the most recently completed pipeline. Likewise for any
pipeline consisting entirely of a simple command that has no command word, but contains
one or more command substitutions. (See Section 2.9.1.)

− (Hyphen.) Expands to the current option flags (the single-letter option names concatenated
into a string) as specified on invocation, by the set special built-in command, or implicitly
by the shell. It is unspecified whether the −c and −s options are included in the expansion
of "$-". The −i option shall be included in "$-" if the shell is interactive, regardless of
whether it was specified on invocation.

$ Expands to the shortest representation of the decimal process ID of the invoked shell. In a
subshell (see Section 2.13), '$' shall expand to the same value as that of the current shell.

! Expands to the shortest representation of the decimal process ID associated with the most
recent asynchronous AND-OR list (see Section 2.9.3.1) executed from the current shell
execution environment, or to the shortest representation of the decimal process ID of the
last command specified in the currently executing pipeline in the job-control background
job that most recently resumed execution through the use of bg, whichever is the most
recent.

0 (Zero.) Expands to the name of the shell or shell script. See sh for a detailed description of
how this name is derived.

See the description of the IFS variable in Section 2.5.3.

2480 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80386

80387

80388

80389

80390

80391

80392

80393

80394

80395

80396

80397

80398

80399

80400

80401

80402

80403

80404

80405

80406

80407

80408

80409

80410

80411

80412

80413

80414

80415

80416

80417

80418

80419

80420

80421

80422

80423

80424

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Parameters and Variables

2.5.3 Shell Variables

Variables shall be initialized from the environment (as defined by XBD Chapter 8 and the exec
function in the System Interfaces volume of POSIX.1-2024) and can be given new values with
variable assignment commands. Shell variables shall be initialized only from environment
variables that have valid names. If a variable is initialized from the environment, it shall be
marked for export immediately; see the export special built-in. New variables can be defined and
initialized with variable assignments, with the read or getopts utilities, with the name parameter
in a for loop, with the ${name=word} expansion, or with other mechanisms provided as
implementation extensions.

The following variables shall affect the execution of the shell:

UP ENV The processing of the ENV shell variable shall be supported if the system
supports the User Portability Utilities option.

This variable, when and only when an interactive shell is invoked, shall be
subjected to parameter expansion (see Section 2.6.2) by the shell and the
resulting value shall be used as a pathname of a file. Before any interactive
commands are read, the shell shall tokenize (see Section 2.3) the contents of
the file, parse the tokens as a program (see Section 2.10), and execute the
resulting commands in the current environment. (In other words, the contents
of the ENV file are not parsed as a single compound_list. This distinction
matters because it influences when aliases take effect.) The file need not be
executable. If the expanded value of ENV is not an absolute pathname, the
results are unspecified. ENV shall be ignored if the user’s real and effective
user IDs or real and effective group IDs are different.

HOME The pathname of the user’s home directory. The contents of HOME are used in
tilde expansion (see Section 2.6.1).

IFS A string treated as a list of characters that is used for field splitting, expansion
of the '*' special parameter, and to split lines into fields with the read utility.
If the value of IFS includes any bytes that do not form part of a valid character,
the results of field splitting, expansion of '*', and use of the read utility are
unspecified.

If IFS is not set, it shall behave as normal for an unset variable, except that
field splitting by the shell and line splitting by the read utility shall be
performed as if the value of IFS is <space><tab><newline>; see Section 2.6.5.

The shell shall set IFS to <space><tab><newline> when it is invoked.

LANG Provide a default value for the internationalization variables that are unset or
null. (See XBD Section 8.2 for the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL The value of this variable overrides the LC_* variables and LANG, as
described in XBD Chapter 8.

LC_COLLATE Determine the behavior of range expressions, equivalence classes, and multi-
character collating elements within pattern matching.

LC_CTYPE Determine the interpretation of sequences of bytes of text data as characters
(for example, single-byte as opposed to multi-byte characters), which
characters are defined as letters (character class alpha) and <blank> characters
(character class blank), and the behavior of character classes within pattern
matching. Changing the value of LC_CTYPE after the shell has started shall
not affect the lexical processing of shell commands in the current shell

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2481

80425

80426

80427

80428

80429

80430

80431

80432

80433

80434

80435

80436

80437

80438

80439

80440

80441

80442

80443

80444

80445

80446

80447

80448

80449

80450

80451

80452

80453

80454

80455

80456

80457

80458

80459

80460

80461

80462

80463

80464

80465

80466

80467

80468

80469

80470

80471

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Parameters and Variables Shell Command Language

execution environment or its subshells. Invoking a shell script or performing
exec sh subjects the new shell to the changes in LC_CTYPE.

LC_MESSAGES Determine the language in which messages should be written.

UP LINENO The processing of the LINENO shell variable shall be supported if the system
supports the User Portability Utilities option.

Set by the shell to a decimal number representing the current sequential line
number (numbered starting with 1) within a script or function before it
executes each command. If the user unsets or resets LINENO, the variable may
lose its special meaning for the life of the shell. If the shell is not currently
executing a script or function, the value of LINENO is unspecified.

XSI NLSPATH Determine the location of message catalogs for the processing of
LC_MESSAGES.

PA TH A string formatted as described in XBD Chapter 8, used to effect command
interpretation; see Section 2.9.1.4.

PPID Set by the shell to the decimal value of its parent process ID during
initialization of the shell. In a subshell (see Section 2.13), PPID shall be set to
the same value as that of the parent of the current shell. For example, echo
$PPID and (echo $PPID) would produce the same value.

UP PS1 The processing of the PS1 shell variable shall be supported if the system
supports the User Portability Utilities option.

Each time an interactive shell is ready to read a command, the value of this
variable shall be subjected to parameter expansion (see Section 2.6.2) and
exclamation-mark expansion (see below). Whether the value is also subjected
to command substitution (see Section 2.6.3) or arithmetic expansion (see
Section 2.6.4) or both is unspecified. After expansion, the value shall be
written to standard error.

The expansions shall be performed in two passes, where the result of the first
pass is input to the second pass. One of the passes shall perform only the
exclamation-mark expansion described below. The other pass shall perform
the other expansion(s) according to the rules in Section 2.6. Which of the two
passes is performed first is unspecified.

The default value shall be "$ ". For users who have specific additional
implementation-defined privileges, the default may be another,
implementation-defined value.

Exclamation-mark expansion: The shell shall replace each instance of the
<exclamation-mark> character ('!') with the history file number (see
Command History List) of the next command to be typed. An <exclamation-
mark> character escaped by another <exclamation-mark> character (that is,
"!!") shall expand to a single <exclamation-mark> character.

UP PS2 The processing of the PS2 shell variable shall be supported if the system
supports the User Portability Utilities option.

Each time the user enters a <newline> prior to completing a command line in
an interactive shell, the value of this variable shall be subjected to parameter
expansion (see Section 2.6.2). Whether the value is also subjected to command
substitution (see Section 2.6.3) or arithmetic expansion (see Section 2.6.4) or
both is unspecified. After expansion, the value shall be written to standard

2482 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80472

80473

80474

80475

80476

80477

80478

80479

80480

80481

80482

80483

80484

80485

80486

80487

80488

80489

80490

80491

80492

80493

80494

80495

80496

80497

80498

80499

80500

80501

80502

80503

80504

80505

80506

80507

80508

80509

80510

80511

80512

80513

80514

80515

80516

80517

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Parameters and Variables

error. The default value shall be "> ".

UP PS4 The processing of the PS4 shell variable shall be supported if the system
supports the User Portability Utilities option.

When an execution trace (set −x) is being performed, before each line in the
execution trace, the value of this variable shall be subjected to parameter
expansion (see Section 2.6.2). Whether the value is also subjected to command
substitution (see Section 2.6.3) or arithmetic expansion (see Section 2.6.4) or
both is unspecified. After expansion, the value shall be written to standard
error. The default value shall be "+ ".

PWD Set by the shell and by the cd utility. In the shell the value shall be initialized
from the environment as follows. If a value for PWD is passed to the shell in
the environment when it is executed, the value is an absolute pathname of the
current working directory that is no longer than {PATH_MAX} bytes including
the terminating null byte, and the value does not contain any components that
are dot or dot-dot, then the shell shall set PWD to the value from the
environment. Otherwise, if a value for PWD is passed to the shell in the
environment when it is executed, the value is an absolute pathname of the
current working directory, and the value does not contain any components
that are dot or dot-dot, then it is unspecified whether the shell sets PWD to the
value from the environment or sets PWD to the pathname that would be
output by pwd −P. Otherwise, the sh utility sets PWD to the pathname that
would be output by pwd −P. In cases where PWD is set to the value from the
environment, the value can contain components that refer to files of type
symbolic link. In cases where PWD is set to the pathname that would be
output by pwd −P, if there is insufficient permission on the current working
directory, or on any parent of that directory, to determine what that pathname
would be, the value of PWD is unspecified. Assignments to this variable may
be ignored. If an application sets or unsets the value of PWD, the behaviors of
the cd and pwd utilities are unspecified.

2.6 Word Expansions
This section describes the various expansions that are performed on words. Not all expansions
are performed on every word, as explained in the following sections and elsewhere in this
chapter. The expansions that are performed for a given word shall be performed in the following
order:

1. Tilde expansion (see Section 2.6.1), parameter expansion (see Section 2.6.2), command
substitution (see Section 2.6.3), and arithmetic expansion (see Section 2.6.4) shall be
performed, beginning to end. See item 5 in Section 2.3.

2. Field splitting (see Section 2.6.5) shall be performed on the portions of the fields
generated by step 1.

3. Pathname expansion (see Section 2.6.6) shall be performed, unless set −f is in effect.

4. Quote removal (see Section 2.6.7), if performed, shall always be performed last.

Tilde expansions, parameter expansions, command substitutions, arithmetic expansions, and
quote removals that occur within a single word shall expand to a single field, except as
described below. The shell shall create multiple fields or no fields from a single word only as a
result of field splitting, pathname expansion, or the following cases:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2483

80518

80519

80520

80521

80522

80523

80524

80525

80526

80527

80528

80529

80530

80531

80532

80533

80534

80535

80536

80537

80538

80539

80540

80541

80542

80543

80544

80545

80546

80547

80548

80549

80550

80551

80552

80553

80554

80555

80556

80557

80558

80559

80560

80561

80562

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Word Expansions Shell Command Language

1. Parameter expansion of the special parameters '@' and '*', as described in Section 2.5.2,
can create multiple fields or no fields from a single word.

2. When the expansion occurs in a context where field splitting will be performed, a word
that contains all of the following somewhere within it, before any expansions are applied,
in the order specified:

• an unquoted <left-curly-bracket> ('{') that is not immediately preceded by an
unquoted <dollar-sign> ('$')

• one or more unquoted <comma> (',') characters or a sequence that consists of two
adjacent <period> ('.') characters surrounded by other characters (which can also
be <period> characters)

• an unquoted <right-curly-bracket> ('}')

may be subject to an additional implementation-defined form of expansion that can create
multiple fields from a single word. This expansion, if supported, shall be applied before
all the other word expansions are applied. The other expansions shall then be applied to
each field that results from this expansion.

When the expansions in this section are performed other than in the context of preparing a
command for execution, they shall be carried out in the current shell execution environment.

When expanding words for a command about to be executed, and the word will be the
command name or an argument to the command, the expansions shall be carried out in the
current shell execution environment. (The environment for the command to be executed is
unknown until the command word is known.)

When expanding the words in a command about to be executed that are used with variable
assignments or redirections, it is unspecified whether the expansions are carried out in the
current execution environment or in the environment of the command about to be executed.

The '$' character is used to introduce parameter expansion, command substitution, or
arithmetic evaluation. If a '$' that is neither within single-quotes nor escaped by a <backslash>
is immediately followed by a character that is not a <space>, not a <tab>, not a <newline>, and
is not one of the following:

• A numeric character

• The name of one of the special parameters (see Section 2.5.2)

• A valid first character of a variable name

• A <left-curly-bracket> ('{')

• A <left-parenthesis>

• A single-quote

the result is unspecified. If a '$' that is neither within single-quotes nor escaped by a
<backslash> is immediately followed by a <space>, <tab>, or a <newline>, or is not followed by
any character, the '$' shall be treated as a literal character.

2484 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80563

80564

80565

80566

80567

80568

80569

80570

80571

80572

80573

80574

80575

80576

80577

80578

80579

80580

80581

80582

80583

80584

80585

80586

80587

80588

80589

80590

80591

80592

80593

80594

80595

80596

80597

80598

80599

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Word Expansions

2.6.1 Tilde Expansion

A ``tilde-prefix’’ consists of an unquoted <tilde> character at the beginning of a word, followed
by all of the characters preceding the first unquoted <slash> in the word, or all the characters in
the word if there is no <slash>. In an assignment (see XBD Section 4.26), multiple tilde-prefixes
can be used: one at the beginning of the word (that is, following the <equals-sign> of the
assignment), or one following any unquoted <colon>, or both. A tilde-prefix in an assignment is
terminated by the first unquoted <colon> or <slash>, or the end of the assignment word.

If the tilde-prefix consists of only the <tilde> character, it shall be replaced by the value of the
variable HOME. If HOME is unset, the results are unspecified.

Otherwise, the characters in the tilde-prefix following the <tilde> shall be treated as a possible
login name from the user database. If these characters do not form a portable login name (see
the description of the LOGNAME environment variable in XBD Section 8.3), the results are
unspecified.

Note: Since the tilde-prefix is not subject to further word expansions after the <tilde> is removed to
obtain the login name, none of the following has a portable login name following the <tilde>:

~"string"
~’string’
~$var
~\/bin

owing to the presence of '"', '\'', '$', '\\', and '/' characters in the login name.

If the characters in the tilde-prefix following the <tilde> form a portable login name, the tilde-
prefix shall be replaced by a pathname of the initial working directory associated with the login
name. The pathname shall be obtained as if by using the getpwnam() function as defined in the
System Interfaces volume of POSIX.1-2024. If the system does not recognize the login name, the
results are unspecified.

The pathname that replaces the tilde-prefix shall be treated as if quoted to prevent it being
altered by field splitting and pathname expansion; if a <slash> follows the tilde-prefix and the
pathname ends with a <slash>, the trailing <slash> from the pathname should be omitted from
the replacement. If the word being expanded consists of only the <tilde> character and HOME is
set to the null string, this produces an empty field (as opposed to zero fields) as the expanded
word.

Note: A future version of this standard may require that if a <slash> follows the tilde-prefix and the
pathname ends with a <slash>, the trailing <slash> from the pathname is omitted from the
replacement.

2.6.2 Parameter Expansion

The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the matching '}'. Any '}' escaped by a
<backslash> or within a quoted string, and characters in embedded arithmetic expansions,
command substitutions, and variable expansions, shall not be examined in determining the
matching '}'.

The simplest form for parameter expansion is:

${parameter}

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2485

80600

80601

80602

80603

80604

80605

80606

80607

80608

80609

80610

80611

80612

80613

80614

80615

80616

80617

80618

80619

80620

80621

80622

80623

80624

80625

80626

80627

80628

80629

80630

80631

80632

80633

80634

80635

80636

80637

80638

80639

80640

80641

80642

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Word Expansions Shell Command Language

The value, if any, of parameter shall be substituted.

The parameter name or symbol can be enclosed in braces, which are optional except for
positional parameters with more than one digit or when parameter is a name and is followed by a
character that could be interpreted as part of the name.

For a parameter that is not enclosed in braces:

• If the parameter is a name, the expansion shall use the longest valid name (see XBD
Section 3.216), whether or not the variable denoted by that name exists.

• Otherwise, the parameter is a single-character symbol, and behavior is unspecified if that
character is neither a digit nor one of the special parameters (see Section 2.5.2).

In addition, a parameter expansion can be modified by using one of the following formats. In
each case that a value of word is needed (based on the state of parameter, as described below),
word shall be subjected to tilde expansion, parameter expansion, command substitution,
arithmetic expansion, and quote removal. If word is not needed, it shall not be expanded. The
'}' character that delimits the following parameter expansion modifications shall be
determined as described previously in this section and in Section 2.2.3. If parameter is '*' or
'@', the result of the expansion is unspecified.

${parameter :−[word]} Use Default Values. If parameter is unset or null, the expansion of word
(or an empty string if word is omitted) shall be substituted; otherwise, the
value of parameter shall be substituted.

${parameter :=[word]} Assign Default Values. If parameter is unset or null, quote removal shall
be performed on the expansion of word and the result (or an empty string
if word is omitted) shall be assigned to parameter. In all cases, the final
value of parameter shall be substituted. Only variables, not positional
parameters or special parameters, can be assigned in this way.

${parameter :?[word]} Indicate Error if Null or Unset. If parameter is unset or null, the
expansion of word (or a message indicating it is unset if word is omitted)
shall be written to standard error and the shell exits with a non-zero exit
status. Otherwise, the value of parameter shall be substituted. An
interactive shell need not exit.

${parameter :+[word]} Use Alternative Value. If parameter is unset or null, null shall be
substituted; otherwise, the expansion of word (or an empty string if word
is omitted) shall be substituted.

In the parameter expansions shown previously, use of the <colon> in the format shall result in a
test for a parameter that is unset or null; omission of the <colon> shall result in a test for a
parameter that is only unset. If parameter is '#' and the colon is omitted, the application shall
ensure that word is specified (this is necessary to avoid ambiguity with the string length
expansion). The following table summarizes the effect of the <colon>:

2486 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80643

80644

80645

80646

80647

80648

80649

80650

80651

80652

80653

80654

80655

80656

80657

80658

80659

80660

80661

80662

80663

80664

80665

80666

80667

80668

80669

80670

80671

80672

80673

80674

80675

80676

80677

80678

80679

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Word Expansions

parameter parameter parameter
Set and Not Null Set But Null Unset

${parameter:−word} substitute parameter substitute word substitute word
${parameter−word} substitute parameter substitute null substitute word
${parameter:=word} substitute parameter assign word assign word
${parameter=word} substitute parameter substitute null assign word
${parameter:?word} substitute parameter error, exit error, exit
${parameter?word} substitute parameter substitute null error, exit
${parameter:+word} substitute word substitute null substitute null
${parameter+word} substitute word substitute word substitute null

In all cases shown with ``substitute’’, the expression is replaced with the value shown. In all
cases shown with ``assign’’, parameter is assigned that value, which also replaces the expression.

${#parameter} String Length. The shortest decimal representation of the length in
characters of the value of parameter shall be substituted. If parameter is '*'
or '@', the result of the expansion is unspecified. If parameter is unset
and set −u is in effect, the expansion shall fail.

The following four varieties of parameter expansion provide for character substring processing.
In each case, pattern matching notation (see Section 2.14), rather than regular expression
notation, shall be used to evaluate the patterns. If parameter is '#', '*', or '@', the result of the
expansion is unspecified. If parameter is unset and set −u is in effect, the expansion shall fail.
Enclosing the full parameter expansion string in double-quotes shall not cause the following
four varieties of pattern characters to be quoted, whereas quoting characters within the braces
shall have this effect. In each variety, if word is omitted, the empty pattern shall be used.

${parameter%[word]} Remove Smallest Suffix Pattern. The word shall be expanded to produce
a pattern. The parameter expansion shall then result in parameter, with the
smallest portion of the suffix matched by the pattern deleted. If present,
word shall not begin with an unquoted '%'.

${parameter%%[word]} Remove Largest Suffix Pattern. The word shall be expanded to produce a
pattern. The parameter expansion shall then result in parameter, with the
largest portion of the suffix matched by the pattern deleted.

${parameter#[word]} Remove Smallest Prefix Pattern. The word shall be expanded to produce
a pattern. The parameter expansion shall then result in parameter, with the
smallest portion of the prefix matched by the pattern deleted. If present,
word shall not begin with an unquoted '#'.

${parameter##[word]} Remove Largest Prefix Pattern. The word shall be expanded to produce a
pattern. The parameter expansion shall then result in parameter, with the
largest portion of the prefix matched by the pattern deleted.

Examples

${parameter}
In this example, the effects of omitting braces are demonstrated.

a=1
set 2
echo ${a}b-$ab-${1}0-${10}-$10
1b--20--20

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2487

80680

80681

80682

80683

80684

80685

80686

80687

80688

80689

80690

80691

80692

80693

80694

80695

80696

80697

80698

80699

80700

80701

80702

80703

80704

80705

80706

80707

80708

80709

80710

80711

80712

80713

80714

80715

80716

80717

80718

80719

80720

80721

80722

80723

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Word Expansions Shell Command Language

${parameter−word}
This example demonstrates the difference between unset and set to the empty string, as well
as the rules for finding the delimiting close brace.

foo=asdf
echo ${foo-bar}xyz}
asdfxyz}
foo=
echo ${foo-bar}xyz}
xyz}
unset foo
echo ${foo-bar}xyz}
barxyz}

${parameter :−word}
In this example, ls is executed only if x is null or unset. (The $(ls) command substitution
notation is explained in Section 2.6.3.)

${x:-$(ls)}

${parameter :=word}
unset X
echo ${X:=abc}
abc

${parameter :?word}
unset posix
echo ${posix:?}
sh: posix: parameter null or not set

${parameter :+word}
set a b c
echo ${3:+posix}
posix

${#parameter}
HOME=/usr/posix
echo ${#HOME}
10

${parameter%word}
x=file.c
echo ${x%.c}.o
file.o

${parameter%%word}
x=posix/src/std
echo ${x%%/*}
posix

${parameter#word}
x=$HOME/src/cmd
echo ${x#$HOME}
/src/cmd

2488 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80724

80725

80726

80727

80728

80729

80730

80731

80732

80733

80734

80735

80736

80737

80738

80739

80740

80741

80742

80743

80744

80745

80746

80747

80748

80749

80750

80751

80752

80753

80754

80755

80756

80757

80758

80759

80760

80761

80762

80763

80764

80765

80766

80767

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Word Expansions

${parameter##word}
x=/one/two/three
echo ${x##*/}
three

The double-quoting of patterns is different depending on where the double-quotes are placed:

"${x#*}" The <asterisk> is a pattern character.

${x#"*"} The literal <asterisk> is quoted and not special.

2.6.3 Command Substitution

Command substitution allows the output of one or more commands to be substituted in place of
the commands themselves. Command substitution shall occur when command(s) are enclosed
as follows:

$(commands)

or (backquoted version):

`commands`

The shell shall expand the command substitution by executing commands in a subshell
environment (see Section 2.13) and replacing the command substitution (the text of the
commands string plus the enclosing "$()" or backquotes) with the standard output of the
command(s); if the output ends with one or more bytes that have the encoded value of a
<newline> character, they shall not be included in the replacement. Any such bytes that occur
elsewhere shall be included in the replacement; however, they might be treated as field
delimiters and eliminated during field splitting, depending on the value of IFS and quoting that
is in effect. If the output contains any null bytes, the behavior is unspecified.

Within the backquoted style of command substitution, if the command substitution is not within
double-quotes, <backslash> shall retain its literal meaning, except when followed by: '$', '`',
or <backslash>. See Section 2.2.3 for the handling of <backslash> when the command
substitution is within double-quotes. The search for the matching backquote shall be satisfied
by the first unquoted non-escaped backquote; during this search, if a non-escaped backquote is
encountered within a shell comment, a here-document, an embedded command substitution of
the $(commands) form, or a quoted string, undefined results occur. A quoted string that begins,
but does not end, within the "`...`" sequence produces undefined results.

With the $(commands) form, all characters following the open parenthesis to the matching closing
parenthesis constitute the commands string.

With both the backquoted and $(commands) forms, the commands string shall be tokenized (see
Section 2.3) and parsed (see Section 2.10). It is unspecified whether the commands string is
parsed and executed incrementally as a program (as for a shell script), or is parsed as a single
compound_list that is executed after the string has been completely parsed. In addition, it is
unspecified whether the terminating ')' of the $(commands) form can result from alias
substitution. With the $(commands) form any syntactically correct program can be used for
commands, except that:

• If the commands string consists solely of redirections, the results are unspecified.

• If the commands string is parsed as a single compound_list, before any commands are
executed, alias and unalias commands in commands have no effect during parsing (see
Section 2.3.1). Strictly conforming applications shall ensure that the commands string does

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2489

80768

80769

80770

80771

80772

80773

80774

80775

80776

80777

80778

80779

80780

80781

80782

80783

80784

80785

80786

80787

80788

80789

80790

80791

80792

80793

80794

80795

80796

80797

80798

80799

80800

80801

80802

80803

80804

80805

80806

80807

80808

80809

80810

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Word Expansions Shell Command Language

not depend on alias changes taking effect incrementally as would be the case if parsed and
executed as a program.

• The behavior is unspecified if the terminating ')' is not present in the token containing
the command substitution; that is, if the ')' is expected to result from alias substitution.

The results of command substitution shall not be processed for further tilde expansion,
parameter expansion, command substitution, or arithmetic expansion.

Command substitution can be nested. To specify nesting within the backquoted version, the
application shall precede the inner backquotes with <backslash> characters; for example:

\`commands\`

The syntax of the shell command language has an ambiguity for expansions beginning with
"$((", which can introduce an arithmetic expansion or a command substitution that starts with
a subshell. Arithmetic expansion has precedence; that is, the shell shall first determine whether
it can parse the expansion as an arithmetic expansion and shall only parse the expansion as a
command substitution if it determines that it cannot parse the expansion as an arithmetic
expansion. The shell need not evaluate nested expansions when performing this determination.
If it encounters the end of input without already having determined that it cannot parse the
expansion as an arithmetic expansion, the shell shall treat the expansion as an incomplete
arithmetic expansion and report a syntax error. A conforming application shall ensure that it
separates the "$(" and '(' into two tokens (that is, separate them with white space) in a
command substitution that starts with a subshell. For example, a command substitution
containing a single subshell could be written as:

$((commands))

2.6.4 Arithmetic Expansion

Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and
substituting its value. The format for arithmetic expansion shall be as follows:

$((expression))

The expression shall be treated as if it were in double-quotes, except that a double-quote inside
the expression is not treated specially. The shell shall expand all tokens in the expression for
parameter expansion, command substitution, and quote removal.

Next, the shell shall treat this as an arithmetic expression and substitute the value of the
expression. The arithmetic expression shall be processed according to the rules given in Section
1.1.2.1, with the following exceptions:

• Only signed long integer arithmetic is required.

• Only the decimal-constant, octal-constant, and hexadecimal-constant constants specified in
the ISO C standard, Section 6.4.4.1 are required to be recognized as constants.

• The sizeof() operator and the prefix and postfix "++" and "--" operators are not required.

• Selection, iteration, and jump statements are not supported.

All changes to variables in an arithmetic expression shall be in effect after the arithmetic
expansion, as in the parameter expansion "${x=value}".

If the shell variable x contains a value that forms a valid integer constant, optionally including a
leading <plus-sign> or <hyphen-minus>, then the arithmetic expansions "$((x))" and
"$(($x))" shall return the same value.

2490 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80811

80812

80813

80814

80815

80816

80817

80818

80819

80820

80821

80822

80823

80824

80825

80826

80827

80828

80829

80830

80831

80832

80833

80834

80835

80836

80837

80838

80839

80840

80841

80842

80843

80844

80845

80846

80847

80848

80849

80850

80851

80852

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Word Expansions

As an extension, the shell may recognize arithmetic expressions beyond those listed. The shell
may use a signed integer type with a rank larger than the rank of signed long. The shell may
use a real-floating type instead of signed long as long as it does not affect the results in cases
where there is no overflow. If the expression is invalid, or the contents of a shell variable used in
the expression are not recognized by the shell, the expansion fails and the shell shall write a
diagnostic message to standard error indicating the failure.

Examples

A simple example using arithmetic expansion:

repeat a command 100 times
x=100
while [$x -gt 0]
do

command
x=$(($x-1))

done

2.6.5 Field Splitting

After parameter expansion (Section 2.6.2), command substitution (Section 2.6.3), and arithmetic
expansion (Section 2.6.4), if the shell variable IFS (see Section 2.5.3) is set and its value is not
empty, or if IFS is unset, the shell shall scan each field containing results of expansions and
substitutions that did not occur in double-quotes for field splitting; zero, one or multiple fields
can result.

For the remainder of this section, any reference to the results of an expansion, or results of
expansions, shall be interpreted to mean the results from one or more unquoted variable or
arithmetic expansions, or unquoted command substitutions.

If the IFS variable is set and has an empty string as its value, no field splitting shall occur.
However, if an input field which contained the results of an expansion is entirely empty, it shall
be removed. Note that this occurs before quote removal; any input field that contains any
quoting characters can never be empty at this point. After the removal of any such fields from
the input, the possibly modified input field list shall become the output.

Each input field shall be considered in sequence, first to last, with the results of the algorithm
described in this section causing output fields to be generated, which shall remain in the same
order as the input fields from which they originated.

Fields which contain no results from expansions shall not be affected by field splitting, and shall
remain unaltered, simply moving from the list of input fields to be next in the list of output
fields.

In the remainder of this description, it is assumed that there is present in the field at least one
expansion result; this assumption will not be restated. Field splitting only ever alters those parts
of the field.

For the purposes of this section, the term ``IFS white space’’ is used to mean any of the white-
space bytes (see XBD Section 3.413 (on page 92), Section 3.414 (on page 92), and Section 3.415, on
page 92) <space>, <tab>, or <newline> from the portable character set (see XBD Section 6.1, on
page 117) which are present in the value of the IFS variable, and perhaps other white-space
characters. It is implementation-defined whether other white-space characters which appear in

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2491

80853

80854

80855

80856

80857

80858

80859

80860

80861

80862

80863

80864

80865

80866

80867

80868

80869

80870

80871

80872

80873

80874

80875

80876

80877

80878

80879

80880

80881

80882

80883

80884

80885

80886

80887

80888

80889

80890

80891

80892

80893

80894

80895

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Word Expansions Shell Command Language

the value of IFS are also considered as ``IFS white space’’. The three characters above specified as
IFS white-space bytes are always IFS white space, when they occur in the value of IFS,
regardless of whether they are white-space characters in any relevant locale. For other locale-
specific white-space characters allowed by the implementation it is unspecified whether the
character is considered as IFS white space if it is white space at the time it is assigned to the IFS
variable, or if it is white space at the time field splitting occurs. (The locale might have changed
between those events.)

If the IFS variable is unset, then for the purposes of this section, but without altering the value of
the variable, its value shall be considered to contain the three single-byte characters <space>,
<tab>, and <newline> from the portable character set, all of which are IFS white-space
characters.

The shell shall use the byte sequences that form the characters in the value of the IFS variable as
delimiters. Each of the characters <space>, <tab>, and <newline> which appears in the value of
IFS shall be a single-byte delimiter. The shell shall use these delimiters as field terminators to
split the results of expansions, along with other adjacent bytes, into separate fields, as described
below. Note that these delimiters terminate a field; they do not, of themselves, cause a new field
to start—subsequent bytes that are not from the results of an expansion, or that do not form IFS
white-space characters are required for a new field to begin.

Note that the shell processes arbitrary bytes from the input fields; there is no requirement that
those bytes form valid characters.

If the results of the algorithm are that no fields are delimited; that is, if the input field is wholly
empty or consists entirely of IFS white space, the result shall be zero fields (rather than an empty
field).

For the purposes of this section, when a field is said to be delimited, then the candidate field, as
generated below shall become an output field. When the algorithm transforms a candidate into
an output field it shall be appended to the current list of output fields.

Each field containing the results from an expansion shall be processed in order, intermixed with
fields not containing the results of expansions, processed as described above, as if by using the
following algorithm, examining bytes in the input field, from beginning to end:

• Begin with an empty candidate field and the input as specified above.

• When instructed to start the next iteration of the loop, this is the start of the loop. While the
input (as modified by earlier iterations of this loop) is not empty:

— Consider the leading remaining byte or byte sequence of the input. No such byte
sequence shall contain data such that some bytes in the sequence resulted from an
expansion, and others did not, nor which contains bytes resulting from the results of
more than one expansion. If the byte or sequence of bytes is:

1. A byte (or sequence of bytes) in the input which did not result from an
expansion:

Append this byte (or sequence) to the candidate, and remove it from the
input. Start the next iteration of the loop.

2. A byte sequence in the input which resulted from an expansion and which
does not form a character in IFS:

Append the first byte of the sequence to the candidate, and remove that byte
from the input. Start the next iteration of the loop.

2492 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80896

80897

80898

80899

80900

80901

80902

80903

80904

80905

80906

80907

80908

80909

80910

80911

80912

80913

80914

80915

80916

80917

80918

80919

80920

80921

80922

80923

80924

80925

80926

80927

80928

80929

80930

80931

80932

80933

80934

80935

80936

80937

80938

80939

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Word Expansions

3. A byte sequence in the input which resulted from an expansion and which
forms an IFS white space character:

Remove that byte sequence from the input, consider the new leading input
byte sequence, and repeat this step.

4. A byte sequence in the input which resulted from an expansion and which
forms an IFS character that is not IFS white space:

Remove that byte sequence from the input, but note it was observed.

At this point, if the candidate is not empty, or if a sequence of bytes representing an
IFS character that is not IFS white space was seen at step 4, then a field is said to have
been delimited, and the candidate shall become an output field.

— Empty (clear) the candidate, and start the next iteration of the loop.

• Once the input is empty, the candidate shall become an output field if and only if it is not
empty.

The ordered list of output fields so produced, which might be empty, shall replace the list of
input fields.

2.6.6 Pathname Expansion

After field splitting, if set −f is not in effect, each field in the resulting command line shall be
expanded using the algorithm described in Section 2.14, qualified by the rules in Section 2.14.3.

2.6.7 Quote Removal

The quote character sequence <dollar-sign> single-quote and the single-character quote
characters (<backslash>, single-quote, and double-quote) that were present in the original word
shall be removed unless they have themselves been quoted. Note that the single-quote character
that terminates a <dollar-sign> single-quote sequence is itself a single-character quote character.

Note: After quote removal the shell still remembers which characters were quoted. This is necessary
for purposes such as matching patterns in a case conditional construct (see Section 2.9.4.3 and
Section 2.14).

2.7 Redirection
Redirection is used to open and close files for the current shell execution environment (see
Section 2.13) or for any command. Redirection operators can be used with numbers representing
file descriptors (see XBD Section 3.141) as described below.

The overall format used for redirection is:

[n]redir-op word

The number n is an optional one or more digit decimal number designating the file descriptor
number; the application shall ensure it is delimited from any preceding text and immediately
precedes the redirection operator redir-op (with no intervening <blank> characters allowed). If n
is quoted, the number shall not be recognized as part of the redirection expression. For example:

echo \2>a

writes the character 2 into file a. If any part of redir-op is quoted, no redirection expression is

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2493

80940

80941

80942

80943

80944

80945

80946

80947

80948

80949

80950

80951

80952

80953

80954

80955

80956

80957

80958

80959

80960

80961

80962

80963

80964

80965

80966

80967

80968

80969

80970

80971

80972

80973

80974

80975

80976

80977

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Redirection Shell Command Language

recognized. For example:

echo 2\>a

writes the characters 2>a to standard output. The optional number, redirection operator, and
word shall not appear in the arguments provided to the command to be executed (if any).

The shell may support an additional format used for redirection:

{location}redir-op word

where location is non-empty and indicates a location where an integer value can be stored, such
as the name of a shell variable. If this format is supported its behavior is implementation-
defined.

The largest file descriptor number supported in shell redirections is implementation-defined;
however, all implementations shall support at least 0 to 9, inclusive, for use by the application.

If the redirection operator is "<<" or "<<-", the word that follows the redirection operator shall
be subjected to quote removal; it is unspecified whether any of the other expansions occur. For
the other redirection operators, the word that follows the redirection operator shall be subjected
to tilde expansion, parameter expansion, command substitution, arithmetic expansion, and
quote removal. Pathname expansion shall not be performed on the word by a non-interactive
shell; an interactive shell may perform it, but if the expansion would result in more than one
word it is unspecified whether the redirection proceeds without pathname expansion being
performed or the redirection fails.

Note: A future version of this standard may require that the redirection fails in this case.

If more than one redirection operator is specified with a command, the order of evaluation is
from beginning to end.

A failure to open or create a file shall cause a redirection to fail.

2.7.1 Redirecting Input

Input redirection shall cause the file whose name results from the expansion of word to be
opened for reading on the designated file descriptor, or standard input if the file descriptor is
not specified.

The general format for redirecting input is:

[n]<word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection shall refer to standard input (file descriptor 0).

2.7.2 Redirecting Output

The two general formats for redirecting output are:

[n]>word
[n]>|word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection shall refer to standard output (file descriptor 1).

Output redirection using the '>' format shall fail if the noclobber option is set (see the
description of set −C) and the file named by the expansion of word exists and is either a regular
file or a symbolic link that resolves to a regular file; it may also fail if the file is a symbolic link

2494 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

80978

80979

80980

80981

80982

80983

80984

80985

80986

80987

80988

80989

80990

80991

80992

80993

80994

80995

80996

80997

80998

80999

81000

81001

81002

81003

81004

81005

81006

81007

81008

81009

81010

81011

81012

81013

81014

81015

81016

81017

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Redirection

that does not resolve to an existing file. The check for existence, file creation, and open
operations shall be performed atomically as is done by the open() function as defined in System
Interfaces volume of POSIX.1-2024 when the O_CREAT and O_EXCL flags are set, except that if
the file exists and is a symbolic link, the open operation need not fail with [EEXIST] unless the
symbolic link resolves to an existing regular file. Performing these operations atomically
ensures that the creation of lock files and unique (often temporary) files is reliable, with
important caveats detailed in Section C.2.7.2 (on page 3891). The check for the type of the file
need not be performed atomically with the check for existence, file creation, and open
operations. If not, there is a potential race condition that may result in a misleading shell
diagnostic message when redirection fails. See XRAT Section C.2.7.2 (on page 3891) for more
details.

In all other cases (noclobber not set, redirection using '>' does not fail for the reasons stated
above, or redirection using the ">|" format), output redirection shall cause the file whose name
results from the expansion of word to be opened for output on the designated file descriptor, or
standard output if none is specified. If the file does not exist, it shall be created as an empty file;
otherwise, it shall be opened as if the open() function was called with the O_TRUNC flag set.

2.7.3 Appending Redirected Output

Appended output redirection shall cause the file whose name results from the expansion of
word to be opened for output on the designated file descriptor. The file shall be opened as if the
open() function as defined in the System Interfaces volume of POSIX.1-2024 was called with the
O_APPEND flag set. If the file does not exist, it shall be created.

The general format for appending redirected output is as follows:

[n]>>word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection refers to standard output (file descriptor 1).

2.7.4 Here-Document

The redirection operators "<<" and "<<-" both allow redirection of subsequent lines read by
the shell to the input of a command. The redirected lines are known as a ``here-document’’.

The here-document shall be treated as a single word that begins after the next NEWLINE token
and continues until there is a line containing only the delimiter and a <newline>, with no
<blank> characters in between. Then the next here-document starts, if there is one. For the
purposes of locating this terminating line, the end of a command_string operand (see sh) shall be
treated as a <newline> character, and the end of the commands string in $(commands) and
`commands` may be treated as a <newline>. If the end of input is reached without finding the
terminating line, the shell should, but need not, treat this as a redirection error. The format is as
follows:

[n]<<word
here-document

delimiter

where the optional n represents the file descriptor number. If the number is omitted, the here-
document refers to standard input (file descriptor 0). It is unspecified whether the file descriptor
is opened as a regular file or some other type of file. Portable applications cannot rely on the file
descriptor being seekable (see XSH lseek()).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2495

81018

81019

81020

81021

81022

81023

81024

81025

81026

81027

81028

81029

81030

81031

81032

81033

81034

81035

81036

81037

81038

81039

81040

81041

81042

81043

81044

81045

81046

81047

81048

81049

81050

81051

81052

81053

81054

81055

81056

81057

81058

81059

81060

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Redirection Shell Command Language

If any part of word is quoted, not counting double-quotes outside a command substitution if the
here-document is inside one, the delimiter shall be formed by performing quote removal on
word, and the here-document lines shall not be expanded. Otherwise:

• The delimiter shall be the word itself.

• The removal of <backslash><newline> for line continuation (see Section 2.2.1) shall be
performed during the search for the trailing delimiter. (As a consequence, the trailing
delimiter is not recognized immediately after a <newline> that was removed by line
continuation.) It is unspecified whether the line containing the trailing delimiter is itself
subject to this line continuation.

• All lines of the here-document shall be expanded, when the redirection operator is
evaluated but after the trailing delimiter for the here-document has been located, for
parameter expansion, command substitution, and arithmetic expansion. If the redirection
operator is never evaluated (because the command it is part of is not executed), the here-
document shall be read without performing any expansions.

• Any <backslash> characters in the input shall behave as the <backslash> inside double-
quotes (see Section 2.2.3). However, the double-quote character ('"') shall not be treated
specially within a here-document, except when the double-quote appears within "$()",
"``", or "${}".

If the redirection operator is "<<-", all leading <tab> characters shall be stripped from input
lines after <backslash><newline> line continuation (when it applies) has been performed, and
from the line containing the trailing delimiter. Stripping of leading <tab> characters shall occur
as the here-document is read from the shell input (and consequently does not affect any <tab>
characters that result from expansions).

If more than one "<<" or "<<-" operator is specified on a line, the here-document associated
with the first operator shall be supplied first by the application and shall be read first by the
shell.

When a here-document is read from a terminal device and the shell is interactive, it shall write
the contents of the variable PS2, processed as described in Section 2.5.3, to standard error before
reading each line of input until the delimiter has been recognized.

Examples

An example of a here-document follows:

cat <<eof1; cat <<eof2
Hi,
eof1
Helene.
eof2

2496 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81061

81062

81063

81064

81065

81066

81067

81068

81069

81070

81071

81072

81073

81074

81075

81076

81077

81078

81079

81080

81081

81082

81083

81084

81085

81086

81087

81088

81089

81090

81091

81092

81093

81094

81095

81096

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Redirection

2.7.5 Duplicating an Input File Descriptor

The redirection operator:

[n]<&word

shall duplicate one input file descriptor from another, or shall close one. If word evaluates to one
or more digits, the file descriptor denoted by n, or standard input if n is not specified, shall be
made to be a copy of the file descriptor denoted by word; if the digits in word do not represent an
already open file descriptor, a redirection error shall result (see Section 2.8.1); if the file
descriptor denoted by word represents an open file descriptor that is not open for input, a
redirection error may result. If word evaluates to '−', file descriptor n, or standard input if n is
not specified, shall be closed. Attempts to close a file descriptor that is not open shall not
constitute an error. If word evaluates to something else, the behavior is unspecified.

2.7.6 Duplicating an Output File Descriptor

The redirection operator:

[n]>&word

shall duplicate one output file descriptor from another, or shall close one. If word evaluates to
one or more digits, the file descriptor denoted by n, or standard output if n is not specified, shall
be made to be a copy of the file descriptor denoted by word; if the digits in word do not represent
an already open file descriptor, a redirection error shall result (see Section 2.8.1); if the file
descriptor denoted by word represents an open file descriptor that is not open for output, a
redirection error may result. If word evaluates to '−', file descriptor n, or standard output if n is
not specified, is closed. Attempts to close a file descriptor that is not open shall not constitute an
error. If word evaluates to something else, the behavior is unspecified.

2.7.7 Open File Descriptors for Reading and Writing

The redirection operator:

[n]<>word

shall cause the file whose name is the expansion of word to be opened for both reading and
writing on the file descriptor denoted by n, or standard input if n is not specified. If the file does
not exist, it shall be created.

2.8 Exit Status and Errors

2.8.1 Consequences of Shell Errors

Certain errors shall cause the shell to write a diagnostic message to standard error and exit as
shown in the following table:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2497

81097

81098

81099

81100

81101

81102

81103

81104

81105

81106

81107

81108

81109

81110

81111

81112

81113

81114

81115

81116

81117

81118

81119

81120

81121

81122

81123

81124

81125

81126

81127

81128

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Exit Status and Errors Shell Command Language

Error Interactive ShellNon-Interactive
Shell

Shell Diagnostic
Message Required

Shell language syntax error shall exit shall not exit yes
Special built-in utility error shall exit1 shall not exit no2

shall not exit shall not exit no3Other utility (not a special
built-in) error

shall exit shall not exit yesRedirection error with
special built-in utilities

shall not exit shall not exit yesRedirection error with
compound commands

shall not exit shall not exit yesRedirection error with
function execution

shall not exit shall not exit yesRedirection error with other
utilities (not special built-ins)
Variable assignment error shall exit shall not exit yes
Expansion error shall exit shall not exit yes
Command not found may exit shall not exit yes

shall exit4 shall exit4 yesUnrecoverable read error
when reading commands

Notes:

1. The shell shall exit only if the special built-in utility is executed directly. If it is executed
via the command utility, the shell shall not exit.

2. Although special built-ins are part of the shell, a diagnostic message written by a special
built-in is not considered to be a shell diagnostic message, and can be redirected like any
other utility.

3. The shell is not required to write a diagnostic message, but the utility itself shall write a
diagnostic message if required to do so.

4. If an unrecoverable read error occurs when reading commands, other than from the file
operand of the dot special built-in, the shell shall execute no further commands (including
any already successfully read but not yet executed) other than any specified in a
previously defined EXIT trap action. An unrecoverable read error while reading from the
file operand of the dot special built-in shall be treated as a special built-in utility error.

An expansion error is one that occurs when the shell expansions defined in Section 2.6 are
carried out (for example, "${x!y}", because '!' is not a valid operator); an implementation
may treat these as syntax errors if it is able to detect them during tokenization, rather than
during expansion.

If any of the errors shown as ``shall exit’’ or ``may exit’’ occur in a subshell environment, the shell
shall (respectively, may) exit from the subshell environment with a non-zero status and continue
in the environment from which that subshell environment was invoked.

In all of the cases shown in the table where an interactive shell is required not to exit and a non-
interactive shell is required to exit, an interactive shell shall not perform any further processing
of the command in which the error occurred.

2498 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81129

81130

81131

81132

81133

81134

81135

81136

81137

81138

81139

81140

81141

81142

81143

81144

81145

81146

81147

81148

81149

81150

81151

81152

81153

81154

81155

81156

81157

81158

81159

81160

81161

81162

81163

81164

81165

81166

81167

81168

81169

81170

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Exit Status and Errors

2.8.2 Exit Status for Commands

Each command has an exit status that can influence the behavior of other shell commands. The
exit status of commands that are not utilities is documented in this section. The exit status of the
standard utilities is documented in their respective sections.

The exit status of a command shall be determined as follows:

• If the command is not found, the exit status shall be 127.

• Otherwise, if the command name is found, but it is not an executable utility, the exit status
shall be 126.

• Otherwise, if the command terminated due to the receipt of a signal, the shell shall assign
it an exit status greater than 128. The exit status shall identify, in an implementation-
defined manner, which signal terminated the command. Note that shell implementations
are permitted to assign an exit status greater than 255 if a command terminates due to a
signal.

• Otherwise, the exit status shall be the value obtained by the equivalent of the
WEXITSTATUS macro applied to the status obtained by the wait() function (as defined in
the System Interfaces volume of POSIX.1-2024). Note that for C programs, this value is
equal to the result of performing a modulo 256 operation on the value passed to _Exit(),
_exit(), or exit() or returned from main().

2.9 Shell Commands
This section describes the basic structure of shell commands. The following command
descriptions each describe a format of the command that is only used to aid the reader in
recognizing the command type, and does not formally represent the syntax. In particular, the
representations include spacing between tokens in some places where <blank>s would not be
necessary (when one of the tokens is an operator). Each description discusses the semantics of
the command; for a formal definition of the command language, consult Section 2.10.

A command is one of the following:

• Simple command (see Section 2.9.1)

• Pipeline (see Section 2.9.2)

• List compound-list (see Section 2.9.3)

• Compound command (see Section 2.9.4)

• Function definition (see Section 2.9.5)

Unless otherwise stated, the exit status of a command shall be that of the last simple command
executed by the command. There shall be no limit on the size of any shell command other than
that imposed by the underlying system (memory constraints, {ARG_MAX}, and so on).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2499

81171

81172

81173

81174

81175

81176

81177

81178

81179

81180

81181

81182

81183

81184

81185

81186

81187

81188

81189

81190

81191

81192

81193

81194

81195

81196

81197

81198

81199

81200

81201

81202

81203

81204

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Commands Shell Command Language

2.9.1 Simple Commands

A ``simple command’’ is a sequence of optional variable assignments and redirections, in any
sequence, optionally followed by words and redirections.

2.9.1.1 Order of Processing

When a given simple command is required to be executed (that is, when any conditional
construct such as an AND-OR list or a case statement has not bypassed the simple command),
the following expansions, assignments, and redirections shall all be performed from the
beginning of the command text to the end:

1. The words that are recognized as variable assignments or redirections according to
Section 2.10.2 are saved for processing in steps 3 and 4.

2. The first word (if any) that is not a variable assignment or redirection shall be expanded.
If any fields remain following its expansion, the first field shall be considered the
command name. If no fields remain, the next word (if any) shall be expanded, and so on,
until a command name is found or no words remain. If there is a command name and it is
recognized as a declaration utility, then any remaining words after the word that
expanded to produce the command name, that would be recognized as a variable
assignment in isolation, shall be expanded as a variable assignment (tilde expansion after
the first <equals-sign> and after any unquoted <colon>, parameter expansion, command
substitution, arithmetic expansion, and quote removal, but no field splitting or pathname
expansion); while remaining words that would not be a variable assignment in isolation
shall be subject to regular expansion (tilde expansion for only a leading <tilde>,
parameter expansion, command substitution, arithmetic expansion, field splitting,
pathname expansion, and quote removal). For all other command names, words after the
word that produced the command name shall be subject only to regular expansion. All
fields resulting from the expansion of the word that produced the command name and
the subsequent words, except for the field containing the command name, shall be the
arguments for the command.

3. Redirections shall be performed as described in Section 2.7.

4. Each variable assignment shall be expanded for tilde expansion, parameter expansion,
command substitution, arithmetic expansion, and quote removal prior to assigning the
value.

In the preceding list, the order of steps 3 and 4 may be reversed if no command name results
from step 2 or if the command name matches the name of a special built-in utility; see Section
2.15.

When determining whether a command name is a declaration utility, an implementation may
use only lexical analysis. It is unspecified whether assignment context will be used if the
command name would only become recognized as a declaration utility after word expansions.

2.9.1.2 Variable Assignments

Variable assignments shall be performed as follows:

• If no command name results, variable assignments shall affect the current execution
environment.

• If the command name is not a special built-in utility or function, the variable assignments
shall be exported for the execution environment of the command and shall not affect the
current execution environment except as a side-effect of the expansions performed in step

2500 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81205

81206

81207

81208

81209

81210

81211

81212

81213

81214

81215

81216

81217

81218

81219

81220

81221

81222

81223

81224

81225

81226

81227

81228

81229

81230

81231

81232

81233

81234

81235

81236

81237

81238

81239

81240

81241

81242

81243

81244

81245

81246

81247

81248

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Commands

4. In this case it is unspecified:

— Whether or not the assignments are visible for subsequent expansions in step 4

— Whether variable assignments made as side-effects of these expansions are visible for
subsequent expansions in step 4, or in the current shell execution environment, or
both

• If the command name is a standard utility implemented as a function (see XBD Section
4.25), the effect of variable assignments shall be as if the utility was not implemented as a
function.

• If the command name is a special built-in utility, variable assignments shall affect the
current execution environment before the utility is executed and remain in effect when the
command completes; if an assigned variable is further modified by the utility, the
modifications made by the utility shall persist. Unless the set −a option is on (see set), it is
unspecified:

— Whether or not the variables gain the export attribute during the execution of the
special built-in utility

— Whether or not export attributes gained as a result of the variable assignments persist
after the completion of the special built-in utility

• If the command name is a function that is not a standard utility implemented as a function,
variable assignments shall affect the current execution environment during the execution
of the function. It is unspecified:

— Whether or not the variable assignments persist after the completion of the function

— Whether or not the variables gain the export attribute during the execution of the
function

— Whether or not export attributes gained as a result of the variable assignments persist
after the completion of the function (if variable assignments persist after the
completion of the function)

If any of the variable assignments attempt to assign a value to a variable for which the readonly
attribute is set in the current shell environment (regardless of whether the assignment is made in
that environment), a variable assignment error shall occur. See Section 2.8.1 for the consequences
of these errors.

2.9.1.3 Commands with no Command Name

If a simple command has no command name after word expansion (see Section 2.9.1.1), any
redirections shall be performed in a subshell environment; it is unspecified whether this subshell
environment is the same one as that used for a command substitution within the command. (To
affect the current execution environment, see the exec special built-in.) If any of the redirections
performed in the current shell execution environment fail, the command shall immediately fail
with an exit status greater than zero, and the shell shall write an error message indicating the
failure. See Section 2.8.1 for the consequences of these failures on interactive and non-interactive
shells.

Additionally, if there is no command name but the command contains a command substitution,
the command shall complete with the exit status of the command substitution whose exit status
was the last to be obtained. Otherwise, the command shall complete with a zero exit status.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2501

81249

81250

81251

81252

81253

81254

81255

81256

81257

81258

81259

81260

81261

81262

81263

81264

81265

81266

81267

81268

81269

81270

81271

81272

81273

81274

81275

81276

81277

81278

81279

81280

81281

81282

81283

81284

81285

81286

81287

81288

81289

81290

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Commands Shell Command Language

2.9.1.4 Command Search and Execution

If a simple command has a command name and an optional list of arguments after word
expansion (see Section 2.9.1.1), the following actions shall be performed:

1. If the command name does not contain any <slash> characters, the first successful step in
the following sequence shall occur:

a. If the command name matches the name of a special built-in utility, that special
built-in utility shall be invoked.

b. If the command name matches the name of a utility listed in the following table,
the results are unspecified.

alloc
autoload
bind
bindkey
builtin
bye
caller
cap
chdir
clone
comparguments

compcall
compctl
compdescribe
compfiles
compgen
compgroups
complete
compound
compquote
comptags
comptry

compvalues
declare
dirs
disable
disown
dosh
echotc
echoti
enum
float
help

history
hist
integer
let
local
login
logout
map
mapfile
nameref
popd

print
pushd
readarray
repeat
savehistory
source
shopt
stop
suspend
typeset
whence

c. If the command name matches the name of a function known to this shell, the
function shall be invoked as described in Section 2.9.5. If the implementation has
provided a standard utility in the form of a function, and that function definition
still exists (i.e. has not been removed using unset −f or replaced via another
function definition with the same name), it shall not be recognized at this point. It
shall be invoked in conjunction with the path search in step 1e.

d. If the command name matches the name of an intrinsic utility (see Section 1.7, on
page 2470), that utility shall be invoked.

e. Otherwise, the command shall be searched for using the PA TH environment
variable as described in XBD Chapter 8:

i. If the search is successful:

a. If the system has implemented the utility as a built-in or as a shell
function, and the built-in or function is associated with the directory
that was most recently tested during the successful PA TH search, that
built-in or function shall be invoked.

b. Otherwise, the shell shall execute a non-built-in utility as described
in Section 2.9.1.6.

Once a utility has been searched for and found (either as a result of this
specific search or as part of an unspecified shell start-up activity), an
implementation may remember its location and need not search for the
utility again unless the PA TH variable has been the subject of an assignment.
If the remembered location fails for a subsequent invocation, the shell shall
repeat the search to find the new location for the utility, if any.

ii. If the search is unsuccessful, the command shall fail with an exit status of
127 and the shell shall write an error message.

2502 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81291

81292

81293

81294

81295

81296

81297

81298

81299

81300

81301

81302

81303

81304

81305

81306

81307

81308

81309

81310

81311

81312

81313

81314

81315

81316

81317

81318

81319

81320

81321

81322

81323

81324

81325

81326

81327

81328

81329

81330

81331

81332

81333

81334

81335

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Commands

2. If the command name contains at least one <slash>, the shell shall execute a non-built-in
utility as described in Section 2.9.1.6.

2.9.1.5 Standard File Descriptors

If the utility would be executed with file descriptor 0, 1, or 2 closed, implementations may
execute the utility with the file descriptor open to an unspecified file. If a standard utility or a
conforming application is executed with file descriptor 0 not open for reading or with file
descriptor 1 or 2 not open for writing, the environment in which the utility or application is
executed shall be deemed non-conforming, and consequently the utility or application might not
behave as described in this standard.

2.9.1.6 Non-built-in Utility Execution

When the shell executes a non-built-in utility, if the execution is not being made via the exec
special built-in utility, the shell shall execute the utility in a separate utility environment (see
Section 2.13).

If the execution is being made via the exec special built-in utility, the shell shall not create a
separate utility environment for this execution; the new process image shall replace the current
shell execution environment. If the current shell environment is a subshell environment, the new
process image shall replace the subshell environment and the shell shall continue in the
environment from which that subshell environment was invoked.

In either case, execution of the utility in the specified environment shall be performed as follows:

1. If the command name does not contain any <slash> characters, the command name shall
be searched for using the PA TH environment variable as described in XBD Chapter 8 (on
page 167):

a. If the search is successful, the shell shall execute the utility with actions equivalent
to calling the execl() function as defined in the System Interfaces volume of
POSIX.1-2024 with the path argument set to the pathname resulting from the
search, arg0 set to the command name, and the remaining execl() arguments set to
the command arguments (if any) and the null terminator.

If the execl() function fails due to an error equivalent to the [ENOEXEC] error
defined in the System Interfaces volume of POSIX.1-2024, the shell shall execute a
command equivalent to having a shell invoked with the pathname resulting from
the search as its first operand, with any remaining arguments passed to the new
shell, except that the value of "$0" in the new shell may be set to the command
name. The shell may apply a heuristic check to determine if the file to be executed
could be a script and may bypass this command execution if it determines that the
file cannot be a script. In this case, it shall write an error message, and the
command shall fail with an exit status of 126.

Note: A common heuristic for rejecting files that cannot be a script is locating a NUL
byte prior to a <newline> byte within a fixed-length prefix of the file. Since sh is
required to accept input files with unlimited line lengths, the heuristic check
cannot be based on line length.

It is unspecified whether environment variables that were passed to the shell when
it was invoked, but were not used to initialize shell variables (see Section 2.5.3)
because they had invalid names, are included in the environment passed to execl()
and (if execl() fails as described above) to the new shell.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2503

81336

81337

81338

81339

81340

81341

81342

81343

81344

81345

81346

81347

81348

81349

81350

81351

81352

81353

81354

81355

81356

81357

81358

81359

81360

81361

81362

81363

81364

81365

81366

81367

81368

81369

81370

81371

81372

81373

81374

81375

81376

81377

81378

81379

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Commands Shell Command Language

b. If the search is unsuccessful, the command shall fail with an exit status of 127 and
the shell shall write an error message.

2. If the command name contains at least one <slash>:

a. If the named utility exists, the shell shall execute the utility with actions equivalent
to calling the execl() function defined in the System Interfaces volume of
POSIX.1-2024 with the path and arg0 arguments set to the command name, and the
remaining execl() arguments set to the command arguments (if any) and the null
terminator.

If the execl() function fails due to an error equivalent to the [ENOEXEC] error, the
shell shall execute a command equivalent to having a shell invoked with the
command name as its first operand, with any remaining arguments passed to the
new shell. The shell may apply a heuristic check to determine if the file to be
executed could be a script and may bypass this command execution if it
determines that the file cannot be a script. In this case, it shall write an error
message, and the command shall fail with an exit status of 126.

Note: A common heuristic for rejecting files that cannot be a script is locating a NUL
byte prior to a <newline> byte within a fixed-length prefix of the file. Since sh is
required to accept input files with unlimited line lengths, the heuristic check
cannot be based on line length.

It is unspecified whether environment variables that were passed to the shell when
it was invoked, but were not used to initialize shell variables (see Section 2.5.3)
because they had invalid names, are included in the environment passed to execl()
and (if execl() fails as described above) to the new shell.

b. If the named utility does not exist, the command shall fail with an exit status of 127
and the shell shall write an error message.

2.9.2 Pipelines

A pipeline is a sequence of one or more commands separated by the control operator '|'. For
each command but the last, the shell shall connect the standard output of the command to the
standard input of the next command as if by creating a pipe and passing the write end of the
pipe as the standard output of the command and the read end of the pipe as the standard input
of the next command.

The format for a pipeline is:

[!] command1 [| command2 ...]

If the pipeline begins with the reserved word ! and command1 is a subshell command, the
application shall ensure that the (operator at the beginning of command1 is separated from the !
by one or more <blank> characters. The behavior of the reserved word ! immediately followed
by the (operator is unspecified.

The standard output of command1 shall be connected to the standard input of command2. The
standard input, standard output, or both of a command shall be considered to be assigned by
the pipeline before any redirection specified by redirection operators that are part of the
command (see Section 2.7).

If the pipeline is not in the background (see Section 2.9.3.1 and Section 2.11), the shell shall wait
for the last command specified in the pipeline to complete, and may also wait for all commands
to complete.

2504 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81380

81381

81382

81383

81384

81385

81386

81387

81388

81389

81390

81391

81392

81393

81394

81395

81396

81397

81398

81399

81400

81401

81402

81403

81404

81405

81406

81407

81408

81409

81410

81411

81412

81413

81414

81415

81416

81417

81418

81419

81420

81421

81422

81423

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Commands

Exit Status

The exit status of a pipeline shall depend on whether or not the pipefail option (see set) is enabled
and whether or not the pipeline begins with the ! reserved word, as described in the following
table. The pipefail option determines which command in the pipeline the exit status is derived
from; the ! reserved word causes the exit status to be the logical NOT of the exit status of that
command. The shell shall use the pipefail setting at the time it begins execution of the pipeline,
not the setting at the time it sets the exit status of the pipeline. (For example, in command1 |
set -o pipefail the exit status of command1 has no effect on the exit status of the pipeline,
even if the shell executes set -o pipefail in the current shell environment.)

pipefail Enabled Begins with ! Exit Status
no no The exit status of the last (rightmost) command

specified in the pipeline.
no yes Zero, if the last (rightmost) command in the pipeline

returned a non-zero exit status; otherwise, 1.
yes no Zero, if all commands in the pipeline returned an

exit status of 0; otherwise, the exit status of the last
(rightmost) command specified in the pipeline that
returned a non-zero exit status.

yes yes Zero, if any command in the pipeline returned a
non-zero exit status; otherwise, 1.

2.9.3 Lists

An AND-OR list is a sequence of one or more pipelines separated by the operators "&&" and
"||".

A list is a sequence of one or more AND-OR lists separated by the operators ';' and '&'.

The operators "&&" and "||" shall have equal precedence and shall be evaluated with left
associativity. For example, both of the following commands write solely bar to standard output:

false && echo foo || echo bar
true || echo foo && echo bar

A ';' separator or a ';' or <newline> terminator shall cause the preceding AND-OR list to be
executed sequentially; an '&' separator or terminator shall cause asynchronous execution of the
preceding AND-OR list.

The term ``compound-list’’ is derived from the grammar in Section 2.10; it is equivalent to a
sequence of lists, separated by <newline> characters, that can be preceded or followed by an
arbitrary number of <newline> characters.

Examples

The following is an example that illustrates <newline> characters in compound-lists:

while
a couple of <newline>s

a list
date && who || ls; cat file
a couple of <newline>s

another list

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2505

81424

81425

81426

81427

81428

81429

81430

81431

81432

81433

81434

81435

81436

81437

81438

81439

81440

81441

81442

81443

81444

81445

81446

81447

81448

81449

81450

81451

81452

81453

81454

81455

81456

81457

81458

81459

81460

81461

81462

81463

81464

81465

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Commands Shell Command Language

wc file > output & true

do
2 lists
ls
cat file

done

2.9.3.1 Asynchronous AND-OR Lists

If an AND-OR list is terminated by the control operator <ampersand> ('&'), the shell shall
execute the AND-OR list asynchronously in a subshell environment. This subshell shall execute
in the background; that is, the shell shall not wait for the subshell to terminate before executing
the next command (if any); if there are no further commands to execute, the shell shall not wait
for the subshell to terminate before exiting.

If job control is enabled (see set , −m), the AND-OR list shall become a job-control background
job and a job number shall be assigned to it. If job control is disabled, the AND-OR list may
become a non-job-control background job, in which case a job number shall be assigned to it; if
no job number is assigned it shall become a background command but not a background job.

A job-control background job can be controlled as described in Section 2.11.

The process ID associated with the asynchronous AND-OR list shall become known in the
current shell execution environment; see Section 2.13. This process ID shall remain known until
any one of the following occurs (and, unless otherwise specified, may continue to remain known
after it occurs).

• The process terminates and the application waits for the process ID or the corresponding
job ID (see wait).

• If the asynchronous AND-OR list did not become a background job: another asynchronous
AND-OR list is invoked before "$!" (corresponding to the previous asynchronous AND-
OR list) is expanded in the current shell execution environment.

• If the asynchronous AND-OR list became a background job: the jobs utility reports the
termination status of that job.

• If the shell is interactive and the asynchronous AND-OR list became a background job: a
message indicating completion of the corresponding job is written to standard error. If set
−b is enabled, it is unspecified whether the process ID is removed from the list of known
process IDs when the message is written or immediately prior to when the shell writes the
next prompt for input.

The implementation need not retain more than the {CHILD_MAX} most recent entries in its list
of known process IDs in the current shell execution environment.

If, and only if, job control is disabled, the standard input for the subshell in which an
asynchronous AND-OR list is executed shall initially be assigned to an open file description that
behaves as if /dev/null had been opened for reading only. This initial assignment shall be
overridden by any explicit redirection of standard input within the AND-OR list.

If the shell is interactive and the asynchronous AND-OR list became a background job, the job
number and the process ID associated with the job shall be written to standard error using the
format:

"[%d] %d\n", <job-number>, <process-id>

2506 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81466

81467

81468

81469

81470

81471

81472

81473

81474

81475

81476

81477

81478

81479

81480

81481

81482

81483

81484

81485

81486

81487

81488

81489

81490

81491

81492

81493

81494

81495

81496

81497

81498

81499

81500

81501

81502

81503

81504

81505

81506

81507

81508

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Commands

If the shell is interactive and the asynchronous AND-OR list did not become a background job,
the process ID associated with the asynchronous AND-OR list shall be written to standard error
in an unspecified format.

Exit Status

The exit status of an asynchronous AND-OR list shall be zero.

The exit status of the subshell in which the AND-OR list is asynchronously executed can be
obtained using the wait utility.

2.9.3.2 Sequential AND-OR Lists

AND-OR lists that are separated by a <semicolon> (';') shall be executed sequentially. The
format for executing AND-OR lists sequentially shall be:

aolist1 [; aolist2] ...

Each AND-OR list shall be expanded and executed in the order specified.

If job control is enabled, the AND-OR lists shall form all or part of a foreground job that can be
controlled as described in Section 2.11.

Exit Status

The exit status of a sequential AND-OR list shall be the exit status of the last pipeline in the
AND-OR list that is executed.

2.9.3.3 AND Lists

The control operator "&&" denotes an AND list. The format shall be:

command1 [&& command2] ...

First command1 shall be executed. If its exit status is zero, command2 shall be executed, and so on,
until a command has a non-zero exit status or there are no more commands left to execute. The
commands are expanded only if they are executed.

Exit Status

The exit status of an AND list shall be the exit status of the last command that is executed in the
list.

2.9.3.4 OR Lists

The control operator "||" denotes an OR List. The format shall be:

command1 [|| command2] ...

First, command1 shall be executed. If its exit status is non-zero, command2 shall be executed, and
so on, until a command has a zero exit status or there are no more commands left to execute.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2507

81509

81510

81511

81512

81513

81514

81515

81516

81517

81518

81519

81520

81521

81522

81523

81524

81525

81526

81527

81528

81529

81530

81531

81532

81533

81534

81535

81536

81537

81538

81539

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Commands Shell Command Language

Exit Status

The exit status of an OR list shall be the exit status of the last command that is executed in the
list.

2.9.4 Compound Commands

The shell has several programming constructs that are ``compound commands’’, which provide
control flow for commands. Each of these compound commands has a reserved word or control
operator at the beginning, and a corresponding terminator reserved word or operator at the end.
In addition, each can be followed by redirections on the same line as the terminator. Each
redirection shall apply to all the commands within the compound command that do not
explicitly override that redirection.

In the descriptions below, the exit status of some compound commands is stated in terms of the
exit status of a compound-list. The exit status of a compound-list shall be the value that the special
parameter '?' (see Section 2.5.2) would have immediately after execution of the compound-list.

2.9.4.1 Grouping Commands

The format for grouping commands is as follows:

(compound-list) Execute compound-list in a subshell environment; see Section 2.13.
Variable assignments and built-in commands that affect the environment
shall not remain in effect after the list finishes.

If a character sequence beginning with "((" would be parsed by the shell
as an arithmetic expansion if preceded by a '$', shells which implement
an extension whereby "((expression))" is evaluated as an arithmetic
expression may treat the "((" as introducing as an arithmetic evaluation
instead of a grouping command. A conforming application shall ensure
that it separates the two leading '(' characters with white space to
prevent the shell from performing an arithmetic evaluation.

{ compound-list ; } Execute compound-list in the current process environment. The semicolon
shown here is an example of a control operator delimiting the } reserved
word. Other delimiters are possible, as shown in Section 2.10; a
<newline> is frequently used.

Exit Status

The exit status of a grouping command shall be the exit status of compound-list.

2.9.4.2 The for Loop

The for loop shall execute a sequence of commands for each member in a list of items. The for
loop requires that the reserved words do and done be used to delimit the sequence of
commands.

The format for the for loop is as follows:

for name [in [word ...]]
do

compound-list
done

2508 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81540

81541

81542

81543

81544

81545

81546

81547

81548

81549

81550

81551

81552

81553

81554

81555

81556

81557

81558

81559

81560

81561

81562

81563

81564

81565

81566

81567

81568

81569

81570

81571

81572

81573

81574

81575

81576

81577

81578

81579

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Commands

First, the list of words following in shall be expanded to generate a list of items. Then, the
variable name shall be set to each item, in turn, and the compound-list executed each time. If no
items result from the expansion, the compound-list shall not be executed. Omitting:

in word ...

shall be equivalent to:

in "$@"

Exit Status

If there is at least one item in the list of items, the exit status of a for command shall be the exit
status of the last compound-list executed. If there are no items, the exit status shall be zero.

2.9.4.3 Case Conditional Construct

The conditional construct case shall execute the compound-list corresponding to the first pattern
(see Section 2.14), if any are present, that is matched by the string resulting from the tilde
expansion, parameter expansion, command substitution, arithmetic expansion, and quote
removal of the given word. The reserved word in shall denote the beginning of the patterns to
be matched. Multiple patterns with the same compound-list shall be delimited by the '|'
symbol. The control operator ')' terminates a list of patterns corresponding to a given action.
The terminated pattern list and the following compound-list is called a case statement clause.
Each case statement clause, with the possible exception of the last, shall be terminated with
either ";;" or ";&". The case construct terminates with the reserved word esac (case reversed).

The format for the case construct is as follows:

case word in
[[(] pattern[| pattern] ...) compound-list terminator] ...
[[(] pattern[| pattern] ...) compound-list]

esac

Where terminator is either ";;" or ";&" and is optional for the last compound-list.

In order from the beginning to the end of the case statement, each pattern that labels a compound-
list shall be subjected to tilde expansion, parameter expansion, command substitution, and
arithmetic expansion, and the result of these expansions shall be compared against the
expansion of word, according to the rules described in Section 2.14 (which also describes the
effect of quoting parts of the pattern). After the first match, no more patterns in the case
statement shall be expanded, and the compound-list of the matching clause shall be executed. If
the case statement clause is terminated by ";;", no further clauses shall be examined. If the
case statement clause is terminated by ";&", then the compound-list (if any) of each subsequent
clause shall be executed, in order, until either a clause terminated by ";;" is reached and its
compound-list (if any) executed or there are no further clauses in the case statement. The order of
expansion and comparison of multiple patterns that label a compound-list statement is
unspecified.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2509

81580

81581

81582

81583

81584

81585

81586

81587

81588

81589

81590

81591

81592

81593

81594

81595

81596

81597

81598

81599

81600

81601

81602

81603

81604

81605

81606

81607

81608

81609

81610

81611

81612

81613

81614

81615

81616

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Commands Shell Command Language

Exit Status

The exit status of case shall be zero if no patterns are matched. Otherwise, the exit status shall be
the exit status of the compound-list of the last clause to be executed.

2.9.4.4 The if Conditional Construct

The if command shall execute a compound-list and use its exit status to determine whether to
execute another compound-list.

The format for the if construct is as follows:

if compound-list
then

compound-list
[elif compound-list
then

compound-list] ...
[else

compound-list]
fi

The if compound-list shall be executed; if its exit status is zero, the then compound-list shall be
executed and the command shall complete. Otherwise, each elif compound-list shall be executed,
in turn, and if its exit status is zero, the then compound-list shall be executed and the command
shall complete. Otherwise, the else compound-list shall be executed.

Exit Status

The exit status of the if command shall be the exit status of the then or else compound-list that
was executed, or zero, if none was executed.

Note: Although the exit status of the if or elif compound-list is ignored when determining the exit
status of the if command, it is available through the special parameter '?' (see Section 2.5.2)
during execution of the next then, elif, or else compound-list (if any is executed) in the normal
way.

2.9.4.5 The while Loop

The while loop shall continuously execute one compound-list as long as another compound-list has
a zero exit status.

The format of the while loop is as follows:

while compound-list-1
do

compound-list-2
done

The compound-list-1 shall be executed, and if it has a non-zero exit status, the while command
shall complete. Otherwise, the compound-list-2 shall be executed, and the process shall repeat.

2510 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81617

81618

81619

81620

81621

81622

81623

81624

81625

81626

81627

81628

81629

81630

81631

81632

81633

81634

81635

81636

81637

81638

81639

81640

81641

81642

81643

81644

81645

81646

81647

81648

81649

81650

81651

81652

81653

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Commands

Exit Status

The exit status of the while loop shall be the exit status of the last compound-list-2 executed, or
zero if none was executed.

Note: Since the exit status of compound-list-1 is ignored when determining the exit status of the while
command, it is not possible to obtain the status of the command that caused the loop to exit,
other than via the special parameter '?' (see Section 2.5.2) during execution of compound-list-1,
for example:

while some_command; st=$?; false; do ...

The exit status of compound-list-1 is available through the special parameter '?' during
execution of compound-list-2, but is known to be zero at that point anyway.

2.9.4.6 The until Loop

The until loop shall continuously execute one compound-list as long as another compound-list has
a non-zero exit status.

The format of the until loop is as follows:

until compound-list-1
do

compound-list-2
done

The compound-list-1 shall be executed, and if it has a zero exit status, the until command
completes. Otherwise, the compound-list-2 shall be executed, and the process repeats.

Exit Status

The exit status of the until loop shall be the exit status of the last compound-list-2 executed, or
zero if none was executed.

Note: Although the exit status of compound-list-1 is ignored when determining the exit status of the
until command, it is available through the special parameter '?' (see Section 2.5.2) during
execution of compound-list-2 in the normal way.

2.9.5 Function Definition Command

A function is a user-defined name that is used as a simple command to call a compound
command with new positional parameters. A function is defined with a ``function definition
command’’.

The format of a function definition command is as follows:

fname () compound-command [io-redirect ...]

The function is named fname; the application shall ensure that it is a name (see XBD Section
3.216) and that it is not the name of a special built-in utility. An implementation may allow other
characters in a function name as an extension. The implementation shall maintain separate name
spaces for functions and variables.

The argument compound-command represents a compound command, as described in Section
2.9.4.

When the function is declared, none of the expansions in Section 2.6 shall be performed on the
text in compound-command or io-redirect; all expansions shall be performed as normal each time

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2511

81654

81655

81656

81657

81658

81659

81660

81661

81662

81663

81664

81665

81666

81667

81668

81669

81670

81671

81672

81673

81674

81675

81676

81677

81678

81679

81680

81681

81682

81683

81684

81685

81686

81687

81688

81689

81690

81691

81692

81693

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Commands Shell Command Language

the function is called. Similarly, the optional io-redirect redirections and any variable assignments
within compound-command shall be performed during the execution of the function itself, not the
function definition. See Section 2.8.1 for the consequences of failures of these operations on
interactive and non-interactive shells.

When a function is executed, it shall have the syntax-error properties described for special built-
in utilities in the first item in the enumerated list at the beginning of Section 2.15.

The compound-command shall be executed whenever the function name is specified as the name
of a simple command (see Section 2.9.1.4). The operands to the command temporarily shall
become the positional parameters during the execution of the compound-command; the special
parameter '#' also shall be changed to reflect the number of operands. The special parameter 0
shall be unchanged. When the function completes, the values of the positional parameters and
the special parameter '#' shall be restored to the values they had before the function was
executed. If the special built-in return (see return) is executed in the compound-command, the
function completes and execution shall resume with the next command after the function call.

Exit Status

The exit status of a function definition shall be zero if the function was declared successfully;
otherwise, it shall be greater than zero. The exit status of a function invocation shall be the exit
status of the last command executed by the function.

2.10 Shell Grammar
The following grammar defines the Shell Command Language. This formal syntax shall take
precedence over the preceding text syntax description.

2.10.1 Shell Grammar Lexical Conventions

The input language to the shell shall be first recognized at the character level. The resulting
tokens shall be classified by their immediate context according to the following rules (applied in
order). These rules shall be used to determine what a ``token’’ is that is subject to parsing at the
token level. The rules for token recognition in Section 2.3 shall apply.

1. If the token is an operator, the token identifier for that operator shall result.

2. If the string consists solely of digits and the delimiter character is one of '<' or '>', the
token identifier IO_NUMBER shall result.

3. If the string contains at least three characters, begins with a <left-curly-bracket> ('{')
and ends with a <right-curly-bracket> ('}'), and the delimiter character is one of '<' or
'>', the token identifier IO_LOCATION may result; if the result is not IO_LOCATION,
the token identifier TOKEN shall result.

4. Otherwise, the token identifier TOKEN shall result.

Further distinction on TOKEN is context-dependent. It may be that the same TOKEN yields
WORD, a NAME, an ASSIGNMENT_WORD, or one of the reserved words below, dependent
upon the context. Some of the productions in the grammar below are annotated with a rule
number from the following list. When a TOKEN is seen where one of those annotated
productions could be used to reduce the symbol, the applicable rule shall be applied to convert
the token identifier type of the TOKEN to:

2512 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81694

81695

81696

81697

81698

81699

81700

81701

81702

81703

81704

81705

81706

81707

81708

81709

81710

81711

81712

81713

81714

81715

81716

81717

81718

81719

81720

81721

81722

81723

81724

81725

81726

81727

81728

81729

81730

81731

81732

81733

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Grammar

• The token identifier of the recognized reserved word, for rule 1

• A token identifier acceptable at that point in the grammar, for all other rules

The reduction shall then proceed based upon the token identifier type yielded by the rule
applied. When more than one rule applies, the highest numbered rule shall apply (which in turn
may refer to another rule). (Note that except in rule 7, the presence of an '=' in the token has no
effect.)

The WORD tokens shall have the word expansion rules applied to them immediately before the
associated command is executed, not at the time the command is parsed.

2.10.2 Shell Grammar Rules

1. [Command Name]

When the TOKEN is exactly a reserved word, the token identifier for that reserved word
shall result. Otherwise, the token WORD shall be returned. Also, if the parser is in any
state where only a reserved word could be the next correct token, proceed as above.

Note: Because at this point quoting characters (<backslash>, single-quote, <quotation-mark>,
and the <dollar-sign> single-quote sequence) are retained in the token, quoted strings
cannot be recognized as reserved words. This rule also implies that reserved words are
not recognized except in certain positions in the input, such as after a <newline> or
<semicolon>; the grammar presumes that if the reserved word is intended, it is properly
delimited by the user, and does not attempt to reflect that requirement directly. Also
note that line joining is done before tokenization, as described in Section 2.2.1, so
escaped <newline> characters are already removed at this point.

Rule 1 is not directly referenced in the grammar, but is referred to by other rules, or
applies globally.

2. [Redirection to or from filename]

The expansions specified in Section 2.7 shall occur. As specified there, exactly one field
can result (or the result is unspecified), and there are additional requirements on
pathname expansion.

3. [Redirection from here-document]

Quote removal shall be applied to the word to determine the delimiter that is used to find
the end of the here-document that begins after the next <newline>.

4. [Case statement termination]

When the TOKEN is exactly the reserved word esac, the token identifier for esac shall
result. Otherwise, the token WORD shall be returned.

5. [NAME in for]

When the TOKEN meets the requirements for a name (see XBD Section 3.216), the token
identifier NAME shall result. Otherwise, the token WORD shall be returned.

6. [Third word of for and case]

a. [case only]

When the TOKEN is exactly the reserved word in, the token identifier for in shall
result. Otherwise, the token WORD shall be returned.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2513

81734

81735

81736

81737

81738

81739

81740

81741

81742

81743

81744

81745

81746

81747

81748

81749

81750

81751

81752

81753

81754

81755

81756

81757

81758

81759

81760

81761

81762

81763

81764

81765

81766

81767

81768

81769

81770

81771

81772

81773

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Grammar Shell Command Language

b. [for only]

When the TOKEN is exactly the reserved word in or do, the token identifier for in
or do shall result, respectively. Otherwise, the token WORD shall be returned.

(For a. and b.: As indicated in the grammar, a linebreak precedes the tokens in and do. If
<newline> characters are present at the indicated location, it is the token after them that is
treated in this fashion.)

7. [Assignment preceding command name]

a. [When the first word]

If the TOKEN is exactly a reserved word, the token identifier for that reserved
word shall result. Otherwise, 7b shall be applied.

b. [Not the first word]

If the TOKEN contains an unquoted (as determined while applying rule 4 from
Section 2.3) <equals-sign> character that is not part of an embedded parameter
expansion, command substitution, or arithmetic expansion construct (as
determined while applying rule 5 from Section 2.3):

— If the TOKEN begins with '=', then the token WORD shall be returned.

— If all the characters in the TOKEN preceding the first such <equals-sign>
form a valid name (see XBD Section 3.216, on page 63), the token
ASSIGNMENT_WORD shall be returned.

— Otherwise, it is implementation-defined whether the token WORD or
ASSIGNMENT_WORD is returned, or the TOKEN is processed in some
other way.

Otherwise, the token WORD shall be returned.

If a returned ASSIGNMENT_WORD token begins with a valid name, assignment of the
value after the first <equals-sign> to the name shall occur as specified in Section 2.9.1. If a
returned ASSIGNMENT_WORD token does not begin with a valid name, the way in
which the token is processed is unspecified.

8. [NAME in function]

When the TOKEN is exactly a reserved word, the token identifier for that reserved word
shall result. Otherwise, when the TOKEN meets the requirements for a name, the token
identifier NAME shall result. Otherwise, rule 7 applies.

9. [Body of function]

Word expansion and assignment shall never occur, even when required by the rules
above, when this rule is being parsed. Each TOKEN that might either be expanded or
have assignment applied to it shall instead be returned as a single WORD consisting only
of characters that are exactly the token described in Section 2.3.

2514 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81774

81775

81776

81777

81778

81779

81780

81781

81782

81783

81784

81785

81786

81787

81788

81789

81790

81791

81792

81793

81794

81795

81796

81797

81798

81799

81800

81801

81802

81803

81804

81805

81806

81807

81808

81809

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Grammar

/* ---
The grammar symbols
--- */

%token WORD
%token ASSIGNMENT_WORD
%token NAME
%token NEWLINE
%token IO_NUMBER
%token IO_LOCATION

/* The following are the operators (see XBD Section 3.243)
containing more than one character. */

%token AND_IF OR_IF DSEMI SEMI_AND
/* '&&' '||' ';;' ';&' */

%token DLESS DGREAT LESSAND GREATAND LESSGREAT DLESSDASH
/* '<<' '>>' '<&' '>&' '<>' '<<-' */

%token CLOBBER
/* '>|' */

/* The following are the reserved words. */

%token If Then Else Elif Fi Do Done
/* 'if' 'then' 'else' 'elif' 'fi' 'do' 'done' */

%token Case Esac While Until For
/* 'case' 'esac' 'while' 'until' 'for' */

/* These are reserved words, not operator tokens, and are
recognized when reserved words are recognized. */

%token Lbrace Rbrace Bang
/* '{' '}' '!' */

%token In
/* 'in' */

/* ---
The Grammar
--- */

%start program
%%
program : linebreak complete_commands linebreak

| linebreak
;

complete_commands: complete_commands newline_list complete_command
| complete_command
;

complete_command : list separator_op
| list
;

list : list separator_op and_or
| and_or
;

and_or : pipeline
| and_or AND_IF linebreak pipeline

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2515

81810

81811

81812

81813

81814

81815

81816

81817

81818

81819

81820

81821

81822

81823

81824

81825

81826

81827

81828

81829

81830

81831

81832

81833

81834

81835

81836

81837

81838

81839

81840

81841

81842

81843

81844

81845

81846

81847

81848

81849

81850

81851

81852

81853

81854

81855

81856

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Grammar Shell Command Language

| and_or OR_IF linebreak pipeline
;

pipeline : pipe_sequence
| Bang pipe_sequence
;

pipe_sequence : command
| pipe_sequence '|' linebreak command
;

command : simple_command
| compound_command
| compound_command redirect_list
| function_definition
;

compound_command : brace_group
| subshell
| for_clause
| case_clause
| if_clause
| while_clause
| until_clause
;

subshell : '(' compound_list ')'
;

compound_list : linebreak term
| linebreak term separator
;

term : term separator and_or
| and_or
;

for_clause : For name do_group
| For name sequential_sep do_group
| For name linebreak in sequential_sep do_group
| For name linebreak in wordlist sequential_sep do_group
;

name : NAME /* Apply rule 5 */
;

in : In /* Apply rule 6 */
;

wordlist : wordlist WORD
| WORD
;

case_clause : Case WORD linebreak in linebreak case_list Esac
| Case WORD linebreak in linebreak case_list_ns Esac
| Case WORD linebreak in linebreak Esac
;

case_list_ns : case_list case_item_ns
| case_item_ns
;

case_list : case_list case_item
| case_item
;

case_item_ns : pattern_list ')' linebreak
| pattern_list ')' compound_list

2516 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81857

81858

81859

81860

81861

81862

81863

81864

81865

81866

81867

81868

81869

81870

81871

81872

81873

81874

81875

81876

81877

81878

81879

81880

81881

81882

81883

81884

81885

81886

81887

81888

81889

81890

81891

81892

81893

81894

81895

81896

81897

81898

81899

81900

81901

81902

81903

81904

81905

81906

81907

81908

81909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Grammar

;
case_item : pattern_list ')' linebreak DSEMI linebreak

| pattern_list ')' compound_list DSEMI linebreak
| pattern_list ')' linebreak SEMI_AND linebreak
| pattern_list ')' compound_list SEMI_AND linebreak
;

pattern_list : WORD /* Apply rule 4 */
| '(' WORD /* Do not apply rule 4 */
| pattern_list '|' WORD /* Do not apply rule 4 */
;

if_clause : If compound_list Then compound_list else_part Fi
| If compound_list Then compound_list Fi
;

else_part : Elif compound_list Then compound_list
| Elif compound_list Then compound_list else_part
| Else compound_list
;

while_clause : While compound_list do_group
;

until_clause : Until compound_list do_group
;

function_definition : fname '(' ')' linebreak function_body
;

function_body : compound_command /* Apply rule 9 */
| compound_command redirect_list /* Apply rule 9 */
;

fname : NAME /* Apply rule 8 */
;

brace_group : Lbrace compound_list Rbrace
;

do_group : Do compound_list Done /* Apply rule 6 */
;

simple_command : cmd_prefix cmd_word cmd_suffix
| cmd_prefix cmd_word
| cmd_prefix
| cmd_name cmd_suffix
| cmd_name
;

cmd_name : WORD /* Apply rule 7a */
;

cmd_word : WORD /* Apply rule 7b */
;

cmd_prefix : io_redirect
| cmd_prefix io_redirect
| ASSIGNMENT_WORD
| cmd_prefix ASSIGNMENT_WORD
;

cmd_suffix : io_redirect
| cmd_suffix io_redirect
| WORD
| cmd_suffix WORD
;

redirect_list : io_redirect

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2517

81910

81911

81912

81913

81914

81915

81916

81917

81918

81919

81920

81921

81922

81923

81924

81925

81926

81927

81928

81929

81930

81931

81932

81933

81934

81935

81936

81937

81938

81939

81940

81941

81942

81943

81944

81945

81946

81947

81948

81949

81950

81951

81952

81953

81954

81955

81956

81957

81958

81959

81960

81961

81962

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Grammar Shell Command Language

| redirect_list io_redirect
;

io_redirect : io_file
| IO_NUMBER io_file
| IO_LOCATION io_file /* Optionally supported */
| io_here
| IO_NUMBER io_here
| IO_LOCATION io_here /* Optionally supported */
;

io_file : '<' filename
| LESSAND filename
| '>' filename
| GREATAND filename
| DGREAT filename
| LESSGREAT filename
| CLOBBER filename
;

filename : WORD /* Apply rule 2 */
;

io_here : DLESS here_end
| DLESSDASH here_end
;

here_end : WORD /* Apply rule 3 */
;

newline_list : NEWLINE
| newline_list NEWLINE
;

linebreak : newline_list
| /* empty */
;

separator_op : '&'
| ';'
;

separator : separator_op linebreak
| newline_list
;

sequential_sep : ';' linebreak
| newline_list
;

2.11 Job Control
Job control is defined (see XBD Section 3.181, on page 57) as a facility that allows users
selectively to stop (suspend) the execution of processes and continue (resume) their execution at
a later point. It is jointly supplied by the terminal I/O driver and a command interpreter. The
shell is one such command interpreter and job control in the shell is enabled by set −m (which is
enabled by default in interactive shells). The remainder of this section describes the job control
facility provided by the shell. Requirements relating to background jobs stated in this section
only apply to job-control background jobs.

If the shell has a controlling terminal and it is the controlling process for the terminal session, it
shall initially set the foreground process group ID associated with the terminal to its own

2518 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

81963

81964

81965

81966

81967

81968

81969

81970

81971

81972

81973

81974

81975

81976

81977

81978

81979

81980

81981

81982

81983

81984

81985

81986

81987

81988

81989

81990

81991

81992

81993

81994

81995

81996

81997

81998

81999

82000

82001

82002

82003

82004

82005

82006

82007

82008

82009

82010

82011

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Job Control

process group ID. Otherwise, if it has a controlling terminal, it shall initially perform the
following steps if interactive and may perform them if non-interactive:

1. If its process group is the foreground process group associated with the terminal, the shell
shall set its process group ID to its process ID (if they are not already equal) and set the
foreground process group ID associated with the terminal to its process group ID.

2. If its process group is not the foreground process group associated with the terminal
(which would result from it being started by a job-control shell as a background job), the
shell shall either stop itself by sending itself a SIGTTIN signal or, if interactive, attempt to
read from standard input (which generates a SIGTTIN signal if standard input is the
controlling terminal). If it is stopped, then when it continues execution (after receiving a
SIGCONT signal) it shall repeat these steps.

Subsequently, the shell shall change the foreground process group associated with its controlling
terminal when a foreground job is running as noted in the description below.

When job control is enabled, the shell shall create one or more jobs when it executes a list (see
Section 2.9.3) that has one of the following forms:

• A single asynchronous AND-OR list

• One or more sequentially executed AND-OR lists followed by at most one asynchronous
AND-OR list

For the purposes of job control, a list that includes more than one asynchronous AND-OR list
shall be treated as if it were split into multiple separate lists, each ending with an asynchronous
AND-OR list.

When a job consisting of a single asynchronous AND-OR list is created, it shall form a
background job and the associated process ID shall be that of a child process that is made a
process group leader, with all other processes (if any) that the shell creates to execute the AND-
OR list initially having this process ID as their process group ID.

For a list consisting of one or more sequentially executed AND-OR lists followed by at most one
asynchronous AND-OR list, the whole list shall form a single foreground job up until the
sequentially executed AND-OR lists have all completed execution, at which point the
asynchronous AND-OR list (if any) shall form a background job as described above.

For each pipeline in a foreground job, if the pipeline is executed while the list is still a
foreground job, the set of processes comprising the pipeline, and any processes descended from
it, shall all be in the same process group, unless the shell executes some of the commands in the
pipeline in the current shell execution environment and others in a subshell environment; in this
case the process group ID of the current shell need not change (or cannot change if it is the
session leader), and consequently the process group ID that the other processes all share may
differ from the process group ID of the current shell (which means that a SIGSTOP, SIGTSTP,
SIGTTIN, or SIGTTOU signal sent to one of those process groups does not cause the whole
pipeline to stop).

A background job that was created on execution of an asynchronous AND-OR list can be
brought into the foreground by means of the fg utility (if supported); in this case the entire job
shall become a single foreground job. If a process that the shell subsequently waits for is part of
this foreground job and is stopped by a signal, the entire job shall become a suspended job and
the behavior shall be as if the process had been stopped while the job was running in the
background.

When a foreground job is created, or a background job is brought into the foreground by the fg
utility, if the shell has a controlling terminal it shall set the foreground process group ID
associated with the terminal as follows:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2519

82012

82013

82014

82015

82016

82017

82018

82019

82020

82021

82022

82023

82024

82025

82026

82027

82028

82029

82030

82031

82032

82033

82034

82035

82036

82037

82038

82039

82040

82041

82042

82043

82044

82045

82046

82047

82048

82049

82050

82051

82052

82053

82054

82055

82056

82057

82058

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Job Control Shell Command Language

• If the job was originally created as a background job, the foreground process group ID
shall be set to the process ID of the process that the shell made a process group leader
when it executed the asynchronous AND-OR list.

• If the job was originally created as a foreground job, the foreground process group ID shall
be set as follows when each pipeline in the job is executed:

— If the shell is not itself executing, in the current shell execution environment, all of
the commands in the pipeline, the foreground process group ID shall be set to the
process group ID that is shared by the other processes executing the pipeline (see
above).

— If all of the commands in the pipeline are being executed by the shell itself in the
current shell execution environment, the foreground process group ID shall be set to
the process group ID of the shell.

When a foreground job terminates, or becomes a suspended job (see below), if the shell has a
controlling terminal it shall set the foreground process group ID associated with the terminal to
the process group ID of the shell.

Each background job (whether suspended or not) shall have associated with it a job number and
a process ID that is known in the current shell execution environment. When a background job is
brought into the foreground by means of the fg utility, the associated job number shall be
removed from the shell’s background jobs list and the associated process ID shall be removed
from the list of process IDs known in the current shell execution environment.

If a process that the shell is waiting for is part of a foreground job that was started as a
foreground job and is stopped by a catchable signal (SIGTSTP, SIGTTIN, or SIGTTOU):

• If the currently executing AND-OR list within the list comprising the foreground job
consists of a single pipeline in which all of the commands are simple commands, the shell
shall either create a suspended job consisting of at least that AND-OR list and the
remaining (if any) AND-OR lists in the same list, or create a suspended job consisting of
just that AND-OR list and discard the remaining (if any) AND-OR lists in the same list.

• Otherwise, the shell shall create a suspended job consisting of a set of commands, from
within the list comprising the foreground job, that is unspecified except that the set shall
include at least the pipeline to which the stopped process belongs. Commands in the
foreground job that have not already completed and are not included in the suspended job
shall be discarded.

Note: Although only a pipeline of simple commands is guaranteed to remain intact if started in the
foreground and subsequently suspended, it is possible to ensure that a complex AND-OR list
will remain intact when suspended by starting it in the background and immediately bringing
it into the foreground. For example:

command1 && command2 | { command3 || command4; } & fg

If a process that the shell is waiting for is part of a foreground job that was started as a
foreground job and is stopped by a SIGSTOP signal, the behavior shall be as described above for
a catchable signal unless the shell was executing a built-in utility in the current shell execution
environment when the SIGSTOP was delivered, resulting in the shell itself being stopped by the
signal, in which case if the shell subsequently receives a SIGCONT signal and has one or more
child processes that remain stopped, the shell shall create a suspended job as if only those child
processes had been stopped.

When a suspended job is created as a result of a foreground job being stopped, it shall be
assigned a job number, and an interactive shell shall write, and a non-interactive shell may
write, a message to standard error, formatted as described by the jobs utility (without the −l

2520 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82059

82060

82061

82062

82063

82064

82065

82066

82067

82068

82069

82070

82071

82072

82073

82074

82075

82076

82077

82078

82079

82080

82081

82082

82083

82084

82085

82086

82087

82088

82089

82090

82091

82092

82093

82094

82095

82096

82097

82098

82099

82100

82101

82102

82103

82104

82105

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Job Control

option) for a suspended job. The message may indicate that the commands comprising the job
include commands that have already completed; in this case the completed commands shall not
be repeated if execution of the job is subsequently continued. If the shell is interactive, it shall
save the terminal settings before changing them to the settings it needs to read further
commands.

When a process associated with a background job is stopped by a SIGSTOP, SIGTSTP, SIGTTIN,
or SIGTTOU signal, the shell shall convert the (non-suspended) background job into a
suspended job and an interactive shell shall write a message to standard error, formatted as
described by the jobs utility (without the −l option) for a suspended job, at the following time:

• If set −b is enabled, the message shall be written either immediately after the job became
suspended or immediately prior to writing the next prompt for input.

• If set −b is disabled, the message shall be written immediately prior to writing the next
prompt for input.

Execution of a suspended job can be continued as a foreground job by means of the fg utility (if
supported), or as a (non-suspended) background job either by means of the bg utility (if
supported) or by sending the stopped processes a SIGCONT signal. The fg and bg utilities shall
send a SIGCONT signal to the process group of the process(es) whose stopped wait status
caused the shell to suspend the job. If the shell has a controlling terminal, the fg utility shall send
the SIGCONT signal after it has set the foreground process group ID associated with the
terminal (see above). If the fg utility is used from an interactive shell to bring into the foreground
a suspended job that was created from a foreground job, before it sends the SIGCONT signal the
fg utility shall restore the terminal settings to the ones that the shell saved when the job was
suspended.

When a background job completes or is terminated by a signal, an interactive shell shall write a
message to standard error, formatted as described by the jobs utility (without the −l option) for a
job that completed or was terminated by a signal, respectively, at the following time:

• If set −b is enabled, the message shall be written immediately after the job completes or is
terminated.

• If set −b is disabled, the message shall be written immediately prior to writing the next
prompt for input.

In each case above where an interactive shell writes a message immediately prior to writing the
next prompt for input, the same message may also be written by a non-interactive shell, at any
of the following times:

• After the next time a foreground job terminates or is suspended

• Before the shell parses further input

• Before the shell exits

2.12 Signals and Error Handling
If job control is disabled (see the description of set −m) when the shell executes an asynchronous
AND-OR list, the commands in the list shall inherit from the shell a signal action of ignored
(SIG_IGN) for the SIGINT and SIGQUIT signals. In all other cases, commands executed by the
shell shall inherit the same signal actions as those inherited by the shell from its parent unless a
signal action is modified by the trap special built-in (see trap)

When a signal for which a trap has been set is received while the shell is waiting for the
completion of a utility executing a foreground command, the trap associated with that signal

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2521

82106

82107

82108

82109

82110

82111

82112

82113

82114

82115

82116

82117

82118

82119

82120

82121

82122

82123

82124

82125

82126

82127

82128

82129

82130

82131

82132

82133

82134

82135

82136

82137

82138

82139

82140

82141

82142

82143

82144

82145

82146

82147

82148

82149

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Signals and Error Handling Shell Command Language

shall not be executed until after the foreground command has completed. When the shell is
waiting, by means of the wait utility, for asynchronous commands to complete, the reception of a
signal for which a trap has been set shall cause the wait utility to return immediately with an exit
status >128, immediately after which the trap associated with that signal shall be taken.

If multiple signals are pending for the shell for which there are associated trap actions, the order
of execution of trap actions is unspecified.

2.13 Shell Execution Environment
A shell execution environment consists of the following:

• Open files inherited upon invocation of the shell, plus open files controlled by exec

• Working directory as set by cd

• File creation mask set by umask

• File size limit as set by ulimit

• Current traps set by trap

• Shell parameters that are set by variable assignment (see the set special built-in) or from
the System Interfaces volume of POSIX.1-2024 environment inherited by the shell when it
begins (see the export special built-in)

• Shell functions; see Section 2.9.5

• Options turned on at invocation or by set

• Background jobs and their associated process IDs, and process IDs of child processes
created to execute asynchronous AND-OR lists while job control is disabled; together these
process IDs constitute the process IDs ``known to this shell environment’’. If the
implementation supports non-job-control background jobs, the list of known process IDs
and the list of background jobs may form a single list even though this standard describes
them as being updated separately. See Section 2.9.3.1

• Shell aliases; see Section 2.3.1

Utilities other than the special built-ins (see Section 2.15) shall be invoked in a separate
environment that consists of the following. The initial value of these objects shall be the same as
that for the parent shell, except as noted below.

• Open files inherited on invocation of the shell, open files controlled by the exec special
built-in plus any modifications, and additions specified by any redirections to the utility

• Current working directory

• File creation mask

• If the utility is a shell script, traps caught by the shell shall be set to the default values and
traps ignored by the shell shall be set to be ignored by the utility; if the utility is not a shell
script, the trap actions (default or ignore) shall be mapped into the appropriate signal
handling actions for the utility

• Variables with the export attribute, along with those explicitly exported for the duration of
the command, shall be passed to the utility environment variables

• It is unspecified whether environment variables that were passed to the invoking shell
when it was invoked itself, but were not used to initialize shell variables (see Section 2.5.3)
because they had invalid names, are included in the invoked utility’s environment.

2522 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82150

82151

82152

82153

82154

82155

82156

82157

82158

82159

82160

82161

82162

82163

82164

82165

82166

82167

82168

82169

82170

82171

82172

82173

82174

82175

82176

82177

82178

82179

82180

82181

82182

82183

82184

82185

82186

82187

82188

82189

82190

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Shell Execution Environment

The environment of the shell process shall not be changed by the utility unless explicitly
specified by the utility description (for example, cd and umask).

A subshell environment shall be created as a duplicate of the shell environment, except that:

• Unless specified otherwise (see trap), traps that are not being ignored shall be set to the
default action.

• If the shell is interactive, the subshell shall behave as a non-interactive shell in all respects
except:

— The expansion of the special parameter '-' may continue to indicate that it is
interactive.

— The set −n option may be ignored.

Changes made to the subshell environment shall not affect the shell environment. Command
substitution, commands that are grouped with parentheses, and asynchronous AND-OR lists
shall be executed in a subshell environment. Additionally, each command of a multi-command
pipeline is in a subshell environment; as an extension, however, any or all commands in a
pipeline may be executed in the current environment. Except where otherwise stated, all other
commands shall be executed in the current shell environment.

2.14 Pattern Matching Notation
The pattern matching notation described in this section is used to specify patterns for matching
character strings in the shell. This notation is also used by some other utilities (find, pax, and
optionally make) and by some system interfaces (fnmatch(), glob(), and wordexp()). Historically,
pattern matching notation is related to, but slightly different from, the regular expression
notation described in XBD Chapter 9. For this reason, the description of the rules for this pattern
matching notation are based on the description of regular expression notation, modified to
account for the differences.

If an attempt is made to use pattern matching notation to match a string that contains one or
more bytes that do not form part of a valid character, the behavior is unspecified. Since
pathnames can contain such bytes, portable applications need to ensure that the current locale is
the C or POSIX locale when performing pattern matching (or expansion) on arbitrary
pathnames.

2.14.1 Patterns Matching a Single Character

The following patterns shall match a single character: ordinary characters, special pattern
characters, and pattern bracket expressions. The pattern bracket expression also shall match a
single collating element.

In a pattern, or part of one, where a shell-quoting <backslash> can be used, a <backslash>
character shall escape the following character as described in Section 2.2.1, regardless of whether
or not the <backslash> is inside a bracket expression. (The sequence "\\" represents one literal
<backslash>.)

In a pattern, or part of one, where a shell-quoting <backslash> cannot be used to preserve the
literal value of a character that would otherwise be treated as special:

• A <backslash> character that is not inside a bracket expression shall preserve the literal
value of the following character, unless the following character is in a part of the pattern
where shell quoting can be used and is a shell quoting character, in which case the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2523

82191

82192

82193

82194

82195

82196

82197

82198

82199

82200

82201

82202

82203

82204

82205

82206

82207

82208

82209

82210

82211

82212

82213

82214

82215

82216

82217

82218

82219

82220

82221

82222

82223

82224

82225

82226

82227

82228

82229

82230

82231

82232

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Pattern Matching Notation Shell Command Language

behavior is unspecified.

• For the shell only, it is unspecified whether or not a <backslash> character inside a bracket
expression preserves the literal value of the following character.

All of the requirements and effects of quoting on ordinary, shell special, and special pattern
characters shall apply to escaping in this context, except where specified otherwise. (Situations
where this applies include word expansions when a pattern used in pathname expansion is not
present in the original word but results from an earlier expansion, or the argument to the find
−name or −path primary as passed to find, or the pattern argument to the fnmatch() and glob()
functions when FNM_NOESCAPE or GLOB_NOESCAPE is not set in flags, respectively.)

If a pattern ends with an unescaped <backslash>, the behavior is unspecified.

An ordinary character is a pattern that shall match itself. In a pattern, or part of one, where a
shell-quoting <backslash> can be used, an ordinary character can be any character in the
supported character set except for NUL, those special shell characters in Section 2.2 that require
quoting, and the three special pattern characters described below. In a pattern, or part of one,
where a shell-quoting <backslash> cannot be used to preserve the literal value of a character that
would otherwise be treated as special, an ordinary character can be any character in the
supported character set except for NUL and the three special pattern characters described below.
Matching shall be based on the bit pattern used for encoding the character, not on the graphic
representation of the character. If any character (ordinary, shell special, or pattern special) is
quoted, or escaped with a <backslash>, that pattern shall match the character itself. The
application shall ensure that it quotes or escapes any character that would otherwise be treated
as special, in order for it to be matched as an ordinary character.

When unquoted, unescaped, and not inside a bracket expression, the following three characters
shall have special meaning in the specification of patterns:

? A <question-mark> is a pattern that shall match any character.

* An <asterisk> is a pattern that shall match multiple characters, as described in Section
2.14.2.

[A <left-square-bracket> shall introduce a bracket expression if the characters following it
meet the requirements for bracket expressions stated in XBD Section 9.3.5, except that the
<exclamation-mark> character ('!') shall replace the <circumflex> character ('^') in its
role in a non-matching list in the regular expression notation. A bracket expression starting
with an unquoted <circumflex> character produces unspecified results. A <left-square-
bracket> that does not introduce a valid bracket expression shall match the character itself.

2.14.2 Patterns Matching Multiple Characters

The following rules are used to construct patterns matching multiple characters from patterns
matching a single character:

1. The <asterisk> ('*') is a pattern that shall match any string, including the null string.

2. The concatenation of patterns matching a single character is a valid pattern that shall
match the concatenation of the single characters or collating elements matched by each of
the concatenated patterns.

3. The concatenation of one or more patterns matching a single character with one or more
<asterisk> characters is a valid pattern. In such patterns, each <asterisk> shall match a
string of zero or more characters, matching the greatest possible number of characters
that still allows the remainder of the pattern to match the string.

2524 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82233

82234

82235

82236

82237

82238

82239

82240

82241

82242

82243

82244

82245

82246

82247

82248

82249

82250

82251

82252

82253

82254

82255

82256

82257

82258

82259

82260

82261

82262

82263

82264

82265

82266

82267

82268

82269

82270

82271

82272

82273

82274

82275

82276

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Pattern Matching Notation

2.14.3 Patterns Used for Filename Expansion

The rules described so far in Section 2.14.1 and Section 2.14.2 are qualified by the following rules
that apply when pattern matching notation is used for filename expansion:

1. The <slash> character in a pathname shall be explicitly matched by using one or more
<slash> characters in the pattern; it shall neither be matched by the <asterisk> or
<question-mark> special characters nor by a bracket expression. <slash> characters in the
pattern shall be identified before bracket expressions; thus, a <slash> cannot be included
in a pattern bracket expression used for filename expansion. If a <slash> character is
found following an unescaped <left-square-bracket> character before a corresponding
<right-square-bracket> is found, the open bracket shall be treated as an ordinary
character. For example, the pattern "a[b/c]d" does not match such pathnames as abd
or a/d. It only matches a pathname of literally a[b/c]d.

2. If a filename begins with a <period> ('.'), the <period> shall be explicitly matched by
using a <period> as the first character of the pattern or immediately following a <slash>
character. The leading <period> shall not be matched by:

• The <asterisk> or <question-mark> special characters

• A bracket expression containing a non-matching list, such as "[!a]", a range
expression, such as "[%-0]", or a character class expression, such as
"[[:punct:]]"

It is unspecified whether an explicit <period> in a bracket expression matching list, such
as "[.abc]", can match a leading <period> in a filename.

3. If a specified pattern contains any '*', '?' or '[' characters that will be treated as
special (see Section 2.14.1), it shall be matched against existing filenames and pathnames,
as appropriate; if directory entries for dot and dot-dot exist, they may be ignored. Each
component that contains any such characters shall require read permission in the
directory containing that component. Each component that contains a <backslash> that
will be treated as special may require read permission in the directory containing that
component. Any component, except the last, that does not contain any '*', '?' or '['
characters that will be treated as special shall require search permission. If these
permissions are denied, or if an attempt to open or search a pathname as a directory, or an
attempt to read an opened directory, fails because of an error condition that is related to
file system contents, this shall not be considered an error and pathname expansion shall
continue as if the pathname had named an existing directory which had been successfully
opened and read, or searched, and no matching directory entries had been found in it. For
other error conditions it is unspecified whether pathname expansion fails or they are
treated the same as when permission is denied.

For example, given the pattern:

/foo/bar/x*/bam

search permission is needed for directories / and foo, search and read permissions are
needed for directory bar, and search permission is needed for each x* directory.

If the pattern matches any existing filenames or pathnames, the pattern shall be replaced
with those filenames and pathnames, sorted according to the collating sequence in effect
in the current locale. If this collating sequence does not have a total ordering of all
characters (see XBD Section 7.3.2, on page 139), any filenames or pathnames that collate
equally shall be further compared byte-by-byte using the collating sequence for the
POSIX locale.

If the pattern contains an open bracket ('[') that does not introduce a bracket expression

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2525

82277

82278

82279

82280

82281

82282

82283

82284

82285

82286

82287

82288

82289

82290

82291

82292

82293

82294

82295

82296

82297

82298

82299

82300

82301

82302

82303

82304

82305

82306

82307

82308

82309

82310

82311

82312

82313

82314

82315

82316

82317

82318

82319

82320

82321

82322

82323

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Pattern Matching Notation Shell Command Language

as in XBD Section 9.3.5, it is unspecified whether other unquoted '*', '?', '[' or
<backslash> characters within the same slash-delimited component of the pattern retain
their special meanings or are treated as ordinary characters. For example, the pattern
"a*[/b*" may match all filenames beginning with 'b' in the directory "a*[" or it may
match all filenames beginning with 'b' in all directories with names beginning with 'a'
and ending with '['.

If the pattern does not match any existing filenames or pathnames, the pattern string shall
be left unchanged.

Note: A future version of this standard may require that directory entries for dot and dot-dot
are ignored (if they exist) when matching patterns against existing filenames. For
example, when expanding the pattern ".*" the result would not include dot and dot-
dot.

4. If a specified pattern does not contain any '*', '?' or '[' characters that will be treated
as special, the pattern string shall be left unchanged.

2.15 Special Built-In Utilities
The following ``special built-in’’ utilities shall be supported in the shell command language. The
output of each command, if any, shall be written to standard output, subject to the normal
redirection and piping possible with all commands.

The term ``built-in’’ implies that there is no need to execute a separate executable file because the
utility is implemented in the shell itself. An implementation may choose to make any utility a
built-in; however, the special built-in utilities described here differ from regular built-in utilities
in two respects:

1. An error in a special built-in utility may cause a shell executing that utility to abort, while
an error in a regular built-in utility shall not cause a shell executing that utility to abort.
(See Section 2.8.1 for the consequences of errors on interactive and non-interactive shells.)
If a special built-in utility encountering an error does not abort the shell, its exit value
shall be non-zero.

2. As described in Section 2.9.1, variable assignments preceding the invocation of a special
built-in utility affect the current execution environment; this shall not be the case with a
regular built-in or other utility.

The special built-in utilities in this section need not be provided in a manner accessible via the
exec family of functions defined in the System Interfaces volume of POSIX.1-2024.

Some of the special built-ins are described as conforming to XBD Section 12.2. For those that are
not, the requirement in Section 1.4 that "--" be recognized as a first argument to be discarded
does not apply and a conforming application shall not use that argument.

2526 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82324

82325

82326

82327

82328

82329

82330

82331

82332

82333

82334

82335

82336

82337

82338

82339

82340

82341

82342

82343

82344

82345

82346

82347

82348

82349

82350

82351

82352

82353

82354

82355

82356

82357

82358

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language break

NAME
break — exit from for, while, or until loop

SYNOPSIS
break [n]

DESCRIPTION
If n is specified, the break utility shall exit from the nth enclosing for, while, or until loop. If n is
not specified, break shall behave as if n was specified as 1. Execution shall continue with the
command immediately following the exited loop. The application shall ensure that the value of
n is a positive decimal integer. If n is greater than the number of enclosing loops, the outermost
enclosing loop shall be exited. If there is no enclosing loop, the behavior is unspecified.

A loop shall enclose a break or continue command if the loop lexically encloses the command. A
loop lexically encloses a break or continue command if the command is:

• Executing in the same execution environment (see Section 2.13) as the compound-list of the
loop’s do-group (see Section 2.10.2), and

• Contained in a compound-list associated with the loop (either in the compound-list of the
loop’s do-group or, if the loop is a while or until loop, in the compound-list following the
while or until reserved word), and

• Not in the body of a function whose function definition command (see Section 2.9.5) is
contained in a compound-list associated with the loop.

If n is greater than the number of lexically enclosing loops and there is a non-lexically enclosing
loop in progress in the same execution environment as the break or continue command, it is
unspecified whether that loop encloses the command.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2527

82359

82360

82361

82362

82363

82364

82365

82366

82367

82368

82369

82370

82371

82372

82373

82374

82375

82376

82377

82378

82379

82380

82381

82382

82383

82384

82385

82386

82387

82388

82389

82390

82391

82392

82393

82394

82395

82396

82397

82398

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

break Shell Command Language

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 Successful completion.

>0 The n value was not an unsigned decimal integer greater than or equal to 1.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
for i in *
do

if test -d "$i"
then break
fi

done

The results of running the following example are unspecified: there are two loops in progress
when the break command is executed, and they are in the same execution environment, but
neither loop is lexically enclosing the break command. (There are no loops lexically enclosing the
continue commands, either.)
foo() {

for j in 1 2; do
echo 'break 2' >/tmp/do_break
echo " sourcing /tmp/do_break ($j)..."
the behavior of the break from running the following command
results in unspecified behavior:
. /tmp/do_break

do_continue() { continue 2; }
echo " running do_continue ($j)..."
the behavior of the continue in the following function call
results in unspecified behavior (if execution reaches this
point):
do_continue

trap 'continue 2' USR1
echo " sending SIGUSR1 to self ($j)..."
the behavior of the continue in the trap invoked from the
following signal results in unspecified behavior (if
execution reaches this point):
kill -s USR1 $$
sleep 1

done
}
for i in 1 2; do

echo "running foo ($i)..."
foo

done

2528 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82399

82400

82401

82402

82403

82404

82405

82406

82407

82408

82409

82410

82411

82412

82413

82414

82415

82416

82417

82418

82419

82420

82421

82422

82423

82424

82425

82426

82427

82428

82429

82430

82431

82432

82433

82434

82435

82436

82437

82438

82439

82440

82441

82442

82443

82444

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language break

RATIONALE
In early proposals, consideration was given to expanding the syntax of break and continue to refer
to a label associated with the appropriate loop as a preferable alternative to the n method.
However, this volume of POSIX.1-2024 does reserve the name space of command names ending
with a <colon>. It is anticipated that a future implementation could take advantage of this and
provide something like:

outofloop: for i in a b c d e
do

for j in 0 1 2 3 4 5 6 7 8 9
do

if test -r "${i}${j}"
then break outofloop
fi

done
done

and that this might be standardized after implementation experience is achieved.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0046 [842] is applied.

Issue 8
Austin Group Defect 1058 is applied, clarifying that the requirement for n to be a positive
decimal integer is a requirement on the application.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2529

82445

82446

82447

82448

82449

82450

82451

82452

82453

82454

82455

82456

82457

82458

82459

82460

82461

82462

82463

82464

82465

82466

82467

82468

82469

82470

82471

82472

82473

82474

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

colon Shell Command Language

NAME
colon — null utility

SYNOPSIS
: [argument...]

DESCRIPTION
This utility shall do nothing except return a 0 exit status. It is used when a command is needed,
as in the then condition of an if command, but nothing is to be done by the command.

OPTIONS
This utility shall not recognize the "--" argument in the manner specified by Guideline 10 of
XBD Section 12.2 (on page 215).

Implementations shall not support any options.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Not used.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
None.

APPLICATION USAGE
See the APPLICATION USAGE for true.

EXAMPLES
: "${X=abc}"
if false
then :
else printf ’%s\n’ "$X"
fi
abc

As with any of the special built-ins, the null utility can also have variable assignments and

2530 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82475

82476

82477

82478

82479

82480

82481

82482

82483

82484

82485

82486

82487

82488

82489

82490

82491

82492

82493

82494

82495

82496

82497

82498

82499

82500

82501

82502

82503

82504

82505

82506

82507

82508

82509

82510

82511

82512

82513

82514

82515

82516

82517

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language colon

redirections associated with it, such as:

x=y : > z

which sets variable x to the value y (so that it persists after the null utility completes) and creates
or truncates file z; if the file cannot be created or truncated, a non-interactive shell exits (see
Section 2.8.1).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15, true

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1272 is applied, clarifying that the null utility does not process its
arguments, does not recognize the "--" end-of-options delimiter, does not support any options,
and does not write to standard error.

Austin Group Defect 1640 is applied, changing the APPLICATION USAGE section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2531

82518

82519

82520

82521

82522

82523

82524

82525

82526

82527

82528

82529

82530

82531

82532

82533

82534

82535

82536

82537

82538

82539

82540

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

continue Shell Command Language

NAME
continue — continue for, while, or until loop

SYNOPSIS
continue [n]

DESCRIPTION
If n is specified, the continue utility shall return to the top of the nth enclosing for, while, or until
loop. If n is not specified, continue shall behave as if n was specified as 1. Returning to the top of
the loop involves repeating the condition list of a while or until loop or performing the next
assignment of a for loop, and re-executing the loop if appropriate.

The application shall ensure that the value of n is a positive decimal integer. If n is greater than
the number of enclosing loops, the outermost enclosing loop shall be used. If there is no
enclosing loop, the behavior is unspecified.

The meaning of ``enclosing’’ shall be as specified in the description of the break utility.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 Successful completion.

>0 The n value was not an unsigned decimal integer greater than or equal to 1.

CONSEQUENCES OF ERRORS
Default.

2532 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82541

82542

82543

82544

82545

82546

82547

82548

82549

82550

82551

82552

82553

82554

82555

82556

82557

82558

82559

82560

82561

82562

82563

82564

82565

82566

82567

82568

82569

82570

82571

82572

82573

82574

82575

82576

82577

82578

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language continue

APPLICATION USAGE
None.

EXAMPLES
for i in *
do

if test -d "$i"
then continue
fi
printf '"%s" is not a directory.\n' "$i"

done

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
The example is changed to use the printf utility rather than echo.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0046 [842] is applied.

Issue 8
Austin Group Defect 1058 is applied, clarifying that the requirement for n to be a positive
decimal integer is a requirement on the application.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2533

82579

82580

82581

82582

82583

82584

82585

82586

82587

82588

82589

82590

82591

82592

82593

82594

82595

82596

82597

82598

82599

82600

82601

82602

82603

82604

82605

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dot Shell Command Language

NAME
dot — execute commands in the current environment

SYNOPSIS
. file

DESCRIPTION
The shell shall tokenize (see Section 2.3) the contents of the file, parse the tokens (see Section
2.10), and execute the resulting commands in the current environment. It is unspecified whether
the commands are parsed and executed as a program (as for a shell script) or are parsed as a
single compound_list that is executed after the entire file has been parsed.

If file does not contain a <slash>, the shell shall use the search path specified by PA TH to find the
directory containing file. Unlike normal command search, however, the file searched for by the
dot utility need not be executable. If no readable file is found, a non-interactive shell shall abort;
an interactive shell shall write a diagnostic message to standard error.

The dot special built-in shall support XBD Section 12.2 (on page 215), except for Guidelines 1 and
2.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
See the DESCRIPTION.

ENVIRONMENT VARIABLES
See the DESCRIPTION.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If no readable file was found or if the commands in the file could not be parsed, and the shell is
interactive (and therefore does not abort; see Section 2.8.1), the exit status shall be non-zero.
Otherwise, return the value of the last command executed, or a zero exit status if no command is
executed.

CONSEQUENCES OF ERRORS
Default.

2534 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82606

82607

82608

82609

82610

82611

82612

82613

82614

82615

82616

82617

82618

82619

82620

82621

82622

82623

82624

82625

82626

82627

82628

82629

82630

82631

82632

82633

82634

82635

82636

82637

82638

82639

82640

82641

82642

82643

82644

82645

82646

82647

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language dot

APPLICATION USAGE
None.

EXAMPLES
cat foobar
foo=hello bar=world
. ./foobar
echo $foo $bar
hello world

RATIONALE
Some older implementations searched the current directory for the file, even if the value of PA TH
disallowed it. This behavior was omitted from this volume of POSIX.1-2024 due to concerns
about introducing the susceptibility to trojan horses that the user might be trying to avoid by
leaving dot out of PA TH.

The KornShell version of dot takes optional arguments that are set to the positional parameters.
This is a valid extension that allows a dot script to behave identically to a function.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15, return

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-164 is applied.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0038 [114] and XCU/TC1-2008/0039
[214] are applied.

Issue 8
Austin Group Defect 252 is applied, adding a requirement for dot to support XBD Section 12.2
(except for Guidelines 1 and 2, since the utility’s name is '.').

Austin Group Defect 953 is applied, clarifying how the commands in the file are parsed.

Austin Group Defect 1265 is applied, updating the DESCRIPTION to align with the changes
made to Section 2.8.1 between Issue 6 and Issue 7.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2535

82648

82649

82650

82651

82652

82653

82654

82655

82656

82657

82658

82659

82660

82661

82662

82663

82664

82665

82666

82667

82668

82669

82670

82671

82672

82673

82674

82675

82676

82677

82678

82679

82680

82681

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ev al Shell Command Language

NAME
eval — construct command by concatenating arguments

SYNOPSIS
eval [argument...]

DESCRIPTION
The eval utility shall construct a command string by concatenating arguments together,
separating each with a <space> character. The constructed command string shall be tokenized
(see Section 2.3), parsed (see Section 2.10), and executed by the shell in the current environment.
It is unspecified whether the commands are parsed and executed as a program (as for a shell
script) or are parsed as a single compound_list that is executed after the entire constructed
command string has been parsed.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If there are no arguments, or only null arguments, eval shall return a zero exit status; otherwise, it
shall return the exit status of the command defined by the string of concatenated arguments
separated by <space> characters, or a non-zero exit status if the concatenation could not be
parsed as a command and the shell is interactive (and therefore did not abort).

CONSEQUENCES OF ERRORS
Default.

2536 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82682

82683

82684

82685

82686

82687

82688

82689

82690

82691

82692

82693

82694

82695

82696

82697

82698

82699

82700

82701

82702

82703

82704

82705

82706

82707

82708

82709

82710

82711

82712

82713

82714

82715

82716

82717

82718

82719

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language ev al

APPLICATION USAGE
Since eval is not required to recognize the "--" end of options delimiter, in cases where the
argument(s) to eval might begin with '-' it is recommended that the first argument is prefixed
by a string that will not alter the commands to be executed, such as a <space> character:

eval " $commands"

or:

eval " $(some_command)"

EXAMPLES
foo=10 x=foo
y='$'$x
echo $y
$foo
eval y='$'$x
echo $y
10

RATIONALE
This standard allows, but does not require, eval to recognize "--". Although this means
applications cannot use "--" to protect against options supported as an extension (or errors
reported for unsupported options), the nature of the eval utility is such that other means can be
used to provide this protection (see APPLICATION USAGE above).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0040 [114], XCU/TC1-2008/0041 [163],
and XCU/TC1-2008/0042 [163] are applied.

Issue 8
Austin Group Defect 953 is applied, clarifying how the commands in the constructed command
string are parsed.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2537

82720

82721

82722

82723

82724

82725

82726

82727

82728

82729

82730

82731

82732

82733

82734

82735

82736

82737

82738

82739

82740

82741

82742

82743

82744

82745

82746

82747

82748

82749

82750

82751

82752

82753

82754

82755

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec Shell Command Language

NAME
exec — perform redirections in the current shell or execute a utility

SYNOPSIS
exec [utility [argument...]]

DESCRIPTION
If exec is specified with no operands, any redirections associated with the exec command shall be
made in the current shell execution environment. If any file descriptors with numbers greater
than 2 are opened by those redirections, it is unspecified whether those file descriptors remain
open when the shell invokes another utility. Scripts concerned that child shells could misuse
open file descriptors can always close them explicitly, as shown in one of the following
examples. If the result of the redirections would be that file descriptor 0, 1, or 2 is closed,
implementations may open the file descriptor to an unspecified file.

If exec is specified with a utility operand, the shell shall execute a non-built-in utility as described
in Section 2.9.1.6 with utility as the command name and the argument operands (if any) as the
command arguments.

If the exec command fails, a non-interactive shell shall exit from the current shell execution
UP environment; an interactive shell may exit from a subshell environment but shall not exit if the

current shell environment is not a subshell environment.

If the exec command fails and the shell does not exit, any redirections associated with the exec
command that were successfully made shall take effect in the current shell execution
environment.

The exec special built-in shall support XBD Section 12.2 (on page 215).

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variable shall affect the execution of exec:

PA TH Determine the search path when looking for the utility given as the utility operand;
see XBD Section 8.3 (on page 174).

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

2538 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82756

82757

82758

82759

82760

82761

82762

82763

82764

82765

82766

82767

82768

82769

82770

82771

82772

82773

82774

82775

82776

82777

82778

82779

82780

82781

82782

82783

82784

82785

82786

82787

82788

82789

82790

82791

82792

82793

82794

82795

82796

82797

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language exec

EXTENDED DESCRIPTION
None.

EXIT STATUS
If utility is specified and is executed, exec shall not return to the shell; rather, the exit status of the
current shell execution environment shall be the exit status of utility. If utility is specified and an
attempt to execute it as a non-built-in utility fails, the exit status shall be as described in Section
2.9.1.6. If a redirection error occurs (see Section 2.8.1), the exit status shall be a value in the range
1−125. Otherwise, exec shall return a zero exit status.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
Open readfile as file descriptor 3 for reading:

exec 3< readfile

Open writefile as file descriptor 4 for writing:

exec 4> writefile

Make file descriptor 5 a copy of file descriptor 0:

exec 5<&0

Close file descriptor 3:

exec 3<&-

Cat the file maggie by replacing the current shell with the cat utility:

exec cat maggie

An application that is not concerned with strict conformance can make use of optional %g
support known to be present in the implementation’s printf utility by ensuring that any shell
built-in version is not executed instead, and using a subshell so that the shell continues
afterwards:

(exec printf ’%g\n’ "$float_value")

RATIONALE
Most historical implementations were not conformant in that:

foo=bar exec cmd

did not pass foo to cmd.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15

CHANGE HISTORY

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2539

82798

82799

82800

82801

82802

82803

82804

82805

82806

82807

82808

82809

82810

82811

82812

82813

82814

82815

82816

82817

82818

82819

82820

82821

82822

82823

82824

82825

82826

82827

82828

82829

82830

82831

82832

82833

82834

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exec Shell Command Language

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 252 is applied, adding a requirement for exec to support XBD Section 12.2.

Austin Group Defect 1157 is applied, clarifying the execution of non-built-in utilities.

Austin Group Defect 1587 is applied, changing the ENVIRONMENT VARIABLES section.

2540 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82835

82836

82837

82838

82839

82840

82841

82842

82843

82844

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language exit

NAME
exit — cause the shell to exit

SYNOPSIS
exit [n]

DESCRIPTION
The exit utility shall cause the shell to exit from its current execution environment. If the current
execution environment is a subshell environment, the shell shall exit from the subshell
environment and continue in the environment from which that subshell environment was
invoked; otherwise, the shell utility shall terminate. The wait status of the shell or subshell shall
be determined by the unsigned decimal integer n, if specified.

If n is specified and has a value between 0 and 255 inclusive, the wait status of the shell or
subshell shall indicate that it exited with exit status n. If n is specified and has a value greater
than 256 that corresponds to an exit status the shell assigns to commands terminated by a valid
signal (see Section 2.8.2), the wait status of the shell or subshell shall indicate that it was
terminated by that signal. No other actions associated with the signal, such as execution of trap
actions or creation of a core image, shall be performed by the shell.

If n is specified and is not an unsigned decimal integer, or has a value of 256, or has a value
greater than 256 but not corresponding to an exit status the shell assigns to commands
terminated by a valid signal, the wait status of the shell or subshell is unspecified.

If n is not specified, the result shall be as if n were specified with the current value of the special
parameter '?' (see Section 2.5.2), except that if the exit command would cause the end of
execution of a trap action, the value for the special parameter '?' that is considered ``current’’
shall be the value it had immediately preceding the trap action.

A trap action on EXIT shall be executed before the shell terminates, except when the exit utility is
invoked in that trap action itself, in which case the shell shall exit immediately. It is unspecified
whether setting a new trap action on EXIT during execution of a trap action on EXIT will cause
the new trap action to be executed before the shell terminates.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2541

82845

82846

82847

82848

82849

82850

82851

82852

82853

82854

82855

82856

82857

82858

82859

82860

82861

82862

82863

82864

82865

82866

82867

82868

82869

82870

82871

82872

82873

82874

82875

82876

82877

82878

82879

82880

82881

82882

82883

82884

82885

82886

82887

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

exit Shell Command Language

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The exit utility causes the shell to exit from its current execution environment, and therefore does
not itself return an exit status.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
As explained in other sections, certain exit status values have been reserved for special uses and
should be used by applications only for those purposes:

126 A file to be executed was found, but it was not an executable utility.

127 A utility to be executed was not found.

128 An unrecoverable read error was detected by the shell while reading commands, except
from the file operand of the dot special built-in.

>128 A command was interrupted by a signal.

EXAMPLES
Exit with a true value:

exit 0

Exit with a false value:

exit 1

Propagate error handling from within a subshell:

(
command1 || exit 1
command2 || exit 1
exec command3

) > outputfile || exit 1
echo "outputfile created successfully"

RATIONALE
The behavior of exit when given an invalid argument or unknown option is unspecified, because
of differing practices in the various historical implementations. A value larger than 255 might be
truncated by the shell, and be unavailable even to a parent process that uses waitid() to get the
full exit value. It is recommended that implementations that detect any usage error should cause
a non-zero exit status (or, if the shell is interactive and the error does not cause the shell to abort,
store a non-zero value in "$?"), but even this was not done historically in all shells.

See also Section C.2.8.2 (on page 3894).

FUTURE DIRECTIONS
None.

2542 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82888

82889

82890

82891

82892

82893

82894

82895

82896

82897

82898

82899

82900

82901

82902

82903

82904

82905

82906

82907

82908

82909

82910

82911

82912

82913

82914

82915

82916

82917

82918

82919

82920

82921

82922

82923

82924

82925

82926

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language exit

SEE ALSO
Section 2.15

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0047 [717], XCU/TC2-2008/0048
[960], XCU/TC2-2008/0049 [717], and XCU/TC2-2008/0050 [960] are applied.

Issue 8
Austin Group Defect 51 is applied, specifying the behavior when n has a value greater than 256
that corresponds to an exit status the shell assigns to commands terminated by a valid signal.

Austin Group Defect 1029 is applied, changing ``trap’’ to ``trap action’’ in the DESCRIPTION
section.

Austin Group Defect 1309 is applied, changing the EXIT STATUS section.

Austin Group Defect 1425 is applied, clarifying the requirements for a trap action on EXIT.

Austin Group Defect 1602 is applied, clarifying the behavior of exit in a trap action.

Austin Group Defect 1629 is applied, adding exit status 128 to the APPLICATION USAGE
section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2543

82927

82928

82929

82930

82931

82932

82933

82934

82935

82936

82937

82938

82939

82940

82941

82942

82943

82944

82945

82946

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

export Shell Command Language

NAME
export — set the export attribute for variables

SYNOPSIS
export name[=word]...

export -p

DESCRIPTION
The shell shall give the export attribute to the variables corresponding to the specified names,
which shall cause them to be in the environment of subsequently executed commands. If the
name of a variable is followed by =word, then the value of that variable shall be set to word.

The export special built-in shall be a declaration utility. Therefore, if export is recognized as the
command name of a simple command, then subsequent words of the form name=word shall be
expanded in an assignment context. See Section 2.9.1.1.

The export special built-in shall support XBD Section 12.2.

When −p is specified, export shall write to the standard output the names and values of all
exported variables, in the following format:

"export %s=%s\n", <name>, <value>

if name is set, and:

"export %s\n", <name>

if name is unset.

The shell shall format the output, including the proper use of quoting, so that it is suitable for
reinput to the shell as commands that achieve the same exporting results, except:

1. Read-only variables with values cannot be reset.

2. Variables that were unset at the time they were output need not be reset to the unset state
if a value is assigned to the variable between the time the state was saved and the time at
which the saved output is reinput to the shell.

When no arguments are given, the results are unspecified.

OPTIONS
See the DESCRIPTION.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

2544 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

82947

82948

82949

82950

82951

82952

82953

82954

82955

82956

82957

82958

82959

82960

82961

82962

82963

82964

82965

82966

82967

82968

82969

82970

82971

82972

82973

82974

82975

82976

82977

82978

82979

82980

82981

82982

82983

82984

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language export

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 Successful completion.

>0 At least one operand could not be processed as requested, such as a name operand that
could not be exported or an attempt to modify a readonly variable using a name=word
operand, or the −p option was specified and a write error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Note that, unless X was previously marked readonly, the value of "$?" after:

export X=$(false)

will be 0 (because export successfully set X to the empty string) and that execution continues,
even if set −e is in effect. In order to detect command substitution failures, a user must separate
the assignment from the export, as in:

X=$(false)
export X

In shells that support extended assignment syntax, for example to allow an array to be
populated with a single assignment, such extensions can typically only be used in assignments
specified as arguments to export if the command word is literally export, and not if it is some
other word that expands to export. For example:

Shells that support array assignment as an extension generally
support this:
export x=(1 2 3); echo ${x[0]} # outputs 1
But generally do not support this:
e=export; $e x=(1 2 3); echo ${x[0]} # syntax error

EXAMPLES
Export PWD and HOME variables:

export PWD HOME

Set and export the PA TH variable:

export PATH="/local/bin:$PATH"

Save and restore all exported variables:

export -p > temp-file
unset a lot of variables
... processing
. ./temp-file

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2545

82985

82986

82987

82988

82989

82990

82991

82992

82993

82994

82995

82996

82997

82998

82999

83000

83001

83002

83003

83004

83005

83006

83007

83008

83009

83010

83011

83012

83013

83014

83015

83016

83017

83018

83019

83020

83021

83022

83023

83024

83025

83026

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

export Shell Command Language

Note: If LANG, LC_CTYPE or LC_ALL are left altered or unset in the above example prior to sourcing
temp-file, the results may be undefined.

RATIONALE
Some historical shells use the no-argument case as the functional equivalent of what is required
here with −p. This feature was left unspecified because it is not historical practice in all shells,
and some scripts may rely on the now-unspecified results on their implementations. Attempts to
specify the −p output as the default case were unsuccessful in achieving consensus. The −p
option was added to allow portable access to the values that can be saved and then later restored
using; for example, a dot script.

Some implementations extend the shell’s assignment syntax, for example to allow an array to be
populated with a single assignment, and in order for such an extension to be usable in
assignments specified as arguments to export these shells have export as a separate token in their
grammar. This standard only permits an extension of this nature when the input to the shell
would contain a syntax error according to the standard grammar. Note that although export can
be a separate token in the shell’s grammar, it cannot be a reserved word since export is a
candidate for alias substitution whereas reserved words are not (see Section 2.3.1).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.1.1, Section 2.15

XBD Section 12.2

CHANGE HISTORY

Issue 6
IEEE PASC Interpretation 1003.2 #203 is applied, clarifying the format when a variable is unset.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/6 is applied, adding the following text to
the end of the first paragraph of the DESCRIPTION: ``If the name of a variable is followed by
=word, then the value of that variable shall be set to word.’’. The reason for this change is that the
SYNOPSIS for export includes:

export name[=word]...

but the meaning of the optional ``=word’’ is never explained in the text.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0043 [352] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0051 [654] and XCU/TC2-2008/0052
[960] are applied.

Issue 8
Austin Group Defect 351 is applied, requiring export to be a declaration utility.

Austin Group Defect 367 is applied, changing the EXIT STATUS section.

Austin Group Defect 1258 is applied, changing the EXAMPLES section.

2546 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83027

83028

83029

83030

83031

83032

83033

83034

83035

83036

83037

83038

83039

83040

83041

83042

83043

83044

83045

83046

83047

83048

83049

83050

83051

83052

83053

83054

83055

83056

83057

83058

83059

83060

83061

83062

83063

83064

83065

83066

83067

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language export

Austin Group Defect 1393 is applied, changing the APPLICATION USAGE and RATIONALE
sections.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2547

83068

83069

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readonly Shell Command Language

NAME
readonly — set the readonly attribute for variables

SYNOPSIS
readonly name[=word]...

readonly -p

DESCRIPTION
The variables whose names are specified shall be given the readonly attribute. The values of
variables with the readonly attribute cannot be changed by subsequent assignment or use of the
export, getopts, readonly, or read utilities, nor can those variables be unset by the unset utility. As
described in XBD Section 8.1, conforming applications shall not request to mark a variable as
readonly if it is documented as being manipulated by a shell built-in utility, as it may render
those utilities unable to complete successfully. If the name of a variable is followed by =word,
then the value of that variable shall be set to word.

The readonly special built-in shall be a declaration utility. Therefore, if readonly is recognized as
the command name of a simple command, then subsequent words of the form name=word shall
be expanded in an assignment context. See Section 2.9.1.1.

The readonly special built-in shall support XBD Section 12.2.

When −p is specified, readonly writes to the standard output the names and values of all read-
only variables, in the following format:

"readonly %s=%s\n", <name>, <value>

if name is set, and

"readonly %s\n", <name>

if name is unset.

The shell shall format the output, including the proper use of quoting, so that it is suitable for
reinput to the shell as commands that achieve the same value and readonly attribute-setting
results in a shell execution environment in which:

1. Variables with values at the time they were output do not have the readonly attribute set.

2. Variables that were unset at the time they were output do not have a value at the time at
which the saved output is reinput to the shell.

When no arguments are given, the results are unspecified.

OPTIONS
See the DESCRIPTION.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

2548 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83070

83071

83072

83073

83074

83075

83076

83077

83078

83079

83080

83081

83082

83083

83084

83085

83086

83087

83088

83089

83090

83091

83092

83093

83094

83095

83096

83097

83098

83099

83100

83101

83102

83103

83104

83105

83106

83107

83108

83109

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language readonly

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 Successful completion.

>0 At least one operand could not be processed as requested, such as a name operand that
could not be marked readonly or an attempt to modify an already readonly variable using a
name=word operand, or the −p option was specified and a write error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
In shells that support extended assignment syntax, for example to allow an array to be
populated with a single assignment, such extensions can typically only be used in assignments
specified as arguments to readonly if the command word is literally readonly, and not if it is some
other word that expands to readonly. For example:

Shells that support array assignment as an extension generally
support this:
readonly x=(1 2 3); echo ${x[0]} # outputs 1
But generally do not support this:
r=readonly; $r x=(1 2 3); echo ${x[0]} # syntax error

EXAMPLES
readonly HOME

RATIONALE
Some historical shells preserve the readonly attribute across separate invocations. This volume of
POSIX.1-2024 allows this behavior, but does not require it.

The −p option allows portable access to the values that can be saved and then later restored
using, for example, a dot script. Also see the RATIONALE for export for a description of the no-
argument and −p output cases and a related example.

Read-only functions were considered, but they were omitted as not being historical practice or
particularly useful. Furthermore, functions must not be read-only across invocations to preclude
``spoofing’’ (spoofing is the term for the practice of creating a program that acts like a well-
known utility with the intent of subverting the real intent of the user) of administrative or
security-relevant (or security-conscious) shell scripts.

Attempts to set the readonly attribute on certain variables, such as PWD, may have surprising
results. Either readonly will reject the attempt, or the attempt will succeed but the shell will
continue to alter the contents of PWD during the cd utility, or the attempt will succeed and
render the cd utility inoperative (since it must not change directories if it cannot also update

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2549

83110

83111

83112

83113

83114

83115

83116

83117

83118

83119

83120

83121

83122

83123

83124

83125

83126

83127

83128

83129

83130

83131

83132

83133

83134

83135

83136

83137

83138

83139

83140

83141

83142

83143

83144

83145

83146

83147

83148

83149

83150

83151

83152

83153

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readonly Shell Command Language

PWD).

Some implementations extend the shell’s assignment syntax, for example to allow an array to be
populated with a single assignment, and in order for such an extension to be usable in
assignments specified as arguments to readonly these shells have readonly as a separate token in
their grammar. This standard only permits an extension of this nature when the input to the
shell would contain a syntax error according to the standard grammar. Note that although
readonly can be a separate token in the shell’s grammar, it cannot be a reserved word since
readonly is a candidate for alias substitution whereas reserved words are not (see Section 2.3.1).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.1.1, Section 2.15

XBD Section 12.2

CHANGE HISTORY

Issue 6
IEEE PASC Interpretation 1003.2 #203 is applied, clarifying the format when a variable is unset.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/7 is applied, adding the following text to
the end of the first paragraph of the DESCRIPTION: ``If the name of a variable is followed by
=word, then the value of that variable shall be set to word.’’. The reason for this change is that the
SYNOPSIS for readonly includes:

readonly name[=word]...

but the meaning of the optional ``=word’’ is never explained in the text.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0052 [960] is applied.

Issue 8
Austin Group Defect 351 is applied, requiring readonly to be a declaration utility.

Austin Group Defect 367 is applied, clarifying that the values of readonly variables cannot be
changed by subsequent use of the export, getopts, readonly, or read utilities, and changing the EXIT
STATUS, EXAMPLES and RATIONALE sections.

Austin Group Defect 1393 is applied, changing the APPLICATION USAGE and RATIONALE
sections.

2550 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83154

83155

83156

83157

83158

83159

83160

83161

83162

83163

83164

83165

83166

83167

83168

83169

83170

83171

83172

83173

83174

83175

83176

83177

83178

83179

83180

83181

83182

83183

83184

83185

83186

83187

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language return

NAME
return — return from a function or dot script

SYNOPSIS
return [n]

DESCRIPTION
The return utility shall cause the shell to stop executing the current function or dot script. If the
shell is not currently executing a function or dot script, the results are unspecified.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The exit status shall be n, if specified, except that the behavior is unspecified if n is not an
unsigned decimal integer or is greater than 255. If n is not specified, the result shall be as if n
were specified with the current value of the special parameter '?' (see Section 2.5.2), except that
if the return command would cause the end of execution of a trap action, the value for the special
parameter '?' that is considered ``current’’ shall be the value it had immediately preceding the
trap action.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2551

83188

83189

83190

83191

83192

83193

83194

83195

83196

83197

83198

83199

83200

83201

83202

83203

83204

83205

83206

83207

83208

83209

83210

83211

83212

83213

83214

83215

83216

83217

83218

83219

83220

83221

83222

83223

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

return Shell Command Language

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The behavior of return when not in a function or dot script differs between the System V shell
and the KornShell. In the System V shell this is an error, whereas in the KornShell, the effect is
the same as exit.

The results of returning a number greater than 255 are undefined because of differing practices
in the various historical implementations. Some shells AND out all but the low-order 8 bits;
others allow larger values, but not of unlimited size.

See the discussion of appropriate exit status values under exit .

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.5, Section 2.15, dot

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0044 [214] and XCU/TC1-2008/0045
[214] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0052 [960] is applied.

Issue 8
Austin Group Defect 1309 is applied, changing the EXIT STATUS section.

Austin Group Defect 1602 is applied, clarifying the behavior of return in a trap action.

2552 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83224

83225

83226

83227

83228

83229

83230

83231

83232

83233

83234

83235

83236

83237

83238

83239

83240

83241

83242

83243

83244

83245

83246

83247

83248

83249

83250

83251

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language set

NAME
set — set or unset options and positional parameters

SYNOPSIS
set [-abCefhmnuvx] [-o option] [argument...]

set [+abCefhmnuvx] [+o option] [argument...]

set -- [argument...]

set -o

set +o

DESCRIPTION
If no options or arguments are specified, set shall write the names and values of all shell variables
in the collation sequence of the current locale. Each name shall start on a separate line, using the
format:

"%s=%s\n", <name>, <value>

The value string shall be written with appropriate quoting; see the description of shell quoting in
Section 2.2. The output shall be suitable for reinput to the shell, setting or resetting, as far as
possible, the variables that are currently set; read-only variables cannot be reset.

When options are specified, they shall set or unset attributes of the shell, as described below.
When arguments are specified, they cause positional parameters to be set or unset, as described
below. Setting or unsetting attributes and positional parameters are not necessarily related
actions, but they can be combined in a single invocation of set.

The set special built-in shall support XBD Section 12.2 except that options can be specified with
either a leading <hyphen-minus> (meaning enable the option) or <plus-sign> (meaning disable
it) unless otherwise specified.

Implementations shall support the options in the following list in both their <hyphen-minus>
and <plus-sign> forms. These options can also be specified as options to sh.

−a Set the export attribute for all variable assignments. When this option is on, whenever a
value is assigned to a variable in the current shell execution environment, the export
attribute shall be set for the variable. This applies to all forms of assignment, including
those made as a side-effect of variable expansions or arithmetic expansions, and those made
as a result of the operation of the cd, getopts, or read utilities.

Note: As discussed in Section 2.9.1, not all variable assignments happen in the current execution
environment. When an assignment happens in a separate execution environment the
export attribute is still set for the variable, but that does not affect the current execution
environment.

−b This option shall be supported if the implementation supports the User Portability Utilities
option. When job control and −b are both enabled, the shell shall write asynchronous
notifications of background job completions (including termination by a signal), and may
write asynchronous notifications of background job suspensions. See Section 2.11 for
details. When job control is disabled, the −b option shall have no effect. Asynchronous
notification shall not be enabled by default.

−C (Uppercase C.) Prevent existing regular files from being overwritten by the shell’s '>'
redirection operator (see Section 2.7.2); the ">|" redirection operator shall override this
noclobber option for an individual file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2553

83252

83253

83254

83255

83256

83257

83258

83259

83260

83261

83262

83263

83264

83265

83266

83267

83268

83269

83270

83271

83272

83273

83274

83275

83276

83277

83278

83279

83280

83281

83282

83283

83284

83285

83286

83287

83288

83289

83290

83291

83292

83293

83294

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

set Shell Command Language

−e When this option is on, when any command fails (for any of the reasons listed in Section
2.8.1 or by returning an exit status greater than zero), the shell immediately shall exit, as if
by executing the exit special built-in utility with no arguments, with the following
exceptions:

1. The failure of any individual command in a multi-command pipeline, or of any
subshell environments in which command substitution was performed during word
expansion, shall not cause the shell to exit. Only the failure of the pipeline itself shall
be considered.

2. The −e setting shall be ignored when executing the compound list following the
while, until, if, or elif reserved word, a pipeline beginning with the ! reserved word,
or any command of an AND-OR list other than the last.

3. If the exit status of a compound command other than a subshell command was the
result of a failure while −e was being ignored, then −e shall not apply to this
command.

This requirement applies to the shell environment and each subshell environment
separately. For example, in:

set -e; (false; echo one) | cat; echo two

the false command causes the subshell to exit without executing echo one; however, echo
two is executed because the exit status of the pipeline (false; echo one) | cat is
zero.

In

set -e; echo $(false; echo one) two

the false command causes the subshell in which the command substitution is performed to
exit without executing echo one; the exit status of the subshell is ignored and the shell
then executes the word-expanded command echo two.

−f The shell shall disable pathname expansion.

OB −h Setting this option may speed up PA TH searches (see XBD Chapter 8). This option may be
enabled by default.

−m This option shall be supported if the implementation supports the User Portability Utilities
option. When this option is enabled, the shell shall perform job control actions as described
in Section 2.11. This option shall be enabled by default for interactive shells.

−n The shell shall read commands but does not execute them; this can be used to check for
shell script syntax errors. Interactive shells and subshells of interactive shells, recursively,
may ignore this option.

−o Write the current settings of the options to standard output in an unspecified format.

+o Write the current option settings to standard output in a format that is suitable for reinput
to the shell as commands that achieve the same options settings.

−o option
Set various options, many of which shall be equivalent to the single option letters. The
following values of option shall be supported:

allexport Equivalent to −a.

2554 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83295

83296

83297

83298

83299

83300

83301

83302

83303

83304

83305

83306

83307

83308

83309

83310

83311

83312

83313

83314

83315

83316

83317

83318

83319

83320

83321

83322

83323

83324

83325

83326

83327

83328

83329

83330

83331

83332

83333

83334

83335

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language set

errexit Equivalent to −e.

ignoreeof Prevent an interactive shell from exiting on end-of-file. This setting prevents
accidental logouts when <control>-D is entered. A user shall explicitly exit to
leave the interactive shell. This option shall be supported if the system
supports the User Portability Utilities option.

monitor Equivalent to −m. This option shall be supported if the system supports the
User Portability Utilities option.

noclobber Equivalent to −C (uppercase C).

noglob Equivalent to −f.

noexec Equivalent to −n.

OB nolog Prevent the entry of function definitions into the command history; see
Command History List. This option may have no effect; it is kept for
compatibility with previous versions of the standard. This option shall be
supported if the system supports the User Portability Utilities option.

notify Equivalent to −b.

nounset Equivalent to −u.

pipefail Derive the exit status of a pipeline from the exit statuses of all of the
commands in the pipeline, not just the last (rightmost) command, as described
in Section 2.9.2.

verbose Equivalent to −v.

vi Allow shell command line editing using the built-in vi editor. Enabling vi
mode shall disable any other command line editing mode provided as an
implementation extension. This option shall be supported if the system
supports the User Portability Utilities option.

It need not be possible to set vi mode on for certain block-mode terminals.

xtrace Equivalent to −x.

−u When the shell tries to expand, in a parameter expansion or an arithmetic expansion, an
unset parameter other than the '@' and '*' special parameters, it shall write a message to
standard error and the expansion shall fail with the consequences specified in Section 2.8.1.

−v The shell shall write its input to standard error as it is read.

−x The shell shall write to standard error a trace for each command after it expands the
command and before it executes it. It is unspecified whether the command that turns
tracing off is traced.

The default for all these options shall be off (unset) unless stated otherwise in the description of
the option or unless the shell was invoked with them on; see sh.

The remaining arguments shall be assigned in order to the positional parameters. The special
parameter '#' shall be set to reflect the number of positional parameters. All positional
parameters shall be unset before any new values are assigned.

If the first argument is '−', the results are unspecified.

The special argument "--" immediately following the set command name can be used to
delimit the arguments if the first argument begins with '+' or '−', or to prevent inadvertent
listing of all shell variables when there are no arguments. The command set − − without argument

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2555

83336

83337

83338

83339

83340

83341

83342

83343

83344

83345

83346

83347

83348

83349

83350

83351

83352

83353

83354

83355

83356

83357

83358

83359

83360

83361

83362

83363

83364

83365

83366

83367

83368

83369

83370

83371

83372

83373

83374

83375

83376

83377

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

set Shell Command Language

shall unset all positional parameters and set the special parameter '#' to zero.

OPTIONS
See the DESCRIPTION.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 Successful completion.

>0 An invalid option was specified, or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Application writers should avoid relying on set −e within functions. For example, in the
following script:

set -e
start() {

some_server
echo some_server started successfully

}
start || echo >&2 some_server failed

the −e setting is ignored within the function body (because the function is a command in an
AND-OR list other than the last). Therefore, if some_server fails, the function carries on to
echo "some_server started successfully", and the exit status of the function is zero
(which means "some_server failed" is not output).

Use of set −n causes the shell to parse the rest of the script without executing any commands,
meaning that set +n cannot be used to undo the effect. Syntax checking is more commonly done
via sh -n script_name.

2556 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83378

83379

83380

83381

83382

83383

83384

83385

83386

83387

83388

83389

83390

83391

83392

83393

83394

83395

83396

83397

83398

83399

83400

83401

83402

83403

83404

83405

83406

83407

83408

83409

83410

83411

83412

83413

83414

83415

83416

83417

83418

83419

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language set

EXAMPLES
Write out all variables and their values:

set

Set $1, $2, and $3 and set "$#" to 3:

set c a b

Turn on the −x and −v options:

set -xv

Unset all positional parameters:

set --

Set $1 to the value of x, even if it begins with '−' or '+':

set -- "$x"

Set the positional parameters to the expansion of x, even if x expands with a leading '−' or '+':

set -- $x

RATIONALE
The set − − form is listed specifically in the SYNOPSIS even though this usage is implied by the
Utility Syntax Guidelines. The explanation of this feature removes any ambiguity about whether
the set − − form might be misinterpreted as being equivalent to set without any options or
arguments. The functionality of this form has been adopted from the KornShell. In System V, set
− − only unsets parameters if there is at least one argument; the only way to unset all parameters
is to use shift. Using the KornShell version should not affect System V scripts because there
should be no reason to issue it without arguments deliberately; if it were issued as, for example:

set -- "$@"

and there were in fact no arguments resulting from "$@", unsetting the parameters would have
no result.

The set + form in early proposals was omitted as being an unnecessary duplication of set alone
and not widespread historical practice.

The noclobber option was changed to allow set −C as well as the set −o noclobber option. The
single-letter version was added so that the historical "$-" paradigm would not be broken; see
Section 2.5.2.

The description of the −e option is intended to match the behavior of the 1988 version of the
KornShell.

The −h option is related to command name hashing. See hash . The normative description is
deliberately vague because the way this option works varies between shell implementations.

Earlier versions of this standard specified −h as a way to locate and remember utilities to be
invoked by functions as those functions are defined (the utilities are normally located when the
function is executed). However, this did not match existing practice in most shells.

The following set options were omitted intentionally with the following rationale:

−k The −k option was originally added by the author of the Bourne shell to make it easier for
users of pre-release versions of the shell. In early versions of the Bourne shell the construct
set name=value had to be used to assign values to shell variables. The problem with −k is
that the behavior affects parsing, virtually precluding writing any compilers. To explain the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2557

83420

83421

83422

83423

83424

83425

83426

83427

83428

83429

83430

83431

83432

83433

83434

83435

83436

83437

83438

83439

83440

83441

83442

83443

83444

83445

83446

83447

83448

83449

83450

83451

83452

83453

83454

83455

83456

83457

83458

83459

83460

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

set Shell Command Language

behavior of −k, it is necessary to describe the parsing algorithm, which is implementation-
defined. For example:

set -k; echo name=value

and:

set -k
echo name=value

behave differently. The interaction with functions is even more complex. What is more, the
−k option is never needed, since the command line could have been reordered.

−t The −t option is hard to specify and almost never used. The only known use could be done
with here-documents. Moreover, the behavior with ksh and sh differs. The reference page
says that it exits after reading and executing one command. What is one command? If the
input is date;date, sh executes both date commands while ksh does only the first.

Consideration was given to rewriting set to simplify its confusing syntax. A specific suggestion
was that the unset utility should be used to unset options instead of using the non-getopt()-able
+option syntax. However, the conclusion was reached that the historical practice of using +option
was satisfactory and that there was no compelling reason to modify such widespread historical
practice.

The −o option was adopted from the KornShell to address user needs. In addition to its
generally friendly interface, −o is needed to provide the vi command line editing mode, for
which historical practice yields no single-letter option name. (Although it might have been
possible to invent such a letter, it was recognized that other editing modes would be developed
and −o provides ample name space for describing such extensions.)

Historical implementations are inconsistent in the format used for −o option status reporting.
The +o format without an option-argument was added to allow portable access to the options
that can be saved and then later restored using, for instance, a dot script.

Historically, sh did trace the command set +x, but ksh did not.

The ignoreeof setting prevents accidental logouts when the end-of-file character (typically
<control>-D) is entered. A user shall explicitly exit to leave the interactive shell.

The set −m option was added to apply only to the UPE because it applies primarily to interactive
use, not shell script applications.

The ability to do asynchronous notification became available in the 1988 version of the
KornShell. To have it occur, the user had to issue the command:

trap "jobs -n" CLD

The C shell provides two different levels of an asynchronous notification capability. The
environment variable notify is analogous to what is done in set −b or set −o notify. When set, it
notifies the user immediately of background job completions. When unset, this capability is
turned off.

The other notification ability comes through the built-in utility notify. The syntax is:

notify [%job ...]

By issuing notify with no operands, it causes the C shell to notify the user asynchronously when
the state of the current job changes. If given operands, notify asynchronously informs the user of
changes in the states of the specified jobs.

To add asynchronous notification to the POSIX shell, neither the KornShell extensions to trap,

2558 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83461

83462

83463

83464

83465

83466

83467

83468

83469

83470

83471

83472

83473

83474

83475

83476

83477

83478

83479

83480

83481

83482

83483

83484

83485

83486

83487

83488

83489

83490

83491

83492

83493

83494

83495

83496

83497

83498

83499

83500

83501

83502

83503

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language set

nor the C shell notify environment variable seemed appropriate (notify is not a proper POSIX
environment variable name).

The set −b option was selected as a compromise.

The notify built-in was considered to have more functionality than was required for simple
asynchronous notification.

Historically, some shells applied the −u option to all parameters including $@ and $*. The
standard developers felt that this was a misfeature since it is normal and common for $@ and $*
to be used in shell scripts regardless of whether they were passed any arguments. Treating these
uses as an error when no arguments are passed reduces the value of −u for its intended purpose
of finding spelling mistakes in variable names and uses of unset positional parameters.

FUTURE DIRECTIONS
A future version of this standard may remove the −o nolog option.

SEE ALSO
Section 2.15, hash

XBD Section 4.26, Section 12.2

CHANGE HISTORY

Issue 6
The obsolescent set command name followed by '−' has been removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The nolog option is added to set −o.

IEEE PASC Interpretation 1003.2 #167 is applied, clarifying that the options default also takes
into account the description of the option.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/8 is applied, changing the square
brackets in the example in RATIONALE to be in bold, which is the typeface used for optional
items.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if the first
argument is '−'.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

XSI shading is removed from the −h functionality.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0046 [52], XCU/TC1-2008/0047
[155,280], XCU/TC1-2008/0048 [52], XCU/TC1-2008/0049 [52], and XCU/TC1-2008/0050
[155,430] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0053 [584], XCU/TC2-2008/0054
[717], XCU/TC2-2008/0055 [717], and XCU/TC2-2008/0056 [960] are applied.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2559

83504

83505

83506

83507

83508

83509

83510

83511

83512

83513

83514

83515

83516

83517

83518

83519

83520

83521

83522

83523

83524

83525

83526

83527

83528

83529

83530

83531

83532

83533

83534

83535

83536

83537

83538

83539

83540

83541

83542

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

set Shell Command Language

Issue 8
Austin Group Defect 559 is applied, changing the description of the −u option.

Austin Group Defect 789 is applied, adding −o pipefail.

Austin Group Defect 981 is applied, changing the description of the −o nolog option and the
FUTURE DIRECTIONS section.

Austin Group Defects 1009 and 1555 are applied, changing the description of the −a option.

Austin Group Defect 1016 is applied, changing the description of the −C option.

Austin Group Defect 1055 is applied, adding a paragraph about the −n option to the
APPLICATION USAGE section.

Austin Group Defect 1063 is applied, changing the description of the −h option.

Austin Group Defect 1150 is applied, changing the description of the −e option.

Austin Group Defect 1207 is applied, clarifying which option-arguments of the −o option are
related to the User Portability Utilities option.

Austin Group Defect 1254 is applied, changing the descriptions of the −b and −m options.

Austin Group Defect 1384 is applied, allowing subshells of interactive shells to ignore the −n
option.

2560 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83543

83544

83545

83546

83547

83548

83549

83550

83551

83552

83553

83554

83555

83556

83557

83558

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language shift

NAME
shift — shift positional parameters

SYNOPSIS
shift [n]

DESCRIPTION
The positional parameters shall be shifted. Positional parameter 1 shall be assigned the value of
parameter (1+n), parameter 2 shall be assigned the value of parameter (2+n), and so on. The
parameters represented by the numbers "$#" down to "$#-n+1" shall be unset, and the
parameter '#' is updated to reflect the new number of positional parameters.

The value n shall be an unsigned decimal integer less than or equal to the value of the special
parameter '#'. If n is not given, it shall be assumed to be 1. If n is 0, the positional and special
parameters are not changed.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages and the warning message
specified in EXIT STATUS.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If the n operand is invalid or is greater than "$#", this may be treated as an error and a non-
interactive shell may exit; if the shell does not exit in this case, a non-zero exit status shall be
returned and a warning message shall be written to standard error. Otherwise, zero shall be
returned.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2561

83559

83560

83561

83562

83563

83564

83565

83566

83567

83568

83569

83570

83571

83572

83573

83574

83575

83576

83577

83578

83579

83580

83581

83582

83583

83584

83585

83586

83587

83588

83589

83590

83591

83592

83593

83594

83595

83596

83597

83598

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

shift Shell Command Language

APPLICATION USAGE
None.

EXAMPLES
$ set a b c d e
$ shift 2
$ echo $*
c d e

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0051 [459] is applied.

Issue 8
Austin Group Defect 1265 is applied, updating the EXIT STATUS and STDERR sections to align
with the changes made to Section 2.8.1 between Issue 6 and Issue 7.

2562 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83599

83600

83601

83602

83603

83604

83605

83606

83607

83608

83609

83610

83611

83612

83613

83614

83615

83616

83617

83618

83619

83620

83621

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language times

NAME
times — write process times

SYNOPSIS
times

DESCRIPTION
The times utility shall write the accumulated user and system times for the shell and for all of its
child processes, in the following POSIX locale format:

"%dm%fs %dm%fs\n%dm%fs %dm%fs\n", <shell user minutes>,
<shell user seconds>, <shell system minutes>,
<shell system seconds>, <children user minutes>,
<children user seconds>, <children system minutes>,
<children system seconds>

The four pairs of times shall correspond to the members of the <sys/times.h> tms structure
(defined in XBD Chapter 14) as returned by times(): tms_utime, tms_stime, tms_cutime, and
tms_cstime, respectively.

OPTIONS
None.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2563

83622

83623

83624

83625

83626

83627

83628

83629

83630

83631

83632

83633

83634

83635

83636

83637

83638

83639

83640

83641

83642

83643

83644

83645

83646

83647

83648

83649

83650

83651

83652

83653

83654

83655

83656

83657

83658

83659

83660

83661

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

times Shell Command Language

APPLICATION USAGE
None.

EXAMPLES
$ times
0m0.43s 0m1.11s
8m44.18s 1m43.23s

RATIONALE
The times special built-in from the Single UNIX Specification is now required for all conforming
shells.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15

XBD <sys/times.h>

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/9 is applied, changing text in the
DESCRIPTION from: ``Write the accumulated user and system times for the shell and for all of
its child processes ...’’ to: ``The times utility shall write the accumulated user and system times for
the shell and for all of its child processes ...’’.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0056 [960] is applied.

2564 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83662

83663

83664

83665

83666

83667

83668

83669

83670

83671

83672

83673

83674

83675

83676

83677

83678

83679

83680

83681

83682

83683

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language trap

NAME
trap — trap signals

SYNOPSIS
trap n [condition...]

trap -p [condition...]

trap [action condition...]

DESCRIPTION
If the −p option is not specified and the first operand is an unsigned decimal integer, the shell
shall treat all operands as conditions, and shall reset each condition to the default value.
Otherwise, if the −p option is not specified and there are operands, the first operand shall be
treated as an action and the remaining as conditions.

If action is '−', the shell shall reset each condition to the default value. If action is null (""), the
shell shall ignore each specified condition if it arises. Otherwise, the argument action shall be read
and executed by the shell when one of the corresponding conditions arises. The action of trap
shall override a previous action (either default action or one explicitly set). The value of "$?"
after the trap action completes shall be the value it had before the trap action was executed.

The condition can be EXIT, 0 (equivalent to EXIT), or a signal specified using a symbolic name,
without the SIG prefix, as listed in the tables of signal names in the <signal.h> header defined in
XBD Chapter 14; for example, HUP, INT, QUIT, TERM. Implementations may permit names
with the SIG prefix or ignore case in signal names as an extension. Setting a trap for SIGKILL or
SIGSTOP produces undefined results.

The EXIT condition shall occur when the shell terminates normally (exits), and may occur when
the shell terminates abnormally as a result of delivery of a signal (other than SIGKILL) whose
trap action is the default.

The environment in which the shell executes a trap action on EXIT shall be identical to the
environment immediately after the last command executed before the trap action on EXIT was
executed.

If action is neither '-' nor the empty string, then each time a matching condition arises, the action
shall be executed in a manner equivalent to:

eval action

Signals that were ignored on entry to a non-interactive shell cannot be trapped or reset, although
no error need be reported when attempting to do so. An interactive shell may reset or catch
signals ignored on entry. Traps shall remain in place for a given shell until explicitly changed
with another trap command.

When a subshell is entered, traps that are not being ignored shall be set to the default actions,
except in the case of a command substitution containing only a single trap command, when the
traps need not be altered. Implementations may check for this case using only lexical analysis;
for example, if `trap` and $(trap --) do not alter the traps in the subshell, cases such as
assigning var=trap and then using $($var) may still alter them. This does not imply that the
trap command cannot be used within the subshell to set new traps.

The trap command with no operands shall write to standard output a list of commands
associated with each of a set of conditions; if the −p option is not specified, this set shall contain
only the conditions that are not in the default state (including signals that were ignored on entry
to a non-interactive shell); if the −p option is specified, the set shall contain all conditions, except
that it is unspecified whether conditions corresponding to the SIGKILL and SIGSTOP signals are
included in the set. If the command is executed in a subshell, the implementation does not

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2565

83684

83685

83686

83687

83688

83689

83690

83691

83692

83693

83694

83695

83696

83697

83698

83699

83700

83701

83702

83703

83704

83705

83706

83707

83708

83709

83710

83711

83712

83713

83714

83715

83716

83717

83718

83719

83720

83721

83722

83723

83724

83725

83726

83727

83728

83729

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

trap Shell Command Language

perform the optional check described above for a command substitution containing only a single
trap command, and no trap commands with operands have been executed since entry to the
subshell, the list shall contain the commands that were associated with each condition
immediately before the subshell environment was entered. Otherwise, the list shall contain the
commands currently associated with each condition. The format shall be:

"trap -- %s %s ...\n", <action>, <condition> ...

The shell shall format the output, including the proper use of quoting, so that it is suitable for
reinput to the shell as commands that achieve the same trapping results for the set of conditions
included in the output, except for signals that were ignored on entry to the shell as described
above. If this set includes conditions corresponding to the SIGKILL and SIGSTOP signals, the
shell shall accept them when the output is reinput to the shell (where accepting them means
they do not cause a non-zero exit status, a diagnostic message, or undefined behavior). For
example:

save_traps=$(trap -p)

...
eval "$save_traps"

or:

save_traps=$(trap -p INT QUIT)
trap "some command" INT QUIT

...

eval "$save_traps"

XSI XSI-conformant systems also allow numeric signal numbers for the conditions corresponding to
the following signal names:

1 SIGHUP

2 SIGINT

3 SIGQUIT

6 SIGABRT

9 SIGKILL

14 SIGALRM

15 SIGTERM

XSI If an invalid signal name or number is specified, the trap utility shall write a warning message
to standard error.

The trap special built-in shall conform to XBD Section 12.2.

OPTIONS
The following option shall be supported:

−p Write to standard output a list of commands associated with each condition operand. The
behavior when there are no operands is specified in the DESCRIPTION section.

The shell shall format the output, including the proper use of quoting, so that it is suitable
for reinput to the shell as commands that achieve the same trapping results for the specified
set of conditions. If a condition operand is a condition corresponding to the SIGKILL or

2566 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83730

83731

83732

83733

83734

83735

83736

83737

83738

83739

83740

83741

83742

83743

83744

83745

83746

83747

83748

83749

83750

83751

83752

83753

83754

83755

83756

83757

83758

83759

83760

83761

83762

83763

83764

83765

83766

83767

83768

83769

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language trap

SIGSTOP signal, and trap −p without any operands would not include it in the set of
conditions for which it writes output, the behavior is undefined if the output is reinput to
the shell.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages and warning messages about

XSI invalid signal names or numbers.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
XSI If the trap name or number is invalid, a non-zero exit status shall be returned; otherwise, zero
XSI shall be returned. For both interactive and non-interactive shells, invalid signal names or

numbers shall not be considered an error and shall not cause the shell to abort.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
When the −p option is not used, since trap with no operands does not output commands to
restore traps that are currently set to default, these need to be restored separately. The
RATIONALE section shows examples and describes their drawbacks.

EXAMPLES
Write out a list of all traps and actions:

trap

Set a trap so the logout utility in the directory referred to by the HOME environment variable
executes when the shell terminates:

trap '"$HOME"/logout' EXIT

or:

trap '"$HOME"/logout' 0

Unset traps on INT, QUIT, TERM, and EXIT:

trap - INT QUIT TERM EXIT

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2567

83770

83771

83772

83773

83774

83775

83776

83777

83778

83779

83780

83781

83782

83783

83784

83785

83786

83787

83788

83789

83790

83791

83792

83793

83794

83795

83796

83797

83798

83799

83800

83801

83802

83803

83804

83805

83806

83807

83808

83809

83810

83811

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

trap Shell Command Language

RATIONALE
Implementations may permit lowercase signal names as an extension. Implementations may
also accept the names with the SIG prefix; no known historical shell does so. The trap and kill
utilities in this volume of POSIX.1-2024 are now consistent in their omission of the SIG prefix for
signal names. Some kill implementations do not allow the prefix, and kill −l lists the signals
without prefixes.

Trapping SIGKILL or SIGSTOP is syntactically accepted by some historical implementations, but
it has no effect. Portable POSIX applications cannot attempt to trap these signals.

The output format is not historical practice. Since the output of historical trap commands is not
portable (because numeric signal values are not portable) and had to change to become so, an
opportunity was taken to format the output in a way that a shell script could use to save and
then later reuse a trap if it wanted.

The KornShell uses an ERR trap that is triggered whenever set −e would cause an exit. This is
allowable as an extension, but was not mandated, as other shells have not used it.

The text about the environment for the EXIT trap invalidates the behavior of some historical
versions of interactive shells which, for example, close the standard input before executing a
trap on 0. For example, in some historical interactive shell sessions the following trap on 0
would always print "--":

trap 'read foo; echo "-$foo-"' 0

The command:

trap 'eval " $cmd"' 0

causes the contents of the shell variable cmd to be executed as a command when the shell exits.
Using:

trap '$cmd' 0

does not work correctly if cmd contains any special characters such as quoting or redirections.
Using:

trap " $cmd" 0

also works (the leading <space> character protects against unlikely cases where cmd is a decimal
integer or begins with '−'), but it expands the cmd variable when the trap command is executed,
not when the exit action is executed.

The −p option was added because without it the method used to restore traps needs to include
special handling of traps that are set to default when trap with no operands is used to save the
current traps. One example is:

save_traps=$(trap)
trap "some command" INT QUIT
save_traps="trap - INT QUIT; $save_traps"

...

eval "$save_traps"

but this method relies on hard-coding the commands to reset the traps that are being set. It also
has a race condition if INT or QUIT was not set to default when saved, since it first sets them to
default and then restores the saved traps. A more general approach would be:

save_traps=$(trap)
for sig in EXIT $(kill -l)

2568 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83812

83813

83814

83815

83816

83817

83818

83819

83820

83821

83822

83823

83824

83825

83826

83827

83828

83829

83830

83831

83832

83833

83834

83835

83836

83837

83838

83839

83840

83841

83842

83843

83844

83845

83846

83847

83848

83849

83850

83851

83852

83853

83854

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language trap

do
case "$sig" in
SIGKILL | KILL | sigkill | kill | SIGSTOP | STOP | sigstop | stop)
;;
*) trap - $sig
;;
esac

done
eval "$save_traps"

This has the same race condition since it first sets all traps (that can be set) to default and then
restores those that were not previously set to default.

Historically, some shells behaved the same with and without −p when there are no operands.
This standard requires that the set of conditions differs between the two cases: with −p it is all
conditions (except possibly SIGKILL and SIGSTOP); without −p it is only the conditions that are
not in the default state.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15

XBD Section 12.2, <signal.h>

CHANGE HISTORY

Issue 6
XSI-conforming implementations provide the mapping of signal names to numbers given above
(previously this had been marked obsolescent). Other implementations need not provide this
optional mapping.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Austin Group Interpretation 1003.1-2001 #116 is applied.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0052 [53,268,440],
XCU/TC1-2008/0053 [53,268,440], XCU/TC1-2008/0054 [163], XCU/TC1-2008/0055 [163], and
XCU/TC1-2008/0056 [163] are applied.

Issue 8
Austin Group Defect 621 is applied, clarifying when the EXIT condition occurs.

Austin Group Defect 1029 is applied, clarifying the execution of trap actions.

Austin Group Defects 1211 and 1212 are applied, adding the −p option and clarifying that, when
−p is not specified, the output of trap with no operands does not list conditions that are in the
default state.

Austin Group Defect 1265 is applied, updating the DESCRIPTION, STDERR and EXIT STATUS
sections to align with the changes made to Section 2.8.1 between Issue 6 and Issue 7.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2569

83855

83856

83857

83858

83859

83860

83861

83862

83863

83864

83865

83866

83867

83868

83869

83870

83871

83872

83873

83874

83875

83876

83877

83878

83879

83880

83881

83882

83883

83884

83885

83886

83887

83888

83889

83890

83891

83892

83893

83894

83895

83896

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

trap Shell Command Language

Austin Group Defect 1285 is applied, inserting a blank line between the two SYNOPSIS lines.

2570 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83897

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language unset

NAME
unset — unset values and attributes of variables and functions

SYNOPSIS
unset [-fv] name...

DESCRIPTION
The unset utility shall unset each variable or function definition specified by name that does not
have the readonly attribute and remove any attributes other than readonly that have been given to
name (see Section 2.15 export and readonly).

If −v is specified, name refers to a variable name and the shell shall unset it and remove it from
the environment. Read-only variables cannot be unset.

If −f is specified, name refers to a function and the shell shall unset the function definition.

If neither −f nor −v is specified, name refers to a variable; if a variable by that name does not
exist, it is unspecified whether a function by that name, if any, shall be unset.

Unsetting a variable or function that was not previously set shall not be considered an error and
does not cause the shell to abort.

The unset special built-in shall support XBD Section 12.2.

Note that:

VARIABLE=

is not equivalent to an unset of VARIABLE; in the example, VARIABLE is set to "". Also, the
variables that can be unset should not be misinterpreted to include the special parameters (see
Section 2.5.2).

OPTIONS
See the DESCRIPTION.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2571

83898

83899

83900

83901

83902

83903

83904

83905

83906

83907

83908

83909

83910

83911

83912

83913

83914

83915

83916

83917

83918

83919

83920

83921

83922

83923

83924

83925

83926

83927

83928

83929

83930

83931

83932

83933

83934

83935

83936

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unset Shell Command Language

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 All name operands were successfully unset.

>0 At least one name could not be unset.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
Unset VISUAL variable:

unset -v VISUAL

Unset the functions foo and bar:

unset -f foo bar

RATIONALE
Consideration was given to omitting the −f option in favor of an unfunction utility, but the
standard developers decided to retain historical practice.

The −v option was introduced because System V historically used one name space for both
variables and functions. When unset is used without options, System V historically unset either a
function or a variable, and there was no confusion about which one was intended. A portable
POSIX application can use unset without an option to unset a variable, but not a function; the −f
option must be used.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15

XBD Section 12.2

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1075 is applied, clarifying that unset removes attributes, other than
readonly, from the variables it unsets.

2572 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83937

83938

83939

83940

83941

83942

83943

83944

83945

83946

83947

83948

83949

83950

83951

83952

83953

83954

83955

83956

83957

83958

83959

83960

83961

83962

83963

83964

83965

83966

83967

83968

83969

83970

83971

83972

83973

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Chapter 3

Utilities

This chapter contains the definitions of the utilities, as follows:

• Mandatory utilities that are present on every conformant system

• Optional utilities that are present only on systems supporting the associated option; see
Section 1.8.1 (on page 7) for information on the options in this volume of POSIX.1-2024

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2573

83974

83975

83976

83977

83978

83979

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

admin Utilities

NAME
admin — create and administer SCCS files (DEVELOPMENT)

SYNOPSIS
XSI admin -i[name] [-n] [-a login] [-d flag] [-e login] [-f flag]

[-m mrlist] [-r rel] [-t[name] [-y[comment]] newfile

admin -n [-a login] [-d flag] [-e login] [-f flag] [-m mrlist]
[-t[name]] [-y[comment]] newfile...

admin [-a login] [-d flag] [-m mrlist] [-r rel] [-t[name]] file...

admin -h file...

admin -z file...

DESCRIPTION
The admin utility shall create new SCCS files or change parameters of existing ones. If a named
file does not exist, it shall be created, and its parameters shall be initialized according to the
specified options. Parameters not initialized by an option shall be assigned a default value. If a
named file does exist, parameters corresponding to specified options shall be changed, and other
parameters shall be left as is.

All SCCS filenames supplied by the application shall be of the form s.filename. New SCCS files
shall be given read-only permission mode. Write permission in the parent directory is required
to create a file. All writing done by admin shall be to a temporary x-file, named x.filename (see get)
created with read-only mode if admin is creating a new SCCS file, or created with the same mode
as that of the SCCS file if the file already exists. After successful execution of admin, the SCCS file
shall be removed (if it exists), and the x-file shall be renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors occur.

The admin utility shall also use a transient lock file (named z.filename), which is used to prevent
simultaneous updates to the SCCS file; see get .

OPTIONS
The admin utility shall conform to XBD Section 12.2 (on page 215), except that the −i, −t, and −y
options have optional option-arguments. These optional option-arguments shall not be
presented as separate arguments. The following options are supported:

−n Create a new SCCS file. When −n is used without −i, the SCCS file shall be created
with control information but without any file data.

−i[name] Specify the name of a file from which the text for a new SCCS file shall be taken.
The text constitutes the first delta of the file (see the −r option for the delta
numbering scheme). If the −i option is used, but the name option-argument is
omitted, the text shall be obtained by reading the standard input. If this option is
omitted, the SCCS file shall be created with control information but without any
file data. The −i option implies the −n option.

−r SID Specify the SID of the initial delta to be inserted. This SID shall be a trunk SID; that
is, the branch and sequence numbers shall be zero or missing. The level number is
optional, and defaults to 1.

−t[name] Specify the name of a file from which descriptive text for the SCCS file shall be
taken. In the case of existing SCCS files (neither −i nor −n is specified):

2574 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

83980

83981

83982

83983

83984

83985

83986

83987

83988

83989

83990

83991

83992

83993

83994

83995

83996

83997

83998

83999

84000

84001

84002

84003

84004

84005

84006

84007

84008

84009

84010

84011

84012

84013

84014

84015

84016

84017

84018

84019

84020

84021

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities admin

• A −t option without a name option-argument shall cause the removal of
descriptive text (if any) currently in the SCCS file.

• A −t option with a name option-argument shall cause the text (if any) in the
named file to replace the descriptive text (if any) currently in the SCCS file.

−f flag Specify a flag, and, possibly, a value for the flag, to be placed in the SCCS file.
Several −f options may be supplied on a single admin command line.
Implementations shall recognize the following flags and associated values:

b Allow use of the −b option on a get command to create branch deltas.

cceil Specify the highest release (that is, ceiling), a number less than or equal to
9 999, which may be retrieved by a get command for editing. The default
value for an unspecified c flag shall be 9 999.

ffloor Specify the lowest release (that is, floor), a number greater than 0 but less
than 9 999, which may be retrieved by a get command for editing. The
default value for an unspecified f flag shall be 1.

dSID Specify the default delta number (SID) to be used by a get command.

istr Tr eat the ``No ID keywords’’ message issued by get or delta as a fatal error.
In the absence of this flag, the message is only a warning. The message is
issued if no SCCS identification keywords (see get) are found in the text
retrieved or stored in the SCCS file. If a value is supplied, the application
shall ensure that the keywords exactly match the given string; however,
the string shall contain a keyword, and no embedded <newline>
characters.

j Allow concurrent get commands for editing on the same SID of an SCCS
file. This allows multiple concurrent updates to the same version of the
SCCS file.

llist Specify a list of releases to which deltas can no longer be made (that is, get
−e against one of these locked releases fails). Conforming applications
shall use the following syntax to specify a list. Implementations may
accept additional forms as an extension:

<list> ::= a | <range-list>
<range-list> ::= <range> | <range-list>, <range>
<range> ::= <SID>

The character a in the list shall be equivalent to specifying all releases for
the named SCCS file. The non-terminal <SID> in range shall be the delta
number of an existing delta associated with the SCCS file.

n Cause delta to create a null delta in each of those releases (if any) being
skipped when a delta is made in a new release (for example, in making
delta 5.1 after delta 2.7, releases 3 and 4 are skipped). These null deltas
shall serve as anchor points so that branch deltas may later be created
from them. The absence of this flag shall cause skipped releases to be
nonexistent in the SCCS file, preventing branch deltas from being created
from them in the future. During the initial creation of an SCCS file, the n
flag may be ignored; that is, if the −r option is used to set the release
number of the initial SID to a value greater than 1, null deltas need not be
created for the ``skipped’’ releases.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2575

84022

84023

84024

84025

84026

84027

84028

84029

84030

84031

84032

84033

84034

84035

84036

84037

84038

84039

84040

84041

84042

84043

84044

84045

84046

84047

84048

84049

84050

84051

84052

84053

84054

84055

84056

84057

84058

84059

84060

84061

84062

84063

84064

84065

84066

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

admin Utilities

qtext Substitute user-definable text for all occurrences of the %Q% keyword in
the SCCS file text retrieved by get.

mmod Specify the module name of the SCCS file substituted for all occurrences
of the %M% keyword in the SCCS file text retrieved by get. If the m flag
is not specified, the value assigned shall be the name of the SCCS file with
the leading '.' removed.

ttype Specify the type of module in the SCCS file substituted for all occurrences
of the %Y% keyword in the SCCS file text retrieved by get.

vpgm Cause delta to prompt for modification request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an
MR number validation program. (If this flag is set when creating an SCCS
file, the application shall ensure that the m option is also used even if its
value is null.)

−d flag Remove (delete) the specified flag from an SCCS file. Several −d options may be
supplied on a single admin command. See the −f option for allowable flag names.
(The llist flag gives a list of releases to be unlocked. See the −f option for further
description of the l flag and the syntax of a list.)

−a login Specify a login name, or numerical group ID, to be added to the list of users who
may make deltas (changes) to the SCCS file. A group ID shall be equivalent to
specifying all login names common to that group ID. Several −a options may be
used on a single admin command line. As many logins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is empty, then anyone
may add deltas. If login or group ID is preceded by a '!', the users so specified
shall be denied permission to make deltas.

−e login Specify a login name, or numerical group ID, to be erased from the list of users
allowed to make deltas (changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to that group ID. Several −e
options may be used on a single admin command line.

−y[comment] Insert the comment text into the SCCS file as a comment for the initial delta in a
manner identical to that of delta. In the POSIX locale, omission of the −y option
shall result in a default comment line being inserted in the form:

"date and time created %s %s by %s", <date>, <time>, <login>

where <date> is expressed in the format of the date utility’s %y/%m/%d conversion
specification, <time> in the format of the date utility’s %T conversion specification
format, and <login> is the login name of the user creating the file.

−m mrlist Insert the list of modification request (MR) numbers into the SCCS file as the
reason for creating the initial delta in a manner identical to delta. The application
shall ensure that the v flag is set and the MR numbers are validated if the v flag has
a value (the name of an MR number validation program). A diagnostic message
shall be written if the v flag is not set or MR validation fails.

−h Check the structure of the SCCS file and compare the newly computed checksum
with the checksum that is stored in the SCCS file. If the newly computed checksum
does not match the checksum in the SCCS file, a diagnostic message shall be
written.

2576 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84067

84068

84069

84070

84071

84072

84073

84074

84075

84076

84077

84078

84079

84080

84081

84082

84083

84084

84085

84086

84087

84088

84089

84090

84091

84092

84093

84094

84095

84096

84097

84098

84099

84100

84101

84102

84103

84104

84105

84106

84107

84108

84109

84110

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities admin

−z Recompute the SCCS file checksum and store it in the first line of the SCCS file (see
the −h option above). Note that use of this option on a truly corrupted file may
prevent future detection of the corruption.

OPERANDS
The following operands shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the admin
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

newfile A pathname of an SCCS file to be created.

If exactly one file or newfile operand appears, and it is '−', the standard input shall be read; each
line of the standard input shall be taken to be the name of an SCCS file to be processed. Non-
SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only if −i is specified without an option-argument or
if a file or newfile operand is specified as '−'. If the first character of any standard input line is
<SOH> in the POSIX locale, the results are unspecified.

INPUT FILES
The existing SCCS files shall be text files of an unspecified format.

The application shall ensure that the file named by the −i option’s name option-argument shall
be a text file; if the first character of any line in this file is <SOH> in the POSIX locale, the results
are unspecified. If this file contains more than 99 999 lines, the number of lines recorded in the
header for this file shall be 99 999 for this delta.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of admin:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and the contents of the default −y
comment.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2577

84111

84112

84113

84114

84115

84116

84117

84118

84119

84120

84121

84122

84123

84124

84125

84126

84127

84128

84129

84130

84131

84132

84133

84134

84135

84136

84137

84138

84139

84140

84141

84142

84143

84144

84145

84146

84147

84148

84149

84150

84151

84152

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

admin Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Any SCCS files created shall be text files of an unspecified format. During processing of a file, a
locking z-file, as described in get (on page 2964), may be created and deleted.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
It is recommended that directories containing SCCS files be writable by the owner only, and that
SCCS files themselves be read-only. The mode of the directories should allow only the owner to
modify SCCS files contained in the directories. The mode of the SCCS files prevents any
modification at all except by SCCS commands.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
delta , get , prs , what

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements,
and to emphasize the term ``shall’’ for implementation requirements.

The grammar is updated.

The Open Group Base Resolution bwg2001-007 is applied, adding new text to the INPUT FILES
section warning that the maximum lines recorded in the file is 99 999.

The Open Group Base Resolution bwg2001-009 is applied, amending the description of the −h
option.

2578 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84153

84154

84155

84156

84157

84158

84159

84160

84161

84162

84163

84164

84165

84166

84167

84168

84169

84170

84171

84172

84173

84174

84175

84176

84177

84178

84179

84180

84181

84182

84183

84184

84185

84186

84187

84188

84189

84190

84191

84192

84193

84194

84195

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities admin

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to behave as follows:

a. Report an error if a utility is directed to display a pathname that contains any bytes that
have the encoded value of a <newline> character when <newline> is a terminator or
separator in the output format being used.

b. Disallow the creation of filenames containing any bytes that have the encoded value of a
<newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2579

84196

84197

84198

84199

84200

84201

84202

84203

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

alias Utilities

NAME
alias — define or display aliases

SYNOPSIS
alias [alias-name[=string]...]

DESCRIPTION
The alias utility shall create or redefine alias definitions or write the values of existing alias
definitions to standard output. An alias definition provides a string value that shall replace a
command name when it is encountered. For information on valid string values, and the
processing involved, see Section 2.3.1 (on page 2477).

An alias definition shall affect the current shell execution environment and the execution
environments of the subshells of the current shell. When used as specified by this volume of
POSIX.1-2024, the alias definition shall not affect the parent process of the current shell nor any
utility environment invoked by the shell; see Section 2.13 (on page 2522).

OPTIONS
None.

OPERANDS
The following operands shall be supported:

alias-name Write the alias definition to standard output.

alias-name=string
Assign the value of string to the alias alias-name.

If no operands are given, all alias definitions shall be written to standard output.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of alias:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

2580 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84204

84205

84206

84207

84208

84209

84210

84211

84212

84213

84214

84215

84216

84217

84218

84219

84220

84221

84222

84223

84224

84225

84226

84227

84228

84229

84230

84231

84232

84233

84234

84235

84236

84237

84238

84239

84240

84241

84242

84243

84244

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities alias

STDOUT
The format for displaying aliases (when no operands or only name operands are specified) shall
be:

"%s=%s\n", name, value

The value string shall be written with appropriate quoting so that it is suitable for reinput to the
shell. See the description of shell quoting in Section 2.2 (on page 2472).

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 One of the name operands specified did not have an alias definition, or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Care should be taken to avoid alias values that end with a character that could be treated as part
of an operator token, as it is unspecified whether the character that follows the alias name in the
input can be used as part of the same token (see Section 2.3.1, on page 2477). For example, with:

$ alias foo=’echo 0’
$ foo>&2

the shell can either pass the argument '0' to echo and redirect fd 1 to fd 2, or pass no arguments
to echo and redirect fd 0 to fd 2. Changing it to:

$ alias foo=’echo "0"’

avoids this problem. The alternative of adding a <space> after the '0' would also avoid the
problem, but in addition it would alter the way the alias works, as described in Section 2.3.1 (on
page 2477).

Likewise, given:

$ alias foo=’some_command &’
$ foo&

the shell may combine the two '&' characters into an && (and) operator. Since the alias cannot
pass arguments to some_command and thus can be expected to be invoked without arguments,
adding a <space> after the '&' would be an acceptable way to prevent this. Alternatively, the
alias could be specified as a grouping command:

$ alias foo=’{ some_command & }’

Problems can occur for tokens other than operators as well, if the alias is used in unusual ways.
For example, with:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2581

84245

84246

84247

84248

84249

84250

84251

84252

84253

84254

84255

84256

84257

84258

84259

84260

84261

84262

84263

84264

84265

84266

84267

84268

84269

84270

84271

84272

84273

84274

84275

84276

84277

84278

84279

84280

84281

84282

84283

84284

84285

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

alias Utilities

$ alias foo=’echo $’
$ foo((123))

some shells combine the '$' and the "((123))" to form an arithmetic expansion, but others
do not (resulting in a syntax error).

EXAMPLES

1. Create a short alias for a commonly used ls command:

alias lf="ls -CF"

2. Create a simple ``redo’’ command to repeat previous entries in the command history file:

alias r='fc -s'

3. Use 1K units for du:

alias du=du\ -k

4. Set up nohup so that it can deal with an argument that is itself an alias name:

alias nohup="nohup "

5. Add the −F option to interactive uses of ls, even when executed as xargs ls or
xargs -0 ls:

alias ls='ls -F'
alias xargs='xargs '
alias -- -0='-0 '
find . [...] -print | xargs ls # breaks on filenames with \n

(two aliases expanded)
find . [...] -print0 | xargs -0 ls # minimizes \n issues (three

aliases expanded)

RATIONALE
The alias description is based on historical KornShell implementations. Known differences exist
between that and the C shell. The KornShell version was adopted to be consistent with all the
other KornShell features in this volume of POSIX.1-2024, such as command line editing.

Since alias affects the current shell execution environment, it is generally provided as a shell
regular built-in.

Historical versions of the KornShell have allowed aliases to be exported to scripts that are
invoked by the same shell. This is triggered by the alias −x flag; it is allowed by this volume of
POSIX.1-2024 only when an explicit extension such as −x is used. The standard developers
considered that aliases were of use primarily to interactive users and that they should normally
not affect shell scripts called by those users; functions are available to such scripts.

Historical versions of the KornShell had not written aliases in a quoted manner suitable for
reentry to the shell, but this volume of POSIX.1-2024 has made this a requirement for all similar
output. Therefore, consistency was chosen over this detail of historical practice.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.5 (on page 2511)

XBD Chapter 8 (on page 167)

2582 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84286

84287

84288

84289

84290

84291

84292

84293

84294

84295

84296

84297

84298

84299

84300

84301

84302

84303

84304

84305

84306

84307

84308

84309

84310

84311

84312

84313

84314

84315

84316

84317

84318

84319

84320

84321

84322

84323

84324

84325

84326

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities alias

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

Issue 7
The alias utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The first example is changed to remove the creation of an alias for a standard utility that alters
its behavior to be non-conforming.

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 953 is applied, clarifying that the details of how alias replacement is
performed are in the cross-referenced section (Section 2.3.1, on page 2477) and updating the
APPLICATION USAGE section.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1630 is applied, adding a new item in EXAMPLES.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2583

84327

84328

84329

84330

84331

84332

84333

84334

84335

84336

84337

84338

84339

84340

84341

84342

84343

84344

84345

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ar Utilities

NAME
ar — create and maintain library archives

SYNOPSIS
SD ar -d [-v] archive file...

XSI ar -m [-v] archive file...
ar -m -a [-v] posname archive file...
ar -m -b [-v] posname archive file...
ar -m -i [-v] posname archive file...

XSI ar -p [-v] [-s] archive [file...]

XSI ar -q [-cv] archive file...

ar -r [-cuv] archive file...

XSI ar -r -a [-cuv] posname archive file...
ar -r -b [-cuv] posname archive file...
ar -r -i [-cuv] posname archive file...

XSI ar -t [-v] [-s] archive [file...]

XSI ar -x [-v] [-sCT] archive [file...]

DESCRIPTION

The ar utility is part of the Software Development Utilities option.

The ar utility can be used to create and maintain groups of files combined into an archive. Once
an archive has been created, new files can be added, and existing files in an archive can be
extracted, deleted, or replaced. When an archive consists entirely of valid object files, the
implementation shall format the archive so that it is usable as a library for link editing (see c17).
When some of the archived files are not valid object files, the suitability of the archive for library

XSI use is undefined. If an archive consists entirely of printable files, the entire archive shall be
printable.

When ar creates an archive, it creates administrative information indicating whether a symbol
table is present in the archive. When there is at least one object file that ar recognizes as such in
the archive, an archive symbol table shall be created in the archive and maintained by ar; it is
used by the link editor to search the archive. Whenever the ar utility is used to create or update
the contents of such an archive, the symbol table shall be rebuilt. The −s option shall force the
symbol table to be rebuilt.

All file operands can be pathnames. However, files within archives shall be named by a filename,
which is the last component of the pathname used when the file was entered into the archive.
The comparison of file operands to the names of files in archives shall be performed by
comparing the last component of the operand to the name of the file in the archive.

It is unspecified whether multiple files in the archive may be identically named. In the case of
XSI such files, however, each file and posname operand shall match only the first file in the archive

having a name that is the same as the last component of the operand.

2584 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84346

84347

84348

84349

84350

84351

84352

84353

84354

84355

84356

84357

84358

84359

84360

84361

84362

84363

84364

84365

84366

84367

84368

84369

84370

84371

84372

84373

84374

84375

84376

84377

84378

84379

84380

84381

84382

84383

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ar

OPTIONS
The ar utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

XSI −a Position new files in the archive after the file named by the posname operand.

XSI −b Position new files in the archive before the file named by the posname operand.

−c Suppress the diagnostic message that is written to standard error by default when
the archive archive is created.

XSI −C Prevent extracted files from replacing like-named files in the file system. This
option is useful when −T is also used, to prevent truncated filenames from
replacing files with the same prefix.

−d Delete one or more files from archive.

XSI −i Position new files in the archive before the file in the archive named by the posname
operand (equivalent to −b).

XSI −m Move the named files in the archive. The −a, −b, or −i options with the posname
operand indicate the position; otherwise, move the names files in the archive to the
end of the archive.

−p Write the contents of the files in the archive named by file operands from archive to
the standard output. If no file operands are specified, the contents of all files in the
archive shall be written in the order of the archive.

XSI −q Append the named files to the end of the archive. In this case ar does not check
whether the added files are already in the archive. This is useful to bypass the
searching otherwise done when creating a large archive piece by piece.

−r Replace or add files to archive. If the archive named by archive does not exist, a new
archive shall be created and a diagnostic message shall be written to standard error
(unless the −c option is specified). If no files are specified and the archive exists, the
results are undefined. Files that replace existing files in the archive shall not change
the order of the archive. Files that do not replace existing files in the archive shall

XSI be appended to the archive unless a −a, −b, or −i option specifies another position.

XSI −s Force the regeneration of the archive symbol table even if ar is not invoked with an
option that modifies the archive contents. This option is useful to restore the
archive symbol table after it has been stripped; see strip.

−t Write a table of contents of archive to the standard output. Only the files specified
by the file operands shall be included in the written list. If no file operands are
specified, all files in archive shall be included in the order of the archive.

XSI −T Allow filename truncation of extracted files whose archive names are longer than
the file system can support. By default, extracting a file with a name that is too
long shall be an error; a diagnostic message shall be written and the file shall not
be extracted.

−u Update older files in the archive. When used with the −r option, files in the archive
shall be replaced only if the corresponding file has a modification time that is at
least as new as the modification time of the file in the archive.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2585

84384

84385

84386

84387

84388

84389

84390

84391

84392

84393

84394

84395

84396

84397

84398

84399

84400

84401

84402

84403

84404

84405

84406

84407

84408

84409

84410

84411

84412

84413

84414

84415

84416

84417

84418

84419

84420

84421

84422

84423

84424

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ar Utilities

−v Give verbose output. When used with the option characters −d, −r, or −x, write a
detailed file-by-file description of the archive creation and maintenance activity, as
described in the STDOUT section.

When used with −p, write the name of the file in the archive to the standard output
before writing the file in the archive itself to the standard output, as described in
the STDOUT section.

When used with −t, include a long listing of information about the files in the
archive, as described in the STDOUT section.

−x Extract the files in the archive named by the file operands from archive. The
contents of the archive shall not be changed. If no file operands are given, all files
in the archive shall be extracted. The modification time of each file extracted shall
be set to the time the file is extracted from the archive.

OPERANDS
The following operands shall be supported:

archive A pathname of the archive.

file A pathname. Only the last component shall be used when comparing against the
names of files in the archive. If two or more file operands have the same last
pathname component (basename), the results are unspecified. The
implementation’s archive format shall not truncate valid filenames of files added
to or replaced in the archive.

XSI posname The name of a file in the archive, used for relative positioning; see options −m and
−r.

STDIN
Not used.

INPUT FILES
The archive named by archive shall be a file in the format created by ar −r.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ar:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the format and content for date and time strings written by ar −tv.

XSI NLSPATH Determine the location of messages objects and message catalogs.

2586 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84425

84426

84427

84428

84429

84430

84431

84432

84433

84434

84435

84436

84437

84438

84439

84440

84441

84442

84443

84444

84445

84446

84447

84448

84449

84450

84451

84452

84453

84454

84455

84456

84457

84458

84459

84460

84461

84462

84463

84464

84465

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ar

TMPDIR Determine the pathname that overrides the default directory for temporary files, if
any.

TZ Determine the timezone used to calculate date and time strings written by ar −tv.
If TZ is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −d option is used with the −v option, the standard output format shall be:

"d - %s\n", <file>

where file is the operand specified on the command line.

If the −p option is used with the −v option, ar shall precede the contents of each file with:

"\n<%s>\n\n", <file>

where file is the operand specified on the command line, if file operands were specified, and the
name of the file in the archive if they were not.

If the −r option is used with the −v option:

• If file is already in the archive, the standard output format shall be:

"r - %s\n", <file>

where <file> is the operand specified on the command line.

• If file is not already in the archive, the standard output format shall be:

"a - %s\n", <file>

where <file> is the operand specified on the command line.

If the −t option is used, ar shall write the names of the files in the archive to the standard output
in the format:

"%s\n", <file>

where file is the operand specified on the command line, if file operands were specified, or the
name of the file in the archive if they were not.

If the −t option is used with the −v option, the standard output format shall be:

"%s %u/%u %u %s %d %d:%d %d %s\n", <member mode>, <user ID>,
<group ID>, <number of bytes in member>,
<abbreviated month>, <day-of-month>, <hour>,
<minute>, <year>, <file>

where:

<file> Shall be the operand specified on the command line, if file operands were specified,
or the name of the file in the archive if they were not.

<member mode>
Shall be formatted the same as the <file mode> string defined in the STDOUT
section of ls, except that the first character, the <entry type>, is not used; the string
represents the file mode of the file in the archive at the time it was added to or
replaced in the archive.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2587

84466

84467

84468

84469

84470

84471

84472

84473

84474

84475

84476

84477

84478

84479

84480

84481

84482

84483

84484

84485

84486

84487

84488

84489

84490

84491

84492

84493

84494

84495

84496

84497

84498

84499

84500

84501

84502

84503

84504

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ar Utilities

The following represent the last-modification time of a file when it was most recently added to
or replaced in the archive:

<abbreviated month>
Equivalent to the format of the %b conversion specification format in date.

<day-of-month>
Equivalent to the format of the %e conversion specification format in date.

<hour> Equivalent to the format of the %H conversion specification format in date.

<minute> Equivalent to the format of the %M conversion specification format in date.

<year> Equivalent to the format of the %Y conversion specification format in date.

When LC_TIME does not specify the POSIX locale, a different format and order of presentation
of these fields relative to each other may be used in a format appropriate in the specified locale.

If the −x option is used with the −v option, the standard output format shall be:

"x - %s\n", <file>

where file is the operand specified on the command line, if file operands were specified, or the
name of the file in the archive if they were not.

STDERR
The standard error shall be used only for diagnostic messages. The diagnostic message about
creating a new archive when −c is not specified shall not modify the exit status.

OUTPUT FILES
Archives are files with unspecified formats.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The archive format is not described. It is recognized that there are several known ar formats,
which are not compatible. The ar utility is included, however, to allow creation of archives that
are intended for use only on one machine. The archive is specified as a file, and it can be moved
as a file. This does allow an archive to be moved from one machine to another machine that uses
the same implementation of ar.

Utilities such as pax (and its forebears tar and cpio) also provide portable ``archives’’. This is a not
a duplication; the ar utility is included to provide an interface primarily for make and the
compilers, based on a historical model.

2588 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84505

84506

84507

84508

84509

84510

84511

84512

84513

84514

84515

84516

84517

84518

84519

84520

84521

84522

84523

84524

84525

84526

84527

84528

84529

84530

84531

84532

84533

84534

84535

84536

84537

84538

84539

84540

84541

84542

84543

84544

84545

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ar

In historical implementations, the −q option (available on XSI-conforming systems) is known to
execute quickly because ar does not check on whether the added members are already in the
archive. This is useful to bypass the searching otherwise done when creating a large archive
piece-by-piece. These remarks may but need not remain true for a brand new implementation of
this utility; hence, these remarks have been moved into the RATIONALE.

BSD implementations historically required applications to provide the −s option whenever the
archive was supposed to contain a symbol table. As in this volume of POSIX.1-2024, System V
historically creates or updates an archive symbol table whenever an object file is removed from,
added to, or updated in the archive.

The OPERANDS section requires what might seem to be true without specifying it: the archive
cannot truncate the filenames below {NAME_MAX}. Some historical implementations do so,
however, causing unexpected results for the application. Therefore, this volume of POSIX.1-2024
makes the requirement explicit to avoid misunderstandings.

According to the System V documentation, the options −dmpqrtx are not required to begin with
a <hyphen-minus> ('−'). This volume of POSIX.1-2024 requires that a conforming application
use the leading <hyphen-minus>.

The archive format used by the 4.4 BSD implementation is documented in this RATIONALE as
an example:

A file created by ar begins with the ``magic’’ string "!<arch>\n". The rest of the archive
is made up of objects, each of which is composed of a header for a file, a possible filename,
and the file contents. The header is portable between machine architectures, and, if the file
contents are printable, the archive is itself printable.

The header is made up of six ASCII fields, followed by a two-character trailer. The fields
are the object name (16 characters), the file last modification time (12 characters), the user
and group IDs (each 6 characters), the file mode (8 characters), and the file size (10
characters). All numeric fields are in decimal, except for the file mode, which is in octal.

The modification time is the file st_mtime field. The user and group IDs are the file st_uid
and st_gid fields. The file mode is the file st_mode field. The file size is the file st_size field.
The two-byte trailer is the string "`<newline>".

Only the name field has any provision for overflow. If any filename is more than 16
characters in length or contains an embedded space, the string "#1/" followed by the
ASCII length of the name is written in the name field. The file size (stored in the archive
header) is incremented by the length of the name. The name is then written immediately
following the archive header.

Any unused characters in any of these fields are written as <space> characters. If any fields
are their particular maximum number of characters in length, there is no separation
between the fields.

Objects in the archive are always an even number of bytes long; files that are an odd
number of bytes long are padded with a <newline>, although the size in the header does
not reflect this.

The ar utility description requires that (when all its members are valid object files) ar produce an
object code library, which the linkage editor can use to extract object modules. If the linkage
editor needs a symbol table to permit random access to the archive, ar must provide it; however,
ar does not require a symbol table.

The BSD −o option was omitted. It is a rare conforming application that uses ar to extract object

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2589

84546

84547

84548

84549

84550

84551

84552

84553

84554

84555

84556

84557

84558

84559

84560

84561

84562

84563

84564

84565

84566

84567

84568

84569

84570

84571

84572

84573

84574

84575

84576

84577

84578

84579

84580

84581

84582

84583

84584

84585

84586

84587

84588

84589

84590

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ar Utilities

code from a library with concern for its modification time, since this can only be of importance
to make. Hence, since this functionality is not deemed important for applications portability, the
modification time of the extracted files is set to the current time.

There is at least one known implementation (for a small computer) that can accommodate only
object files for that system, disallowing mixed object and other files. The ability to handle any
type of file is not only historical practice for most implementations, but is also a reasonable
expectation.

Consideration was given to changing the output format of ar −tv to the same format as the
output of ls −l. This would have made parsing the output of ar the same as that of ls. This was
rejected in part because the current ar format is commonly used and changes would break
historical usage. Second, ar gives the user ID and group ID in numeric format separated by a
<slash>. Changing this to be the user name and group name would not be correct if the archive
were moved to a machine that contained a different user database. Since ar cannot know
whether the archive was generated on the same machine, it cannot tell what to report.

The text on the −ur option combination is historical practice—since one filename can easily
represent two different files (for example, /a/foo and /b/foo), it is reasonable to replace the file in
the archive even when the modification time in the archive is identical to that in the file system.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
c17 , date , pax , strip

XBD Chapter 8 (on page 167), Section 12.2 (on page 215), <unistd.h>, description of
{POSIX_NO_TRUNC}

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the Software Development Utilities option.

The STDOUT description is changed for the −v option to align with the IEEE P1003.2b draft
standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

IEEE PASC Interpretation 1003.2 #198 is applied, changing the description to consistently use
``file’’ to refer to a file in the file system hierarchy, ``archive’’ to refer to the archive being
operated upon by the ar utility, and ``file in the archive’’ to refer to a copy of a file that is
contained in the archive.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/10 is applied, making corrections to the

2590 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84591

84592

84593

84594

84595

84596

84597

84598

84599

84600

84601

84602

84603

84604

84605

84606

84607

84608

84609

84610

84611

84612

84613

84614

84615

84616

84617

84618

84619

84620

84621

84622

84623

84624

84625

84626

84627

84628

84629

84630

84631

84632

84633

84634

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ar

SYNOPSIS. The change was needed since the −a, −b, and −i options are mutually-exclusive, and
posname is required if any of these options is specified.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/11 is applied, correcting the description
of the two-byte trailer in RATIONALE which had missed out a backquote. The correct trailer is a
backquote followed by a <newline>.

Issue 7
SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The description of the −t option is changed to say ``Only the files specified ...’’.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0057 [584] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to behave as follows:

a. Report an error if a utility is directed to display a pathname that contains any bytes that
have the encoded value of a <newline> character when <newline> is a terminator or
separator in the output format being used.

b. Disallow the creation of filenames containing any bytes that have the encoded value of a
<newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2591

84635

84636

84637

84638

84639

84640

84641

84642

84643

84644

84645

84646

84647

84648

84649

84650

84651

84652

84653

84654

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

asa Utilities

NAME
asa — interpret carriage-control characters

SYNOPSIS
FR asa [file...]

DESCRIPTION
The asa utility shall write its input files to standard output, mapping carriage-control characters
from the text files to line-printer control sequences in an implementation-defined manner.

The first character of every line shall be removed from the input, and the following actions are
performed.

If the character removed is:

<space> The rest of the line is output without change.

0 A <newline> is output, then the rest of the input line.

1 One or more implementation-defined characters that causes an advance to the next
page shall be output, followed by the rest of the input line.

+ The <newline> of the previous line shall be replaced with one or more
implementation-defined characters that causes printing to return to column
position 1, followed by the rest of the input line. If the '+' is the first character in
the input, it shall be equivalent to <space>.

The action of the asa utility is unspecified upon encountering any character other than those
listed above as the first character in a line.

OPTIONS
None.

OPERANDS

file A pathname of a text file used for input. If no file operands are specified, the
standard input shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of asa:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

2592 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84655

84656

84657

84658

84659

84660

84661

84662

84663

84664

84665

84666

84667

84668

84669

84670

84671

84672

84673

84674

84675

84676

84677

84678

84679

84680

84681

84682

84683

84684

84685

84686

84687

84688

84689

84690

84691

84692

84693

84694

84695

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities asa

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be the text from the input file modified as described in the
DESCRIPTION section.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES

1. The following command:

asa file

permits the viewing of file (created by a program using FORTRAN-style carriage-control
characters) on a terminal.

2. The following command:

a.out | asa | lp

formats the FORTRAN output of a.out and directs it to the printer.

RATIONALE
The asa utility is needed to map ``standard’’ FORTRAN 77 output into a form acceptable to
contemporary printers. Usually, asa is used to pipe data to the lp utility; see lp.

This utility is generally used only by FORTRAN programs. The standard developers decided to
retain asa to avoid breaking the historical large base of FORTRAN applications that put carriage-
control characters in their output files. There is no requirement that a system have a FORTRAN
compiler in order to run applications that need asa.

Historical implementations have used an ASCII <form-feed> in response to a 1 and an ASCII
<carriage-return> in response to a '+'. It is suggested that implementations treat characters
other than 0, 1, and '+' as <space> in the absence of any compelling reason to do otherwise.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2593

84696

84697

84698

84699

84700

84701

84702

84703

84704

84705

84706

84707

84708

84709

84710

84711

84712

84713

84714

84715

84716

84717

84718

84719

84720

84721

84722

84723

84724

84725

84726

84727

84728

84729

84730

84731

84732

84733

84734

84735

84736

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

asa Utilities

However, the action is listed here as ``unspecified’’, permitting an implementation to provide
extensions to access fast multiple-line slewing and channel seeking in a non-portable manner.

FUTURE DIRECTIONS
None.

SEE ALSO
lp

XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the FORTRAN Runtime Utilities option.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2594 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84737

84738

84739

84740

84741

84742

84743

84744

84745

84746

84747

84748

84749

84750

84751

84752

84753

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities at

NAME
at — execute commands at a later time

SYNOPSIS
at [-m] [-f file] [-q queuename] -t time_arg

at [-m] [-f file] [-q queuename] timespec...

at -r at_job_id...

at -l -q queuename

at -l [at_job_id...]

DESCRIPTION
The at utility shall read commands from standard input and group them together as an at-job, to
be executed at a later time.

The at-job shall be executed in a separate invocation of the shell, running in a separate process
group with no controlling terminal, except that the environment variables, current working
directory, file creation mask, and other implementation-defined execution-time attributes in
effect when the at utility is executed shall be retained and used when the at-job is executed.

When the at-job is submitted, the at_job_id and scheduled time shall be written to standard error.
The at_job_id is an identifier that shall be a string consisting solely of alphanumeric characters
and the <period> character. The at_job_id shall be assigned by the system when the job is
scheduled such that it uniquely identifies a particular job.

User notification and the processing of the job’s standard output and standard error are
described under the −m option.

XSI Users shall be permitted to use at if their name appears in the file at.allow which is located in an
implementation-defined directory. If that file does not exist, the file at.deny, which is located in
an implementation-defined directory, shall be checked to determine whether the user shall be
denied access to at. If neither file exists, only a process with appropriate privileges shall be
allowed to submit a job. If only at.deny exists and is empty, global usage shall be permitted. The
at.allow and at.deny files shall consist of one user name per line.

OPTIONS
The at utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f file Specify the pathname of a file to be used as the source of the at-job, instead of
standard input.

−l (The letter ell.) Report all jobs scheduled for the invoking user if no at_job_id
operands are specified. If at_job_ids are specified, report only information for these
jobs. The output shall be written to standard output.

−m Send mail to the invoking user after the at-job has run, announcing its completion.
Standard output and standard error produced by the at-job shall be mailed to the
user as well, unless redirected elsewhere. Mail shall be sent even if the job
produces no output.

If −m is not used, the job’s standard output and standard error shall be provided to
the user by means of mail, unless they are redirected elsewhere; if there is no such
output to provide, the implementation need not notify the user of the job’s
completion.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2595

84754

84755

84756

84757

84758

84759

84760

84761

84762

84763

84764

84765

84766

84767

84768

84769

84770

84771

84772

84773

84774

84775

84776

84777

84778

84779

84780

84781

84782

84783

84784

84785

84786

84787

84788

84789

84790

84791

84792

84793

84794

84795

84796

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

at Utilities

−q queuename
Specify in which queue to schedule a job for submission. When used with the −l
option, limit the search to that particular queue. By default, at-jobs shall be
scheduled in queue a. In contrast, queue b shall be reserved for batch jobs; see
batch. The meanings of all other queuenames are implementation-defined. If −q b is
specified along with either of the −t time_arg or timespec arguments, the results are
unspecified.

−r Remove the jobs with the specified at_job_id operands that were previously
scheduled by the at utility.

−t time_arg Submit the job to be run at the time specified by the time option-argument, which
the application shall ensure has the format as specified by the touch −t time utility.

OPERANDS
The following operands shall be supported:

at_job_id The name reported by a previous invocation of the at utility at the time the job was
scheduled.

timespec Submit the job to be run at the date and time specified. All of the timespec operands
are interpreted as if they were separated by <space> characters and concatenated,
and shall be parsed as described in the grammar at the end of this section. The date
and time shall be interpreted as being in the timezone of the user (as determined
by the TZ variable), unless a timezone name appears as part of time, below.

In the POSIX locale, the following describes the three parts of the time specification
string. All of the values from the LC_TIME categories in the POSIX locale shall be
recognized in a case-insensitive manner.

time The time can be specified as one, two, or four digits. One-digit and
two-digit numbers shall be taken to be hours; four-digit numbers to
be hours and minutes. The time can alternatively be specified as two
numbers separated by a <colon>, meaning hour:minute. If the
LC_TIME category of the locale supports 12-hour time format (see
XBD Section 7.3.5, on page 152), an AM/PM indication in the form of
one of the values from the am_pm keywords in the LC_TIME locale
category can follow the time; otherwise, a 24-hour clock time shall be
understood. A timezone name can also follow to further qualify the
time. The acceptable timezone names are implementation-defined,
except that they shall be case-insensitive and the string utc is
supported to indicate the time is in Coordinated Universal Time. In
the POSIX locale, the time field can also be one of the following
tokens:

midnight Indicates the time 12:00 am (00:00).

noon Indicates the time 12:00 pm.

now Indicates the current day and time. Invoking at <now>
shall submit an at-job for potentially immediate
execution (that is, subject only to unspecified
scheduling delays).

date An optional date can be specified as either a month name (one of the
values from the mon or abmon keywords in the LC_TIME locale
category) followed by a day number (and possibly year number

2596 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84797

84798

84799

84800

84801

84802

84803

84804

84805

84806

84807

84808

84809

84810

84811

84812

84813

84814

84815

84816

84817

84818

84819

84820

84821

84822

84823

84824

84825

84826

84827

84828

84829

84830

84831

84832

84833

84834

84835

84836

84837

84838

84839

84840

84841

84842

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities at

preceded by a comma), or a day of the week (one of the values from
the day or abday keywords in the LC_TIME locale category). In the
POSIX locale, two special days shall be recognized:

today Indicates the current day.

tomorrow Indicates the day following the current day.

If no date is given, today shall be assumed if the given time is greater
than the current time, and tomorrow shall be assumed if it is less. If
the given month is less than the current month (and no year is given),
next year shall be assumed.

increment The optional increment shall be a number preceded by a <plus-sign>
('+') and suffixed by one of the following: minutes, hours, days,
weeks, months, or years. (The singular forms shall also be accepted.)
The keyword next shall be equivalent to an increment number of +1.
For example, the following are equivalent commands:

at 2pm + 1 week
at 2pm next week

The following grammar describes the precise format of timespec in the POSIX locale. The general
conventions for this style of grammar are described in Section 1.3 (on page 2461). This formal
syntax shall take precedence over the preceding text syntax description. The longest possible
token or delimiter shall be recognized at a given point. When used in a timespec, white space
shall also delimit tokens.

%token hr24clock_hr_min
%token hr24clock_hour
/*
An hr24clock_hr_min is a one, two, or four-digit number. A one-digit
or two-digit number constitutes an hr24clock_hour. An hr24clock_hour
may be any of the single digits [0,9], or may be double digits, ranging
from [00,23]. If an hr24clock_hr_min is a four-digit number, the
first two digits shall be a valid hr24clock_hour, while the last two
represent the number of minutes, from [00,59].

*/

%token wallclock_hr_min
%token wallclock_hour
/*
A wallclock_hr_min is a one, two-digit, or four-digit number.
A one-digit or two-digit number constitutes a wallclock_hour.
A wallclock_hour may be any of the single digits [1,9], or may
be double digits, ranging from [01,12]. If a wallclock_hr_min
is a four-digit number, the first two digits shall be a valid
wallclock_hour, while the last two represent the number of
minutes, from [00,59].

*/

%token minute
/*
A minute is a one or two-digit number whose value can be [0,9]
or [00,59].

*/

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2597

84843

84844

84845

84846

84847

84848

84849

84850

84851

84852

84853

84854

84855

84856

84857

84858

84859

84860

84861

84862

84863

84864

84865

84866

84867

84868

84869

84870

84871

84872

84873

84874

84875

84876

84877

84878

84879

84880

84881

84882

84883

84884

84885

84886

84887

84888

84889

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

at Utilities

%token day_number
/*
A day_number is a number in the range appropriate for the particular
month and year specified by month_name and year_number, respectively.
If no year_number is given, the current year is assumed if the given
date and time are later this year. If no year_number is given and
the date and time have already occurred this year and the month is
not the current month, next year is the assumed year.

*/

%token year_number
/*
A year_number is a four-digit number representing the year A.D., in
which the at_job is to be run.

*/

%token inc_number
/*
The inc_number is the number of times the succeeding increment
period is to be added to the specified date and time.

*/

%token timezone_name
/*
The name of an optional timezone suffix to the time field, in an
implementation-defined format.

*/

%token month_name
/*
One of the values from the mon or abmon keywords in the LC_TIME
locale category.

*/

%token day_of_week
/*
One of the values from the day or abday keywords in the LC_TIME
locale category.

*/

%token am_pm
/*
One of the values from the am_pm keyword in the LC_TIME locale
category.

*/

%start timespec
%%
timespec : time

| time date
| time increment
| time date increment
| nowspec
;

nowspec : "now"

2598 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84890

84891

84892

84893

84894

84895

84896

84897

84898

84899

84900

84901

84902

84903

84904

84905

84906

84907

84908

84909

84910

84911

84912

84913

84914

84915

84916

84917

84918

84919

84920

84921

84922

84923

84924

84925

84926

84927

84928

84929

84930

84931

84932

84933

84934

84935

84936

84937

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities at

| "now" increment
;

time : hr24clock_hr_min
| hr24clock_hr_min timezone_name
| hr24clock_hour ":" minute
| hr24clock_hour ":" minute timezone_name
| wallclock_hr_min am_pm
| wallclock_hr_min am_pm timezone_name
| wallclock_hour ":" minute am_pm
| wallclock_hour ":" minute am_pm timezone_name
| "noon"
| "midnight"
;

date : month_name day_number
| month_name day_number "," year_number
| day_of_week
| "today"
| "tomorrow"
;

increment : "+" inc_number inc_period
| "next" inc_period
;

inc_period : "minute" | "minutes"
| "hour" | "hours"
| "day" | "days"
| "week" | "weeks"
| "month" | "months"
| "year" | "years"
;

STDIN
The standard input shall be a text file consisting of commands acceptable to the shell command
language described in Chapter 2 (on page 2472). The standard input shall only be used if no −f
file option is specified.

INPUT FILES
See the STDIN section.

XSI The text files at.allow and at.deny, which are located in an implementation-defined directory,
shall contain zero or more user names, one per line, of users who are, respectively, authorized or
denied access to the at and batch utilities.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of at:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2599

84938

84939

84940

84941

84942

84943

84944

84945

84946

84947

84948

84949

84950

84951

84952

84953

84954

84955

84956

84957

84958

84959

84960

84961

84962

84963

84964

84965

84966

84967

84968

84969

84970

84971

84972

84973

84974

84975

84976

84977

84978

84979

84980

84981

84982

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

at Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

LC_TIME Determine the format and contents for date and time strings written and accepted
by at.

SHELL Determine a name of a command interpreter to be used to invoke the at-job. If the
variable is unset or null, sh shall be used. If it is set to a value other than a name for
sh, the implementation shall do one of the following: use that shell; use sh; use the
login shell from the user database; or any of the preceding accompanied by a
warning diagnostic about which was chosen.

TZ Determine the timezone. The job shall be submitted for execution at the time
specified by timespec or −t time relative to the timezone specified by the TZ
variable. If timespec specifies a timezone, it shall override TZ. If timespec does not
specify a timezone and TZ is unset or null, an unspecified default timezone shall
be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When standard input is a terminal, prompts of unspecified format for each line of the user input
described in the STDIN section may be written to standard output.

In the POSIX locale, the following shall be written to the standard output for each job when jobs
are listed in response to the −l option:

"%s\t%s\n", at_job_id, <date>

where date shall be equivalent in format to the output of:

date +"%a %b %e %T %Y"

The date and time written shall be adjusted so that they appear in the timezone of the user (as
determined by the TZ variable).

STDERR
In the POSIX locale, the following shall be written to standard error when a job has been
successfully submitted:

"job %s at %s\n", at_job_id, <date>

where date has the same format as that described in the STDOUT section. Neither this, nor
warning messages concerning the selection of the command interpreter, shall be considered a
diagnostic that changes the exit status.

Diagnostic messages, if any, shall be written to standard error.

2600 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

84983

84984

84985

84986

84987

84988

84989

84990

84991

84992

84993

84994

84995

84996

84997

84998

84999

85000

85001

85002

85003

85004

85005

85006

85007

85008

85009

85010

85011

85012

85013

85014

85015

85016

85017

85018

85019

85020

85021

85022

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities at

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Neither the −l option nor the −r option was specified and a job was successfully submitted;
or, the −l option was specified with no at_job_id operands and there were no jobs to be
listed; or, the −l option was specified and all job listings were successfully output; or, the −r
option was specified and all of the specified jobs were successfully removed.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If neither the −l option nor the −r option was specified, the job shall not be scheduled.
Otherwise, the default actions specified in Section 1.4 (on page 2462) apply.

APPLICATION USAGE
The format of the at command line shown here is guaranteed only for the POSIX locale. Other
cultures may be supported with substantially different interfaces, although implementations are
encouraged to provide comparable levels of functionality.

Since the commands run in a separate shell invocation, running in a separate process group with
no controlling terminal, open file descriptors, traps, and priority inherited from the invoking
environment are lost.

Some implementations do not allow substitution of different shells using SHELL. System V
systems, for example, have used the login shell value for the user in /etc/passwd. To select
reliably another command interpreter, the user must include it as part of the script, such as:

$ at 1800
myshell myscript
EOT
job ... at ...
$

EXAMPLES

1. This sequence can be used at a terminal:

at -m 0730 tomorrow
sort < file >outfile
EOT

2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

at now + 1 hour <<!
diff file1 file2 2>&1 >outfile | mailx -s "outfile update" mygroup
!

Note that this always sends mail when there has been an attempt to update outfile and
the body of the message will be empty unless an error occurred.

3. The following shows how to capture both standard error and standard output:

at now + 1 hour <<EOF

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2601

85023

85024

85025

85026

85027

85028

85029

85030

85031

85032

85033

85034

85035

85036

85037

85038

85039

85040

85041

85042

85043

85044

85045

85046

85047

85048

85049

85050

85051

85052

85053

85054

85055

85056

85057

85058

85059

85060

85061

85062

85063

85064

85065

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

at Utilities

{
run-batch-processing |

mailx -s "batch processing output" mygroup
} 2>&1 | mailx -E -s "errors during batch processing" mygroup
EOF

4. To have a job reschedule itself, at can be invoked from within the at-job. For example, this
daily processing script named my.daily runs every day (although crontab is a more
appropriate vehicle for such work):

my.daily runs every day
daily processing
at now tomorrow < my.daily

5. The spacing of the three portions of the POSIX locale timespec is quite flexible as long as
there are no ambiguities. Examples of various times and operand presentation include:

at 0815am Jan 24
at 8 :15amjan24
at now "+ 1day"
at 5 pm FRIday
at '17

utc+
30minutes'

RATIONALE
The at utility reads from standard input the commands to be executed at a later time. It may be
useful to redirect standard output and standard error within the specified commands.

The −t time option was added as a new capability to support an internationalized way of
specifying a time for execution of the submitted job.

Early proposals added a ``jobname’’ concept as a way of giving submitted jobs names that are
meaningful to the user submitting them. The historical, system-specified at_job_id gives no
indication of what the job is. Upon further reflection, it was decided that the benefit of this was
not worth the change in historical interface.

The −q option historically has been an undocumented option, used mainly by the batch utility.

The System V −m option was added to provide a method for informing users that an at-job had
completed. Otherwise, users are only informed when output to standard error or standard
output are not redirected.

The behavior of at <now> was changed in an early proposal from being unspecified to
submitting a job for potentially immediate execution. Historical BSD at implementations support
this. Historical System V implementations give an error in that case, but a change to the System
V versions should have no backwards-compatibility ramifications.

On BSD-based systems, a −u user option has allowed those with appropriate privileges to access
the work of other users. Since this is primarily a system administration feature and is not
universally implemented, it has been omitted. Similarly, a specification for the output format for
a user with appropriate privileges viewing the queues of other users has been omitted.

The −f file option from System V is used instead of the BSD method of using the last operand as
the pathname. The BSD method is ambiguous—does:

at 1200 friday

mean the same thing if there is a file named friday in the current directory?

2602 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85066

85067

85068

85069

85070

85071

85072

85073

85074

85075

85076

85077

85078

85079

85080

85081

85082

85083

85084

85085

85086

85087

85088

85089

85090

85091

85092

85093

85094

85095

85096

85097

85098

85099

85100

85101

85102

85103

85104

85105

85106

85107

85108

85109

85110

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities at

The at_job_id is composed of a limited character set in historical practice, and it is mandated here
to invalidate systems that might try using characters that require shell quoting or that could not
be easily parsed by shell scripts.

The at utility varies between System V and BSD systems in the way timezones are used. On
System V systems, the TZ variable affects the at-job submission times and the times displayed
for the user. On BSD systems, TZ is not taken into account. The BSD behavior is easily achieved
with the current specification. If the user wishes to have the timezone default to that of the
system, they merely need to issue the at command immediately following an unsetting or null
assignment to TZ. For example:

TZ= at noon ...

gives the desired BSD result.

While the yacc-like grammar specified in the OPERANDS section is lexically unambiguous with
respect to the digit strings, a lexical analyzer would probably be written to look for and return
digit strings in those cases. The parser could then check whether the digit string returned is a
valid day_number, year_number, and so on, based on the context.

FUTURE DIRECTIONS
None.

SEE ALSO
batch , crontab

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• If −m is not used, the job’s standard output and standard error are provided to the user by
mail.

The effects of using the −q and −t options as defined in the IEEE P1003.2b draft standard are
specified.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
The at utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the files referenced
by the at utility.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1307 is applied, changing the timespec operand in relation to locales that do
not support the 12-hour clock format.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2603

85111

85112

85113

85114

85115

85116

85117

85118

85119

85120

85121

85122

85123

85124

85125

85126

85127

85128

85129

85130

85131

85132

85133

85134

85135

85136

85137

85138

85139

85140

85141

85142

85143

85144

85145

85146

85147

85148

85149

85150

85151

85152

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

at Utilities

Austin Group Defect 1368 is applied, changing the EXAMPLES section.

Austin Group Defect 1377 is applied, correcting a typographic error in the description of the −q
option.

Austin Group Defect 1495 is applied, changing the EXIT STATUS and CONSEQUENCES OF
ERRORS sections.

2604 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85153

85154

85155

85156

85157

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

NAME
awk — pattern scanning and processing language

SYNOPSIS
awk [-F sepstring] [-v assignment]... program [argument...]

awk [-F sepstring] -f progfile [-f progfile]... [-v assignment]...
[argument...]

DESCRIPTION
The awk utility shall execute programs written in the awk programming language, which is
specialized for textual data manipulation. An awk program is a sequence of patterns and
corresponding actions. When input is read that matches a pattern, the action associated with that
pattern is carried out.

Input shall be interpreted as a sequence of records. By default, a record is a line, less its
terminating <newline>, but this can be changed by using the RS built-in variable. Each record of
input shall be matched in turn against each pattern in the program. For each pattern matched,
the associated action shall be executed.

The awk utility shall interpret each input record as a sequence of fields where, by default, a field
is a string of non-<blank> non-<newline> characters. This default <blank> and <newline> field
delimiter can be changed by using the FS built-in variable or the −F sepstring option. The awk
utility shall denote the first field in a record $1, the second $2, and so on. The symbol $0 shall
refer to the entire record; setting any other field causes the re-evaluation of $0. Assigning to $0
shall reset the values of all other fields and the NF built-in variable.

OPTIONS
The awk utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−F sepstring Define the input field separator. This option shall be equivalent to:

-v FS=sepstring

except that if −F sepstring and −v FS=sepstring are both used, it is unspecified
whether the FS assignment resulting from −F sepstring is processed in command
line order or is processed after the last −v FS=sepstring. See the description of the
FS built-in variable, and how it is used, in the EXTENDED DESCRIPTION section.

−f progfile Specify the pathname of the file progfile containing an awk program. A pathname of
'-' shall denote the standard input. If multiple instances of this option are
specified, the concatenation of the files specified as progfile in the order specified
shall be the awk program. The awk program can alternatively be specified in the
command line as a single argument.

−v assignment
The application shall ensure that the assignment argument is in the same form as an
assignment operand. The specified variable assignment shall occur prior to
executing the awk program, including the actions associated with BEGIN patterns
(if any). Multiple occurrences of this option can be specified.

OPERANDS
The following operands shall be supported:

program If no −f option is specified, the first operand to awk shall be the text of the awk
program. The application shall supply the program operand as a single argument to
awk. If the text does not end in a <newline>, awk shall interpret the text as if it did.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2605

85158

85159

85160

85161

85162

85163

85164

85165

85166

85167

85168

85169

85170

85171

85172

85173

85174

85175

85176

85177

85178

85179

85180

85181

85182

85183

85184

85185

85186

85187

85188

85189

85190

85191

85192

85193

85194

85195

85196

85197

85198

85199

85200

85201

85202

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

argument Either of the following two types of argument can be intermixed:

file A pathname of a file that contains the input to be read, which is
matched against the set of patterns in the program. If no file operands
or their equivalents, achieved by modifying the awk variables ARGV
and ARGC, are specified, or if a file operand is '-', the standard
input shall be used.

assignment An operand that begins with an <underscore> or alphabetic
character from the portable character set (see the table in XBD Section
6.1, on page 117), followed by a sequence of underscores, digits, and
alphabetics from the portable character set, followed by the '='
character, shall specify a variable assignment rather than a pathname.
The characters before the '=' represent the name of an awk variable;
if that name is an awk reserved word (see Grammar, on page 2624)
the behavior is undefined. The characters following the <equals-
sign> shall be interpreted as if they appeared in the awk program
preceded and followed by a double-quote ('"') character, as a
STRING token (see Grammar, on page 2624), except that if the last
character is an unescaped <backslash>, it shall be interpreted as a
literal <backslash> rather than as the first character of the sequence
"\"". The variable shall be assigned the value of that STRING
token and, if appropriate, shall be considered a numeric string (see
Expressions in awk, on page 2608), the variable shall also be assigned
its numeric value. Each such variable assignment shall occur just
prior to the processing of the following file, if any. Thus, an
assignment before the first file argument shall be executed after the
BEGIN actions (if any), while an assignment after the last file
argument shall occur before the END actions (if any). If there are no
file arguments or their equivalents, achieved by modifying the awk
variables ARGV and ARGC, assignments shall be executed before
processing the standard input.

STDIN
The standard input shall be used only if no file operands or their equivalents, achieved by
modifying the awk variables ARGV and ARGC, are specified; or if a file operand, or its
equivalent, is '-'; or if a progfile option-argument is '-'; see the INPUT FILES section. If the
awk program contains no actions and no patterns, but is otherwise a valid awk program,
standard input and any file operands shall not be read and awk shall exit with a return status of
zero.

INPUT FILES
Input files to the awk program from any of the following sources shall be text files:

• Any file operands or their equivalents, achieved by modifying the awk variables ARGV
and ARGC

• Standard input in the absence of any file operands, or their equivalents

• Arguments to the getline function

Whether the variable RS is set to a value other than a <newline> or not, for these files,
implementations shall support records terminated with the specified separator up to
{LINE_MAX} bytes and may support longer records.

If −f progfile is specified, the application shall ensure that the files named by each of the progfile

2606 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85203

85204

85205

85206

85207

85208

85209

85210

85211

85212

85213

85214

85215

85216

85217

85218

85219

85220

85221

85222

85223

85224

85225

85226

85227

85228

85229

85230

85231

85232

85233

85234

85235

85236

85237

85238

85239

85240

85241

85242

85243

85244

85245

85246

85247

85248

85249

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

option-arguments are text files and their concatenation, in the same order as they appear in the
arguments, is an awk program.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of awk:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions and in comparisons of
string values.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes within regular
expressions, the identification of characters as letters, and the mapping of
uppercase and lowercase characters for the toupper and tolower functions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the radix character used when interpreting numeric input, performing
conversions between numeric and string values, and formatting numeric output.
Regardless of locale, the <period> character (the decimal-point character of the
POSIX locale) is the decimal-point character recognized in processing awk
programs (including assignments in command line arguments).

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the search path when looking for commands executed by system(expr),
or input and output pipes; see XBD Chapter 8 (on page 167).

In addition, all environment variables shall be visible via the awk variable ENVIRON.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The nature of the output files depends on the awk program.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The nature of the output files depends on the awk program.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2607

85250

85251

85252

85253

85254

85255

85256

85257

85258

85259

85260

85261

85262

85263

85264

85265

85266

85267

85268

85269

85270

85271

85272

85273

85274

85275

85276

85277

85278

85279

85280

85281

85282

85283

85284

85285

85286

85287

85288

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

EXTENDED DESCRIPTION

Overall Program Structure

An awk program is composed of pairs of the form:

pattern { action }

Either the pattern or the action (including the enclosing brace characters) can be omitted.

A missing pattern shall match any record of input, and a missing action shall be equivalent to:

{ print }

Execution of the awk program shall start by first executing the actions associated with all BEGIN
patterns in the order they occur in the program. Then each file operand (or standard input if no
files were specified) shall be processed in turn by reading data from the file until a record
separator is seen (<newline> by default). Before the first reference to a field in the record is
evaluated, the record shall be split into fields, according to the rules in Regular Expressions (on
page 2615), using the value of FS that was current at the time the record was read. Each pattern
in the program then shall be evaluated in the order of occurrence, and the action associated with
each pattern that matches the current record executed. The action for a matching pattern shall be
executed before evaluating subsequent patterns. Finally, the actions associated with all END
patterns shall be executed in the order they occur in the program.

Expressions in awk

Expressions describe computations used in patterns and actions. In the following table, valid
expression operations are given in groups from highest precedence first to lowest precedence
last, with equal-precedence operators grouped between horizontal lines. In expression
evaluation, where the grammar is formally ambiguous, higher precedence operators shall be
evaluated before lower precedence operators. In this table expr, expr1, expr2, and expr3 represent
any expression, while lvalue represents any entity that can be assigned to (that is, on the left side
of an assignment operator). The precise syntax of expressions is given in Grammar (on page
2624).

Table 3-1 Expressions in Decreasing Precedence in awk

Syntax Name Type of Result Associativity
(expr) Grouping Type of expr N/A
$expr Field reference Uninitialized or String N/A
lvalue ++ Post-increment Numeric N/A
lvalue − − Post-decrement Numeric N/A
++ lvalue Pre-increment Numeric N/A
− − lvalue Pre-decrement Numeric N/A
expr ˆ expr Exponentiation Numeric Right
! expr Logical not Numeric N/A
+ expr Unary plus Numeric N/A
− expr Unary minus Numeric N/A
expr * expr Multiplication Numeric Left
expr / expr Division Numeric Left
expr % expr Modulus Numeric Left

2608 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85289

85290

85291

85292

85293

85294

85295

85296

85297

85298

85299

85300

85301

85302

85303

85304

85305

85306

85307

85308

85309

85310

85311

85312

85313

85314

85315

85316

85317

85318

85319

85320

85321

85322

85323

85324

85325

85326

85327

85328

85329

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

Syntax Name Type of Result Associativity
expr + expr Addition Numeric Left
expr − expr Subtraction Numeric Left
expr expr String concatenation String Left
expr < expr Less than Numeric None
expr <= expr Less than or equal to Numeric None
expr != expr Not equal to Numeric None
expr == expr Equal to Numeric None
expr > expr Greater than Numeric None
expr >= expr Greater than or equal to Numeric None
expr ˜ expr ERE match Numeric None
expr !˜ expr ERE non-match Numeric None
expr in array Array membership Numeric Left
(index) in array Multi-dimension array Numeric Left

membership
expr && expr Logical AND Numeric Left
expr || expr Logical OR Numeric Left
expr1 ? expr2 : expr3 Conditional expression Type of selected Right

expr2 or expr3
lvalue ˆ= expr Exponentiation assignment Numeric Right
lvalue %= expr Modulus assignment Numeric Right
lvalue *= expr Multiplication assignment Numeric Right
lvalue /= expr Division assignment Numeric Right
lvalue += expr Addition assignment Numeric Right
lvalue −= expr Subtraction assignment Numeric Right
lvalue = expr Assignment Type of expr Right

Each expression shall have either a string value, a numeric value, or both. Except as stated for
specific contexts, the value of an expression shall be implicitly converted to the type needed for
the context in which it is used. A string value shall be converted to a numeric value either by the
equivalent of the following calls to functions defined by the ISO C standard:

setlocale(LC_NUMERIC, "");
numeric_value = atof(string_value);

or by converting the initial portion of the string to type double representation as follows:

The input string is decomposed into two parts: an initial, possibly empty, sequence of
white-space characters (as specified by isspace()) and a subject sequence interpreted as a
floating-point constant.

The expected form of the subject sequence is an optional '+' or '-' sign, then a non-
empty sequence of digits optionally containing a radix character, then an optional
exponent part. An exponent part consists of 'e' or 'E', followed by an optional sign,
followed by one or more decimal digits.

The sequence starting with the first digit or the radix character (whichever occurs first) is
interpreted as a floating constant of the C language, except that the radix character shall be
used in place of a <period>, and if neither an exponent part nor a radix character appears,
a radix character is assumed to follow the last digit in the string. If the subject sequence
begins with a <hyphen-minus>, the value resulting from the conversion is negated.

A numeric value that is exactly equal to the value of an integer (see Section 1.1.2, on page 2457)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2609

85330

85331

85332

85333

85334

85335

85336

85337

85338

85339

85340

85341

85342

85343

85344

85345

85346

85347

85348

85349

85350

85351

85352

85353

85354

85355

85356

85357

85358

85359

85360

85361

85362

85363

85364

85365

85366

85367

85368

85369

85370

85371

85372

85373

85374

85375

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

shall be converted to a string by the equivalent of a call to the sprintf function (see String
Functions, on page 2621) with the string "%d" as the fmt argument and the numeric value being
converted as the first and only expr argument. Any other numeric value shall be converted to a
string by the equivalent of a call to the sprintf function with the value of the variable
CONVFMT as the fmt argument and the numeric value being converted as the first and only
expr argument. The result of the conversion is unspecified if the value of CONVFMT is not a
floating-point format specification. This volume of POSIX.1-2024 specifies no explicit
conversions between numbers and strings. An application can force an expression to be treated
as a number by adding zero to it, or can force it to be treated as a string by concatenating the null
string ("") to it.

A string value shall be considered a numeric string if it comes from one of the following:

1. Field variables

2. Input from the getline() function

3. FILENAME

4. ARGV array elements

5. ENVIRON array elements

6. Array elements created by the split() function

7. A command line variable assignment

8. Variable assignment from another numeric string variable

and an implementation-dependent condition corresponding to either case (a) or (b) below is
met.

a. After the equivalent of the following calls to functions defined by the ISO C standard,
string_value_end would differ from string_value, and any characters before the terminating
null character in string_value_end would be <blank> characters:

char *string_value_end;
setlocale(LC_NUMERIC, "");
numeric_value = strtod (string_value, &string_value_end);

b. After all the following conversions have been applied, the resulting string would lexically
be recognized as a NUMBER token as described by the lexical conventions in Grammar
(on page 2624):

— All leading and trailing <blank> characters are discarded.

— If the first non-<blank> is '+' or '-', it is discarded.

— Each occurrence of the radix character from the current locale is changed to a
<period>.

In case (a) the numeric value of the numeric string shall be the value that would be returned by
the strtod() call. In case (b) if the first non-<blank> is '-', the numeric value of the numeric
string shall be the negation of the numeric value of the recognized NUMBER token; otherwise,
the numeric value of the numeric string shall be the numeric value of the recognized NUMBER
token. Whether or not a string is a numeric string shall be relevant only in contexts where that
term is used in this section.

When an expression is used in a Boolean context, if it has a numeric value, a value of zero shall
be treated as false and any other value shall be treated as true. Otherwise, a string value of the
null string shall be treated as false and any other value shall be treated as true. A Boolean

2610 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85376

85377

85378

85379

85380

85381

85382

85383

85384

85385

85386

85387

85388

85389

85390

85391

85392

85393

85394

85395

85396

85397

85398

85399

85400

85401

85402

85403

85404

85405

85406

85407

85408

85409

85410

85411

85412

85413

85414

85415

85416

85417

85418

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

context shall be one of the following:

• The first subexpression of a conditional expression

• An expression operated on by logical NOT, logical AND, or logical OR

• The second expression of a for statement

• The expression of an if statement

• The expression of the while clause in either a while or do. . .while statement

• An expression used as a pattern (as in Overall Program Structure)

All arithmetic shall follow the semantics of floating-point arithmetic as specified by the ISO C
standard (see Section 1.1.2, on page 2457).

The value of the expression:

expr1 ^ expr2

shall be equivalent to the value returned by the ISO C standard function call:

pow(expr1, expr2)

The expression:

lvalue ^= expr

shall be equivalent to the ISO C standard expression:

lvalue = pow(lvalue, expr)

except that lvalue shall be evaluated only once. The value of the expression:

expr1 % expr2

shall be equivalent to the value returned by the ISO C standard function call:

fmod(expr1, expr2)

The expression:

lvalue %= expr

shall be equivalent to the ISO C standard expression:

lvalue = fmod(lvalue, expr)

except that lvalue shall be evaluated only once.

Variables and fields shall be set by the assignment statement:

lvalue = expression

and the type of expression shall determine the resulting variable type. The assignment includes
the arithmetic assignments ("+=", "-=", "*=", "/=", "%=", "^=", "++", "--") all of which
shall produce a numeric result. The left-hand side of an assignment and the target of increment
and decrement operators can be one of a variable, an array with index, or a field selector.

The awk language supplies arrays that are used for storing numbers or strings. Arrays need not
be declared. They shall initially be empty, and their sizes shall change dynamically. The
subscripts, or element identifiers, are strings, providing a type of associative array capability. An
array name followed by a subscript within square brackets can be used as an lvalue and thus as
an expression, as described in the grammar; see Grammar (on page 2624). Unsubscripted array
names can be used in only the following contexts:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2611

85419

85420

85421

85422

85423

85424

85425

85426

85427

85428

85429

85430

85431

85432

85433

85434

85435

85436

85437

85438

85439

85440

85441

85442

85443

85444

85445

85446

85447

85448

85449

85450

85451

85452

85453

85454

85455

85456

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

• A parameter in a function definition or function call

• The NAME token following any use of the keyword in as specified in the grammar (see
Grammar, on page 2624); if the name used in this context is not an array name, the
behavior is undefined

• The NAME token following the keyword Delete without a subscript as specified in the
grammar (see Grammar, on page 2624); if the name used in this context is not an array
name, the behavior is undefined.

A valid array index shall consist of one or more <comma>-separated expressions, similar to the
way in which multi-dimensional arrays are indexed in some programming languages. Because
awk arrays are really one-dimensional, such a <comma>-separated list shall be converted to a
single string by concatenating the string values of the separate expressions, each separated from
the other by the value of the SUBSEP variable. Thus, the following two index operations shall be
equivalent:

var[expr1, expr2, ... exprn]

var[expr1 SUBSEP expr2 SUBSEP ... SUBSEP exprn]

The application shall ensure that a multi-dimensioned index used with the in operator is
parenthesized. The in operator, which tests for the existence of a particular array element, shall
not cause that element to exist. Any other reference to a nonexistent array element shall
automatically create it.

Comparisons (with the '<', "<=", "!=", "==", '>', and ">=" operators) shall be made
numerically:

• if both operands are numeric,

• if one is numeric and the other has a string value that is a numeric string,

• if both have string values that are numeric strings, or

• if one is numeric and the other has the uninitialized value.

Otherwise, operands shall be converted to strings as required and a string comparison shall be
made as follows:

• For the "!=" and "==" operators, the strings shall be compared to check if they are
identical (not to check if they collate equally).

• For the other operators, the strings shall be compared using the locale-specific collation
sequence.

The value of the comparison expression shall be 1 if the relation is true, or 0 if the relation is
false.

Variables and Special Variables

Variables can be used in an awk program by referencing them. With the exception of function
parameters (see User-Defined Functions, on page 2624), they are not explicitly declared.
Function parameter names shall be local to the function; all other variable names shall be global.
The same name shall not be used as both a function parameter name and as the name of a
function or a special awk variable. The same name shall not be used both as a variable name with
global scope and as the name of a function. The same name shall not be used within the same
scope both as a scalar variable and as an array. Uninitialized variables, including scalar
variables, array elements, and field variables, shall have an uninitialized value. An uninitialized
value shall have both a numeric value of zero and a string value of the empty string. Evaluation

2612 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85457

85458

85459

85460

85461

85462

85463

85464

85465

85466

85467

85468

85469

85470

85471

85472

85473

85474

85475

85476

85477

85478

85479

85480

85481

85482

85483

85484

85485

85486

85487

85488

85489

85490

85491

85492

85493

85494

85495

85496

85497

85498

85499

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

of variables with an uninitialized value, to either string or numeric, shall be determined by the
context in which they are used.

Field variables shall be designated by a '$' followed by a number or numerical expression. The
effect of the field number expression evaluating to anything other than a non-negative integer is
unspecified; uninitialized variables or string values need not be converted to numeric values in
this context. New field variables can be created by assigning a value to them. References to
nonexistent fields (that is, fields after $NF), shall evaluate to the uninitialized value. Such
references shall not create new fields. However, assigning to a nonexistent field (for example,
$(NF+2)=5) shall increase the value of NF; create any intervening fields with the uninitialized
value; and cause the value of $0 to be recomputed, with the fields being separated by the value
of OFS. Each field variable shall have a string value or an uninitialized value when created.
Field variables shall have the uninitialized value when created from $0 using FS and the variable
does not contain any characters. If appropriate, the field variable shall be considered a numeric
string (see Expressions in awk, on page 2608).

Implementations shall support the following other special variables that are set by awk:

ARGC A number determining when the iteration described for ARGV stops. When an
awk program starts, ARGC shall be initialized to the number of elements in the
ARGV array. ARGC can be updated by the awk program and by assignment
operands. If ARGC is set to a value less than 1, the behavior is unspecified. It is
unspecified whether alterations to ARGC can be made using the −v option.

ARGV An array containing, initially, the command name (see Section 2.9.1, on page 2500)
used to invoke awk in ARGV[0] and the command line arguments, if any,
excluding options and the program operand, in ARGV[1] through ARGV[ARGC-1].
The elements in ARGV can be assigned new values or deleted, and new elements
can be added. Note that alterations to ARGV cannot be made using either the
assignment operand or the −v option, because an operand with a '[' before '=' is
treated as a file operand, not an assignment operand, and applications are required
to ensure that the −v option-argument has the same form as an assignment operand.
(See the OPTIONS and OPERANDS sections.)

After processing the BEGIN actions, if any, awk begins interating over the elements
of ARGV, processing them as if they were argument operands. It shall behave as if
the implementation maintains an internal counter that is initialized to 1 and
increments by 1 at the end of each iteration. For each iteration, the following shall
occur:

• If the internal counter is greater than or equal to the current value of ARGC
and no file operands have been processed, awk shall set FILENAME to '-'
and process standard input as if it was given as a file operand. The internal
counter shall not be incremented at the end of this iteration.

• Otherwise, if the internal counter is greater than or equal to the current value
of ARGC, the iterations shall stop and processing of the END actions, if any,
shall begin. Any ARGV elements with index values greater than or equal to
ARGC shall not be processed as argument operands.

• Otherwise, if the element ARGV[internal counter value] does not exist, it is
unspecified whether that element is created. No other action shall be taken.

• Otherwise, if ARGV[internal counter value] is a null string, no action shall be
taken.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2613

85500

85501

85502

85503

85504

85505

85506

85507

85508

85509

85510

85511

85512

85513

85514

85515

85516

85517

85518

85519

85520

85521

85522

85523

85524

85525

85526

85527

85528

85529

85530

85531

85532

85533

85534

85535

85536

85537

85538

85539

85540

85541

85542

85543

85544

85545

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

• Otherwise, if ARGV[internal counter value] matches the format of an
assignment operand (see OPERANDS), awk shall process the assignment.

• Otherwise, ARGV[internal counter value] shall be treated as a file operand,
FILENAME shall be set to that value, and the named file, or standard input if
the value is '-', shall be processed as an input file.

Since only non-null elements are processed, setting an element of ARGV to the
null string or deleting it means that it shall not be treated as an argument operand.

CONVFMT The printf format for converting numbers to strings (except for output statements,
where OFMT is used); "%.6g" by default.

ENVIRON An array representing the value of the environment, as described in the exec
functions defined in the System Interfaces volume of POSIX.1-2024. The indices of
the array shall be strings consisting of the names of the environment variables, and
the value of each array element shall be a string consisting of the value of that
variable. If appropriate, the environment variable shall be considered a numeric
string (see Expressions in awk, on page 2608); the array element shall also have its
numeric value.

In all cases where the behavior of awk is affected by environment variables
(including the environment of any commands that awk executes via the system
function or via pipeline redirections with the print statement, the printf statement,
or the getline function), the environment used shall be the environment at the time
awk began executing; it is implementation-defined whether any modification of
ENVIRON affects this environment.

FILENAME The pathname used to open the current input file, or '-' if the file is standard
input. Inside a BEGIN action FILENAME shall be unset. Inside an END action the
value shall be the name of the last input file processed. If an application changes
the value of FILENAME, the results are unspecified.

FNR The ordinal number of the current record in the current file. Inside a BEGIN action
the value shall be zero. Inside an END action the value shall be the number of the
last record processed in the last file processed.

FS Input field separator regular expression; a <space> by default.

NF The number of fields in the current record. Inside a BEGIN action, the use of NF is
undefined unless a getline function without a var argument is executed previously.
Inside an END action, NF shall retain the value it had for the last record read,
unless a subsequent, redirected, getline function without a var argument is
performed prior to entering the END action.

NR The ordinal number of the current record from the start of input. Inside a BEGIN
action the value shall be zero. Inside an END action the value shall be the number
of the last record processed. Records skipped by the nextfile statement shall not
be included.

OFMT The printf format for converting numbers to strings in output statements (see
Output Statements, on page 2619); "%.6g" by default. The result of the conversion
is unspecified if the value of OFMT is not a floating-point format specification.

OFS The print statement output field separator; <space> by default.

2614 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85546

85547

85548

85549

85550

85551

85552

85553

85554

85555

85556

85557

85558

85559

85560

85561

85562

85563

85564

85565

85566

85567

85568

85569

85570

85571

85572

85573

85574

85575

85576

85577

85578

85579

85580

85581

85582

85583

85584

85585

85586

85587

85588

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

ORS The print statement output record separator; a <newline> by default.

RLENGTH The length of the string matched by the match function.

RS The first character of the string value of RS shall be the input record separator; a
<newline> by default. If RS contains more than one character, the results are
unspecified. If RS is null, then records are separated by sequences consisting of a
<newline> plus one or more blank lines, leading or trailing blank lines shall not
result in empty records at the beginning or end of the input, and a <newline> shall
always be a field separator, no matter what the value of FS is.

RSTART The starting position of the string matched by the match function, numbering from
1. This shall always be equivalent to the return value of the match function.

SUBSEP The subscript separator string for multi-dimensional arrays; the default value is
implementation-defined.

Regular Expressions

The awk utility shall make use of the extended regular expression notation (see XBD Section 9.4,
on page 187) except that it shall allow the use of C-language conventions for escaping special
characters within the EREs, as specified in the table in XBD Chapter 5 (on page 113) for '\\',
'\a', '\b', '\f', '\n', '\r', '\t', '\v' and in the following table for other sequences;
these escape sequences shall be recognized both inside and outside bracket expressions. Note
that records need not be separated by <newline> characters and string constants can contain
<newline> characters, so even the "\n" sequence is valid in awk EREs. Using a <slash>
character within the lexical token ERE (except as one of the two delimiters) requires the escaping
shown in the following table.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2615

85589

85590

85591

85592

85593

85594

85595

85596

85597

85598

85599

85600

85601

85602

85603

85604

85605

85606

85607

85608

85609

85610

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

Table 3-2 Escape Sequences in awk

Escape
Sequence Description Meaning
\" <backslash> <quotation-mark> In the lexical token STRING,

<quotation-mark> character.
Otherwise undefined.

\/ <backslash> <slash> In the lexical token ERE, <slash>
character. Otherwise undefined.

\ddd A <backslash> character followed by
the longest sequence of one, two, or
three octal-digit characters (01234567).
If all of the digits are 0 (that is,
representation of the NUL character),
the behavior is undefined. If the digits
produce a value greater than octal
377, the behavior is undefined.

The character whose encoding is
represented by the one, two, or three-
digit octal integer. Multi-byte
characters require multiple,
concatenated escape sequences of this
type, including the leading
<backslash> for each byte.

\., \[, \(, A <backslash> character followed by In the lexical token ERE when not
*, \+, \?, a character that has a special inside a bracket expression, the
\{, \|, \^, sequence shall represent itself.meaning in EREs (see XBD
\$ Otherwise undefined.Section 9.4), other than <backslash>.
\\ Two <backslash> characters. In the lexical token ERE, the sequence

shall represent itself. In the lexical
token STRING, it shall represent a
single <backslash>.

\c UndefinedA <backslash> character followed by
any character not described in this
table or in the table in XBD Chapter 5
(on page 113) ('\\', '\a', '\b',
'\f', '\n', '\r', '\t', '\v').

A regular expression can be matched against a specific field or string by using one of the two
regular expression matching operators, '~' and "!~". These operators shall interpret their
right-hand operand as a regular expression and their left-hand operand as a string. If the regular
expression matches the string, the '~' expression shall evaluate to a value of 1, and the "!~"
expression shall evaluate to a value of 0. (The regular expression matching operation is as
defined by the term matched in XBD Section 9.1 (on page 179), where a match occurs on any part
of the string unless the regular expression is limited with the <circumflex> or <dollar-sign>
special characters.) If the regular expression does not match the string, the '~' expression shall
evaluate to a value of 0, and the "!~" expression shall evaluate to a value of 1. If the right-hand
operand is any expression other than the lexical token ERE, the string value of the expression
shall be interpreted as an extended regular expression, including the escape conventions
described above. Note that these escape conventions shall also be applied in determining the
value of a string literal (the lexical token STRING), and thus shall be applied a second time
when a string literal is used in this context.

When an ERE token appears as an expression in any context other than as the right-hand of the
'~' or "!~" operator or as one of the built-in function arguments described below, the value of
the resulting expression shall be the equivalent of:

$0 ~ /ere/

2616 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85611

85612

85613

85614

85615

85616

85617

85618

85619

85620

85621

85622

85623

85624

85625

85626

85627

85628

85629

85630

85631

85632

85633

85634

85635

85636

85637

85638

85639

85640

85641

85642

85643

85644

85645

85646

85647

85648

85649

85650

85651

85652

85653

85654

85655

85656

85657

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

The ere argument to the gsub, match, sub functions, and the fs argument to the split function
(see String Functions, on page 2621) shall be interpreted as extended regular expressions. These
can be either ERE tokens or arbitrary expressions, and shall be interpreted in the same manner
as the right-hand side of the '~' or "!~" operator.

An extended regular expression can be used to separate fields by assigning a string containing
the expression to the built-in variable FS, either directly or as a consequence of using the −F
sepstring option. The default value of the FS variable shall be a single <space>. The following
describes FS behavior:

1. If FS is a null string, the behavior is unspecified.

2. If FS is a single character:

a. If FS is <space>, skip leading and trailing <blank> and <newline> characters;
fields shall be delimited by sets of one or more <blank> or <newline> characters.

b. Otherwise, if FS is any other character c, fields shall be delimited by each single
occurrence of c.

3. Otherwise, the string value of FS shall be considered to be an extended regular
expression. Each occurrence of a sequence of one or more characters matching the
extended regular expression shall delimit fields.

When ERE matching is performed against input records; that is, the match is against $0 and the
current value of $0 resulted from processing an input record, record separator characters (the
first character of the value of the variable RS, <newline> by default) cannot be embedded in the
expression, and no expression shall match the record separator character. If the record separator
is not <newline>, <newline> characters embedded in the expression can be matched. When ERE
matching is not performed against input records, it shall be based on text strings; any character
(including <newline> and the record separator) can be embedded in the pattern, and an
appropriate pattern shall match any character. However, in all awk ERE matching, the use of one
or more NUL characters in the pattern, input record, or text string produces undefined results.

Patterns

A pattern is any valid expression, a range specified by two expressions separated by a comma, or
one of the two special patterns BEGIN or END.

Special Patterns

The awk utility shall recognize two special patterns, BEGIN and END. Each BEGIN pattern
shall be matched once and its associated action executed before the first record of input is read—
except possibly by use of the getline function (see Input/Output and General Functions, on
page 2623) in a prior BEGIN action—and before command line assignment is done. Each END
pattern shall be matched once and its associated action executed after the last record of input has
been read, or if there is no further input file to process following a nextfile statement. These two
patterns shall have associated actions.

BEGIN and END shall not combine with other patterns. Multiple BEGIN and END patterns
shall be allowed. The actions associated with the BEGIN patterns shall be executed in the order
specified in the program, as are the END actions. An END pattern can precede a BEGIN pattern
in a program.

If an awk program consists of only actions with the pattern BEGIN, and the BEGIN action
contains no getline function, awk shall exit without reading its input when the last statement in
the last BEGIN action is executed. If an awk program consists of only actions with the pattern

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2617

85658

85659

85660

85661

85662

85663

85664

85665

85666

85667

85668

85669

85670

85671

85672

85673

85674

85675

85676

85677

85678

85679

85680

85681

85682

85683

85684

85685

85686

85687

85688

85689

85690

85691

85692

85693

85694

85695

85696

85697

85698

85699

85700

85701

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

END or only actions with the patterns BEGIN and END, the input shall be read before the
statements in the END actions are executed.

Expression Patterns

An expression pattern shall be evaluated as if it were an expression in a Boolean context. If the
result is true, the pattern shall be considered to match, and the associated action (if any) shall be
executed. If the result is false, the action shall not be executed.

Pattern Ranges

A pattern range consists of two expressions separated by a comma; in this case, the action shall
be performed for all records between a match of the first expression and the following match of
the second expression, inclusive. At this point, the pattern range can be repeated starting at
input records subsequent to the end of the matched range.

Actions

An action is a sequence of statements as shown in the grammar in Grammar (on page 2624).
Any single statement can be replaced by a statement list enclosed in curly braces. The
application shall ensure that statements in a statement list are separated by <newline> or
<semicolon> characters. Statements in a statement list shall be executed sequentially in the order
that they appear.

The expression acting as the conditional in an if statement shall be evaluated and if it is non-zero
or non-null, the following statement shall be executed; otherwise, if else is present, the statement
following the else shall be executed.

The if, while, do. . .while, for, break, and continue statements are based on the ISO C standard
(see Section 1.1.2, on page 2457), except that the Boolean expressions shall be treated as
described in Expressions in awk (on page 2608), and except in the case of:

for (variable in array)

which shall iterate, assigning each index of array to variable in an unspecified order. The results of
adding new elements to array within such a for loop are undefined. If a break or continue
statement occurs outside of a loop, the behavior is undefined.

The delete statement shall remove either a specified individual array element or, if no element is
specified, all array elements. Thus, the following code:

for (index in array)
delete array[index]

is equivalent to:

delete array

Both delete all elements of the array.

The next statement shall cause all further processing of the current input record to be
abandoned. The behavior is undefined if a next statement appears or is invoked in a BEGIN or
END action.

The nextfile statement shall cause all further processing of the current input file to be
abandoned. The behavior is undefined if a nextfile statement appears or is invoked in a BEGIN
or END action, or in a user-defined function.

The exit statement shall invoke all END actions in the order in which they occur in the program

2618 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85702

85703

85704

85705

85706

85707

85708

85709

85710

85711

85712

85713

85714

85715

85716

85717

85718

85719

85720

85721

85722

85723

85724

85725

85726

85727

85728

85729

85730

85731

85732

85733

85734

85735

85736

85737

85738

85739

85740

85741

85742

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

source and then terminate the program without reading further input. An exit statement inside
an END action shall terminate the program without further execution of END actions. If an
expression is specified in an exit statement, its numeric value shall be the exit status of awk,
unless subsequent errors are encountered or a subsequent exit statement with an expression is
executed.

Output Statements

Both print and printf statements shall write to standard output by default. The output shall be
written to the location specified by output_redirection if one is supplied, as follows:

> expression
>> expression
| expression

In all cases, the expression shall be evaluated to produce a string that is used as a pathname into
which to write (for '>' or ">>") or as a command to be executed (for '|'). Using the first two
forms, if the file of that name is not currently open, it shall be opened, creating it if necessary
and using the first form, truncating the file. The output then shall be appended to the file. As
long as the file remains open, subsequent calls in which expression evaluates to the same string
value shall simply append output to the file. The file remains open until the close function (see
Input/Output and General Functions, on page 2623) is called with an expression that evaluates
to the same string value.

The third form shall write output onto a stream piped to the input of a command. The stream
shall be created if no stream is currently open with the value of expression as its command name.
The stream created shall be equivalent to one created by a call to the popen() function defined in
the System Interfaces volume of POSIX.1-2024 with the value of expression as the command
argument and a value of w as the mode argument. As long as the stream remains open,
subsequent calls in which expression evaluates to the same string value shall write output to the
existing stream. The stream shall remain open until the close function (see Input/Output and
General Functions, on page 2623) is called with an expression that evaluates to the same string
value. At that time, the stream shall be closed as if by a call to the pclose() function defined in
the System Interfaces volume of POSIX.1-2024.

As described in detail by the grammar in Grammar (on page 2624), these output statements shall
take a <comma>-separated list of expressions referred to in the grammar by the non-terminal
symbols expr_list, print_expr_list, or print_expr_list_opt. This list is referred to here as the
expression list, and each member is referred to as an expression argument.

The print statement shall write the value of each expression argument onto the indicated output
stream separated by the current output field separator (see variable OFS above), and terminated
by the output record separator (see variable ORS above). All expression arguments shall be
taken as strings, being converted if necessary; this conversion shall be as described in
Expressions in awk (on page 2608), with the exception that the printf format in OFMT shall be
used instead of the value in CONVFMT. An empty expression list shall stand for the whole
input record ($0).

The printf statement shall produce output based on a notation similar to the File Format
Notation used to describe file formats in this volume of POSIX.1-2024 (see XBD Chapter 5, on
page 113). Output shall be produced as specified with the first expression argument as the string
format and subsequent expression arguments as the strings arg1 to argn, inclusive, with the
following exceptions:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2619

85743

85744

85745

85746

85747

85748

85749

85750

85751

85752

85753

85754

85755

85756

85757

85758

85759

85760

85761

85762

85763

85764

85765

85766

85767

85768

85769

85770

85771

85772

85773

85774

85775

85776

85777

85778

85779

85780

85781

85782

85783

85784

85785

85786

85787

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

1. The format shall be an actual character string rather than a graphical representation.
Therefore, it cannot contain empty character positions. The <space> in the format string,
in any context other than a flag of a conversion specification, shall be treated as an
ordinary character that is copied to the output.

2. If the character set contains a 'Δ' character and that character appears in the format
string, it shall be treated as an ordinary character that is copied to the output.

3. The escape sequences beginning with a <backslash> character shall be treated as sequences
of ordinary characters that are copied to the output. Note that these same sequences shall
be interpreted lexically by awk when they appear in literal strings, but they shall not be
treated specially by the printf statement.

4. A field width or precision can be specified as the '*' character instead of a digit string. In
this case the next argument from the expression list shall be fetched and its numeric value
taken as the field width or precision.

5. The implementation shall not precede or follow output from the d or u conversion
specifier characters with <blank> characters not specified by the format string.

6. The implementation shall not precede output from the o conversion specifier character
with leading zeros not specified by the format string.

7. For the c conversion specifier character: if the argument has a numeric value, the
character whose encoding is that value shall be output. If the value is zero or is not the
encoding of any character in the character set, the behavior is undefined. If the argument
does not have a numeric value, the first character of the string value shall be output; if the
string does not contain any characters, the behavior is undefined.

8. For each conversion specification that consumes an argument, the next expression
argument shall be evaluated. With the exception of the c conversion specifier character,
the value shall be converted (according to the rules specified in Expressions in awk, on
page 2608) to the appropriate type for the conversion specification.

9. If there are insufficient expression arguments to satisfy all the conversion specifications in
the format string, the behavior is undefined.

10. If any character sequence in the format string begins with a '%' character, but does not
form a valid conversion specification, the behavior is unspecified.

Both print and printf can output at least {LINE_MAX} bytes.

Functions

The awk language has a variety of built-in functions: arithmetic, string, input/output, and
general.

Function parameters, if present, can be either scalars or arrays; the behavior is undefined if an
array name is passed as a parameter that the function uses as a scalar, or if a scalar expression is
passed as a parameter that the function uses as an array. Function parameters shall be passed by
value if scalar and by reference if array name.

2620 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85788

85789

85790

85791

85792

85793

85794

85795

85796

85797

85798

85799

85800

85801

85802

85803

85804

85805

85806

85807

85808

85809

85810

85811

85812

85813

85814

85815

85816

85817

85818

85819

85820

85821

85822

85823

85824

85825

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

Arithmetic Functions

The arithmetic functions, except for int, shall be based on the ISO C standard (see Section 1.1.2,
on page 2457). The behavior is undefined in cases where the ISO C standard specifies that an
error be returned or that the behavior is undefined. Although the grammar (see Grammar, on
page 2624) permits built-in functions to appear with no arguments or parentheses, unless the
argument or parentheses are indicated as optional in the following list (by displaying them
within the "[]" brackets), such use is undefined.

atan2(y,x) Return arctangent of y/x in radians in the range [−π,π].

cos(x) Return cosine of x, where x is in radians.

sin(x) Return sine of x, where x is in radians.

exp(x) Return the exponential function of x.

log(x) Return the natural logarithm of x.

sqrt(x) Return the square root of x.

int(x) Return the argument truncated to an integer. Truncation shall be toward 0 when
x>0.

rand() Return a floating point pseudo-random number n, such that 0≤n<1.

srand([expr]) Set the seed value for rand to expr or use the seconds since the Epoch if expr is
omitted. The previous seed value shall be returned. The behavior is unspecified if
expr is not an integer expression or if the value of expr is not within the range 0
through 231−1 (2 147 483 647), inclusive. The initial seed value is unspecified if rand
is called without calling srand first. The srand function uses the argument as a
seed for a new sequence of pseudo-random numbers to be returned by subsequent
calls to rand. If srand is then called with the same seed value, the sequence of
pseudo-random numbers shall be repeated.

String Functions

The string functions in the following list shall be supported. Although the grammar (see
Grammar, on page 2624) permits built-in functions to appear with no arguments or parentheses,
unless the argument or parentheses are indicated as optional in the following list (by displaying
them within the "[]" brackets), such use is undefined.

gsub(ere, repl[, in])
Behave like sub (see below), except that it shall replace all occurrences of the
regular expression (like the ed utility global substitute) in $0 or in the in argument,
when specified.

index(s, t) Return the position, in characters, numbering from 1, in string s where string t first
occurs, or zero if it does not occur at all.

length[([arg])]
If arg is an array, return the number of elements in the array; otherwise, return the
length, in characters, of arg taken as a string, or of the whole record, $0, if there is
no argument.

match(s, ere) Return the position, in characters, numbering from 1, in string s where the
extended regular expression ere occurs, or zero if it does not occur at all. RSTART
shall be set to the starting position (which is the same as the returned value), zero
if no match is found; RLENGTH shall be set to the length of the matched string, −1

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2621

85826

85827

85828

85829

85830

85831

85832

85833

85834

85835

85836

85837

85838

85839

85840

85841

85842

85843

85844

85845

85846

85847

85848

85849

85850

85851

85852

85853

85854

85855

85856

85857

85858

85859

85860

85861

85862

85863

85864

85865

85866

85867

85868

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

if no match is found.

split(s, a[, fs])
Split the string s into array elements a[1], a[2], . . ., a[n], and return n. All elements
of the array shall be deleted before the split is performed. The separation shall be
done with the ERE fs or with the field separator FS if fs is not given. Each array
element shall have a string value when created and, if appropriate, the array
element shall be considered a numeric string (see Expressions in awk, on page
2608). The effect of a null string as the value of fs is unspecified.

sprintf(fmt, expr, expr, . . .)
Format the expressions according to the printf format given by fmt and return the
resulting string.

sub(ere, repl[, in])
Substitute the string repl in place of the first instance of the extended regular
expression ERE in string in and return the number of substitutions. An
<ampersand> ('&') appearing in the string repl shall be replaced by the string
from in that matches the ERE. An <ampersand> preceded with a <backslash> shall
be interpreted as the literal <ampersand> character. An occurrence of two
consecutive <backslash> characters shall be interpreted as just a single literal
<backslash> character. Any other occurrence of a <backslash> (for example,
preceding any other character) shall be treated as a literal <backslash> character.
Note that if repl is a string literal (the lexical token STRING; see Grammar, on page
2624), the handling of the <ampersand> character occurs after any lexical
processing, including any lexical <backslash>-escape sequence processing. If in is
specified and it is not an lvalue (see Expressions in awk, on page 2608), the
behavior is undefined. If in is omitted, awk shall use the current record ($0) in its
place.

substr(s, m[, n])
Return the at most n-character substring of s that begins at position m, numbering
from 1. If n is omitted, or if n specifies more characters than are left in the string,
the length of the substring shall be limited by the length of the string s.

tolower(s) Return a string based on the string s. Each character in s that is an uppercase letter
specified to have a tolower mapping by the LC_CTYPE category of the current
locale shall be replaced in the returned string by the lowercase letter specified by
the mapping. Other characters in s shall be unchanged in the returned string.

toupper(s) Return a string based on the string s. Each character in s that is a lowercase letter
specified to have a toupper mapping by the LC_CTYPE category of the current
locale is replaced in the returned string by the uppercase letter specified by the
mapping. Other characters in s are unchanged in the returned string.

All of the preceding functions that take ERE as a parameter expect a pattern or a string valued
expression that is a regular expression as defined in Regular Expressions (on page 2615).

2622 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85869

85870

85871

85872

85873

85874

85875

85876

85877

85878

85879

85880

85881

85882

85883

85884

85885

85886

85887

85888

85889

85890

85891

85892

85893

85894

85895

85896

85897

85898

85899

85900

85901

85902

85903

85904

85905

85906

85907

85908

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

Input/Output and General Functions

The input/output and general functions are:

close(expression)
Close the file or pipe opened by a print or printf statement or a call to getline with
the same string-valued expression. The limit on the number of open expression
arguments is implementation-defined. If the close was successful, the function
shall return zero; otherwise, it shall return non-zero.

fflush([expression])
Write any unwritten data to the file or piped stream opened by a print or printf
statement with the same string-valued expression. If no argument, or if expression
evaluates to the null string, then write all such data for all such open files and
piped streams, and standard output.

If fflush is successful, it shall return 0; otherwise, it shall return non-zero.

expression | getline [var]
Read a record of input from a stream piped from the output of a command. The
stream shall be created if no stream is currently open with the value of expression as
its command name. The stream created shall be equivalent to one created by a call
to the popen() function with the value of expression as the command argument and a
value of r as the mode argument. As long as the stream remains open, subsequent
calls in which expression evaluates to the same string value shall read subsequent
records from the stream. The stream shall remain open until the close function is
called with an expression that evaluates to the same string value. At that time, the
stream shall be closed as if by a call to the pclose() function. If var is omitted, $0 and
NF shall be set; otherwise, var shall be set and, if appropriate, it shall be considered
a numeric string (see Expressions in awk, on page 2608).

The getline operator can form ambiguous constructs when there are
unparenthesized operators (including concatenate) to the left of the '|' (to the
beginning of the expression containing getline). In the context of the '$' operator,
'|' shall behave as if it had a lower precedence than '$'. The result of evaluating
other operators is unspecified, and conforming applications shall parenthesize
properly all such usages.

getline Set $0 to the next input record from the current input file. This form of getline shall
set the NF, NR, and FNR variables.

getline var Set variable var to the next input record from the current input file and, if
appropriate, var shall be considered a numeric string (see Expressions in awk, on
page 2608). This form of getline shall set the FNR and NR variables.

getline [var] < expression
Read the next record of input from a named file. The expression shall be evaluated
to produce a string that is used as a pathname. If the file of that name is not
currently open, it shall be opened. As long as the stream remains open, subsequent
calls in which expression evaluates to the same string value shall read subsequent
records from the file. The file shall remain open until the close function is called
with an expression that evaluates to the same string value. If var is omitted, $0 and
NF shall be set; otherwise, var shall be set and, if appropriate, it shall be considered
a numeric string (see Expressions in awk, on page 2608).

The getline operator can form ambiguous constructs when there are
unparenthesized binary operators (including concatenate) to the right of the '<'

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2623

85909

85910

85911

85912

85913

85914

85915

85916

85917

85918

85919

85920

85921

85922

85923

85924

85925

85926

85927

85928

85929

85930

85931

85932

85933

85934

85935

85936

85937

85938

85939

85940

85941

85942

85943

85944

85945

85946

85947

85948

85949

85950

85951

85952

85953

85954

85955

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

(up to the end of the expression containing the getline). The result of evaluating
such a construct is unspecified, and conforming applications shall parenthesize
properly all such usages.

system(expression)
Execute the command given by expression in a manner equivalent to the system()
function defined in the System Interfaces volume of POSIX.1-2024 and return the
exit status of the command.

All forms of getline shall return 1 for successful input, zero for end-of-file, and −1 for an error.

Where strings are used as the name of a file or pipeline, the application shall ensure that the
strings are textually identical. The terminology ``same string value’’ implies that ``equivalent
strings’’, even those that differ only by <space> characters, represent different files.

User-Defined Functions

The awk language also provides user-defined functions. Such functions can be defined as:

function name([parameter, ...]) { statements }

A function can be referred to anywhere in an awk program; in particular, its use can precede its
definition. The scope of a function is global.

The number of parameters in the function definition need not match the number of parameters
in the function call. Excess formal parameters can be used as local variables. If fewer arguments
are supplied in a function call than are in the function definition, the extra parameters that are
used in the function body as scalars shall evaluate to the uninitialized value until they are
otherwise initialized, and the extra parameters that are used in the function body as arrays shall
be treated as uninitialized arrays where each element evaluates to the uninitialized value until
otherwise initialized.

When invoking a function, no white space can be placed between the function name and the
opening parenthesis. Function calls can be nested and recursive calls can be made upon
functions. Upon return from any nested or recursive function call, the values of all of the calling
function’s parameters shall be unchanged, except for array parameters passed by reference. The
return statement can be used to return a value. If a return statement appears outside of a
function definition, the behavior is undefined.

In the function definition, <newline> characters shall be optional before the opening brace and
after the closing brace. Function definitions can appear anywhere in the program where a
pattern-action pair is allowed.

Grammar

The grammar in this section and the lexical conventions in the following section shall together
describe the syntax for awk programs. The general conventions for this style of grammar are
described in Section 1.3 (on page 2461). A valid program can be represented as the non-terminal
symbol program in the grammar. This formal syntax shall take precedence over the preceding
text syntax description.

%token NAME NUMBER STRING ERE
%token FUNC_NAME /* Name followed by '(' without white space. */

/* Keywords */
%token Begin End
/* 'BEGIN' 'END' */

2624 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

85956

85957

85958

85959

85960

85961

85962

85963

85964

85965

85966

85967

85968

85969

85970

85971

85972

85973

85974

85975

85976

85977

85978

85979

85980

85981

85982

85983

85984

85985

85986

85987

85988

85989

85990

85991

85992

85993

85994

85995

85996

85997

85998

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

%token Break Continue Delete Do Else
/* 'break' 'continue' 'delete' 'do' 'else' */

%token Exit For Function If In Next
/* 'exit' 'for' 'function' 'if' 'in' 'next' */

%token Nextfile Print Printf Return While
/* 'nextfile' 'print' 'printf' 'return' 'while' */

/* Reserved function names */
%token BUILTIN_FUNC_NAME

/* One token for the following:
* atan2 cos sin exp log sqrt int rand srand
* gsub index length match split sprintf sub
* substr tolower toupper close fflush system
*/

%token GETLINE
/* Syntactically different from other built-ins. */

/* Two-character tokens. */
%token ADD_ASSIGN SUB_ASSIGN MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN POW_ASSIGN
/* '+=' '-=' '*=' '/=' '%=' '^=' */

%token OR AND NO_MATCH EQ LE GE NE INCR DECR APPEND
/* '||' '&&' '!~' '==' '<=' '>=' '!=' '++' '--' '>>' */

/* One-character tokens. */
%token '{' '}' '(' ')' '[' ']' ',' ';' NEWLINE
%token '+' '-' '*' '%' '^' '!' '>' '<' '|' '?' ':' '~' '$' '='

%start program
%%

program : item_list
| item_list item
;

item_list : /* empty */
| item_list item terminator
;

item : action
| pattern action
| normal_pattern
| Function NAME '(' param_list_opt ')'

newline_opt action
| Function FUNC_NAME '(' param_list_opt ')'

newline_opt action
;

param_list_opt : /* empty */
| param_list
;

param_list : NAME
| param_list ',' NAME
;

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2625

85999

86000

86001

86002

86003

86004

86005

86006

86007

86008

86009

86010

86011

86012

86013

86014

86015

86016

86017

86018

86019

86020

86021

86022

86023

86024

86025

86026

86027

86028

86029

86030

86031

86032

86033

86034

86035

86036

86037

86038

86039

86040

86041

86042

86043

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

pattern : normal_pattern
| special_pattern
;

normal_pattern : expr
| expr ',' newline_opt expr
;

special_pattern : Begin
| End
;

action : '{' newline_opt '}'
| '{' newline_opt terminated_statement_list '}'
| '{' newline_opt unterminated_statement_list '}'
;

terminator : terminator NEWLINE
| ';'
| NEWLINE
;

terminated_statement_list : terminated_statement
| terminated_statement_list terminated_statement
;

unterminated_statement_list : unterminated_statement
| terminated_statement_list unterminated_statement
;

terminated_statement : action newline_opt
| If '(' expr ')' newline_opt terminated_statement
| If '(' expr ')' newline_opt terminated_statement

Else newline_opt terminated_statement
| While '(' expr ')' newline_opt terminated_statement
| For '(' simple_statement_opt ';'

expr_opt ';' simple_statement_opt ')' newline_opt
terminated_statement

| For '(' NAME In NAME ')' newline_opt
terminated_statement

| ';' newline_opt
| terminatable_statement NEWLINE newline_opt
| terminatable_statement ';' newline_opt
;

unterminated_statement : terminatable_statement
| If '(' expr ')' newline_opt unterminated_statement
| If '(' expr ')' newline_opt terminated_statement

Else newline_opt unterminated_statement
| While '(' expr ')' newline_opt unterminated_statement
| For '(' simple_statement_opt ';'
expr_opt ';' simple_statement_opt ')' newline_opt

unterminated_statement
| For '(' NAME In NAME ')' newline_opt

unterminated_statement
;

2626 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86044

86045

86046

86047

86048

86049

86050

86051

86052

86053

86054

86055

86056

86057

86058

86059

86060

86061

86062

86063

86064

86065

86066

86067

86068

86069

86070

86071

86072

86073

86074

86075

86076

86077

86078

86079

86080

86081

86082

86083

86084

86085

86086

86087

86088

86089

86090

86091

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

terminatable_statement : simple_statement
| Break
| Continue
| Next
| Nextfile
| Exit expr_opt
| Return expr_opt
| Do newline_opt terminated_statement While '(' expr ')'
;

simple_statement_opt : /* empty */
| simple_statement
;

simple_statement : Delete NAME '[' expr_list ']'
| Delete NAME
| expr
| print_statement
;

print_statement : simple_print_statement
| simple_print_statement output_redirection
;

simple_print_statement : Print print_expr_list_opt
| Print '(' multiple_expr_list ')'
| Printf print_expr_list
| Printf '(' multiple_expr_list ')'
;

output_redirection : '>' expr
| APPEND expr
| '|' expr
;

expr_list_opt : /* empty */
| expr_list
;

expr_list : expr
| multiple_expr_list
;

multiple_expr_list : expr ',' newline_opt expr
| multiple_expr_list ',' newline_opt expr
;

expr_opt : /* empty */
| expr
;

expr : unary_expr
| non_unary_expr
;

unary_expr : '+' expr
| '-' expr

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2627

86092

86093

86094

86095

86096

86097

86098

86099

86100

86101

86102

86103

86104

86105

86106

86107

86108

86109

86110

86111

86112

86113

86114

86115

86116

86117

86118

86119

86120

86121

86122

86123

86124

86125

86126

86127

86128

86129

86130

86131

86132

86133

86134

86135

86136

86137

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

| unary_expr '^' expr
| unary_expr '*' expr
| unary_expr '/' expr
| unary_expr '%' expr
| unary_expr '+' expr
| unary_expr '-' expr
| unary_expr non_unary_expr
| unary_expr '<' expr
| unary_expr LE expr
| unary_expr NE expr
| unary_expr EQ expr
| unary_expr '>' expr
| unary_expr GE expr
| unary_expr '~' expr
| unary_expr NO_MATCH expr
| unary_expr In NAME
| unary_expr AND newline_opt expr
| unary_expr OR newline_opt expr
| unary_expr '?' expr ':' expr
| unary_input_function
;

non_unary_expr : '(' expr ')'
| '!' expr
| non_unary_expr '^' expr
| non_unary_expr '*' expr
| non_unary_expr '/' expr
| non_unary_expr '%' expr
| non_unary_expr '+' expr
| non_unary_expr '-' expr
| non_unary_expr non_unary_expr
| non_unary_expr '<' expr
| non_unary_expr LE expr
| non_unary_expr NE expr
| non_unary_expr EQ expr
| non_unary_expr '>' expr
| non_unary_expr GE expr
| non_unary_expr '~' expr
| non_unary_expr NO_MATCH expr
| non_unary_expr In NAME
| '(' multiple_expr_list ')' In NAME
| non_unary_expr AND newline_opt expr
| non_unary_expr OR newline_opt expr
| non_unary_expr '?' expr ':' expr
| NUMBER
| STRING
| lvalue
| ERE
| lvalue INCR
| lvalue DECR
| INCR lvalue
| DECR lvalue

2628 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86138

86139

86140

86141

86142

86143

86144

86145

86146

86147

86148

86149

86150

86151

86152

86153

86154

86155

86156

86157

86158

86159

86160

86161

86162

86163

86164

86165

86166

86167

86168

86169

86170

86171

86172

86173

86174

86175

86176

86177

86178

86179

86180

86181

86182

86183

86184

86185

86186

86187

86188

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

| lvalue POW_ASSIGN expr
| lvalue MOD_ASSIGN expr
| lvalue MUL_ASSIGN expr
| lvalue DIV_ASSIGN expr
| lvalue ADD_ASSIGN expr
| lvalue SUB_ASSIGN expr
| lvalue '=' expr
| FUNC_NAME '(' expr_list_opt ')'

/* no white space allowed before '(' */
| BUILTIN_FUNC_NAME '(' expr_list_opt ')'
| BUILTIN_FUNC_NAME
| non_unary_input_function
;

print_expr_list_opt : /* empty */
| print_expr_list
;

print_expr_list : print_expr
| print_expr_list ',' newline_opt print_expr
;

print_expr : unary_print_expr
| non_unary_print_expr
;

unary_print_expr : '+' print_expr
| '-' print_expr
| unary_print_expr '^' print_expr
| unary_print_expr '*' print_expr
| unary_print_expr '/' print_expr
| unary_print_expr '%' print_expr
| unary_print_expr '+' print_expr
| unary_print_expr '-' print_expr
| unary_print_expr non_unary_print_expr
| unary_print_expr '~' print_expr
| unary_print_expr NO_MATCH print_expr
| unary_print_expr In NAME
| unary_print_expr AND newline_opt print_expr
| unary_print_expr OR newline_opt print_expr
| unary_print_expr '?' print_expr ':' print_expr
;

non_unary_print_expr : '(' expr ')'
| '!' print_expr
| non_unary_print_expr '^' print_expr
| non_unary_print_expr '*' print_expr
| non_unary_print_expr '/' print_expr
| non_unary_print_expr '%' print_expr
| non_unary_print_expr '+' print_expr
| non_unary_print_expr '-' print_expr
| non_unary_print_expr non_unary_print_expr
| non_unary_print_expr '~' print_expr
| non_unary_print_expr NO_MATCH print_expr

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2629

86189

86190

86191

86192

86193

86194

86195

86196

86197

86198

86199

86200

86201

86202

86203

86204

86205

86206

86207

86208

86209

86210

86211

86212

86213

86214

86215

86216

86217

86218

86219

86220

86221

86222

86223

86224

86225

86226

86227

86228

86229

86230

86231

86232

86233

86234

86235

86236

86237

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

| non_unary_print_expr In NAME
| '(' multiple_expr_list ')' In NAME
| non_unary_print_expr AND newline_opt print_expr
| non_unary_print_expr OR newline_opt print_expr
| non_unary_print_expr '?' print_expr ':' print_expr
| NUMBER
| STRING
| lvalue
| ERE
| lvalue INCR
| lvalue DECR
| INCR lvalue
| DECR lvalue
| lvalue POW_ASSIGN print_expr
| lvalue MOD_ASSIGN print_expr
| lvalue MUL_ASSIGN print_expr
| lvalue DIV_ASSIGN print_expr
| lvalue ADD_ASSIGN print_expr
| lvalue SUB_ASSIGN print_expr
| lvalue '=' print_expr
| FUNC_NAME '(' expr_list_opt ')'

/* no white space allowed before '(' */
| BUILTIN_FUNC_NAME '(' expr_list_opt ')'
| BUILTIN_FUNC_NAME
;

lvalue : NAME
| NAME '[' expr_list ']'
| '$' expr
;

non_unary_input_function : simple_get
| simple_get '<' expr
| non_unary_expr '|' simple_get
;

unary_input_function : unary_expr '|' simple_get
;

simple_get : GETLINE
| GETLINE lvalue
;

newline_opt : /* empty */
| newline_opt NEWLINE
;

This grammar has several ambiguities that shall be resolved as follows:

• Operator precedence and associativity shall be as described in Table 3-1 (on page 2608).

• In case of ambiguity, an else shall be associated with the most immediately preceding if
that would satisfy the grammar.

2630 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86238

86239

86240

86241

86242

86243

86244

86245

86246

86247

86248

86249

86250

86251

86252

86253

86254

86255

86256

86257

86258

86259

86260

86261

86262

86263

86264

86265

86266

86267

86268

86269

86270

86271

86272

86273

86274

86275

86276

86277

86278

86279

86280

86281

86282

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

• In some contexts, a <slash> ('/') that is used to surround an ERE could also be the
division operator. This shall be resolved in such a way that wherever the division operator
could appear, a <slash> is assumed to be the division operator. (There is no unary division
operator.)

Each expression in an awk program shall conform to the precedence and associativity rules, even
when this is not needed to resolve an ambiguity. For example, because '$' has higher
precedence than '++', the string "$x++--" is not a valid awk expression, even though it is
unambiguously parsed by the grammar as "$(x++)--".

One convention that might not be obvious from the formal grammar is where <newline>
characters are acceptable. There are several obvious placements such as terminating a statement,
and a <backslash> can be used to escape <newline> characters between any lexical tokens. In
addition, <newline> characters without <backslash> characters can follow a comma, an open
brace, logical AND operator ("&&"), logical OR operator ("||"), the do keyword, the else
keyword, and the closing parenthesis of an if, for, or while statement. For example:

{ print $1,
$2 }

Lexical Conventions

The lexical conventions for awk programs, with respect to the preceding grammar, shall be as
follows:

1. Except as noted, awk shall recognize the longest possible token or delimiter beginning at a
given point.

2. A comment shall consist of any characters beginning with the <number-sign> character
and terminated by, but excluding the next occurrence of, a <newline>. Comments shall
have no effect, except to delimit lexical tokens.

3. The <newline> shall be recognized as the token NEWLINE.

4. A <backslash> character immediately followed by a <newline> shall have no effect.

5. The token STRING shall represent a string constant. A string constant shall begin with
the character '"'. Within a string constant, a <backslash> character shall be considered
to begin an escape sequence as specified in the table in XBD Chapter 5 (on page 113)
('\\', '\a', '\b', '\f', '\n', '\r', '\t', '\v'). In addition, the escape sequences
in Table 3-2 (on page 2616) shall be recognized. A <newline> shall not occur within a
string constant. A string constant shall be terminated by the first unescaped occurrence of
the character '"' after the one that begins the string constant. The value of the string
shall be the sequence of all unescaped characters and values of escape sequences
between, but not including, the two delimiting '"' characters.

6. The token ERE represents an extended regular expression constant. An ERE constant
shall begin with the <slash> character. Within an ERE constant, a <backslash> character
shall be considered to begin an escape sequence as specified in the table in XBD Chapter 5
(on page 113). In addition, the escape sequences in Table 3-2 (on page 2616) shall be
recognized. The application shall ensure that a <newline> does not occur within an ERE
constant. An ERE constant shall be terminated by the first unescaped occurrence of the
<slash> character after the one that begins the ERE constant. The extended regular
expression represented by the ERE constant shall be the sequence of all unescaped
characters and values of escape sequences between, but not including, the two delimiting
<slash> characters.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2631

86283

86284

86285

86286

86287

86288

86289

86290

86291

86292

86293

86294

86295

86296

86297

86298

86299

86300

86301

86302

86303

86304

86305

86306

86307

86308

86309

86310

86311

86312

86313

86314

86315

86316

86317

86318

86319

86320

86321

86322

86323

86324

86325

86326

86327

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

7. A <blank> shall have no effect, except to delimit lexical tokens or within STRING or ERE
tokens.

8. The token NUMBER shall represent a numeric constant. Its form and numeric value shall
either be equivalent to the decimal-floating-constant token as specified by the ISO C
standard, or it shall be a sequence of decimal digits and shall be evaluated as an integer
constant in decimal. In addition, implementations may accept numeric constants with the
form and numeric value equivalent to the hexadecimal-constant and hexadecimal-
floating-constant tokens as specified by the ISO C standard. Note that these forms do not
use the radix character from the current locale; they always use a <period>.

If the value is too large or too small to be representable (see Section 1.1.2, on page 2457),
the behavior is undefined.

9. A sequence of underscores, digits, and alphabetics from the portable character set (see
XBD Section 6.1, on page 117), beginning with an <underscore> or alphabetic character,
shall be considered a word.

10. The following words are keywords that shall be recognized as individual tokens; the
name of the token is the same as the keyword:

BEGIN
break
continue

delete
do
else

END
exit
for

function
getline
if

in
next
nextfile

print
printf
return

while

11. The following words are names of built-in functions and shall be recognized as the token
BUILTIN_FUNC_NAME:

atan2
close
cos
exp

fflush
gsub
index

int
length
log

match
rand
sin

split
sprintf
sqrt

srand
sub
substr

system
tolower
toupper

The above-listed keywords and names of built-in functions are considered reserved
words.

12. The token NAME shall consist of a word that is not a keyword or a name of a built-in
function and is not followed immediately (without any delimiters) by the '(' character.

13. The token FUNC_NAME shall consist of a word that is not a keyword or a name of a
built-in function, followed immediately (without any delimiters) by the '(' character.
The '(' character shall not be included as part of the token.

14. The following two-character sequences shall be recognized as the named tokens:

Token Name Sequence Token Name Sequence
ADD_ASSIGN += NO_MATCH !˜
SUB_ASSIGN −= EQ ==
MUL_ASSIGN *= LE <=
DIV_ASSIGN /= GE >=
MOD_ASSIGN %= NE !=
POW_ASSIGN ˆ= INCR ++
OR || DECR − −
AND && APPEND >>

2632 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86328

86329

86330

86331

86332

86333

86334

86335

86336

86337

86338

86339

86340

86341

86342

86343

86344

86345

86346

86347

86348

86349

86350

86351

86352

86353

86354

86355

86356

86357

86358

86359

86360

86361

86362

86363

86364

86365

86366

86367

86368

86369

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

15. The following single characters shall be recognized as tokens whose names are the
character:

<newline> { } () [] , ; + - * % ^ ! > < | ? : ~ $ =

There is a lexical ambiguity between the token ERE and the tokens '/' and DIV_ASSIGN.
When an input sequence begins with a <slash> character in any syntactic context where the
token '/' or DIV_ASSIGN could appear as the next token in a valid program, the longer of
those two tokens that can be recognized shall be recognized. In any other syntactic context
where the token ERE could appear as the next token in a valid program, the token ERE shall be
recognized.

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

>0 An error occurred.

The exit status can be altered within the program by using an exit expression.

CONSEQUENCES OF ERRORS
If any file operand is specified and the named file cannot be accessed, awk shall write a
diagnostic message to standard error and terminate without any further action.

If the program specified by either the program operand or a progfile operand is not a valid awk
program (as specified in the EXTENDED DESCRIPTION section), the behavior is undefined.

APPLICATION USAGE
Since <backslash> has a special meaning both in the assignment option-argument to the −v
option and in the assignment operand, applications that need to pass strings to awk without
special interpretation of <backslash> should not use these methods but should instead make use
of the ARGV or ENVIRON array.

The index, length, match, and substr functions should not be confused with similar functions in
the ISO C standard; the awk versions deal with characters, while the ISO C standard deals with
bytes.

Because the concatenation operation is represented by adjacent expressions rather than an
explicit operator, it is often necessary to use parentheses to enforce the proper evaluation
precedence.

When using awk to process pathnames, it is recommended that LC_ALL, or at least LC_CTYPE
and LC_COLLATE, are set to POSIX or C in the environment, since pathnames can contain byte
sequences that do not form valid characters in some locales, in which case the utility’s behavior
would be undefined. In the POSIX locale each byte is a valid single-byte character, and therefore
this problem is avoided.

Since the "==" operator checks if strings are identical, not whether they collate equally,
applications needing to check whether strings collate equally can use:

a <= b && a >= b

To specify a file operand naming a file with a name containing an <equals-sign>, users can use
"./" as the first two characters of a relative file pathname that starts with an <underscore> or
an alphabetic character to keep the file operand from being interpreted as an assignment operand.
Similarly, "./-" can be used to access a file named '-' in the current directory rather than use
standard input.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2633

86370

86371

86372

86373

86374

86375

86376

86377

86378

86379

86380

86381

86382

86383

86384

86385

86386

86387

86388

86389

86390

86391

86392

86393

86394

86395

86396

86397

86398

86399

86400

86401

86402

86403

86404

86405

86406

86407

86408

86409

86410

86411

86412

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

EXAMPLES
The awk program specified in the command line is most easily specified within single-quotes (for
example, 'program') for applications using sh, because awk programs commonly contain
characters that are special to the shell, including double-quotes. In the cases where an awk
program contains single-quote characters, it is usually easiest to specify most of the program as
strings within single-quotes concatenated by the shell with quoted single-quote characters. For
example:

awk '/'\''/ { print "quote:", $0 }'

prints all lines from the standard input containing a single-quote character, prefixed with quote:.

The following are examples of simple awk programs:

1. Write to the standard output all input lines for which field 3 is greater than 5:

$3 > 5

2. Write every tenth line:

(NR % 10) == 0

3. Write any line with a substring matching the regular expression:

/(G|D)(2[0-9][[:alpha:]]*)/

4. Print any line with a substring containing a 'G' or 'D', followed by a sequence of digits
and characters. This example uses character classes digit and alpha to match language-
independent digit and alphabetic characters respectively:

/(G|D)([[:digit:][:alpha:]]*)/

5. Write any line in which the second field matches the regular expression and the fourth
field does not:

$2 ~ /xyz/ && $4 !~ /xyz/

6. Write any line in which the second field contains a <backslash>:

$2 ~ /\\/

7. Write any line in which the second field contains a <backslash>. Note that
<backslash>-escapes are interpreted twice; once in lexical processing of the string and
once in processing the regular expression:

$2 ~ "\\\\"

8. Write the second to the last and the last field in each line. Separate the fields by a <colon>:

{OFS=":";print $(NF-1), $NF}

9. Write the line number and number of fields in each line. The three strings representing
the line number, the <colon>, and the number of fields are concatenated and that string is
written to standard output:

{print NR ":" NF}

10. Write lines longer than 72 characters:

length($0) > 72

11. Write the first two fields in opposite order separated by OFS:

{ print $2, $1 }

2634 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86413

86414

86415

86416

86417

86418

86419

86420

86421

86422

86423

86424

86425

86426

86427

86428

86429

86430

86431

86432

86433

86434

86435

86436

86437

86438

86439

86440

86441

86442

86443

86444

86445

86446

86447

86448

86449

86450

86451

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

12. Same, with input fields separated by a <comma> or <space> and <tab> characters, or
both:

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }

13. Add up the first column, print sum, and average:

{s += $1 }
END {print "sum is ", s, " average is", s/NR}

14. Write fields in reverse order, one per line (many lines out for each line in):

{ for (i = NF; i > 0; --i) print $i }

15. Write all lines between occurrences of the strings start and stop:

/start/, /stop/

16. Write all lines whose first field is different from the previous one:

$1 != prev { print; prev = $1 }

17. Simulate echo:

BEGIN {
for (i = 1; i < ARGC; ++i)
printf("%s%s", ARGV[i], i==ARGC-1?"\n":" ")

}

18. Write the path prefixes contained in the PA TH environment variable, one per line:

BEGIN {
n = split (ENVIRON["PATH"], path, ":")
for (i = 1; i <= n; ++i)
print path[i]

}

19. If there is a file named input containing page headers of the form:

Page #

and a file named program that contains:

/Page/ { $2 = n++; }
{ print }

then the command line:

awk -f program n=5 input

prints the file input, filling in page numbers starting at 5.

RATIONALE
This description is based on the new awk, ``nawk’’, (see the referenced The AWK Programming
Language), which introduced a number of new features to the historical awk:

1. New keywords: delete, do, function, return

2. New built-in functions: atan2, close, cos, gsub, match, rand, sin, srand, sub, system

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2635

86452

86453

86454

86455

86456

86457

86458

86459

86460

86461

86462

86463

86464

86465

86466

86467

86468

86469

86470

86471

86472

86473

86474

86475

86476

86477

86478

86479

86480

86481

86482

86483

86484

86485

86486

86487

86488

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

3. New predefined variables: FNR, ARGC, ARGV, RSTART, RLENGTH, SUBSEP

4. New expression operators: ?, :, ,, ˆ

5. The FS variable and the third argument to split, now treated as extended regular
expressions.

6. The operator precedence, changed to more closely match the C language. Two examples
of code that operate differently are:

while (n /= 10 > 1) ...
if (!"wk" ~ /bwk/) ...

Several features have been added based on newer implementations of awk:

• Multiple instances of −f progfile are permitted.

• The new option −v assignment.

• The new predefined variable ENVIRON.

• New built-in functions toupper and tolower.

• More formatting capabilities are added to printf to match the ISO C standard.

Earlier versions of this standard required implementations to support multiple adjacent
<semicolon>s, lines with one or more <semicolon> before a rule (pattern-action pairs), and lines
with only <semicolon>(s). These are not required by this standard and are considered poor
programming practice, but can be accepted by an implementation of awk as an extension.

The overall awk syntax has always been based on the C language, with a few features from the
shell command language and other sources. Because of this, it is not completely compatible with
any other language, which has caused confusion for some users. It is not the intent of the
standard developers to address such issues. A few relatively minor changes toward making the
language more compatible with the ISO C standard were made; most of these changes are based
on similar changes in recent implementations, as described above. There remain several C-
language conventions that are not in awk. One of the notable ones is the <comma> operator,
which is commonly used to specify multiple expressions in the C language for statement. Also,
there are various places where awk is more restrictive than the C language regarding the type of
expression that can be used in a given context. These limitations are due to the different features
that the awk language does provide.

Regular expressions in awk have been extended somewhat from historical implementations to
make them a pure superset of extended regular expressions, as defined by POSIX.1-2024 (see
XBD Section 9.4, on page 187). The main extensions are internationalization features and
interval expressions. Historical implementations of awk have long supported
<backslash>-escape sequences as an extension to extended regular expressions, and this
extension has been retained despite inconsistency with other utilities. The number of escape
sequences recognized in both extended regular expressions and strings has varied (generally
increasing with time) among implementations. The set specified by POSIX.1-2024 includes most
sequences known to be supported by popular implementations and by the ISO C standard. One
sequence that is not supported is hexadecimal value escapes beginning with '\x'. This would
allow values expressed in more than 9 bits to be used within awk as in the ISO C standard.
However, because this syntax has a non-deterministic length, it does not permit the subsequent
character to be a hexadecimal digit. This limitation can be dealt with in the C language by the
use of lexical string concatenation. In the awk language, concatenation could also be a solution
for strings, but not for extended regular expressions (either lexical ERE tokens or strings used
dynamically as regular expressions). Because of this limitation, the feature has not been added to

2636 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86489

86490

86491

86492

86493

86494

86495

86496

86497

86498

86499

86500

86501

86502

86503

86504

86505

86506

86507

86508

86509

86510

86511

86512

86513

86514

86515

86516

86517

86518

86519

86520

86521

86522

86523

86524

86525

86526

86527

86528

86529

86530

86531

86532

86533

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

POSIX.1-2024.

When a string variable is used in a context where an extended regular expression normally
appears (where the lexical token ERE is used in the grammar) the string does not contain the
literal <slash> characters.

Some versions of awk allow the form:

func name(args, ...) { statements }

This has been deprecated by the authors of the language, who asked that it not be specified.

Historical implementations of awk produce an error if a next statement is executed in a BEGIN
action, and cause awk to terminate if a next statement is executed in an END action. This
behavior has not been documented, and it was not believed that it was necessary to standardize
it.

The specification of conversions between string and numeric values is much more detailed than
in the documentation of historical implementations or in the referenced The AWK Programming
Language. Although most of the behavior is designed to be intuitive, the details are necessary to
ensure compatible behavior from different implementations. This is especially important in
relational expressions since the types of the operands determine whether a string or numeric
comparison is performed. From the perspective of an application developer, it is usually
sufficient to expect intuitive behavior and to force conversions (by adding zero or concatenating
a null string) when the type of an expression does not obviously match what is needed. The
intent has been to specify historical practice in almost all cases. The one exception is that, in
historical implementations, variables and constants maintain both string and numeric values
after their original value is converted by any use. This means that referencing a variable or
constant can have unexpected side-effects. For example, with historical implementations the
following program:

{
a = "+2"
b = 2
if (NR % 2)

c = a + b
if (a == b)

print "numeric comparison"
else

print "string comparison"
}

would perform a numeric comparison (and output numeric comparison) for each odd-
numbered line, but perform a string comparison (and output string comparison) for each even-
numbered line. POSIX.1-2024 ensures that comparisons will be numeric if necessary. With
historical implementations, the following program:

BEGIN {
OFMT = "%e"
print 3.14
OFMT = "%f"
print 3.14

}

would output "3.140000e+00" twice, because in the second print statement the constant
"3.14" would have a string value from the previous conversion. POSIX.1-2024 requires that the
output of the second print statement be "3.140000". The behavior of historical

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2637

86534

86535

86536

86537

86538

86539

86540

86541

86542

86543

86544

86545

86546

86547

86548

86549

86550

86551

86552

86553

86554

86555

86556

86557

86558

86559

86560

86561

86562

86563

86564

86565

86566

86567

86568

86569

86570

86571

86572

86573

86574

86575

86576

86577

86578

86579

86580

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

implementations was seen as too unintuitive and unpredictable.

It was pointed out that with the rules contained in early drafts, the following script would print
nothing:

BEGIN {
y[1.5] = 1
OFMT = "%e"
print y[1.5]

}

Therefore, a new variable, CONVFMT, was introduced. The OFMT variable is now restricted to
affecting output conversions of numbers to strings and CONVFMT is used for internal
conversions, such as comparisons or array indexing. The default value is the same as that for
OFMT, so unless a program changes CONVFMT (which no historical program would do), it
will receive the historical behavior associated with internal string conversions.

The POSIX awk lexical and syntactic conventions are specified more formally than in other
sources. Again the intent has been to specify historical practice. One convention that may not be
obvious from the formal grammar as in other verbal descriptions is where <newline> characters
are acceptable. There are several obvious placements such as terminating a statement, and a
<backslash> can be used to escape <newline> characters between any lexical tokens. In addition,
<newline> characters without <backslash> characters can follow a comma, an open brace, a
logical AND operator ("&&"), a logical OR operator ("||"), the do keyword, the else keyword,
and the closing parenthesis of an if, for, or while statement. For example:

{ print $1,
$2 }

The requirement that awk add a trailing <newline> to the program argument text is to simplify
the grammar, making it match a text file in form. There is no way for an application or test suite
to determine whether a literal <newline> is added or whether awk simply acts as if it did.

POSIX.1-2024 requires several changes from historical implementations in order to support
internationalization. Probably the most subtle of these is the use of the decimal-point character,
defined by the LC_NUMERIC category of the locale, in representations of floating-point
numbers. This locale-specific character is used in recognizing numeric input, in converting
between strings and numeric values, and in formatting output. However, regardless of locale,
the <period> character (the decimal-point character of the POSIX locale) is the decimal-point
character recognized in processing awk programs (including assignments in command line
arguments). This is essentially the same convention as the one used in the ISO C standard. The
difference is that the C language includes the setlocale() function, which permits an application
to modify its locale. Because of this capability, a C application begins executing with its locale set
to the C locale, and only executes in the environment-specified locale after an explicit call to
setlocale(). However, adding such an elaborate new feature to the awk language was seen as
inappropriate for POSIX.1-2024. It is possible to execute an awk program explicitly in any desired
locale by setting the environment in the shell.

The undefined behavior resulting from NULs in extended regular expressions allows future
extensions for the GNU gawk program to process binary data.

The behavior in the case of invalid awk programs (including lexical, syntactic, and semantic
errors) is undefined because it was considered overly limiting on implementations to specify. In
most cases such errors can be expected to produce a diagnostic and a non-zero exit status.
However, some implementations may choose to extend the language in ways that make use of
certain invalid constructs. Other invalid constructs might be deemed worthy of a warning, but

2638 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86581

86582

86583

86584

86585

86586

86587

86588

86589

86590

86591

86592

86593

86594

86595

86596

86597

86598

86599

86600

86601

86602

86603

86604

86605

86606

86607

86608

86609

86610

86611

86612

86613

86614

86615

86616

86617

86618

86619

86620

86621

86622

86623

86624

86625

86626

86627

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

otherwise cause some reasonable behavior. Still other constructs may be very difficult to detect
in some implementations. Also, different implementations might detect a given error during an
initial parsing of the program (before reading any input files) while others might detect it when
executing the program after reading some input. Implementors should be aware that diagnosing
errors as early as possible and producing useful diagnostics can ease debugging of applications,
and thus make an implementation more usable.

The unspecified behavior from using multi-character RS values is to allow possible future
extensions based on extended regular expressions used for record separators. Historical
implementations take the first character of the string and ignore the others.

Unspecified behavior when split(string,array,<null>) is used is to allow a proposed future
extension that would split up a string into an array of individual characters.

In the context of the getline function, equally good arguments for different precedences of the |
and < operators can be made. Historical practice has been that:

getline < "a" "b"

is parsed as:

(getline < "a") "b"

although many would argue that the intent was that the file ab should be read. However:

getline < "x" + 1

parses as:

getline < ("x" + 1)

Similar problems occur with the | version of getline, particularly in combination with $. For
example:

$"echo hi" | getline

(This situation is particularly problematic when used in a print statement, where the |getline
part might be a redirection of the print.)

Since in most cases such constructs are not (or at least should not) be used (because they have a
natural ambiguity for which there is no conventional parsing), the meaning of these constructs
has been made explicitly unspecified. (The effect is that a conforming application that runs into
the problem must parenthesize to resolve the ambiguity.) There appeared to be few if any actual
uses of such constructs.

Grammars can be written that would cause an error under these circumstances. Where
backwards-compatibility is not a large consideration, implementors may wish to use such
grammars.

Some historical implementations have allowed some built-in functions to be called without an
argument list, the result being a default argument list chosen in some ``reasonable’’ way. Use of
length as a synonym for length($0) is the only one of these forms that is thought to be widely
known or widely used; this particular form is documented in various places (for example, most
historical awk reference pages, although not in the referenced The AWK Programming Language) as
legitimate practice. With this exception, default argument lists have always been undocumented
and vaguely defined, and it is not at all clear how (or if) they should be generalized to user-
defined functions. They add no useful functionality and preclude possible future extensions that
might need to name functions without calling them. Not standardizing them seems the simplest
course. The standard developers considered that length merited special treatment, however,
since it has been documented in the past and sees possibly substantial use in historical

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2639

86628

86629

86630

86631

86632

86633

86634

86635

86636

86637

86638

86639

86640

86641

86642

86643

86644

86645

86646

86647

86648

86649

86650

86651

86652

86653

86654

86655

86656

86657

86658

86659

86660

86661

86662

86663

86664

86665

86666

86667

86668

86669

86670

86671

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

programs. Accordingly, this usage has been made legitimate, but Issue 5 removed the
obsolescent marking for XSI-conforming implementations and many otherwise conforming
applications depend on this feature.

In sub and gsub, if repl is a string literal (the lexical token STRING), then two consecutive
<backslash> characters should be used in the string to ensure a single <backslash> will precede
the <ampersand> when the resultant string is passed to the function. (For example, to specify
one literal <ampersand> in the replacement string, use gsub(ERE, "\\&").)

Historically, the only special character in the repl argument of sub and gsub string functions was
the <ampersand> ('&') character and preceding it with the <backslash> character was used to
turn off its special meaning.

The description in the ISO POSIX-2: 1993 standard introduced behavior such that the
<backslash> character was another special character and it was unspecified whether there were
any other special characters. This description introduced several portability problems, some of
which are described below, and so it has been replaced with the more historical description.
Some of the problems include:

• Historically, to create the replacement string, a script could use gsub(ERE, "\\&"), but
with the ISO POSIX-2: 1993 standard wording, it was necessary to use gsub(ERE,
"\\\\&"). The <backslash> characters are doubled here because all string literals are
subject to lexical analysis, which would reduce each pair of <backslash> characters to a
single <backslash> before being passed to gsub.

• Since it was unspecified what the special characters were, for portable scripts to guarantee
that characters are printed literally, each character had to be preceded with a <backslash>.
(For example, a portable script had to use gsub(ERE, "\\h\\i") to produce a replacement
string of "hi".)

The description for comparisons in the ISO POSIX-2: 1993 standard did not properly describe
historical practice because of the way numeric strings are compared as numbers. The current
rules cause the following code:

if (0 == "000")
print "strange, but true"

else
print "not true"

to do a numeric comparison, causing the if to succeed. It should be intuitively obvious that this
is incorrect behavior, and indeed, no historical implementation of awk actually behaves this way.

To fix this problem, the definition of numeric string was enhanced to include only those values
obtained from specific circumstances (mostly external sources) where it is not possible to
determine unambiguously whether the value is intended to be a string or a numeric.

Variables that are assigned to a numeric string shall also be treated as a numeric string. (For
example, the notion of a numeric string can be propagated across assignments.) In comparisons,
all variables having the uninitialized value are to be treated as a numeric operand evaluating to
the numeric value zero.

Uninitialized variables include all types of variables including scalars, array elements, and
fields. The definition of an uninitialized value in Variables and Special Variables (on page 2612)
is necessary to describe the value placed on uninitialized variables and on fields that are valid
(for example, < $NF) but have no characters in them and to describe how these variables are to
be used in comparisons. A valid field, such as $1, that has no characters in it can be obtained
from an input line of "\t\t" when FS='\t'. Historically, the comparison ($1<10) was done

2640 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86672

86673

86674

86675

86676

86677

86678

86679

86680

86681

86682

86683

86684

86685

86686

86687

86688

86689

86690

86691

86692

86693

86694

86695

86696

86697

86698

86699

86700

86701

86702

86703

86704

86705

86706

86707

86708

86709

86710

86711

86712

86713

86714

86715

86716

86717

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

numerically after evaluating $1 to the value zero.

The phrase ``. . . also shall have the numeric value of the numeric string’’ was removed from
several sections of the ISO POSIX-2: 1993 standard because is specifies an unnecessary
implementation detail. It is not necessary for POSIX.1-2024 to specify that these objects be
assigned two different values. It is only necessary to specify that these objects may evaluate to
two different values depending on context.

Historical implementations of awk did not parse hexadecimal integer or floating constants like
"0xa" and "0xap0". Due to an oversight, the 2001 through 2004 editions of this standard
required support for hexadecimal floating constants. This was due to the reference to atof().
This version of the standard allows but does not require implementations to use atof() and
includes a description of how floating-point numbers are recognized as an alternative to match
historic behavior. The intent of this change is to allow implementations to recognize floating-
point constants according to either the ISO/IEC 9899: 1990 standard or ISO/IEC 9899: 1999
standard, and to allow (but not require) implementations to recognize hexadecimal integer
constants.

Historical implementations of awk did not support floating-point infinities and NaNs in numeric
strings; e.g., "-INF" and "NaN". However, implementations that use the atof() or strtod()
functions to do the conversion picked up support for these values if they used a
ISO/IEC 9899: 1999 standard version of the function instead of a ISO/IEC 9899: 1990 standard
version. Due to an oversight, the 2001 through 2004 editions of this standard did not allow
support for infinities and NaNs, but in this revision support is allowed (but not required). This is
a silent change to the behavior of awk programs; for example, in the POSIX locale the expression:

("-INF" + 0 < 0)

formerly had the value 0 because "-INF" converted to 0, but now it may have the value 0 or 1.

Deleting all elements of an array one element at a time, via:

for (index in array)
delete array[index]

is usually not efficient. This standard requires delete array to have the same effects, and this
was supported in most implementations as a more efficient operation. It is also possible to use
split("", array) to achieve the same effect and efficiency.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

A future version of this standard may require srand to accept any numeric value and calculate
the seed by taking the provided value, converting it to an integer, and calculating the integer
value modulo 2n where n is an implementation-defined value greater than or equal to 32.

A future version of this standard may require the initial seed for the rand function (the seed
value used if srand is not called) to be an integer between 0 and 2n−1 inclusive where n is an
implementation-defined value greater than or equal to 32. Additionally, the initial seed value
may be required to be a (pseudo-)random value such that two invocations of awk are unlikely to
emit the same sequence of random values (unless the seed is explicitly set to the same value via
srand).

A future version of this standard may define a new posix_srand function that enables
application authors to set the seed to a (pseudo-)random value generated by the system.
Alternatively, the specification of the srand function may be altered to provide some means to

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2641

86718

86719

86720

86721

86722

86723

86724

86725

86726

86727

86728

86729

86730

86731

86732

86733

86734

86735

86736

86737

86738

86739

86740

86741

86742

86743

86744

86745

86746

86747

86748

86749

86750

86751

86752

86753

86754

86755

86756

86757

86758

86759

86760

86761

86762

86763

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

awk Utilities

set the default seed value to a (pseudo-)random value.

SEE ALSO
Section 1.3 (on page 2461), grep , lex , sed

XBD Chapter 5 (on page 113), Section 6.1 (on page 117), Chapter 8 (on page 167), Chapter 9 (on
page 179), Section 12.2 (on page 215)

XSH atof(), exec , isspace(), popen(), setlocale(), strtod()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The awk utility is aligned with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #211 is applied, adding the sentence ``An occurrence of two
consecutive <backslash> characters shall be interpreted as just a single literal <backslash>
character.’’ into the description of the sub string function.

Issue 7
PASC Interpretation 1003.2-1992 #107 (SD5-XCU-ERN-73) is applied, updating the description of
the OFS variable.

Austin Group Interpretation 1003.1-2001 #189 is applied.

Austin Group Interpretation 1003.1-2001 #201 is applied, permitting implementations to support
infinities and NaNs.

SD5-XCU-ERN-79 is applied, restoring the horizontal lines to Table 3-1 (on page 2608), and
SD5-XCU-ERN-80 is applied, changing the order of some table entries.

SD5-XCU-ERN-87 is applied, updating the descriptive text of the Grammar.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The EXTENDED DESCRIPTION is changed to make the support of hexadecimal integer and
floating constants optional.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0057 [224], XCU/TC1-2008/0058
[454], XCU/TC1-2008/0059 [224], XCU/TC1-2008/0060 [224], XCU/TC1-2008/0061 [254],
XCU/TC1-2008/0062 [254], XCU/TC1-2008/0063 [224], and XCU/TC1-2008/0064 [454] are
applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0058 [584], XCU/TC2-2008/0059
[963], XCU/TC2-2008/0060 [226], XCU/TC2-2008/0061 [663], XCU/TC2-2008/0062 [963],
XCU/TC2-2008/0063 [226], and XCU/TC2-2008/0064 [963] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defects 544 and 1136 are applied, requiring implementations to accept the delete
statement with an unsubscripted array name.

Austin Group Defect 607 is applied, adding the nextfile statement.

2642 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86764

86765

86766

86767

86768

86769

86770

86771

86772

86773

86774

86775

86776

86777

86778

86779

86780

86781

86782

86783

86784

86785

86786

86787

86788

86789

86790

86791

86792

86793

86794

86795

86796

86797

86798

86799

86800

86801

86802

86803

86804

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities awk

Austin Group Defect 634 is applied, adding the fflush function.

Austin Group Defects 974 and 1451 are applied, clarifying the ARGC, ARGV and FILENAME
variables, and adding to APPLICATION USAGE.

Austin Group Defect 983 is applied, changing the descriptions of the rand and srand functions
and the FUTURE DIRECTIONS section.

Austin Group Defect 1070 is applied, requiring the "!=" and "==" operators to perform string
comparisons by checking if the strings are identical (and not by checking if they collate equally).

Austin Group Defect 1105 is applied, clarifying the requirements for <backslash> escaping.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1198 is applied, requiring comparisons to be performed numerically when
both operands have string values that are numeric strings.

Austin Group Defect 1277 is applied, clarifying that using a <slash> character within an ERE
requires escaping only if it is within the lexical token ERE.

Austin Group Defect 1320 is applied, clarifying the condition under which ERE matching is
against input records.

Austin Group Defect 1395 is applied, changing the requirements for string to number
conversion.

Austin Group Defect 1468 is applied, clarifying the behavior when FS is an ERE that can match
the null string.

Austin Group Defect 1566 is applied, specifying the behavior of the length function when
passed an array argument.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2643

86805

86806

86807

86808

86809

86810

86811

86812

86813

86814

86815

86816

86817

86818

86819

86820

86821

86822

86823

86824

86825

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

basename Utilities

NAME
basename — return non-directory portion of a pathname

SYNOPSIS
basename string [suffix]

DESCRIPTION
The string operand shall be treated as a pathname, as defined in XBD Section 3.254 (on page 68).
The string string shall be converted to the filename corresponding to the last pathname
component in string and then the suffix string suffix, if present, shall be removed. This shall be
done by performing actions equivalent to the following steps in order:

1. If string is a null string, it is unspecified whether the resulting string is '.' or a null
string. In either case, skip steps 2 through 6.

2. If string is "//", it is implementation-defined whether steps 3 to 6 are skipped or
processed.

3. If string consists entirely of <slash> characters, string shall be set to a single <slash>
character. In this case, skip steps 4 to 6.

4. If there are any trailing <slash> characters in string, they shall be removed.

5. If there are any <slash> characters remaining in string, the prefix of string up to and
including the last <slash> character in string shall be removed.

6. If the suffix operand is present, is not identical to the characters remaining in string, and is
identical to a suffix of the characters remaining in string, the suffix suffix shall be removed
from string. Otherwise, string is not modified by this step. It shall not be considered an
error if suffix is not found in string.

The resulting string shall be written to standard output.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

string A string.

suffix A string.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of basename:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

2644 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86826

86827

86828

86829

86830

86831

86832

86833

86834

86835

86836

86837

86838

86839

86840

86841

86842

86843

86844

86845

86846

86847

86848

86849

86850

86851

86852

86853

86854

86855

86856

86857

86858

86859

86860

86861

86862

86863

86864

86865

86866

86867

86868

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities basename

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The basename utility shall write a line to the standard output in the following format:

"%s\n", <resulting string>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The definition of pathname specifies implementation-defined behavior for pathnames starting
with two <slash> characters. Therefore, applications shall not arbitrarily add <slash> characters
to the beginning of a pathname unless they can ensure that there are more or less than two or are
prepared to deal with the implementation-defined consequences.

EXAMPLES
If the string string is a valid pathname:

$(basename -- "string")

produces a filename that could be used to open the file named by string in the directory returned
by:

$(dirname -- "string")

If the string string is not a valid pathname, the same algorithm is used, but the result need not be
a valid filename. The basename utility is not expected to make any judgements about the validity
of string as a pathname; it just follows the specified algorithm to produce a result string.

The following shell script compiles /usr/src/cmd/cat.c and moves the output to a file named cat
in the current directory when invoked with the argument /usr/src/cmd/cat or with the argument
/usr/src/cmd/cat.c:

c17 -- "$(dirname -- "$1")/$(basename -- "$1" .c).c" &&
mv a.out "$(basename -- "$1" .c)"

The EXAMPLES section of the basename() function (see XSH basename()) includes a table
showing examples of the results of processing several sample pathnames by the basename() and

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2645

86869

86870

86871

86872

86873

86874

86875

86876

86877

86878

86879

86880

86881

86882

86883

86884

86885

86886

86887

86888

86889

86890

86891

86892

86893

86894

86895

86896

86897

86898

86899

86900

86901

86902

86903

86904

86905

86906

86907

86908

86909

86910

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

basename Utilities

dirname() functions and by the basename and dirname utilities.

RATIONALE
The behaviors of basename and dirname have been coordinated so that when string is a valid
pathname:

$(basename -- "string")

would be a valid filename for the file in the directory:

$(dirname -- "string")

This would not work for the early proposal versions of these utilities due to the way it specified
handling of trailing <slash> characters.

Since the definition of pathname specifies implementation-defined behavior for pathnames
starting with two <slash> characters, this volume of POSIX.1-2024 specifies similar
implementation-defined behavior for the basename and dirname utilities.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
Section 2.5 (on page 2478), dirname

XBD Section 3.254 (on page 68), Chapter 8 (on page 167)

XSH basename(), dirname()

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE PASC Interpretation 1003.2 #164 is applied.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0065 [192,538], XCU/TC1-2008/0066
[192,538], and XCU/TC1-2008/0067 [192,430,538] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0065 [612] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2646 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86911

86912

86913

86914

86915

86916

86917

86918

86919

86920

86921

86922

86923

86924

86925

86926

86927

86928

86929

86930

86931

86932

86933

86934

86935

86936

86937

86938

86939

86940

86941

86942

86943

86944

86945

86946

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities batch

NAME
batch — schedule commands to be executed in a batch queue

SYNOPSIS
batch

DESCRIPTION
The batch utility shall read commands from standard input and schedule them for execution in a
batch queue. It shall be the equivalent of the command:

at -q b -m now

where queue b is a special at queue, specifically for batch jobs. Batch jobs shall be submitted to
the batch queue with no time constraints and shall be run by the system using algorithms, based
on unspecified factors, that may vary with each invocation of batch.

XSI Users shall be permitted to use batch if their name appears in the file at.allow which is located in
an implementation-defined directory. If that file does not exist, the file at.deny, which is located
in an implementation-defined directory, shall be checked to determine whether the user shall be
denied access to batch. If neither file exists, only a process with appropriate privileges shall be
allowed to submit a job. If only at.deny exists and is empty, global usage shall be permitted. The
at.allow and at.deny files shall consist of one user name per line.

OPTIONS
None.

OPERANDS
None.

STDIN
The standard input shall be a text file consisting of commands acceptable to the shell command
language described in Chapter 2 (on page 2472).

INPUT FILES
XSI The text files at.allow and at.deny, which are located in an implementation-defined directory,

shall contain zero or more user names, one per line, of users who are, respectively, authorized or
denied access to the at and batch utilities.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of batch:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the format and contents for date and time strings written by batch.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2647

86947

86948

86949

86950

86951

86952

86953

86954

86955

86956

86957

86958

86959

86960

86961

86962

86963

86964

86965

86966

86967

86968

86969

86970

86971

86972

86973

86974

86975

86976

86977

86978

86979

86980

86981

86982

86983

86984

86985

86986

86987

86988

86989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

batch Utilities

XSI NLSPATH Determine the location of messages objects and message catalogs.

SHELL Determine the name of a command interpreter to be used to invoke the at-job. If
the variable is unset or null, sh shall be used. If it is set to a value other than a name
for sh, the implementation shall do one of the following: use that shell; use sh; use
the login shell from the user database; any of the preceding accompanied by a
warning diagnostic about which was chosen.

TZ Determine the timezone. The job shall be submitted for execution at the time
specified by timespec or −t time relative to the timezone specified by the TZ
variable. If timespec specifies a timezone, it overrides TZ. If timespec does not
specify a timezone and TZ is unset or null, an unspecified default timezone shall
be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When standard input is a terminal, prompts of unspecified format for each line of the user input
described in the STDIN section may be written to standard output.

STDERR
The following shall be written to standard error when a job has been successfully submitted:

"job %s at %s\n", at_job_id, <date>

where date shall be equivalent in format to the output of:

date +"%a %b %e %T %Y"

The date and time written shall be adjusted so that they appear in the timezone of the user (as
determined by the TZ variable).

Neither this, nor warning messages concerning the selection of the command interpreter, are
considered a diagnostic that changes the exit status.

Diagnostic messages, if any, shall be written to standard error.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
The job shall not be scheduled.

2648 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

86990

86991

86992

86993

86994

86995

86996

86997

86998

86999

87000

87001

87002

87003

87004

87005

87006

87007

87008

87009

87010

87011

87012

87013

87014

87015

87016

87017

87018

87019

87020

87021

87022

87023

87024

87025

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities batch

APPLICATION USAGE
It may be useful to redirect standard output within the specified commands.

EXAMPLES

1. This sequence can be used at a terminal:

batch
sort < file >outfile
EOT

2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

batch <<!
diff file1 file2 2>&1 >outfile | mailx -s "outfile update" mygroup
!

Note that this always sends mail when there has been an attempt to update outfile and
the body of the message will be empty unless an error occurred.

3. The following shows how to capture both standard error and standard output:

batch <<EOF
{

run-batch-processing |
mailx -s "batch processing output" mygroup

} 2>&1 | mailx -E -s "errors during batch processing" mygroup
EOF

RATIONALE
Early proposals described batch in a manner totally separated from at, even though the historical
model treated it almost as a synonym for at −qb. A number of features were added to list and
control batch work separately from those in at. Upon further reflection, it was decided that the
benefit of this did not merit the change to the historical interface.

The −m option was included on the equivalent at command because it is historical practice to
mail results to the submitter, even if all job-produced output is redirected. As explained in the
RATIONALE for at, the now keyword submits the job for immediate execution (after scheduling
delays), despite some historical systems where at now would have been considered an error.

FUTURE DIRECTIONS
None.

SEE ALSO
at

XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The NAME is changed to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2649

87026

87027

87028

87029

87030

87031

87032

87033

87034

87035

87036

87037

87038

87039

87040

87041

87042

87043

87044

87045

87046

87047

87048

87049

87050

87051

87052

87053

87054

87055

87056

87057

87058

87059

87060

87061

87062

87063

87064

87065

87066

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

batch Utilities

Issue 7
The batch utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the files referenced
by the batch utility.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1368 is applied, changing the EXAMPLES section.

2650 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87067

87068

87069

87070

87071

87072

87073

87074

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bc

NAME
bc — arbitrary-precision arithmetic language

SYNOPSIS
bc [-l] [file...]

DESCRIPTION
The bc utility shall implement an arbitrary precision calculator. It shall take input from any files
given, then read from the standard input. If the standard input and standard output to bc are
attached to a terminal, the invocation of bc shall be considered to be interactive, causing
behavioral constraints described in the following sections.

OPTIONS
The bc utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−l (The letter ell.) Define the math functions and initialize scale to 20, instead of the
default zero; see the EXTENDED DESCRIPTION section.

OPERANDS
The following operand shall be supported:

file A pathname of a text file containing bc program statements. After all files have
been read, bc shall read the standard input.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files shall be text files containing a sequence of comments, statements, and function
definitions that shall be executed as they are read.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of bc:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The output of the bc utility shall be controlled by the program read, and consist of zero or more
lines containing the value of all executed expressions without assignments. The radix and
precision of the output shall be controlled by the values of the obase and scale variables; see the
EXTENDED DESCRIPTION section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2651

87075

87076

87077

87078

87079

87080

87081

87082

87083

87084

87085

87086

87087

87088

87089

87090

87091

87092

87093

87094

87095

87096

87097

87098

87099

87100

87101

87102

87103

87104

87105

87106

87107

87108

87109

87110

87111

87112

87113

87114

87115

87116

87117

87118

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bc Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION

Grammar

The grammar in this section and the lexical conventions in the following section shall together
describe the syntax for bc programs. The general conventions for this style of grammar are
described in Section 1.3 (on page 2461). A valid program can be represented as the non-terminal
symbol program in the grammar. This formal syntax shall take precedence over the text syntax
description.

%token EOF NEWLINE STRING LETTER NUMBER

%token MUL_OP
/* '*', '/', '%' */

%token ASSIGN_OP
/* '=', '+=', '-=', '*=', '/=', '%=', '^=' */

%token REL_OP
/* '==', '<=', '>=', '!=', '<', '>' */

%token INCR_DECR
/* '++', '--' */

%token Define Break Quit Length
/* 'define', 'break', 'quit', 'length' */

%token Return For If While Sqrt
/* 'return', 'for', 'if', 'while', 'sqrt' */

%token Scale Ibase Obase Auto
/* 'scale', 'ibase', 'obase', 'auto' */

%start program

%%

program : EOF
| input_item program
;

input_item : semicolon_list NEWLINE
| function
;

semicolon_list : /* empty */
| statement
| semicolon_list ';' statement
| semicolon_list ';'
;

statement_list : /* empty */
| statement
| statement_list NEWLINE

2652 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87119

87120

87121

87122

87123

87124

87125

87126

87127

87128

87129

87130

87131

87132

87133

87134

87135

87136

87137

87138

87139

87140

87141

87142

87143

87144

87145

87146

87147

87148

87149

87150

87151

87152

87153

87154

87155

87156

87157

87158

87159

87160

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bc

| statement_list NEWLINE statement
| statement_list ';'
| statement_list ';' statement
;

statement : expression
| STRING
| Break
| Quit
| Return
| Return '(' return_expression ')'
| For '(' expression ';'

relational_expression ';'
expression ')' statement

| If '(' relational_expression ')' statement
| While '(' relational_expression ')' statement
| '{' statement_list '}'
;

function : Define LETTER '(' opt_define_list ')'
'{' NEWLINE opt_auto_define_list
statement_list '}'

;

opt_define_list : /* empty */
| define_list
;

opt_auto_define_list : /* empty */
| Auto define_list NEWLINE
| Auto define_list ';'
;

define_list : LETTER
| LETTER '[' ']'
| define_list ',' LETTER
| define_list ',' LETTER '[' ']'
;

opt_argument_list : /* empty */
| argument_list
;

argument_list : expression
| expression ',' argument_list
| LETTER '[' ']'
| LETTER '[' ']' ',' argument_list
;

relational_expression : expression
| expression REL_OP expression
;

return_expression : /* empty */
| expression
;

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2653

87161

87162

87163

87164

87165

87166

87167

87168

87169

87170

87171

87172

87173

87174

87175

87176

87177

87178

87179

87180

87181

87182

87183

87184

87185

87186

87187

87188

87189

87190

87191

87192

87193

87194

87195

87196

87197

87198

87199

87200

87201

87202

87203

87204

87205

87206

87207

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bc Utilities

expression : named_expression
| NUMBER
| '(' expression ')'
| LETTER '(' opt_argument_list ')'
| '-' expression
| expression '+' expression
| expression '-' expression
| expression MUL_OP expression
| expression 'ˆ' expression
| INCR_DECR named_expression
| named_expression INCR_DECR
| named_expression ASSIGN_OP expression
| Length '(' expression ')'
| Sqrt '(' expression ')'
| Scale '(' expression ')'
;

named_expression : LETTER
| LETTER '[' expression ']'
| Scale
| Ibase
| Obase
;

Lexical Conventions in bc

The lexical conventions for bc programs, with respect to the preceding grammar, shall be as
follows:

1. Except as noted, bc shall recognize the longest possible token or delimiter beginning at a
given point.

2. A comment shall consist of any characters beginning with the two adjacent characters
"/*" and terminated by the next occurrence of the two adjacent characters "*/".
Comments shall have no effect except to delimit lexical tokens.

3. The <newline> shall be recognized as the token NEWLINE.

4. The token STRING shall represent a string constant; it shall consist of any characters
beginning with the double-quote character ('"') and terminated by another occurrence
of the double-quote character. The value of the string is the sequence of all characters
between, but not including, the two double-quote characters. All characters shall be taken
literally from the input, and there is no way to specify a string containing a double-quote
character. The length of the value of each string shall be limited to {BC_STRING_MAX}
bytes.

5. A <blank> shall have no effect except as an ordinary character if it appears within a
STRING token, or to delimit a lexical token other than STRING.

6. The combination of a <backslash> character immediately followed by a <newline> shall
have no effect other than to delimit lexical tokens with the following exceptions:

• It shall be interpreted as the character sequence "\<newline>" in STRING tokens.

2654 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87208

87209

87210

87211

87212

87213

87214

87215

87216

87217

87218

87219

87220

87221

87222

87223

87224

87225

87226

87227

87228

87229

87230

87231

87232

87233

87234

87235

87236

87237

87238

87239

87240

87241

87242

87243

87244

87245

87246

87247

87248

87249

87250

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bc

• It shall be ignored as part of a multi-line NUMBER token.

7. The token NUMBER shall represent a numeric constant. It shall be recognized by the
following grammar:

NUMBER : integer
| '.' integer
| integer '.'
| integer '.' integer
;

integer : digit
| integer digit
;

digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
| 8 | 9 | A | B | C | D | E | F
;

8. The value of a NUMBER token shall be interpreted as a numeral in the base specified by
the value of the internal register ibase (described below). Each of the digit characters
shall have the value from 0 to 15 in the order listed here, and the <period> character shall
represent the radix point. The behavior is undefined if digits greater than or equal to the
value of ibase appear in the token. However, note the exception for single-digit values
being assigned to ibase and obase themselves, in Operations in bc (on page 2656).

9. The following keywords shall be recognized as tokens:

auto
break
define

ibase
if
for

length
obase
quit

return
scale
sqrt

while

10. Any of the following characters occurring anywhere except within a keyword shall be
recognized as the token LETTER:

a b c d e f g h i j k l m n o p q r s t u v w x y z

11. The following single-character and two-character sequences shall be recognized as the
token ASSIGN_OP:

= += -= *= /= %= ^=

12. If an '=' character, as the beginning of a token, is followed by a '−' character with no
intervening delimiter, the behavior is undefined.

13. The following single-characters shall be recognized as the token MUL_OP:

* / %

14. The following single-character and two-character sequences shall be recognized as the
token REL_OP:

== <= >= != < >

15. The following two-character sequences shall be recognized as the token INCR_DECR:

++ --

16. The following single characters shall be recognized as tokens whose names are the
character:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2655

87251

87252

87253

87254

87255

87256

87257

87258

87259

87260

87261

87262

87263

87264

87265

87266

87267

87268

87269

87270

87271

87272

87273

87274

87275

87276

87277

87278

87279

87280

87281

87282

87283

87284

87285

87286

87287

87288

87289

87290

87291

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bc Utilities

<newline> () , + - ; [] ^ { }

17. The token EOF is returned when the end of input is reached.

Operations in bc

There are three kinds of identifiers: ordinary identifiers, array identifiers, and function
identifiers. All three types consist of single lowercase letters. Array identifiers shall be followed
by square brackets ("[]"). An array subscript is required except in an argument or auto list.
Arrays are singly dimensioned and can contain up to {BC_DIM_MAX} elements. Indexing shall
begin at zero so an array is indexed from 0 to {BC_DIM_MAX}−1. Subscripts shall be truncated
to integers. The application shall ensure that function identifiers are followed by parentheses,
possibly enclosing arguments. The three types of identifiers do not conflict.

The following table summarizes the rules for precedence and associativity of all operators.
Operators on the same line shall have the same precedence; rows are in order of decreasing
precedence.

Table 3-3 Operators in bc

Operator Associativity
++, − − N/A
unary − N/A
ˆ Right to left
*, /, % Left to right
+, binary − Left to right
=, +=, −=, *=, /=, %=, ˆ= Right to left
==, <=, >=, !=, <, > None

Each expression or named expression has a scale, which is the number of decimal digits that
shall be maintained as the fractional portion of the expression.

Named expressions are places where values are stored. Named expressions shall be valid on the
left side of an assignment. The value of a named expression shall be the value stored in the place
named. Simple identifiers and array elements are named expressions; they have an initial value
of zero and an initial scale of zero.

The internal registers scale, ibase, and obase are all named expressions. The scale of an
expression consisting of the name of one of these registers shall be zero; values assigned to any
of these registers are truncated to integers. The scale register shall contain a global value used in
computing the scale of expressions (as described below). The value of the register scale is
limited to 0 ≤ scale ≤ {BC_SCALE_MAX} and shall have a default value of zero. The ibase and
obase registers are the input and output number radix, respectively. The value of ibase shall be
limited to:

2 ≤ ibase ≤ 16

The value of obase shall be limited to:

2 ≤ obase ≤ {BC_BASE_MAX}

When either ibase or obase is assigned a single digit value from the list in Lexical Conventions
in bc (on page 2654), the value shall be assumed in hexadecimal. (For example, ibase=A sets to
base ten, regardless of the current ibase value.) Otherwise, the behavior is undefined when
digits greater than or equal to the value of ibase appear in the input. Both ibase and obase shall
have initial values of 10.

2656 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87292

87293

87294

87295

87296

87297

87298

87299

87300

87301

87302

87303

87304

87305

87306

87307

87308

87309

87310

87311

87312

87313

87314

87315

87316

87317

87318

87319

87320

87321

87322

87323

87324

87325

87326

87327

87328

87329

87330

87331

87332

87333

87334

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bc

Internal computations shall be conducted as if in decimal, regardless of the input and output
bases, to the specified number of decimal digits. When an exact result is not achieved (for
example, scale=0; 3.2/1), the result shall be truncated.

For all values of obase specified by this volume of POSIX.1-2024, bc shall output numeric values
by performing each of the following steps in order:

1. If the value is less than zero, a <hyphen-minus> ('−') character shall be output.

2. One of the following is output, depending on the numerical value:

• If the absolute value of the numerical value is greater than or equal to one, the
integer portion of the value shall be output as a series of digits appropriate to obase
(as described below), most significant digit first. The most significant non-zero digit
shall be output next, followed by each successively less significant digit.

• If the absolute value of the numerical value is less than one but greater than zero
and the scale of the numerical value is greater than zero, it is unspecified whether
the character 0 is output.

• If the numerical value is zero, the character 0 shall be output.

3. If the scale of the value is greater than zero and the numeric value is not zero, a <period>
character shall be output, followed by a series of digits appropriate to obase (as described
below) representing the most significant portion of the fractional part of the value. If s
represents the scale of the value being output, the number of digits output shall be s if
obase is 10, less than or equal to s if obase is greater than 10, or greater than or equal to s
if obase is less than 10. For obase values other than 10, this should be the number of
digits needed to represent a precision of 10s.

For obase values from 2 to 16, valid digits are the first obase of the single characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F

which represent the values zero to 15, inclusive, respectively.

For bases greater than 16, each digit shall be written as a separate multi-digit decimal number.
Each digit except the most significant fractional digit shall be preceded by a single <space>. For
bases from 17 to 100, bc shall write two-digit decimal numbers; for bases from 101 to 1 000, three-
digit decimal strings, and so on. For example, the decimal number 1 024 in base 25 would be
written as:

Δ01Δ15Δ24

and in base 125, as:

Δ008Δ024

Very large numbers shall be split across lines with 70 characters per line in the POSIX locale;
other locales may split at different character boundaries. Lines that are continued shall end with
a <backslash>.

A function call shall consist of a function name followed by parentheses containing a
<comma>-separated list of expressions, which are the function arguments. A whole array
passed as an argument shall be specified by the array name followed by empty square brackets.
All function arguments shall be passed by value. As a result, changes made to the formal
parameters shall have no effect on the actual arguments. If the function terminates by executing
a return statement, the value of the function shall be the value of the expression in the
parentheses of the return statement or shall be zero if no expression is provided or if there is no
return statement.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2657

87335

87336

87337

87338

87339

87340

87341

87342

87343

87344

87345

87346

87347

87348

87349

87350

87351

87352

87353

87354

87355

87356

87357

87358

87359

87360

87361

87362

87363

87364

87365

87366

87367

87368

87369

87370

87371

87372

87373

87374

87375

87376

87377

87378

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bc Utilities

The result of sqrt(expression) shall be the square root of the expression. The result shall be
truncated in the least significant decimal place. The scale of the result shall be the scale of the
expression or the value of scale, whichever is larger.

The result of length(expression) shall be the total number of significant decimal digits in the
expression. The scale of the result shall be zero.

The result of scale(expression) shall be the scale of the expression. The scale of the result shall be
zero.

A numeric constant shall be an expression. The scale shall be the number of digits that follow the
radix point in the input representing the constant, or zero if no radix point appears.

The sequence (expression) shall be an expression with the same value and scale as expression.
The parentheses can be used to alter the normal precedence.

The semantics of the unary and binary operators are as follows:

−expression
The result shall be the negative of the expression. The scale of the result shall be the scale of
expression.

The unary increment and decrement operators shall not modify the scale of the named
expression upon which they operate. The scale of the result shall be the scale of that named
expression.

++named-expression
The named expression shall be incremented by one. The result shall be the value of the
named expression after incrementing.

− −named-expression
The named expression shall be decremented by one. The result shall be the value of the
named expression after decrementing.

named-expression++
The named expression shall be incremented by one. The result shall be the value of the
named expression before incrementing.

named-expression− −
The named expression shall be decremented by one. The result shall be the value of the
named expression before decrementing.

The exponentiation operator, <circumflex> ('^'), shall bind right to left.

expressionˆexpression
The result shall be the first expression raised to the power of the second expression. If the
second expression is not an integer, the behavior is undefined. If a is the scale of the left
expression and b is the absolute value of the right expression, the scale of the result shall be:

if b >= 0 min(a * b, max(scale, a)) if b < 0 scale

The multiplicative operators ('*', '/', '%') shall bind left to right.

expression*expression
The result shall be the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result shall be:

min(a+b,max(scale,a,b))

2658 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87379

87380

87381

87382

87383

87384

87385

87386

87387

87388

87389

87390

87391

87392

87393

87394

87395

87396

87397

87398

87399

87400

87401

87402

87403

87404

87405

87406

87407

87408

87409

87410

87411

87412

87413

87414

87415

87416

87417

87418

87419

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bc

expression/expression
The result shall be the quotient of the two expressions. The scale of the result shall be the
value of scale.

expression%expression
For expressions a and b, a%b shall be evaluated equivalent to the steps:

1. Compute a/b to current scale.

2. Use the result to compute:

a - (a / b) * b

to scale:

max(scale + scale(b), scale(a))

The scale of the result shall be:

max(scale + scale(b), scale(a))

When scale is zero, the '%' operator is the mathematical remainder operator.

The additive operators ('+', '−') shall bind left to right.

expression+expression
The result shall be the sum of the two expressions. The scale of the result shall be the
maximum of the scales of the expressions.

expression−expression
The result shall be the difference of the two expressions. The scale of the result shall be the
maximum of the scales of the expressions.

The assignment operators ('=', "+=", "-=", "*=", "/=", "%=", "^=") shall bind right to left.

named-expression=expression
This expression shall result in assigning the value of the expression on the right to the
named expression on the left. The scale of both the named expression and the result shall be
the scale of expression.

The compound assignment forms:

named-expression <operator>= expression

shall be equivalent to:

named-expression=named-expression <operator> expression

except that the named-expression shall be evaluated only once.

Unlike all other operators, the relational operators ('<', '>', "<=", ">=", "==", "!=") shall be
only valid as the object of an if, while, or inside a for statement.

expression1<expression2
The relation shall be true if the value of expression1 is strictly less than the value of
expression2.

expression1>expression2
The relation shall be true if the value of expression1 is strictly greater than the value of
expression2.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2659

87420

87421

87422

87423

87424

87425

87426

87427

87428

87429

87430

87431

87432

87433

87434

87435

87436

87437

87438

87439

87440

87441

87442

87443

87444

87445

87446

87447

87448

87449

87450

87451

87452

87453

87454

87455

87456

87457

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bc Utilities

expression1<=expression2
The relation shall be true if the value of expression1 is less than or equal to the value of
expression2.

expression1>=expression2
The relation shall be true if the value of expression1 is greater than or equal to the value of
expression2.

expression1==expression2
The relation shall be true if the values of expression1 and expression2 are equal.

expression1!=expression2
The relation shall be true if the values of expression1 and expression2 are unequal.

There are only two storage classes in bc: global and automatic (local). Only identifiers that are
local to a function need be declared with the auto command. The arguments to a function shall
be local to the function. All other identifiers are assumed to be global and available to all
functions. All identifiers, global and local, have initial values of zero. Identifiers declared as auto
shall be allocated on entry to the function and released on returning from the function. They
therefore do not retain values between function calls. Auto arrays shall be specified by the array
name followed by empty square brackets. On entry to a function, the old values of the names
that appear as parameters and as automatic variables shall be pushed onto a stack. Until the
function returns, reference to these names shall refer only to the new values.

References to any of these names from other functions that are called from this function also
refer to the new value until one of those functions uses the same name for a local variable.

When a statement is an expression, unless the main operator is an assignment, execution of the
statement shall write the value of the expression followed by a <newline>.

When a statement is a string, execution of the statement shall write the value of the string.

Statements separated by <semicolon> or <newline> characters shall be executed sequentially. In
an interactive invocation of bc, each time a <newline> is read that satisfies the grammatical
production:

input_item : semicolon_list NEWLINE

the sequential list of statements making up the semicolon_list shall be executed immediately
and any output produced by that execution shall be written without any delay due to buffering.

In an if statement (if(relation) statement), the statement shall be executed if the relation is true.

The while statement (while(relation) statement) implements a loop in which the relation is tested;
each time the relation is true, the statement shall be executed and the relation retested. When the
relation is false, execution shall resume after statement.

A for statement(for(expression; relation; expression) statement) shall be the same as:

first-expression
while (relation) {

statement
last-expression

}

The application shall ensure that all three expressions are present.

The break statement shall cause termination of a for or while statement.

The auto statement (auto identifier [,identifier] . . .) shall cause the values of the identifiers to be

2660 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87458

87459

87460

87461

87462

87463

87464

87465

87466

87467

87468

87469

87470

87471

87472

87473

87474

87475

87476

87477

87478

87479

87480

87481

87482

87483

87484

87485

87486

87487

87488

87489

87490

87491

87492

87493

87494

87495

87496

87497

87498

87499

87500

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bc

pushed down. The identifiers can be ordinary identifiers or array identifiers. Array identifiers
shall be specified by following the array name by empty square brackets. The application shall
ensure that the auto statement is the first statement in a function definition.

A define statement:

define LETTER (opt_define_list) {
opt_auto_define_list
statement_list

}

defines a function named LETTER. If a function named LETTER was previously defined, the
define statement shall replace the previous definition. The expression:

LETTER (opt_argument_list)

shall invoke the function named LETTER. The behavior is undefined if the number of
arguments in the invocation does not match the number of parameters in the definition.
Functions shall be defined before they are invoked. A function shall be considered to be defined
within its own body, so recursive calls are valid. The values of numeric constants within a
function shall be interpreted in the base specified by the value of the ibase register when the
function is invoked.

The return statements (return and return(expression)) shall cause termination of a function,
popping of its auto variables, and specification of the result of the function. The first form shall
be equivalent to return(0). The value and scale of the result returned by the function shall be the
value and scale of the expression returned.

The quit statement (quit) shall stop execution of a bc program at the point where the statement
occurs in the input, even if it occurs in a function definition, or in an if, for, or while statement.

The following functions shall be defined when the −l option is specified:

s(expression)
Sine of argument in radians.

c(expression)
Cosine of argument in radians.

a(expression)
Arctangent of argument.

l(expression)
Natural logarithm of argument.

e(expression)
Exponential function of argument.

j(expression1, expression2)
Bessel function of expression2 of the first kind of integer order expression1.

The scale of the result returned by these functions shall be the value of the scale register at the
time the function is invoked. The value of the scale register after these functions have completed
their execution shall be the same value it had upon invocation. The behavior is undefined if any
of these functions is invoked with an argument outside the domain of the mathematical
function.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2661

87501

87502

87503

87504

87505

87506

87507

87508

87509

87510

87511

87512

87513

87514

87515

87516

87517

87518

87519

87520

87521

87522

87523

87524

87525

87526

87527

87528

87529

87530

87531

87532

87533

87534

87535

87536

87537

87538

87539

87540

87541

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bc Utilities

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

unspecified An error occurred.

CONSEQUENCES OF ERRORS
If any file operand is specified and the named file cannot be accessed, bc shall write a diagnostic
message to standard error and terminate without any further action.

In an interactive invocation of bc, the utility should print an error message and recover following
any error in the input. In a non-interactive invocation of bc, invalid input causes undefined
behavior.

APPLICATION USAGE
Automatic variables in bc do not work in exactly the same way as in either C or PL/1.

For historical reasons, the exit status from bc cannot be relied upon to indicate that an error has
occurred. Returning zero after an error is possible. Therefore, bc should be used primarily by
interactive users (who can react to error messages) or by application programs that can
somehow validate the answers returned as not including error messages.

The bc utility always uses the <period> ('.') character to represent a radix point, regardless of
any decimal-point character specified as part of the current locale. In languages like C or awk,
the <period> character is used in program source, so it can be portable and unambiguous, while
the locale-specific character is used in input and output. Because there is no distinction between
source and input in bc, this arrangement would not be possible. Using the locale-specific
character in bc’s input would introduce ambiguities into the language; consider the following
example in a locale with a <comma> as the decimal-point character:

define f(a,b) {
...

}
...

f(1,2,3)

Because of such ambiguities, the <period> character is used in input. Having input follow
different conventions from output would be confusing in either pipeline usage or interactive
usage, so the <period> is also used in output.

EXAMPLES
In the shell, the following assigns an approximation of the first ten digits of 'π' to the variable x:

x=$(printf "%s\n" 'scale = 10; 104348/33215' | bc)

The following bc program prints the same approximation of 'π', with a label, to standard
output:

scale = 10
"pi equals "
104348 / 33215

The following defines a function to compute an approximate value of the exponential function
(note that such a function is predefined if the −l option is specified):

scale = 20
define e(x){

auto a, b, c, i, s

2662 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87542

87543

87544

87545

87546

87547

87548

87549

87550

87551

87552

87553

87554

87555

87556

87557

87558

87559

87560

87561

87562

87563

87564

87565

87566

87567

87568

87569

87570

87571

87572

87573

87574

87575

87576

87577

87578

87579

87580

87581

87582

87583

87584

87585

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bc

a = 1
b = 1
s = 1
for (i = 1; 1 == 1; i++){

a = a*x
b = b*i
c = a/b
if (c == 0) {

return(s)
}
s = s+c

}
}

The following prints approximate values of the exponential function of the first ten integers:

for (i = 1; i <= 10; ++i) {
e(i)

}

RATIONALE
The bc utility is implemented historically as a front-end processor for dc; dc was not selected to
be part of this volume of POSIX.1-2024 because bc was thought to have a more intuitive
programmatic interface. Current implementations that implement bc using dc are expected to be
compliant.

The exit status for error conditions has been left unspecified for several reasons:

• The bc utility is used in both interactive and non-interactive situations. Different exit codes
may be appropriate for the two uses.

• It is unclear when a non-zero exit should be given; divide-by-zero, undefined functions,
and syntax errors are all possibilities.

• It is not clear what utility the exit status has.

• In the 4.3 BSD, System V, and Ninth Edition implementations, bc works in conjunction with
dc. The dc utility is the parent, bc is the child. This was done to cleanly terminate bc if dc
aborted.

The decision to have bc exit upon encountering an inaccessible input file is based on the belief
that bc file1 file2 is used most often when at least file1 contains data/function
declarations/initializations. Having bc continue with prerequisite files missing is probably not
useful. There is no implication in the CONSEQUENCES OF ERRORS section that bc must check
all its files for accessibility before opening any of them.

There was considerable debate on the appropriateness of the language accepted by bc. Several
reviewers preferred to see either a pure subset of the C language or some changes to make the
language more compatible with C. While the bc language has some obvious similarities to C, it
has never claimed to be compatible with any version of C. An interpreter for a subset of C might
be a very worthwhile utility, and it could potentially make bc obsolete. However, no such utility
is known in historical practice, and it was not within the scope of this volume of POSIX.1-2024 to
define such a language and utility. If and when they are defined, it may be appropriate to
include them in a future version of this standard. This left the following alternatives:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2663

87586

87587

87588

87589

87590

87591

87592

87593

87594

87595

87596

87597

87598

87599

87600

87601

87602

87603

87604

87605

87606

87607

87608

87609

87610

87611

87612

87613

87614

87615

87616

87617

87618

87619

87620

87621

87622

87623

87624

87625

87626

87627

87628

87629

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bc Utilities

1. Exclude any calculator language from this volume of POSIX.1-2024.

The consensus of the standard developers was that a simple programmatic calculator
language is very useful for both applications and interactive users. The only arguments
for excluding any calculator were that it would become obsolete if and when a C-
compatible one emerged, or that the absence would encourage the development of such a
C-compatible one. These arguments did not sufficiently address the needs of current
application developers.

2. Standardize the historical dc, possibly with minor modifications.

The consensus of the standard developers was that dc is a fundamentally less usable
language and that that would be far too severe a penalty for avoiding the issue of being
similar to but incompatible with C.

3. Standardize the historical bc, possibly with minor modifications.

This was the approach taken. Most of the proponents of changing the language would not
have been satisfied until most or all of the incompatibilities with C were resolved. Since
most of the changes considered most desirable would break historical applications and
require significant modification to historical implementations, almost no modifications
were made. The one significant modification that was made was the replacement of the
historical bc assignment operators "=+", and so on, with the more modern "+=", and so
on. The older versions are considered to be fundamentally flawed because of the lexical
ambiguity in uses like a=−1.

In order to permit implementations to deal with backwards-compatibility as they see fit,
the behavior of this one ambiguous construct was made undefined. (At least three
implementations have been known to support this change already, so the degree of
change involved should not be great.)

The '%' operator is the mathematical remainder operator when scale is zero. The behavior of
this operator for other values of scale is from historical implementations of bc, and has been
maintained for the sake of historical applications despite its non-intuitive nature.

Historical implementations permit setting ibase and obase to a broader range of values. This
includes values less than 2, which were not seen as sufficiently useful to standardize. These
implementations do not interpret input properly for values of ibase that are greater than 16. This
is because numeric constants are recognized syntactically, rather than lexically, as described in
this volume of POSIX.1-2024. They are built from lexical tokens of single hexadecimal digits and
<period> characters. Since <blank> characters between tokens are not visible at the syntactic
level, it is not possible to recognize the multi-digit ``digits’’ used in the higher bases properly.
The ability to recognize input in these bases was not considered useful enough to require
modifying these implementations. Note that the recognition of numeric constants at the
syntactic level is not a problem with conformance to this volume of POSIX.1-2024, as it does not
impact the behavior of conforming applications (and correct bc programs). Historical
implementations also accept input with all of the digits '0'−'9' and 'A'−'F' regardless of the
value of ibase; since digits with value greater than or equal to ibase are not really appropriate,
the behavior when they appear is undefined, except for the common case of:

ibase=8;
/* Process in octal base. */

...
ibase=A

/* Restore decimal base. */

In some historical implementations, if the expression to be written is an uninitialized array

2664 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87630

87631

87632

87633

87634

87635

87636

87637

87638

87639

87640

87641

87642

87643

87644

87645

87646

87647

87648

87649

87650

87651

87652

87653

87654

87655

87656

87657

87658

87659

87660

87661

87662

87663

87664

87665

87666

87667

87668

87669

87670

87671

87672

87673

87674

87675

87676

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bc

element, a leading <space> and/or up to four leading 0 characters may be output before the
character zero. This behavior is considered a bug; it is unlikely that any currently conforming
application relies on:

echo 'b[3]' | bc

returning 00000 rather than 0.

Exact calculation of the number of fractional digits to output for a given value in a base other
than 10 can be computationally expensive. Historical implementations use a faster
approximation, and this is permitted. Note that the requirements apply only to values of obase
that this volume of POSIX.1-2024 requires implementations to support (in particular, not to 1, 0,
or negative bases, if an implementation supports them as an extension).

Historical implementations of bc did not allow array parameters to be passed as the last
parameter to a function. When bc was first standardized in Issue 4, this restriction was allowed.
To make bc more widely useful, and because there are implementations without this restriction,
the allowance for the restriction has been removed.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.3 (on page 2461), awk

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
Updated to align with the IEEE P1003.2b draft standard, which included resolution of several
interpretations of the ISO POSIX-2: 1993 standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0066 [584] and XCU/TC2-2008/0067
[679] are applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1230 is applied, changing the EXTENDED DESCRIPTION section to
specify that array parameters can be passed as the last parameter to a function.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2665

87677

87678

87679

87680

87681

87682

87683

87684

87685

87686

87687

87688

87689

87690

87691

87692

87693

87694

87695

87696

87697

87698

87699

87700

87701

87702

87703

87704

87705

87706

87707

87708

87709

87710

87711

87712

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bg Utilities

NAME
bg — run jobs in the background

SYNOPSIS
UP bg [job_id...]

DESCRIPTION
If job control is enabled (see the description of set −m), the shell is interactive, and the current
shell execution environment (see Section 2.13, on page 2522) is not a subshell environment, the
bg utility shall resume suspended jobs from the current shell execution environment by running
them as background jobs, as described in Section 2.11 (on page 2518); it may also do so if the
shell is non-interactive or the current shell execution environment is a subshell environment. If
the job specified by job_id is already a running background job, the bg utility shall have no effect
and shall exit successfully.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

job_id Specify the job to be resumed as a background job. If no job_id operand is given,
the most recently suspended job shall be used. The format of job_id is described in
XBD Section 3.182 (on page 57).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of bg:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The output of bg shall consist of a line in the format:

"[%d] %s\n", <job-number>, <command>

where the fields are as follows:

2666 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87713

87714

87715

87716

87717

87718

87719

87720

87721

87722

87723

87724

87725

87726

87727

87728

87729

87730

87731

87732

87733

87734

87735

87736

87737

87738

87739

87740

87741

87742

87743

87744

87745

87746

87747

87748

87749

87750

87751

87752

87753

87754

87755

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities bg

<job-number> A number that can be used to identify the job to the wait, fg, and kill utilities. Using
these utilities, the job can be identified by prefixing the job number with '%'.

<command> The associated command that was given to the shell.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If job control is disabled, the bg utility shall exit with an error and no job shall be placed in the
background.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

A job is generally suspended by typing the SUSP character (<control>-Z on most systems); see
XBD Chapter 11 (on page 199). At that point, bg can put the job into the background. This is
most effective when the job is expecting no terminal input and its output has been redirected to
non-terminal files. A background job can be forced to stop when it has terminal output by
issuing the command:

stty tostop

A background job can be stopped with the command:

kill -s stop job ID

The bg utility does not work as expected when it is operating in its own utility execution
environment because that environment has no suspended jobs. In the following examples:

... | xargs bg
(bg)

each bg operates in a different environment and does not share its parent shell’s understanding
of jobs. For this reason, bg is generally implemented as a shell regular built-in.

EXAMPLES
None.

RATIONALE
The extensions to the shell specified in this volume of POSIX.1-2024 have mostly been based on
features provided by the KornShell. The job control features provided by bg, fg, and jobs are also
based on the KornShell. The standard developers examined the characteristics of the C shell
versions of these utilities and found that differences exist. Despite widespread use of the C shell,
the KornShell versions were selected for this volume of POSIX.1-2024 to maintain a degree of
uniformity with the rest of the KornShell features selected (such as the very popular command
line editing features).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2667

87756

87757

87758

87759

87760

87761

87762

87763

87764

87765

87766

87767

87768

87769

87770

87771

87772

87773

87774

87775

87776

87777

87778

87779

87780

87781

87782

87783

87784

87785

87786

87787

87788

87789

87790

87791

87792

87793

87794

87795

87796

87797

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

bg Utilities

The bg utility is expected to wrap its output if the output exceeds the number of display
columns.

The bg and fg utilities are not symmetric as regards the list of process IDs known in the current
shell execution environment. Whereas fg removes a process ID from this list, bg has no need to
add one to this list when it resumes execution of a suspended job in the background, because
this has already been done by the shell when the suspended background job was created (see
Section 2.11, on page 2518).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.3.1 (on page 2506), fg , kill , jobs , wait

XBD Section 3.182 (on page 57), Chapter 8 (on page 167), Chapter 11 (on page 199)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The JC margin marker on the SYNOPSIS is removed since support for Job Control is mandatory
in this version. This is a FIPS requirement.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1254 is applied, updating the DESCRIPTION to account for the addition of
Section 2.11 (on page 2518) and adding a paragraph to RATIONALE.

2668 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87798

87799

87800

87801

87802

87803

87804

87805

87806

87807

87808

87809

87810

87811

87812

87813

87814

87815

87816

87817

87818

87819

87820

87821

87822

87823

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities c17

NAME
c17 — compile standard C programs

SYNOPSIS
CD c17 [options...] pathname [[pathname] [-I directory]

[-L directory] [-l library] [-R directory]]...

DESCRIPTION
The c17 utility is an interface to the standard C compilation system; it shall accept source code
written in the C language as defined in section 6 of the ISO C standard. The system conceptually
consists of a compilation phase, encompassing Translation Phases 1 through 7 of the ISO C
standard, and a linkage phase, for handling Phase 8 of the ISO C standard and extensions
described here. The reference to ``library components’’ in Phase 8 shall be taken to refer to
components of libraries specified using the −l option, libraries specified as file.a or file.so
operands, and the equivalent of a −l c option passed to the link editor in the manner specified in
the EXTENDED DESCRIPTION. In addition, the compilation phase can be split into a separate
preprocessing operation, handling Translation Phases 1 through 4, and a processing operation,
handling Phases 5 though 7. Whether a single utility or multiple utilities for handling phases
separately is provided by an implementation is left unspecified. The input files referenced by
pathname operands and −l option-arguments shall be compiled and linked to produce an
executable file or, if the −G option is specified, a shared library file. It is unspecified whether the
linking of an executable file occurs entirely within the operation of c17; when a pathname
operand or −l option-argument names a shared library, an executable object may be produced
that is not fully resolved until the file is executed.

If the −c option is specified and the −o option is not specified, for all pathname operands of the
form file.c or file.i, the files:

$(basename pathname .c).o

or

$(basename pathname .i).o

respectively shall be created as the result of successful compilation. If the −c option is not
specified, it is unspecified whether such .o files are created or deleted for the file.c and file.i
operands.

If there are no options that prevent link editing (such as −c or −E), and all input files compile and
link without error, the resulting executable file or shared library file shall be written according to
the −o outfile option, if present. If −o outfile is not specified, a resulting executable file shall be
written to the file a.out; if the file to be written is a shared library file, the behavior is
unspecified.

Executable files shall be created as specified in Section 1.1.1.4 (on page 2454), except that the file
permission bits shall be set to:

S_IRWXO | S_IRWXG | S_IRWXU

and the bits specified by the umask of the process shall be cleared.

OPTIONS
The c17 utility shall conform to XBD Section 12.2 (on page 215), except that:

• Options can be interspersed with operands.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2669

87824

87825

87826

87827

87828

87829

87830

87831

87832

87833

87834

87835

87836

87837

87838

87839

87840

87841

87842

87843

87844

87845

87846

87847

87848

87849

87850

87851

87852

87853

87854

87855

87856

87857

87858

87859

87860

87861

87862

87863

87864

87865

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

c17 Utilities

• The order of specifying the −L, −l, and −R options, and the order of specifying −l options
with respect to pathname operands is significant.

• Conforming applications shall specify each option separately; that is, grouping option
letters (for example, −cO) need not be recognized by all implementations.

The following options shall be supported:

−B mode If mode is dynamic, produce a dynamically linked executable file. If the −B option
is present with −c, −E, or −G, the result is unspecified.

−c Suppress the link-edit phase of the compilation, and do not remove any object files
that are produced. The application shall ensure that all operands are of the form
file.c or file.i.

−D name[=value]
Define name as if by a C-language #define directive. If no =value is given, a value of
1 shall be used. The −D option has lower precedence than the −U option. That is, if
name is used in both a −U and a −D option, name shall be undefined regardless of
the order of the options. Additional implementation-defined names may be
provided by the compiler. Implementations shall support at least 2 048 bytes of −D
definitions and 256 names.

−E Copy C-language source files to standard output, executing all preprocessor
directives; no compilation shall be performed. If any operand is not a text file, the
effects are unspecified.

−G Create a shared library or create object files suitable for inclusion in such a shared
library. Compilations shall be performed in a manner suitable for the creation of
shared libraries (for example, by producing position-independent code).

If −c is also specified, create object files suitable for inclusion in a shared library.

If −c is not specified, create a shared library. In this case the application shall ensure
that the file named by the −o outfile option-argument includes an element named
so or an implementation-defined element denoting a shared library, where
elements in the last component of outfile are separated by <period> characters, for
example libx.so.1; if no −o option is included in the options or the file named by
the −o outfile option does not contain an element named so or an implementation-
defined element denoting a shared library, the result is unspecified. If a pathname
operand or −l option-argument names a shared library and that shared library
defines an object used by the library being created, it shall become a dependency
of the created shared library.

If the −G option is present with −B or −E, the result is unspecified.

−g Produce symbolic information in the object or executable files; the nature of this
information is unspecified, and may be modified by implementation-defined
interactions with other options.

−I directory Change the algorithm for searching for headers whose names are not absolute
pathnames to look in the directory named by the directory pathname before looking
in the usual places. Thus, headers whose names are enclosed in double-quotes ("")
shall be searched for first in the directory of the file with the #include line, then in
directories named in −I options, and last in the usual places. For headers whose
names are enclosed in angle brackets ("< >"), the header shall be searched for only
in directories named in −I options and then in the usual places. Directories named
in −I options shall be searched in the order specified. If the −I option is used to

2670 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87866

87867

87868

87869

87870

87871

87872

87873

87874

87875

87876

87877

87878

87879

87880

87881

87882

87883

87884

87885

87886

87887

87888

87889

87890

87891

87892

87893

87894

87895

87896

87897

87898

87899

87900

87901

87902

87903

87904

87905

87906

87907

87908

87909

87910

87911

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities c17

specify a directory that is one of the usual places searched by default, the results
are unspecified. Implementations shall support at least ten instances of this option
in a single c17 command invocation.

−L directory Change the algorithm of searching for the libraries named in the −l objects to look
in the directory named by the directory pathname before looking in the usual
places. Directories named in −L options shall be searched in the order specified. If
the −L option is used to specify a directory that is one of the usual places searched
by default, the results are unspecified. Implementations shall support at least ten
instances of this option in a single c17 command invocation. If a directory specified
by a −L option contains files with names starting with any of the strings "libc.",
"libl.", "libpthread.", "libm.", "librt.", "libxnet.", or "liby.",
the results are unspecified.

−l library Search the library named liblibrary.a or liblibrary.so. When searching for a library,
the linker shall look at each directory specified by −L options that appear on the
command line before this −l option, in the order given, and then the system default
libraries. If liblibrary.a and liblibrary.so both exist in a directory, c17 shall use
liblibrary.so if either −B dynamic or −G is specified. Once a library has been found
(shared or static) in a directory, later directories in the list shall not be considered.
A library shall be searched when its name is encountered, so the placement of a −l
option is significant. Several standard libraries can be specified in this manner, as
described in the EXTENDED DESCRIPTION section. Implementations may
recognize implementation-defined suffixes other than .a and .so as denoting
libraries.

−O optlevel Specify the level of code optimization. If the optlevel option-argument is the digit
'0', all special code optimizations shall be disabled. If it is the digit '1', the
nature of the optimization is unspecified. If the −O option is omitted, the nature of
the system’s default optimization is unspecified. It is unspecified whether code
generated in the presence of the −O 0 option is the same as that generated when
−O is omitted. Other optlevel values may be supported.

−o outfile Name the output file to be produced. If the −o option is present with −E, or with −c
and more than one input file, the result is unspecified.

When creating a single object file (by using −c with a single input file), use the
pathname outfile, instead of the default file.o, for the object file produced.

When creating an executable file, use the pathname outfile, instead of the default
a.out, for the executable file produced.

When creating a shared library, use the pathname outfile as the name of the shared
library. If no −o outfile option is specified when creating a shared library, the result
is unspecified.

−s Produce object or executable files, or both, from which symbolic and other
information not required for proper execution using the exec family defined in the
System Interfaces volume of POSIX.1-2024 has been removed (stripped). If both −g
and −s options are present, the action taken is unspecified.

−R directory If the object file format supports it, specify a directory to be searched for shared
libraries when an executable file or shared library being created by c17 is
subsequently executed, or loaded using dlopen(). If directory contains any <colon>
or <dollar-sign> characters, the behavior is unspecified. If an implementation
provides a means for setting a default load time search location or locations, the −R

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2671

87912

87913

87914

87915

87916

87917

87918

87919

87920

87921

87922

87923

87924

87925

87926

87927

87928

87929

87930

87931

87932

87933

87934

87935

87936

87937

87938

87939

87940

87941

87942

87943

87944

87945

87946

87947

87948

87949

87950

87951

87952

87953

87954

87955

87956

87957

87958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

c17 Utilities

option shall take precedence.

The directory named by directory shall not be searched by a process performing
dynamic loading if either of the following are true:

• The real and effective user IDs of that process are different and the directory
has write permission for a user ID outside the set of the effective user ID of
that process and any implementation-specific user IDs used for directories
containing system libraries.

• The real and effective group IDs of that process are different and the
directory has write permission for group IDs other than the effective group
ID of that process.

Directories named in −R options shall be searched in the order specified, before the
default system library locations are searched.

If a directory specified by a −R option contains files with names starting with any
of the strings "libc.", "libl.", "libpthread.", "libm.", "librt.",
"libxnet.", or "liby.", the result is unspecified.

If the −R option is present with −c or −E, the result is unspecified.

−U name Remove any initial definition of name.

Multiple instances of the −D, −I, −L, −l, −R, and −U options can be specified.

OPERANDS
The application shall ensure that at least one pathname operand is specified. The following forms
for pathname operands shall be supported:

file.c A C-language source file to be compiled and optionally linked.

file.i A text file containing the output of c17 −E, to be compiled and optionally linked.
The processing already performed by c17 −E when the file was produced shall not
be repeated when the file is compiled.

file.a A library of static object files typically produced by the ar utility, and referenced
during the link-edit phase. Implementations may recognize implementation-
defined suffixes other than .a as denoting static object file libraries.

file.so A library of shared object files typically produced by the c17 utility with the −G
option, and referenced during the link-edit phase. Implementations may recognize
implementation-defined suffixes other than .so as denoting shared object file
libraries.

file.o An object file produced by c17 −c and passed directly to the link editor.
Implementations may recognize implementation-defined suffixes other than .o as
denoting object files.

The processing of other files is implementation-defined.

STDIN
Not used.

INPUT FILES
Each input file shall be one of the following:

• A text file containing a C-language source program or the output of c17 −E

2672 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

87959

87960

87961

87962

87963

87964

87965

87966

87967

87968

87969

87970

87971

87972

87973

87974

87975

87976

87977

87978

87979

87980

87981

87982

87983

87984

87985

87986

87987

87988

87989

87990

87991

87992

87993

87994

87995

87996

87997

87998

87999

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities c17

• An object file in the format produced by c17 −c

• A library of object files in the format produced by archiving zero or more object files using
ar

• A shared library in the format produced by c17 −G

Implementations may supply additional utilities that produce files in these formats. Additional
input file formats are implementation-defined.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of c17:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TMPDIR Provide a pathname that should override the default directory for temporary files,
XSI if any. On XSI-conforming systems, provide a pathname that shall override the

default directory for temporary files, if any.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If more than one pathname operand ending in .c or .i (or possibly other unspecified suffixes) is
given, for each such file:

"%s:\n", <pathname>

may be written. These messages, if written, shall precede the processing of each input file; they
shall not be written to the standard output if they are written to the standard error, as described
in the STDERR section.

If the −E option is specified, the standard output shall be a text file that represents the results of
the preprocessing stage of the language; it may contain extra information appropriate for
subsequent compilation passes and shall contain at least one line with the format:

"# %d \"%s\"\n", <line>, <pathname>

for each file processed as a result of a #include directive, unless no other output generated from
that file is present in the output, where line is a line number and pathname is the pathname used
to open the file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2673

88000

88001

88002

88003

88004

88005

88006

88007

88008

88009

88010

88011

88012

88013

88014

88015

88016

88017

88018

88019

88020

88021

88022

88023

88024

88025

88026

88027

88028

88029

88030

88031

88032

88033

88034

88035

88036

88037

88038

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

c17 Utilities

STDERR
The standard error shall be used only for diagnostic messages, except that if more than one
pathname operand ending in .c or .i (or possibly other unspecified suffixes) is given, for each such
file:

"%s:\n", <pathname>

may be written to allow identification of the diagnostic and warning messages with the
appropriate input file. These messages, if written, shall precede the processing of each input file;
they shall not be written to the standard error if they are written to the standard output, as
described in the STDOUT section.

This utility may produce warning messages about certain conditions that do not warrant
returning an error (non-zero) exit value.

OUTPUT FILES
Object files or executable files or both are produced in unspecified formats. If the pathname of
an object file or executable file to be created by c17 resolves to an existing directory entry for a
file that is not a regular file, it is unspecified whether c17 shall attempt to create the file or shall
issue a diagnostic and exit with a non-zero exit status.

EXTENDED DESCRIPTION

Standard Libraries

The c17 utility shall recognize the following −l options for standard libraries:

−l c This option shall make available all interfaces referenced in the System Interfaces
volume of POSIX.1-2024, with the possible exception of those interfaces listed as
residing in <aio.h>, <arpa/inet.h>, <complex.h>, <fenv.h>, <math.h>,
<mqueue.h>, <netdb.h>, <net/if.h>, <netinet/in.h>, <pthread.h>, <sched.h>,
<semaphore.h>, <spawn.h>, <sys/socket.h>, <threads.h>, pthread_kill() and
pthread_sigmask() in <signal.h>, interfaces marked as optional in <sys/mman.h>,
interfaces marked as ADV (Advisory Information) in <fcntl.h>, and interfaces
beginning with the prefix clock_ or timer_ in <time.h>. This option shall not be
required to be present to cause a search of this library.

−l l This option shall make available all interfaces required by the C-language output
of lex that are not made available through the −l c option.

−l pthread This option shall make available all interfaces referenced in <pthread.h> and
<threads.h>, and also pthread_kill() and pthread_sigmask() referenced in
<signal.h>. An implementation may search this library in the absence of this
option.

−l m This option shall make available all interfaces referenced in <math.h>,
<complex.h>, and <fenv.h>. An implementation may search this library in the
absence of this option.

−l rt This option shall make available all interfaces referenced in <aio.h>, <mqueue.h>,
<sched.h>, <semaphore.h>, and <spawn.h>, interfaces marked as optional in
<sys/mman.h>, interfaces marked as ADV (Advisory Information) in <fcntl.h>,
and interfaces beginning with the prefix clock_ and timer_ in <time.h>. An
implementation may search this library in the absence of this option.

−l xnet This option shall make available all interfaces referenced in <arpa/inet.h>,
<netdb.h>, <net/if.h>, <netinet/in.h>, and <sys/socket.h>. An implementation
may search this library in the absence of this option.

2674 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88039

88040

88041

88042

88043

88044

88045

88046

88047

88048

88049

88050

88051

88052

88053

88054

88055

88056

88057

88058

88059

88060

88061

88062

88063

88064

88065

88066

88067

88068

88069

88070

88071

88072

88073

88074

88075

88076

88077

88078

88079

88080

88081

88082

88083

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities c17

−l y This option shall make available all interfaces required by the C-language output
of yacc that are not made available through the −l c option.

In the absence of options that inhibit invocation of the link editor, such as −c or −E, the c17 utility
shall cause the equivalent of a −l c option to be passed to the link editor after the last pathname
operand or −l option, causing it to be searched after all other object files and libraries are loaded.

The libraries c, l, m, pthread, rt, xnet, and y shall be found as shared libraries when specified as
the option-argument to the −l option and may also be found as static libraries but, except for the
shared library version of the c library, need not exist as regular files. The implementation may
accept as −l option-arguments names of additional implementation-defined libraries that do not
exist as regular files.

External Symbols

The C compiler and link editor shall support the significance of external symbols up to a length
of at least 31 bytes; the action taken upon encountering symbols exceeding the implementation-
defined maximum symbol length is unspecified.

The compiler and link editor shall support a minimum of 4 095 external identifiers in one
translation unit. A diagnostic message shall be written to the standard output if the
implementation-defined limit is exceeded; other actions are unspecified.

Header Search

If a file with the same name as one of the standard headers defined in XBD Chapter 14 (on page
221), not provided as part of the implementation, is placed in any of the usual places that are
searched by default for headers, the results are unspecified.

Programming Environments

All implementations shall support one of the following programming environments as a default.
Implementations may support more than one of the following programming environments.
Applications can use the _POSIX_Vn_ILP* and _POSIX_Vn_LP* constants in <unistd.h>, and
corresponding sysconf() and getconf calls, to determine which programming environments are
supported.

Table 3-4 Programming Environments: Type Sizes

Programming Environment Bits in Bits in Bits in all Bits in
getconf Name int long pointer types off_t

_POSIX_V8_ILP32_OFF32 32 32 32 32
_POSIX_V8_ILP32_OFFBIG 32 32 32 ≥64
_POSIX_V8_LP64_OFF64 32 64 64 64
_POSIX_V8_LPBIG_OFFBIG ≥32 ≥64 ≥64 ≥64

All implementations shall support one or more environments where the widths of the following
types are no greater than the width of type long:

blksize_t
cc_t
mode_t
nfds_t
pid_t

ptrdiff_t
size_t
speed_t
ssize_t
suseconds_t

tcflag_t
wchar_t
wint_t

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2675

88084

88085

88086

88087

88088

88089

88090

88091

88092

88093

88094

88095

88096

88097

88098

88099

88100

88101

88102

88103

88104

88105

88106

88107

88108

88109

88110

88111

88112

88113

88114

88115

88116

88117

88118

88119

88120

88121

88122

88123

88124

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

c17 Utilities

The executable files created when these environments are selected shall be in a proper format for
execution by the exec family of functions. Each environment may be one of the ones in Table 3-4
(on page 2675), or it may be another environment. The names for the environments that meet
this requirement shall be output by a getconf command using the
POSIX_V8_WIDTH_RESTRICTED_ENVS argument, as a <newline>-separated list of names
suitable for use with the getconf −v option. If more than one environment meets the requirement,
the names of all such environments shall be output on separate lines. Any of these names can
then be used in a subsequent getconf command to obtain the flags specific to that environment
with the following suffixes added as appropriate:

_CFLAGS To get the C compiler flags.

_LDFLAGS To get the linker/loader flags.

_LIBS To get the libraries.

This requirement may be removed in a future version.

When this utility processes a file containing a function called main(), it shall be defined with a
return type equivalent to int. Using return from the initial call to main() shall be equivalent
(other than with respect to language scope issues) to calling exit() with the returned value.
Reaching the end of the initial call to main() shall be equivalent to calling exit(0). The
implementation shall not declare a prototype for this function.

Implementations provide configuration strings for C compiler flags, linker/loader flags, and
libraries for each supported environment. When an application needs to use a specific
programming environment rather than the implementation default programming environment
while compiling, the application shall first verify that the implementation supports the desired
environment. If the desired programming environment is supported, the application shall then
invoke c17 with the appropriate C compiler flags as the first options for the compile, the
appropriate linker/loader flags after any other options except −l but before any operands or −l
options, and the appropriate libraries at the end of the operands and −l options.

Conforming applications shall not attempt to link together object files compiled for different
programming models. Applications shall also be aware that binary data placed in shared
memory or in files might not be recognized by applications built for other programming models.

Table 3-5 Programming Environments: c17 Arguments

Programming Environment c17 Arguments
getconf Name Use getconf Name

_POSIX_V8_ILP32_OFF32 C Compiler Flags POSIX_V8_ILP32_OFF32_CFLAGS
Linker/Loader Flags POSIX_V8_ILP32_OFF32_LDFLAGS
Libraries POSIX_V8_ILP32_OFF32_LIBS

_POSIX_V8_ILP32_OFFBIG C Compiler Flags POSIX_V8_ILP32_OFFBIG_CFLAGS
Linker/Loader Flags POSIX_V8_ILP32_OFFBIG_LDFLAGS
Libraries POSIX_V8_ILP32_OFFBIG_LIBS

_POSIX_V8_LP64_OFF64 C Compiler Flags POSIX_V8_LP64_OFF64_CFLAGS
Linker/Loader Flags POSIX_V8_LP64_OFF64_LDFLAGS
Libraries POSIX_V8_LP64_OFF64_LIBS

_POSIX_V8_LPBIG_OFFBIG C Compiler Flags POSIX_V8_LPBIG_OFFBIG_CFLAGS
Linker/Loader Flags POSIX_V8_LPBIG_OFFBIG_LDFLAGS
Libraries POSIX_V8_LPBIG_OFFBIG_LIBS

2676 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88125

88126

88127

88128

88129

88130

88131

88132

88133

88134

88135

88136

88137

88138

88139

88140

88141

88142

88143

88144

88145

88146

88147

88148

88149

88150

88151

88152

88153

88154

88155

88156

88157

88158

88159

88160

88161

88162

88163

88164

88165

88166

88167

88168

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities c17

In addition to the type size programming environments above, all implementations also support
a multi-threaded programming environment that is orthogonal to all of the programming
environments listed above. The getconf utility can be used to get flags for the threaded
programming environment, as indicated in Table 3-6.

Table 3-6 Threaded Programming Environment: c17 Arguments

Programming Environment c17 Arguments
getconf Name Use getconf Name

_POSIX_THREADS C Compiler Flags POSIX_V8_THREADS_CFLAGS
Linker/Loader Flags POSIX_V8_THREADS_LDFLAGS

These programming environment flags may be used in conjunction with any of the type size
programming environments supported by the implementation.

EXIT STATUS
The following exit values shall be returned:

0 Successful compilation or link edit.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When c17 encounters a compilation error that causes an object file not to be created, it shall write
a diagnostic to standard error and continue to compile other source code operands, but it shall
not perform the link phase and it shall return a non-zero exit status. If the link edit is
unsuccessful, a diagnostic message shall be written to standard error and c17 exits with a non-
zero status. A conforming application shall rely on the exit status of c17, rather than on the
existence or mode of the executable file.

APPLICATION USAGE
Since the c17 utility usually creates files in the current directory during the compilation process,
it is typically necessary to run the c17 utility in a directory in which a file can be created.

On systems providing POSIX Conformance (see XBD Chapter 2, on page 15), c17 is required
only with the C-Language Development option; XSI-conformant systems always provide c17.

Since this standard requires that conforming applications define either _POSIX_C_SOURCE or
_XOPEN_SOURCE before inclusion of any header (see XSH Section 2.2.1, on page 496), if c17 is
used to compile source code that includes a header without defining one of these feature test
macros in the required manner, the behavior of c17 itself and the results of using any files it
generates are undefined. When c17 is used this way, implementations are encouraged to make
visible in headers from the ISO C standard only the symbols that are allowed by that standard,
and otherwise to behave the same as if _POSIX_C_SOURCE or _XOPEN_SOURCE had been
defined, but portable applications cannot rely on this.

Some historical implementations have created .o files when −c is not specified and more than
one source file is given. Since this area is left unspecified, the application cannot rely on .o files
being created, but it also must be prepared for any related .o files that already exist being deleted
at the completion of the link edit.

There is the possible implication that if a user supplies versions of the standard functions (before
they would be encountered by an implicit −l c or explicit −l m), that those versions would be
used in place of the standard versions. There are various reasons this might not be true
(functions defined as macros, manipulations for clean name space, and so on), so the existence of
files named in the same manner as the standard libraries within the −L directories is explicitly

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2677

88169

88170

88171

88172

88173

88174

88175

88176

88177

88178

88179

88180

88181

88182

88183

88184

88185

88186

88187

88188

88189

88190

88191

88192

88193

88194

88195

88196

88197

88198

88199

88200

88201

88202

88203

88204

88205

88206

88207

88208

88209

88210

88211

88212

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

c17 Utilities

stated to produce unspecified behavior.

All of the functions specified in the System Interfaces volume of POSIX.1-2024 may be made
visible by implementations when the Standard C Library is searched. Conforming applications
must explicitly request searching the other standard libraries when functions made visible by
those libraries are used.

In the ISO C standard the mapping from physical source characters to the C source character set
is implementation-defined. Implementations may strip white-space characters before the
terminating <newline> of a (physical) line as part of this mapping and, as a consequence of this,
one or more white-space characters (and no other characters) between a <backslash> character
and the <newline> character that terminates the line produces implementation-defined results.
Portable applications should not use such constructs.

Some c17 compilers not conforming to POSIX.1-2024 do not support trigraphs by default.

Implementations may support multiple programming environments with some of them
conforming to this standard and some not conforming. The _POSIX_Vn_ILP* and
_POSIX_Vn_LP* constants in <unistd.h>, and corresponding sysconf() and getconf calls, only
indicate whether each programming environment is supported; they do not indicate anything
about conformance of the environments that are supported. For example, an implementation
may support the ILP32_OFF32 environment for legacy reasons with a 32-bit time_t, whereas in a
conforming environment time_t is required to have a width of at least 64 bits. Application
writers should consult an implementation’s POSIX Conformance Document for information
about the conformance of each supported programming environment.

EXAMPLES

1. The following usage example compiles foo.c and creates the executable file foo:

c17 -o foo foo.c

The following usage example compiles foo.c and creates the object file foo.o:

c17 -c foo.c

The following usage example compiles foo.c and creates the executable file a.out:

c17 foo.c

The following usage example compiles foo.c, links it with bar.o, and creates the
executable file a.out. It may also create and leave foo.o:

c17 foo.c bar.o

The following usage example preprocesses foo.c and bar.c to create foo.i and bar.i,
compiles foo.i and bar.i to create foo.o and bar.o, then links foo.o and bar.o to create the
executable file foobar. Each c17 execution would ideally be invoked from a separate rule
in a makefile (see make , on page 3130) with suitable dependencies so that each is only
executed when it needs to be:

c17 -E foo.c > foo.i
c17 -E bar.c > bar.i
c17 -c foo.i
c17 -c bar.i
c17 -o foobar foo.o bar.o

2. The following example shows how an application using threads interfaces can test for
support of and use a programming environment supporting 32-bit int, long, and all
pointer types, and an off_t type using at least 64 bits:

2678 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88213

88214

88215

88216

88217

88218

88219

88220

88221

88222

88223

88224

88225

88226

88227

88228

88229

88230

88231

88232

88233

88234

88235

88236

88237

88238

88239

88240

88241

88242

88243

88244

88245

88246

88247

88248

88249

88250

88251

88252

88253

88254

88255

88256

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities c17

offbig_env=$(getconf _POSIX_V8_ILP32_OFFBIG)
if [$offbig_env != "-1"] && [$offbig_env != "undefined"]
then

c17 $(getconf POSIX_V8_ILP32_OFFBIG_CFLAGS) \
$(getconf POSIX_V8_THREADS_CFLAGS) -D_XOPEN_SOURCE=800 \
$(getconf POSIX_V8_ILP32_OFFBIG_LDFLAGS) \
$(getconf POSIX_V8_THREADS_LDFLAGS) foo.c -o foo \
$(getconf POSIX_V8_ILP32_OFFBIG_LIBS) \
-l pthread

else
echo ILP32_OFFBIG programming environment not supported
exit 1

fi

3. The following examples clarify the use and interactions of −L and −l options.

Consider the case in which module a.c calls function f() in library libQ.a, and module b.c
calls function g() in library libp.a. Assume that both libraries reside in /a/b/c. The
command line to compile and link in the desired way is:

c17 -L /a/b/c main.o a.c -l Q b.c -l p

In this case the −L option need only precede the first −l option, since both libQ.a and
libp.a reside in the same directory.

Multiple −L options can be used when library name collisions occur. Building on the
previous example, suppose that the user wants to use a new libp.a, in /a/a/a, but still
wants f() from /a/b/c/libQ.a:

c17 -L /a/a/a -L /a/b/c main.o a.c -l Q b.c -l p

In this example, the linker searches the −L options in the order specified, and finds
/a/a/a/libp.a before /a/b/c/libp.a when resolving references for b.c. The order of the −l
options is still important, however.

4. The following example shows how an application can use a programming environment
where the widths of the following types:

blksize_t, cc_t, mode_t, nfds_t, pid_t, ptrdiff_t, size_t, speed_t, ssize_t, suseconds_t,
tcflag_t, wchar_t, wint_t

are no greater than the width of type long:

First choose one of the listed environments ...

... if there are no additional constraints, the first one will do:
CENV=$(getconf POSIX_V8_WIDTH_RESTRICTED_ENVS | head -n l)

... or, if an environment that supports large files is preferred,
look for names that contain "OFF64" or "OFFBIG". (This chooses
the last one in the list if none match.)
for CENV in $(getconf POSIX_V8_WIDTH_RESTRICTED_ENVS)
do

case $CENV in
OFF64|*OFFBIG*) break ;;
esac

done

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2679

88257

88258

88259

88260

88261

88262

88263

88264

88265

88266

88267

88268

88269

88270

88271

88272

88273

88274

88275

88276

88277

88278

88279

88280

88281

88282

88283

88284

88285

88286

88287

88288

88289

88290

88291

88292

88293

88294

88295

88296

88297

88298

88299

88300

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

c17 Utilities

The chosen environment name can now be used like this:

c17 $(getconf ${CENV}_CFLAGS) -D _POSIX_C_SOURCE=202405L \
$(getconf ${CENV}_LDFLAGS) foo.c -o foo \
$(getconf ${CENV}_LIBS)

5. The following example shows how to create a shared library that does not depend on any
other shared library:

c17 -G -c foo.c bar.c
c17 -G -o foobar.so foo.o bar.o

6. The following example shows how to create a dynamic executable that loads application
specific shared libraries by searching a specified list of directories when it is executed:

c17 -G -c foo.c
c17 -G -o /path/to/dir1/foo.so foo.o
c17 -G -c bar.c
c17 -G -o /path/to/dir2/bar.so bar.o
c17 -B dynamic -L /path/to/dir1 -L /path/to/dir2 -R /path/to/dir1 \

-R /path/to/dir2 -o foobar foobar.c -l foo -l bar

RATIONALE
The c17 utility is based on the c89 utility originally introduced in the ISO POSIX-2: 1993
standard.

Some of the changes from c89 include the ability to intersperse options and operands (which
many c89 implementations allowed despite it not being specified), the description of −l as an
option instead of an operand, and the modification to the contents of the Standard Libraries
section to account for new headers and options; for example, <spawn.h> added to the
description of −l rt.

POSIX.1-2024 specifies that the c17 utility must be able to use regular files for *.o files and for
a.out files. Implementations are free to overwrite existing files of other types when attempting to
create object files and executable files, but are not required to do so. If something other than a
regular file is specified and using it fails for any reason, c17 is required to issue a diagnostic
message and exit with a non-zero exit status. But for some file types, the problem may not be
noticed for a long time. For example, if a FIFO named a.out exists in the current directory, c17
may attempt to open a.out and will hang in the open() call until another process opens the FIFO
for reading. Then c17 may write most of the a.out to the FIFO and fail when it tries to seek back
close to the start of the file to insert a timestamp (FIFOs are not seekable files). The c17 utility is
also allowed to issue a diagnostic immediately if it encounters an a.out or *.o file that is not a
regular file. For portable use, applications should ensure that any a.out, −o option-argument, or
*.o files corresponding to any *.c files do not conflict with names already in use that are not
regular files or symbolic links that point to regular files.

Commands of the form c17 -c -o ... are frequently used to directly place the .o file into an
alternative directory without a need to separately rename the output file. This helps to support
concurrent compilations and out of tree builds.

Some implementations allow −c −o directory to produce directory /file.o even when there is more
than one input file; however, portable applications using −c with −o must compile only one file
at a time and must specify the final destination filename rather than a directory.

The shared library version of the c library is required to exist as a regular file because the
dynamic linker needs to be able to load at least one library at execution time. Other standard
shared libraries need not exist in their own right if the interfaces the standard requires them to

2680 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88301

88302

88303

88304

88305

88306

88307

88308

88309

88310

88311

88312

88313

88314

88315

88316

88317

88318

88319

88320

88321

88322

88323

88324

88325

88326

88327

88328

88329

88330

88331

88332

88333

88334

88335

88336

88337

88338

88339

88340

88341

88342

88343

88344

88345

88346

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities c17

provide exist in the c library; all that is required is that they are ``found’’ when specified as −l
option-arguments. Static versions of the standard libraries need not exist as regular files, even if
they are found as static libraries when specified as −l option-arguments.

On many systems, multi-threaded applications run in a programming environment that is
distinct from that used by single-threaded applications. This multi-threaded programming
environment (in addition to needing to specify −l pthread at link time) may require additional
flags to be set when headers are processed at compile time (−D_REENTRANT being common).
This programming environment is orthogonal to the type size programming environments
discussed above and listed in Table 3-4 (on page 2675). This version of the standard adds getconf
utility calls to provide the C compiler flags and linker/loader flags needed to support multi-
threaded applications. Note that on a system where single-threaded applications are a special
case of a multi-threaded application, both of these getconf calls may return NULL strings; on
other implementations both of these strings may be non-NULL strings.

The C standardization committee invented trigraphs (e.g., "??!" to represent '|') to address
character portability problems in development environments based on national variants of the
7-bit ISO/IEC 646: 1991 standard character set. However, these environments were already
obsolete by the time the first ISO C standard was published, and in practice trigraphs have not
been used for their intended purpose, and usually are intended to have their original meaning in
K&R C. For example, in practice a C-language source string like "What??!" is usually intended
to end in two <question-mark> characters and an <exclamation-mark>, not in '|'.

When the −E option is used, execution of some #pragma preprocessor directives may simply
result in a copy of the directive being included in the output as part of the allowed extra
information used by subsequent compilation passes (see STDOUT).

This standard requires that, when −E is used, lines beginning with '#' are output identifying
the files processed as a result of #include directives in order that c17 −E can be used to generate
makefile dependencies. See make . Usually such lines are output each time the origin of the
subsequent lines in the output changes, and the line number after the '#' is the line number in
the named file of the line from which the next line in the output was derived.

When the −R option is not included when an executable file or shared library is being created,
some implementations use the environment variables LD_RUN_PATH and LD_LIBRARY_PATH
to determine the directories to be searched for shared libraries.

Some implementations permit place-holders preceded by a <dollar-sign> character ('$'), such
as $ORIGIN, in the −R directory option-argument to be evaluated at load time. Some
implementations accept a colon separated list of directories for the path to search for shared
libraries, with the same effect as specifying the −R option multiple times. However, these
features are not universal.

The name of a shared library usually contains an element named so. Other implementation-
defined elements are allowed for backwards compatibility with historical systems, and so that
tools can be developed on conforming systems to create libraries for multiple environments. For
example, Microsoft systems use the filename extension .dll (and do not allow following text) to
denote a shared library. The standard allows additional characters to be used in the name of a
library following an so element to permit shared library versioning information to be at the end
of the library filename rather than requiring that any such strings appear before the final
element of the library name.

The decision to standardize on so as a required element in a shared library name was
intentional, as the alternative would have been standardizing things such as a new make macro
$(SHLIB_EXT) that would otherwise be needed to write a portable makefile that can compile
shared libraries despite not having a standardized element name.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2681

88347

88348

88349

88350

88351

88352

88353

88354

88355

88356

88357

88358

88359

88360

88361

88362

88363

88364

88365

88366

88367

88368

88369

88370

88371

88372

88373

88374

88375

88376

88377

88378

88379

88380

88381

88382

88383

88384

88385

88386

88387

88388

88389

88390

88391

88392

88393

88394

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

c17 Utilities

If a combination of direct and indirect dependencies of a shared library would require different
versions of another shared library, options that are not specified by the standard (such as −B
direct) will probably need to be used when linking that shared library, so that at runtime the
intended versions are found.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

Unlike all of the other non-OB-shaded utilities in this standard, a utility by this name probably
will not appear in the next version of this standard. This utility’s name is tied to the current
revision of the ISO C standard at the time this standard is approved. Since the ISO C standard
and this standard are maintained by different organizations on different schedules, we cannot
predict what the compiler will be named in the next version of the standard.

SEE ALSO
Section 1.1.1.4 (on page 2454), ar , getconf , make , nm , strip , umask

XBD Chapter 8 (on page 167), Section 12.2 (on page 215), Chapter 14 (on page 221)

XSH exec , sysconf()

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899: 2018 standard.

2682 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88395

88396

88397

88398

88399

88400

88401

88402

88403

88404

88405

88406

88407

88408

88409

88410

88411

88412

88413

88414

88415

88416

88417

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cal

NAME
cal — print a calendar

SYNOPSIS
XSI cal [[month] year]

DESCRIPTION
The cal utility shall write a calendar to standard output using the Julian calendar for dates from
January 1, 1 through September 2, 1752 and the Gregorian calendar for dates from September 14,
1752 through December 31, 9999 as though the Gregorian calendar had been adopted on
September 14, 1752.

If no operands are given, cal shall produce a one-month calendar for the current month in the
current year. If only the year operand is given, cal shall produce a calendar for all twelve months
in the given calendar year. If both month and year operands are given, cal shall produce a one-
month calendar for the given month in the given year.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

month Specify the month to be displayed, represented as a decimal integer from 1
(January) to 12 (December).

year Specify the year for which the calendar is displayed, represented as a decimal
integer from 1 to 9999.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cal:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

LC_TIME Determine the format and contents of the calendar.

NLSPATH Determine the location of messages objects and message catalogs.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2683

88418

88419

88420

88421

88422

88423

88424

88425

88426

88427

88428

88429

88430

88431

88432

88433

88434

88435

88436

88437

88438

88439

88440

88441

88442

88443

88444

88445

88446

88447

88448

88449

88450

88451

88452

88453

88454

88455

88456

88457

88458

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cal Utilities

TZ Determine the timezone used to calculate the value of the current month.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be used to display the calendar, in an unspecified format.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Note that:

cal 83

refers to A.D. 83, not 1983.

EXAMPLES
None.

RATIONALE
Earlier versions of this standard incorrectly required that the command:

cal 2000

write a one-month calendar for the current calendar month (no matter what the current year is)
in the year 2000 to standard output. This did not match historic practice in any known version of
the cal utility. The description has been updated to match historic practice. When only the year
operand is given, cal writes a twelve-month calendar for the specified year.

FUTURE DIRECTIONS
A future version of this standard may support locale-specific recognition of the date of adoption
of the Gregorian calendar.

SEE ALSO
XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The DESCRIPTION is updated to allow for traditional behavior for years before the adoption of
the Gregorian calendar.

2684 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88459

88460

88461

88462

88463

88464

88465

88466

88467

88468

88469

88470

88471

88472

88473

88474

88475

88476

88477

88478

88479

88480

88481

88482

88483

88484

88485

88486

88487

88488

88489

88490

88491

88492

88493

88494

88495

88496

88497

88498

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cal

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0074 [56] and XCU/TC1-2008/0075
[56] are applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2685

88499

88500

88501

88502

88503

88504

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cat Utilities

NAME
cat — concatenate and print files

SYNOPSIS
cat [-u] [file...]

DESCRIPTION
The cat utility shall read files in sequence and shall write their contents to the standard output in
the same sequence.

OPTIONS
The cat utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−u Write bytes from the input file to the standard output without delay as each is
read.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, the standard input
shall be used. If a file is '−', the cat utility shall read from the standard input at
that point in the sequence. The cat utility shall not close and reopen standard input
when it is referenced in this way, but shall accept multiple occurrences of '−' as a
file operand.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is '−'.
See the INPUT FILES section.

INPUT FILES
The input files can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cat:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

2686 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88505

88506

88507

88508

88509

88510

88511

88512

88513

88514

88515

88516

88517

88518

88519

88520

88521

88522

88523

88524

88525

88526

88527

88528

88529

88530

88531

88532

88533

88534

88535

88536

88537

88538

88539

88540

88541

88542

88543

88544

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cat

STDOUT
The standard output shall contain the sequence of bytes read from the input files. Nothing else
shall be written to the standard output. If the standard output is a regular file, and is the same
file as any of the input file operands, the implementation may treat this as an error.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The −u option has value in prototyping non-blocking reads from FIFOs. The intent is to support
the following sequence:

mkfifo foo
cat -u foo > /dev/tty13 &
cat -u > foo

It is unspecified whether standard output is or is not buffered in the default case. This is
sometimes of interest when standard output is associated with a terminal, since buffering may
delay the output. The presence of the −u option guarantees that unbuffered I/O is available. It is
implementation-defined whether the cat utility buffers output if the −u option is not specified.
Traditionally, the −u option is implemented using the equivalent of the setvbuf() function
defined in the System Interfaces volume of POSIX.1-2024.

EXAMPLES
The following command:

cat myfile

writes the contents of the file myfile to standard output.

The following command:

cat doc1 doc2 > doc.all

concatenates the files doc1 and doc2 and writes the result to doc.all.

Because of the shell language mechanism used to perform output redirection, a command such
as this:

cat doc doc.end > doc

causes the original data in doc to be lost before cat even begins execution. This is true whether
the cat command fails with an error or silently succeeds (the specification allows both
behaviors). In order to append the contents of doc.end without losing the original contents of
doc, this command should be used instead:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2687

88545

88546

88547

88548

88549

88550

88551

88552

88553

88554

88555

88556

88557

88558

88559

88560

88561

88562

88563

88564

88565

88566

88567

88568

88569

88570

88571

88572

88573

88574

88575

88576

88577

88578

88579

88580

88581

88582

88583

88584

88585

88586

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cat Utilities

cat doc.end >> doc

The command:

cat start - middle - end > file

when standard input is a terminal, gets two arbitrary pieces of input from the terminal with a
single invocation of cat. Note, however, that if standard input is a regular file, this would be
equivalent to the command:

cat start - middle /dev/null end > file

because the entire contents of the file would be consumed by cat the first time '−' was used as a
file operand and an end-of-file condition would be detected immediately when '−' was
referenced the second time.

RATIONALE
Historical versions of the cat utility include the −e, −t, and −v, options which permit the ends of
lines, <tab> characters, and invisible characters, respectively, to be rendered visible in the
output. The standard developers omitted these options because they provide too fine a degree of
control over what is made visible, and similar output can be obtained using a command such as:

sed -n l pathname

The latter also has the advantage that its output is unambiguous, whereas the output of
historical cat −etv is not.

The −s option was omitted because it corresponds to different functions in BSD and System
V-based systems. The BSD −s option to squeeze blank lines can be accomplished by the shell
script shown in the following example:

sed -n '
Write non-empty lines.
/./ {

p
d
}

Write a single empty line, then look for more empty lines.
/^$/ p
Get next line, discard the held <newline> (empty line),
and look for more empty lines.
:Empty
/^$/ {

N
s/.//
b Empty
}

Write the non-empty line before going back to search
for the first in a set of empty lines.

p
'

The System V −s option to silence error messages can be accomplished by redirecting the
standard error. Note that the BSD documentation for cat uses the term ``blank line’’ to mean the
same as the POSIX ``empty line’’: a line consisting only of a <newline>.

The BSD −n option was omitted because similar functionality can be obtained from the −n
option of the pr utility.

2688 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88587

88588

88589

88590

88591

88592

88593

88594

88595

88596

88597

88598

88599

88600

88601

88602

88603

88604

88605

88606

88607

88608

88609

88610

88611

88612

88613

88614

88615

88616

88617

88618

88619

88620

88621

88622

88623

88624

88625

88626

88627

88628

88629

88630

88631

88632

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cat

FUTURE DIRECTIONS
None.

SEE ALSO
more

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH setvbuf()

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-174 is applied, changing the RATIONALE.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0073 [876] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2689

88633

88634

88635

88636

88637

88638

88639

88640

88641

88642

88643

88644

88645

88646

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cd Utilities

NAME
cd — change the working directory

SYNOPSIS
cd [-L] [directory]

cd -P [-e] [directory]

DESCRIPTION
The cd utility shall change the working directory of the current shell execution environment (see
Section 2.13, on page 2522) by executing the following steps in sequence. (In the following steps,
the symbol curpath represents an intermediate value used to simplify the description of the
algorithm used by cd. There is no requirement that curpath be made visible to the application.)

1. If no directory operand is given and the HOME environment variable is empty or
undefined, the default behavior is implementation-defined and no further steps shall be
taken.

2. If no directory operand is given and the HOME environment variable is set to a non-empty
value, the cd utility shall behave as if the directory named in the HOME environment
variable was specified as the directory operand.

3. If the directory operand begins with a <slash> character, set curpath to the operand and
proceed to step 7.

4. If the first component of the directory operand is dot or dot-dot, proceed to step 6.

5. Starting with the first pathname in the <colon>-separated pathnames of CDPATH (see the
ENVIRONMENT VARIABLES section) if the pathname is non-null, test if the
concatenation of that pathname, a <slash> character if that pathname did not end with a
<slash> character, and the directory operand names a directory. If the pathname is null,
test if the concatenation of dot, a <slash> character, and the operand names a directory. In
either case, if the resulting string names an existing directory, set curpath to that string
and proceed to step 7. Otherwise, repeat this step with the next pathname in CDPATH
until all pathnames have been tested.

6. Set curpath to the directory operand.

7. If the −P option is in effect, proceed to step 10. If curpath does not begin with a <slash>
character, set curpath to the string formed by the concatenation of the value of PWD, a
<slash> character if the value of PWD did not end with a <slash> character, and curpath.

8. The curpath value shall then be converted to canonical form as follows, considering each
component from beginning to end, in sequence:

a. Dot components and any <slash> characters that separate them from the next
component shall be deleted.

b. For each dot-dot component, if there is a preceding component and it is neither
root nor dot-dot, then:

i. If the preceding component does not refer (in the context of pathname
resolution with symbolic links followed) to a directory, then the cd utility
shall display an appropriate error message and no further steps shall be
taken.

ii. The preceding component, all <slash> characters separating the preceding
component from dot-dot, dot-dot, and all <slash> characters separating dot-
dot from the following component (if any) shall be deleted.

2690 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88647

88648

88649

88650

88651

88652

88653

88654

88655

88656

88657

88658

88659

88660

88661

88662

88663

88664

88665

88666

88667

88668

88669

88670

88671

88672

88673

88674

88675

88676

88677

88678

88679

88680

88681

88682

88683

88684

88685

88686

88687

88688

88689

88690

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cd

c. An implementation may further simplify curpath by removing any trailing
<slash> characters that are not also leading <slash> characters, replacing multiple
non-leading consecutive <slash> characters with a single <slash>, and replacing
three or more leading <slash> characters with a single <slash>. If, as a result of
this canonicalization, the curpath variable is null, no further steps shall be taken.

9. If curpath is longer than {PATH_MAX} bytes (including the terminating null) and the
directory operand was not longer than {PATH_MAX} bytes (including the terminating
null), then curpath shall be converted from an absolute pathname to an equivalent
relative pathname if possible. This conversion shall always be considered possible if the
value of PWD, with a trailing <slash> added if it does not already have one, is an initial
substring of curpath. Whether or not it is considered possible under other circumstances
is unspecified. Implementations may also apply this conversion if curpath is not longer
than {PATH_MAX} bytes or the directory operand was longer than {PATH_MAX} bytes.

10. The cd utility shall then perform actions equivalent to the chdir() function called with
curpath as the path argument. If these actions fail for any reason, the cd utility shall
display an appropriate error message and the remainder of this step shall not be
executed. If the −P option is not in effect, the PWD environment variable shall be set to
the value that curpath had on entry to step 9 (i.e., before conversion to a relative
pathname).

If the −P option is in effect, the PWD environment variable shall be set to the string that
would be output by pwd −P. If there is insufficient permission on the new directory, or on
any parent of that directory, to determine the current working directory, the value of the
PWD environment variable is unspecified. If both the −e and the −P options are in effect
and cd is unable to determine the pathname of the current working directory, cd shall
complete successfully but return a non-zero exit status.

If, during the execution of the above steps, the PWD environment variable is set, the OLDPWD
shell variable shall also be set to the value of the old working directory (that is the current
working directory immediately prior to the call to cd). It is unspecified whether, when setting
OLDPWD, the shell also causes it to be exported if it was not already.

OPTIONS
The cd utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−e If the −P option is in effect, the current working directory is successfully changed,
and the correct value of the PWD environment variable cannot be determined, exit
with exit status 1.

−L Handle the operand dot-dot logically; symbolic link components shall not be
resolved before dot-dot components are processed (see steps 8. and 9. in the
DESCRIPTION).

−P Handle the operand dot-dot physically; symbolic link components shall be
resolved before dot-dot components are processed (see step 7. in the
DESCRIPTION).

If both −L and −P options are specified, the last of these options shall be used and all others
ignored. If neither −L nor −P is specified, the operand shall be handled dot-dot logically; see the
DESCRIPTION.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2691

88691

88692

88693

88694

88695

88696

88697

88698

88699

88700

88701

88702

88703

88704

88705

88706

88707

88708

88709

88710

88711

88712

88713

88714

88715

88716

88717

88718

88719

88720

88721

88722

88723

88724

88725

88726

88727

88728

88729

88730

88731

88732

88733

88734

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cd Utilities

OPERANDS
The following operands shall be supported:

directory An absolute or relative pathname of the directory that shall become the new
working directory. The interpretation of a relative pathname by cd depends on the
−L option and the CDPATH and PWD environment variables. If directory is an
empty string, cd shall write a diagnostic message to standard error and exit with
non-zero status. If directory consists of a single '-' (<hyphen-minus>) character,
the cd utility shall behave as if directory contained the value of the OLDPWD
environment variable, except that after it sets the value of PWD it shall write the
new value to standard output. The behavior is unspecified if OLDPWD does not
start with a <slash> character.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cd:

CDPATH A <colon>-separated list of pathnames that refer to directories. The cd utility shall
use this list in its attempt to change the directory, as described in the
DESCRIPTION. An empty string in place of a directory pathname represents the
current directory. If CDPATH is not set, it shall be treated as if it were an empty
string.

HOME The name of the directory, used when no directory operand is specified.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

OLDPWD A pathname of the previous working directory, used when the operand is '-'. If
an application sets or unsets the value of OLDPWD, the behavior of cd with a '-'
operand is unspecified.

PWD This variable shall be set as specified in the DESCRIPTION. If an application sets
or unsets the value of PWD, the behavior of cd is unspecified.

ASYNCHRONOUS EVENTS
Default.

2692 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88735

88736

88737

88738

88739

88740

88741

88742

88743

88744

88745

88746

88747

88748

88749

88750

88751

88752

88753

88754

88755

88756

88757

88758

88759

88760

88761

88762

88763

88764

88765

88766

88767

88768

88769

88770

88771

88772

88773

88774

88775

88776

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cd

STDOUT
If a non-empty directory name from CDPATH is used, or if the operand '-' is used, and the
absolute pathname of the new working directory can be determined, that pathname shall be
written to the standard output as follows:

"%s\n", <new directory>

If an absolute pathname of the new current working directory cannot be determined, it is
unspecified whether nothing is written to the standard output or the value of curpath used in
step 10, followed by a <newline>, is written to the standard output.

If a non-empty directory name from CDPATH is not used, and the directory argument is not
'-', there shall be no output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The current working directory was successfully changed and the value of the PWD
environment variable was set correctly.

0 The current working directory was successfully changed, the −e option is not in effect, the
−P option is in effect, and the correct value of the PWD environment variable could not be
determined.

>0 Either the −e option or the −P option is not in effect, and an error occurred.

1 The current working directory was successfully changed, both the −e and the −P options are
in effect, and the correct value of the PWD environment variable could not be determined.

>1 Both the −e and the −P options are in effect, and an error occurred.

CONSEQUENCES OF ERRORS
The working directory shall remain unchanged.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Since cd affects the current shell execution environment, it is always provided as a shell regular
built-in. If it is called in a subshell or separate utility execution environment, such as one of the
following:

(cd /tmp)
nohup cd
find . -exec cd {} \;

it does not affect the working directory of the caller’s environment.

The user must have execute (search) permission in directory in order to change to it.

Since cd treats the operand '-' as a special case, applications should not pass arbitrary values as
the operand. For example, instead of:

CDPATH= cd -P -- "$dir"

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2693

88777

88778

88779

88780

88781

88782

88783

88784

88785

88786

88787

88788

88789

88790

88791

88792

88793

88794

88795

88796

88797

88798

88799

88800

88801

88802

88803

88804

88805

88806

88807

88808

88809

88810

88811

88812

88813

88814

88815

88816

88817

88818

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cd Utilities

applications should use the following:

case $dir in
(/*) cd -P "$dir";;
("") echo >&2 directory is an empty string; exit 1;;
(*) CDPATH= cd -P "./$dir";;
esac

If an absolute pathname of the new current working directory cannot be determined, and a non-
empty directory name from CDPATH is used, cd may write a pathname to standard output that
is not an absolute pathname.

EXAMPLES
The following template can be used to perform processing in the directory specified by location
and end up in the current working directory in use before the first cd command was issued:

cd location
if [$? -ne 0]
then

print error message
exit 1

fi
... do whatever is desired as long as the OLDPWD environment variable

is not modified
cd -

RATIONALE
The use of the CDPATH was introduced in the System V shell. Its use is analogous to the use of
the PA TH variable in the shell. The BSD C shell used a shell parameter cdpath for this purpose.

A common extension when HOME is undefined is to get the login directory from the user
database for the invoking user. This does not occur on System V implementations.

Some historical shells, such as the KornShell, took special actions when the directory name
contained a dot-dot component, selecting the logical parent of the directory, rather than the
actual parent directory; that is, it moved up one level toward the '/' in the pathname,
remembering what the user typed, rather than performing the equivalent of:

chdir("..");

In such a shell, the following commands would not necessarily produce equivalent output for all
directories:

cd .. && ls ls ..

This behavior is now the default. It is not consistent with the definition of dot-dot in most
historical practice; that is, while this behavior has been optionally available in the KornShell,
other shells have historically not supported this functionality. The logical pathname is stored in
the PWD environment variable when the cd utility completes and this value is used to construct
the next directory name if cd is invoked with the −L option.

When the −P option is in effect, the correct value of the PWD environment variable cannot be
determined on some systems, but still results in a zero exit status. The value of PWD doesn’t
matter to some shell scripts and in those cases this is not a problem. In other cases, especially
with multiple calls to cd, the values of PWD and OLDPWD are important but the standard
provided no easy way to know that this was the case. The −e option has been added, even
though this was not historic practice, to give script writers a reliable way to know when the
value of PWD is not reliable.

2694 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88819

88820

88821

88822

88823

88824

88825

88826

88827

88828

88829

88830

88831

88832

88833

88834

88835

88836

88837

88838

88839

88840

88841

88842

88843

88844

88845

88846

88847

88848

88849

88850

88851

88852

88853

88854

88855

88856

88857

88858

88859

88860

88861

88862

88863

88864

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cd

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
Section 2.13 (on page 2522), pwd

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH chdir()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The cd − operand, PWD, and OLDPWD are added.

The −L and −P options are added to align with the IEEE P1003.2b draft standard. This also
includes the introduction of a new description to include the effect of these options.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/14 is applied, changing the SYNOPSIS to
make it clear that the −L and −P options are mutually-exclusive.

Issue 7
Austin Group Interpretation 1003.1-2001 #037 is applied.

Austin Group Interpretation 1003.1-2001 #199 is applied, clarifying how the cd utility handles
concatenation of two pathnames when the first pathname ends in a <slash> character.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Step 7 of the processing performed by cd is revised to refer to curpath instead of ``the operand’’.

Changes to the pwd utility and PWD environment variable have been made to match the
changes to the getcwd() function made for Austin Group Interpretation 1003.1-2001 #140.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0076 [230], XCU/TC1-2008/0077
[240], XCU/TC1-2008/0078 [240], and XCU/TC1-2008/0079 [123] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0074 [584] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 253 is applied, adding the −e option.

Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1045 is applied, clarifying the behavior when the directory operand is '-'.

Austin Group Defect 1047 is applied, requiring cd to treat an empty directory operand as an error

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2695

88865

88866

88867

88868

88869

88870

88871

88872

88873

88874

88875

88876

88877

88878

88879

88880

88881

88882

88883

88884

88885

88886

88887

88888

88889

88890

88891

88892

88893

88894

88895

88896

88897

88898

88899

88900

88901

88902

88903

88904

88905

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cd Utilities

Austin Group Defect 1527 is applied, clarifying the behavior when an absolute pathname of the
new current working directory cannot be determined.

Austin Group Defect 1601 is applied, clarifying that when setting OLDPWD, the shell need not
cause it to be exported if it was not already.

2696 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88906

88907

88908

88909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cflow

NAME
cflow — generate a C-language flowgraph (DEVELOPMENT)

SYNOPSIS
XSI cflow [-r] [-d num] [-D name[=def]]... [-i incl] [-I dir]...

[-U dir]... file...

DESCRIPTION
The cflow utility shall analyze a collection of object files or assembler, C-language, lex, or yacc
source files, and attempt to build a graph, written to standard output, charting the external
references.

OPTIONS
The cflow utility shall conform to XBD Section 12.2 (on page 215), except that the order of the −D,
−I, and −U options (which are identical to their interpretation by c17) is significant.

The following options shall be supported:

−d num Indicate the depth at which the flowgraph is cut off. The application shall ensure
that the argument num is a decimal integer. By default this is a very large number
(typically greater than 32 000). Attempts to set the cut-off depth to a non-positive
integer shall be ignored.

−i incl Increase the number of included symbols. The incl option-argument is one of the
following characters:

x Include external and static data symbols. The default shall be to include only
functions in the flowgraph.

_ (Underscore) Include names that begin with an <underscore>. The default
shall be to exclude these functions (and data if −i x is used).

−r Reverse the caller:callee relationship, producing an inverted listing showing the
callers of each function. The listing shall also be sorted in lexicographical order by
callee.

OPERANDS
The following operand is supported:

file The pathname of a file for which a graph is to be generated. Filenames suffixed by
.l shall shall be taken to be lex input, .y as yacc input, .c as c17 input, and .i as the
output of c17 −E. Such files shall be processed as appropriate, determined by their
suffix.

Files suffixed by .s (conventionally assembler source) may have more limited
information extracted from them.

STDIN
Not used.

INPUT FILES
The input files shall be object files or assembler, C-language, lex, or yacc source files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cflow:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2697

88910

88911

88912

88913

88914

88915

88916

88917

88918

88919

88920

88921

88922

88923

88924

88925

88926

88927

88928

88929

88930

88931

88932

88933

88934

88935

88936

88937

88938

88939

88940

88941

88942

88943

88944

88945

88946

88947

88948

88949

88950

88951

88952

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cflow Utilities

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the ordering of the output when the −r option is used.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The flowgraph written to standard output shall be formatted as follows:

"%d %s:%s\n", <reference number>, <global>, <definition>

Each line of output begins with a reference (that is, line) number, followed by indentation of at
least one column position per level. This is followed by the name of the global, a <colon>, and
its definition. Normally globals are only functions not defined as an external or beginning with
an <underscore>; see the OPTIONS section for the −i inclusion option. For information extracted
from C-language source, the definition consists of an abstract type declaration (for example, char
*) and, delimited by angle brackets, the name of the source file and the line number where the
definition was found. Definitions extracted from object files indicate the filename and location
counter under which the symbol appeared (for example, text).

Once a definition of a name has been written, subsequent references to that name contain only
the reference number of the line where the definition can be found. For undefined references,
only "< >" shall be written.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

2698 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

88953

88954

88955

88956

88957

88958

88959

88960

88961

88962

88963

88964

88965

88966

88967

88968

88969

88970

88971

88972

88973

88974

88975

88976

88977

88978

88979

88980

88981

88982

88983

88984

88985

88986

88987

88988

88989

88990

88991

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cflow

APPLICATION USAGE
Files produced by lex and yacc cause the reordering of line number declarations, and this can
confuse cflow. To obtain proper results, the input of yacc or lex must be directed to cflow.

EXAMPLES
Given the following in file.c:

int i;
int f();
int g();
int h();
int
main(void)
{

f();
g();
f();

}
int
f()
{

i = h();
}

The command:

cflow -i x file.c

produces the output:

1 main: int(), <file.c 6>
2 f: int(), <file.c 13>
3 h: <>
4 i: int, <file.c 1>
5 g: <>

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
c17 , lex , yacc

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2699

88992

88993

88994

88995

88996

88997

88998

88999

89000

89001

89002

89003

89004

89005

89006

89007

89008

89009

89010

89011

89012

89013

89014

89015

89016

89017

89018

89019

89020

89021

89022

89023

89024

89025

89026

89027

89028

89029

89030

89031

89032

89033

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cflow Utilities

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1195 is applied, changing ``main()’’ to ``main(void)’’.

2700 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89034

89035

89036

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities chgrp

NAME
chgrp — change the file group ownership

SYNOPSIS
chgrp [-h] group file...

chgrp -R [-H|-L|-P] group file...

DESCRIPTION
The chgrp utility shall set the group ID of the file named by each file operand to the group ID
specified by the group operand.

For each file operand, or, if the −R option is used, each file encountered while walking the
directory trees specified by the file operands, the chgrp utility shall perform actions equivalent to
the chown() function defined in the System Interfaces volume of POSIX.1-2024, called with the
following arguments:

• The file operand shall be used as the path argument.

• The user ID of the file shall be used as the owner argument.

• The specified group ID shall be used as the group argument.

Unless chgrp is invoked by a process with appropriate privileges, the set-user-ID and set-group-
ID bits of a regular file shall be cleared upon successful completion; the set-user-ID and set-
group-ID bits of other file types may be cleared.

OPTIONS
The chgrp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−h For each file operand that names a file of type symbolic link, chgrp shall attempt to
set the group ID of the symbolic link instead of the file referenced by the symbolic
link.

−H If the −R option is specified and a symbolic link referencing a file of type directory
is specified on the command line, chgrp shall change the group of the directory
referenced by the symbolic link and all files in the file hierarchy below it.

−L If the −R option is specified and a symbolic link referencing a file of type directory
is specified on the command line or encountered during the traversal of a file
hierarchy, chgrp shall change the group of the directory referenced by the symbolic
link and all files in the file hierarchy below it.

−P If the −R option is specified and a symbolic link is specified on the command line
or encountered during the traversal of a file hierarchy, chgrp shall change the group
ID of the symbolic link. The chgrp utility shall not follow the symbolic link to any
other part of the file hierarchy.

−R Recursively change file group IDs. For each file operand that names a directory,
chgrp shall change the group of the directory and all files in the file hierarchy
below it. Unless a −H, −L, or −P option is specified, it is unspecified which of these
options will be used as the default.

Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be
considered an error. The last option specified shall determine the behavior of the utility.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2701

89037

89038

89039

89040

89041

89042

89043

89044

89045

89046

89047

89048

89049

89050

89051

89052

89053

89054

89055

89056

89057

89058

89059

89060

89061

89062

89063

89064

89065

89066

89067

89068

89069

89070

89071

89072

89073

89074

89075

89076

89077

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chgrp Utilities

OPERANDS
The following operands shall be supported:

group A group name from the group database or a numeric group ID. Either specifies a
group ID to be given to each file named by one of the file operands. If a numeric
group operand exists in the group database as a group name, the group ID number
associated with that group name is used as the group ID.

file A pathname of a file whose group ID is to be modified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of chgrp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

2702 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89078

89079

89080

89081

89082

89083

89084

89085

89086

89087

89088

89089

89090

89091

89092

89093

89094

89095

89096

89097

89098

89099

89100

89101

89102

89103

89104

89105

89106

89107

89108

89109

89110

89111

89112

89113

89114

89115

89116

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities chgrp

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Only the owner of a file or the user with appropriate privileges may change the owner or group
of a file.

Some implementations restrict the use of chgrp to a user with appropriate privileges when the
group specified is not the effective group ID or one of the supplementary group IDs of the calling
process.

EXAMPLES
None.

RATIONALE
The System V and BSD versions use different exit status codes. Some implementations used the
exit status as a count of the number of errors that occurred; this practice is unworkable since it
can overflow the range of valid exit status values. The standard developers chose to mask these
by specifying only 0 and >0 as exit values.

The functionality of chgrp is described substantially through references to chown(). In this way,
there is no duplication of effort required for describing the interactions of permissions, multiple
groups, and so on.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , chown

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH chown()

CHANGE HISTORY
First released in Issue 2.

Issue 6
New options −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
options affect the processing of symbolic links.

IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS
section to ``Default.’’.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/15 is applied, changing the SYNOPSIS to
make it clear that −h and −R are optional.

Issue 7
SD5-XCU-ERN-8 is applied, removing the −R from the first line of the SYNOPSIS.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0080 [237,341] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2703

89117

89118

89119

89120

89121

89122

89123

89124

89125

89126

89127

89128

89129

89130

89131

89132

89133

89134

89135

89136

89137

89138

89139

89140

89141

89142

89143

89144

89145

89146

89147

89148

89149

89150

89151

89152

89153

89154

89155

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chmod Utilities

NAME
chmod — change the file modes

SYNOPSIS
chmod [-R] mode file...

DESCRIPTION
The chmod utility shall change any or all of the file mode bits of the file named by each file
operand in the way specified by the mode operand.

It is implementation-defined whether and how the chmod utility affects any alternate or
additional file access control mechanism (see XBD Section 4.7, on page 97) being used for the
specified file.

Only a process whose effective user ID matches the user ID of the file, or a process with
appropriate privileges, shall be permitted to change the file mode bits of a file.

Upon successfully changing the file mode bits of a file, the chmod utility shall mark for update
the last file status change timestamp of the file.

OPTIONS
The chmod utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−R Recursively change file mode bits. For each file operand that names a directory,
chmod shall change the file mode bits of the directory and all files in the file
hierarchy below it.

OPERANDS
The following operands shall be supported:

mode Represents the change to be made to the file mode bits of each file named by one of
the file operands; see the EXTENDED DESCRIPTION section.

file A pathname of a file whose file mode bits shall be modified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of chmod:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

2704 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89156

89157

89158

89159

89160

89161

89162

89163

89164

89165

89166

89167

89168

89169

89170

89171

89172

89173

89174

89175

89176

89177

89178

89179

89180

89181

89182

89183

89184

89185

89186

89187

89188

89189

89190

89191

89192

89193

89194

89195

89196

89197

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities chmod

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The mode operand shall be either a symbolic_mode expression or a non-negative octal integer. The
symbolic_mode form is described by the grammar later in this section.

Each clause shall specify an operation to be performed on the current file mode bits of each file.
The operations shall be performed on each file in the order in which the clauses are specified.

The who symbols u, g, and o shall specify the user, group, and other parts of the file mode bits,
respectively. A who consisting of the symbol a shall be equivalent to ugo.

The perm symbols r, w, and x represent the read, write, and execute/search portions of file mode
bits, respectively. The perm symbol s shall represent the set-user-ID-on-execution (when who
contains or implies u) and set-group-ID-on-execution (when who contains or implies g) bits.

The perm symbol X shall represent the execute/search portion of the file mode bits if the file is a
directory or if the current (unmodified) file mode bits have at least one of the execute bits
(S_IXUSR, S_IXGRP, or S_IXOTH) set. It shall be ignored if the file is not a directory and none of
the execute bits are set in the current file mode bits.

The permcopy symbols u, g, and o shall represent the current permissions associated with the
user, group, and other parts of the file mode bits, respectively. For the remainder of this section,
perm refers to the non-terminals perm and permcopy in the grammar.

If multiple actionlists are grouped with a single wholist in the grammar, each actionlist shall be
applied in the order specified with that wholist. The op symbols shall represent the operation
performed, as follows:

+ If perm is not specified, the '+' operation shall not change the file mode bits.

If who is not specified, the file mode bits represented by perm for the owner, group, and
other permissions, except for those with corresponding bits in the file mode creation mask
of the invoking process, shall be set.

Otherwise, the file mode bits represented by the specified who and perm values shall be set.

− If perm is not specified, the '−' operation shall not change the file mode bits.

If who is not specified, the file mode bits represented by perm for the owner, group, and
other permissions, except for those with corresponding bits in the file mode creation mask
of the invoking process, shall be cleared.

Otherwise, the file mode bits represented by the specified who and perm values shall be
cleared.

= Clear the file mode bits specified by the who value, or, if no who value is specified, all of the
file mode bits specified in this volume of POSIX.1-2024.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2705

89198

89199

89200

89201

89202

89203

89204

89205

89206

89207

89208

89209

89210

89211

89212

89213

89214

89215

89216

89217

89218

89219

89220

89221

89222

89223

89224

89225

89226

89227

89228

89229

89230

89231

89232

89233

89234

89235

89236

89237

89238

89239

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chmod Utilities

If perm is not specified, the '=' operation shall make no further modifications to the file
mode bits.

If who is not specified, the file mode bits represented by perm for the owner, group, and
other permissions, except for those with corresponding bits in the file mode creation mask
of the invoking process, shall be set.

Otherwise, the file mode bits represented by the specified who and perm values shall be set.

When using the symbolic mode form on a regular file, it is implementation-defined whether or
not:

• Requests to set the set-user-ID-on-execution or set-group-ID-on-execution bit when all
execute bits are currently clear and none are being set are ignored.

• Requests to clear all execute bits also clear the set-user-ID-on-execution and set-group-ID-
on-execution bits.

• Requests to clear the set-user-ID-on-execution or set-group-ID-on-execution bits when all
execute bits are currently clear are ignored. However, if the command ls −l file writes an s
in the position indicating that the set-user-ID-on-execution or set-group-ID-on-execution is
set, the commands chmod u−s file or chmod g−s file, respectively, shall not be ignored.

When using the symbolic mode form on other file types, it is implementation-defined whether
or not requests to set or clear the set-user-ID-on-execution or set-group-ID-on-execution bits are
honored.

If the who symbol o is used in conjunction with the perm symbol s with no other who symbols
being specified, the set-user-ID-on-execution and set-group-ID-on-execution bits shall not be
modified. It shall not be an error to specify the who symbol o in conjunction with the perm
symbol s.

XSI The perm symbol t shall specify the S_ISVTX bit. When used with a file of type directory, it can
be used with the who symbol a, or with no who symbol. It shall not be an error to specify a who
symbol of u, g, or o in conjunction with the perm symbol t, but the meaning of these
combinations is unspecified. The effect when using the perm symbol t with any file type other
than directory is unspecified.

For an octal integer mode operand, the file mode bits shall be set absolutely.

For each bit set in the octal number, the corresponding file permission bit shown in the following
table shall be set; all other file permission bits shall be cleared. For regular files, for each bit set in
the octal number corresponding to the set-user-ID-on-execution or the set-group-ID-on-
execution, bits shown in the following table shall be set; if these bits are not set in the octal
number, they are cleared. For other file types, it is implementation-defined whether or not
requests to set or clear the set-user-ID-on-execution or set-group-ID-on-execution bits are
honored.

Octal Mode Bit Octal Mode Bit Octal Mode Bit Octal Mode Bit
4000 S_ISUID 0400 S_IRUSR 0040 S_IRGRP 0004 S_IROTH
2000 S_ISGID 0200 S_IWUSR 0020 S_IWGRP 0002 S_IWOTH

XSI 1000 S_ISVTX 0100 S_IXUSR 0010 S_IXGRP 0001 S_IXOTH

When bits are set in the octal number other than those listed in the table above, the behavior is
unspecified.

2706 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89240

89241

89242

89243

89244

89245

89246

89247

89248

89249

89250

89251

89252

89253

89254

89255

89256

89257

89258

89259

89260

89261

89262

89263

89264

89265

89266

89267

89268

89269

89270

89271

89272

89273

89274

89275

89276

89277

89278

89279

89280

89281

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities chmod

Grammar for chmod

The grammar and lexical conventions in this section describe the syntax for the symbolic_mode
operand. The general conventions for this style of grammar are described in Section 1.3 (on page
2461). A valid symbolic_mode can be represented as the non-terminal symbol symbolic_mode in
the grammar. This formal syntax shall take precedence over the preceding text syntax
description.

The lexical processing is based entirely on single characters. Implementations need not allow
<blank> characters within the single argument being processed.

%start symbolic_mode
%%

symbolic_mode : clause
| symbolic_mode ',' clause
;

clause : actionlist
| wholist actionlist
;

wholist : who
| wholist who
;

who : 'u' | 'g' | 'o' | 'a'
;

actionlist : action
| actionlist action
;

action : op
| op permlist
| op permcopy
;

permcopy : 'u' | 'g' | 'o'
;

op : '+' | '-' | '='
;

permlist : perm
| perm permlist
;

XSI perm : 'r' | 'w' | 'x' | 'X' | 's' | 't'
;

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2707

89282

89283

89284

89285

89286

89287

89288

89289

89290

89291

89292

89293

89294

89295

89296

89297

89298

89299

89300

89301

89302

89303

89304

89305

89306

89307

89308

89309

89310

89311

89312

89313

89314

89315

89316

89317

89318

89319

89320

89321

89322

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chmod Utilities

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Some implementations of the chmod utility change the mode of a directory before the files in the
directory when performing a recursive (−R option) change; others change the directory mode
after the files in the directory. If an application tries to remove read or search permission for a
file hierarchy, the removal attempt fails if the directory is changed first; on the other hand, trying
to re-enable permissions to a restricted hierarchy fails if directories are changed last. Users
should not try to make a hierarchy inaccessible to themselves.

Some implementations of chmod never used the umask of the process when changing modes;
systems conformant with this volume of POSIX.1-2024 do so when who is not specified. Note
the difference between:

chmod a-w file

which removes all write permissions, and:

chmod -- -w file

which removes write permissions that would be allowed if file was created with the same
umask.

Conforming applications should never assume that they know how the set-user-ID and set-
group-ID bits on directories are interpreted.

EXAMPLES

Mode Results
a+= Equivalent to a+,a=; clears all file mode bits.
go+−w Equivalent to go+,go−w; clears group and other

write bits.
g=o−w Equivalent to g=o,g−w; sets group bit to match

other bits and then clears group write bit.
g−r+w Equivalent to g−r,g+w; clears group read bit and

sets group write bit.
uo=g Sets owner bits to match group bits and sets

other bits to match group bits.

RATIONALE
The functionality of chmod is described substantially through references to concepts defined in
the System Interfaces volume of POSIX.1-2024. In this way, there is less duplication of effort
required for describing the interactions of permissions. However, the behavior of this utility is
not described in terms of the chmod() function from the System Interfaces volume of
POSIX.1-2024 because that specification requires certain side-effects upon alternate file access
control mechanisms that might not be appropriate, depending on the implementation.

Implementations that support mandatory file and record locking as specified by the 1984
/usr/group standard historically used the combination of set-group-ID bit set and group
execute bit clear to indicate mandatory locking. This condition is usually set or cleared with the
symbolic mode perm symbol l instead of the perm symbols s and x so that the mandatory
locking mode is not changed without explicit indication that that was what the user intended.
Therefore, the details on how the implementation treats these conditions must be defined in the
documentation. This volume of POSIX.1-2024 does not require mandatory locking (nor does the
System Interfaces volume of POSIX.1-2024), but does allow it as an extension. However, this
volume of POSIX.1-2024 does require that the ls and chmod utilities work consistently in this

2708 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89323

89324

89325

89326

89327

89328

89329

89330

89331

89332

89333

89334

89335

89336

89337

89338

89339

89340

89341

89342

89343

89344

89345

89346

89347

89348

89349

89350

89351

89352

89353

89354

89355

89356

89357

89358

89359

89360

89361

89362

89363

89364

89365

89366

89367

89368

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities chmod

area. If ls −l file indicates that the set-group-ID bit is set, chmod g−s file must clear it (assuming
appropriate privileges exist to change modes).

The System V and BSD versions use different exit status codes. Some implementations used the
exit status as a count of the number of errors that occurred; this practice is unworkable since it
can overflow the range of valid exit status values. This problem is avoided here by specifying
only 0 and >0 as exit values.

The System Interfaces volume of POSIX.1-2024 indicates that implementation-defined
restrictions may cause the S_ISUID and S_ISGID bits to be ignored. This volume of POSIX.1-2024
allows the chmod utility to choose to modify these bits before calling chmod() (or some function
providing equivalent capabilities) for non-regular files. Among other things, this allows
implementations that use the set-user-ID and set-group-ID bits on directories to enable extended
features to handle these extensions in an intelligent manner.

The X perm symbol was adopted from BSD-based systems because it provides commonly
desired functionality when doing recursive (−R option) modifications. Similar functionality is
not provided by the find utility. Historical BSD versions of chmod, however, only supported X
with op+; it has been extended in this volume of POSIX.1-2024 because it is also useful with op=.
(It has also been added for op− even though it duplicates x, in this case, because it is intuitive
and easier to explain.)

The grammar was extended with the permcopy non-terminal to allow historical-practice forms of
symbolic modes like o=u −g (that is, set the ``other ’’ permissions to the permissions of ``owner ’’
minus the permissions of ``group’’).

FUTURE DIRECTIONS
None.

SEE ALSO
ls , umask

XBD Section 4.7 (on page 97), Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH chmod()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• Octal modes have been kept and made mandatory despite being marked obsolescent in the
ISO POSIX-2: 1993 standard.

IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS
section to ``Default.’’.

The Open Group Base Resolution bwg2001-010 is applied, adding the description of the
S_ISVTX bit and the t perm symbol as part of the XSI option.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/16 is applied, changing the XSI shaded
text in the EXTENDED DESCRIPTION from:

``The perm symbol t shall specify the S_ISVTX bit and shall apply to directories only. The
effect when using it with any other file type is unspecified. It can be used with the who
symbols o, a, or with no who symbol. It shall not be an error to specify a who symbol of u
or g in conjunction with the perm symbol t; it shall be ignored for u and g.’’

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2709

89369

89370

89371

89372

89373

89374

89375

89376

89377

89378

89379

89380

89381

89382

89383

89384

89385

89386

89387

89388

89389

89390

89391

89392

89393

89394

89395

89396

89397

89398

89399

89400

89401

89402

89403

89404

89405

89406

89407

89408

89409

89410

89411

89412

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chmod Utilities

to:

``The perm symbol t shall specify the S_ISVTX bit. When used with a file of type directory,
it can be used with the who symbol a, or with no who symbol. It shall not be an error to
specify a who symbol of u, g, or o in conjunction with the perm symbol t, but the meaning
of these combinations is unspecified. The effect when using the perm symbol t with any
file type other than directory is unspecified.’’

This change is to permit historical behavior.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Austin Group Interpretation 1003.1-2001 #130 is applied, adding text to the DESCRIPTION
about about marking for update the last file status change timestamp of the file.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2710 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89413

89414

89415

89416

89417

89418

89419

89420

89421

89422

89423

89424

89425

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities chown

NAME
chown — change the file ownership

SYNOPSIS
chown [-h] owner[:group] file...

chown -R [-H|-L|-P] owner[:group] file...

DESCRIPTION
The chown utility shall set the user ID of the file named by each file operand to the user ID
specified by the owner operand.

For each file operand, or, if the −R option is used, each file encountered while walking the
directory trees specified by the file operands, the chown utility shall perform actions equivalent to
the chown() function defined in the System Interfaces volume of POSIX.1-2024, called with the
following arguments:

1. The file operand shall be used as the path argument.

2. The user ID indicated by the owner portion of the first operand shall be used as the owner
argument.

3. If the group portion of the first operand is given, the group ID indicated by it shall be used
as the group argument; otherwise, the group ownership shall not be changed.

Unless chown is invoked by a process with appropriate privileges, the set-user-ID and set-group-
ID bits of a regular file shall be cleared upon successful completion; the set-user-ID and set-
group-ID bits of other file types may be cleared.

OPTIONS
The chown utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−h For each file operand that names a file of type symbolic link, chown shall attempt to
set the user ID of the symbolic link. If a group ID was specified, for each file
operand that names a file of type symbolic link, chown shall attempt to set the
group ID of the symbolic link.

−H If the −R option is specified and a symbolic link referencing a file of type directory
is specified on the command line, chown shall change the user ID (and group ID, if
specified) of the directory referenced by the symbolic link and all files in the file
hierarchy below it.

−L If the −R option is specified and a symbolic link referencing a file of type directory
is specified on the command line or encountered during the traversal of a file
hierarchy, chown shall change the user ID (and group ID, if specified) of the
directory referenced by the symbolic link and all files in the file hierarchy below it.

−P If the −R option is specified and a symbolic link is specified on the command line
or encountered during the traversal of a file hierarchy, chown shall change the
owner ID (and group ID, if specified) of the symbolic link. The chown utility shall
not follow the symbolic link to any other part of the file hierarchy.

−R Recursively change file user and group IDs. For each file operand that names a
directory, chown shall change the user ID (and group ID, if specified) of the
directory and all files in the file hierarchy below it. Unless a −H, −L, or −P option is
specified, it is unspecified which of these options will be used as the default.

Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2711

89426

89427

89428

89429

89430

89431

89432

89433

89434

89435

89436

89437

89438

89439

89440

89441

89442

89443

89444

89445

89446

89447

89448

89449

89450

89451

89452

89453

89454

89455

89456

89457

89458

89459

89460

89461

89462

89463

89464

89465

89466

89467

89468

89469

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chown Utilities

considered an error. The last option specified shall determine the behavior of the utility.

OPERANDS
The following operands shall be supported:

owner[:group] A user ID and optional group ID to be assigned to file. The owner portion of this
operand shall be a user name from the user database or a numeric user ID. Either
specifies a user ID which shall be given to each file named by one of the file
operands. If a numeric owner operand exists in the user database as a user name,
the user ID number associated with that user name shall be used as the user ID.
Similarly, if the group portion of this operand is present, it shall be a group name
from the group database or a numeric group ID. Either specifies a group ID which
shall be given to each file. If a numeric group operand exists in the group database
as a group name, the group ID number associated with that group name shall be
used as the group ID.

file A pathname of a file whose user ID is to be modified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of chown:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

2712 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89470

89471

89472

89473

89474

89475

89476

89477

89478

89479

89480

89481

89482

89483

89484

89485

89486

89487

89488

89489

89490

89491

89492

89493

89494

89495

89496

89497

89498

89499

89500

89501

89502

89503

89504

89505

89506

89507

89508

89509

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities chown

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Only the owner of a file or the user with appropriate privileges may change the owner or group
of a file.

Some implementations restrict the use of chown to a user with appropriate privileges.

EXAMPLES
None.

RATIONALE
The System V and BSD versions use different exit status codes. Some implementations used the
exit status as a count of the number of errors that occurred; this practice is unworkable since it
can overflow the range of valid exit status values. These are masked by specifying only 0 and >0
as exit values.

The functionality of chown is described substantially through references to functions in the
System Interfaces volume of POSIX.1-2024. In this way, there is no duplication of effort required
for describing the interactions of permissions, multiple groups, and so on.

The 4.3 BSD method of specifying both owner and group was included in this volume of
POSIX.1-2024 because:

• There are cases where the desired end condition could not be achieved using the chgrp and
chown (that only changed the user ID) utilities. (If the current owner is not a member of the
desired group and the desired owner is not a member of the current group, the chown()
function could fail unless both owner and group are changed at the same time.)

• Even if they could be changed independently, in cases where both are being changed, there
is a 100% performance penalty caused by being forced to invoke both utilities.

The BSD syntax user[.group] was changed to user[:group] in this volume of POSIX.1-2024 because
the <period> is a valid character in login names (as specified by the Base Definitions volume of
POSIX.1-2024, login names consist of characters in the portable filename character set). The
<colon> character was chosen as the replacement for the <period> character because it would
never be allowed as a character in a user name or group name on historical implementations.

The −R option is considered by some observers as an undesirable departure from the historical
UNIX system tools approach; since a tool, find, already exists to recurse over directories, there
seemed to be no good reason to require other tools to have to duplicate that functionality.
However, the −R option was deemed an important user convenience, is far more efficient than
forking a separate process for each element of the directory hierarchy, and is in widespread
historical use.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2713

89510

89511

89512

89513

89514

89515

89516

89517

89518

89519

89520

89521

89522

89523

89524

89525

89526

89527

89528

89529

89530

89531

89532

89533

89534

89535

89536

89537

89538

89539

89540

89541

89542

89543

89544

89545

89546

89547

89548

89549

89550

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

chown Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
chgrp , chmod

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH chown()

CHANGE HISTORY
First released in Issue 2.

Issue 6
New options −h, −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
options affect the processing of symbolic links.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS
section to ``Default.’’.

The ``otherwise, . . .’’ text in item 3. of the DESCRIPTION is changed to ``otherwise, the group
ownership shall not be changed’’.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/17 is applied, changing the SYNOPSIS to
make it clear that −h and −R are optional.

Issue 7
SD5-XCU-ERN-9 is applied, removing the −R from the first line of the SYNOPSIS.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The description of the −h and −P options is revised.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2714 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89551

89552

89553

89554

89555

89556

89557

89558

89559

89560

89561

89562

89563

89564

89565

89566

89567

89568

89569

89570

89571

89572

89573

89574

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cksum

NAME
cksum — write file checksums and sizes

SYNOPSIS
cksum [file...]

DESCRIPTION
The cksum utility shall calculate and write to standard output a cyclic redundancy check (CRC)
for each input file, and also write to standard output the number of octets in each file. The CRC
used is based on the polynomial used for CRC error checking in the ISO/IEC 8802-3: 1996
standard (Ethernet).

The encoding for the CRC checksum is defined by the generating polynomial:

G(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

Mathematically, the CRC value corresponding to a given file shall be defined by the following
procedure:

1. The n bits to be evaluated are considered to be the coefficients of a mod 2 polynomial
M(x) of degree n−1. These n bits are the bits from the file, with the most significant bit
being the most significant bit of the first octet of the file and the last bit being the least
significant bit of the last octet, padded with zero bits (if necessary) to achieve an integral
number of octets, followed by one or more octets representing the length of the file as a
binary value, least significant octet first. The smallest number of octets capable of
representing this integer shall be used.

2. M(x) is multiplied by x32 (that is, shifted left 32 bits) and divided by G(x) using mod 2
division, producing a remainder R(x) of degree ≤ 31.

3. The coefficients of R(x) are considered to be a 32-bit sequence.

4. The bit sequence is complemented and the result is the CRC.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be checked. If no file operands are specified, the standard
input shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cksum:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2715

89575

89576

89577

89578

89579

89580

89581

89582

89583

89584

89585

89586

89587

89588

89589

89590

89591

89592

89593

89594

89595

89596

89597

89598

89599

89600

89601

89602

89603

89604

89605

89606

89607

89608

89609

89610

89611

89612

89613

89614

89615

89616

89617

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cksum Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
For each file processed successfully, the cksum utility shall write in the following format:

"%u %d %s\n", <checksum>, <# of octets>, <pathname>

If no file operand was specified, the pathname and its leading <space> shall be omitted.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All files were processed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The cksum utility is typically used to quickly compare a suspect file against a trusted version of
the same, such as to ensure that files transmitted over noisy media arrive intact. However, this
comparison cannot be considered cryptographically secure. This utility should be avoided
whenever non-trivial requirements (including safety and security) have to be fulfilled.

Although input files to cksum can be any type, the results need not be what would be expected
on character special device files or on file types not described by the System Interfaces volume of
POSIX.1-2024. Since this volume of POSIX.1-2024 does not specify the block size used when
doing input, checksums of character special files need not process all of the data in those files.

The algorithm is expressed in terms of a bitstream divided into octets. If a file is transmitted
between two systems and undergoes any data transformation (such as changing little-endian
byte ordering to big-endian), identical CRC values cannot be expected. Implementations
performing such transformations may extend cksum to handle such situations.

EXAMPLES
None.

2716 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89618

89619

89620

89621

89622

89623

89624

89625

89626

89627

89628

89629

89630

89631

89632

89633

89634

89635

89636

89637

89638

89639

89640

89641

89642

89643

89644

89645

89646

89647

89648

89649

89650

89651

89652

89653

89654

89655

89656

89657

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cksum

RATIONALE
The cksum utility is included in this standard for reasons of portability but is not suitable for uses
where non-trivial requirements (including safety and security) have to be fulfilled.
Implementations are encouraged to provide utilities that implement hash and integrity
checksum algorithms of higher security and to keep up to date with developments in this area.

The following C-language program can be used as a model to describe the algorithm. It assumes
that a char is one octet. It also assumes that the entire file is available for one pass through the
function. This was done for simplicity in demonstrating the algorithm, rather than as an
implementation model.

static unsigned long crctab[] = {
0x00000000,
0x04c11db7, 0x09823b6e, 0x0d4326d9, 0x130476dc, 0x17c56b6b,
0x1a864db2, 0x1e475005, 0x2608edb8, 0x22c9f00f, 0x2f8ad6d6,
0x2b4bcb61, 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd,
0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9, 0x5f15adac,
0x5bd4b01b, 0x569796c2, 0x52568b75, 0x6a1936c8, 0x6ed82b7f,
0x639b0da6, 0x675a1011, 0x791d4014, 0x7ddc5da3, 0x709f7b7a,
0x745e66cd, 0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039,
0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5, 0xbe2b5b58,
0xbaea46ef, 0xb7a96036, 0xb3687d81, 0xad2f2d84, 0xa9ee3033,
0xa4ad16ea, 0xa06c0b5d, 0xd4326d90, 0xd0f37027, 0xddb056fe,
0xd9714b49, 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95,
0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1, 0xe13ef6f4,
0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d, 0x34867077, 0x30476dc0,
0x3d044b19, 0x39c556ae, 0x278206ab, 0x23431b1c, 0x2e003dc5,
0x2ac12072, 0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16,
0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca, 0x7897ab07,
0x7c56b6b0, 0x71159069, 0x75d48dde, 0x6b93dddb, 0x6f52c06c,
0x6211e6b5, 0x66d0fb02, 0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1,
0x53dc6066, 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba,
0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e, 0xbfa1b04b,
0xbb60adfc, 0xb6238b25, 0xb2e29692, 0x8aad2b2f, 0x8e6c3698,
0x832f1041, 0x87ee0df6, 0x99a95df3, 0x9d684044, 0x902b669d,
0x94ea7b2a, 0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e,
0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2, 0xc6bcf05f,
0xc27dede8, 0xcf3ecb31, 0xcbffd686, 0xd5b88683, 0xd1799b34,
0xdc3abded, 0xd8fba05a, 0x690ce0ee, 0x6dcdfd59, 0x608edb80,
0x644fc637, 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb,
0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f, 0x5c007b8a,
0x58c1663d, 0x558240e4, 0x51435d53, 0x251d3b9e, 0x21dc2629,
0x2c9f00f0, 0x285e1d47, 0x36194d42, 0x32d850f5, 0x3f9b762c,
0x3b5a6b9b, 0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff,
0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623, 0xf12f560e,
0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7, 0xe22b20d2, 0xe6ea3d65,
0xeba91bbc, 0xef68060b, 0xd727bbb6, 0xd3e6a601, 0xdea580d8,
0xda649d6f, 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3,
0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7, 0xae3afba2,
0xaafbe615, 0xa7b8c0cc, 0xa379dd7b, 0x9b3660c6, 0x9ff77d71,
0x92b45ba8, 0x9675461f, 0x8832161a, 0x8cf30bad, 0x81b02d74,
0x857130c3, 0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640,
0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c, 0x7b827d21,

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2717

89658

89659

89660

89661

89662

89663

89664

89665

89666

89667

89668

89669

89670

89671

89672

89673

89674

89675

89676

89677

89678

89679

89680

89681

89682

89683

89684

89685

89686

89687

89688

89689

89690

89691

89692

89693

89694

89695

89696

89697

89698

89699

89700

89701

89702

89703

89704

89705

89706

89707

89708

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cksum Utilities

0x7f436096, 0x7200464f, 0x76c15bf8, 0x68860bfd, 0x6c47164a,
0x61043093, 0x65c52d24, 0x119b4be9, 0x155a565e, 0x18197087,
0x1cd86d30, 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec,
0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088, 0x2497d08d,
0x2056cd3a, 0x2d15ebe3, 0x29d4f654, 0xc5a92679, 0xc1683bce,
0xcc2b1d17, 0xc8ea00a0, 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb,
0xdbee767c, 0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18,
0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4, 0x89b8fd09,
0x8d79e0be, 0x803ac667, 0x84fbdbd0, 0x9abc8bd5, 0x9e7d9662,
0x933eb0bb, 0x97ffad0c, 0xafb010b1, 0xab710d06, 0xa6322bdf,
0xa2f33668, 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4
};

unsigned long memcrc(const unsigned char *b, size_t n)
{
/* Input arguments:
* const unsigned char* b == byte sequence to checksum
* size_t n == length of sequence
*/

register size_t i;
register unsigned c, s = 0;

for (i = n; i > 0; --i) {
c = *b++;
s = (s << 8) ^ crctab[(s >> 24) ^ c];

}

/* Extend with the length of the string. */
while (n != 0) {

c = n & 0377;
n >>= 8;
s = (s << 8) ^ crctab[(s >> 24) ^ c];

}

return ~s;
}

The historical practice of writing the number of ``blocks’’ has been changed to writing the
number of octets, since the latter is not only more useful, but also since historical
implementations have not been consistent in defining what a ``block’’ meant.

The algorithm used was selected to increase the operational robustness of cksum. Neither the
System V nor BSD sum algorithm was selected. Since each of these was different and each was
the default behavior on those systems, no realistic compromise was available if either were
selected—some set of historical applications would break. Therefore, the name was changed to
cksum. Although the historical sum commands will probably continue to be provided for many
years, programs designed for portability across systems should use the new name.

The algorithm selected is based on that used by the ISO/IEC 8802-3: 1996 standard (Ethernet) for
the frame check sequence field. The algorithm used does not match the technical definition of a
checksum; the term is used for historical reasons. The length of the file is included in the CRC
calculation because this parallels inclusion of a length field by Ethernet in its CRC, but also
because it guards against inadvertent collisions between files that begin with different series of
zero octets. The chance that two different files produce identical CRCs is much greater when
their lengths are not considered. Keeping the length and the checksum of the file itself separate

2718 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89709

89710

89711

89712

89713

89714

89715

89716

89717

89718

89719

89720

89721

89722

89723

89724

89725

89726

89727

89728

89729

89730

89731

89732

89733

89734

89735

89736

89737

89738

89739

89740

89741

89742

89743

89744

89745

89746

89747

89748

89749

89750

89751

89752

89753

89754

89755

89756

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cksum

would yield a slightly more robust algorithm, but historical usage has always been that a single
number (the checksum as printed) represents the signature of the file. It was decided that
historical usage was the more important consideration.

Early proposals contained modifications to the Ethernet algorithm that involved extracting table
values whenever an intermediate result became zero. This was demonstrated to be less robust
than the current method and mathematically difficult to describe or justify.

The calculation used is identical to that given in pseudo-code in the referenced Sarwate article.
The pseudo-code rendition is:

X <- 0; Y <- 0;
for i <- m -1 step -1 until 0 do

begin
T <- X(1) ^ A[i];
X(1) <- X(0); X(0) <- Y(1); Y(1) <- Y(0); Y(0) <- 0;
comment: f[T] and f'[T] denote the T-th words in the

table f and f' ;
X <- X ^ f[T]; Y <- Y ^ f'[T];
end

The pseudo-code is reproduced exactly as given; however, note that in the case of cksum, A[i]
represents a byte of the file, the words X and Y are treated as a single 32-bit value, and the tables
f and f’ are a single table containing 32-bit values.

The referenced Sarwate article also discusses generating the table.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 4.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0081 [446] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1041 is applied, changing the APPLICATION USAGE and RATIONALE
sections.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2719

89757

89758

89759

89760

89761

89762

89763

89764

89765

89766

89767

89768

89769

89770

89771

89772

89773

89774

89775

89776

89777

89778

89779

89780

89781

89782

89783

89784

89785

89786

89787

89788

89789

89790

89791

89792

89793

89794

89795

89796

89797

89798

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cmp Utilities

NAME
cmp — compare two files

SYNOPSIS
cmp [-l|-s] file1 file2

DESCRIPTION
The cmp utility shall compare two files. The cmp utility shall write no output if the files are the
same. Under default options, if they differ, it shall write to standard output the byte and line
number at which the first difference occurred. Bytes and lines shall be numbered beginning with
1.

OPTIONS
The cmp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−l (Lowercase ell.) Write the byte number (decimal) and the differing bytes (octal) for
each difference.

−s Write nothing to standard output or standard error when files differ; indicate
differing files through exit status only. It is unspecified whether a diagnostic
message is written to standard error when an error is encountered; if a message is
not written, the error is indicated through exit status only.

OPERANDS
The following operands shall be supported:

file1 A pathname of the first file to be compared. If file1 is '−', the standard input shall
be used.

file2 A pathname of the second file to be compared. If file2 is '−', the standard input
shall be used.

If both file1 and file2 refer to standard input or refer to the same FIFO special, block special, or
character special file, the results are undefined.

STDIN
The standard input shall be used only if the file1 or file2 operand refers to standard input. See the
INPUT FILES section.

INPUT FILES
The input files can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cmp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to

2720 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89799

89800

89801

89802

89803

89804

89805

89806

89807

89808

89809

89810

89811

89812

89813

89814

89815

89816

89817

89818

89819

89820

89821

89822

89823

89824

89825

89826

89827

89828

89829

89830

89831

89832

89833

89834

89835

89836

89837

89838

89839

89840

89841

89842

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cmp

standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
In the POSIX locale, results of the comparison shall be written to standard output. When no
options are used, the format shall be:

"%s %s differ: char %d, line %d\n", file1, file2,
<byte number>, <line number>

When the −l option is used, the format shall be:

"%d %o %o\n", <byte number>, <differing byte>,
<differing byte>

for each byte that differs. The first <differing byte> number is from file1 while the second is from
file2. In both cases, <byte number> shall be relative to the beginning of the file, beginning with 1.

No output shall be written to standard output when the −s option is used.

STDERR
The standard error shall be used only for diagnostic messages. If the −l option is used and file1
and file2 differ in length, or if the −s option is not used and file1 and file2 are identical for the
entire length of the shorter file, in the POSIX locale the following diagnostic message shall be
written:

"cmp: EOF on %s%s\n", <name of shorter file>, <additional info>

The <additional info> field shall either be null or a string that starts with a <blank> and contains
no <newline> characters. Some implementations report on the number of lines in this case.

If the −s option is used and an error occurs, it is unspecified whether a diagnostic message is
written to standard error.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The files are identical.

1 The files are different; this includes the case where one file is identical to the first part of the
other.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2721

89843

89844

89845

89846

89847

89848

89849

89850

89851

89852

89853

89854

89855

89856

89857

89858

89859

89860

89861

89862

89863

89864

89865

89866

89867

89868

89869

89870

89871

89872

89873

89874

89875

89876

89877

89878

89879

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cmp Utilities

APPLICATION USAGE
Although input files to cmp can be any type, the results might not be what would be expected on
character special device files or on file types not described by the System Interfaces volume of
POSIX.1-2024. Since this volume of POSIX.1-2024 does not specify the block size used when
doing input, comparisons of character special files need not compare all of the data in those files.

For files which are not text files, line numbers simply reflect the presence of a <newline>,
without any implication that the file is organized into lines.

Since the behavior of −s differs between implementations as to whether error messages are
written, the only way to ensure consistent behavior of cmp when −s is used is to redirect
standard error to /dev/null.

If error messages are wanted, instead of using −s standard output should be redirected to
/dev/null, and anything written to standard error should be discarded if the exit status is 1. For
example:

silent_cmp() {
compare files with no output except error messages
message=$(cmp "$@" 2>&1 >/dev/null)
status=$?
case $status in
(0|1) ;;
(*) printf '%s\n' "$message" ;;
esac
return $status

}

EXAMPLES
None.

RATIONALE
The global language in Section 1.4 (on page 2462) indicates that using two mutually-exclusive
options together produces unspecified results. Some System V implementations consider the
option usage:

cmp -l -s ...

to be an error. They also treat:

cmp -s -l ...

as if no options were specified. Both of these behaviors are considered bugs, but are allowed.

The word char in the standard output format comes from historical usage, even though it is
actually a byte number. When cmp is supported in other locales, implementations are
encouraged to use the word byte or its equivalent in another language. Users should not
interpret this difference to indicate that the functionality of the utility changed between locales.

Some implementations report on the number of lines in the identical-but-shorter file case. This is
allowed by the inclusion of the <additional info> fields in the output format. The restriction on
having a leading <blank> and no <newline> characters is to make parsing for the filename
easier. It is recognized that some filenames containing white-space characters make parsing
difficult anyway, but the restriction does aid programs used on systems where the names are
predominantly well behaved.

2722 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89880

89881

89882

89883

89884

89885

89886

89887

89888

89889

89890

89891

89892

89893

89894

89895

89896

89897

89898

89899

89900

89901

89902

89903

89904

89905

89906

89907

89908

89909

89910

89911

89912

89913

89914

89915

89916

89917

89918

89919

89920

89921

89922

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cmp

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

Future versions of this standard may require that diagnostic messages are written to standard
error when the −s option is specified.

SEE ALSO
comm , diff

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XCU-ERN-96 is applied, updating the STDERR section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0075 [478] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2723

89923

89924

89925

89926

89927

89928

89929

89930

89931

89932

89933

89934

89935

89936

89937

89938

89939

89940

89941

89942

89943

89944

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

comm Utilities

NAME
comm — select or reject lines common to two files

SYNOPSIS
comm [-123] file1 file2

DESCRIPTION
The comm utility shall read file1 and file2, which should be ordered in the current collating
sequence, and produce three text columns as output: lines only in file1, lines only in file2, and
lines in both files.

If the lines in both files are not ordered according to the collating sequence of the current locale,
the results are unspecified.

If the collating sequence of the current locale does not have a total ordering of all characters (see
XBD Section 7.3.2, on page 139) and any lines from the input files collate equally but are not
identical, comm shall treat them as different lines and shall expect them to be ordered according
to a further byte-by-byte comparison using the collating sequence for the POSIX locale; if they
are not ordered in this way, the output of comm can identify such lines as being both unique to
file1 and unique to file2 instead of being in both files.

OPTIONS
The comm utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−1 Suppress the output column of lines unique to file1.

−2 Suppress the output column of lines unique to file2.

−3 Suppress the output column of lines duplicated in file1 and file2.

OPERANDS
The following operands shall be supported:

file1 A pathname of the first file to be compared. If file1 is '−', the standard input shall
be used.

file2 A pathname of the second file to be compared. If file2 is '−', the standard input
shall be used.

If both file1 and file2 refer to standard input or to the same FIFO special, block special, or
character special file, the results are undefined.

STDIN
The standard input shall be used only if one of the file1 or file2 operands refers to standard input.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of comm:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

2724 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

89945

89946

89947

89948

89949

89950

89951

89952

89953

89954

89955

89956

89957

89958

89959

89960

89961

89962

89963

89964

89965

89966

89967

89968

89969

89970

89971

89972

89973

89974

89975

89976

89977

89978

89979

89980

89981

89982

89983

89984

89985

89986

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities comm

LC_COLLATE
Determine the locale for the collating sequence comm expects to have been used
when the input files were sorted.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The comm utility shall produce output depending on the options selected. If the −1, −2, and −3
options are all selected, comm shall write nothing to standard output.

If the −1 option is not selected, lines contained only in file1 shall be written using the format:

"%s\n", <line in file1>

If the −2 option is not selected, lines contained only in file2 are written using the format:

"%s%s\n", <lead>, <line in file2>

where the string <lead> is as follows:

<tab> The −1 option is not selected.

null string The −1 option is selected.

If the −3 option is not selected, lines contained in both files shall be written using the format:

"%s%s\n", <lead>, <line in both>

where the string <lead> is as follows:

<tab><tab> Neither the −1 nor the −2 option is selected.

<tab> Exactly one of the −1 and −2 options is selected.

null string Both the −1 and −2 options are selected.

If the input files were ordered according to the collating sequence of the current locale, the lines
written shall be in the collating sequence of the current locale. If the input files contained any
lines that collated equally but were not identical and within each file those lines were ordered
according to a further byte-by-byte comparison using the collating sequence for the POSIX
locale, then lines written that collate equally but are not identical shall be ordered according to a
further byte-by-byte comparison using the collating sequence for the POSIX locale.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2725

89987

89988

89989

89990

89991

89992

89993

89994

89995

89996

89997

89998

89999

90000

90001

90002

90003

90004

90005

90006

90007

90008

90009

90010

90011

90012

90013

90014

90015

90016

90017

90018

90019

90020

90021

90022

90023

90024

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

comm Utilities

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were successfully output as specified.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If the input files are not properly presorted, the output of comm might not be useful.

When using comm to process pathnames, it is recommended that LC_ALL, or at least LC_CTYPE
and LC_COLLATE, are set to POSIX or C in the environment, since pathnames can contain byte
sequences that do not form valid characters in some locales, in which case the utility’s behavior
would be undefined. In the POSIX locale each byte is a valid single-byte character, and therefore
this problem is avoided.

If the collating sequence of the current locale does not have a total ordering of all characters,
since comm treats lines as being the same only if they are identical, some lines can be
misleadingly identified as being both unique to file1 and unique to file2 if lines that collate
equally but are not identical are not ordered in the way that comm expects. If the input does not
come from utilities (such as ls and sort) which provide this ordering, the problem can be avoided
by pre-sorting the input files using sort.

EXAMPLES
If a file named xcu contains a sorted list of the utilities in this volume of POSIX.1-2024, a file
named xpg3 contains a sorted list of the utilities specified in the X/Open Portability Guide, Issue
3, and a file named svid89 contains a sorted list of the utilities in the System V Interface
Definition Third Edition:

comm -23 xcu xpg3 | comm -23 - svid89

would print a list of utilities in this volume of POSIX.1-2024 not specified by either of the other
documents:

comm -12 xcu xpg3 | comm -12 - svid89

would print a list of utilities specified by all three documents, and:

comm -12 xpg3 svid89 | comm -23 - xcu

would print a list of utilities specified by both XPG3 and the SVID, but not specified in this
volume of POSIX.1-2024.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cmp , diff , sort , uniq

XBD Section 7.3.2 (on page 139), Chapter 8 (on page 167), Section 12.2 (on page 215)

2726 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90025

90026

90027

90028

90029

90030

90031

90032

90033

90034

90035

90036

90037

90038

90039

90040

90041

90042

90043

90044

90045

90046

90047

90048

90049

90050

90051

90052

90053

90054

90055

90056

90057

90058

90059

90060

90061

90062

90063

90064

90065

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities comm

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0076 [963], XCU/TC2-2008/0077
[663], and XCU/TC2-2008/0078 [963] are applied.

Issue 8
Austin Group Defect 1070 is applied, changing the requirements when any lines from the input
files collate equally but are not identical.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2727

90066

90067

90068

90069

90070

90071

90072

90073

90074

90075

90076

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

command Utilities

NAME
command — execute a simple command

SYNOPSIS
command [-p] command_name [argument...]

command [-p][-v|-V] command_name

DESCRIPTION
The command utility shall cause the shell to treat the arguments as a simple command,
suppressing the shell function lookup that is described in Section 2.9.1.4 (on page 2502), item 1c.

If the command_name is the same as the name of one of the special built-in utilities, the special
properties in the enumerated list at the beginning of Section 2.15 (on page 2526) shall not occur.
In every other respect, if command_name is not the name of a function, the effect of command
(with no options) shall be the same as omitting command, except that command_name does not
appear in the command word position in the command command, and consequently is not
subject to alias substitution (see Section 2.3.1, on page 2477) nor recognized as a reserved word
(see Section 2.4, on page 2478).

When the −v or −V option is used, the command utility shall provide information concerning
how a command name is interpreted by the shell.

The command utility shall be treated as a declaration utility if the first argument passed to the
utility is recognized as a declaration utility. In this case, subsequent words of the form
name=word shall be expanded in an assignment context. See Section 2.9.1.1 (on page 2500).

OPTIONS
The command utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−p Perform the command search using a default value for PA TH that is guaranteed to
find all of the standard utilities.

−v Write a string to standard output that indicates the pathname or command that
will be used by the shell, in the current shell execution environment (see Section
2.13, on page 2522), to invoke command_name, but do not invoke command_name.

• Executable utilities, regular built-in utilities, command_names including a
<slash> character, and any implementation-provided functions that are
found using the PA TH variable (as described in Section 2.9.1.4, on page 2502),
shall be written as absolute pathnames.

• Shell functions, special built-in utilities, regular built-in utilities not
associated with a PA TH search, and shell reserved words shall be written as
just their names.

• An alias shall be written as a command line that represents its alias
definition.

• Otherwise, no output shall be written and the exit status shall reflect that the
name was not found.

−V Write a string to standard output that indicates how the name given in the
command_name operand will be interpreted by the shell, in the current shell
execution environment (see Section 2.13, on page 2522), but do not invoke
command_name. Although the format of this string is unspecified, it shall indicate
in which of the following categories command_name falls and shall include the
information stated:

2728 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90077

90078

90079

90080

90081

90082

90083

90084

90085

90086

90087

90088

90089

90090

90091

90092

90093

90094

90095

90096

90097

90098

90099

90100

90101

90102

90103

90104

90105

90106

90107

90108

90109

90110

90111

90112

90113

90114

90115

90116

90117

90118

90119

90120

90121

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities command

• Executable utilities, regular built-in utilities, and any implementation-
provided functions that are found using the PA TH variable (as described in
Section 2.9.1.4, on page 2502), shall be identified as such and include the
absolute pathname in the string.

• Other shell functions shall be identified as functions.

• Aliases shall be identified as aliases and their definitions included in the
string.

• Special built-in utilities shall be identified as special built-in utilities.

• Regular built-in utilities not associated with a PA TH search shall be identified
as regular built-in utilities. (The term ``regular ’’ need not be used.)

• Shell reserved words shall be identified as reserved words.

OPERANDS
The following operands shall be supported:

argument One of the strings treated as an argument to command_name.

command_name
The name of a utility or a special built-in utility.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of command:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the search path used during the command search described in Section
2.9.1.4 (on page 2502), except as described under the −p option.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2729

90122

90123

90124

90125

90126

90127

90128

90129

90130

90131

90132

90133

90134

90135

90136

90137

90138

90139

90140

90141

90142

90143

90144

90145

90146

90147

90148

90149

90150

90151

90152

90153

90154

90155

90156

90157

90158

90159

90160

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

command Utilities

STDOUT
When the −v option is specified, standard output shall be formatted as:

"%s\n", <pathname or command>

When the −V option is specified, standard output shall be formatted as:

"%s\n", <unspecified>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
When the −v or −V options are specified, the following exit values shall be returned:

0 Successful completion.

>0 The command_name could not be found or an error occurred.

Otherwise, the following exit values shall be returned:

126 The utility specified by command_name was found but could not be invoked.

127 An error occurred in the command utility or the utility specified by command_name could not
be found.

Otherwise, the exit status of command shall be that of the simple command specified by the
arguments to command.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

The order for command search allows functions to override regular built-ins and path searches.
This utility is necessary to allow functions that have the same name as a utility to call the utility
(instead of a recursive call to the function).

The system default path is available using getconf; however, since getconf may need to have the
PA TH set up before it can be called itself, the following can be used:

command -p getconf PATH

There are some advantages to suppressing the special characteristics of special built-ins on
occasion. For example:

command exec > unwritable-file

does not cause a non-interactive script to abort, so that the output status can be checked by the
script.

The command, env, nohup, time, timeout, and xargs utilities have been specified to use exit code 127
if a utility to be invoked cannot be found, so that applications can distinguish ``failure to find a
utility’’ from ``invoked utility exited with an error indication’’. However, the command and nohup
utilities also use exit code 127 when an error occurs in those utilities, which means exit code 127
is not universally a ``not found’’ indicator. The value 127 was chosen because it is not commonly

2730 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90161

90162

90163

90164

90165

90166

90167

90168

90169

90170

90171

90172

90173

90174

90175

90176

90177

90178

90179

90180

90181

90182

90183

90184

90185

90186

90187

90188

90189

90190

90191

90192

90193

90194

90195

90196

90197

90198

90199

90200

90201

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities command

used for other meanings; most utilities use small values for ``normal error conditions’’ and the
values above 128 can be confused with termination due to receipt of a signal. The value 126 was
chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
any other reason.

Since the −v and −V options of command produce output in relation to the current shell execution
environment, command is generally provided as a shell regular built-in. If it is called in a subshell
or separate utility execution environment, such as one of the following:

(PATH=foo command -v)
nohup command -v

it does not necessarily produce correct results. For example, when called with nohup or an exec
function, in a separate utility execution environment, most implementations are not able to
identify aliases, functions, or special built-ins.

Two types of regular built-ins could be encountered on a system and these are described
separately by command. The description of command search in Section 2.9.1.4 (on page 2502)
allows for a standard utility to be implemented as a regular built-in as long as it is found in the
appropriate place in a PA TH search. So, for example, command −v true might yield /bin/true or
some similar pathname. Other implementation-defined utilities that are not defined by this
volume of POSIX.1-2024 might exist only as built-ins and have no pathname associated with
them. These produce output identified as (regular) built-ins. Applications encountering these are
not able to count on execing them, using them with nohup, overriding them with a different
PA TH, and so on.

The command utility takes on the expansion behavior of the command that it is wrapping.
Therefore, in

command command export a=~

command is recognized as a declaration utility, and the command sets the variable a to the value
of $HOME because it performs tilde-expansion of an assignment context; while

command echo a=~

outputs the literal string "a=~" because regular expansion can only perform tilde-expansion at
the beginning of the word. However, the shell need only perform lexical analysis of the next
argument when deciding if command should be treated as a declaration utility; therefore, with:

var=export; command $var a=~

and

command -- export a=~

it is unspecified whether the word a=~ is handled in an assignment context or as a regular
expansion.

EXAMPLES

1. Make a version of cd that always prints out the new working directory exactly once:

cd() {
command cd "$@" >/dev/null
pwd

}

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2731

90202

90203

90204

90205

90206

90207

90208

90209

90210

90211

90212

90213

90214

90215

90216

90217

90218

90219

90220

90221

90222

90223

90224

90225

90226

90227

90228

90229

90230

90231

90232

90233

90234

90235

90236

90237

90238

90239

90240

90241

90242

90243

90244

90245

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

command Utilities

2. Start off a ``secure shell script’’ in which the script avoids being spoofed by its parent:

IFS='
'
The preceding value should be <space><tab><newline>.
Set IFS to its default value.

\unalias -a
Unset all possible aliases.
Note that unalias is escaped to prevent an alias
being used for unalias.

unset -f command
Ensure command is not a user function.

PATH="$(command -p getconf PATH):$PATH"
Put on a reliable PATH prefix.

...

At this point, given correct permissions on the directories called by PA TH, the script has
the ability to ensure that any utility it calls is the intended one. It is being very cautious
because it assumes that implementation extensions may be present that would allow user
functions to exist when it is invoked; this capability is not specified by this volume of
POSIX.1-2024, but it is not prohibited as an extension. For example, the ENV variable
precedes the invocation of the script with a user start-up script. Such a script could define
functions to spoof the application.

RATIONALE
Since command is a regular built-in utility it is always found prior to the PA TH search.

There is nothing in the description of command that implies the command line is parsed any
differently from that of any other simple command. For example:

command a | b ; c

is not parsed in any special way that causes '|' or ';' to be treated other than a pipe operator
or <semicolon> or that prevents function lookup on b or c. However, some implementations
extend the shell’s assignment syntax, for example to allow an array to be populated with a single
assignment, and in order for such an extension to be usable in assignments specified as
arguments to export and readonly these shells have those utility names as separate tokens in their
grammar. When command is used to execute these utilities it also needs to be a separate token in
the grammar so that the same extended assignment syntax can still be recognized in this case.
This standard only permits an extension of this nature when the input to the shell would contain
a syntax error according to the standard grammar, and therefore it cannot affect how '|' and
';' are parsed in the example above. Note that although command can be a separate token in the
shell’s grammar, it cannot be a reserved word since command is a candidate for alias substitution
whereas reserved words are not (see Section 2.3.1).

The command utility is somewhat similar to the Eighth Edition shell builtin command, but since
command also goes to the file system to search for utilities, the name builtin would not be
intuitive.

The command utility is most likely to be provided as a regular built-in. It is not listed as a special
built-in for the following reasons:

2732 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90246

90247

90248

90249

90250

90251

90252

90253

90254

90255

90256

90257

90258

90259

90260

90261

90262

90263

90264

90265

90266

90267

90268

90269

90270

90271

90272

90273

90274

90275

90276

90277

90278

90279

90280

90281

90282

90283

90284

90285

90286

90287

90288

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities command

• The removal of exportable functions made the special precedence of a special built-in
unnecessary.

• A special built-in has special properties (see Section 2.15, on page 2526) that were
inappropriate for invoking other utilities. For example, two commands such as:

date > unwritable-file

command date > unwritable-file

would have entirely different results; in a non-interactive script, the former would
continue to execute the next command, the latter would abort. Introducing this semantic
difference along with suppressing functions was seen to be non-intuitive.

The −p option is present because it is useful to be able to ensure a safe path search that finds all
the standard utilities. This search might not be identical to the one that occurs through one of the
exec functions (as defined in the System Interfaces volume of POSIX.1-2024) when PA TH is unset.
At the very least, this feature is required to allow the script to access the correct version of getconf
so that the value of the default path can be accurately retrieved.

The command −v and −V options were added to satisfy requirements from users that are
currently accomplished by three different historical utilities: type in the System V shell, whence in
the KornShell, and which in the C shell. Since there is no historical agreement on how and what
to accomplish here, the POSIX command utility was enhanced and the historical utilities were left
unmodified. The C shell which merely conducts a path search. The KornShell whence is more
elaborate—in addition to the categories required by POSIX, it also reports on tracked aliases,
exported aliases, and undefined functions.

The output format of −V was left mostly unspecified because human users are its only audience.
Applications should not be written to care about this information; they can use the output of −v
to differentiate between various types of commands, but the additional information that may be
emitted by the more verbose −V is not needed and should not be arbitrarily constrained in its
verbosity or localization for application parsing reasons.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
Section 2.9.1.4 (on page 2502), Section 2.9.1.1 (on page 2500), Section 2.13 (on page 2522), Section
2.15 (on page 2526), sh , type

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH exec

CHANGE HISTORY
First released in Issue 4.

Issue 7
Austin Group Interpretation 1003.1-2001 #196 is applied, changing the SYNOPSIS to allow −p to
be used with −v (or −V).

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The command utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2733

90289

90290

90291

90292

90293

90294

90295

90296

90297

90298

90299

90300

90301

90302

90303

90304

90305

90306

90307

90308

90309

90310

90311

90312

90313

90314

90315

90316

90317

90318

90319

90320

90321

90322

90323

90324

90325

90326

90327

90328

90329

90330

90331

90332

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

command Utilities

The APPLICATION USAGE and EXAMPLES are revised to replace the non-standard
getconf_CS_PATH with getconf PATH.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defects 351 and 1393 are applied, requiring command to be a declaration utility if
the first argument passed to the utility is recognized as a declaration utility.

Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1117 is applied, changing ``implementation-defined’’ to ``implementation-
provided’’.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1161 is applied, changing ``Utilities’’ to ``Executable utilities’’ in the
descriptions of the −v and −V options.

Austin Group Defect 1431 is applied, changing ``item 1b’’ to ``item 1c’’.

Austin Group Defect 1586 is applied, adding the timeout utility.

Austin Group Defect 1594 is applied, changing the APPLICATION USAGE section.

Austin Group Defect 1637 is applied, clarifying that (when no options are specified)
command_name is not subject to alias substitution nor recognized as a reserved word.

2734 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90333

90334

90335

90336

90337

90338

90339

90340

90341

90342

90343

90344

90345

90346

90347

90348

90349

90350

90351

90352

90353

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities compress

NAME
compress, uncompress, zcat — compress and decompress data

SYNOPSIS
XSI compress [-fv] [-b value] [-g | -m algo] [file...]

compress -c [-fv] [-b value] [-g | -m algo] [file]

compress -d [-cfv] [file...]

uncompress [-cfv] [file...]

zcat [file...]

DESCRIPTION
The compress utility, when the −d option is not specified, shall apply the compression algorithm
identified by the −g option or the −m algo option to the named files to attempt to reduce their
size without loss of information. The compress utility with the −d option shall apply the
appropriate decompression algorithm to the named files to restore the data to their original
state.

The uncompress utility shall be equivalent to compress −d. The zcat utility shall be equivalent to
compress −c −d. If multiple file operands are specified, the decompressed data from each input
file shall be concatenated to standard output.

When compressing data, unless the −c option is specified, after an input file other than standard
input has been compressed, the compressed data from the input file shall be stored in a file with
the same pathname as the input file but with an added suffix. The added suffix shall be the
suffix associated with the algorithm (see the algorithms in Table 3-7, on page 2737). If
appending the suffix would make the size of the last component of the output file’s pathname
exceed {NAME_MAX} bytes, the command shall fail. If appending the suffix would make the
size of the pathname exceed {PATH_MAX} bytes, the command may fail.

When decompressing data, unless the −c option is specified, after an input file other than
standard input has been decompressed, the decompressed data from the input file shall be
stored in a file with the same pathname as the input file but with the suffix associated with the

OB algorithm removed. If file has no suffix associated with a known compression algorithm or file
does not exist and does not have a .Z suffix, file shall be used as the name of the output file, and
the default suffix .Z shall be appended to file to form the input pathname. The behavior is
unspecified if the input pathname ends with a suffix other than the suffix associated with the
algorithm used to compress the data. When the −c option is specified, file can have any suffix, or
no suffix, and the utility shall use file as the input file and examine the file’s contents to
determine which algorithm to use to decompress the data (it is not an error if file does not have a
suffix that matches the suffix associated with the compression algorithm).

When compressing or decompressing a file other than standard input and the −c option is not
specified, if the invoking process has sufficient privilege, the ownership, modes, access time, and
modification time of the output file shall match the ownership, modes, access time, and
modification time of the input file. After the output file has been successfully created, the input
file shall be removed if the invoking process has sufficient privileges. If the invoking process
does not have sufficient privileges to remove the input file (for example, if the directory has the
S_ISVTX bit set) the behavior depends on whether the −f option is specified: if −f is not
specified, the output file shall be removed, a diagnostic message shall be written and the utility
shall continue processing other files but the final exit status shall be non-zero; if −f is specified,
the output file shall not be removed and it is unspecified whether the inability to remove the
input file is treated as an error. If it is not treated as an error, a warning message may be written

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2735

90354

90355

90356

90357

90358

90359

90360

90361

90362

90363

90364

90365

90366

90367

90368

90369

90370

90371

90372

90373

90374

90375

90376

90377

90378

90379

90380

90381

90382

90383

90384

90385

90386

90387

90388

90389

90390

90391

90392

90393

90394

90395

90396

90397

90398

90399

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

compress Utilities

to standard error

If no file operands are specified, standard input shall be compressed or decompressed to
standard output.

OB If an input file that is to be removed after processing has multiple hard links, the compress and
uncompress utilities may write a diagnostic message to standard error and do nothing with the
file; this behavior may depend on whether the −f option is specified. If a diagnostic message is
written, the final exit status shall be non-zero.

OPTIONS
The compress, uncompress, and zcat utilities shall conform to XBD Section 12.2 (on page 215),
except that Guideline 1 does not apply to uncompress since the utility name has ten letters.

The following options shall be supported:

−b value If the compression algorithm is LZW, value specifies the maximum number of bits
to use in a code. For a conforming application, the value argument shall be:

9 <= value <= 16

The implementation may allow values of greater than 16. The default shall be 14,
15, or 16.

If the compression algorithm is DEFLATE, value specifies the compression level.
For a conforming application, the value argument shall be:

1 <= value <= 9

The default shall be 6.

For other algorithms, value specifies implementation-defined tuning.

−c Write to standard output; the input files shall not be changed, and no output files
shall be created.

−d Decompress files. When invoked with the −d option, the compress utility shall
restore previously compressed files to their original state.

−f Force compression or decompression of file, even if it does not (for compression)
actually reduce the size of the file, or if the corresponding output file already
exists. If the −f option is not given and the standard input is a terminal, the user
shall be prompted as to whether an existing output file should be overwritten. If
the response is affirmative, the existing file shall be overwritten. If the standard
input is not a terminal and −f is not given, compress or uncompress shall write a
diagnostic message to standard error, the existing file shall not be overwritten, and
the utility shall exit with a status greater than zero. If the −f option is specified and
an input file other than standard input has multiple hard links, it is
implementation-defined whether the input file is unlinked after the corresponding
output file is successfully written, or if processing of that file is skipped and a
diagnostic message is written to standard error.

−g Equivalent to −m gzip.

−m algo Use the algorithm defined by algo to compress the files. The following algorithms
shall be supported:

2736 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90400

90401

90402

90403

90404

90405

90406

90407

90408

90409

90410

90411

90412

90413

90414

90415

90416

90417

90418

90419

90420

90421

90422

90423

90424

90425

90426

90427

90428

90429

90430

90431

90432

90433

90434

90435

90436

90437

90438

90439

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities compress

Table 3-7 Compression algorithms, −m option-argument values, and suffixes

Algorithm algo Filename Suffix
Adaptive LZW lzw .Z
RFC1951 DEFLATE deflate .gz
Synonym for DEFLATE gzip .gz

Other implementation-defined algorithms may be supported.

If neither of the −m algo and −g options is specified, lzw shall be used as a default
algo value. Specifying more than one of the mutually exclusive −g and −m algo
options, or multiple −m algo options, shall not be considered an error. The last
option specified shall determine the behavior of the utility.

On systems not supporting the selected algorithm, the input files shall not be
changed and an exit status greater than two shall be returned.

Note: The Lempel-Ziv compression algorithm is described in the now-expired US
Patent 4464650, which was issued to William Eastman, Abraham Lempel, Jacob
Ziv, and Martin Cohn on August 7th, 1984 and assigned to Sperry Corporation.

The Lempel-Ziv-Welch compression algorithm is described in the now-expired
US Patent 4558302, which was issued to Terry A. Welch on December 10th, 1985
and assigned to Sperry Corporation.

−v For compress, write the percentage reduction of each file to standard error. For
uncompress, write messages to standard error concerning the expansion of each file.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be compressed or decompressed. If a file is '-', the utility
shall read from standard input at that point in the sequence and write to standard
output. If more than one file operand is '-', the behavior is unspecified.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is '-'.

INPUT FILES
If file operands are specified, the corresponding input files contain the data to be compressed or
decompressed.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of compress:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2737

90440

90441

90442

90443

90444

90445

90446

90447

90448

90449

90450

90451

90452

90453

90454

90455

90456

90457

90458

90459

90460

90461

90462

90463

90464

90465

90466

90467

90468

90469

90470

90471

90472

90473

90474

90475

90476

90477

90478

90479

90480

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

compress Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments), the behavior of character classes used in the extended regular
expression defined for the yesexpr locale keyword in the LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages, prompts, and the output
from the −v option written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
For the compress and uncompress utilities, the standard output shall be used if no file operands are
specified, if a file operand is '-', or if the −c option is specified. Otherwise, the standard output
shall not be used.

The zcat utility shall write the decompressed data to the standard output.

STDERR
The standard error shall be used only for diagnostic and prompt messages, the optional warning
message described in DESCRIPTION, and the output from −v.

OUTPUT FILES
When decompressing input files other than standard input, the corresponding output files shall
contain the decompressed input data. When compressing input files other than standard input,
the corresponding output files shall contain the compressed input data. If the selected algo is
deflate or gzip, the compressed output shall be in the GZIP format described in RFC 1952. For
other algorithms, the compressed output file format is implementation-defined and interchange
of such files between implementations (including access via unspecified file sharing
mechanisms) is not required by POSIX.1-2024.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned for compress:

0 Successful completion.

1 An error occurred.

2 One or more files were not compressed because they would have increased in size (and the
−f option was not specified).

>2 An error occurred.

The following exit values shall be returned for uncompress and zcat:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If an error occurs while compressing or decompressing an input file other than standard input,
the input file shall remain unmodified.

2738 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90481

90482

90483

90484

90485

90486

90487

90488

90489

90490

90491

90492

90493

90494

90495

90496

90497

90498

90499

90500

90501

90502

90503

90504

90505

90506

90507

90508

90509

90510

90511

90512

90513

90514

90515

90516

90517

90518

90519

90520

90521

90522

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities compress

APPLICATION USAGE
The amount of compression obtained depends on the size of the input, the number of bits per
code, and the distribution of common substrings. Typically, text such as source code or English is
reduced by 50-60%. Compression is generally much better than that achieved by Huffman
coding or adaptive Huffman coding (compact), and takes less time to compute.

Although compress strictly follows the default actions upon receipt of a signal or when an error
occurs, some unexpected results may occur. In some implementations it is likely that a partially
compressed file is left in place, alongside its uncompressed input file. Since the general
operation of compress is to delete the uncompressed file only after the .Z file has been
successfully filled, an application should always carefully check the exit status of compress before
arbitrarily deleting files that have like-named neighbors with .Z suffixes.

In addition to trying file and file.Z when looking for a file to decompress, some implementations
of uncompress and zcat also try suffixes for other known compression algorithms if neither file nor
file.Z is found. This version of the standard allows, but does not require this behavior. Portable
applications should always specify the full pathname (including the suffix) of files to be
decompressed.

EXAMPLES
None.

RATIONALE
Earlier versions of this standard limited the number of bits used by conforming applications for
the lzw algorithm to 14 due to address space limitations on 16-bit architectures. Using 15 or 16 is
a much more common default when using current hardware.

Earlier versions of this standard only supported LZW compression. The standard developers
noted that existing implementations added other compression utilities, such as gzip, and found it
desirable to support this widespread usage. Some implementations had extended the compress
utility to support such other schemes. The standard developers generalized this practice by the
addition of the −m option, even though this was not previous practice.

The uncompress −d option is added to match undocumented existing practice of tested
implementations.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

When decompressing a file, the requirement to add .Z to a file operand if the given pathname
does not include a suffix associated with a known compression algorithm or if file does not exist
and does not already have a .Z extension is an obsolescent feature and may be removed in a
future version.

SEE ALSO
XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

An error case is added for systems not supporting adaptive Lempel-Ziv coding.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2739

90523

90524

90525

90526

90527

90528

90529

90530

90531

90532

90533

90534

90535

90536

90537

90538

90539

90540

90541

90542

90543

90544

90545

90546

90547

90548

90549

90550

90551

90552

90553

90554

90555

90556

90557

90558

90559

90560

90561

90562

90563

90564

90565

90566

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

compress Utilities

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Austin Group Interpretation 1003.1-2001 #125 is applied, revising the ENVIRONMENT
VARIABLES section.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1041 is applied, combining the compress, uncompress and zcat pages into one
and extensively modifying most sections.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2740 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90567

90568

90569

90570

90571

90572

90573

90574

90575

90576

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cp

NAME
cp — copy files

SYNOPSIS
cp [-Pfip] source_file target_file

cp [-Pfip] source_file... target

cp -R [-H|-L|-P] [-fip] source_file... target

DESCRIPTION
The first synopsis form is denoted by two operands, neither of which are existing files of type
directory. The cp utility shall copy the contents of source_file (or, if source_file is a file of type
symbolic link, the contents of the file referenced by source_file) to the destination path named by
target_file.

The second synopsis form is denoted by two or more operands where the −R option is not
specified and the first synopsis form is not applicable. It shall be an error if any source_file is a file
of type directory, if target does not exist, or if target does not name a directory. The cp utility shall
copy the contents of each source_file (or, if source_file is a file of type symbolic link, the contents of
the file referenced by source_file) to the destination path named by the concatenation of target, a
single <slash> character if target did not end in a <slash>, and the last component of source_file.

The third synopsis form is denoted by two or more operands where the −R option is specified.
The cp utility shall copy each file in the file hierarchy rooted in each source_file to a destination
path named as follows:

• If target exists and names an existing directory, the name of the corresponding destination
path for each file in the file hierarchy shall be the concatenation of target, a single <slash>
character if target did not end in a <slash>, and the pathname of the file relative to the
directory containing source_file.

• If target does not exist and two operands are specified, the name of the corresponding
destination path for source_file shall be target; the name of the corresponding destination
path for all other files in the file hierarchy shall be the concatenation of target, a <slash>
character, and the pathname of the file relative to source_file.

It shall be an error if target does not exist and more than two operands are specified, or if target
exists and does not name a directory.

In the following description, the term dest_file refers to the file named by the destination path.
The term source_file refers to the file that is being copied, whether specified as an operand or a
file in a file hierarchy rooted in a source_file operand. If source_file is a file of type symbolic link:

• If the −R option was not specified, cp shall take actions based on the type and contents of
the file referenced by the symbolic link, and not by the symbolic link itself, unless the −P
option was specified.

• If the −R option was specified:

— If none of the options −H, −L, nor −P were specified, it is unspecified which of −H,
−L, or −P will be used as a default.

— If the −H option was specified, cp shall take actions based on the type and contents of
the file referenced by any symbolic link specified as a source_file operand.

— If the −L option was specified, cp shall take actions based on the type and contents of
the file referenced by any symbolic link specified as a source_file operand or any
symbolic links encountered during traversal of a file hierarchy.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2741

90577

90578

90579

90580

90581

90582

90583

90584

90585

90586

90587

90588

90589

90590

90591

90592

90593

90594

90595

90596

90597

90598

90599

90600

90601

90602

90603

90604

90605

90606

90607

90608

90609

90610

90611

90612

90613

90614

90615

90616

90617

90618

90619

90620

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cp Utilities

— If the −P option was specified, cp shall copy any symbolic link specified as a
source_file operand and any symbolic links encountered during traversal of a file
hierarchy, and shall not follow any symbolic links.

For each source_file, the following steps shall be taken:

1. If source_file references the same file as dest_file, cp may write a diagnostic message to
standard error; it shall do nothing more with source_file and shall go on to any remaining
files.

2. If source_file is of type directory, the following steps shall be taken:

a. If the −R option was not specified, cp shall write a diagnostic message to standard
error, do nothing more with source_file, and go on to any remaining files.

b. If source_file was not specified as an operand and source_file is dot or dot-dot, cp
shall do nothing more with source_file and go on to any remaining files.

c. If dest_file exists and it is a file type not specified by the System Interfaces volume
of POSIX.1-2024, the behavior is implementation-defined.

d. If dest_file exists and it is not of type directory, cp shall write a diagnostic message
to standard error, do nothing more with source_file or any files below source_file in
the file hierarchy, and go on to any remaining files.

e. If the directory dest_file does not exist, it shall be created with file permission bits
set to the same value as those of source_file, modified by the file creation mask of
the user if the −p option was not specified, and then bitwise-inclusively OR’ed
with S_IRWXU. If dest_file cannot be created, cp shall write a diagnostic message to
standard error, do nothing more with source_file, and go on to any remaining files.
It is unspecified if cp attempts to copy files in the file hierarchy rooted in source_file.

f. The files in the directory source_file shall be copied to the directory dest_file, taking
the four steps (1 to 4) listed here with the files as source_files.

g. If dest_file was created, its file permission bits shall be changed (if necessary) to be
the same as those of source_file, modified by the file creation mask of the user if the
−p option was not specified.

h. The cp utility shall do nothing more with source_file and go on to any remaining
files.

3. If source_file is of type regular file, the following steps shall be taken:

a. The behavior is unspecified if dest_file exists and was written by a previous step.
Otherwise, if dest_file exists, the following steps shall be taken:

i. If the −i option is in effect, the cp utility shall write a prompt to the standard
error and read a line from the standard input. If the response is not
affirmative, cp shall do nothing more with source_file and go on to any
remaining files.

ii. A file descriptor for dest_file shall be obtained by performing actions
equivalent to the open() function defined in the System Interfaces volume of
POSIX.1-2024 called using dest_file as the path argument, and the bitwise-
inclusive OR of O_WRONLY and O_TRUNC as the oflag argument.

iii. If the attempt to obtain a file descriptor fails and the −f option is in effect, cp
shall attempt to remove the file by performing actions equivalent to the
unlink() function defined in the System Interfaces volume of POSIX.1-2024

2742 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90621

90622

90623

90624

90625

90626

90627

90628

90629

90630

90631

90632

90633

90634

90635

90636

90637

90638

90639

90640

90641

90642

90643

90644

90645

90646

90647

90648

90649

90650

90651

90652

90653

90654

90655

90656

90657

90658

90659

90660

90661

90662

90663

90664

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cp

called using dest_file as the path argument. If this attempt succeeds, cp shall
continue with step 3b.

b. If dest_file does not exist, a file descriptor shall be obtained by performing actions
equivalent to the open() function defined in the System Interfaces volume of
POSIX.1-2024 called using dest_file as the path argument, and the bitwise-inclusive
OR of O_WRONLY and O_CREAT as the oflag argument. The file permission bits
of source_file shall be the mode argument.

c. If the attempt to obtain a file descriptor fails, cp shall write a diagnostic message to
standard error, do nothing more with source_file, and go on to any remaining files.

d. The contents of source_file shall be written to the file descriptor. Any write errors
shall cause cp to write a diagnostic message to standard error and continue to step
3e.

e. The file descriptor shall be closed.

f. The cp utility shall do nothing more with source_file. If a write error occurred in
step 3d, it is unspecified if cp continues with any remaining files. If no write error
occurred in step 3d, cp shall go on to any remaining files.

4. Otherwise, the −R option was specified, and the following steps shall be taken:

a. The dest_file shall be created with the same file type as source_file.

b. If source_file is a file of type FIFO, the file permission bits shall be the same as those
of source_file, modified by the file creation mask of the user if the −p option was not
specified. Otherwise, the permissions, owner ID, and group ID of dest_file are
implementation-defined.

If this creation fails for any reason, cp shall write a diagnostic message to standard
error, do nothing more with source_file, and go on to any remaining files.

c. If source_file is a file of type symbolic link, and the options require the symbolic link
itself to be acted upon, the pathname contained in dest_file shall be the same as the
pathname contained in source_file.

If this fails for any reason, cp shall write a diagnostic message to standard error, do
nothing more with source_file, and go on to any remaining files.

If the implementation provides additional or alternate access control mechanisms (see XBD
Section 4.7, on page 97), their effect on copies of files is implementation-defined.

OPTIONS
The cp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f If a file descriptor for a destination file cannot be obtained, as described in step
3.a.ii., attempt to unlink the destination file and proceed.

−H Take actions based on the type and contents of the file referenced by any symbolic
link specified as a source_file operand.

−i Write a prompt to standard error before copying to any existing non-directory
destination file. If the response from the standard input is affirmative, the copy
shall be attempted; otherwise, it shall not.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2743

90665

90666

90667

90668

90669

90670

90671

90672

90673

90674

90675

90676

90677

90678

90679

90680

90681

90682

90683

90684

90685

90686

90687

90688

90689

90690

90691

90692

90693

90694

90695

90696

90697

90698

90699

90700

90701

90702

90703

90704

90705

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cp Utilities

−L Take actions based on the type and contents of the file referenced by any symbolic
link specified as a source_file operand or any symbolic links encountered during
traversal of a file hierarchy.

−P Take actions on any symbolic link specified as a source_file operand or any
symbolic link encountered during traversal of a file hierarchy.

−p Duplicate the following characteristics of each source file in the corresponding
destination file:

1. The time of last data modification and time of last access. If this duplication
fails for any reason, cp shall write a diagnostic message to standard error.

2. The user ID and group ID. If this duplication fails for any reason, it is
unspecified whether cp writes a diagnostic message to standard error.

3. The file permission bits and the S_ISUID and S_ISGID bits. Other,
implementation-defined, bits may be duplicated as well. If this duplication
fails for any reason, cp shall write a diagnostic message to standard error.

If the user ID or the group ID cannot be duplicated, the file permission bits
S_ISUID and S_ISGID shall be cleared. If these bits are present in the source file but
are not duplicated in the destination file, it is unspecified whether cp writes a
diagnostic message to standard error.

The order in which the preceding characteristics are duplicated is unspecified. The
dest_file shall not be deleted if these characteristics cannot be preserved.

−R Copy file hierarchies.

Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be
considered an error. The last option specified shall determine the behavior of the utility.

OPERANDS
The following operands shall be supported:

source_file A pathname of a file to be copied. If a source_file operand is '−', it shall refer to a
file named −; implementations shall not treat it as meaning standard input.

target_file A pathname of an existing or nonexistent file, used for the output when a single
file is copied. If a target_file operand is '−', it shall refer to a file named −;
implementations shall not treat it as meaning standard output.

target A pathname of a directory to contain the copied files.

STDIN
The standard input shall be used to read an input line in response to each prompt specified in
the STDERR section. Otherwise, the standard input shall not be used.

INPUT FILES
The input files specified as operands may be of any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

2744 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90706

90707

90708

90709

90710

90711

90712

90713

90714

90715

90716

90717

90718

90719

90720

90721

90722

90723

90724

90725

90726

90727

90728

90729

90730

90731

90732

90733

90734

90735

90736

90737

90738

90739

90740

90741

90742

90743

90744

90745

90746

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cp

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes used in the
extended regular expression defined for the yesexpr locale keyword in the
LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
A prompt shall be written to standard error under the conditions specified in the DESCRIPTION
section. The prompt shall contain the destination pathname, but its format is otherwise
unspecified. Otherwise, the standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files may be of any type.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All requested files (excluding files where a non-affirmative response was given to a request
for confirmation) were successfully copied.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If cp is prematurely terminated by a signal or error, files or file hierarchies may be only partially
copied and files and directories may have incorrect permissions or access and modification
times.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2745

90747

90748

90749

90750

90751

90752

90753

90754

90755

90756

90757

90758

90759

90760

90761

90762

90763

90764

90765

90766

90767

90768

90769

90770

90771

90772

90773

90774

90775

90776

90777

90778

90779

90780

90781

90782

90783

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cp Utilities

APPLICATION USAGE
The set-user-ID and set-group-ID bits are explicitly cleared when files are created. This is to
prevent users from creating programs that are set-user-ID or set-group-ID to them when copying
files or to make set-user-ID or set-group-ID files accessible to new groups of users. For example,
if a file is set-user-ID and the copy has a different group ID than the source, a new group of users
has execute permission to a set-user-ID program than did previously. In particular, this is a
problem for superusers copying users’ trees.

EXAMPLES
None.

RATIONALE
The −i option exists on BSD systems, giving applications and users a way to avoid accidentally
removing files when copying. Although the 4.3 BSD version does not prompt if the standard
input is not a terminal, the standard developers decided that use of −i is a request for
interaction, so when the destination path exists, the utility takes instructions from whatever
responds on standard input.

The exact format of the interactive prompts is unspecified. Only the general nature of the
contents of prompts are specified because implementations may desire more descriptive
prompts than those used on historical implementations. Therefore, an application using the −i
option relies on the system to provide the most suitable dialog directly with the user, based on
the behavior specified.

The −p option is historical practice on BSD systems, duplicating the time of last data
modification and time of last access. This volume of POSIX.1-2024 extends it to preserve the user
and group IDs, as well as the file permissions. This requirement has obvious problems in that
the directories are almost certainly modified after being copied. This volume of POSIX.1-2024
requires that the modification times be preserved. The statement that the order in which the
characteristics are duplicated is unspecified is to permit implementations to provide the
maximum amount of security for the user. Implementations should take into account the
obvious security issues involved in setting the owner, group, and mode in the wrong order or
creating files with an owner, group, or mode different from the final value.

It is unspecified whether cp writes diagnostic messages when the user and group IDs cannot be
set due to the widespread practice of users using −p to duplicate some portion of the file
characteristics, indifferent to the duplication of others. Historic implementations only write
diagnostic messages on errors other than [EPERM].

Earlier versions of this standard included support for the −r option to copy file hierarchies. The
−r option is historical practice on BSD and BSD-derived systems. This option is no longer
specified by POSIX.1-2024 but may be present in some implementations. The −R option was
added as a close synonym to the −r option, selected for consistency with all other options in this
volume of POSIX.1-2024 that do recursive directory descent.

The difference between −R and the removed −r option is in the treatment by cp of file types other
than regular and directory. It was implementation-defined how the − option treated special files
to allow both historical implementations and those that chose to support −r with the same
abilities as −R defined by this volume of POSIX.1-2024. The original −r flag, for historic reasons,
did not handle special files any differently from regular files, but always read the file and copied
its contents. This had obvious problems in the presence of special file types; for example,
character devices, FIFOs, and sockets.

When a failure occurs during the copying of a file hierarchy, cp is required to attempt to copy
files that are on the same level in the hierarchy or above the file where the failure occurred. It is
unspecified if cp shall attempt to copy files below the file where the failure occurred (which

2746 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90784

90785

90786

90787

90788

90789

90790

90791

90792

90793

90794

90795

90796

90797

90798

90799

90800

90801

90802

90803

90804

90805

90806

90807

90808

90809

90810

90811

90812

90813

90814

90815

90816

90817

90818

90819

90820

90821

90822

90823

90824

90825

90826

90827

90828

90829

90830

90831

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cp

cannot succeed in any case).

Permissions, owners, and groups of created special file types have been deliberately left as
implementation-defined. This is to allow systems to satisfy special requirements (for example,
allowing users to create character special devices, but requiring them to be owned by a certain
group). In general, it is strongly suggested that the permissions, owner, and group be the same
as if the user had run the historical mknod, ln, or other utility to create the file. It is also probable
that additional privileges are required to create block, character, or other implementation-
defined special file types.

Additionally, the −p option explicitly requires that all set-user-ID and set-group-ID permissions
be discarded if any of the owner or group IDs cannot be set. This is to keep users from
unintentionally giving away special privilege when copying programs.

When creating regular files, historical versions of cp use the mode of the source file as modified
by the file mode creation mask. Other choices would have been to use the mode of the source file
unmodified by the creation mask or to use the same mode as would be given to a new file
created by the user (plus the execution bits of the source file) and then modify it by the file mode
creation mask. In the absence of any strong reason to change historic practice, it was in large part
retained.

When creating directories, historical versions of cp use the mode of the source directory, plus
read, write, and search bits for the owner, as modified by the file mode creation mask. This is
done so that cp can copy trees where the user has read permission, but the owner does not. A
side-effect is that if the file creation mask denies the owner permissions, cp fails. Also, once the
copy is done, historical versions of cp set the permissions on the created directory to be the same
as the source directory, unmodified by the file creation mask.

This behavior has been modified so that cp is always able to create the contents of the directory,
regardless of the file creation mask. After the copy is done, the permissions are set to be the same
as the source directory, as modified by the file creation mask. This latter change from historical
behavior is to prevent users from accidentally creating directories with permissions beyond
those they would normally set and for consistency with the behavior of cp in creating files.

It is not a requirement that cp detect attempts to copy a file to itself; however, implementations
are strongly encouraged to do so. Historical implementations have detected the attempt in most
cases.

There are two methods of copying subtrees in this volume of POSIX.1-2024. The other method is
described as part of the pax utility (see pax). Both methods are historical practice. The cp utility
provides a simpler, more intuitive interface, while pax offers a finer granularity of control. Each
provides additional functionality to the other; in particular, pax maintains the hard-link structure
of the hierarchy, while cp does not. It is the intention of the standard developers that the results
be similar (using appropriate option combinations in both utilities). The results are not required
to be identical; there seemed insufficient gain to applications to balance the difficulty of
implementations having to guarantee that the results would be exactly identical.

The wording allowing cp to copy a directory to implementation-defined file types not specified
by the System Interfaces volume of POSIX.1-2024 is provided so that implementations
supporting symbolic links are not required to prohibit copying directories to symbolic links.
Other extensions to the System Interfaces volume of POSIX.1-2024 file types may need to use
this loophole as well.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2747

90832

90833

90834

90835

90836

90837

90838

90839

90840

90841

90842

90843

90844

90845

90846

90847

90848

90849

90850

90851

90852

90853

90854

90855

90856

90857

90858

90859

90860

90861

90862

90863

90864

90865

90866

90867

90868

90869

90870

90871

90872

90873

90874

90875

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cp Utilities

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
mv , find , ln , pax

XBD Section 4.7 (on page 97), Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH open(), unlink()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The −r option is marked obsolescent.

The new options −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
options affect the processing of symbolic links.

IEEE PASC Interpretation 1003.2 #194 is applied, adding a description of the −P option.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/18 is applied, correcting an error in the
SEE ALSO section.

Issue 7
Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

Austin Group Interpretations 1003.1-2001 #092, #164, #165, and #168 are applied.

SD5-XCU-ERN-31 and SD5-XCU-ERN-42 are applied, updating the DESCRIPTION.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-102 is applied, clarifying the −i option within the OPTIONS section.

The obsolescent −r option is removed.

The −P option is added to the SYNOPSIS and to the DESCRIPTION with respect to the −R
option.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1732 is applied, changing the EXIT STATUS section.

2748 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90876

90877

90878

90879

90880

90881

90882

90883

90884

90885

90886

90887

90888

90889

90890

90891

90892

90893

90894

90895

90896

90897

90898

90899

90900

90901

90902

90903

90904

90905

90906

90907

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities crontab

NAME
crontab — schedule periodic background work

SYNOPSIS
crontab [file]

UP crontab [-e|-l|-r]

DESCRIPTION
UP The crontab utility shall create, replace, or edit a user’s crontab entry; a crontab entry is a list of

commands and the times at which they shall be executed. The new crontab entry can be input by
UP specifying file or input from standard input if no file operand is specified, or by using an editor,

if −e is specified.

Upon execution of a command from a crontab entry, the implementation shall supply a default
environment, defining at least the following environment variables:

HOME A pathname of the user’s home directory.

LOGNAME The user’s login name.

PA TH A string representing a search path guaranteed to find all of the standard utilities.

SHELL A pathname of the command interpreter. When crontab is invoked as specified by
this volume of POSIX.1-2024, the value shall be a pathname for sh.

The values of these variables when crontab is invoked as specified by this volume of
POSIX.1-2024 shall not affect the default values provided when the scheduled command is run.

If standard output and standard error are not redirected by commands executed from the
crontab entry, any generated output or errors shall be mailed, via an implementation-defined
method, to the user.

XSI Users shall be permitted to use crontab if their names appear in the file cron.allow which is
located in an implementation-defined directory. If that file does not exist, the file cron.deny,
which is located in an implementation-defined directory, shall be checked to determine whether
the user shall be denied access to crontab. If neither file exists, only a process with appropriate
privileges shall be allowed to submit a job. If only cron.deny exists and is empty, global usage
shall be permitted. The cron.allow and cron.deny files shall consist of one user name per line.

OPTIONS
The crontab utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

UP −e Edit a copy of the invoking user’s crontab entry, or create an empty entry to edit if
the crontab entry does not exist. When editing is complete, the entry shall be
installed as the user’s crontab entry.

−l (The letter ell.) List the invoking user’s crontab entry.

−r Remove the invoking user’s crontab entry.

OPERANDS
The following operand shall be supported:

file The pathname of a file that contains specifications, in the format defined in the
INPUT FILES section, for crontab entries.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2749

90908

90909

90910

90911

90912

90913

90914

90915

90916

90917

90918

90919

90920

90921

90922

90923

90924

90925

90926

90927

90928

90929

90930

90931

90932

90933

90934

90935

90936

90937

90938

90939

90940

90941

90942

90943

90944

90945

90946

90947

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

crontab Utilities

STDIN
See the INPUT FILES section.

INPUT FILES
In the POSIX locale, the user or application shall ensure that a crontab entry is a text file
consisting of lines of six fields each. The fields shall be separated by <blank> characters. The
first five fields shall be integer patterns that specify the following:

1. Minute [0,59]

2. Hour [0,23]

3. Day of the month [1,31]

4. Month of the year [1,12]

5. Day of the week ([0,6] with 0=Sunday)

Each of these patterns can be either an <asterisk> (meaning all valid values), an element, or a list
of elements separated by <comma> characters. An element shall be either a number or two
numbers separated by a <hyphen-minus> (meaning an inclusive range). The specification of
days can be made by two fields (day of the month and day of the week). If month, day of month,
and day of week are all <asterisk> characters, every day shall be matched. If either the month or
day of month is specified as an element or list, but the day of week is an <asterisk>, the month
and day of month fields shall specify the days that match. If both month and day of month are
specified as an <asterisk>, but day of week is an element or list, then only the specified days of
the week match. Finally, if either the month or day of month is specified as an element or list,
and the day of week is also specified as an element or list, then any day matching either the
month and day of month, or the day of week, shall be matched.

The sixth field of a line in a crontab entry is a string that shall be executed by sh at the specified
times. A <percent-sign> character in this field shall be translated to a <newline>. Any character
preceded by a <backslash> (including the '%') shall cause that character to be treated literally.
Only the first line (up to a '%' or end-of-line) of the command field shall be executed by the
command interpreter. The other lines shall be made available to the command as standard input.

Blank lines and those whose first non-<blank> is '#' shall be ignored.

XSI The text files cron.allow and cron.deny, which are located in an implementation-defined
directory, shall contain zero or more user names, one per line, of users who are, respectively,
authorized or denied access to the service underlying the crontab utility.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of crontab:

EDITOR Determine the editor to be invoked when the −e option is specified. The default
editor shall be vi.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

2750 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

90948

90949

90950

90951

90952

90953

90954

90955

90956

90957

90958

90959

90960

90961

90962

90963

90964

90965

90966

90967

90968

90969

90970

90971

90972

90973

90974

90975

90976

90977

90978

90979

90980

90981

90982

90983

90984

90985

90986

90987

90988

90989

90990

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities crontab

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −l option is specified, the crontab entry shall be written to the standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
UP The user’s crontab entry is not submitted, removed, edited, or listed.

APPLICATION USAGE
The format of the crontab entry shown here is guaranteed only for the POSIX locale. Other
cultures may be supported with substantially different interfaces, although implementations are
encouraged to provide comparable levels of functionality.

The default settings of the HOME, LOGNAME, PA TH, and SHELL variables that are given to the
scheduled job are not affected by the settings of those variables when crontab is run; as stated,
they are defaults. The text about ``invoked as specified by this volume of POSIX.1-2024’’ means
that the implementation may provide extensions that allow these variables to be affected at
runtime, but that the user has to take explicit action in order to access the extension, such as give
a new option flag or modify the format of the crontab entry.

A typical user error is to type only crontab; this causes the system to wait for the new crontab
entry on standard input. If end-of-file is typed (generally <control>-D), the crontab entry is
replaced by an empty file. In this case, the user should type the interrupt character, which
prevents the crontab entry from being replaced.

EXAMPLES

1. Clean up files named core every weekday morning at 3:15 am:

15 3 * * 1-5 find "$HOME" -name core -exec rm -f {} + 2>/dev/null

2. Mail a birthday greeting:

0 12 14 2 * mailx john%Happy Birthday!%Time for lunch.

3. As an example of specifying the two types of days:

0 0 1,15 * 1

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2751

90991

90992

90993

90994

90995

90996

90997

90998

90999

91000

91001

91002

91003

91004

91005

91006

91007

91008

91009

91010

91011

91012

91013

91014

91015

91016

91017

91018

91019

91020

91021

91022

91023

91024

91025

91026

91027

91028

91029

91030

91031

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

crontab Utilities

would run a command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be set to '*'; for
example:

0 0 * * 1

would run a command only on Mondays.

RATIONALE
All references to a cron daemon and to cron files have been omitted. Although historical
implementations have used this arrangement, there is no reason to limit future implementations.

This description of crontab is designed to support only users with normal privileges. The format
of the input is based on the System V crontab; however, there is no requirement here that the
actual system database used by the cron daemon (or a similar mechanism) use this format
internally. For example, systems derived from BSD are likely to have an additional field
appended that indicates the user identity to be used when the job is submitted.

The −e option was adopted from the SVID as a user convenience, although it does not exist in all
historical implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
at

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
The crontab utility (except for the −e option) is moved from the User Portability Utilities option
to the Base. User Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the files referenced
by the crontab utility.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The first example is changed to remove the unreliable use of find | xargs.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0079 [584] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1141 is applied, changing ``core files’’ to ``files named core’’.

2752 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91032

91033

91034

91035

91036

91037

91038

91039

91040

91041

91042

91043

91044

91045

91046

91047

91048

91049

91050

91051

91052

91053

91054

91055

91056

91057

91058

91059

91060

91061

91062

91063

91064

91065

91066

91067

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities csplit

NAME
csplit — split files based on context

SYNOPSIS
csplit [-ks] [-f prefix] [-n number] file arg...

DESCRIPTION
The csplit utility shall read the file named by the file operand, write all or part of that file into
other files as directed by the arg operands, and write the sizes of the files.

OPTIONS
The csplit utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f prefix Name the created files prefix00, prefix01, . . ., prefixn. The default is xx00 . . . xxn. If
the prefix argument would create a filename exceeding {NAME_MAX} bytes, an
error shall result, csplit shall exit with a diagnostic message, and no files shall be
created.

−k Leave previously created files intact. By default, csplit shall remove created files if
an error occurs.

−n number Use number decimal digits to form filenames for the file pieces. The default shall be
2.

−s Suppress the output of file size messages.

OPERANDS
The following operands shall be supported:

file The pathname of a text file to be split. If file is '−', the standard input shall be
used.

Each arg operand can be one of the following:

/rexp/[offset]
A file shall be created using the content of the lines from the current line up to, but
not including, the line that results from the evaluation of the regular expression
with offset, if any, applied. The regular expression rexp shall follow the rules for
basic regular expressions described in XBD Section 9.3 (on page 181). The
application shall use the sequence "\/" to specify a <slash> character within the
rexp. The optional offset shall be a positive or negative integer value representing a
number of lines. A positive integer value can be preceded by '+'. If the selection
of lines from an offset expression of this type would create a file with zero lines, or
one with greater than the number of lines left in the input file, the results are
unspecified. After the section is created, the current line shall be set to the line that
results from the evaluation of the regular expression with any offset applied. If the
current line is the first line in the file and a regular expression operation has not yet
been performed, the pattern match of rexp shall be applied from the current line to
the end of the file. Otherwise, the pattern match of rexp shall be applied from the
line following the current line to the end of the file.

%rexp%[offset]
Equivalent to /rexp/[offset], except that no file shall be created for the selected
section of the input file. The application shall use the sequence "\%" to specify a
<percent-sign> character within the rexp.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2753

91068

91069

91070

91071

91072

91073

91074

91075

91076

91077

91078

91079

91080

91081

91082

91083

91084

91085

91086

91087

91088

91089

91090

91091

91092

91093

91094

91095

91096

91097

91098

91099

91100

91101

91102

91103

91104

91105

91106

91107

91108

91109

91110

91111

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

csplit Utilities

line_no Create a file from the current line up to (but not including) the line number line_no.
Lines in the file shall be numbered starting at one. The current line becomes
line_no.

{num} Repeat operand. This operand can follow any of the operands described
previously. If it follows a rexp type operand, that operand shall be applied num
more times. If it follows a line_no operand, the file shall be split every line_no lines,
num times, from that point.

An error shall be reported if an operand does not reference a line between the current position
and the end of the file.

STDIN
See the INPUT FILES section.

INPUT FILES
The input file shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of csplit:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
If the −k option is specified, created files shall be retained. Otherwise, the default action occurs.

STDOUT
Unless the −s option is used, the standard output shall consist of one line per file created, with a
format as follows:

"%d\n", <file size in bytes>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files shall contain portions of the original input file; otherwise, unchanged.

2754 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91112

91113

91114

91115

91116

91117

91118

91119

91120

91121

91122

91123

91124

91125

91126

91127

91128

91129

91130

91131

91132

91133

91134

91135

91136

91137

91138

91139

91140

91141

91142

91143

91144

91145

91146

91147

91148

91149

91150

91151

91152

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities csplit

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
By default, created files shall be removed if an error occurs. When the −k option is specified,
created files shall not be removed if an error occurs.

APPLICATION USAGE
None.

EXAMPLES

1. This example creates four files, cobol00 . . . cobol03:

csplit -f cobol file '/procedure division/' /par5./ /par16./

After editing the split files, they can be recombined as follows:

cat cobol0[0-3] > file

Note that this example overwrites the original file.

2. This example would split the file after the first 99 lines, and every 100 lines thereafter, up
to 9 999 lines; this is because lines in the file are numbered from 1 rather than zero, for
historical reasons:

csplit -k file 100 {99}

3. Assuming that prog.c follows the C-language coding convention of ending routines with
a '}' at the beginning of the line, this example creates a file containing each separate C
routine (up to 21) in prog.c:

csplit -k prog.c '%main(%' '/^}/+1' {20}

RATIONALE
The −n option was added to extend the range of filenames that could be handled.

Consideration was given to adding a −a flag to use the alphabetic filename generation used by
the historical split utility, but the functionality added by the −n option was deemed to make
alphabetic naming unnecessary.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
sed , split

XBD Chapter 8 (on page 167), Section 9.3 (on page 181), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2755

91153

91154

91155

91156

91157

91158

91159

91160

91161

91162

91163

91164

91165

91166

91167

91168

91169

91170

91171

91172

91173

91174

91175

91176

91177

91178

91179

91180

91181

91182

91183

91184

91185

91186

91187

91188

91189

91190

91191

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

csplit Utilities

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The description of regular expression operands is changed to align with the IEEE P1003.2b draft
standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
The csplit utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The SYNOPSIS and OPERANDS sections are revised to use a single arg to split a file into two
pieces.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2756 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91192

91193

91194

91195

91196

91197

91198

91199

91200

91201

91202

91203

91204

91205

91206

91207

91208

91209

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ctags

NAME
ctags — create a tags file (DEVELOPMENT)

SYNOPSIS
CD SD ctags [-a] [-f tagsfile] pathname...

ctags -x pathname...

DESCRIPTION
The ctags utility shall write a tagsfile or an index of objects from C-language source files specified
by the pathname operands. The tagsfile shall list the locators of C-language objects within the
source files. A locator consists of a name, pathname, and either a search pattern or a line number
that can be used in searching for the object definition. The objects that shall be recognized are
specified in the EXTENDED DESCRIPTION section.

OPTIONS
The ctags utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Append to tagsfile.

−f tagsfile Write the object locator lists into tagsfile instead of the default file named tags in the
current directory.

−x Produce a list of object names, the line number, and filename in which each is
defined, as well as the text of that line, and write this to the standard output. A
tagsfile shall not be created when −x is specified.

OPERANDS
The following pathname operands are supported:

file.c Files with basenames ending with the .c suffix shall be treated as C-language
source code. Such files that are not valid input to c17 produce unspecified results.

file.h Files with basenames ending with the .h suffix shall be treated as C-language
source code. Such files that are not valid input to c17 produce unspecified results.

The handling of other files is implementation-defined.

STDIN
See the INPUT FILES section.

INPUT FILES
The input files shall be text files containing C-language source code.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ctags:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the order in which output is sorted for the −x option. The POSIX locale
determines the order in which the tagsfile is written.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2757

91210

91211

91212

91213

91214

91215

91216

91217

91218

91219

91220

91221

91222

91223

91224

91225

91226

91227

91228

91229

91230

91231

91232

91233

91234

91235

91236

91237

91238

91239

91240

91241

91242

91243

91244

91245

91246

91247

91248

91249

91250

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ctags Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files). If the locale is not compatible with the C locale
described by the ISO C standard, the results are unspecified.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The list of object name information produced by the −x option shall be written to standard
output in the following format:

"%s %d %s %s", <object-name>, <line-number>, <filename>, <text>

where <text> is the text of line <line-number> of file <filename>.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
When the −x option is not specified, the format of the output file shall be:

"%s\t%s\t/%s/\n", <identifier>, <filename>, <pattern>

where <pattern> is a search pattern that could be used by an editor to find the defining instance
of <identifier> in <filename> (where defining instance is indicated by the declarations listed in the
EXTENDED DESCRIPTION).

An optional <circumflex> ('^') can be added as a prefix to <pattern>, and an optional <dollar-
sign> can be appended to <pattern> to indicate that the pattern is anchored to the beginning
(end) of a line of text. Any <slash> or <backslash> characters in <pattern> shall be preceded by a
<backslash> character. The anchoring <circumflex>, <dollar-sign>, and escaping <backslash>
characters shall not be considered part of the search pattern. All other characters in the search
pattern shall be considered literal characters.

An alternative format is:

"%s\t%s\t?%s?\n", <identifier>, <filename>, <pattern>

which is identical to the first format except that <slash> characters in <pattern> shall not be
preceded by escaping <backslash> characters, and <question-mark> characters in <pattern>
shall be preceded by <backslash> characters.

A second alternative format is:

"%s\t%s\t%d\n", <identifier>, <filename>, <lineno>

where <lineno> is a decimal line number that could be used by an editor to find <identifier> in
<filename>.

Neither alternative format shall be produced by ctags when it is used as described by
POSIX.1-2024, but the standard utilities that process tags files shall be able to process those
formats as well as the first format.

In any of these formats, the file shall be sorted by identifier, based on the collation sequence in

2758 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91251

91252

91253

91254

91255

91256

91257

91258

91259

91260

91261

91262

91263

91264

91265

91266

91267

91268

91269

91270

91271

91272

91273

91274

91275

91276

91277

91278

91279

91280

91281

91282

91283

91284

91285

91286

91287

91288

91289

91290

91291

91292

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ctags

the POSIX locale.

EXTENDED DESCRIPTION
The ctags utility shall attempt to produce an output line for each of the following objects:

• Function definitions

• Type definitions

• Macros with arguments

It may also produce output for any of the following objects:

• Function prototypes

• Structures

• Unions

• Global variable definitions

• Enumeration types

• Macros without arguments

• #define statements

• #line statements

Any #if and #ifdef statements shall produce no output. The tag main is treated specially in C
programs. The tag formed shall be created by prefixing M to the name of the file, with the
trailing .c, and leading pathname components (if any) removed.

It is implementation-defined what other objects (including duplicate identifiers) produce output.

On systems that do not support the C-Language Development Utilities option, if ctags is
supported it produces unspecified results for C-language source code files. It should write to
standard error a message identifying this condition and cause a non-zero exit status to be
produced.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The output with −x is meant to be a simple index that can be written out as an off-line readable
function index. If the input files to ctags (such as .c files) were not created using the same locale
as that in effect when ctags −x is run, results might not be as expected.

The description of C-language processing says ``attempts to’’ because the C language can be
greatly confused, especially through the use of #defines, and this utility would be of no use if
the real C preprocessor were run to identify them. The output from ctags may be fooled and
incorrect for various constructs.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2759

91293

91294

91295

91296

91297

91298

91299

91300

91301

91302

91303

91304

91305

91306

91307

91308

91309

91310

91311

91312

91313

91314

91315

91316

91317

91318

91319

91320

91321

91322

91323

91324

91325

91326

91327

91328

91329

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ctags Utilities

EXAMPLES
None.

RATIONALE
The option list was significantly reduced from that provided by historical implementations. The
−F option was omitted as redundant, since it is the default. The −B option was omitted as being
of very limited usefulness. The −t option was omitted since the recognition of typedefs is now
required for C source files. The −u option was omitted because the update function was judged
to be not only inefficient, but also rarely needed.

An early proposal included a −w option to suppress warning diagnostics. Since the types of such
diagnostics could not be described, the option was omitted as being not useful.

The text for LC_CTYPE about compatibility with the C locale acknowledges that the ISO C
standard imposes requirements on the locale used to process C source. This could easily be a
superset of that known as ``the C locale’’ by way of implementation extensions, or one of a few
alternative locales for systems supporting different codesets.

The collation sequence of the tags file is not affected by LC_COLLATE because it is typically not
used by human readers, but only by programs such as vi to locate the tag within the source files.
Using the POSIX locale eliminates some of the problems of coordinating locales between the
ctags file creator and the vi file reader.

Historically, the tags file has been used only by ex and vi. However, the format of the tags file
has been published to encourage other programs to use the tags in new ways. The format allows
either patterns or line numbers to find the identifiers because the historical vi recognizes either.
The ctags utility does not produce the format using line numbers because it is not useful
following any source file changes that add or delete lines. The documented search patterns
match historical practice. It should be noted that literal leading <circumflex> or trailing <dollar-
sign> characters in the search pattern will only behave correctly if anchored to the beginning of
the line or end of the line by an additional <circumflex> or <dollar-sign> character.

Historical implementations also understand the objects used by the languages FORTRAN,
Pascal, and sometimes LISP, and they understand the C source output by lex and yacc. The ctags
utility is not required to accommodate these languages, although implementors are encouraged
to do so.

The following historical option was not specified, as vgrind is not included in this volume of
POSIX.1-2024:

−v If the −v flag is given, an index of the form expected by vgrind is produced on the
standard output. This listing contains the function name, filename, and page
number (assuming 64-line pages). Since the output is sorted into lexicographic
order, it may be desired to run the output through sort −f. Sample use:

ctags -v files | sort -f > index
vgrind -x index

The special treatment of the tag main makes the use of ctags practical in directories with more
than one program.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

If this utility is directed to create a new directory entry that contains any bytes that have the

2760 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91330

91331

91332

91333

91334

91335

91336

91337

91338

91339

91340

91341

91342

91343

91344

91345

91346

91347

91348

91349

91350

91351

91352

91353

91354

91355

91356

91357

91358

91359

91360

91361

91362

91363

91364

91365

91366

91367

91368

91369

91370

91371

91372

91373

91374

91375

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ctags

encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
c17 , vi

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The OUTPUT FILES section is changed to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #168 is applied, changing ``create’’ to ``write’’ in the
DESCRIPTION.

Issue 7
The ctags utility is no longer dependent on support for the User Portability Utilities option.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to behave as follows:

a. Report an error if a utility is directed to display a pathname that contains any bytes that
have the encoded value of a <newline> character when <newline> is a terminator or
separator in the output format being used.

b. Disallow the creation of filenames containing any bytes that have the encoded value of a
<newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1312 is applied, inserting a missing line break in the example commands in
the RATIONALE section.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2761

91376

91377

91378

91379

91380

91381

91382

91383

91384

91385

91386

91387

91388

91389

91390

91391

91392

91393

91394

91395

91396

91397

91398

91399

91400

91401

91402

91403

91404

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cut Utilities

NAME
cut — cut out selected fields of each line of a file

SYNOPSIS
cut -b list [-n] [file...]

cut -c list [file...]

cut -f list [-d delim] [-s] [file...]

DESCRIPTION
The cut utility shall cut out bytes (−b option), characters (−c option), or character-delimited fields
(−f option) from each line in one or more files, concatenate them, and write them to standard
output.

OPTIONS
The cut utility shall conform to XBD Section 12.2 (on page 215).

The application shall ensure that the option-argument list (see options −b, −c, and −f below) is a
<comma>-separated list or <blank>-separated list of positive numbers and ranges. Ranges can
be in three forms. The first is two positive numbers separated by a <hyphen-minus> (low−high),
which represents all fields from the first number to the second number. The second is a positive
number preceded by a <hyphen-minus> (−high), which represents all fields from field number 1
to that number. The third is a positive number followed by a <hyphen-minus> (low−), which
represents that number to the last field, inclusive. The elements in list can be repeated, can
overlap, and can be specified in any order, but the bytes, characters, or fields selected shall be
written in the order of the input data. If an element appears in the selection list more than once,
it shall be written exactly once.

The following options shall be supported:

−b list Cut based on a list of bytes. Each selected byte shall be output unless the −n option
is also specified. It shall not be an error to select bytes not present in the input line.

−c list Cut based on a list of characters. Each selected character shall be output. It shall
not be an error to select characters not present in the input line.

−d delim Set the field delimiter to the character delim. The default is the <tab>.

−f list Cut based on a list of fields, assumed to be separated in the file by a delimiter
character (see −d). Each selected field shall be output. Output fields shall be
separated by a single occurrence of the field delimiter character. Lines with no field
delimiters shall be passed through intact, unless −s is specified. It shall not be an
error to select fields not present in the input line.

−n Do not split characters. When specified with the −b option, each element in list of
the form low−high (<hyphen-minus>-separated numbers) shall be modified as
follows:

• If the byte selected by low is not the first byte of a character, low shall be
decremented to select the first byte of the character originally selected by low.
If the byte selected by high is not the last byte of a character, high shall be
decremented to select the last byte of the character prior to the character
originally selected by high, or zero if there is no prior character. If the
resulting range element has high equal to zero or low greater than high, the list
element shall be dropped from list for that input line without causing an
error.

Each element in list of the form low− shall be treated as above with high set to the

2762 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91405

91406

91407

91408

91409

91410

91411

91412

91413

91414

91415

91416

91417

91418

91419

91420

91421

91422

91423

91424

91425

91426

91427

91428

91429

91430

91431

91432

91433

91434

91435

91436

91437

91438

91439

91440

91441

91442

91443

91444

91445

91446

91447

91448

91449

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cut

number of bytes in the current line, not including the terminating <newline>. Each
element in list of the form −high shall be treated as above with low set to 1. Each
element in list of the form num (a single number) shall be treated as above with low
set to num and high set to num.

−s Suppress lines with no delimiter characters, when used with the −f option. Unless
specified, lines with no delimiters shall be passed through untouched.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, or if a file operand is
'−', the standard input shall be used.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is '−'.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files, except that line lengths shall be unlimited.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cut:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The cut utility output shall be a concatenation of the selected bytes, characters, or fields (one of
the following):

"%s\n", <concatenation of bytes>

"%s\n", <concatenation of characters>

"%s\n", <concatenation of fields and field delimiters>

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2763

91450

91451

91452

91453

91454

91455

91456

91457

91458

91459

91460

91461

91462

91463

91464

91465

91466

91467

91468

91469

91470

91471

91472

91473

91474

91475

91476

91477

91478

91479

91480

91481

91482

91483

91484

91485

91486

91487

91488

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cut Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The cut and fold utilities can be used to create text files out of files with arbitrary line lengths.
The cut utility should be used when the number of lines (or records) needs to remain constant.
The fold utility should be used when the contents of long lines need to be kept contiguous.

Earlier versions of the cut utility worked in an environment where bytes and characters were
considered equivalent (modulo <backspace> and <tab> processing in some implementations). In
the extended world of multi-byte characters, the new −b option has been added. The −n option
(used with −b) allows it to be used to act on bytes rounded to character boundaries. The
algorithm specified for −n guarantees that:

cut -b 1-500 -n file > file1
cut -b 501- -n file > file2

ends up with all the characters in file appearing exactly once in file1 or file2. (There is,
however, a <newline> in both file1 and file2 for each <newline> in file.)

EXAMPLES
Examples of the option qualifier list:

1,4,7 Select the first, fourth, and seventh bytes, characters, or fields and field delimiters.

1−3,8 Equivalent to 1,2,3,8.

−5,10 Equivalent to 1,2,3,4,5,10.

3− Equivalent to third to last, inclusive.

The low−high forms are not always equivalent when used with −b and −n and multi-byte
characters; see the description of −n.

The following command:

cut -d : -f 1,6 /etc/passwd

reads the System V password file (user database) and produces lines of the form:

<user ID>:<home directory>

Most utilities in this volume of POSIX.1-2024 work on text files. The cut utility can be used to
turn files with arbitrary line lengths into a set of text files containing the same data. The paste
utility can be used to create (or recreate) files with arbitrary line lengths. For example, if file
contains long lines:

cut -b 1-500 -n file > file1
cut -b 501- -n file > file2

2764 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91489

91490

91491

91492

91493

91494

91495

91496

91497

91498

91499

91500

91501

91502

91503

91504

91505

91506

91507

91508

91509

91510

91511

91512

91513

91514

91515

91516

91517

91518

91519

91520

91521

91522

91523

91524

91525

91526

91527

91528

91529

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cut

creates file1 (a text file) with lines no longer than 500 bytes (plus the <newline>) and file2 that
contains the remainder of the data from file. (Note that file2 is not a text file if there are lines in
file that are longer than 500 + {LINE_MAX} bytes.) The original file can be recreated from file1
and file2 using the command:

paste -d "\0" file1 file2 > file

RATIONALE
Some historical implementations do not count <backspace> characters in determining character
counts with the −c option. This may be useful for using cut for processing nroff output. It was
deliberately decided not to have the −c option treat either <backspace> or <tab> characters in
any special fashion. The fold utility does treat these characters specially.

Unlike other utilities, some historical implementations of cut exit after not finding an input file,
rather than continuing to process the remaining file operands. This behavior is prohibited by this
volume of POSIX.1-2024, where only the exit status is affected by this problem.

The behavior of cut when provided with either mutually-exclusive options or options that do
not work logically together has been deliberately left unspecified in favor of global wording in
Section 1.4 (on page 2462).

The OPTIONS section was changed in response to IEEE PASC Interpretation 1003.2 #149. The
change represents historical practice on all known systems. The original standard was
ambiguous on the nature of the output.

The list option-arguments are historically used to select the portions of the line to be written, but
do not affect the order of the data. For example:

echo abcdefghi | cut -c6,2,4-7,1

yields "abdefg".

A proposal to enhance cut with the following option:

−o Preserve the selected field order. When this option is specified, each byte, character, or field
(or ranges of such) shall be written in the order specified by the list option-argument, even if
this requires multiple outputs of the same bytes, characters, or fields.

was rejected because this type of enhancement is outside the scope of the IEEE P1003.2b draft
standard.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 2478), fold , grep , paste

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The OPTIONS section is changed to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2765

91530

91531

91532

91533

91534

91535

91536

91537

91538

91539

91540

91541

91542

91543

91544

91545

91546

91547

91548

91549

91550

91551

91552

91553

91554

91555

91556

91557

91558

91559

91560

91561

91562

91563

91564

91565

91566

91567

91568

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cut Utilities

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-171 is applied, adding APPLICATION USAGE.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0080 [584] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2766 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91569

91570

91571

91572

91573

91574

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cxref

NAME
cxref — generate a C-language program cross-reference table (DEVELOPMENT)

SYNOPSIS
XSI cxref [-cs] [-o file] [-w num] [-D name[=def]]... [-I dir]...

[-U name]... file...

DESCRIPTION
The cxref utility shall analyze a collection of C-language files and attempt to build a cross-
reference table. Information from #define lines shall be included in the symbol table. A sorted
listing shall be written to standard output of all symbols (auto, static, and global) in each file
separately, or with the −c option, in combination. Each symbol shall contain an <asterisk> before
the declaring reference.

OPTIONS
The cxref utility shall conform to XBD Section 12.2 (on page 215), except that the order of the −D,
−I, and −U options (which are identical to their interpretation by c17) is significant. The
following options shall be supported:

−c Write a combined cross-reference of all input files.

−s Operate silently; do not print input filenames.

−o file Direct output to named file.

−w num Format output no wider than num (decimal) columns. This option defaults to 80 if
num is not specified or is less than 51.

−D Equivalent to c17.

−I Equivalent to c17.

−U Equivalent to c17.

OPERANDS
The following operand shall be supported:

file A pathname of a C-language source file.

STDIN
Not used.

INPUT FILES
The input files are C-language source files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cxref:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the ordering of the output.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2767

91575

91576

91577

91578

91579

91580

91581

91582

91583

91584

91585

91586

91587

91588

91589

91590

91591

91592

91593

91594

91595

91596

91597

91598

91599

91600

91601

91602

91603

91604

91605

91606

91607

91608

91609

91610

91611

91612

91613

91614

91615

91616

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

cxref Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be used for the cross-reference listing, unless the −o option is used to
select a different output file.

The format of standard output is unspecified, except that the following information shall be
included:

• If the −c option is not specified, each portion of the listing shall start with the name of the
input file on a separate line.

• The name line shall be followed by a sorted list of symbols, each with its associated
location pathname, the name of the function in which it appears (if it is not a function
name itself), and line number references.

• Each line number may be preceded by an <asterisk> ('*') flag, meaning that this is the
declaring reference. Other single-character flags, with implementation-defined meanings,
may be included.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output file named by the −o option shall be used instead of standard output.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

2768 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91617

91618

91619

91620

91621

91622

91623

91624

91625

91626

91627

91628

91629

91630

91631

91632

91633

91634

91635

91636

91637

91638

91639

91640

91641

91642

91643

91644

91645

91646

91647

91648

91649

91650

91651

91652

91653

91654

91655

91656

91657

91658

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities cxref

SEE ALSO
c17

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
In the SYNOPSIS, [−U dir] is changed to [−U name].

Issue 6
The APPLICATION USAGE section is added.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2769

91659

91660

91661

91662

91663

91664

91665

91666

91667

91668

91669

91670

91671

91672

91673

91674

91675

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

date Utilities

NAME
date — write the date and time

SYNOPSIS
date [-u] [+format]

XSI date [-u] mmddhhmm[[cc]yy]

DESCRIPTION
XSI The date utility shall write the date and time to standard output or attempt to set the system

date and time. By default, the current date and time shall be written. If an operand beginning
with '+' is specified, the output format of date shall be controlled by the conversion
specifications and other text in the operand.

OPTIONS
The date utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−u Perform operations as if the TZ environment variable was set to the string "UTC0",
or its equivalent historical value of "GMT0". Otherwise, date shall use the timezone
indicated by the TZ environment variable or the system default if that variable is
unset or null.

OPERANDS
The following operands shall be supported:

+format When the format is specified, the output shall be formatted as if by strftime() with
the specified format string, and a timeptr argument that is the equivalent of
localtime(&now) if −u is not specified or gmtime(&now) if −u is specified, where now
is an object of type time_t containing the return value of time(0).

A <newline> shall always be appended to the output of strftime().

XSI mmddhhmm[[cc]yy]
Attempt to set the system date and time from the value given in the operand. This
is only possible if the user has appropriate privileges and the system permits the
setting of the system date and time. The first mm is the month (number); dd is the
day (number); hh is the hour (number, 24-hour system); the second mm is the
minute (number); cc is the century and is the first two digits of the year (this is
optional); yy is the last two digits of the year and is optional. If century is not
specified, then values in the range [69,99] shall refer to years 1969 to 1999 inclusive,
and values in the range [00,68] shall refer to years 2000 to 2068 inclusive. The
current year is the default if yy is omitted.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

STDIN
Not used.

INPUT FILES
None.

2770 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91676

91677

91678

91679

91680

91681

91682

91683

91684

91685

91686

91687

91688

91689

91690

91691

91692

91693

91694

91695

91696

91697

91698

91699

91700

91701

91702

91703

91704

91705

91706

91707

91708

91709

91710

91711

91712

91713

91714

91715

91716

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities date

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of date:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the format and contents of date and time strings written by date.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone in which the time and date are written, unless the −u
option is specified. If the TZ variable is unset or null and −u is not specified, an
unspecified system default timezone is used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When no formatting operand is specified, the output in the POSIX locale shall be equivalent to
specifying:

date "+%a %b %e %H:%M:%S %Z %Y"

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The date was written successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2771

91717

91718

91719

91720

91721

91722

91723

91724

91725

91726

91727

91728

91729

91730

91731

91732

91733

91734

91735

91736

91737

91738

91739

91740

91741

91742

91743

91744

91745

91746

91747

91748

91749

91750

91751

91752

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

date Utilities

APPLICATION USAGE
Conversion specifiers are of unspecified format when not in the POSIX locale. Some of them can
contain <newline> characters in some locales, so it may be difficult to use the format shown in
standard output for parsing the output of date in those locales.

Since the default date utility format for locales other than the POSIX or C locale is not required to
include anything beyond the date and time, whereas for the POSIX or C locale it also includes
the day name and time zone, it may be necessary to specify a format (or override the locale-
selection environment variables) to ensure this information is included when desired.

The range of values for %S extends from 0 to 60 seconds to accommodate the occasional leap
second.

Although certain of the conversion specifiers in the POSIX locale (such as the name of the
month) are shown with initial capital letters, this need not be the case in other locales. Programs
using these fields may need to adjust the capitalization if the output is going to be used at the
beginning of a sentence.

The date string formatting capabilities are intended for use in Gregorian-style calendars,
possibly with a different starting year (or years). The %x and %c conversion specifications,
however, are intended for local representation; these may be based on a different, non-Gregorian
calendar.

The %C conversion specification was introduced to allow a fallback for the %EC (alternative year
format base year); it can be viewed as the base of the current subdivision in the Gregorian
calendar. The century number is calculated as the year divided by 100 and truncated to an
integer; it should not be confused with the use of ordinal numbers for centuries (for example,
``twenty-first century’’.) Both the %Ey and %y can then be viewed as the offset from %EC and %C,
respectively.

The E and O modifiers modify the traditional conversion specifiers, so that they can always be
used, even if the implementation (or the current locale) does not support the modifier.

The E modifier supports alternative date formats, such as the Japanese Emperor ’s Era, as long as
these are based on the Gregorian calendar system. Extending the E modifiers to other date
elements may provide an implementation-defined extension capable of supporting other
calendar systems, especially in combination with the O modifier.

The O modifier supports time and date formats using the locale’s alternative numerical symbols,
such as Kanji or Hindi digits or ordinal number representation.

Non-European locales, whether they use Latin digits in computational items or not, often have
local forms of the digits for use in date formats. This is not totally unknown even in Europe; a
variant of dates uses Roman numerals for the months: the third day of September 1991 would be
written as 3.IX.1991. In Japan, Kanji digits are regularly used for dates; in Arabic-speaking
countries, Hindi digits are used. The %d, %e, %H, %I, %m, %S, %U, %w, %W, and %y conversion
specifications always return the date and time field in Latin digits (that is, 0 to 9). The %O
modifier was introduced to support the use for display purposes of non-Latin digits. In the
LC_TIME category in localedef, the optional alt_digits keyword is intended for this purpose. As
an example, assume the following (partial) localedef source:

alt_digits "";"I";"II";"III";"IV";"V";"VI";"VII";"VIII" \
"IX";"X";"XI";"XII"

d_fmt "%e.%Om.%Y"

With the above date, the command:

date "+%x"

2772 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91753

91754

91755

91756

91757

91758

91759

91760

91761

91762

91763

91764

91765

91766

91767

91768

91769

91770

91771

91772

91773

91774

91775

91776

91777

91778

91779

91780

91781

91782

91783

91784

91785

91786

91787

91788

91789

91790

91791

91792

91793

91794

91795

91796

91797

91798

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities date

would yield 3.IX.1991. With the same d_fmt, but without the alt_digits, the command would
yield 3.9.1991.

EXAMPLES

1. The following are input/output examples of date used at arbitrary times in the POSIX
locale:

$ date
Tue Jun 26 09:58:10 PDT 1990

$ date "+DATE: %m/%d/%y%nTIME: %H:%M:%S"
DATE: 11/02/91
TIME: 13:36:16

$ date "+TIME: %r"
TIME: 01:36:32 PM

2. Examples for Denmark, where the default date and time format is %a %d %b %Y %T %Z:

$ LANG=da_DK.iso_8859-1 date
ons 02 okt 1991 15:03:32 CET

$ LANG=da_DK.iso_8859-1 \
date "+DATO: %A den %e. %B %Y%nKLOKKEN: %H:%M:%S"

DATO: onsdag den 2. oktober 1991
KLOKKEN: 15:03:56

3. Examples for Germany, where the default date and time format is %a %d.%h.%Y, %T %Z:

$ LANG=De_DE.88591 date
Mi 02.Okt.1991, 15:01:21 MEZ

$ LANG=De_DE.88591 date "+DATUM: %A, %d. %B %Y%nZEIT: %H:%M:%S"
DATUM: Mittwoch, 02. Oktober 1991
ZEIT: 15:02:02

4. Examples for France, where the default date and time format is %a %d %h %Y %Z %T:

$ LANG=Fr_FR.88591 date
Mer 02 oct 1991 MET 15:03:32

$ LANG=Fr_FR.88591 date "+JOUR: %A %d %B %Y%nHEURE: %H:%M:%S"
JOUR: Mercredi 02 octobre 1991
HEURE: 15:03:56

RATIONALE
Some of the new options for formatting are from the ISO C standard. The −u option was
introduced to allow portable access to Coordinated Universal Time (UTC). The string "GMT0" is
allowed as an equivalent TZ value to be compatible with all of the systems using the BSD
implementation, where this option originated.

The %e format conversion specification (adopted from System V) was added because the ISO C
standard conversion specifications did not provide any way to produce the historical default
date output during the first nine days of any month.

There are two varieties of day and week numbering supported (in addition to any others created
with the locale-dependent %E and %O modifier characters):

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2773

91799

91800

91801

91802

91803

91804

91805

91806

91807

91808

91809

91810

91811

91812

91813

91814

91815

91816

91817

91818

91819

91820

91821

91822

91823

91824

91825

91826

91827

91828

91829

91830

91831

91832

91833

91834

91835

91836

91837

91838

91839

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

date Utilities

• The historical variety in which Sunday is the first day of the week and the weekdays
preceding the first Sunday of the year are considered week 0. These are represented by %w
and %U. A variant of this is %W, using Monday as the first day of the week, but still
referring to week 0. This view of the calendar was retained because so many historical
applications depend on it and the ISO C standard strftime() function, on which many date
implementations are based, was defined in this way.

• The international standard, based on the ISO 8601-1: 2019 standard where Monday is the
first weekday and the algorithm for the first week number is more complex: If the week
(Monday to Sunday) containing January 1 has four or more days in the new year, then it is
week 1; otherwise, it is week 53 of the previous year, and the next week is week 1. These
are represented by the new conversion specifications %u and %V, added as a result of
international comments.

Although this standard only requires the default date utility format, for locales other than the
POSIX or C locale, to include the date and time, it is common for implementations to include
day name and time zone information as well. (For the POSIX locale this is required, with the day
name in %a format at the beginning and the time zone in %Z format before the year.)
Implementations are encouraged to include the day name (in %a or %A format) and the time
zone (in %Z or %z format) in the default date utility format for all of the locales they provide.

Some implementations have a date_fmt locale keyword (see Section 7.3.5, on page 152) as an
extension, to specify the default date utility format for each locale. On such implementations, if
the localedef utility is used to create a locale that does not have this information, the date utility
must by default still produce output for that locale that includes both the time and the date.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 7.3.5 (on page 152), Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH fprintf(), strftime()

CHANGE HISTORY
First released in Issue 2.

Issue 5
Changes are made for Year 2000 alignment.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The %EX modified conversion specification is added.

The Open Group Corrigendum U048/2 is applied, correcting the examples.

The DESCRIPTION is updated to refer to conversion specifications, instead of field descriptors
for consistency with the LC_TIME category.

A clarification is made such that the current year is the default if the yy argument is omitted
when setting the system date and time.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/19 is applied, correcting the CHANGE
HISTORY section.

2774 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91840

91841

91842

91843

91844

91845

91846

91847

91848

91849

91850

91851

91852

91853

91854

91855

91856

91857

91858

91859

91860

91861

91862

91863

91864

91865

91866

91867

91868

91869

91870

91871

91872

91873

91874

91875

91876

91877

91878

91879

91880

91881

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities date

Issue 8
Austin Group Defect 466 is applied, replacing the list of conversion specifications for the +format
operand with a requirement that the output is formatted as if by a call to strftime() with specific
arguments.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1345 is applied, adding paragraphs to APPLICATION USAGE and
RATIONALE about the default date utility format.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2775

91882

91883

91884

91885

91886

91887

91888

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dd Utilities

NAME
dd — convert and copy a file

SYNOPSIS
dd [operand...]

DESCRIPTION
The dd utility shall copy the specified input file to the specified output file with possible
conversions using specific input and output block sizes. It shall read the input one block at a
time, using the specified input block size; it shall then process the block of data actually
returned, which could be smaller than the requested block size. It shall apply any conversions
that have been specified and write the resulting data to the output in blocks of the specified
output block size. If the bs=expr operand is specified and no conversions other than sync,
noerror, or notrunc are requested, the data returned from each input block shall be written as a
separate output block; if the read returns less than a full block and the sync conversion is not
specified, the resulting output block shall be the same size as the input block. If the bs=expr
operand is not specified, or a conversion other than sync, noerror, or notrunc is requested, the
input shall be processed and collected into full-sized output blocks until the end of the input is
reached.

The processing order shall be as follows:

1. An input block is read. If the iflags=fullblock operand is specified, this might entail
multiple reads; otherwise, the input block shall be used even if the read was shorter than
the specified block size.

2. If the input block is shorter than the specified input block size and the sync conversion is
specified, null bytes shall be appended to the input data up to the specified size. (If either
block or unblock is also specified, <space> characters shall be appended instead of null
bytes.) The remaining conversions and output shall include the pad characters as if they
had been read from the input.

3. If the bs=expr operand is specified and no conversion other than sync or noerror is
requested, the resulting data shall be written to the output as a single block, and the
remaining steps are omitted.

4. If the swab conversion is specified, each pair of input data bytes shall be swapped. If
there is an odd number of bytes in the input block, the last byte in the input record shall
not be swapped.

5. Any remaining conversions (block, unblock, lcase, and ucase) shall be performed. These
conversions shall operate on the input data independently of the input blocking; an input
or output fixed-length record may span block boundaries.

6. The data resulting from input or conversion or both shall be aggregated into output
blocks of the specified size. After the end of input is reached, any remaining output shall
be written as a block without padding if conv=sync is not specified; thus, the final output
block may be shorter than the output block size.

OPTIONS
None.

OPERANDS
All of the operands shall be processed before any input is read. The following operands shall be
supported:

2776 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91889

91890

91891

91892

91893

91894

91895

91896

91897

91898

91899

91900

91901

91902

91903

91904

91905

91906

91907

91908

91909

91910

91911

91912

91913

91914

91915

91916

91917

91918

91919

91920

91921

91922

91923

91924

91925

91926

91927

91928

91929

91930

91931

91932

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities dd

if=file Specify the input pathname; the default is standard input.

of=file Specify the output pathname; the default is standard output. If the seek=expr
conversion is not also specified, the output file shall be truncated before the copy
begins if an explicit of=file operand is specified, unless conv=notrunc is specified.
If seek=expr is specified, but conv=notrunc is not, the effect of the copy shall be to
preserve the blocks in the output file over which dd seeks, but no other portion of
the output file shall be preserved. (If the size of the seek plus the size of the input
file is less than the previous size of the output file, the output file shall be
shortened by the copy. If the input file is empty and either the size of the seek is
greater than the previous size of the output file or the output file did not
previously exist, the size of the output file shall be set to the file offset after the
seek.)

ibs=expr Specify the input block size, in bytes, by expr (default is 512).

obs=expr Specify the output block size, in bytes, by expr (default is 512).

bs=expr Set both input and output block sizes to expr bytes, superseding ibs= and obs=. If
no conversion other than sync, noerror, and notrunc is specified, each input block
shall be copied to the output as a single block without aggregating short blocks.

cbs=expr Specify the conversion block size for block and unblock in bytes by expr (default is
zero). If cbs= is omitted or given a value of zero, using block or unblock produces
unspecified results.

XSI The application shall ensure that this operand is also specified if the conv=
operand is specified with a value of ascii, ebcdic, or ibm. For a conv= operand
with an ascii value, the input is handled as described for the unblock value, except
that characters are converted to ASCII before any trailing <space> characters are
deleted. For conv= operands with ebcdic or ibm values, the input is handled as
described for the block value except that the characters are converted to EBCDIC
or IBM EBCDIC, respectively, after any trailing <space> characters are added.

skip=n Skip n input blocks (using the specified input block size) before starting to copy.
On seekable files, the implementation shall read the blocks or seek past them; on
non-seekable files, the blocks shall be read and the data shall be discarded.

seek=n Skip n blocks (using the specified output block size) from the beginning of the
output file before copying. On non-seekable files, existing blocks shall be read and
space from the current end-of-file to the specified offset, if any, filled with null
bytes; on seekable files, the implementation shall seek to the specified offset or
read the blocks as described for non-seekable files.

count=n Copy only n input blocks. If n is zero, it is unspecified whether no blocks or all
blocks are copied.

conv=value[,value . . .]
Where values are <comma>-separated symbols from the following list:

XSI ascii Convert EBCDIC to ASCII; see Table 3-8 (on page 2780).

XSI ebcdic Convert ASCII to EBCDIC; see Table 3-8 (on page 2780).

XSI ibm Convert ASCII to a different EBCDIC set; see Table 3-9 (on page 2781).

XSI The ascii, ebcdic, and ibm values are mutually-exclusive.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2777

91933

91934

91935

91936

91937

91938

91939

91940

91941

91942

91943

91944

91945

91946

91947

91948

91949

91950

91951

91952

91953

91954

91955

91956

91957

91958

91959

91960

91961

91962

91963

91964

91965

91966

91967

91968

91969

91970

91971

91972

91973

91974

91975

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dd Utilities

block Tr eat the input as a sequence of <newline>-terminated or end-of-file-
terminated variable-length records independent of the input block
boundaries. Each record shall be converted to a record with a fixed
length specified by the conversion block size. Any <newline> shall be
removed from the input line; <space> characters shall be appended to
lines that are shorter than their conversion block size to fill the block.
Lines that are longer than the conversion block size shall be truncated
to the largest number of characters that fit into that size; the number of
truncated lines shall be reported (see the STDERR section).

The block and unblock values are mutually-exclusive.

unblock Convert fixed-length records to variable length. Read a number of bytes
equal to the conversion block size (or the number of bytes remaining in
the input, if less than the conversion block size), delete all trailing
<space> characters, and append a <newline>.

lcase Map uppercase characters specified by the LC_CTYPE keyword
tolower to the corresponding lowercase character. Characters for which
no mapping is specified shall not be modified by this conversion.

The lcase and ucase symbols are mutually-exclusive.

ucase Map lowercase characters specified by the LC_CTYPE keyword
toupper to the corresponding uppercase character. Characters for
which no mapping is specified shall not be modified by this conversion.

swab Swap every pair of input bytes.

noerror Do not stop processing on an input error. When an input error occurs, a
diagnostic message shall be written on standard error, followed by the
current input and output block counts in the same format as used at
completion (see the STDERR section). If the sync conversion is
specified, the missing input shall be replaced with null bytes and
processed normally; otherwise, the input block shall be omitted from
the output.

notrunc Do not truncate the output file. Preserve blocks in the output file not
explicitly written by this invocation of the dd utility. (See also the
preceding of=file operand.)

sync Pad every input block to the size of the ibs= buffer, appending null
bytes. (If either block or unblock is also specified, append <space>
characters, rather than null bytes.)

iflags=fullblock
Perform as many reads as required to reach the full input block size or end of file,
rather than acting on partial reads. If this operand is in effect, then the count=
operand refers to the number of full input blocks rather than reads. The behavior
is unspecified if iflags=fullblock is requested alongside the sync, block, or
unblock conversions.

The behavior is unspecified if operands other than conv= are specified more than once.

For the bs=, cbs=, ibs=, and obs= operands, the application shall supply an expression
specifying a size in bytes. The expression, expr, can be:

2778 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

91976

91977

91978

91979

91980

91981

91982

91983

91984

91985

91986

91987

91988

91989

91990

91991

91992

91993

91994

91995

91996

91997

91998

91999

92000

92001

92002

92003

92004

92005

92006

92007

92008

92009

92010

92011

92012

92013

92014

92015

92016

92017

92018

92019

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities dd

1. A positive decimal number

2. A positive decimal number followed by k, specifying multiplication by 1 024

3. A positive decimal number followed by b, specifying multiplication by 512

4. Two or more positive decimal numbers (with or without k or b) separated by x, specifying
the product of the indicated values

All of the operands are processed before any input is read.

XSI The following two tables display the octal number character values used for the ascii and ebcdic
conversions (first table) and for the ibm conversion (second table). In both tables, the ASCII
values are the row and column headers and the EBCDIC values are found at their intersections.
For example, ASCII 0012 (LF) is the second row, third column, yielding 0045 in EBCDIC. The
inverted tables (for EBCDIC to ASCII conversion) are not shown, but are in one-to-one
correspondence with these tables. The differences between the two tables are highlighted by
small boxes drawn around five entries.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2779

92020

92021

92022

92023

92024

92025

92026

92027

92028

92029

92030

92031

92032

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dd Utilities

Table 3-8 ASCII to EBCDIC Conversion

00
00

 N

U
L

00
26

 B

S

00
20

 D

LE

00
30

 C

A
N

01
00

 S

p

01
15

 (

03
60

 0

03
70

 8

01
74

 @

03
10

 H

03
27

 P

03
47

 X

01
71

 `

02
10

 h

02
27

 p

02
47

 x

00
40

 D

S

00
50

 S

A

00
60

00
70

 S

B
S

01
01

01
11

01
30

01
50

01
66

02
16

02
37

02
60

02
70

03
12

03
34

03
56

00
01

 S

O
H

00
05

 H

T

00
21

 D

C
1

00
31

 E

M

01
32

 !

01
35

)

03
61

 1

03
71

 9

03
01

 A

03
11

 I

03
30

 Q

03
50

 Y

02
01

 a

02
11

 i

02
30

 q

02
50

 y

00
41

 S

O
S

00
51

 S

F
E

00
61

00
71

 IT

01
02

01
21

01
31

01
51

01
67

02
17

02
40

02
61

02
71

03
13

03
35

03
57

00
02

 S

T
X

00
45

 L

F

00
22

 D

C
2

00
77

 S

U
B

01
77

 "

01
34

 *

03
62

 2

01
72

 :

03
02

 B

03
21

 J

03
31

 R

03
51

 Z

02
02

 b

02
21

 j

02
31

 r

02
51

 z

00
42

 F

S

00
52

 S

M

00
32

 U

B
S

00
72

 R

F
F

01
03

01
22

01
42

01
60

01
70

02
20

02
52

02
62

02
72

03
14

03
36

03
72

00
03

 E

T
X

00
13

 V

T

00
23

 D

C
3

00
47

 E

S
C

01
73

 #

01
16

 +

03
63

 3

01
36

 ;

03
03

 C

03
22

 K

03
42

 S

02
55

 [

02
03

 c

02
22

 k

02
42

 s

03
00

 {

00
43

 W

U
S

00
53

 C

S
P

00
63

 IR

00
73

 C

U
3

01
04

01
23

01
43

01
61

02
00

01
52

02
53

02
63

02
73

03
15

03
37

03
73

00
67

 E

O
T

00
14

 F

F

00
74

 D

C
4

00
34

 IF

S

01
33

 $

01
53

 ,

03
64

 4

01
14

 <

03
04

 D

03
23

 L

03
43

 T

03
40

 \

02
04

 d

02
23

]

02
43

 t

01
17

 |

00
44

 B

Y
P

00
54

 M

F
A

00
64

 P

P

00
04

 S

E
L

01
05

01
24

01
44

01
62

02
12

02
33

02
54

02
64

02
74

03
16

03
52

03
74

00
55

 E

N
Q

00
15

 C

R

00
75

 N

A
K

00
35

 IG

S

01
54

 %

01
40

 -

03
65

 5

01
76

 =

03
05

 E

03
24

 M

03
44

 U

02
75

]

02
05

 e

02
24

 m

02
44

 u

03
20

 }

00
25

 N

L

00
11

 S

P
S

00
65

 T

R
N

00
24

 R

E
S

01
06

01
25

01
45

01
63

02
13

02
34

01
12

 ¢

02
65

02
41

03
17

03
53

03
75

00
56

 A

C
K

00
16

 S

O

00
62

 S

Y
N

00
36

 IR

S

01
20

 &

01
13

 .

03
66

 6

01
56

 >

03
06

 F

03
25

 N

03
45

 V

02
32

02
06

 f

02
25

 n

02
45

 v

01
37

 ¬

00
06

 R

N
L

00
12

 R

P
T

00
66

 N

B
S

00
76

01
07

01
26

01
46

01
64

02
14

02
35

02
56

02
66

02
76

03
32

03
54

03
76

00
57

 B

E
L

00
17

 S

I

00
46

 E

T
B

00
37

 IT

B

01
75

 '

01
41

 /

03
67

 7

01
57

 ?

03
07

 G

03
26

 O

03
46

 W

01
55

 _

02
07

 g

02
26

 o

02
46

 w

00
07

 D

E
L

00
27

 P

O
C

00
33

 C

U
1

00
10

 G

E

03
41

01
10

01
27

01
47

01
65

02
15

02
36

02
57

02
67

02
77

03
33

03
55

03
77

 E

O

00
00

00
10

00
20

00
30

00
40

00
50

00
60

00
70

01
00

01
10

01
20

01
30

01
40

01
50

01
60

01
70

02
00

02
10

02
20

02
30

02
40

02
50

02
60

02
70

03
00

03
10

03
20

03
30

03
40

03
50

03
60

03
70

0
1

2
3

4
5

6
7

2780 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92033

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities dd

Table 3-9 ASCII to IBM EBCDIC Conversion

00
00

 N

U
L

00
26

 B

S

00
20

 D

LE

00
30

 C

A
N

01
00

 S

p

01
15

 (

03
60

 0

03
70

 8

01
74

 @

03
10

 H

03
27

 P

03
47

 X

01
71

 `

02
10

 h

02
27

 p

02
47

 x

00
40

 D

S

00
50

 S

A

00
60

00
70

 S

B
S

01
01

01
11

01
30

01
50

01
66

02
16

02
37

02
60

02
70

03
12

03
34

03
56

00
01

 S

O
H

00
05

 H

T

00
21

 D

C
1

00
31

 E

M

01
32

 !

01
35

)

03
61

 1

03
71

 9

03
01

 A

03
11

 I

03
30

 Q

03
50

 Y

02
01

 a

02
11

 i

02
30

 q

02
50

 y

00
41

 S

O
S

00
51

 S

F
E

00
61

00
71

 IT

01
02

01
21

01
31

01
51

01
67

02
17

02
40

02
61

02
71

03
13

03
35

03
57

00
02

 S

T
X

00
45

 L

F

00
22

 D

C
2

00
77

 S

U
B

01
77

 "

01
34

 *

03
62

 2

01
72

 :

03
02

 B

03
21

 J

03
31

 R

03
51

 Z

02
02

 b

02
21

 j

02
31

 r

02
51

 z

00
42

 F

S

00
52

 S

M

00
32

 U

B
S

00
72

 R

F
F

01
03

01
22

01
42

01
60

01
70

02
20

02
52

02
62

02
72

03
14

03
36

03
72

00
03

 E

T
X

00
13

 V

T

00
23

 D

C
3

00
47

 E

S
C

01
73

 #

01
16

 +

03
63

 3

01
36

 ;

03
03

 C

03
22

 K

03
42

 S

02
55

 [

02
03

 c

02
22

 k

02
42

 s

03
00

 {

00
43

 W

U
S

00
53

 C

S
P

00
63

 IR

00
73

 C

U
3

01
04

01
23

01
43

01
61

02
00

02
32

02
53

02
63

02
73

03
15

03
37

03
73

00
67

 E

O
T

00
14

 F

F

00
74

 D

C
4

00
34

 IF

S

01
33

 $

01
53

 ,

03
64

 4

01
14

 <

03
04

 D

03
23

 L

03
43

 T

03
40

 \

02
04

 d

02
23

]

02
43

 t

01
17

 |

00
44

 B

Y
P

00
54

 M

F
A

00
64

 P

P

00
04

 S

E
L

01
05

01
24

01
44

01
62

02
12

02
33

02
54

02
64

02
74

03
16

03
52

03
74

00
55

 E

N
Q

00
15

 C

R

00
75

 N

A
K

00
35

 IG

S

01
54

 %

01
40

 -

03
65

 5

01
76

 =

03
05

 E

03
24

 M

03
44

 U

02
75

]

02
05

 e

02
24

 m

02
44

 u

03
20

 }

00
25

 N

L

00
11

 S

P
S

00
65

 T

R
N

00
24

 R

E
S

01
06

01
25

01
45

01
63

02
13

02
34

02
55

 [

02
65

02
75

]

03
17

03
53

03
75

00
56

 A

C
K

00
16

 S

O

00
62

 S

Y
N

00
36

 IR

S

01
20

 &

01
13

 .

03
66

 6

01
56

 >

03
06

 F

03
25

 N

03
45

 V

01
37

 ¬

02
06

 f

02
25

 n

02
45

 v

02
41

00
06

 R

N
L

00
12

 R

P
T

00
66

 N

B
S

00
76

01
07

01
26

01
46

01
64

02
14

02
35

02
56

02
66

02
76

03
32

03
54

03
76

00
57

 B

E
L

00
17

 S

I

00
46

 E

T
B

00
37

 IT

B

01
75

 '

01
41

 /

03
67

 7

01
57

 ?

03
07

 G

03
26

 O

03
46

 W

01
55

 _

02
07

 g

02
26

 o

02
46

 w

00
07

 D

E
L

00
27

 P

O
C

00
33

 C

U
1

00
10

 G

E

03
41

01
10

01
27

01
47

01
65

02
15

02
36

02
57

02
67

02
77

03
33

03
55

03
77

 E

O

00
00

00
10

00
20

00
30

00
40

00
50

00
60

00
70

01
00

01
10

01
20

01
30

01
40

01
50

01
60

01
70

02
00

02
10

02
20

02
30

02
40

02
50

02
60

02
70

03
00

03
10

03
20

03
30

03
40

03
50

03
60

03
70

0
1

2
3

4
5

6
7

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2781

92034

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dd Utilities

STDIN
If no if= operand is specified, the standard input shall be used. See the INPUT FILES section.

INPUT FILES
The input file can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of dd:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the classification of characters as uppercase or
lowercase, and the mapping of characters from one case to the other.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
For SIGINT, the dd utility shall interrupt its current processing, write status information to
standard error, and terminate abnormally as if by the default action for SIGINT. One or more
implementation defined non-job-control signals other than SIGABRT, SIGHUP, and SIGTERM
may write status information to standard error and continue processing. All other signals
(including job control signals, SIGABRT, SIGHUP, and SIGTERM) shall take their default action;
see the ASYNCHRONOUS EVENTS section in Section 1.4 (on page 2462).

STDOUT
If no of= operand is specified, the standard output shall be used. The nature of the output
depends on the operands selected.

STDERR
On completion, dd shall write the number of input and output blocks to standard error. In the
POSIX locale the following formats shall be used:

"%u+%u records in\n", <number of whole input blocks>,
<number of partial input blocks>

"%u+%u records out\n", <number of whole output blocks>,
<number of partial output blocks>

A partial input block is one for which read() returned less than the input block size. A partial
output block is one that was written with fewer bytes than specified by the output block size.

In addition, when there is at least one truncated block, the number of truncated blocks shall be
written to standard error. In the POSIX locale, the format shall be:

"%u truncated %s\n", <number of truncated blocks>, "record" (if
<number of truncated blocks> is one) "records" (otherwise)

Diagnostic messages may also be written to standard error.

2782 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92035

92036

92037

92038

92039

92040

92041

92042

92043

92044

92045

92046

92047

92048

92049

92050

92051

92052

92053

92054

92055

92056

92057

92058

92059

92060

92061

92062

92063

92064

92065

92066

92067

92068

92069

92070

92071

92072

92073

92074

92075

92076

92077

92078

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities dd

OUTPUT FILES
If the of= operand is used, the output shall be the same as described in the STDOUT section.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If an input error is detected and the noerror conversion has not been specified, any partial
output block shall be written to the output file, a diagnostic message shall be written, and the
copy operation shall be discontinued. If some other error is detected, a diagnostic message shall
be written and the copy operation shall be discontinued.

APPLICATION USAGE
The input and output block size can be specified to take advantage of raw physical I/O.

There are many different versions of the EBCDIC codesets. The ASCII and EBCDIC conversions
specified for the dd utility perform conversions for the version specified by the tables.

Using the count= operand of dd with a pipe or FIFO as the input can lead to surprising results,
since these file types are prone to encountering short reads for any input block size other than 1.
Unless the iflags=fullblock operand is in effect, dd will stop after the specified number of reads,
rather than full input blocks, and therefore can often result in fewer bytes being output than the
product of the count and input block size.

EXAMPLES
The following command:

dd if=/dev/rmt0h of=/dev/rmt1h

copies from tape drive 0 to tape drive 1, using a common historical device naming convention.

The following command:

dd ibs=10 skip=1

strips the first 10 bytes from standard input.

This example reads an EBCDIC tape blocked ten 80-byte EBCDIC card images per block into the
ASCII file x:

dd if=/dev/tape of=x ibs=800 cbs=80 conv=ascii,lcase

RATIONALE
The OPTIONS section is listed as ``None’’ because there are no options recognized by historical
dd utilities. Certainly, many of the operands could have been designed to use the Utility Syntax
Guidelines, which would have resulted in the classic hyphenated option letters. In this version
of this volume of POSIX.1-2024, dd retains its curious JCL-like syntax due to the large number of
applications that depend on the historical implementation.

A suggested implementation technique for conv=noerror,sync is to zero (or <space>-fill, if
blocking or unblocking) the input buffer before each read and to write the contents of the input
buffer to the output even after an error. In this manner, any data transferred to the input buffer
before the error was detected is preserved. Another point is that a failed read on a regular file or
a disk generally does not increment the file offset, and dd must then seek past the block on which

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2783

92079

92080

92081

92082

92083

92084

92085

92086

92087

92088

92089

92090

92091

92092

92093

92094

92095

92096

92097

92098

92099

92100

92101

92102

92103

92104

92105

92106

92107

92108

92109

92110

92111

92112

92113

92114

92115

92116

92117

92118

92119

92120

92121

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dd Utilities

the error occurred; otherwise, the input error occurs repetitively. When the input is a magnetic
tape, however, the tape normally has passed the block containing the error when the error is
reported, and thus no seek is necessary.

The default ibs= and obs= sizes are specified as 512 bytes because there are historical (largely
portable) scripts that assume these values. If they were left unspecified, unusual results could
occur if an implementation chose an odd block size.

Historical implementations of dd used creat() when processing of=file. This makes the seek=
operand unusable except on special files. The conv=notrunc feature was added because more
recent BSD-based implementations use open() (without O_TRUNC) instead of creat(), but they
fail to delete output file contents after the data copied.

The w multiplier (historically meaning word), is used in System V to mean 2 and in 4.2 BSD to
mean 4. Since word is inherently non-portable, its use is not supported by this volume of
POSIX.1-2024.

Standard EBCDIC does not have the characters '[' and ']'. The values used in the table are
taken from a common print train that does contain them. Other than those characters, the print
train values are not filled in, but appear to provide some of the motivation for the historical
choice of translations reflected here.

The Standard EBCDIC table provides a 1:1 translation for all 256 bytes.

The IBM EBCDIC table does not provide such a translation. The marked cells in the tables differ
in such a way that:

1. EBCDIC 0112 ('¢') and 0152 (broken pipe) do not appear in the table.

2. EBCDIC 0137 ('¬') translates to/from ASCII 0236 ('^'). In the standard table, EBCDIC
0232 (no graphic) is used.

3. EBCDIC 0241 ('~') translates to/from ASCII 0176 ('~'). In the standard table, EBCDIC
0137 ('¬') is used.

4. 0255 ('[') and 0275 (']') appear twice, once in the same place as for the standard table
and once in place of 0112 ('¢') and 0241 ('~').

In net result:

EBCDIC 0275 (']') displaced EBCDIC 0241 ('~') in cell 0345.

That displaced EBCDIC 0137 ('¬') in cell 0176.

That displaced EBCDIC 0232 (no graphic) in cell 0136.

That replaced EBCDIC 0152 (broken pipe) in cell 0313.

EBCDIC 0255 ('[') replaced EBCDIC 0112 ('¢').

This translation, however, reflects historical practice that (ASCII) '~' and '¬' were often
mapped to each other, as were '[' and '¢'; and ']' and (EBCDIC) '~'.

The cbs operand is required if any of the ascii, ebcdic, or ibm operands are specified. For the
ascii operand, the input is handled as described for the unblock operand except that characters
are converted to ASCII before the trailing <space> characters are deleted. For the ebcdic and
ibm operands, the input is handled as described for the block operand except that the characters
are converted to EBCDIC or IBM EBCDIC after the trailing <space> characters are added.

The block and unblock keywords are from historical BSD practice.

2784 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92122

92123

92124

92125

92126

92127

92128

92129

92130

92131

92132

92133

92134

92135

92136

92137

92138

92139

92140

92141

92142

92143

92144

92145

92146

92147

92148

92149

92150

92151

92152

92153

92154

92155

92156

92157

92158

92159

92160

92161

92162

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities dd

The consistent use of the word record in standard error messages matches most historical
practice. An earlier version of System V used block, but this has been updated in more recent
releases.

Early proposals only allowed two numbers separated by x to be used in a product when
specifying bs=, cbs=, ibs=, and obs= sizes. This was changed to reflect the historical practice of
allowing multiple numbers in the product as provided by Version 7 and all releases of System V
and BSD.

A change to the swab conversion is required to match historical practice and is the result of IEEE
PASC Interpretations 1003.2 #03 and #04, submitted for the ISO POSIX-2: 1993 standard.

A change to the handling of SIGINT is required to match historical practice and is the result of
IEEE PASC Interpretation 1003.2 #06 submitted for the ISO POSIX-2: 1993 standard.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

A future version of this standard may introduce the SIGINFO signal; on platforms where such a
signal is available, it is recommended that this signal be used for reporting status without
terminating the process.

SEE ALSO
Section 1.4 (on page 2462), sed , tr

XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The second paragraph of the cbs= description is reworded and marked EX.

The FUTURE DIRECTIONS section is added.

Issue 6
Changes are made to swab conversion and SIGINT handling to align with the IEEE P1003.2b
draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #209 is applied, clarifying the interaction between dd of=file and
conv=notrunc.

Issue 7
Austin Group Interpretation 1003.1-2001 #102 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0081 [907] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 406 is applied, adding the iflags=fullblock operand.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1159 is applied, changing the ASYNCHRONOUS EVENTS and FUTURE

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2785

92163

92164

92165

92166

92167

92168

92169

92170

92171

92172

92173

92174

92175

92176

92177

92178

92179

92180

92181

92182

92183

92184

92185

92186

92187

92188

92189

92190

92191

92192

92193

92194

92195

92196

92197

92198

92199

92200

92201

92202

92203

92204

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dd Utilities

DIRECTIONS sections.

Austin Group Defect 1497 is applied, changing the EXIT STATUS section.

2786 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92205

92206

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities delta

NAME
delta — make a delta (change) to an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI delta [-nps] [-g list] [-m mrlist] [-r SID] [-y[comment]] file...

DESCRIPTION
The delta utility shall be used to permanently introduce into the named SCCS files changes that
were made to the files retrieved by get (called the g-files, or generated files).

OPTIONS
The delta utility shall conform to XBD Section 12.2 (on page 215), except that the −y option has an
optional option-argument. This optional option-argument shall not be presented as a separate
argument.

The following options shall be supported:

−r SID Uniquely identify which delta is to be made to the SCCS file. The use of this option
shall be necessary only if two or more outstanding get commands for editing (get
−e) on the same SCCS file were done by the same person (login name). The SID
value specified with the −r option can be either the SID specified on the get
command line or the SID to be made as reported by the get utility; see get (on page
2964).

−s Suppress the report to standard output of the activity associated with each file. See
the STDOUT section.

−n Specify retention of the edited g-file (normally removed at completion of delta
processing).

−g list Specify a list (see get for the definition of list) of deltas that shall be ignored when
the file is accessed at the change level (SID) created by this delta.

−m mrlist Specify a modification request (MR) number that the application shall supply as
the reason for creating the new delta. This shall be used if the SCCS file has the v
flag set; see admin .

If −m is not used and '−' is not specified as a file argument, and the standard
input is a terminal, the prompt described in the STDOUT section shall be written
to standard output before the standard input is read; if the standard input is not a
terminal, no prompt shall be issued.

MRs in a list shall be separated by <blank> characters or escaped <newline>
characters. An unescaped <newline> shall terminate the MR list. The escape
character is <backslash>.

If the v flag has a value, it shall be taken to be the name of a program which
validates the correctness of the MR numbers. If a non-zero exit status is returned
from the MR number validation program, the delta utility shall terminate. (It is
assumed that the MR numbers were not all valid.)

−y[comment] Describe the reason for making the delta. The comment shall be an arbitrary group
of lines that would meet the definition of a text file. Implementations shall support
comments from zero to 512 bytes and may support longer values. A null string
(specified as either −y, −y"", or in response to a prompt for a comment) shall be
considered a valid comment.

If −y is not specified and '−' is not specified as a file argument, and the standard

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2787

92207

92208

92209

92210

92211

92212

92213

92214

92215

92216

92217

92218

92219

92220

92221

92222

92223

92224

92225

92226

92227

92228

92229

92230

92231

92232

92233

92234

92235

92236

92237

92238

92239

92240

92241

92242

92243

92244

92245

92246

92247

92248

92249

92250

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

delta Utilities

input is a terminal, the prompt described in the STDOUT section shall be written
to standard output before the standard input is read; if the standard input is not a
terminal, no prompt shall be issued. An unescaped <newline> shall terminate the
comment text. The escape character is <backslash>.

The −y option shall be required if the file operand is specified as '−'.

−p Write (to standard output) the SCCS file differences before and after the delta is
applied in diff format; see diff .

OPERANDS
The following operand shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the delta
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is '−', the standard input shall be read;
each line of the standard input shall be taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only in the following cases:

• To read an mrlist or a comment (see the −m and −y options).

• A file operand shall be specified as '−'. In this case, the −y option needs to be used to
specify the comment, and if the SCCS file has the v flag set, the −m option also needs to be
used to specify the MR list.

INPUT FILES
Input files shall be text files whose data is to be included in the SCCS files. If the first character of
any line of an input file is <SOH> in the POSIX locale, the results are unspecified. If this file
contains more than 99 999 lines, the number of lines recorded in the header for this file shall be
99 999 for this delta.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of delta:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

NLSPATH Determine the location of messages objects and message catalogs.

2788 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92251

92252

92253

92254

92255

92256

92257

92258

92259

92260

92261

92262

92263

92264

92265

92266

92267

92268

92269

92270

92271

92272

92273

92274

92275

92276

92277

92278

92279

92280

92281

92282

92283

92284

92285

92286

92287

92288

92289

92290

92291

92292

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities delta

TZ Determine the timezone in which the time and date are written in the SCCS file. If
the TZ variable is unset or NULL, an unspecified system default timezone is used.

ASYNCHRONOUS EVENTS
If SIGINT is caught, temporary files shall be cleaned up and delta shall exit with a non-zero exit
code. The standard action shall be taken for all other signals; see Section 1.4 (on page 2462).

STDOUT
The standard output shall be used only for the following messages in the POSIX locale:

• Prompts (see the −m and −y options) in the following formats:

"MRs? "

"comments? "

The MR prompt, if written, shall always precede the comments prompt.

• A report of each file’s activities (unless the −s option is specified) in the following format:

"%s\n%d inserted\n%d deleted\n%d unchanged\n", <New SID>,
<number of lines inserted>, <number of lines deleted>,
<number of lines unchanged>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Any SCCS files updated shall be files of an unspecified format.

EXTENDED DESCRIPTION

System Date and Time

When a delta is added to an SCCS file, the system date and time shall be recorded for the new
delta. If a get is performed using an SCCS file with a date recorded apparently in the future, the
behavior is unspecified.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Problems can arise if the system date and time have been modified (for example, put forward
and then back again, or unsynchronized clocks across a network) and can also arise when
different values of the TZ environment variable are used.

Problems of a similar nature can also arise for the operation of the get utility, which records the
date and time in the file body.

EXAMPLES
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2789

92293

92294

92295

92296

92297

92298

92299

92300

92301

92302

92303

92304

92305

92306

92307

92308

92309

92310

92311

92312

92313

92314

92315

92316

92317

92318

92319

92320

92321

92322

92323

92324

92325

92326

92327

92328

92329

92330

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

delta Utilities

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
Section 1.4 (on page 2462), admin , diff , get , prs , rmdel

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The output format description in the STDOUT section is corrected.

Issue 6
The APPLICATION USAGE section is added.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The Open Group Base Resolution bwg2001-007 is applied as follows:

• The use of '−' as a file argument is clarified.

• The use of STDIN is added.

• The ASYNCHRONOUS EVENTS section is updated to remove the implicit requirement
that implementations re-signal themselves when catching a normally fatal signal.

• New text is added to the INPUT FILES section warning that the maximum lines recorded
in the file is 99 999.

New text is added to the EXTENDED DESCRIPTION and APPLICATION USAGE sections
regarding how the system date and time may be taken into account, and the TZ environment
variable is added to the ENVIRONMENT VARIABLES section as per The Open Group Base
Resolution bwg2001-007.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to behave as follows:

a. Report an error if a utility is directed to display a pathname that contains any bytes that
have the encoded value of a <newline> character when <newline> is a terminator or
separator in the output format being used.

b. Disallow the creation of filenames containing any bytes that have the encoded value of a
<newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2790 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92331

92332

92333

92334

92335

92336

92337

92338

92339

92340

92341

92342

92343

92344

92345

92346

92347

92348

92349

92350

92351

92352

92353

92354

92355

92356

92357

92358

92359

92360

92361

92362

92363

92364

92365

92366

92367

92368

92369

92370

92371

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities df

NAME
df — report free disk space

SYNOPSIS
XSI df [-k] [-P|-t] [file...]

DESCRIPTION
XSI The df utility shall write the amount of available space and file slots for file systems on which

the invoking user has appropriate read access. File systems shall be specified by the file
operands; when none are specified, information shall be written for all file systems. The format
of the default output from df is unspecified, but all space figures are reported in 512-byte units,
unless the −k option is specified. This output shall contain at least the file system names, amount

XSI of available space on each of these file systems, and, if no options other than −t are specified, the
number of free file slots, or inodes, available; when −t is specified, the output shall contain the
total allocated space as well.

OPTIONS
The df utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−k Use 1 024-byte units, instead of the default 512-byte units, when writing space
figures.

−P Produce output in the format described in the STDOUT section.

XSI −t Include total allocated-space figures in the output.

OPERANDS
The following operand shall be supported:

file A pathname of a file within the hierarchy of the desired file system. If a file other
XSI than a FIFO, a regular file, a directory, or a special file representing the device

containing the file system (for example, /dev/dsk/0s1) is specified, the results are
unspecified. If the file operand names a file other than a special file containing a file
system, df shall write the amount of free space in the file system containing the

XSI specified file operand. Otherwise, df shall write the amount of free space in that
file system.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of df:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2791

92372

92373

92374

92375

92376

92377

92378

92379

92380

92381

92382

92383

92384

92385

92386

92387

92388

92389

92390

92391

92392

92393

92394

92395

92396

92397

92398

92399

92400

92401

92402

92403

92404

92405

92406

92407

92408

92409

92410

92411

92412

92413

92414

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

df Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When both the −k and −P options are specified, the following header line shall be written (in the
POSIX locale):

"Filesystem 1024-blocks Used Available Capacity Mounted on\n"

When the −P option is specified without the −k option, the following header line shall be written
(in the POSIX locale):

"Filesystem 512-blocks Used Available Capacity Mounted on\n"

The implementation may adjust the spacing of the header line and the individual data lines so
that the information is presented in orderly columns.

The remaining output with −P shall consist of one line of information for each specified file
system. These lines shall be formatted as follows:

"%s %d %d %d %d%% %s\n", <file system name>, <total space>,
<space used>, <space free>, <percentage used>,
<file system root>

In the following list, all quantities expressed in 512-byte units (1 024-byte when −k is specified)
shall be rounded up to the next higher unit. The fields are:

<file system name>
The name of the file system, in an implementation-defined format.

<total space> The total size of the file system in 512-byte units. The exact meaning of this figure
is implementation-defined, but should include <space used>, <space free>, plus any
space reserved by the system not normally available to a user.

<space used> The total amount of space allocated to existing files in the file system, in 512-byte
units.

<space free> The total amount of space available within the file system for the creation of new
files by unprivileged users, in 512-byte units. When this figure is less than or equal
to zero, it shall not be possible to create any new files on the file system without
first deleting others, unless the process has appropriate privileges. The figure
written may be less than zero.

<percentage used>
The percentage of the normally available space that is currently allocated to all files
on the file system. This shall be calculated using the fraction:

<space used>/(<space used>+ <space free>)

expressed as a percentage. This percentage may be greater than 100 if <space free>
is less than zero. The percentage value shall be expressed as a positive integer, with
any fractional result causing it to be rounded to the next highest integer.

2792 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92415

92416

92417

92418

92419

92420

92421

92422

92423

92424

92425

92426

92427

92428

92429

92430

92431

92432

92433

92434

92435

92436

92437

92438

92439

92440

92441

92442

92443

92444

92445

92446

92447

92448

92449

92450

92451

92452

92453

92454

92455

92456

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities df

<file system root>
The directory below which the file system hierarchy appears.

XSI The output format is unspecified when −t is used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
On most systems, the ``name of the file system, in an implementation-defined format’’ is the
special file on which the file system is mounted.

On large file systems, the calculation specified for percentage used can create huge rounding
errors.

EXAMPLES

1. The following example writes portable information about the /usr file system:

df -P /usr

2. Assuming that /usr/src is part of the /usr file system, the following produces the same
output as the previous example:

df -P /usr/src

RATIONALE
The behavior of df with the −P option is the default action of the 4.2 BSD df utility. The uppercase
−P was selected to avoid collision with a known industry extension using −p.

Historical df implementations vary considerably in their default output. It was therefore
necessary to describe the default output in a loose manner to accommodate all known historical
implementations and to add a portable option (−P) to provide information in a portable format.

The use of 512-byte units is historical practice and maintains compatibility with ls and other
utilities in this volume of POSIX.1-2024. This does not mandate that the file system itself be
based on 512-byte blocks. The −k option was added as a compromise measure. It was agreed by
the standard developers that 512 bytes was the best default unit because of its complete
historical consistency on System V (versus the mixed 512/1 024-byte usage on BSD systems), and
that a −k option to switch to 1 024-byte units was a good compromise. Users who prefer the
more logical 1 024-byte quantity can easily alias df to df −k without breaking many historical
scripts relying on the 512-byte units.

It was suggested that df and the various related utilities be modified to access a BLOCKSIZE
environment variable to achieve consistency and user acceptance. Since this is not historical

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2793

92457

92458

92459

92460

92461

92462

92463

92464

92465

92466

92467

92468

92469

92470

92471

92472

92473

92474

92475

92476

92477

92478

92479

92480

92481

92482

92483

92484

92485

92486

92487

92488

92489

92490

92491

92492

92493

92494

92495

92496

92497

92498

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

df Utilities

practice on any system, it is left as a possible area for system extensions and will be re-evaluated
in a future version if it is widely implemented.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
find

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
Austin Group Interpretation 1003.1-2001 #099 is applied.

The df utility is removed from the User Portability Utilities option. User Portability Utilities is
now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0082 [156] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2794 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92499

92500

92501

92502

92503

92504

92505

92506

92507

92508

92509

92510

92511

92512

92513

92514

92515

92516

92517

92518

92519

92520

92521

92522

92523

92524

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities diff

NAME
diff — compare two files

SYNOPSIS
diff [-c|-e|-f|-u|-C n|-U n] [-br] file1 file2

DESCRIPTION
The diff utility shall compare the contents of file1 and file2 and write to standard output a list of
changes necessary to convert file1 into file2. This list should be minimal. No output shall be
produced if the files are identical.

OPTIONS
The diff utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−b Cause any amount of white space at the end of a line to be treated as a single
<newline> (that is, the white-space characters preceding the <newline> are
ignored) and other strings of white-space characters, not including <newline>
characters, to compare equal.

−c Produce output in a form that provides three lines of copied context.

−C n Produce output in a form that provides n lines of copied context (where n shall be
interpreted as a positive decimal integer).

−e Produce output in a form suitable as input for the ed utility, which can then be used
to convert file1 into file2.

−f Produce output in an alternative form, similar in format to −e, but not intended to
be suitable as input for the ed utility, and in the opposite order.

−r Apply diff recursively to files and directories of the same name when file1 and file2
are both directories.

The diff utility shall detect infinite loops; that is, entering a previously visited
directory that is an ancestor of the last file encountered. When it detects an infinite
loop, diff shall write a diagnostic message to standard error and shall either recover
its position in the hierarchy or terminate.

−u Produce output in a form that provides three lines of unified context.

−U n Produce output in a form that provides n lines of unified context (where n shall be
interpreted as a non-negative decimal integer).

OPERANDS
The following operands shall be supported:

file1, file2 A pathname of a file to be compared. If either the file1 or file2 operand is '−', the
standard input shall be used in its place.

If both file1 and file2 are directories, diff shall not compare block special files, character special
files, or FIFO special files to any files and shall not compare regular files to directories. Further
details are as specified in Diff Directory Comparison Format (on page 2796). The behavior of diff
on other file types is implementation-defined when found in directories.

If only one of file1 and file2 is a directory, diff shall be applied to the non-directory file and the file
contained in the directory file with a filename that is the same as the last component of the non-
directory file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2795

92525

92526

92527

92528

92529

92530

92531

92532

92533

92534

92535

92536

92537

92538

92539

92540

92541

92542

92543

92544

92545

92546

92547

92548

92549

92550

92551

92552

92553

92554

92555

92556

92557

92558

92559

92560

92561

92562

92563

92564

92565

92566

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

diff Utilities

STDIN
The standard input shall be used only if one of the file1 or file2 operands references standard
input. See the INPUT FILES section.

INPUT FILES
The input files may be of any type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of diff:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the locale for affecting the format of file timestamps written with the −C
and −c options.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone used for calculating file timestamps written with a context
format. If TZ is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT

Diff Directory Comparison Format

If both file1 and file2 are directories, the following output formats shall be used.

In the POSIX locale, each file that is present in only one directory shall be reported using the
following format:

"Only in %s: %s\n", <directory pathname>, <filename>

In the POSIX locale, subdirectories that are common to the two directories may be reported with
the following format:

"Common subdirectories: %s and %s\n", <directory1 pathname>,
<directory2 pathname>

For each file common to the two directories, if the two files are not to be compared: if the two
files have the same device ID and file serial number, or are both block special files that refer to
the same device, or are both character special files that refer to the same device, in the POSIX
locale the output format is unspecified. Otherwise, in the POSIX locale an unspecified format
shall be used that contains the pathnames of the two files.

For each file common to the two directories, if the files are compared and are identical, no

2796 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92567

92568

92569

92570

92571

92572

92573

92574

92575

92576

92577

92578

92579

92580

92581

92582

92583

92584

92585

92586

92587

92588

92589

92590

92591

92592

92593

92594

92595

92596

92597

92598

92599

92600

92601

92602

92603

92604

92605

92606

92607

92608

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities diff

output shall be written. If the two files differ, the following format is written:

"diff %s %s %s\n", <diff_options>, <filename1>, <filename2>

where <diff_options> are the options as specified on the command line.

All directory pathnames listed in this section shall be relative to the original command line
arguments. All other names of files listed in this section shall be filenames (pathname
components).

Diff Binary Output Format

In the POSIX locale, if one or both of the files being compared are not text files, it is
implementation-defined whether diff uses the binary file output format or the other formats as
specified below. The binary file output format shall contain the pathnames of two files being
compared and the string "differ".

If both files being compared are text files, depending on the options specified, one of the
following formats shall be used to write the differences.

Diff Default Output Format

The default (without −e, −f, −c, −C, −u, or −U options) diff utility output shall contain lines of
these forms:

"%da%d\n", <num1>, <num2>

"%da%d,%d\n", <num1>, <num2>, <num3>

"%dd%d\n", <num1>, <num2>

"%d,%dd%d\n", <num1>, <num2>, <num3>

"%dc%d\n", <num1>, <num2>

"%d,%dc%d\n", <num1>, <num2>, <num3>

"%dc%d,%d\n", <num1>, <num2>, <num3>

"%d,%dc%d,%d\n", <num1>, <num2>, <num3>, <num4>

These lines resemble ed subcommands to convert file1 into file2. The line numbers before the
action letters shall pertain to file1; those after shall pertain to file2. Thus, by exchanging a for d
and reading the line in reverse order, one can also determine how to convert file2 into file1. As in
ed, identical pairs (where num1= num2) are abbreviated as a single number.

Following each of these lines, diff shall write to standard output all lines affected in the first file
using the format:

"<Δ%s", <line>

and all lines affected in the second file using the format:

">Δ%s", <line>

If there are lines affected in both file1 and file2 (as with the c subcommand), the changes are
separated with a line consisting of three <hyphen-minus> characters:

"---\n"

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2797

92609

92610

92611

92612

92613

92614

92615

92616

92617

92618

92619

92620

92621

92622

92623

92624

92625

92626

92627

92628

92629

92630

92631

92632

92633

92634

92635

92636

92637

92638

92639

92640

92641

92642

92643

92644

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

diff Utilities

Diff −e Output Format

With the −e option, a script shall be produced that shall, when provided as input to ed, along
with an appended w (write) command, convert file1 into file2. Only the a (append), c (change), d
(delete), i (insert), and s (substitute) commands of ed shall be used in this script. Text lines,
except those consisting of the single character <period> ('.'), shall be output as they appear in
the file.

Diff −f Output Format

With the −f option, an alternative format of script shall be produced. It is similar to that
produced by −e, with the following differences:

1. It is expressed in reverse sequence; the output of −e orders changes from the end of the
file to the beginning; the −f from beginning to end.

2. The command form <lines> <command-letter> used by −e is reversed. For example,
10c with −e would be c10 with −f.

3. The form used for ranges of line numbers is <space>-separated, rather than
<comma>-separated.

Diff −c or −C Output Format

With the −c or −C option, the output format shall consist of affected lines along with
surrounding lines of context. The affected lines shall show which ones need to be deleted or
changed in file1, and those added from file2. With the −c option, three lines of context, if
available, shall be written before and after the affected lines. With the −C option, the user can
specify how many lines of context are written. The exact format follows.

The name and last modification time of each file shall be output in the following format:

"*** %s %s\n", file1, <file1 timestamp>
"--- %s %s\n", file2, <file2 timestamp>

Each <file> field shall be the pathname of the corresponding file being compared. The pathname
written for standard input is unspecified.

In the POSIX locale, each <timestamp> field shall be equivalent to the output from the following
command:

date "+%a %b %e %T %Y"

without the trailing <newline>, executed at the time of last modification of the corresponding
file (or the current time, if the file is standard input).

Then, the following output formats shall be applied for every set of changes.

First, a line shall be written in the following format:

"***************\n"

Next, the range of lines in file1 shall be written in the following format if the range contains two
or more lines:

"*** %d,%d ****\n", <beginning line number>, <ending line number>

and the following format otherwise:

"*** %d ****\n", <ending line number>

The ending line number of an empty range shall be the number of the preceding line, or 0 if the

2798 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92645

92646

92647

92648

92649

92650

92651

92652

92653

92654

92655

92656

92657

92658

92659

92660

92661

92662

92663

92664

92665

92666

92667

92668

92669

92670

92671

92672

92673

92674

92675

92676

92677

92678

92679

92680

92681

92682

92683

92684

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities diff

range is at the start of the file.

Next, the affected lines along with lines of context (unaffected lines) shall be written. Unaffected
lines shall be written in the following format:

"ΔΔ%s", <unaffected_line>

Deleted lines shall be written as:

"-Δ%s", <deleted_line>

Changed lines shall be written as:

"!Δ%s", <changed_line>

Next, the range of lines in file2 shall be written in the following format if the range contains two
or more lines:

"--- %d,%d ----\n", <beginning line number>, <ending line number>

and the following format otherwise:

"--- %d ----\n", <ending line number>

Then, lines of context and changed lines shall be written as described in the previous formats.
Lines added from file2 shall be written in the following format:

"+Δ%s", <added_line>

Diff −u or −U Output Format

The −u or −U options behave like the −c or −C options, except that the context lines are not
repeated; instead, the context, deleted, and added lines are shown together, interleaved. The
exact format follows.

The name and last modification time of each file shall be output in the following format:

"---Δ%s\t%s%sΔ%s\n", file1, <file1 timestamp>, <file1 frac>, <file1 zone>
"+++Δ%s\t%s%sΔ%s\n", file2, <file2 timestamp>, <file2 frac>, <file2 zone>

Each <file> field shall be the pathname of the corresponding file being compared, or the single
character '−' if standard input is being compared. However, if the pathname contains a <tab>
or a <newline>, or if it does not consist entirely of characters taken from the portable character
set, the behavior is implementation-defined.

Each <timestamp> field shall be equivalent to the output from the following command:

date '+%Y-%m-%dΔ%H:%M:%S'

without the trailing <newline>, executed at the time of last modification of the corresponding
file (or the current time, if the file is standard input).

Each <frac> field shall be either empty, or a decimal point followed by at least one decimal digit,
indicating the fractional-seconds part (if any) of the file timestamp. The number of fractional
digits shall be at least the number needed to represent the file’s timestamp without loss of
information.

Each <zone> field shall be of the form "shhmm", where "shh" is a signed two-digit decimal
number in the range −24 through +25, and "mm" is an unsigned two-digit decimal number in the
range 00 through 59. It represents the timezone of the timestamp as the number of hours (hh)
and minutes (mm) east (+) or west (−) of UTC for the timestamp. If the hours and minutes are
both zero, the sign shall be '+'. However, if the timezone is not an integral number of minutes

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2799

92685

92686

92687

92688

92689

92690

92691

92692

92693

92694

92695

92696

92697

92698

92699

92700

92701

92702

92703

92704

92705

92706

92707

92708

92709

92710

92711

92712

92713

92714

92715

92716

92717

92718

92719

92720

92721

92722

92723

92724

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

diff Utilities

away from UTC, the <zone> field is implementation-defined.

Then, the following output formats shall be applied for every set of changes.

First, the range of lines in each file shall be written in the following format:

"@@Δ-%sΔ+%sΔ@@", <file1 range>, <file2 range>

Each <range> field shall be of the form:

"%1d", <beginning line number>

or:

"%1d,1", <beginning line number>

if the range contains exactly one line, and:

"%1d,%1d", <beginning line number>, <number of lines>

otherwise. If a range is empty, its beginning line number shall be the number of the line just
before the range, or 0 if the empty range starts the file.

Next, the affected lines along with lines of context shall be written. Each non-empty unaffected
line shall be written in the following format:

"Δ%s", <unaffected_line>

where the contents of the unaffected line shall be taken from file1. It is implementation-defined
whether an empty unaffected line is written as an empty line or a line containing a single
<space> character. This line also represents the same line of file2, even though file2’s line may
contain different contents due to the −b. Deleted lines shall be written as:

"-%s", <deleted_line>

Added lines shall be written as:

"+%s", <added_line>

The order of lines written shall be the same as that of the corresponding file. A deleted line shall
never be written immediately after an added line.

If −U n is specified, the output shall contain no more than 2n consecutive unaffected lines; and if
the output contains an affected line and this line is adjacent to up to n consecutive unaffected
lines in the corresponding file, the output shall contain these unaffected lines. −u shall act like
−U3.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 No differences were found.

1 Differences were found and all differences were successfully output.

2800 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92725

92726

92727

92728

92729

92730

92731

92732

92733

92734

92735

92736

92737

92738

92739

92740

92741

92742

92743

92744

92745

92746

92747

92748

92749

92750

92751

92752

92753

92754

92755

92756

92757

92758

92759

92760

92761

92762

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities diff

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If lines at the end of a file are changed and other lines are added, diff output may show this as a
delete and add, as a change, or as a change and add; diff is not expected to know which
happened and users should not care about the difference in output as long as it clearly shows
the differences between the files.

EXAMPLES
If dir1 is a directory containing a directory named x, dir2 is a directory containing a directory
named x, dir1/x and dir2/x both contain files named date.out, and dir2/x contains a file named y,
the command:

diff -r dir1 dir2

could produce output similar to:

Common subdirectories: dir1/x and dir2/x
Only in dir2/x: y
diff -r dir1/x/date.out dir2/x/date.out
1c1
< Mon Jul 2 13:12:16 PDT 1990

> Tue Jun 19 21:41:39 PDT 1990

RATIONALE
The −h option was omitted because it was insufficiently specified and does not add to
applications portability.

Historical implementations employ algorithms that do not always produce a minimum list of
differences; the current language about making every effort is the best this volume of
POSIX.1-2024 can do, as there is no metric that could be employed to judge the quality of
implementations against any and all file contents. The statement ``This list should be minimal’’
clearly implies that implementations are not expected to provide the following output when
comparing two 100-line files that differ in only one character on a single line:

1,100c1,100
all 100 lines from file1 preceded with "< "

all 100 lines from file2 preceded with "> "

The ``Only in’’ messages required when the −r option is specified are not used by most historical
implementations if the −e option is also specified. It is required here because it provides useful
information that must be provided to update a target directory hierarchy to match a source
hierarchy. The ``Common subdirectories’’ messages are written by System V and 4.3 BSD when
the −r option is specified. They are allowed here but are not required because they are reporting
on something that is the same, not reporting a difference, and are not needed to update a target
hierarchy.

The −c option, which writes output in a format using lines of context, has been included. The
format is useful for a variety of reasons, among them being much improved readability and the
ability to understand difference changes when the target file has line numbers that differ from
another similar, but slightly different, copy. The patch utility is most valuable when working
with difference listings using a context format. The BSD version of −c takes an optional

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2801

92763

92764

92765

92766

92767

92768

92769

92770

92771

92772

92773

92774

92775

92776

92777

92778

92779

92780

92781

92782

92783

92784

92785

92786

92787

92788

92789

92790

92791

92792

92793

92794

92795

92796

92797

92798

92799

92800

92801

92802

92803

92804

92805

92806

92807

92808

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

diff Utilities

argument specifying the amount of context. Rather than overloading −c and breaking the Utility
Syntax Guidelines for diff, the standard developers decided to add a separate option for
specifying a context diff with a specified amount of context (−C). Also, the format for context
diffs was extended slightly in 4.3 BSD to allow multiple changes that are within context lines
from each other to be merged together. The output format contains an additional four <asterisk>
characters after the range of affected lines in the first filename. This was to provide a flag for old
programs (like old versions of patch) that only understand the old context format. The version of
context described here does not require that multiple changes within context lines be merged,
but it does not prohibit it either. The extension is upwards-compatible, so any vendors that wish
to retain the old version of diff can do so by adding the extra four <asterisk> characters (that is,
utilities that currently use diff and understand the new merged format will also understand the
old unmerged format, but not vice versa).

The −u and −U options of GNU diff have been included. Their output format, designed by
Wayne Davison, takes up less space than −c and −C format, and in many cases is easier to read.
The format’s timestamps do not vary by locale, so LC_TIME does not affect it. The format’s line
numbers are rendered with the %1d format, not %d, because the file format notation rules would
allow extra <blank> characters to appear around the numbers.

The substitute command was added as an additional format for the −e option. This was added
to provide implementations with a way to fix the classic ``dot alone on a line’’ bug present in
many versions of diff. Since many implementations have fixed this bug, the standard developers
decided not to standardize broken behavior, but rather to provide the necessary tool for fixing
the bug. One way to fix this bug is to output two periods whenever a lone period is needed, then
terminate the append command with a period, and then use the substitute command to convert
the two periods into one period.

The BSD-derived −r option was added to provide a mechanism for using diff to compare two file
system trees. This behavior is useful, is standard practice on all BSD-derived systems, and is not
easily reproducible with the find utility.

The requirement that diff not compare files in some circumstances, even though they have the
same name, is based on the actual output of historical implementations. The specified behavior
precludes the problems arising from running into FIFOs and other files that would cause diff to
hang waiting for input with no indication to the user that diff was hung. An earlier version of
this standard specified the output format more precisely, but in practice this requirement was
widely ignored and the benefit of standardization seemed small, so it is now unspecified. In
most common usage, diff −r should indicate differences in the file hierarchies, not the difference
of contents of devices pointed to by the hierarchies.

Many early implementations of diff require seekable files. Since the System Interfaces volume of
POSIX.1-2024 supports named pipes, the standard developers decided that such a restriction
was unreasonable. Note also that the allowed filename − almost always refers to a pipe.

No directory search order is specified for diff. The historical ordering is, in fact, not optimal, in
that it prints out all of the differences at the current level, including the statements about all
common subdirectories before recursing into those subdirectories.

The message:

"diff %s %s %s\n", <diff_options>, <filename1>, <filename2>

does not vary by locale because it is the representation of a command, not an English sentence.

2802 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92809

92810

92811

92812

92813

92814

92815

92816

92817

92818

92819

92820

92821

92822

92823

92824

92825

92826

92827

92828

92829

92830

92831

92832

92833

92834

92835

92836

92837

92838

92839

92840

92841

92842

92843

92844

92845

92846

92847

92848

92849

92850

92851

92852

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities diff

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
cmp , comm , ed , find

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −f option is added.

The output format for −c or −C format is changed to align with changes to the IEEE P1003.2b
draft standard resulting from IEEE PASC Interpretation 1003.2 #71.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/20 is applied, changing the STDOUT
section. This changes the specification of diff −c so that it agrees with existing practice when
contexts contain zero lines or one line.

Issue 7
Austin Group Interpretations 1003.1-2001 #115 and #114 are applied.

Austin Group Interpretation 1003.1-2001 #192 is applied, clarifying the behavior if both files are
non-text files.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the −u option.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0082 [584], XCU/TC2-2008/0083
[950], XCU/TC2-2008/0084 [969], and XCU/TC2-2008/0085 [929] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1498 is applied, changing the EXIT STATUS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2803

92853

92854

92855

92856

92857

92858

92859

92860

92861

92862

92863

92864

92865

92866

92867

92868

92869

92870

92871

92872

92873

92874

92875

92876

92877

92878

92879

92880

92881

92882

92883

92884

92885

92886

92887

92888

92889

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dirname Utilities

NAME
dirname — return the directory portion of a pathname

SYNOPSIS
dirname string

DESCRIPTION
The string operand shall be treated as a pathname, as defined in XBD Section 3.254 (on page 68),
and shall be converted to a pathname of the directory containing the entry of the final pathname
component. The resulting string shall be written to standard output. The dirname utility shall not
perform pathname resolution; the result shall not be affected by whether or not a file with the
pathname string exists or by its file type. Trailing '/' characters in string that are not also
leading '/' characters shall not be counted as part of the pathname. If the pathname does not
contain a '/', the resulting string shall be ".". If string is an empty string, the resulting string
shall be ".".

It is unspecified whether redundant '/' characters and '.' pathname components in string are
removed after determining the pathname to output. However, ".." pathname components
occurring prior to the final component shall not be removed.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

string A string.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of dirname:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

2804 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92890

92891

92892

92893

92894

92895

92896

92897

92898

92899

92900

92901

92902

92903

92904

92905

92906

92907

92908

92909

92910

92911

92912

92913

92914

92915

92916

92917

92918

92919

92920

92921

92922

92923

92924

92925

92926

92927

92928

92929

92930

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities dirname

STDOUT
The dirname utility shall write a line to the standard output in the following format:

"%s\n", <resulting string>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The definition of pathname specifies implementation-defined behavior for pathnames starting
with two <slash> characters. Therefore, applications shall not arbitrarily add <slash> characters
to the beginning of a pathname unless they can ensure that there are more or less than two or are
prepared to deal with the implementation-defined consequences.

EXAMPLES
The EXAMPLES section of the basename() function (see XSH basename()) includes a table
showing examples of the results of processing several sample pathnames by the basename() and
dirname() functions and by the basename and dirname utilities.

See also the examples for the basename utility.

RATIONALE
The behaviors of basename and dirname in this volume of POSIX.1-2024 have been coordinated so
that when string is a valid pathname:

$(basename -- "string")

would be a valid filename for the file in the directory:

$(dirname -- "string")

This would not work for the versions of these utilities in early proposals due to the way
processing of trailing <slash> characters was specified. Consideration was given to leaving
processing unspecified if there were trailing <slash> characters, but this cannot be done; XBD
Section 3.254 (on page 68) allows trailing <slash> characters. The basename and dirname utilities
have to specify consistent handling for all valid pathnames.

The dirname utility is not specified in terms of the dirname() function, because the two may
produce slightly different output where both output forms are still compliant. An
implementation should prefer the shortest output possible; however, this is not required, in part
because earlier versions of the standard did not permit elision of redundant <slash> characters
or dot ('.') components. Removal of the dot-dot ("..") pathname component is not permitted,
because eliding it correctly would require performing pathname resolution to ensure the
resulting string would still point to the correct pathname if the original string resolved as a

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2805

92931

92932

92933

92934

92935

92936

92937

92938

92939

92940

92941

92942

92943

92944

92945

92946

92947

92948

92949

92950

92951

92952

92953

92954

92955

92956

92957

92958

92959

92960

92961

92962

92963

92964

92965

92966

92967

92968

92969

92970

92971

92972

92973

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

dirname Utilities

pathname. On implementations where pathname "//" has an implementation-defined meaning
distinct from the pathname "/", the dirname of "//" will be "//".

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
Section 2.5 (on page 2478), basename

XBD Section 3.254 (on page 68), Chapter 8 (on page 167)

XSH basename(), dirname()

CHANGE HISTORY
First released in Issue 2.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0083 [192,430], XCU/TC1-2008/0084
[192], and XCU/TC1-2008/0085 [192] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0086 [612], XCU/TC2-2008/0087
[620], and XCU/TC2-2008/0088 [612] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1073 is applied, replacing the DESCRIPTION section with one that matches
the dirname() function.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2806 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

92974

92975

92976

92977

92978

92979

92980

92981

92982

92983

92984

92985

92986

92987

92988

92989

92990

92991

92992

92993

92994

92995

92996

92997

92998

92999

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities du

NAME
du — estimate file space usage

SYNOPSIS
du [-a|-s] [-kx] [-H|-L] [file...]

DESCRIPTION
By default, the du utility shall write to standard output the size of the file space allocated to, and
the size of the file space allocated to each subdirectory of, the file hierarchy rooted in each of the
specified files. By default, when a symbolic link is encountered on the command line or in the
file hierarchy, du shall count the size of the symbolic link (rather than the file referenced by the
link), and shall not follow the link to another portion of the file hierarchy. The size of the file
space allocated to a file of type directory shall be defined as the sum total of space allocated to
all files in the file hierarchy rooted in the directory plus the space allocated to the directory itself.

When du cannot stat() files or stat() or read directories, it shall report an error condition and the
final exit status is affected. A file that occurs multiple times shall be counted and written for only
one entry, even if the occurrences are under different file operands. The directory entry that is
selected in the report is unspecified. By default, file sizes shall be written in 512-byte units,
rounded up to the next 512-byte unit.

OPTIONS
The du utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a In addition to the default output, report the size of each file not of type directory in
the file hierarchy rooted in the specified file. The −a option shall not affect whether
non-directories given as file operands are listed.

−H If a symbolic link is specified on the command line, du shall count the size of the
file or file hierarchy referenced by the link.

−k Write the files sizes in units of 1 024 bytes, rather than the default 512-byte units.

−L If a symbolic link is specified on the command line or encountered during the
traversal of a file hierarchy, du shall count the size of the file or file hierarchy
referenced by the link.

−s Instead of the default output, report only the total sum for each of the specified
files.

−x When evaluating file sizes, evaluate only those files that have the same device as
the file specified by the file operand.

Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
an error. The last option specified shall determine the behavior of the utility.

OPERANDS
The following operand shall be supported:

file The pathname of a file whose size is to be written. If no file is specified, the current
directory shall be used.

STDIN
Not used.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2807

93000

93001

93002

93003

93004

93005

93006

93007

93008

93009

93010

93011

93012

93013

93014

93015

93016

93017

93018

93019

93020

93021

93022

93023

93024

93025

93026

93027

93028

93029

93030

93031

93032

93033

93034

93035

93036

93037

93038

93039

93040

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

du Utilities

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of du:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The output from du shall consist of the amount of space allocated to a file and the name of the
file, in the following format:

"%d %s\n", <size>, <pathname>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

2808 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93041

93042

93043

93044

93045

93046

93047

93048

93049

93050

93051

93052

93053

93054

93055

93056

93057

93058

93059

93060

93061

93062

93063

93064

93065

93066

93067

93068

93069

93070

93071

93072

93073

93074

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities du

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The use of 512-byte units is historical practice and maintains compatibility with ls and other
utilities in this volume of POSIX.1-2024. This does not mandate that the file system itself be
based on 512-byte blocks. The −k option was added as a compromise measure. It was agreed by
the standard developers that 512 bytes was the best default unit because of its complete
historical consistency on System V (versus the mixed 512/1 024-byte usage on BSD systems), and
that a −k option to switch to 1 024-byte units was a good compromise. Users who prefer the
1 024-byte quantity can easily alias du to du −k without breaking the many historical scripts
relying on the 512-byte units.

The −b option was added to an early proposal to provide a resolution to the situation where
System V and BSD systems give figures for file sizes in blocks, which is an implementation-
defined concept. (In common usage, the block size is 512 bytes for System V and 1 024 bytes for
BSD systems.) However, −b was later deleted, since the default was eventually decided as
512-byte units.

Historical file systems provided no way to obtain exact figures for the space allocation given to
files. There are two known areas of inaccuracies in historical file systems: cases of indirect blocks
being used by the file system or sparse files yielding incorrectly high values. An indirect block is
space used by the file system in the storage of the file, but that need not be counted in the space
allocated to the file. A sparse file is one in which an lseek() call has been made to a position
beyond the end of the file and data has subsequently been written at that point. A file system
need not allocate all the intervening zero-filled blocks to such a file. It is up to the
implementation to define exactly how accurate its methods are.

The −a and −s options were mutually-exclusive in the original version of du. The POSIX Shell
and Utilities description is implied by the language in the SVID where −s is described as causing
``only the grand total’’ to be reported. Some systems may produce output for −sa, but a Strictly
Conforming POSIX Shell and Utilities Application cannot use that combination.

The −a and −s options were adopted from the SVID except that the System V behavior of not
listing non-directories explicitly given as operands, unless the −a option is specified, was
considered a bug; the BSD-based behavior (report for all operands) is mandated. The default
behavior of du in the SVID with regard to reporting the failure to read files (it produces no
messages) was considered counter-intuitive, and thus it was specified that the POSIX Shell and
Utilities default behavior shall be to produce such messages. These messages can be turned off
with shell redirection to achieve the System V behavior.

The −x option is historical practice on recent BSD systems. It has been adopted by this volume of
POSIX.1-2024 because there was no other historical method of limiting the du search to a single
file hierarchy. This limitation of the search is necessary to make it possible to obtain file space
usage information about a file system on which other file systems are mounted, without having
to resort to a lengthy find and awk script.

The use of the −L option, or of multiple file operands, requires that du track all file entries
encountered, even with a link count of one. However, when −L is not used and only a single file
operand is given, an implementation can optimize by only tracking files with a link count
greater than one, since in that scenario, those are the only files that could be encountered more
than once.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2809

93075

93076

93077

93078

93079

93080

93081

93082

93083

93084

93085

93086

93087

93088

93089

93090

93091

93092

93093

93094

93095

93096

93097

93098

93099

93100

93101

93102

93103

93104

93105

93106

93107

93108

93109

93110

93111

93112

93113

93114

93115

93116

93117

93118

93119

93120

93121

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

du Utilities

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
ls

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH fstatat()

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent −r option is removed.

The Open Group Corrigendum U025/3 is applied. The du utility is reinstated, as it had
incorrectly been marked LEGACY in Issue 5.

The −H and −L options for symbolic links are added as described in the IEEE P1003.2b draft
standard.

Issue 7
The du utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0089 [527] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 539 is applied, requiring a file that occurs multiple times to be counted and
written for only one entry.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2810 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93122

93123

93124

93125

93126

93127

93128

93129

93130

93131

93132

93133

93134

93135

93136

93137

93138

93139

93140

93141

93142

93143

93144

93145

93146

93147

93148

93149

93150

93151

93152

93153

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities echo

NAME
echo — write arguments to standard output

SYNOPSIS
echo [string...]

DESCRIPTION
The echo utility writes its arguments to standard output, followed by a <newline>. If there are
no arguments, only the <newline> is written.

OPTIONS
The echo utility shall not recognize the "--" argument in the manner specified by Guideline 10
of XBD Section 12.2 (on page 215); "--" shall be recognized as a string operand.

Implementations shall not support any options.

OPERANDS
The following operands shall be supported:

string A string to be written to standard output. If the first operand consists of a '-'
followed by one or more characters from the set {'e', 'E', 'n'}, or if any of the
operands contain a <backslash> character, the results are implementation-defined.

XSI On XSI-conformant systems, if the first operand consists of a '-' followed by one
or more characters from the set {'e', 'E', 'n'}, it shall be treated as a string to be
written. The following character sequences shall be recognized on XSI-conformant
systems within any of the arguments:

\a Write an <alert>.

\b Write a <backspace>.

\c Suppress the <newline> that otherwise follows the final argument in the
output. All characters following the '\c' in the arguments shall be
ignored.

\f Write a <form-feed>.

\n Write a <newline>.

\r Write a <carriage-return>.

\t Write a <tab>.

\v Write a <vertical-tab>.

\\ Write a <backslash> character.

\0num Write an 8-bit value that is the zero, one, two, or three-digit octal number
num.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of echo:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2811

93154

93155

93156

93157

93158

93159

93160

93161

93162

93163

93164

93165

93166

93167

93168

93169

93170

93171

93172

93173

93174

93175

93176

93177

93178

93179

93180

93181

93182

93183

93184

93185

93186

93187

93188

93189

93190

93191

93192

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

echo Utilities

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

XSI LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The echo utility arguments shall be separated by single <space> characters and a <newline>

XSI character shall follow the last argument. Output transformations shall occur based on the
escape sequences in the input. See the OPERANDS section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
It is not possible to use echo portably across all POSIX systems unless escape sequences are
omitted, and the first argument does not consist of a '-' followed by one or more characters
from the set {'e', 'E', 'n'}.

The printf utility can be used portably to emulate any of the traditional behaviors of the echo
utility as follows (assuming that IFS has its standard value or is unset):

• The historic System V echo and the requirements on XSI implementations in this volume of
POSIX.1-2024 are equivalent to:

printf "%b\n" "$*"

• The BSD echo is equivalent to:

if ["X$1" = "X-n"]
then

2812 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93193

93194

93195

93196

93197

93198

93199

93200

93201

93202

93203

93204

93205

93206

93207

93208

93209

93210

93211

93212

93213

93214

93215

93216

93217

93218

93219

93220

93221

93222

93223

93224

93225

93226

93227

93228

93229

93230

93231

93232

93233

93234

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities echo

shift
printf "%s" "$*"

else
printf "%s\n" "$*"

fi

New applications are encouraged to use printf instead of echo.

EXAMPLES
None.

RATIONALE
The echo utility has not been made obsolescent because of its extremely widespread use in
historical applications. Conforming applications that wish to do prompting without <newline>
characters or that could possibly be expecting to echo a string consisting of a '-' followed by
one or more characters from the set {'e', 'E', 'n'} should use the printf utility.

At the time that the IEEE Std 1003.2-1992 standard was being developed, the two different
historical versions of echo that were considered for standardization varied in incompatible ways.

The BSD echo checked the first argument for the string −n which caused it to suppress the
<newline> that would otherwise follow the final argument in the output.

The System V echo treated all arguments as strings to be written, but allowed escape sequences
within them, as described for XSI implementations in the OPERANDS section, including \c to
suppress a trailing <newline>.

Thus the IEEE Std 1003.2-1992 standard said that the behavior was implementation-defined if
the first operand is −n or if any of the operands contain a <backslash> character. It also specified
that the echo utility does not support Utility Syntax Guideline 10 because historical applications
depended on echo to echo all of its arguments, except for the −n first argument in the BSD
version.

The Single UNIX Specification, Version 1 required the System V behavior, and this became the
XSI requirement when Version 2 and POSIX.2 were merged with POSIX.1 to form the joint
IEEE Std 1003.1-2001 / Single UNIX Specification, Version 3 standard.

This standard now treats a first operand of −e or −E the same as −n in recognition that support
for them has become more widespread in non-XSI implementations. Where supported, −e
enables processing of escape sequences in the remaining operands (in situations where it is
disabled by default), and −E disables it (in situations where it is enabled by default). A first
operand containing a combination of these three letters, in the same manner as option grouping,
also results in implementation-defined behavior.

FUTURE DIRECTIONS
None.

SEE ALSO
printf

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2813

93235

93236

93237

93238

93239

93240

93241

93242

93243

93244

93245

93246

93247

93248

93249

93250

93251

93252

93253

93254

93255

93256

93257

93258

93259

93260

93261

93262

93263

93264

93265

93266

93267

93268

93269

93270

93271

93272

93273

93274

93275

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

echo Utilities

Issue 5
In the OPTIONS section, the last sentence is changed to indicate that implementations ``do not’’
support any options; in the previous issue this said ``need not’’.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• A set of character sequences is defined as string operands.

• LC_CTYPE is added to the list of environment variables affecting echo.

• In the OPTIONS section, implementations shall not support any options.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/21 is applied, so that the echo utility can
accommodate historical BSD behavior.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1222 is applied, making the results implementation-defined, on systems
that are not XSI-conformant, if the first operand consists of a '-' followed by one or more
characters from the set {'e', 'E', 'n'}.

2814 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93276

93277

93278

93279

93280

93281

93282

93283

93284

93285

93286

93287

93288

93289

93290

93291

93292

93293

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

NAME
ed — edit text

SYNOPSIS
ed [-p string] [-s] [file]

DESCRIPTION
The ed utility is a line-oriented text editor that uses two modes: command mode and input mode. In
command mode the input characters shall be interpreted as commands, and in input mode they
shall be interpreted as text. See the EXTENDED DESCRIPTION section.

If an operand is '−', the results are unspecified.

OPTIONS
The ed utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified usage
of '−'.

The following options shall be supported:

−p string Use string as the prompt string when in command mode. By default, there shall be
no prompt string.

−s Suppress the writing of byte counts by e, E, r, and w commands and of the '!'
prompt after a !command.

OPERANDS
The following operand shall be supported:

file If the file argument is given, ed shall perform the effect of an e command on the
pathname file before accepting commands from the standard input, except that file
can contain a <newline>, even though this is not possible for the argument to the e
command.

STDIN
The standard input shall be a text file consisting of commands, as described in the EXTENDED
DESCRIPTION section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ed:

HOME Determine the pathname of the user’s home directory.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within regular
expressions.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2815

93294

93295

93296

93297

93298

93299

93300

93301

93302

93303

93304

93305

93306

93307

93308

93309

93310

93311

93312

93313

93314

93315

93316

93317

93318

93319

93320

93321

93322

93323

93324

93325

93326

93327

93328

93329

93330

93331

93332

93333

93334

93335

93336

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
The ed utility shall take the standard action for all signals (see the ASYNCHRONOUS EVENTS
section in Section 1.4, on page 2462) with the following exceptions:

SIGINT The ed utility shall interrupt its current activity, write the string "?\n" to standard
output, and return to command mode (see the EXTENDED DESCRIPTION
section).

SIGHUP If the buffer is not empty and the buffer change flag is currently set to either
changed or changed-and-warned (see the EXTENDED DESCRIPTION section),
the ed utility shall attempt to write a copy of the buffer in a file. First, the file
named ed.hup in the current directory shall be used; if that fails, the file named
ed.hup in the directory named by the HOME environment variable shall be used.
In any case, the ed utility shall exit without writing the file to the currently
remembered pathname and without returning to command mode.

SIGQUIT The ed utility shall ignore this event.

STDOUT
Various editing commands and the prompting feature (see −p) write to standard output, as
described in the EXTENDED DESCRIPTION section.

STDERR
The standard error shall be used for diagnostic messages and may be used for warning
messages.

OUTPUT FILES
The output files shall be text files whose formats are dependent on the editing commands given.

EXTENDED DESCRIPTION
The ed utility shall operate on a copy of the file it is editing; changes made to the copy shall have
no effect on the file until a w (write) command is given. The copy of the text is called the buffer.
The ed utility shall keep track of whether the buffer has been modified. This shall be maintained
as if via a tri-state internal flag with the state values unchanged, changed, and changed-and-
warned, which is:

• Initially set to unchanged

• Set to changed by any command that modifies the buffer

• Set to unchanged by an e or E command that reloads (or empties) the buffer, or a w
command that writes the entire buffer

• Set to either changed-and-warned or unchanged by an e or q command that warns an
attempt was made to destroy the editor buffer

A command that makes changes to the buffer in such a way that its contents are the same after
the command (for example s/a/a/) shall be considered to have modified the buffer, unless
explicitly stated otherwise. In the remainder of the description, this flag is referred to as the
buffer change flag.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a

2816 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93337

93338

93339

93340

93341

93342

93343

93344

93345

93346

93347

93348

93349

93350

93351

93352

93353

93354

93355

93356

93357

93358

93359

93360

93361

93362

93363

93364

93365

93366

93367

93368

93369

93370

93371

93372

93373

93374

93375

93376

93377

93378

93379

93380

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

single-character command, possibly followed by parameters to that command. These addresses
specify one or more lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses very often can be omitted. If the −p option is specified, the
prompt string shall be written to standard output before each command is read.

In general, only one command can appear on a line. Certain commands allow text to be input.
This text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be
in input mode. In this mode, no commands shall be recognized; all input is merely collected.
Input mode is terminated by entering a line consisting of two characters: a <period> ('.')
followed by a <newline>. This line is not considered part of the input text.

Regular Expressions in ed

The ed utility shall support basic regular expressions, as described in XBD Section 9.3 (on page
181). Since regular expressions in ed are always matched against single lines (excluding the
terminating <newline> characters), never against any larger section of text, there is no way for a
regular expression to match a <newline>.

A null RE shall be equivalent to the last RE encountered.

Regular expressions are used in addresses to specify lines, and in some commands (for example,
the s substitute command) to specify portions of a line to be substituted.

The start and end of a regular expression (RE) are marked by a delimiter character (although in
some circumstances the end delimiter can be omitted). In addresses, the delimiter is either
<slash> or <question-mark>. In commands, other characters can be used as the delimiter, as
specified in the description of the command. Within the RE (as an ed extension to the BRE
syntax), the delimiter shall not terminate the RE if it is the second character of an escape
sequence (see XBD Section 9.1, on page 179) and the escaped delimiter shall be treated as that
literal character in the RE (losing any special meaning it would have had if it was not used as the
delimiter and was not escaped). In addition, the delimiter character shall not terminate the RE
when it appears within a bracket expression, and shall have its normal meaning in the bracket
expression. For example, the command "g%[%]%p" is equivalent to "g/[%]/p", and the
command "s-[0-9]--g" is equivalent to "s/[0-9]//g".

Addresses in ed

Addressing in ed relates to the current line. Generally, the current line is the last line affected by a
command. The current line number is the address of the current line. If the edit buffer is not
empty, the initial value for the current line shall be the last line in the edit buffer; otherwise, zero.

Addresses shall be constructed as follows:

1. The <period> character ('.') shall address the current line.

2. The <dollar-sign> character ('$') shall address the last line of the edit buffer.

3. The positive decimal number n shall address the nth line of the edit buffer.

4. The <apostrophe>-x character pair ("'x") shall address the line marked with the mark
name character x, which shall be a lowercase letter from the portable character set. It shall
be an error if the character has not been set to mark a line or if the line that was marked is
not currently present in the edit buffer.

5. A BRE enclosed by <slash> characters ('/') shall address the first line found by
searching forwards from the line following the current line toward the end of the edit
buffer and stopping at the first line for which the line excluding the terminating
<newline> matches the BRE. The BRE consisting of a null BRE delimited by a pair of

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2817

93381

93382

93383

93384

93385

93386

93387

93388

93389

93390

93391

93392

93393

93394

93395

93396

93397

93398

93399

93400

93401

93402

93403

93404

93405

93406

93407

93408

93409

93410

93411

93412

93413

93414

93415

93416

93417

93418

93419

93420

93421

93422

93423

93424

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

<slash> characters shall address the next line for which the line excluding the terminating
<newline> matches the last BRE encountered. In addition, the second <slash> can be
omitted at the end of a command line. Within the BRE, a <backslash>-<slash> pair ("\/")
shall represent a literal <slash> instead of the BRE delimiter. If necessary, the search shall
wrap around to the beginning of the buffer and continue up to and including the current
line, so that the entire buffer is searched.

6. A BRE enclosed by <question-mark> characters ('?') shall address the first line found by
searching backwards from the line preceding the current line toward the beginning of the
edit buffer and stopping at the first line for which the line excluding the terminating
<newline> matches the BRE. The BRE consisting of a null BRE delimited by a pair of
<question-mark> characters ("??") shall address the previous line for which the line
excluding the terminating <newline> matches the last BRE encountered. In addition, the
second <question-mark> can be omitted at the end of a command line. Within the BRE, a
<backslash>-<question-mark> pair ("\?") shall represent a literal <question-mark>
instead of the BRE delimiter. If necessary, the search shall wrap around to the end of the
buffer and continue up to and including the current line, so that the entire buffer is
searched.

7. A <plus-sign> ('+') or <hyphen-minus> character ('−') followed by a decimal number
shall address the current line plus or minus the number. A <plus-sign> or <hyphen-
minus> character not followed by a decimal number shall address the current line plus or
minus 1.

Addresses can be followed by zero or more address offsets, optionally <blank>-separated.
Address offsets are constructed as follows:

• A <plus-sign> or <hyphen-minus> character followed by a decimal number shall add or
subtract, respectively, the indicated number of lines to or from the address. A <plus-sign>
or <hyphen-minus> character not followed by a decimal number shall add or subtract 1 to
or from the address.

• A decimal number shall add the indicated number of lines to the address.

It shall not be an error for an intermediate address value to be less than zero or greater than the
last line in the edit buffer. It shall be an error for the final address value to be less than zero or
greater than the last line in the edit buffer. It shall be an error if a search for a BRE fails to find a
matching line.

Commands accept zero, one, or two addresses. If one or more addresses are provided to a
command that requires zero addresses, it shall be an error. Otherwise, if more than the
maximum number of accepted addresses are provided to a command, the addresses shall be
evaluated from first to last and then discarded, until the maximum number of accepted
addresses for that command remain.

Addresses shall be separated from each other by a <comma> (',') or <semicolon> character
(';'). In the case of a <semicolon> separator, the current line ('.') shall be set to the first
address, and only then shall the second address be calculated. This feature can be used to
determine the starting line for forwards and backwards searches; see rules 5. and 6.

Addresses can be omitted on either side of the <comma> or <semicolon> separator, in which
case the resulting address pairs shall be as follows:

2818 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93425

93426

93427

93428

93429

93430

93431

93432

93433

93434

93435

93436

93437

93438

93439

93440

93441

93442

93443

93444

93445

93446

93447

93448

93449

93450

93451

93452

93453

93454

93455

93456

93457

93458

93459

93460

93461

93462

93463

93464

93465

93466

93467

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

Specified Resulting
, 1 , $
, addr 1 , addr
addr , addr , addr
; . ; $
; addr . ; addr
addr ; addr ; addr

If an address is omitted between two separators, the rule shall be applied to the first separator
and the resulting second address shall be used as the first address for the second separator. For
example, with the address list ",," the first ',' becomes "1,$" and the '$' is treated as the
first address for the second ',', resulting in "1,$,$".

Any <blank> characters included between addresses, address separators, or address offsets shall
be ignored.

Commands in ed

In the following list of ed commands, the default addresses are shown in parentheses. The
number of addresses shown in the default shall be the number expected by the command. The
parentheses are not part of the address; they show that the given addresses are the default.

It is generally invalid for more than one command to appear on a line. However, any command
(except e, E, f, q, Q, r, w, and !) can be suffixed by the letter l, n, or p; in which case, except for
the l, n, and p commands, the command shall be executed and then the new current line shall be
written as described below under the l, n, and p commands. When an l, n, or p suffix is used
with an l, n, or p command, the command shall write to standard output as described below, but
it is unspecified whether the suffix writes the current line again in the requested format or
whether the suffix has no effect. For example, the pl command (base p command with an l
suffix) shall either write just the current line or write it twice—once as specified for p and once
as specified for l. Also, the g, G, v, and V commands shall take a command as a parameter.

Each address component can be preceded by zero or more <blank> characters. The command
letter can be preceded by zero or more <blank> characters. If a suffix letter (l, n, or p) is given,
the application shall ensure that it immediately follows the command.

The e, E, f, r, and w commands shall take an optional file parameter, separated from the
command letter by one or more <blank> characters.

If the buffer change flag is currently set to changed, ed shall warn the user if an attempt is made
to destroy the editor buffer via the e or q commands. The ed utility shall write the string:

"?\n"

(followed by an explanatory message if help mode has been enabled via the H command) to
standard output and shall continue in command mode with the buffer change flag set to either
changed-and-warned or unchanged and the current line number unchanged. If another e or q
command is then attempted with no intervening command that sets the buffer change flag to
changed, it shall take effect.

If a terminal disconnect (see XBD Chapter 11 (on page 199), Modem Disconnect and Closing a
Device Terminal), is detected:

• If accompanied by a SIGHUP signal, the ed utility shall operate as described in the
ASYNCHRONOUS EVENTS section for a SIGHUP signal.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2819

93468

93469

93470

93471

93472

93473

93474

93475

93476

93477

93478

93479

93480

93481

93482

93483

93484

93485

93486

93487

93488

93489

93490

93491

93492

93493

93494

93495

93496

93497

93498

93499

93500

93501

93502

93503

93504

93505

93506

93507

93508

93509

93510

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

• If not accompanied by a SIGHUP signal, the ed utility shall act as if an end-of-file had been
detected on standard input.

If an end-of-file is detected on standard input:

• If the ed utility is in input mode, ed shall terminate input mode and return to command
mode. It is unspecified if any partially entered lines (that is, input text without a
terminating <newline>) are discarded from the input text.

• If the ed utility is in command mode, it shall act as if a q command had been entered.

In the following commands, if a closing delimiter would be the last character before a <newline>
then that character can be omitted with the behavior shown:

• For the g and v commands the addressed line(s) shall be written as if a closing delimiter
followed by a p were appended to the command.

• For the G and V commands no additional action shall be taken.

• For the s command, only the closing delimiter of the replacement can be omitted, in which
case the result of the substitution shall be written as if the p flag were appended.

• For the null command, the addressed line(s) shall be written as if the closing delimiter
were appended.

For example, the following pairs of commands are equivalent:

s/s1/s2 s/s1/s2/p
g/s1 g/s1/p
?s1 ?s1?

If an invalid command is entered, ed shall write the string:

"?\n"

(followed by an explanatory message if help mode has been enabled via the H command) to
standard output and shall continue in command mode with the current line number unchanged.

Append Command

Synopsis: (.)a
<text>
.

The a command shall read the given text and append it after the addressed line; the current line
number shall become the address of the last inserted line or, if there were none, the addressed
line. Address 0 shall be valid for this command; it shall cause the appended text to be placed at
the beginning of the buffer. If <text> is empty (that is, the terminating '.' immediately follows
the 'a'), the buffer change flag shall not be altered.

Change Command

Synopsis: (.,.)c
<text>
.

The c command shall delete the addressed lines, then accept input text that replaces these lines;
the current line shall be set to the address of the last line input; or, if there were none, at the line
after the last line deleted; if the lines deleted were originally at the end of the buffer, the current
line number shall be set to the address of the new last line; if no lines remain in the buffer, the

2820 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93511

93512

93513

93514

93515

93516

93517

93518

93519

93520

93521

93522

93523

93524

93525

93526

93527

93528

93529

93530

93531

93532

93533

93534

93535

93536

93537

93538

93539

93540

93541

93542

93543

93544

93545

93546

93547

93548

93549

93550

93551

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

current line number shall be set to zero.

Delete Command

Synopsis: (.,.)d

The d command shall delete the addressed lines from the buffer. The address of the line after the
last line deleted shall become the current line number; if the lines deleted were originally at the
end of the buffer, the current line number shall be set to the address of the new last line; if no
lines remain in the buffer, the current line number shall be set to zero.

Edit Command

Synopsis: e [file]

The e command shall delete the entire contents of the buffer and then read in the file named by
the pathname file. The current line number shall be set to the address of the last line of the
buffer. If no pathname is given, the currently remembered pathname, if any, shall be used (see
the f command). If the pathname names a file that does not exist and the buffer change flag is
currently set to unchanged, it is unspecified whether this is treated as an error, or whether the
resulting buffer is emptied and a warning is written to standard error instead of writing the byte
count to standard out. The number of bytes read shall be written to standard output, unless the
−s option was specified, in the following format:

"%d\n", <number of bytes read>

The name file shall be remembered for possible use as a default pathname in subsequent e, E, r,
and w commands. If file is replaced by '!', the rest of the line shall be taken to be a shell
command line whose output is to be read. Such a shell command line shall not be remembered
as the current file. All marks shall be discarded upon the completion of a successful e command.
If the buffer change flag is currently set to changed, the user shall be warned, as described
previously.

Edit Without Checking Command

Synopsis: E [file]

The E command shall possess all properties and restrictions of the e command except that the
editor shall not check the current state of the buffer change flag.

Filename Command

Synopsis: f [file]

If file is given, the f command shall change the currently remembered pathname to file, whether
or not file names an existing file; whether the name is changed or not, it shall then write the
(possibly new) currently remembered pathname to the standard output in the following format:

"%s\n", <pathname>

The current line number shall be unchanged.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2821

93552

93553

93554

93555

93556

93557

93558

93559

93560

93561

93562

93563

93564

93565

93566

93567

93568

93569

93570

93571

93572

93573

93574

93575

93576

93577

93578

93579

93580

93581

93582

93583

93584

93585

93586

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

Global Command

Synopsis: (1,$)g/RE/command list

In the g command, the first step shall be to mark every line for which the line excluding the
terminating <newline> matches the given RE. Then, going sequentially from the beginning of
the file to the end of the file, the given command list shall be executed for each marked line, with
the current line number set to the address of that line. Any line modified by the command list
shall be unmarked. When the g command completes, the current line number shall have the
value assigned by the last command in the command list. If there were no matching lines, the
current line number shall not be changed. A single command or the first of a list of commands
shall appear on the same line as the global command. All lines of a multi-line list except the last
line shall be ended with a <backslash> preceding the terminating <newline>; the a, i, and c
commands and associated input are permitted. The '.' terminating input mode can be omitted
if it would be the last line of the command list. An empty command list shall be equivalent to the p
command. The use of the g, G, v, V, and ! commands in the command list produces undefined
results. Any character other than <backslash>, <space>, or <newline> can be used instead of a
<slash> to delimit the RE. Within the RE, in certain circumstances the RE delimiter can be used
as a literal character; see Regular Expressions in ed (on page 2817).

Interactive Global Command

Synopsis: (1,$)G/RE/

In the G command, the first step shall be to mark every line for which the line excluding the
terminating <newline> matches the given RE. Then, for every such line, that line shall be
written, the current line number shall be set to the address of that line, and any one command
(other than one of the a, c, i, g, G, v, and V commands) shall be read and executed. A <newline>
shall act as a null command (causing no action to be taken on the current line); an '&' shall
cause the re-execution of the most recent non-null command executed within the current
invocation of G. Note that the commands input as part of the execution of the G command can
address and affect any lines in the buffer. Any line modified by the command shall be
unmarked. The final value of the current line number shall be the value set by the last command
successfully executed. (Note that the last command successfully executed shall be the G
command itself if a command fails or the null command is specified.) If there were no matching
lines, the current line number shall not be changed. The G command can be terminated by a
SIGINT signal. Any character other than <backslash>, <space>, or <newline> can be used
instead of a <slash> to delimit the RE. Within the RE, in certain circumstances the RE delimiter
can be used as a literal character; see Regular Expressions in ed (on page 2817).

Help Command

Synopsis: h

The h command shall write a short message to standard output that explains the reason for the
most recent '?' notification. The current line number shall be unchanged.

2822 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93587

93588

93589

93590

93591

93592

93593

93594

93595

93596

93597

93598

93599

93600

93601

93602

93603

93604

93605

93606

93607

93608

93609

93610

93611

93612

93613

93614

93615

93616

93617

93618

93619

93620

93621

93622

93623

93624

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

Help-Mode Command

Synopsis: H

The H command shall cause ed to enter a mode in which help messages (see the h command)
shall be written to standard output for all subsequent '?' notifications. The H command
alternately shall turn this mode on and off; it is initially off. If the help-mode is being turned on,
the H command also explains the previous '?' notification, if there was one. The current line
number shall be unchanged.

Insert Command

Synopsis: (.)i
<text>
.

The i command shall insert the given text before the addressed line; the current line is set to the
last inserted line or, if there was none, to the addressed line. This command differs from the a
command only in the placement of the input text. Address 0 shall be valid for this command; it
is unspecified whether it causes the inserted text to be placed at the beginning of the buffer or it
is interpreted as if address 1 were specified. (These two allowed behaviors differ in the case that
the buffer is empty.) If <text> is empty (that is, the terminating '.' immediately follows the
'i'), the buffer change flag shall not be altered.

Join Command

Synopsis: (.,.+1)j

The j command shall join contiguous lines by removing the appropriate <newline> characters. If
exactly one address is given, this command shall do nothing. If lines are joined, the current line
number shall be set to the address of the joined line; otherwise, the current line number shall be
unchanged.

Mark Command

Synopsis: (.)kx

The k command shall mark the addressed line with name x, which the application shall ensure
is a lowercase letter from the portable character set. The address "'x" shall then refer to this
line; the current line number shall be unchanged.

List Command

Synopsis: (.,.)l

The l command shall write to standard output the addressed lines in a visually unambiguous
form. The characters listed in XBD Table 5-1 (on page 113) ('\\', '\a', '\b', '\f', '\r',
'\t', '\v') shall be written as the corresponding escape sequence; the '\n' in that table is not
applicable. Non-printable characters not in the table shall be written as one three-digit octal
number (with a preceding <backslash> character) for each byte in the character (most significant
byte first).

Long lines shall be folded, with the point of folding indicated by <newline> preceded by a
<backslash>; the length at which folding occurs is unspecified, but should be appropriate for the
output device. The end of each line shall be marked with a '$', and '$' characters within the
text shall be written with a preceding <backslash>. An l command can be appended to any
other command other than e, E, f, q, Q, r, w, or !. The current line number shall be set to the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2823

93625

93626

93627

93628

93629

93630

93631

93632

93633

93634

93635

93636

93637

93638

93639

93640

93641

93642

93643

93644

93645

93646

93647

93648

93649

93650

93651

93652

93653

93654

93655

93656

93657

93658

93659

93660

93661

93662

93663

93664

93665

93666

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

address of the last line written.

Move Command

Synopsis: (.,.)maddress

The m command shall reposition the addressed lines after the line addressed by address.
Address 0 shall be valid for address and cause the addressed lines to be moved to the beginning
of the buffer. It shall be an error if address address falls within the range of moved lines. The
current line number shall be set to the address of the last line moved.

Number Command

Synopsis: (.,.)n

The n command shall write to standard output the addressed lines, preceding each line by its
line number and a <tab>; the current line number shall be set to the address of the last line
written. The n command can be appended to any command other than e, E, f, q, Q, r, w, or !.

Print Command

Synopsis: (.,.)p

The p command shall write to standard output the addressed lines; the current line number shall
be set to the address of the last line written. The p command can be appended to any command
other than e, E, f, q, Q, r, w, or !.

Prompt Command

Synopsis: P

The P command shall cause ed to prompt with an <asterisk> ('*') (or string, if −p is specified)
for all subsequent commands. The P command alternatively shall turn this mode on and off; it
shall be initially on if the −p option is specified; otherwise, off. The current line number shall be
unchanged.

Quit Command

Synopsis: q

The q command shall cause ed to exit. If the buffer change flag is currently set to changed, the
user shall be warned, as described previously.

Quit Without Checking Command

Synopsis: Q

The Q command shall cause ed to exit without checking the current state of the buffer change
flag.

2824 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93667

93668

93669

93670

93671

93672

93673

93674

93675

93676

93677

93678

93679

93680

93681

93682

93683

93684

93685

93686

93687

93688

93689

93690

93691

93692

93693

93694

93695

93696

93697

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

Read Command

Synopsis: ($)r [file]

The r command shall read in the file named by the pathname file and append it after the
addressed line. If no file argument is given, the currently remembered pathname, if any, shall be
used (see the e and f commands). The currently remembered pathname shall not be changed
unless there is no remembered pathname. Address 0 shall be valid for r and shall cause the file
to be read at the beginning of the buffer. If the read is successful, and −s was not specified, the
number of bytes read shall be written to standard output in the following format:

"%d\n", <number of bytes read>

The current line number shall be set to the address of the last line read in. If file is replaced by
'!', the rest of the line shall be taken to be a shell command line whose output is to be read.
Such a shell command line shall not be remembered as the current pathname.

If the number of bytes read is 0 it is unspecified whether the buffer change flag is set to changed
or left unaltered.

Substitute Command

Synopsis: (.,.)s/RE/replacement/flags

The s command shall search each addressed line for an occurrence of the specified RE and
replace either the first or all (non-overlapped) matched strings with the replacement; see the
following description of the g suffix. Any character other than <backslash>, <space>, or
<newline> can be used instead of a <slash> to delimit the RE and the replacement. Within the
RE, in certain circumstances the RE delimiter can be used as a literal character; see Regular
Expressions in ed (on page 2817). Within the replacement, the delimiter shall not terminate the
replacement if it is the second character of an escape sequence (see XBD Section 9.1, on page 179)
and the escaped delimiter shall be treated as that literal character in the replacement (losing any
special meaning it would have had if it was not used as the delimiter and was not escaped). It
shall be an error if the substitution fails on every addressed line. The current line shall be set to
the address of the last line on which a substitution occurred.

An unescaped <ampersand> ('&') appearing in the replacement shall be replaced by the string
matching the RE on the current line. As a more general feature, the characters '\n', where the
<backslash> is unescaped and n is a digit, shall be replaced by the text matched by the
corresponding back-reference expression. If the corresponding back-reference expression does
not match, then the characters '\n' shall be replaced by the empty string. When the character
'%' is the only character in replacement, the replacement used in the most recent substitute
command shall be used as replacement in the current substitute command; if there was no
previous substitute command, the use of '%' in this manner shall be an error. The '%' shall lose
its special meaning when it is in a replacement string of more than one character or is escaped. It
is unspecified what special meaning is given to any character other than <backslash>, '&', '%',
or digits.

A line can be split by substituting a <newline> into it. The application shall ensure it escapes the
<newline> in the replacement by preceding it by <backslash>. Such substitution cannot be done
as part of a g or v command list. The current line number shall be set to the address of the last
line on which a substitution is performed. If no substitution is performed, the current line
number shall be unchanged. If a line is split, a substitution shall be considered to have been
performed on each of the new lines for the purpose of determining the new current line number.
A substitution shall be considered to have been performed even if the replacement string is
identical to the string that it replaces.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2825

93698

93699

93700

93701

93702

93703

93704

93705

93706

93707

93708

93709

93710

93711

93712

93713

93714

93715

93716

93717

93718

93719

93720

93721

93722

93723

93724

93725

93726

93727

93728

93729

93730

93731

93732

93733

93734

93735

93736

93737

93738

93739

93740

93741

93742

93743

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

The application shall ensure that the value of flags is zero or more of:

count Substitute for the countth occurrence only of the RE found on each addressed line.

g Globally substitute for all non-overlapping instances of the RE rather than just the first
one. If both g and count are specified, the results are unspecified.

l Write to standard output the final line in which a substitution was made. The line shall
be written in the format specified for the l command.

n Write to standard output the final line in which a substitution was made. The line shall
be written in the format specified for the n command.

p Write to standard output the final line in which a substitution was made. The line shall
be written in the format specified for the p command.

Copy Command

Synopsis: (.,.)taddress

The t command shall be equivalent to the m command, except that a copy of the addressed lines
shall be placed after address address (which can be 0); the current line number shall be set to the
address of the last line added.

Undo Command

Synopsis: u

The u command shall nullify the effect of the most recent command that modified anything in
the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, u, v, G, or V command. All changes
made to the buffer by a g, G, v, or V global command shall be undone as a single change; if no
changes were made by the global command (such as with g/RE/p), the u command shall have
no effect. The current line number shall be set to the value it had immediately before the
command being undone started.

Global Non-Matched Command

Synopsis: (1,$)v/RE/command list

This command shall be equivalent to the global command g except that the lines that are marked
during the first step shall be those for which the line excluding the terminating <newline> does
not match the RE.

Interactive Global Not-Matched Command

Synopsis: (1,$)V/RE/

This command shall be equivalent to the interactive global command G except that the lines that
are marked during the first step shall be those for which the line excluding the terminating
<newline> does not match the RE.

2826 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93744

93745

93746

93747

93748

93749

93750

93751

93752

93753

93754

93755

93756

93757

93758

93759

93760

93761

93762

93763

93764

93765

93766

93767

93768

93769

93770

93771

93772

93773

93774

93775

93776

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

Write Command

Synopsis: (1,$)w [file]

The w command shall write the addressed lines into the file named by the pathname file. The
command shall create the file, if it does not exist, or shall replace the contents of the existing file.
The currently remembered pathname shall not be changed unless there is no remembered
pathname. If no pathname is given, the currently remembered pathname, if any, shall be used
(see the e and f commands); the current line number shall be unchanged. If the command is
successful, the number of bytes written shall be written to standard output, unless the −s option
was specified, in the following format:

"%d\n", <number of bytes written>

If file begins with '!', the rest of the line shall be taken to be a shell command line whose
standard input shall be the addressed lines. Such a shell command line shall not be remembered
as the current pathname. This usage of the w command with '!' shall not alter the buffer
change flag; thus, this alone shall not prevent the warning to the user if an attempt is made to
destroy the editor buffer via the e or q commands.

Line Number Command

Synopsis: ($)=

The line number of the addressed line shall be written to standard output in the following
format:

"%d\n", <line number>

The current line number shall be unchanged by this command.

Shell Escape Command

Synopsis: !command

The remainder of the line after the '!' shall be sent to the command interpreter to be
interpreted as a shell command line. Within the text of that shell command line, the unescaped
character '%' shall be replaced with the remembered pathname; if a '!' appears as the first
character of the command, it shall be replaced with the text of the previous shell command
executed via '!'. Thus, "!!" shall repeat the previous !command. If any replacements of '%' or
'!' are performed, the modified line shall be written to the standard output before command is
executed. The ! command shall write:

"!\n"

to standard output upon completion, unless the −s option is specified. The current line number
shall be unchanged.

Null Command

Synopsis: (.+1)

An address alone on a line shall cause the addressed line to be written. A <newline> alone shall
be equivalent to "+1p". The current line number shall be set to the address of the written line.

EXIT STATUS
The following exit values shall be returned:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2827

93777

93778

93779

93780

93781

93782

93783

93784

93785

93786

93787

93788

93789

93790

93791

93792

93793

93794

93795

93796

93797

93798

93799

93800

93801

93802

93803

93804

93805

93806

93807

93808

93809

93810

93811

93812

93813

93814

93815

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

0 Successful completion without any file or command errors.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When an error in the input script is encountered, or when an error is detected that is a
consequence of the data (not) present in the file or due to an external condition such as a read or
write error:

• If the standard input is a terminal device file, all input shall be flushed, and a new
command read.

• If the standard input is not a terminal device file, ed shall behave as described under
CONSEQUENCES OF ERRORS in Section 1.4 (on page 2462).

APPLICATION USAGE
Because of the extremely terse nature of the default error messages, the prudent script writer
begins the ed input commands with an H command, so that if any errors do occur at least some
clue as to the cause is made available.

In earlier versions of this standard, an obsolescent − option was described. This is no longer
specified. Applications should use the −s option. Using − as a file operand now produces
unspecified results. This allows implementations to continue to support the former required
behavior.

EXAMPLES
None.

RATIONALE
The initial description of this utility was adapted from the SVID. It contains some features not
found in Version 7 or BSD-derived systems. Some of the differences between the POSIX and
BSD ed utilities include, but need not be limited to:

• The BSD − option does not suppress the '!' prompt after a ! command.

• BSD does not support the special meanings of the '%' and '!' characters within a !
command.

• BSD does not support the addresses ';' and ','.

• BSD allows the command/suffix pairs pp, ll, and so on, which are unspecified in this
volume of POSIX.1-2024.

• BSD does not support the '!' character part of the e, r, or w commands.

• A failed g command in BSD sets the line number to the last line searched if there are no
matches.

• BSD does not default the command list to the p command.

• BSD does not support the G, h, H, n, or V commands.

• On BSD, if there is no inserted text, the insert command changes the current line to the
referenced line −1; that is, the line before the specified line.

• On BSD, the j command with only a single address changes the current line to that
address.

• BSD does not support the P command; moreover, in BSD it is synonymous with the p
command.

2828 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93816

93817

93818

93819

93820

93821

93822

93823

93824

93825

93826

93827

93828

93829

93830

93831

93832

93833

93834

93835

93836

93837

93838

93839

93840

93841

93842

93843

93844

93845

93846

93847

93848

93849

93850

93851

93852

93853

93854

93855

93856

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

• BSD does not support the undo of the commands j, m, r, s, or t.

• The Version 7 ed command W, and the BSD ed commands W, wq, and z are not present in
this volume of POSIX.1-2024.

The −s option was added to allow the functionality of the removed − option in a manner
compatible with the Utility Syntax Guidelines.

In early proposals there was a limit, {ED_FILE_MAX}, that described the historical limitations of
some ed utilities in their handling of large files; some of these have had problems with files
larger than 100 000 bytes. It was this limitation that prompted much of the desire to include a
split command in this volume of POSIX.1-2024. Since this limit was removed, this volume of
POSIX.1-2024 requires that implementations document the file size limits imposed by ed in the
conformance document. The limit {ED_LINE_MAX} was also removed; therefore, the global
limit {LINE_MAX} is used for input and output lines.

The manner in which the l command writes non-printable characters was changed to avoid the
historical backspace-overstrike method. On video display terminals, the overstrike is ambiguous
because most terminals simply replace overstruck characters, making the l format not useful for
its intended purpose of unambiguously understanding the content of the line. The historical
<backslash>-escapes were also ambiguous. (The string "a\0011" could represent a line
containing those six characters or a line containing the three characters 'a', a byte with a binary
value of 1, and a 1.) In the format required here, a <backslash> appearing in the line is written as
"\\" so that the output is truly unambiguous. The method of marking the ends of lines was
adopted from the ex editor and is required for any line ending in <space> characters; the '$' is
placed on all lines so that a real '$' at the end of a line cannot be misinterpreted.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

The description of how a NUL is written was removed. The NUL character cannot be in text
files, and this volume of POSIX.1-2024 should not dictate behavior in the case of undefined,
erroneous input.

Unlike some of the other editing utilities, the filenames accepted by the E, e, R, and r commands
are not patterns.

Early proposals stated that the −p option worked only when standard input was associated with
a terminal device. This has been changed to conform to historical implementations, thereby
allowing applications to interpose themselves between a user and the ed utility.

The form of the substitute command that uses the n suffix was limited in some historical
documentation (where this was described incorrectly as ``backreferencing’’). This limit has been
omitted because there is no reason why an editor processing lines of {LINE_MAX} length should
have this restriction. The command s/x/X/2047 should be able to substitute the 2 047th occurrence
of 'x' on a line.

The use of printing commands with printing suffixes (such as pn, lp, and so on) was made
unspecified because BSD-based systems allow this, whereas System V does not.

Some BSD-based systems exit immediately upon receipt of end-of-file if all of the lines in the file
have been deleted. Since this volume of POSIX.1-2024 refers to the q command in this instance,
such behavior is not allowed.

Some historical implementations returned exit status zero even if command errors had occurred;
this is not allowed by this volume of POSIX.1-2024.

Some historical implementations contained a bug that allowed a single <period> to be entered in

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2829

93857

93858

93859

93860

93861

93862

93863

93864

93865

93866

93867

93868

93869

93870

93871

93872

93873

93874

93875

93876

93877

93878

93879

93880

93881

93882

93883

93884

93885

93886

93887

93888

93889

93890

93891

93892

93893

93894

93895

93896

93897

93898

93899

93900

93901

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

input mode as <backslash> <period> <newline>. This is not allowed by ed because there is no
description of escaping any of the characters in input mode; <backslash> characters are entered
into the buffer exactly as typed. The typical method of entering a single <period> has been to
precede it with another character and then use the substitute command to delete that character.

It is difficult under some modes of some versions of historical operating system terminal drivers
to distinguish between an end-of-file condition and terminal disconnect. POSIX.1-2024 does not
require implementations to distinguish between the two situations, which permits historical
implementations of the ed utility on historical platforms to conform. Implementations are
encouraged to distinguish between the two, if possible, and take appropriate action on terminal
disconnect.

Historically, ed accepted a zero address for the a and r commands in order to insert text at the
start of the edit buffer. When the buffer was empty the command .= returned zero. POSIX.1-2024
requires conformance to historical practice.

For consistency with the a and r commands and better user functionality, the i command also
accepts an address of 0. However, it is unspecified if 0i is treated as 1i (which will fail if the
buffer is empty), or means insert at the beginning of the buffer (which will succeed even if the
buffer is empty). Earlier versions of this standard required address 0 for the c command to be
treated as 1 also, but this requirement has been removed, though implementations are permitted
to do this as an extension.

All of the following are valid addresses:

+++ Three lines after the current line.

/pattern/− One line before the next occurrence of pattern.

−2 Two lines before the current line.

3 − − − − 2 Line one (note the intermediate negative address).

1 2 3 Line six.

More than the maximum number of accepted addresses can be provided to commands taking
addresses; for example, "1,2,3,4,5p" prints lines 4 and 5, because two is the maximum
number of addresses accepted by the print command. This, in combination with the
<semicolon> delimiter, permits users to create commands based on ordered patterns in the file.
For example, the command "3;/foo/;+2p" will display the first line after line 3 that contains
the pattern foo, plus the next two lines. Note that the address "3;" must still be evaluated before
being discarded, because the search origin for the "/foo/" address depends on this.

Historically, ed disallowed address chains, as discussed above, consisting solely of <comma> or
<semicolon> separators; for example, ",,," or ";;;" were considered an error. For
consistency of address specification, this restriction is removed. The following table lists some of
the address forms now possible:

2830 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93902

93903

93904

93905

93906

93907

93908

93909

93910

93911

93912

93913

93914

93915

93916

93917

93918

93919

93920

93921

93922

93923

93924

93925

93926

93927

93928

93929

93930

93931

93932

93933

93934

93935

93936

93937

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

Address Addr1 Addr2 Status Comment
7, 7 7 Historical
7,5, 5 5 Historical
7,5,9 5 9 Historical
7,9 7 9 Historical
7,+ 7 .+ Historical
, 1 $ Historical
,7 1 7 Extension
,, $ $ Extension
,; $ $ Extension
7; 7 7 Historical
7;5; 5 5 Historical
7;5;9 5 9 Historical
7;5,9 5 9 Historical
7;$;4 $ 4 Historical Valid, but erroneous.
7;9 7 9 Historical
7;+ 7 8 Historical
; . $ Historical
;7 . 7 Extension
;; $ $ Extension
;, $ $ Extension

Historically, ed accepted the '^' character as an address, in which case it was identical to the
<hyphen-minus> character. POSIX.1-2024 does not require or prohibit this behavior.

Implementations are encouraged to set the buffer change flag to changed-and-warned when an
e or q command warns that an attempt was made to destroy the editor buffer. Some existing
implementations set it to unchanged, but this has the undesirable side-effect that a SIGHUP
received after the warning is given does not write the buffer to ed.hup.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

A future version of this standard may require that the buffer change flag is set to changed-and-
warned when an e or q command warns that an attempt was made to destroy the editor buffer.

SEE ALSO
Section 1.4 (on page 2462), ex , sed , sh , vi

XBD Table 5-1 (on page 113), Chapter 8 (on page 167), Section 9.3 (on page 181), Chapter 11 (on
page 199), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
In the OPTIONS section, the meaning of −s and − is clarified.

A second FUTURE DIRECTION is added.

Issue 6
The obsolescent single-minus form is removed.

A second APPLICATION USAGE note is added.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2831

93938

93939

93940

93941

93942

93943

93944

93945

93946

93947

93948

93949

93950

93951

93952

93953

93954

93955

93956

93957

93958

93959

93960

93961

93962

93963

93964

93965

93966

93967

93968

93969

93970

93971

93972

93973

93974

93975

93976

93977

93978

93979

93980

93981

93982

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ed Utilities

The Open Group Corrigendum U025/2 is applied, correcting the description of the Edit section.

The ed utility is updated to align with the IEEE P1003.2b draft standard. This includes addition
of the treatment of the SIGQUIT signal, changes to ed addressing, and changes to processing
when end-of-file is detected and when terminal disconnect is detected.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/22 is applied, adding the text: ``Any line
modified by the command list shall be unmarked.’’ to the G command. This change corresponds
to a similar change made to the g command in the first version of this standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/7 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if an operand is
'−'.

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for BREs.

SD5-XCU-ERN-94 is applied, updating text in the EXTENDED DESCRIPTION where a terminal
disconnect is detected (in Commands in ed).

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-135 is applied, removing some RATIONALE text that is no longer applicable.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0090 [584], XCU/TC2-2008/0091
[584], and XCU/TC2-2008/0092 [584] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1130 is applied, removing the requirement for the c command to accept an
address of 0 and updating the information about address 0 in the RATIONALE section.

Austin Group Defect 1131 is applied, changing the address 0 requirements for the i command.

Austin Group Defect 1204 is applied, clarifying the behavior when a closing delimiter that
would be the last character before a <newline> is omitted.

Austin Group Defect 1281 is applied, moving some text in the description of the s command and
changing it to use ``shall’’.

Austin Group Defect 1298 is applied, changing the CONSEQUENCES OF ERRORS section.

Austin Group Defect 1308 is applied, changing the Addr2 value for address 7,+ in the table of
address forms in the RATIONALE section.

Austin Group Defect 1311 is applied, changing ``join command’’ to ``j command’’ in the
RATIONALE section.

Austin Group Defect 1582 is applied, clarifying the behavior when an address is omitted
between two address separators.

Austin Group Defect 1607 is applied, clarifying the behavior when more than the maximum
number of accepted addresses are provided to a command.

Austin Group Defect 1662 is applied, clarifying requirements relating to delimiters in addresses

2832 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

93983

93984

93985

93986

93987

93988

93989

93990

93991

93992

93993

93994

93995

93996

93997

93998

93999

94000

94001

94002

94003

94004

94005

94006

94007

94008

94009

94010

94011

94012

94013

94014

94015

94016

94017

94018

94019

94020

94021

94022

94023

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ed

and in s commands.

Austin Group Defect 1786 is applied, clarifying the behavior when an e command names a file
that does not exist, and clarifying how the ed utility keeps track of whether the buffer has been
modified.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2833

94024

94025

94026

94027

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

env Utilities

NAME
env — set the environment for command invocation

SYNOPSIS
env [-i] [name=value]... [utility [argument...]]

DESCRIPTION
The env utility shall obtain the current environment, modify it according to its arguments, then
invoke the utility named by the utility operand with the modified environment.

Optional arguments shall be passed to utility.

If no utility operand is specified, the resulting environment shall be written to the standard
output, with one name=value pair per line.

If the first argument is '−', the results are unspecified.

OPTIONS
The env utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified usage
of '−'.

The following options shall be supported:

−i Invoke utility with exactly the environment specified by the arguments; the
inherited environment shall be ignored completely.

OPERANDS
The following operands shall be supported:

name=value Arguments of the form name=value shall modify the execution environment, and
shall be placed into the inherited environment before the utility is invoked.

utility The name of the utility to be invoked. If the utility operand names any of the
special built-in utilities in Section 2.15 (on page 2526), the results are undefined.

argument A string to pass as an argument for the invoked utility.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of env:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

2834 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94028

94029

94030

94031

94032

94033

94034

94035

94036

94037

94038

94039

94040

94041

94042

94043

94044

94045

94046

94047

94048

94049

94050

94051

94052

94053

94054

94055

94056

94057

94058

94059

94060

94061

94062

94063

94064

94065

94066

94067

94068

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities env

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the location of the utility, as described in XBD Chapter 8 (on page 167).
If PA TH is specified as a name=value operand to env, the value given shall be used in
the search for utility.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If no utility operand is specified, each name=value pair in the resulting environment shall be
written in the form:

"%s=%s\n", <name>, <value>

If the utility operand is specified, the env utility shall not write to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If utility is invoked, the exit status of env shall be the exit status of utility; otherwise, the env
utility shall exit with one of the following values:

0 The env utility completed successfully.

1−125 An error occurred in the env utility.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit
code 127 if a utility to be invoked cannot be found, so that applications can distinguish ``failure
to find a utility’’ from ``invoked utility exited with an error indication’’. The value 127 was
chosen because it is not commonly used for other meanings; most utilities use small values for
``normal error conditions’’ and the values above 128 can be confused with termination due to
receipt of a signal. The value 126 was chosen in a similar manner to indicate that the utility could
be found, but not invoked. Some scripts produce meaningful error messages differentiating the
126 and 127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice
that uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any
attempt to exec the utility fails for any other reason.

Historical implementations of the env utility use the execvp() or execlp() functions defined in the
System Interfaces volume of POSIX.1-2024 to invoke the specified utility; this provides better
performance and keeps users from having to escape characters with special meaning to the shell.
Therefore, shell functions, special built-ins, and built-ins that are only provided by the shell are
not found by this type of env implementation. However, env can be implemented as a shell built-
in, in which case it may be able to execute shell functions and built-ins. An application wishing
to ensure execution of a non-built-in utility can use exec in a subshell for this purpose.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2835

94069

94070

94071

94072

94073

94074

94075

94076

94077

94078

94079

94080

94081

94082

94083

94084

94085

94086

94087

94088

94089

94090

94091

94092

94093

94094

94095

94096

94097

94098

94099

94100

94101

94102

94103

94104

94105

94106

94107

94108

94109

94110

94111

94112

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

env Utilities

EXAMPLES
The following command:

env -i PATH=/mybin:"$PATH" $(getconf V7_ENV) mygrep xyz myfile

invokes the command mygrep with a new PA TH value as the only entry in its environment other
than any variables required by the implementation for conformance. In this case, PA TH is used
to locate mygrep, which is expected to reside in /mybin.

RATIONALE
As with all other utilities that invoke other utilities, this volume of POSIX.1-2024 only specifies
what env does with standard input, standard output, standard error, input files, and output files.
If a utility is executed, it is not constrained by the specification of input and output by env.

The −i option was added to allow the functionality of the removed − option in a manner
compatible with the Utility Syntax Guidelines. It is possible to create a non-conforming
environment using the −i option, as it may remove environment variables required by the
implementation for conformance. The following will preserve these environment variables as
well as preserve the PA TH for conforming utilities:

IFS='
'
The preceding value should be <space><tab><newline>.
Set IFS to its default value.

set -f
disable pathname expansion

\unalias -a
Unset all possible aliases.
Note that unalias is escaped to prevent an alias
being used for unalias.
This step is not strictly necessary, since aliases are not inherited,
and the ENV environment variable is only used by interactive shells,
the only way any aliases can exist in a script is if it defines them
itself.

unset -f env getconf
Ensure env and getconf are not user functions.

env -i $(getconf V7_ENV) PATH="$(getconf PATH)" command

Some have suggested that env is redundant since the same effect is achieved by:

name=value ... utility [argument ...]

The example is equivalent to env when an environment variable is being added to the
environment of the command, but not when the environment is being set to the given value.
The env utility also writes out the current environment if invoked without arguments. There is
sufficient functionality beyond what the example provides to justify inclusion of env.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15 (on page 2526), Section 2.5 (on page 2478)

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

2836 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94113

94114

94115

94116

94117

94118

94119

94120

94121

94122

94123

94124

94125

94126

94127

94128

94129

94130

94131

94132

94133

94134

94135

94136

94137

94138

94139

94140

94141

94142

94143

94144

94145

94146

94147

94148

94149

94150

94151

94152

94153

94154

94155

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities env

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if the first
argument is '−'.

Austin Group Interpretation 1003.1-2001 #047 is applied, providing RATIONALE on how to use
the env utility to preserve a conforming environment.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The EXAMPLES section is revised to change the use of env −i.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1157 is applied, adding a note about shell built-in implementations of env
to the APPLICATION USAGE section.

Austin Group Defect 1586 is applied, adding the timeout utility.

Austin Group Defect 1594 is applied, changing the APPLICATION USAGE section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2837

94156

94157

94158

94159

94160

94161

94162

94163

94164

94165

94166

94167

94168

94169

94170

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

NAME
ex — text editor

SYNOPSIS
UP ex [-rR] [-s|-v] [-c command] [-t tagstring] [-w size] [file...]

DESCRIPTION
The ex utility is a line-oriented text editor. There are two other modes of the editor—open and
visual—in which screen-oriented editing is available. This is described more fully by the ex open
and visual commands and in vi .

If an operand is '−', the results are unspecified.

This section uses the term edit buffer to describe the current working text. No specific
implementation is implied by this term. All editing changes are performed on the edit buffer,
and no changes to it shall affect any file until an editor command writes the file.

Certain terminals do not have all the capabilities necessary to support the complete ex definition,
such as the full-screen editing commands (visual mode or open mode). When these commands
cannot be supported on such terminals, this condition shall not produce an error message such
as ``not an editor command’’ or report a syntax error. The implementation may either accept the
commands and produce results on the screen that are the result of an unsuccessful attempt to
meet the requirements of this volume of POSIX.1-2024 or report an error describing the terminal-
related deficiency.

OPTIONS
The ex utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified usage
of '−', and that '+' may be recognized as an option delimiter as well as '−'.

The following options shall be supported:

−c command Specify an initial command to be executed in the first edit buffer loaded from an
existing file (see the EXTENDED DESCRIPTION section). Implementations may
support more than a single −c option. In such implementations, the specified
commands shall be executed in the order specified on the command line.

−r Recover the named files (see the EXTENDED DESCRIPTION section). Recovery
information for a file shall be saved during an editor or system crash (for example,
when the editor is terminated by a signal which the editor can catch), or after the
use of an ex preserve command.

A crash in this context is an unexpected failure of the system or utility that requires
restarting the failed system or utility. A system crash implies that any utilities
running at the time also crash. In the case of an editor or system crash, the number
of changes to the edit buffer (since the most recent preserve command) that will be
recovered is unspecified.

If no file operands are given and the −t option is not specified, all other options, the
EXINIT variable, and any .exrc files shall be ignored; a list of all recoverable files
available to the invoking user shall be written, and the editor shall exit normally
without further action.

−R Set readonly edit option.

−s Prepare ex for batch use by taking the following actions:

2838 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94171

94172

94173

94174

94175

94176

94177

94178

94179

94180

94181

94182

94183

94184

94185

94186

94187

94188

94189

94190

94191

94192

94193

94194

94195

94196

94197

94198

94199

94200

94201

94202

94203

94204

94205

94206

94207

94208

94209

94210

94211

94212

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

• Suppress writing prompts and informational (but not diagnostic) messages.

• Ignore the value of TERM and any implementation default terminal type and
assume the terminal is a type incapable of supporting open or visual modes;
see the visual command and the description of vi .

• Suppress the use of the EXINIT environment variable and the reading of any
.exrc file; see the EXTENDED DESCRIPTION section.

• Suppress autoindentation, ignoring the value of the autoindent edit option.

−t tagstring Edit the file containing the specified tagstring; see ctags . The tags feature
represented by −t tagstring and the tag command is optional. It shall be provided
on any system that also provides a conforming implementation of ctags; otherwise,
the use of −t produces undefined results. On any system, it shall be an error to
specify more than a single −t option.

−v Begin in visual mode (see vi).

−w size Set the value of the window editor option to size.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be edited.

STDIN
The standard input consists of a series of commands and input text, as described in the
EXTENDED DESCRIPTION section. The implementation may limit each line of standard input
to a length of {LINE_MAX}.

If the standard input is not a terminal device, it shall be as if the −s option had been specified.

If a read from the standard input returns an error, or if the editor detects an end-of-file condition
from the standard input, it shall be equivalent to a SIGHUP asynchronous event.

INPUT FILES
Input files shall be text files or files that would be text files except for an incomplete last line that
is not longer than {LINE_MAX}−1 bytes in length and contains no NUL characters. By default,
any incomplete last line shall be treated as if it had a trailing <newline>. The editing of other
forms of files may optionally be allowed by ex implementations.

The .exrc files and source files shall be text files consisting of ex commands; see the EXTENDED
DESCRIPTION section.

By default, the editor shall read lines from the files to be edited without interpreting any of those
lines as any form of editor command.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ex:

COLUMNS Override the system-selected horizontal screen size. See XBD Chapter 8 (on page
167) for valid values and results when it is unset or null.

EXINIT Determine a list of ex commands that are executed on editor start-up. See the
EXTENDED DESCRIPTION section for more details of the initialization phase.

HOME Determine a pathname of a directory that shall be searched for an editor start-up
file named .exrc; see the EXTENDED DESCRIPTION section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2839

94213

94214

94215

94216

94217

94218

94219

94220

94221

94222

94223

94224

94225

94226

94227

94228

94229

94230

94231

94232

94233

94234

94235

94236

94237

94238

94239

94240

94241

94242

94243

94244

94245

94246

94247

94248

94249

94250

94251

94252

94253

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes within regular
expressions, the classification of characters as uppercase or lowercase letters, the
case conversion of letters, and the detection of word boundaries.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale that
should be used to affect the format and contents of diagnostic messages written to
standard error.

LINES Override the system-selected vertical screen size, used as the number of lines in a
screenful and the vertical screen size in visual mode. See XBD Chapter 8 (on page
167) for valid values and results when it is unset or null.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the search path for the shell command specified in the ex editor
commands !, shell, read, and write, and the open and visual mode command !; see
the description of command search and execution in Section 2.9.1.4 (on page 2502).

SHELL Determine the preferred command line interpreter for use as the default value of
the shell edit option.

TERM Determine the name of the terminal type. If this variable is unset or null, an
unspecified default terminal type shall be used.

ASYNCHRONOUS EVENTS
The following term is used in this and following sections to specify command and asynchronous
event actions:

complete write
A complete write is a write of the entire contents of the edit buffer to a file of a type
other than a terminal device, or the saving of the edit buffer caused by the user
executing the ex preserve command. Writing the contents of the edit buffer to a
temporary file that will be removed when the editor exits shall not be considered a
complete write.

The following actions shall be taken upon receipt of signals:

SIGINT If the standard input is not a terminal device, ex shall not write the file or return to
command or text input mode, and shall exit with a non-zero exit status.

Otherwise, if executing an open or visual text input mode command, ex in receipt
of SIGINT shall behave identically to its receipt of the <ESC> character.

Otherwise:

2840 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94254

94255

94256

94257

94258

94259

94260

94261

94262

94263

94264

94265

94266

94267

94268

94269

94270

94271

94272

94273

94274

94275

94276

94277

94278

94279

94280

94281

94282

94283

94284

94285

94286

94287

94288

94289

94290

94291

94292

94293

94294

94295

94296

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

1. If executing an ex text input mode command, all input lines that have been
completely entered shall be resolved into the edit buffer, and any partially
entered line shall be discarded.

2. If there is a currently executing command, it shall be aborted and a message
displayed. Unless otherwise specified by the ex or vi command descriptions,
it is unspecified whether any lines modified by the executing command
appear modified, or as they were before being modified by the executing
command, in the buffer.

If the currently executing command was a motion command, its associated
command shall be discarded.

3. If in open or visual command mode, the terminal shall be alerted.

4. The editor shall then return to command mode.

SIGCONT If ex is in open mode or visual mode, the actions described below for SIGWINCH
shall be taken, except that the screen shall always be refreshed (regardless of
whether the terminal window size changed).

SIGHUP If the edit buffer has been modified since the last complete write, ex shall attempt
to save the edit buffer so that it can be recovered later using the −r option or the ex
recover command. The editor shall not write the file or return to command or text
input mode, and shall terminate with a non-zero exit status.

SIGTERM Refer to SIGHUP.

SIGWINCH If ex is in open mode or visual mode, the current terminal window size associated
with the terminal on standard output shall be obtained, as if by a call to XSH
tcgetwinsize(). If the terminal window size is successfully obtained, it shall be used
as follows:

• If the COLUMNS environment variable is unset or does not contain a
number, the horizontal screen size shall be set to the number of columns in
the obtained terminal window size.

• If ex is in visual mode, the −w option was not specified and the LINES
environment variable is unset or does not contain a number, the vertical
screen size shall be set to the number of rows in the obtained terminal
window size.

If the above resulted in either the vertical screen size or the horizontal screen size
(or both) changing to a different value, ex shall update the values it has for the
number of lines and columns in the display and shall adjust the window edit
option and the column number at which the wrapmargin edit option takes effect
(if non-zero) accordingly (see Edit Options in ex, on page 2877) and refresh the
screen; otherwise, ex may refresh the screen.

The action taken for all other signals is unspecified.

STDOUT
The standard output shall be used only for writing prompts to the user, for informational
messages, and for writing lines from the file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2841

94297

94298

94299

94300

94301

94302

94303

94304

94305

94306

94307

94308

94309

94310

94311

94312

94313

94314

94315

94316

94317

94318

94319

94320

94321

94322

94323

94324

94325

94326

94327

94328

94329

94330

94331

94332

94333

94334

94335

94336

94337

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output from ex shall be text files.

EXTENDED DESCRIPTION
Only the ex mode of the editor is described in this section. See vi for additional editing
capabilities available in ex.

When an error occurs, ex shall write a message. If the terminal supports a standout mode (such
as inverse video), the message shall be written in standout mode. If the terminal does not
support a standout mode, and the edit option errorbells is set, an alert action shall precede the
error message.

By default, ex shall start in command mode, which shall be indicated by a : prompt; see the
prompt command. Text input mode can be entered by the append, insert, or change commands;
it can be exited (and command mode re-entered) by typing a <period> ('.') alone at the
beginning of a line.

Initialization in ex and vi

The following symbols are used in this and following sections to specify locations in the edit
buffer:

alternate and current pathnames
Two pathnames, named current and alternate, are maintained by the editor. Any ex
commands that take filenames as arguments shall set them as follows:

1. If a file argument is specified to the ex edit, ex, or recover commands, or if an ex tag
command replaces the contents of the edit buffer.

a. If the command replaces the contents of the edit buffer, the current pathname
shall be set to the file argument or the file indicated by the tag, and the
alternate pathname shall be set to the previous value of the current pathname.

b. Otherwise, the alternate pathname shall be set to the file argument.

2. If a file argument is specified to the ex next command:

a. If the command replaces the contents of the edit buffer, the current pathname
shall be set to the first file argument, and the alternate pathname shall be set to
the previous value of the current pathname.

3. If a file argument is specified to the ex file command, the current pathname shall be
set to the file argument, and the alternate pathname shall be set to the previous value
of the current pathname.

4. If a file argument is specified to the ex read and write commands (that is, when
reading or writing a file, and not to the program named by the shell edit option), or a
file argument is specified to the ex xit command:

a. If the current pathname has no value, the current pathname shall be set to the
file argument.

b. Otherwise, the alternate pathname shall be set to the file argument.

If the alternate pathname is set to the previous value of the current pathname when the
current pathname had no previous value, then the alternate pathname shall have no value
as a result.

2842 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94338

94339

94340

94341

94342

94343

94344

94345

94346

94347

94348

94349

94350

94351

94352

94353

94354

94355

94356

94357

94358

94359

94360

94361

94362

94363

94364

94365

94366

94367

94368

94369

94370

94371

94372

94373

94374

94375

94376

94377

94378

94379

94380

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

current line
The line of the edit buffer referenced by the cursor. Each command description specifies the
current line after the command has been executed, as the current line value. When the edit
buffer contains no lines, the current line shall be zero; see Addressing in ex (on page 2845).

current column
The current display line column occupied by the cursor. (The columns shall be numbered
beginning at 1.) Each command description specifies the current column after the command
has been executed, as the current column value. This column is an ideal column that is
remembered over the lifetime of the editor. The actual display line column upon which the
cursor rests may be different from the current column; see the cursor positioning discussion
in Command Descriptions in vi (on page 3527).

set to non-<blank>
A description for a current column value, meaning that the current column shall be set to
the last display line column on which is displayed any part of the first non-<blank> of the
line. If the line has no non-<blank> non-<newline> characters, the current column shall be
set to the last display line column on which is displayed any part of the last non-<newline>
character in the line. If the line is empty, the current column shall be set to column position
1.

The length of lines in the edit buffer may be limited to {LINE_MAX} bytes. In open and visual
mode, the length of lines in the edit buffer may be limited to the number of characters that will
fit in the display. If either limit is exceeded during editing, an error message shall be written. If
either limit is exceeded by a line read in from a file, an error message shall be written and the
edit session may be terminated.

If the editor stops running due to any reason other than a user command, and the edit buffer has
been modified since the last complete write, it shall be equivalent to a SIGHUP asynchronous
event. If the system crashes, it shall be equivalent to a SIGHUP asynchronous event.

During initialization (before the first file is copied into the edit buffer or any user commands
from the terminal are processed) the following shall occur:

1. If the environment variable EXINIT is set, the editor shall execute the ex commands
contained in that variable.

2. If the EXINIT variable is not set, and all of the following are true:

a. The HOME environment variable is not null and not empty.

b. The file .exrc in the directory referred to by the HOME environment variable:

i. Exists

ii. Is owned by the same user ID as the real user ID of the process or the
process has appropriate privileges

iii. Is not writable by anyone other than the owner

the editor shall execute the ex commands contained in that file.

3. If and only if all of the following are true:

a. The current directory is not referred to by the HOME environment variable.

b. A command in the EXINIT environment variable or a command in the .exrc file in
the directory referred to by the HOME environment variable sets the editor option
exrc.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2843

94381

94382

94383

94384

94385

94386

94387

94388

94389

94390

94391

94392

94393

94394

94395

94396

94397

94398

94399

94400

94401

94402

94403

94404

94405

94406

94407

94408

94409

94410

94411

94412

94413

94414

94415

94416

94417

94418

94419

94420

94421

94422

94423

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

c. The .exrc file in the current directory:

i. Exists

ii. Is owned by the same user ID as the real user ID of the process, or by one of
a set of implementation-defined user IDs

iii. Is not writable by anyone other than the owner

the editor shall attempt to execute the ex commands contained in that file.

Lines in any .exrc file that are blank lines shall be ignored. If any .exrc file exists, but is not read
for ownership or permission reasons, it shall be an error.

After the EXINIT variable and any .exrc files are processed, the first file specified by the user
shall be edited, as follows:

1. If the user specified the −t option, the effect shall be as if the ex tag command was entered
with the specified argument, with the exception that if tag processing does not result in a
file to edit, the effect shall be as described in step 3. below.

2. Otherwise, if the user specified any command line file arguments, the effect shall be as if
the ex edit command was entered with the first of those arguments as its file argument.

3. Otherwise, the effect shall be as if the ex edit command was entered with a nonexistent
filename as its file argument. It is unspecified whether this action shall set the current
pathname. In an implementation where this action does not set the current pathname, any
editor command using the current pathname shall fail until an editor command sets the
current pathname.

If the −r option was specified, the first time a file in the initial argument list or a file specified by
the −t option is edited, if recovery information has previously been saved about it, that
information shall be recovered and the editor shall behave as if the contents of the edit buffer
have already been modified. If there are multiple instances of the file to be recovered, the one
most recently saved shall be recovered, and an informational message that there are previous
versions of the file that can be recovered shall be written. If no recovery information about a file
is available, an informational message to this effect shall be written, and the edit shall proceed as
usual.

If the −c option was specified, the first time a file that already exists (including a file that might
not exist but for which recovery information is available, when the −r option is specified)
replaces or initializes the contents of the edit buffer, the current line shall be set to the last line of
the edit buffer, the current column shall be set to non-<blank>, and the ex commands specified
with the −c option shall be executed. In this case, the current line and current column shall not
be set as described for the command associated with the replacement or initialization of the edit
buffer contents. However, if the −t option or a tag command is associated with this action, the −c
option commands shall be executed and then the movement to the tag shall be performed.

The current argument list shall initially be set to the filenames specified by the user on the
command line. If no filenames are specified by the user, the current argument list shall be empty.
If the −t option was specified, it is unspecified whether any filename resulting from tag
processing shall be prepended to the current argument list. In the case where the filename is
added as a prefix to the current argument list, the current argument list reference shall be set to
that filename. In the case where the filename is not added as a prefix to the current argument
list, the current argument list reference shall logically be located before the first of the filenames
specified on the command line (for example, a subsequent ex next command shall edit the first
filename from the command line). If the −t option was not specified, the current argument list
reference shall be to the first of the filenames on the command line.

2844 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94424

94425

94426

94427

94428

94429

94430

94431

94432

94433

94434

94435

94436

94437

94438

94439

94440

94441

94442

94443

94444

94445

94446

94447

94448

94449

94450

94451

94452

94453

94454

94455

94456

94457

94458

94459

94460

94461

94462

94463

94464

94465

94466

94467

94468

94469

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Addressing in ex

Addressing in ex relates to the current line and the current column; the address of a line is its
1-based line number, the address of a column is its 1-based count from the beginning of the line.
Generally, the current line is the last line affected by a command. The current line number is the
address of the current line. In each command description, the effect of the command on the
current line number and the current column is described.

Addresses are constructed as follows:

1. The character '.' (period) shall address the current line.

2. The character '$' shall address the last line of the edit buffer.

3. The positive decimal number n shall address the nth line of the edit buffer.

4. The address "'x" refers to the line marked with the mark name character 'x', which
shall be a lowercase letter from the portable character set, the backquote character, or the
single-quote character. It shall be an error if the line that was marked is not currently
present in the edit buffer or the mark has not been set. Lines can be marked with the ex
mark or k commands, or the vi m command.

5. A regular expression enclosed by <slash> characters ('/') shall address the first line
found by searching forwards from the line following the current line toward the end of
the edit buffer and stopping at the first line for which the line excluding the terminating
<newline> matches the regular expression. As stated in Regular Expressions in ex (on
page 2875), an address consisting of a null regular expression delimited by <slash>
characters ("//") shall address the next line for which the line excluding the terminating
<newline> matches the last regular expression encountered. In addition, the second
<slash> can be omitted at the end of a command line. If the wrapscan edit option is set,
the search shall wrap around to the beginning of the edit buffer and continue up to and
including the current line, so that the entire edit buffer is searched. Within the regular
expression, the sequence "\/" shall represent a literal <slash> instead of the regular
expression delimiter.

6. A regular expression enclosed in <question-mark> characters ('?') shall address the first
line found by searching backwards from the line preceding the current line toward the
beginning of the edit buffer and stopping at the first line for which the line excluding the
terminating <newline> matches the regular expression. An address consisting of a null
regular expression delimited by <question-mark> characters ("??") shall address the
previous line for which the line excluding the terminating <newline> matches the last
regular expression encountered. In addition, the second <question-mark> can be omitted
at the end of a command line. If the wrapscan edit option is set, the search shall wrap
around from the beginning of the edit buffer to the end of the edit buffer and continue up
to and including the current line, so that the entire edit buffer is searched. Within the
regular expression, the sequence "\?" shall represent a literal <question-mark> instead
of the RE delimiter.

7. A <plus-sign> ('+') or a <hyphen-minus> ('−') followed by a decimal number shall
address the current line plus or minus the number. A '+' or '−' not followed by a
decimal number shall address the current line plus or minus 1.

Addresses can be followed by zero or more address offsets, optionally <blank>-separated.
Address offsets are constructed as follows:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2845

94470

94471

94472

94473

94474

94475

94476

94477

94478

94479

94480

94481

94482

94483

94484

94485

94486

94487

94488

94489

94490

94491

94492

94493

94494

94495

94496

94497

94498

94499

94500

94501

94502

94503

94504

94505

94506

94507

94508

94509

94510

94511

94512

94513

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

1. A '+' or '−' immediately followed by a decimal number shall add (subtract) the
indicated number of lines to (from) the address. A '+' or '−' not followed by a decimal
number shall add (subtract) 1 to (from) the address.

2. A decimal number shall add the indicated number of lines to the address.

It shall not be an error for an intermediate address value to be less than zero or greater than the
last line in the edit buffer. It shall be an error for the final address value to be less than zero or
greater than the last line in the edit buffer.

Commands take zero, one, or two addresses; see the descriptions of 1addr and 2addr in
Command Descriptions in ex (on page 2852). If more than the required number of addresses are
provided to a command that requires zero addresses, it shall be an error. Otherwise, if more than
the required number of addresses are provided to a command, the addresses specified first shall
be evaluated and then discarded until the maximum number of valid addresses remain.

Addresses shall be separated from each other by a <comma> (',') or a <semicolon> (';'). If
no address is specified before or after a <comma> or <semicolon> separator, it shall be as if the
address of the current line was specified before or after the separator. In the case of a
<semicolon> separator, the current line ('.') shall be set to the first address, and only then shall
the next address be calculated. This feature can be used to determine the starting line for
forwards and backwards searches (see rules 5. and 6.).

A <percent-sign> ('%') shall be equivalent to entering the two addresses "1,$".

Any delimiting <blank> characters between addresses, address separators, or address offsets
shall be discarded.

Command Line Parsing in ex

The following symbol is used in this and following sections to describe parsing behavior:

escape If a character is referred to as ``<backslash>-escaped’’ or ``<control>-V-escaped’’, it
shall mean that the character acquired or lost a special meaning by virtue of being
preceded, respectively, by a <backslash> or <control>-V character. Unless
otherwise specified, the escaping character shall be discarded at that time and shall
not be further considered for any purpose.

Command-line parsing shall be done in the following steps. For each step, characters already
evaluated shall be ignored; that is, the phrase ``leading character’’ refers to the next character
that has not yet been evaluated.

1. Leading <colon> characters shall be skipped.

2. Leading <blank> characters shall be skipped.

3. If the leading character is a double-quote character, the characters up to and including the
next non-<backslash>-escaped <newline> shall be discarded, and any subsequent
characters shall be parsed as a separate command.

4. Leading characters that can be interpreted as addresses shall be evaluated; see
Addressing in ex (on page 2845).

5. Leading <blank> characters shall be skipped.

6. If the next character is a <vertical-line> character or a <newline>:

a. If the next character is a <newline>:

2846 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94514

94515

94516

94517

94518

94519

94520

94521

94522

94523

94524

94525

94526

94527

94528

94529

94530

94531

94532

94533

94534

94535

94536

94537

94538

94539

94540

94541

94542

94543

94544

94545

94546

94547

94548

94549

94550

94551

94552

94553

94554

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

i. If ex is in open or visual mode, the current line shall be set to the last
address specified, if any.

ii. Otherwise, if the last command was terminated by a <vertical-line>
character, no action shall be taken; for example, the command
"||<newline>" shall execute two implied commands, not three.

iii. Otherwise, step 6.b. shall apply.

b. Otherwise, the implied command shall be the print command. The last #, p, and l
flags specified to any ex command shall be remembered and shall apply to this
implied command. Executing the ex number, print, or list command shall set the
remembered flags to #, nothing, and l, respectively, plus any other flags specified
for that execution of the number, print, or list command.

If ex is not currently performing a global or v command, and no address or count
is specified, the current line shall be incremented by 1 before the command is
executed. If incrementing the current line would result in an address past the last
line in the edit buffer, the command shall fail, and the increment shall not happen.

c. The <newline> or <vertical-line> character shall be discarded and any subsequent
characters shall be parsed as a separate command.

7. The command name shall be comprised of the next character (if the character is not
alphabetic), or the next character and any subsequent alphabetic characters (if the
character is alphabetic), with the following exceptions:

a. Commands that consist of any prefix of the characters in the command name
delete, followed immediately by any of the characters 'l', 'p', '+', '−', or '#'
shall be interpreted as a delete command, followed by a <blank>, followed by the
characters that were not part of the prefix of the delete command. The maximum
number of characters shall be matched to the command name delete; for example,
"del" shall not be treated as "de" followed by the flag l.

b. Commands that consist of the character 'k', followed by a character that can be
used as the name of a mark, shall be equivalent to the mark command followed by
a <blank>, followed by the character that followed the 'k'.

c. Commands that consist of the character 's', followed by characters that could be
interpreted as valid options to the s command, shall be the equivalent of the s
command, without any pattern or replacement values, followed by a <blank>,
followed by the characters after the 's'.

8. The command name shall be matched against the possible command names, and a
command name that contains a prefix matching the characters specified by the user shall
be the executed command. In the case of commands where the characters specified by the
user could be ambiguous, the executed command shall be as follows:

a append n next t t
c change p print u undo
ch change pr print un undo
e edit r read v v
m move re read w write
ma mark s s

Implementation extensions with names causing similar ambiguities shall not be checked
for a match until all possible matches for commands specified by POSIX.1-2024 have been

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2847

94555

94556

94557

94558

94559

94560

94561

94562

94563

94564

94565

94566

94567

94568

94569

94570

94571

94572

94573

94574

94575

94576

94577

94578

94579

94580

94581

94582

94583

94584

94585

94586

94587

94588

94589

94590

94591

94592

94593

94594

94595

94596

94597

94598

94599

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

checked.

9. If the command is a ! command, or if the command is a read command followed by zero
or more <blank> characters and a !, or if the command is a write command followed by
one or more <blank> characters and a !, the rest of the command shall include all
characters up to a non-<backslash>-escaped <newline>. The <newline> shall be
discarded and any subsequent characters shall be parsed as a separate ex command.

10. Otherwise, if the command is an edit, ex, or next command, or a visual command while
in open or visual mode, the next part of the command shall be parsed as follows:

a. Any '!' character immediately following the command shall be skipped and be
part of the command.

b. Any leading <blank> characters shall be skipped and be part of the command.

c. If the next character is a '+', characters up to the first non-<backslash>-escaped
<newline> or non-<backslash>-escaped <blank> shall be skipped and be part of
the command.

d. The rest of the command shall be determined by the steps specified in paragraph
12.

11. Otherwise, if the command is a global, open, s, or v command, the next part of the
command shall be parsed as follows:

a. Any leading <blank> characters shall be skipped and be part of the command.

b. If the next character is not an alphanumeric, double-quote, <newline>,
<backslash>, or <vertical-line> character:

i. The next character shall be used as a command delimiter.

ii. If the command is a global, open, or v command, characters up to the first
non-<backslash>-escaped <newline>, or first non-<backslash>-escaped
delimiter character, shall be skipped and be part of the command.

iii. If the command is an s command, characters up to the first
non-<backslash>-escaped <newline>, or second non-<backslash>-escaped
delimiter character, shall be skipped and be part of the command.

c. If the command is a global or v command, characters up to the first
non-<backslash>-escaped <newline> shall be skipped and be part of the
command.

d. Otherwise, the rest of the command shall be determined by the steps specified in
paragraph 12.

12. Otherwise:

a. If the command was a map, unmap, abbreviate, or unabbreviate command,
characters up to the first non-<control>-V-escaped <newline>, <vertical-line>, or
double-quote character shall be skipped and be part of the command.

b. Otherwise, characters up to the first non-<backslash>-escaped <newline>,
<vertical-line>, or double-quote character shall be skipped and be part of the
command.

c. If the command was an append, change, or insert command, and the step 12.b.
ended at a <vertical-line> character, any subsequent characters, up to the next
non-<backslash>-escaped <newline> shall be used as input text to the command.

2848 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94600

94601

94602

94603

94604

94605

94606

94607

94608

94609

94610

94611

94612

94613

94614

94615

94616

94617

94618

94619

94620

94621

94622

94623

94624

94625

94626

94627

94628

94629

94630

94631

94632

94633

94634

94635

94636

94637

94638

94639

94640

94641

94642

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

d. If the command was ended by a double-quote character, all subsequent characters,
up to the next non-<backslash>-escaped <newline>, shall be discarded.

e. The terminating <newline> or <vertical-line> character shall be discarded and any
subsequent characters shall be parsed as a separate ex command.

Command arguments shall be parsed as described by the Synopsis and Description of each
individual ex command. This parsing shall not be <blank>-sensitive, except for the ! argument,
which has to follow the command name without intervening <blank> characters, and where it
would otherwise be ambiguous. For example, count and flag arguments need not be
<blank>-separated because "d22p" is not ambiguous, but file arguments to the ex next
command need to be separated by one or more <blank> characters. Any <blank> in command
arguments for the abbreviate, unabbreviate, map, and unmap commands can be
<control>-V-escaped, in which case the <blank> shall not be used as an argument delimiter. Any
<blank> in the command argument for any other command can be <backslash>-escaped, in
which case that <blank> shall not be used as an argument delimiter.

Within command arguments for the abbreviate, unabbreviate, map, and unmap commands,
any character can be <control>-V-escaped. All such escaped characters shall be treated literally
and shall have no special meaning. Within command arguments for all other ex commands that
are not regular expressions or replacement strings, any character that would otherwise have a
special meaning can be <backslash>-escaped. Escaped characters shall be treated literally,
without special meaning as shell expansion characters or '!', '%', and '#' expansion
characters. See Regular Expressions in ex (on page 2875) and Replacement Strings in ex (on page
2876) for descriptions of command arguments that are regular expressions or replacement
strings.

Non-<backslash>-escaped '%' characters appearing in file arguments to any ex command shall
be replaced by the current pathname; unescaped '#' characters shall be replaced by the
alternate pathname. It shall be an error if '%' or '#' characters appear unescaped in an
argument and their corresponding values are not set.

Non-<backslash>-escaped '!' characters in the arguments to either the ex ! command or the
open and visual mode ! command, or in the arguments to the ex read command, where the first
non-<blank> after the command name is a '!' character, or in the arguments to the ex write
command where the command name is followed by one or more <blank> characters and the
first non-<blank> after the command name is a '!' character, shall be replaced with the
arguments to the last of those three commands as they appeared after all unescaped '%', '#',
and '!' characters were replaced. It shall be an error if '!' characters appear unescaped in one
of these commands and there has been no previous execution of one of these commands.

If an error occurs during the parsing or execution of an ex command:

• An informational message to this effect shall be written. Execution of the ex command shall
stop, and the cursor (for example, the current line and column) shall not be further
modified.

• If the ex command resulted from a map expansion, all characters from that map expansion
shall be discarded, except as otherwise specified by the map command.

• Otherwise, if the ex command resulted from the processing of an EXINIT environment
variable, a .exrc file, a :source command, a −c option, or a +command specified to an ex edit,
ex, next, or visual command, no further commands from the source of the commands shall
be executed.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2849

94643

94644

94645

94646

94647

94648

94649

94650

94651

94652

94653

94654

94655

94656

94657

94658

94659

94660

94661

94662

94663

94664

94665

94666

94667

94668

94669

94670

94671

94672

94673

94674

94675

94676

94677

94678

94679

94680

94681

94682

94683

94684

94685

94686

94687

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

• Otherwise, if the ex command resulted from the execution of a buffer or a global or v
command, no further commands caused by the execution of the buffer or the global or v
command shall be executed.

• Otherwise, if the ex command was not terminated by a <newline>, all characters up to and
including the next non-<backslash>-escaped <newline> shall be discarded.

Input Editing in ex

The following symbol is used in this and the following sections to specify command actions:

word In the POSIX locale, a word consists of a maximal sequence of letters, digits, and
underscores, delimited at both ends by characters other than letters, digits, or
underscores, or by the beginning or end of a line or the edit buffer.

When accepting input characters from the user, in either ex command mode or ex text input
mode, ex shall enable canonical mode input processing, as defined in the System Interfaces
volume of POSIX.1-2024.

If in ex text input mode:

1. If the number edit option is set, ex shall prompt for input using the line number that
would be assigned to the line if it is entered, in the format specified for the ex number
command.

2. If the autoindent edit option is set, ex shall prompt for input using autoindent characters,
as described by the autoindent edit option. autoindent characters shall follow the line
number, if any.

If in ex command mode:

1. If the prompt edit option is set, input shall be prompted for using a single ':' character;
otherwise, there shall be no prompt.

The input characters in the following sections shall have the following effects on the input line.

Scroll

Synopsis: eof

See the description of the stty eof character in stty .

If in ex command mode:

If the eof character is the first character entered on the line, the line shall be evaluated as if
it contained two characters: a <control>-D and a <newline>.

Otherwise, the eof character shall have no special meaning.

If in ex text input mode:

2850 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94688

94689

94690

94691

94692

94693

94694

94695

94696

94697

94698

94699

94700

94701

94702

94703

94704

94705

94706

94707

94708

94709

94710

94711

94712

94713

94714

94715

94716

94717

94718

94719

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

If the cursor follows an autoindent character, the autoindent characters in the line shall be
modified so that a part of the next text input character is displayed on the first column in
the line after the previous shiftwidth edit option column boundary, and the user shall be
prompted again for input for the same line.

Otherwise, if the cursor follows a '0', which follows an autoindent character, and the '0'
was the previous text input character, the '0' and all autoindent characters in the line
shall be discarded, and the user shall be prompted again for input for the same line.

Otherwise, if the cursor follows a '^', which follows an autoindent character, and the '^'
was the previous text input character, the '^' and all autoindent characters in the line
shall be discarded, and the user shall be prompted again for input for the same line. In
addition, the autoindent level for the next input line shall be derived from the same line
from which the autoindent level for the current input line was derived.

Otherwise, if there are no autoindent or text input characters in the line, the eof character
shall be discarded.

Otherwise, the eof character shall have no special meaning.

<newline>

Synopsis: <newline>
<control>-J

If in ex command mode:

Cause the command line to be parsed; <control>-J shall be mapped to the <newline> for
this purpose.

If in ex text input mode:

Terminate the current line. If there are no characters other than autoindent characters on
the line, all characters on the line shall be discarded.

Prompt for text input on a new line after the current line. If the autoindent edit option is
set, an appropriate number of autoindent characters shall be added as a prefix to the line
as described by the ex autoindent edit option.

<backslash>

Synopsis: <backslash>

Allow the entry of a subsequent <newline> or <control>-J as a literal character, removing any
special meaning that it may have to the editor during text input mode. The <backslash>
character shall be retained and evaluated when the command line is parsed, or retained and
included when the input text becomes part of the edit buffer.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2851

94720

94721

94722

94723

94724

94725

94726

94727

94728

94729

94730

94731

94732

94733

94734

94735

94736

94737

94738

94739

94740

94741

94742

94743

94744

94745

94746

94747

94748

94749

94750

94751

94752

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

<control>-V

Synopsis: <control>-V

Allow the entry of any subsequent character as a literal character, removing any special meaning
that it may have to the editor during text input mode. The <control>-V character shall be
discarded before the command line is parsed or the input text becomes part of the edit buffer.

If the ``literal next’’ functionality is performed by the underlying system, it is implementation-
defined whether a character other than <control>-V performs this function.

<control>-W

Synopsis: <control>-W

Discard the <control>-W, and the word previous to it in the input line, including any <blank>
characters following the word and preceding the <control>-W. If the ``word erase’’ functionality
is performed by the underlying system, it is implementation-defined whether a character other
than <control>-W performs this function.

Command Descriptions in ex

The following symbols are used in this section to represent command modifiers. Some of these
modifiers can be omitted, in which case the specified defaults shall be used.

1addr A single line address, given in any of the forms described in Addressing in ex (on
page 2845); the default shall be the current line ('.'), unless otherwise specified.

If the line address is zero, it shall be an error, unless otherwise specified in the
following command descriptions.

If the edit buffer is empty, and the address is specified with a command other than
=, append, insert, open, put, read, or visual, or the address is not zero, it shall be
an error.

2addr Two addresses specifying an inclusive range of lines. If no addresses are specified,
the default for 2addr shall be the current line only (".,."), unless otherwise
specified in the following command descriptions. If one address is specified, 2addr
shall specify that line only, unless otherwise specified in the following command
descriptions.

It shall be an error if the first address is greater than the second address.

If the edit buffer is empty, and the two addresses are specified with a command
other than the !, write, wq, or xit commands, or either address is not zero, it shall
be an error.

count A positive decimal number. If count is specified, it shall be equivalent to specifying
an additional address to the command, unless otherwise specified by the following
command descriptions. The additional address shall be equal to the last address
specified to the command (either explicitly or by default) plus count−1.

If this would result in an address greater than the last line of the edit buffer, it shall
be corrected to equal the last line of the edit buffer.

flags One or more of the characters '+', '−', '#', 'p', or 'l' (ell). The flag characters
can be <blank>-separated, and in any order or combination. The characters '#',
'p', and 'l' shall cause lines to be written in the format specified by the print
command with the specified flags.

2852 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94753

94754

94755

94756

94757

94758

94759

94760

94761

94762

94763

94764

94765

94766

94767

94768

94769

94770

94771

94772

94773

94774

94775

94776

94777

94778

94779

94780

94781

94782

94783

94784

94785

94786

94787

94788

94789

94790

94791

94792

94793

94794

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

The lines to be written are as follows:

1. All edit buffer lines written during the execution of the ex &, ˜, list, number,
open, print, s, visual, and z commands shall be written as specified by flags.

2. After the completion of an ex command with a flag as an argument, the
current line shall be written as specified by flags, unless the current line was
the last line written by the command.

The characters '+' and '−' cause the value of the current line after the execution
of the ex command to be adjusted by the offset address as described in Addressing
in ex (on page 2845). This adjustment shall occur before the current line is written
as described in 2. above.

The default for flags shall be none.

buffer One of a number of named areas for holding text. The named buffers are specified
by the alphanumeric characters of the POSIX locale. There shall also be one
``unnamed’’ buffer. When no buffer is specified for editor commands that use a
buffer, the unnamed buffer shall be used. Commands that store text into buffers
shall store the text as it was before the command took effect, and shall store text
occurring earlier in the file before text occurring later in the file, regardless of how
the text region was specified. Commands that store text into buffers shall store the
text into the unnamed buffer as well as any specified buffer.

In ex commands, buffer names are specified as the name by itself. In open or visual
mode commands the name is preceded by a double-quote ('"') character.

If the specified buffer name is an uppercase character, and the buffer contents are
to be modified, the buffer shall be appended to rather than being overwritten. If
the buffer is not being modified, specifying the buffer name in lowercase and
uppercase shall have identical results.

There shall also be buffers named by the numbers 1 through 9. In open and visual
mode, if a region of text including characters from more than a single line is being
modified by the vi c or d commands, the motion character associated with the c or
d commands specifies that the buffer text shall be in line mode, or the commands
%, `, /, ?, (,), N, n, {, or } are used to define a region of text for the c or d commands,
the contents of buffers 1 through 8 shall be moved into the buffer named by the
next numerically greater value, the contents of buffer 9 shall be discarded, and the
region of text shall be copied into buffer 1. This shall be in addition to copying the
text into a user-specified buffer or unnamed buffer, or both. Numeric buffers can
be specified as a source buffer for open and visual mode commands; however,
specifying a numeric buffer as the write target of an open or visual mode
command shall have unspecified results.

The text of each buffer shall have the characteristic of being in either line or
character mode. Appending text to a non-empty buffer shall set the mode to match
the characteristic of the text being appended. Appending text to a buffer shall
cause the creation of at least one additional line in the buffer. All text stored into
buffers by ex commands shall be in line mode. The ex commands that use buffers
as the source of text specify individually how buffers of different modes are
handled. Each open or visual mode command that uses buffers for any purpose
specifies individually the mode of the text stored into the buffer and how buffers
of different modes are handled.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2853

94795

94796

94797

94798

94799

94800

94801

94802

94803

94804

94805

94806

94807

94808

94809

94810

94811

94812

94813

94814

94815

94816

94817

94818

94819

94820

94821

94822

94823

94824

94825

94826

94827

94828

94829

94830

94831

94832

94833

94834

94835

94836

94837

94838

94839

94840

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

file Command text used to derive a pathname. The default shall be the current
pathname, as defined previously, in which case, if no current pathname has yet
been established it shall be an error, except where specifically noted in the
individual command descriptions that follow. If the command text contains any of
the characters '~', '{', '[', '*', '?', '$', '"', backquote, single-quote, and
<backslash>, it shall be subjected to the process of ``shell expansions’’, as described
below; if more than a single pathname results and the command expects only one,
it shall be an error.

The process of shell expansions in the editor shall be done as follows. The ex utility
shall pass two arguments to the program named by the shell edit option; the first
shall be −c, and the second shall be the string "echo" and the command text as a
single argument. The standard output and standard error of that command shall
replace the command text.

! A character that can be appended to the command name to modify its operation,
as detailed in the individual command descriptions. With the exception of the ex
read, write, and ! commands, the '!' character shall only act as a modifier if there
are no <blank> characters between it and the command name.

remembered search direction
The vi commands N and n begin searching in a forwards or backwards direction in
the edit buffer based on a remembered search direction, which is initially unset,
and is set by the ex global, v, s, and tag commands, and the vi / and ? commands.

Abbreviate

Synopsis: ab[breviate][lhs rhs]

If lhs and rhs are not specified, write the current list of abbreviations and do nothing more.

Implementations may restrict the set of characters accepted in lhs or rhs, except that printable
characters and <blank> characters shall not be restricted. Additional restrictions shall be
implementation-defined.

In both lhs and rhs, any character may be escaped with a <control>-V, in which case the character
shall not be used to delimit lhs from rhs, and the escaping <control>-V shall be discarded.

In open and visual text input mode, if a non-word or <ESC> character that is not escaped by a
<control>-V character is entered after a word character, a check shall be made for a set of
characters matching lhs, in the text input entered during this command. If it is found, the effect
shall be as if rhs was entered instead of lhs.

The set of characters that are checked is defined as follows:

1. If there are no characters inserted before the word and non-word or <ESC> characters
that triggered the check, the set of characters shall consist of the word character.

2. If the character inserted before the word and non-word or <ESC> characters that
triggered the check is a word character, the set of characters shall consist of the characters
inserted immediately before the triggering characters that are word characters, plus the
triggering word character.

3. If the character inserted before the word and non-word or <ESC> characters that
triggered the check is not a word character, the set of characters shall consist of the
characters that were inserted before the triggering characters that are neither <blank>
characters nor word characters, plus the triggering word character.

2854 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94841

94842

94843

94844

94845

94846

94847

94848

94849

94850

94851

94852

94853

94854

94855

94856

94857

94858

94859

94860

94861

94862

94863

94864

94865

94866

94867

94868

94869

94870

94871

94872

94873

94874

94875

94876

94877

94878

94879

94880

94881

94882

94883

94884

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

It is unspecified whether the lhs argument entered for the ex abbreviate and unabbreviate
commands is replaced in this fashion. Regardless of whether or not the replacement occurs, the
effect of the command shall be as if the replacement had not occurred.

Current line: Unchanged.

Current column: Unchanged.

Append

Synopsis: [1addr] a[ppend][!]

Enter ex text input mode; the input text shall be placed after the specified line. If line zero is
specified, the text shall be placed at the beginning of the edit buffer.

This command shall be affected by the number and autoindent edit options; following the
command name with '!' shall cause the autoindent edit option setting to be toggled for the
duration of this command only.

Current line: Set to the last input line; if no lines were input, set to the specified line, or to the first
line of the edit buffer if a line of zero was specified, or zero if the edit buffer is empty.

Current column: Set to non-<blank>.

Arguments

Synopsis: ar[gs]

Write the current argument list, with the current argument-list entry, if any, between '[' and
']' characters.

Current line: Unchanged.

Current column: Unchanged.

Change

Synopsis: [2addr] c[hange][!][count]

Enter ex text input mode; the input text shall replace the specified lines. The specified lines shall
be copied into the unnamed buffer, which shall become a line mode buffer.

This command shall be affected by the number and autoindent edit options; following the
command name with '!' shall cause the autoindent edit option setting to be toggled for the
duration of this command only.

Current line: Set to the last input line; if no lines were input, set to the line before the first
address, or to the first line of the edit buffer if there are no lines preceding the first address, or to
zero if the edit buffer is empty.

Current column: Set to non-<blank>.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2855

94885

94886

94887

94888

94889

94890

94891

94892

94893

94894

94895

94896

94897

94898

94899

94900

94901

94902

94903

94904

94905

94906

94907

94908

94909

94910

94911

94912

94913

94914

94915

94916

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Change Directory

Synopsis: chd[ir][!][directory]
cd[!][directory]

Change the current working directory to directory.

If no directory argument is specified, and the HOME environment variable is set to a non-null
and non-empty value, directory shall default to the value named in the HOME environment
variable. If the HOME environment variable is empty or is undefined, the default value of
directory is implementation-defined.

If no '!' is appended to the command name, and the edit buffer has been modified since the
last complete write, and the current pathname does not begin with a '/', it shall be an error.

Current line: Unchanged.

Current column: Unchanged.

Copy

Synopsis: [2addr] co[py] 1addr [flags]
[2addr] t 1addr [flags]

Copy the specified lines after the specified destination line; line zero specifies that the lines shall
be placed at the beginning of the edit buffer.

Current line: Set to the last line copied.

Current column: Set to non-<blank>.

Delete

Synopsis: [2addr] d[elete][buffer][count][flags]

Delete the specified lines into a buffer (defaulting to the unnamed buffer), which shall become a
line-mode buffer.

Flags can immediately follow the command name; see Command Line Parsing in ex (on page
2846).

Current line: Set to the line following the deleted lines, or to the last line in the edit buffer if that
line is past the end of the edit buffer, or to zero if the edit buffer is empty.

Current column: Set to non-<blank>.

Edit

Synopsis: e[dit][!][+command][file]
ex[!][+command][file]

If no '!' is appended to the command name, and the edit buffer has been modified since the
last complete write, it shall be an error.

If file is specified, replace the current contents of the edit buffer with the current contents of file,
and set the current pathname to file. If file is not specified, replace the current contents of the
edit buffer with the current contents of the file named by the current pathname. If for any reason
the current contents of the file cannot be accessed, the edit buffer shall be empty.

The +command option shall be <blank>-delimited; <blank> characters within the +command can
be escaped by preceding them with a <backslash> character. The +command shall be interpreted

2856 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94917

94918

94919

94920

94921

94922

94923

94924

94925

94926

94927

94928

94929

94930

94931

94932

94933

94934

94935

94936

94937

94938

94939

94940

94941

94942

94943

94944

94945

94946

94947

94948

94949

94950

94951

94952

94953

94954

94955

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

as an ex command immediately after the contents of the edit buffer have been replaced and the
current line and column have been set.

If the edit buffer is empty:

Current line: Set to 0.

Current column: Set to 1.

Otherwise, if executed while in ex command mode or if the +command argument is specified:

Current line: Set to the last line of the edit buffer.

Current column: Set to non-<blank>.

Otherwise, if file is omitted or results in the current pathname:

Current line: Set to the first line of the edit buffer.

Current column: Set to non-<blank>.

Otherwise, if file is the same as the last file edited, the line and column shall be set as follows; if
the file was previously edited, the line and column may be set as follows:

Current line: Set to the last value held when that file was last edited. If this value is not a valid
line in the new edit buffer, set to the first line of the edit buffer.

Current column: If the current line was set to the last value held when the file was last edited, set
to the last value held when the file was last edited. Otherwise, or if the last value is not a valid
column in the new edit buffer, set to non-<blank>.

Otherwise:

Current line: Set to the first line of the edit buffer.

Current column: Set to non-<blank>.

File

Synopsis: f[ile][file]

If a file argument is specified, the alternate pathname shall be set to the current pathname, and
the current pathname shall be set to file.

Write an informational message. If the file has a current pathname, it shall be included in this
message; otherwise, the message shall indicate that there is no current pathname. If the edit
buffer contains lines, the current line number and the number of lines in the edit buffer shall be
included in this message; otherwise, the message shall indicate that the edit buffer is empty. If
the edit buffer has been modified since the last complete write, this fact shall be included in this
message. If the readonly edit option is set, this fact shall be included in this message. The
message may contain other unspecified information.

Current line: Unchanged.

Current column: Unchanged.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2857

94956

94957

94958

94959

94960

94961

94962

94963

94964

94965

94966

94967

94968

94969

94970

94971

94972

94973

94974

94975

94976

94977

94978

94979

94980

94981

94982

94983

94984

94985

94986

94987

94988

94989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Global

Synopsis: [2addr] g[lobal] /pattern/ [commands]
[2addr] v /pattern/ [commands]

The optional '!' character after the global command shall be the same as executing the v
command.

If pattern is empty (for example, "//") or not specified, the last regular expression used in the
editor command shall be used as the pattern. The pattern can be delimited by <slash> characters
(shown in the Synopsis), as well as any non-alphanumeric or non-<blank> other than
<backslash>, <vertical-line>, <newline>, or double-quote. Within the pattern, in certain
circumstances the delimiter can be used as a literal character; see Regular Expressions in ex (on
page 2875).

If no lines are specified, the lines shall default to the entire file.

The global and v commands are logically two-pass operations. First, mark the lines within the
specified lines for which the line excluding the terminating <newline> matches (global) or does
not match (v or global!) the specified pattern. Second, execute the ex commands given by
commands, with the current line ('.') set to each marked line. If an error occurs during this
process, or the contents of the edit buffer are replaced (for example, by the ex :edit command) an
error message shall be written and no more commands resulting from the execution of this
command shall be processed.

Multiple ex commands can be specified by entering multiple commands on a single line using a
<vertical-line> to delimit them, or one per line, by escaping each <newline> with a <backslash>.

If no commands are specified:

1. If in ex command mode, it shall be as if the print command were specified.

2. Otherwise, no command shall be executed.

For the append, change, and insert commands, the input text shall be included as part of the
command, and the terminating <period> can be omitted if the command ends the list of
commands. The open and visual commands can be specified as one of the commands, in which
case each marked line shall cause the editor to enter open or visual mode. If open or visual mode
is exited using the vi Q command, the current line shall be set to the next marked line, and open
or visual mode reentered, until the list of marked lines is exhausted.

The global, v, and undo commands cannot be used in commands. Marked lines may be deleted
by commands executed for lines occurring earlier in the file than the marked lines. In this case,
no commands shall be executed for the deleted lines.

If the remembered search direction is not set, the global and v commands shall set it to forward.

The autoprint and autoindent edit options shall be inhibited for the duration of the g or v
command.

Current line: If no commands executed, set to the last marked line. Otherwise, as specified for the
executed ex commands.

Current column: If no commands are executed, set to non-<blank>; otherwise, as specified for the
individual ex commands.

2858 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94990

94991

94992

94993

94994

94995

94996

94997

94998

94999

95000

95001

95002

95003

95004

95005

95006

95007

95008

95009

95010

95011

95012

95013

95014

95015

95016

95017

95018

95019

95020

95021

95022

95023

95024

95025

95026

95027

95028

95029

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Insert

Synopsis: [1addr] i[nsert][!]

Enter ex text input mode; the input text shall be placed before the specified line. If the line is zero
or 1, the text shall be placed at the beginning of the edit buffer.

This command shall be affected by the number and autoindent edit options; following the
command name with '!' shall cause the autoindent edit option setting to be toggled for the
duration of this command only.

Current line: Set to the last input line; if no lines were input, set to the line before the specified
line, or to the first line of the edit buffer if there are no lines preceding the specified line, or zero
if the edit buffer is empty.

Current column: Set to non-<blank>.

Join

Synopsis: [2addr] j[oin][!][count][flags]

If count is specified:

If no address was specified, the join command shall behave as if 2addr were the current
line and the current line plus count (. , . + count).

If one address was specified, the join command shall behave as if 2addr were the specified
address and the specified address plus count (addr,addr + count).

If two addresses were specified, the join command shall behave as if an additional
address, equal to the last address plus count −1 (addr1,addr2,addr2 + count −1), was
specified.

If this would result in a second address greater than the last line of the edit buffer, it shall
be corrected to be equal to the last line of the edit buffer.

If no count is specified:

If no address was specified, the join command shall behave as if 2addr were the current
line and the next line (. , . +1).

If one address was specified, the join command shall behave as if 2addr were the specified
address and the next line (addr,addr +1).

Join the text from the specified lines together into a single line, which shall replace the specified
lines.

If a '!' character is appended to the command name, the join shall be without modification of
any line, independent of the current locale.

Otherwise, in the POSIX locale, set the current line to the first of the specified lines, and then, for
each subsequent line, proceed as follows:

1. Discard leading <space> characters from the line to be joined.

2. If the line to be joined is now empty, delete it, and skip steps 3 through 5.

3. If the current line ends in a <blank>, or the first character of the line to be joined is a ')'
character, join the lines without further modification.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2859

95030

95031

95032

95033

95034

95035

95036

95037

95038

95039

95040

95041

95042

95043

95044

95045

95046

95047

95048

95049

95050

95051

95052

95053

95054

95055

95056

95057

95058

95059

95060

95061

95062

95063

95064

95065

95066

95067

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

4. If the last character of the current line is a '.', join the lines with two <space> characters
between them.

5. Otherwise, join the lines with a single <space> between them.

Current line: Set to the first line specified.

Current column: Set to non-<blank>.

List

Synopsis: [2addr] l[ist][count][flags]

This command shall be equivalent to the ex command:

[2addr] p[rint][count] l[flags]

See Print (on page 2864).

Map

Synopsis: map[!][lhs rhs]

If lhs and rhs are not specified:

1. If '!' is specified, write the current list of text input mode maps.

2. Otherwise, write the current list of command mode maps.

3. Do nothing more.

Implementations may restrict the set of characters accepted in lhs or rhs, except that printable
characters and <blank> characters shall not be restricted. Additional restrictions shall be
implementation-defined. In both lhs and rhs, any character can be escaped with a <control>-V, in
which case the character shall not be used to delimit lhs from rhs, and the escaping <control>-V
shall be discarded.

If the character '!' is appended to the map command name, the mapping shall be effective
during open or visual text input mode rather than open or visual command mode. This allows
lhs to have two different map definitions at the same time: one for command mode and one for
text input mode.

For command mode mappings:

When the lhs is entered as any part of a vi command in open or visual mode (but not as
part of the arguments to the command), the action shall be as if the corresponding rhs had
been entered.

If any character in the command, other than the first, is escaped using a <control>-V
character, that character shall not be part of a match to an lhs.

It is unspecified whether implementations shall support map commands where the lhs is
more than a single character in length, where the first character of the lhs is printable.

If lhs contains more than one character and the first character is '#', followed by a
sequence of digits corresponding to a numbered function key, then when this function key
is typed it shall be mapped to rhs. Characters other than digits following a '#' character
also represent the function key named by the characters in the lhs following the '#' and
may be mapped to rhs. It is unspecified how function keys are named or what function
keys are supported.

2860 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95068

95069

95070

95071

95072

95073

95074

95075

95076

95077

95078

95079

95080

95081

95082

95083

95084

95085

95086

95087

95088

95089

95090

95091

95092

95093

95094

95095

95096

95097

95098

95099

95100

95101

95102

95103

95104

95105

95106

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

For text input mode mappings:

When the lhs is entered as any part of text entered in open or visual text input modes, the
action shall be as if the corresponding rhs had been entered.

If any character in the input text is escaped using a <control>-V character, that character
shall not be part of a match to an lhs.

It is unspecified whether the lhs text entered for subsequent map or unmap commands is
replaced with the rhs text for the purposes of the screen display; regardless of whether or
not the display appears as if the corresponding rhs text was entered, the effect of the
command shall be as if the lhs text was entered.

If only part of the lhs is entered, it is unspecified how long the editor will wait for additional,
possibly matching characters before treating the already entered characters as not matching the
lhs.

The rhs characters shall themselves be subject to remapping, unless otherwise specified by the
remap edit option, except that if the characters in lhs occur as prefix characters in rhs, those
characters shall not be remapped.

On block-mode terminals, the mapping need not occur immediately (for example, it may occur
after the terminal transmits a group of characters to the system), but it shall achieve the same
results as if it occurred immediately.

Current line: Unchanged.

Current column: Unchanged.

Mark

Synopsis: [1addr] ma[rk] character
[1addr] k character

Implementations shall support character values of a single lowercase letter of the POSIX locale
and the backquote and single-quote characters; support of other characters is implementation-
defined.

If executing the vi m command, set the specified mark to the current line and 1-based numbered
character referenced by the current column, if any; otherwise, column position 1.

Otherwise, set the specified mark to the specified line and 1-based numbered first non-<blank>
non-<newline> in the line, if any; otherwise, the last non-<newline> in the line, if any;
otherwise, column position 1.

The mark shall remain associated with the line until the mark is reset or the line is deleted. If a
deleted line is restored by a subsequent undo command, any marks previously associated with
the line, which have not been reset, shall be restored as well. Any use of a mark not associated
with a current line in the edit buffer shall be an error.

The marks ` and ' shall be set as described previously, immediately before the following events
occur in the editor:

1. The use of '$' as an ex address

2. The use of a positive decimal number as an ex address

3. The use of a search command as an ex address

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2861

95107

95108

95109

95110

95111

95112

95113

95114

95115

95116

95117

95118

95119

95120

95121

95122

95123

95124

95125

95126

95127

95128

95129

95130

95131

95132

95133

95134

95135

95136

95137

95138

95139

95140

95141

95142

95143

95144

95145

95146

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

4. The use of a mark reference as an ex address

5. The use of the following open and visual mode commands: <control>-], %, (,), [,], {, }

6. The use of the following open and visual mode commands: ', G, H, L, M, z if the current
line will change as a result of the command

7. The use of the open and visual mode commands: /, ?, N, `, n if the current line or column
will change as a result of the command

8. The use of the ex mode commands: z, undo, global, v

For rules 1., 2., 3., and 4., the ` and ' marks shall not be set if the ex command is parsed as
specified by rule 6.a. in Command Line Parsing in ex (on page 2846).

For rules 5., 6., and 7., the ` and ' marks shall not be set if the commands are used as motion
commands in open and visual mode.

For rules 1., 2., 3., 4., 5., 6., 7., and 8., the ` and ' marks shall not be set if the command fails.

The ` and ' marks shall be set as described previously, each time the contents of the edit buffer
are replaced (including the editing of the initial buffer), if in open or visual mode, or if in ex
mode and the edit buffer is not empty, before any commands or movements (including
commands or movements specified by the −c or −t options or the +command argument) are
executed on the edit buffer. If in open or visual mode, the marks shall be set as if executing the vi
m command; otherwise, as if executing the ex mark command.

When changing from ex mode to open or visual mode, if the ` and ' marks are not already set,
the ` and ' marks shall be set as described previously.

Current line: Unchanged.

Current column: Unchanged.

Move

Synopsis: [2addr] m[ove] 1addr [flags]

Move the specified lines after the specified destination line. A destination of line zero specifies
that the lines shall be placed at the beginning of the edit buffer. It shall be an error if the
destination line is within the range of lines to be moved.

Current line: Set to the last of the moved lines.

Current column: Set to non-<blank>.

Next

Synopsis: n[ext][!][+command][file ...]

If no '!' is appended to the command name, and the edit buffer has been modified since the
last complete write, it shall be an error, unless the file is successfully written as specified by the
autowrite option.

If one or more files is specified:

1. Set the argument list to the specified filenames.

2. Set the current argument list reference to be the first entry in the argument list.

2862 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95147

95148

95149

95150

95151

95152

95153

95154

95155

95156

95157

95158

95159

95160

95161

95162

95163

95164

95165

95166

95167

95168

95169

95170

95171

95172

95173

95174

95175

95176

95177

95178

95179

95180

95181

95182

95183

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

3. Set the current pathname to the first filename specified.

Otherwise:

1. It shall be an error if there are no more filenames in the argument list after the filename
currently referenced.

2. Set the current pathname and the current argument list reference to the filename after the
filename currently referenced in the argument list.

Replace the contents of the edit buffer with the contents of the file named by the current
pathname. If for any reason the contents of the file cannot be accessed, the edit buffer shall be
empty.

This command shall be affected by the autowrite and writeany edit options.

The +command option shall be <blank>-delimited; <blank> characters can be escaped by
preceding them with a <backslash> character. The +command shall be interpreted as an ex
command immediately after the contents of the edit buffer have been replaced and the current
line and column have been set.

Current line: Set as described for the edit command.

Current column: Set as described for the edit command.

Number

Synopsis: [2addr] nu[mber][count][flags]
[2addr] #[count][flags]

These commands shall be equivalent to the ex command:

[2addr] p[rint][count] #[flags]

See Print (on page 2864).

Open

Synopsis: [1addr] o[pen] /pattern/ [flags]

This command need not be supported on block-mode terminals or terminals with insufficient
capabilities. If standard input, standard output, or standard error are not terminal devices, the
results are unspecified.

Enter open mode.

The trailing delimiter can be omitted from pattern at the end of the command line. If pattern is
empty (for example, "//") or not specified, the last regular expression used in the editor shall
be used as the pattern. The pattern can be delimited by <slash> characters (shown in the
Synopsis), as well as any alphanumeric, or non-<blank> other than <backslash>, <vertical-line>,
<newline>, or double-quote.

Current line: Set to the specified line.

Current column: Set to non-<blank>.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2863

95184

95185

95186

95187

95188

95189

95190

95191

95192

95193

95194

95195

95196

95197

95198

95199

95200

95201

95202

95203

95204

95205

95206

95207

95208

95209

95210

95211

95212

95213

95214

95215

95216

95217

95218

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Preserve

Synopsis: pre[serve]

Save the edit buffer in a form that can later be recovered by using the −r option or by using the
ex recover command. After the file has been preserved, a mail message shall be sent to the user.
This message shall be readable by invoking the mailx utility. The message shall contain the name
of the file, the time of preservation, and an ex command that could be used to recover the file.
Additional information may be included in the mail message.

Current line: Unchanged.

Current column: Unchanged.

Print

Synopsis: [2addr] p[rint][count][flags]

Write the addressed lines. The behavior is unspecified if the number of columns on the display is
less than the number of columns required to write any single character in the lines being written.

Non-printable characters, except for the <tab>, shall be written as implementation-defined
multi-character sequences.

If the # flag is specified or the number edit option is set, each line shall be preceded by its line
number in the following format:

"%6dΔΔ", <line number>

If the l flag is specified or the list edit option is set:

1. The characters listed in XBD Table 5-1 (on page 113) shall be written as the corresponding
escape sequence.

2. Non-printable characters not in XBD Table 5-1 (on page 113) shall be written as one three-
digit octal number (with a preceding <backslash>) for each byte in the character (most
significant byte first).

3. The end of each line shall be marked with a '$', and literal '$' characters within the line
shall be written with a preceding <backslash>.

Long lines shall be folded; the length at which folding occurs is unspecified, but should be
appropriate for the output terminal, considering the number of columns of the terminal.

If a line is folded, and the l flag is not specified and the list edit option is not set, it is unspecified
whether a multi-column character at the folding position is separated; it shall not be discarded.

Current line: Set to the last written line.

Current column: Unchanged if the current line is unchanged; otherwise, set to non-<blank>.

Put

Synopsis: [1addr] pu[t][buffer]

Append text from the specified buffer (by default, the unnamed buffer) to the specified line; line
zero specifies that the text shall be placed at the beginning of the edit buffer. Each portion of a
line in the buffer shall become a new line in the edit buffer, regardless of the mode of the buffer.

Current line: Set to the last line entered into the edit buffer.

Current column: Set to non-<blank>.

2864 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95219

95220

95221

95222

95223

95224

95225

95226

95227

95228

95229

95230

95231

95232

95233

95234

95235

95236

95237

95238

95239

95240

95241

95242

95243

95244

95245

95246

95247

95248

95249

95250

95251

95252

95253

95254

95255

95256

95257

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Quit

Synopsis: q[uit][!]

If no '!' is appended to the command name:

1. If the edit buffer has been modified since the last complete write, it shall be an error.

2. If there are filenames in the argument list after the filename currently referenced, and the
last command was not a quit, wq, xit, or ZZ (see Exit, on page 3561) command, it shall be
an error.

Otherwise, terminate the editing session.

Read

Synopsis: [1addr] r[ead][!][file]

If '!' is not the first non-<blank> to follow the command name, a copy of the specified file shall
be appended into the edit buffer after the specified line; line zero specifies that the copy shall be
placed at the beginning of the edit buffer. The number of lines and bytes read shall be written. If
no file is named, the current pathname shall be the default. If there is no current pathname, then
file shall become the current pathname. If there is no current pathname or file operand, it shall be
an error. Specifying a file that is not of type regular shall have unspecified results.

Otherwise, if file is preceded by '!', the rest of the line after the '!' shall have '%', '#', and
'!' characters expanded as described in Command Line Parsing in ex (on page 2846).

The ex utility shall then pass two arguments to the program named by the shell edit option; the
first shall be −c and the second shall be the expanded arguments to the read command as a
single argument. The standard input of the program shall be set to the standard input of the ex
program when it was invoked. The standard error and standard output of the program shall be
appended into the edit buffer after the specified line.

Each line in the copied file or program output (as delimited by <newline> characters or the end
of the file or output if it is not immediately preceded by a <newline>), shall be a separate line in
the edit buffer. Any occurrences of <carriage-return> and <newline> pairs in the output shall be
treated as single <newline> characters.

The special meaning of the '!' following the read command can be overridden by escaping it
with a <backslash> character.

Current line: If no lines are added to the edit buffer, unchanged. Otherwise, if in open or visual
mode, set to the first line entered into the edit buffer. Otherwise, set to the last line entered into
the edit buffer.

Current column: Set to non-<blank>.

Recover

Synopsis: rec[over][!] file

If no '!' is appended to the command name, and the edit buffer has been modified since the
last complete write, it shall be an error.

If no file operand is specified, then the current pathname shall be used. If there is no current
pathname or file operand, it shall be an error.

If no recovery information has previously been saved about file, the recover command shall
behave identically to the edit command, and an informational message to this effect shall be

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2865

95258

95259

95260

95261

95262

95263

95264

95265

95266

95267

95268

95269

95270

95271

95272

95273

95274

95275

95276

95277

95278

95279

95280

95281

95282

95283

95284

95285

95286

95287

95288

95289

95290

95291

95292

95293

95294

95295

95296

95297

95298

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

written.

Otherwise, set the current pathname to file, and replace the current contents of the edit buffer
with the recovered contents of file. If there are multiple instances of the file to be recovered, the
one most recently saved shall be recovered, and an informational message that there are
previous versions of the file that can be recovered shall be written. The editor shall behave as if
the contents of the edit buffer have already been modified.

Current file: Set as described for the edit command.

Current column: Set as described for the edit command.

Rewind

Synopsis: rew[ind][!]

If no '!' is appended to the command name, and the edit buffer has been modified since the
last complete write, it shall be an error, unless the file is successfully written as specified by the
autowrite option.

If the argument list is empty, it shall be an error.

The current argument list reference and the current pathname shall be set to the first filename in
the argument list.

Replace the contents of the edit buffer with the contents of the file named by the current
pathname. If for any reason the contents of the file cannot be accessed, the edit buffer shall be
empty.

This command shall be affected by the autowrite and writeany edit options.

Current line: Set as described for the edit command.

Current column: Set as described for the edit command.

Set

Synopsis: se[t][option[=[value]] ...][nooption ...][option? ...][all]

When no arguments are specified, write the value of the term edit option and those options
whose values have been changed from the default settings; when the argument all is specified,
write all of the option values.

Giving an option name followed by the character '?' shall cause the current value of that
option to be written. The '?' can be separated from the option name by zero or more <blank>
characters. The '?' shall be necessary only for Boolean valued options. Boolean options can be
given values by the form set option to turn them on or set nooption to turn them off; string and
numeric options can be assigned by the form set option=value. Any <blank> characters in strings
can be included as is by preceding each <blank> with an escaping <backslash>. More than one
option can be set or listed by a single set command by specifying multiple arguments, each
separated from the next by one or more <blank> characters. Arguments can appear in any order
and shall be processed in the specified order.

See Edit Options in ex (on page 2877) for details about specific options.

Current line: Unchanged.

Current column: Unchanged.

2866 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95299

95300

95301

95302

95303

95304

95305

95306

95307

95308

95309

95310

95311

95312

95313

95314

95315

95316

95317

95318

95319

95320

95321

95322

95323

95324

95325

95326

95327

95328

95329

95330

95331

95332

95333

95334

95335

95336

95337

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Shell

Synopsis: sh[ell]

Invoke the program named in the shell edit option with the single argument −i (interactive
mode). Editing shall be resumed when the program exits.

Current line: Unchanged.

Current column: Unchanged.

Source

Synopsis: so[urce] file

Read and execute ex commands from file. Lines in the file that are blank lines shall be ignored.

Current line: As specified for the individual ex commands.

Current column: As specified for the individual ex commands.

Substitute

Synopsis: [2addr] s[ubstitute][/pattern/repl/][options][count][flags]
[2addr] &[options][count][flags]
[2addr] ~[options][count][flags]

Replace the first instance of the pattern pattern by the string repl on each specified line. (See
Regular Expressions in ex (on page 2875) and Replacement Strings in ex (on page 2876).) Any
non-alphabetic, non-<blank> delimiter other than <backslash>, '|', <newline>, or double-
quote can be used instead of '/'. Within the pattern, in certain circumstances the delimiter can
be used as a literal character; see Regular Expressions in ex (on page 2875). Within the
replacement, the delimiter shall not terminate the replacement if it is the second character of an
escape sequence (see XBD Section 9.1, on page 179) and the escaped delimiter shall be treated as
that literal character in the replacement (losing any special meaning it would have had if it was
not used as the delimiter and was not escaped). It shall be an error if the substitution fails on
every addressed line.

The trailing delimiter can be omitted from pattern or from repl at the end of the command line. If
both pattern and repl are not specified or are empty (for example, "//"), the last s command
shall be repeated. If only pattern is not specified or is empty, the last regular expression used in
the editor shall be used as the pattern. If only repl is not specified or is empty, the pattern shall be
replaced by nothing. If the entire replacement pattern is '%', the last replacement pattern to an
s command shall be used.

Entering a <carriage-return> in repl (which requires an escaping <backslash> in ex mode and an
escaping <control>-V in open or vi mode) shall split the line at that point, creating a new line in
the edit buffer. The <carriage-return> shall be discarded.

If options includes the letter 'g' (global), all non-overlapping instances of the pattern in the line
shall be replaced.

If options includes the letter 'c' (confirm), then before each substitution the line shall be written;
the written line shall reflect all previous substitutions. On the following line, <space> characters
shall be written beneath the characters from the line that are before the pattern to be replaced,
and '^' characters written beneath the characters included in the pattern to be replaced. The ex
utility shall then wait for a response from the user. An affirmative response shall cause the
substitution to be done, while any other input shall not make the substitution. An affirmative
response shall consist of a line with the affirmative response (as defined by the current locale) at

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2867

95338

95339

95340

95341

95342

95343

95344

95345

95346

95347

95348

95349

95350

95351

95352

95353

95354

95355

95356

95357

95358

95359

95360

95361

95362

95363

95364

95365

95366

95367

95368

95369

95370

95371

95372

95373

95374

95375

95376

95377

95378

95379

95380

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

the beginning of the line. This line shall be subject to editing in the same way as the ex command
line.

If interrupted (see the ASYNCHRONOUS EVENTS section), any modifications confirmed by the
user shall be preserved in the edit buffer after the interrupt.

If the remembered search direction is not set, the s command shall set it to forward.

In the second Synopsis, the & command shall repeat the previous substitution, as if the &
command were replaced by:

s/pattern/repl/

where pattern and repl are as specified in the previous s, &, or ˜ command.

In the third Synopsis, the ˜ command shall repeat the previous substitution, as if the '~' were
replaced by:

s/pattern/repl/

where pattern shall be the last regular expression specified to the editor, and repl shall be from
the previous substitution (including & and ˜) command.

These commands shall be affected by the LC_MESSAGES environment variable.

Current line: Set to the last line in which a substitution occurred, or, unchanged if no substitution
occurred.

Current column: Set to non-<blank>.

Suspend

Synopsis: su[spend][!]
st[op][!]

Allow control to return to the invoking process; ex shall suspend itself as if it had received the
SIGTSTP signal. The suspension shall occur only if job control is enabled in the invoking shell
(see the description of set −m).

These commands shall be affected by the autowrite and writeany edit options.

The current susp character (see stty) shall be equivalent to the suspend command.

Tag

Synopsis: ta[g][!] tagstring

The results are unspecified if the format of a tags file is not as specified by the ctags utility (see
ctags) description.

The tag command shall search for tagstring in the tag files referred to by the tag edit option, in
the order they are specified, until a reference to tagstring is found. Files shall be searched from
beginning to end. If no reference is found, it shall be an error and an error message to this effect
shall be written. If the reference is not found, or if an error occurs while processing a file referred
to in the tag edit option, it shall be an error, and an error message shall be written at the first
occurrence of such an error.

Otherwise, if the tags file contained a pattern, the pattern shall be treated as a regular expression
used in the editor; for example, for the purposes of the s command.

If the tagstring is in a file with a different name than the current pathname, set the current
pathname to the name of that file, and replace the contents of the edit buffer with the contents of

2868 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95381

95382

95383

95384

95385

95386

95387

95388

95389

95390

95391

95392

95393

95394

95395

95396

95397

95398

95399

95400

95401

95402

95403

95404

95405

95406

95407

95408

95409

95410

95411

95412

95413

95414

95415

95416

95417

95418

95419

95420

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

that file. In this case, if no '!' is appended to the command name, and the edit buffer has been
modified since the last complete write, it shall be an error, unless the file is successfully written
as specified by the autowrite option.

This command shall be affected by the autowrite, tag, taglength, and writeany edit options.

Current line: If the tags file contained a line number, set to that line number. If the line number is
larger than the last line in the edit buffer, an error message shall be written and the current line
shall be set as specified for the edit command.

If the tags file contained a pattern, set to the first occurrence of the pattern in the file. If no
matching pattern is found, an error message shall be written and the current line shall be set as
specified for the edit command.

Current column: If the tags file contained a line-number reference and that line-number was not
larger than the last line in the edit buffer, or if the tags file contained a pattern and that pattern
was found, set to non-<blank>. Otherwise, set as specified for the edit command.

Unabbreviate

Synopsis: una[bbrev] lhs

If lhs is not an entry in the current list of abbreviations (see Abbreviate, on page 2854), it shall be
an error. Otherwise, delete lhs from the list of abbreviations.

Current line: Unchanged.

Current column: Unchanged.

Undo

Synopsis: u[ndo]

Reverse the changes made by the last command that modified the contents of the edit buffer,
including undo. For this purpose, the global, v, open, and visual commands, and commands
resulting from buffer executions and mapped character expansions, are considered single
commands.

If no action that can be undone preceded the undo command, it shall be an error.

If the undo command restores lines that were marked, the mark shall also be restored unless it
was reset subsequent to the deletion of the lines.

Current line:

1. If lines are added or changed in the file, set to the first line added or changed.

2. Set to the line before the first line deleted, if it exists.

3. Set to 1 if the edit buffer is not empty.

4. Set to zero.

Current column: Set to non-<blank>.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2869

95421

95422

95423

95424

95425

95426

95427

95428

95429

95430

95431

95432

95433

95434

95435

95436

95437

95438

95439

95440

95441

95442

95443

95444

95445

95446

95447

95448

95449

95450

95451

95452

95453

95454

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Unmap

Synopsis: unm[ap][!] lhs

If '!' is appended to the command name, and if lhs is not an entry in the list of text input mode
map definitions, it shall be an error. Otherwise, delete lhs from the list of text input mode map
definitions.

If no '!' is appended to the command name, and if lhs is not an entry in the list of command
mode map definitions, it shall be an error. Otherwise, delete lhs from the list of command mode
map definitions.

Current line: Unchanged.

Current column: Unchanged.

Version

Synopsis: ve[rsion]

Write a message containing version information for the editor. The format of the message is
unspecified.

Current line: Unchanged.

Current column: Unchanged.

Visual

Synopsis: [1addr] vi[sual][type][count][flags]

If ex is currently in open or visual mode, the Synopsis and behavior of the visual command shall
be the same as the edit command, as specified by Edit (on page 2856).

Otherwise, this command need not be supported on block-mode terminals or terminals with
insufficient capabilities. If standard input, standard output, or standard error are not terminal
devices, the results are unspecified.

If count is specified, the value of the window edit option shall be set to count (as described in
window, on page 2883). If the '^' type character was also specified, the window edit option
shall be set before being used by the type character.

Enter visual mode. If type is not specified, it shall be as if a type of '+' was specified. The type
shall cause the following effects:

+ Place the beginning of the specified line at the top of the display.

- Place the end of the specified line at the bottom of the display.

. Place the beginning of the specified line in the middle of the display.

ˆ If the specified line is less than or equal to the value of the window edit option, set the line
to 1; otherwise, decrement the line by the value of the window edit option minus 1. Place
the beginning of this line as close to the bottom of the displayed lines as possible, while still
displaying the value of the window edit option number of lines.

Current line: Set to the specified line.

Current column: Set to non-<blank>.

2870 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95455

95456

95457

95458

95459

95460

95461

95462

95463

95464

95465

95466

95467

95468

95469

95470

95471

95472

95473

95474

95475

95476

95477

95478

95479

95480

95481

95482

95483

95484

95485

95486

95487

95488

95489

95490

95491

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Write

Synopsis: [2addr] w[rite][!][>>][file]
[2addr] w[rite][!][file]
[2addr] wq[!][>>][file]

If no lines are specified, the lines shall default to the entire file.

The command wq shall be equivalent to a write command followed by a quit command; wq!
shall be equivalent to write! followed by quit. In both cases, if the write command fails, the
quit shall not be attempted.

If the command name is not followed by one or more <blank> characters, or file is not preceded
by a '!' character, the write shall be to a file.

1. If the >> argument is specified, and the file already exists, the lines shall be appended to
the file instead of replacing its contents. If the >> argument is specified, and the file does
not already exist, it is unspecified whether the write shall proceed as if the >> argument
had not been specified or if the write shall fail.

2. If the readonly edit option is set (see readonly, on page 2880), the write shall fail.

3. If file is specified, and is not the current pathname, and the file exists, the write shall fail.

4. If file is not specified, the current pathname shall be used. If there is no current pathname,
the write command shall fail.

5. If the current pathname is used, and the current pathname has been changed by the file
or read commands, and the file exists, the write shall fail. If the write is successful,
subsequent writes shall not fail for this reason (unless the current pathname is changed
again).

6. If the whole edit buffer is not being written, and the file to be written exists, the write
shall fail.

For rules 1., 2., 3., and 5., the write can be forced by appending the character '!' to the
command name.

For rules 2., 3., and 5., the write can be forced by setting the writeany edit option.

Additional, implementation-defined tests may cause the write to fail.

If the edit buffer is empty, a file without any contents shall be written.

An informational message shall be written noting the number of lines and bytes written.

Otherwise, if the command is followed by one or more <blank> characters, and the file is
preceded by '!', the rest of the line after the '!' shall have '%', '#', and '!' characters
expanded as described in Command Line Parsing in ex (on page 2846).

The ex utility shall then pass two arguments to the program named by the shell edit option; the
first shall be −c and the second shall be the expanded arguments to the write command as a
single argument. The specified lines shall be written to the standard input of the command. The
standard error and standard output of the program, if any, shall be written as described for the
print command. If the last character in that output is not a <newline>, a <newline> shall be
written at the end of the output.

The special meaning of the '!' following the write command can be overridden by escaping it
with a <backslash> character.

Current line: Unchanged.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2871

95492

95493

95494

95495

95496

95497

95498

95499

95500

95501

95502

95503

95504

95505

95506

95507

95508

95509

95510

95511

95512

95513

95514

95515

95516

95517

95518

95519

95520

95521

95522

95523

95524

95525

95526

95527

95528

95529

95530

95531

95532

95533

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Current column: Unchanged.

Write and Exit

Synopsis: [2addr] x[it][!][file]

If the edit buffer has not been modified since the last complete write, xit shall be equivalent to
the quit command, or if a '!' is appended to the command name, to quit!.

Otherwise, xit shall be equivalent to the wq command, or if a '!' is appended to the command
name, to wq!.

Current line: Unchanged.

Current column: Unchanged.

Yank

Synopsis: [2addr] ya[nk][buffer][count]

Copy the specified lines to the specified buffer (by default, the unnamed buffer), which shall
become a line-mode buffer.

Current line: Unchanged.

Current column: Unchanged.

Adjust Window

Synopsis: [1addr] z[!][type ...][count][flags]

If no line is specified, the current line shall be the default; if type is omitted as well, the current
line value shall first be incremented by 1. If incrementing the current line would cause it to be
greater than the last line in the edit buffer, it shall be an error.

If there are <blank> characters between the type argument and the preceding z command name
or optional '!' character, it shall be an error.

If count is specified, the value of the window edit option shall be set to count (as described in
window, on page 2883). If count is omitted, it shall default to 2 times the value of the scroll edit
option, or if ! was specified, the number of lines in the display minus 1.

If type is omitted, then count lines starting with the specified line shall be written. Otherwise,
count lines starting with the line specified by the type argument shall be written.

The type argument shall change the lines to be written. The possible values of type are as follows:

− The specified line shall be decremented by the following value:

(((number of '-' characters) x count) -1)

If the calculation would result in a number less than 1, it shall be an error. Write lines from
the edit buffer, starting at the new value of line, until count lines or the last line in the edit
buffer has been written.

+ The specified line shall be incremented by the following value:

(((number of '+' characters) -1) x count) +1

If the calculation would result in a number greater than the last line in the edit buffer, it
shall be an error. Write lines from the edit buffer, starting at the new value of line, until count
lines or the last line in the edit buffer has been written.

2872 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95534

95535

95536

95537

95538

95539

95540

95541

95542

95543

95544

95545

95546

95547

95548

95549

95550

95551

95552

95553

95554

95555

95556

95557

95558

95559

95560

95561

95562

95563

95564

95565

95566

95567

95568

95569

95570

95571

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

=,. If more than a single '.' or '=' is specified, it shall be an error. The following steps shall
be taken:

1. If count is zero, nothing shall be written.

2. Write as many of the N lines before the current line in the edit buffer as exist. If count
or '!' was specified, N shall be:

(count -1) /2

Otherwise, N shall be:

(count -3) /2

If N is a number less than 3, no lines shall be written.

3. If '=' was specified as the type character, write a line consisting of the smaller of the
number of columns in the display divided by two, or 40 '−' characters.

4. Write the current line.

5. Repeat step 3.

6. Write as many of the N lines after the current line in the edit buffer as exist. N shall
be defined as in step 2. If N is a number less than 3, no lines shall be written. If count
is less than 3, no lines shall be written.

ˆ The specified line shall be decremented by the following value:

(((number of '^' characters) +1) x count) -1

If the calculation would result in a number less than 1, it shall be an error. Write lines from
the edit buffer, starting at the new value of line, until count lines or the last line in the edit
buffer has been written.

Current line: Set to the last line written, unless the type is =, in which case, set to the specified
line.

Current column: Set to non-<blank>.

Escape

Synopsis: !command
[2addr] !command

The contents of the line after the '!' shall have '%', '#', and '!' characters expanded as
described in Command Line Parsing in ex (on page 2846). If the expansion causes the text of the
line to change, it shall be redisplayed, preceded by a single '!' character.

The ex utility shall execute the program named by the shell edit option. It shall pass two
arguments to the program; the first shall be −c, and the second shall be the expanded arguments
to the ! command as a single argument.

If no lines are specified, the standard input, standard output, and standard error of the program
shall be set to the standard input, standard output, and standard error of the ex program when it
was invoked. In addition, a warning message shall be written if the edit buffer has been
modified since the last complete write, and the warn edit option is set.

If lines are specified, they shall be passed to the program as standard input, and the standard
output and standard error of the program shall replace those lines in the edit buffer. Each line in
the program output (as delimited by <newline> characters or the end of the output if it is not
immediately preceded by a <newline>), shall be a separate line in the edit buffer. Any

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2873

95572

95573

95574

95575

95576

95577

95578

95579

95580

95581

95582

95583

95584

95585

95586

95587

95588

95589

95590

95591

95592

95593

95594

95595

95596

95597

95598

95599

95600

95601

95602

95603

95604

95605

95606

95607

95608

95609

95610

95611

95612

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

occurrences of <carriage-return> and <newline> pairs in the output shall be treated as single
<newline> characters. The specified lines shall be copied into the unnamed buffer before they
are replaced, and the unnamed buffer shall become a line-mode buffer.

If in ex mode, a single '!' character shall be written when the program completes.

This command shall be affected by the shell and warn edit options. If no lines are specified, this
command shall be affected by the autowrite and writeany edit options. If lines are specified, this
command shall be affected by the autoprint edit option.

Current line:

1. If no lines are specified, unchanged.

2. Otherwise, set to the last line read in, if any lines are read in.

3. Otherwise, set to the line before the first line of the lines specified, if that line exists.

4. Otherwise, set to the first line of the edit buffer if the edit buffer is not empty.

5. Otherwise, set to zero.

Current column: If no lines are specified, unchanged. Otherwise, set to non-<blank>.

Shift Left

Synopsis: [2addr] <[< ...][count][flags]

Shift the specified lines to the start of the line; the number of column positions to be shifted shall
be the number of command characters times the value of the shiftwidth edit option. Only
leading <blank> characters shall be deleted or changed into other <blank> characters in shifting;
other characters shall not be affected.

Lines to be shifted shall be copied into the unnamed buffer, which shall become a line-mode
buffer.

This command shall be affected by the autoprint edit option.

Current line: Set to the last line in the lines specified.

Current column: Set to non-<blank>.

Shift Right

Synopsis: [2addr] >[> ...][count][flags]

Shift the specified lines away from the start of the line; the number of column positions to be
shifted shall be the number of command characters times the value of the shiftwidth edit
option. The shift shall be accomplished by adding <blank> characters as a prefix to the line or
changing leading <blank> characters into other <blank> characters. Empty lines shall not be
changed.

Lines to be shifted shall be copied into the unnamed buffer, which shall become a line-mode
buffer.

This command shall be affected by the autoprint edit option.

Current line: Set to the last line in the lines specified.

Current column: Set to non-<blank>.

2874 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95613

95614

95615

95616

95617

95618

95619

95620

95621

95622

95623

95624

95625

95626

95627

95628

95629

95630

95631

95632

95633

95634

95635

95636

95637

95638

95639

95640

95641

95642

95643

95644

95645

95646

95647

95648

95649

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

<control>-D

Synopsis: <control>-D

Write the next n lines, where n is the minimum of the values of the scroll edit option and the
number of lines after the current line in the edit buffer. If the current line is the last line of the
edit buffer it shall be an error.

Current line: Set to the last line written.

Current column: Set to non-<blank>.

Write Line Number

Synopsis: [1addr] = [flags]

If line is not specified, it shall default to the last line in the edit buffer. Write the line number of
the specified line.

Current line: Unchanged.

Current column: Unchanged.

Execute

Synopsis: [2addr] @ buffer
[2addr] * buffer

If no buffer is specified or is specified as '@' or '*', the last buffer executed shall be used. If no
previous buffer has been executed, it shall be an error.

For each line specified by the addresses, set the current line ('.') to the specified line, and
execute the contents of the named buffer (as they were at the time the @ command was executed)
as ex commands. For each line of a line-mode buffer, and all but the last line of a character-mode
buffer, the ex command parser shall behave as if the line was terminated by a <newline>.

If an error occurs during this process, or a line specified by the addresses does not exist when
the current line would be set to it, or more than a single line was specified by the addresses, and
the contents of the edit buffer are replaced (for example, by the ex :edit command) an error
message shall be written, and no more commands resulting from the execution of this command
shall be processed.

Current line: As specified for the individual ex commands.

Current column: As specified for the individual ex commands.

Regular Expressions in ex

The ex utility shall support regular expressions that are a superset of the basic regular
expressions described in XBD Section 9.3 (on page 181). A null regular expression ("//") shall
be equivalent to the last regular expression encountered.

Regular expressions can be used in addresses to specify lines and, in some commands (for
example, the substitute command), to specify portions of a line to be substituted.

The start and end of a regular expression (RE) are marked by a delimiter character (although in
some circumstances the end delimiter can be omitted). In addresses, the delimiter is either
<slash> or <question-mark>. In commands, other characters can be used as the delimiter, as
specified in the description of the command. Within the RE (as an ex extension to the BRE
syntax), the delimiter shall not terminate the RE if it is the second character of an escape

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2875

95650

95651

95652

95653

95654

95655

95656

95657

95658

95659

95660

95661

95662

95663

95664

95665

95666

95667

95668

95669

95670

95671

95672

95673

95674

95675

95676

95677

95678

95679

95680

95681

95682

95683

95684

95685

95686

95687

95688

95689

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

sequence (see XBD Section 9.1, on page 179) and the escaped delimiter shall be treated as that
literal character in the RE (losing any special meaning it would have had if it was not used as the
delimiter and was not escaped). In addition, the delimiter character shall not terminate the RE
when it appears within a bracket expression, and shall have its normal meaning in the bracket
expression. For example, the command "g%[%]%p" is equivalent to "g/[%]/p", and the
command "s-[0-9]--g" is equivalent to "s/[0-9]//g".

The following constructs can be used to enhance the basic regular expressions:

\< Match the beginning of a word. (See the definition of word at the beginning of Command
Descriptions in ex (on page 2852).)

\> Match the end of a word.

˜ Match the replacement part of the last substitute command. The <tilde> ('~') character can
be escaped in a regular expression to become a normal character with no special meaning.
The <backslash> shall be discarded.

When the editor option magic is not set, the only characters with special meanings shall be '^'
at the beginning of a pattern, '$' at the end of a pattern, and <backslash>. The characters '.',
'*', '[', and '~' shall be treated as ordinary characters unless preceded by a <backslash>;
when preceded by a <backslash> they shall regain their special meaning, or in the case of
<backslash>, be handled as a single <backslash>. <backslash> characters used to escape other
characters shall be discarded.

Replacement Strings in ex

Certain characters and strings have special meaning in replacement strings when the character,
or the first character of the string, is unescaped.

The character '&' ('\&' if the editor option magic is not set) in the replacement string shall
stand for the text matched by the pattern to be replaced. The character '~' ('\~' if magic is not
set) shall be replaced by the replacement part of the previous substitute command. The
sequence '\n', where n is an integer, shall be replaced by the text matched by the
corresponding back-reference expression. If the corresponding back-reference expression does
not match, then the characters '\n' shall be replaced by the empty string.

The strings '\l', '\u', '\L', and '\U' can be used to modify the case of elements in the
replacement string (using the '\&' or "\"digit) notation. The string '\l' ('\u') shall cause
the character that follows to be converted to lowercase (uppercase). The string '\L' ('\U') shall
cause all characters subsequent to it to be converted to lowercase (uppercase) as they are
inserted by the substitution until the string '\e' or '\E', or the end of the replacement string,
is encountered.

Otherwise, any character following an unescaped <backslash> shall be treated as that literal
character, and the escaping <backslash> shall be discarded.

An example of case conversion with the s command is as follows:

:p
The cat sat on the mat.
:s/\<.at\>/\u&/gp
The Cat Sat on the Mat.
:s/S\(.*\)M/S\U\1\eM/p
The Cat SAT ON THE Mat.

2876 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95690

95691

95692

95693

95694

95695

95696

95697

95698

95699

95700

95701

95702

95703

95704

95705

95706

95707

95708

95709

95710

95711

95712

95713

95714

95715

95716

95717

95718

95719

95720

95721

95722

95723

95724

95725

95726

95727

95728

95729

95730

95731

95732

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Edit Options in ex

The ex utility has a number of options that modify its behavior. These options have default
settings, which can be changed using the set command.

Options are Boolean unless otherwise specified.

autoindent, ai

[Default unset]

If autoindent is set, each line in input mode shall be indented (using first as many <tab>
characters as possible, as determined by the editor option tabstop, and then using <space>
characters) to align with another line, as follows:

1. If in open or visual mode and the text input is part of a line-oriented command (see the
EXTENDED DESCRIPTION in vi), align to the first column.

2. Otherwise, if in open or visual mode, indentation for each line shall be set as follows:

a. If a line was previously inserted as part of this command, it shall be set to the
indentation of the last inserted line by default, or as otherwise specified for the
<control>-D character in Input Mode Commands in vi (on page 3561).

b. Otherwise, it shall be set to the indentation of the previous current line, if any;
otherwise, to the first column.

3. For the ex a, i, and c commands, indentation for each line shall be set as follows:

a. If a line was previously inserted as part of this command, it shall be set to the
indentation of the last inserted line by default, or as otherwise specified for the eof
character in Scroll (on page 2850).

b. Otherwise, if the command is the ex a command, it shall be set to the line
appended after, if any; otherwise to the first column.

c. Otherwise, if the command is the ex i command, it shall be set to the line inserted
before, if any; otherwise to the first column.

d. Otherwise, if the command is the ex c command, it shall be set to the indentation of
the line replaced.

autoprint, ap

[Default set]

If autoprint is set, the current line shall be written after each ex command that modifies the
contents of the current edit buffer, and after each tag command for which the tag search pattern
was found or tag line number was valid, unless:

1. The command was executed while in open or visual mode.

2. The command was executed as part of a global or v command or @ buffer execution.

3. The command was the form of the read command that reads a file into the edit buffer.

4. The command was the append, change, or insert command.

5. The command was not terminated by a <newline>.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2877

95733

95734

95735

95736

95737

95738

95739

95740

95741

95742

95743

95744

95745

95746

95747

95748

95749

95750

95751

95752

95753

95754

95755

95756

95757

95758

95759

95760

95761

95762

95763

95764

95765

95766

95767

95768

95769

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

6. The current line shall be written by a flag specified to the command; for example, delete #
shall write the current line as specified for the flag modifier to the delete command, and
not as specified by the autoprint edit option.

autowrite, aw

[Default unset]

If autowrite is set, and the edit buffer has been modified since it was last completely written to
any file, the contents of the edit buffer shall be written as if the ex write command had been
specified without arguments, before each command affected by the autowrite edit option is
executed. Appending the character '!' to the command name of any of the ex commands
except '!' shall prevent the write. If the write fails, it shall be an error and the command shall
not be executed.

beautify, bf

XSI [Default unset]

If beautify is set, all non-printable characters, other than <tab>, <newline>, and <form-feed>
characters, shall be discarded from text read in from files.

directory, dir

[Default implementation-defined]

The value of this option specifies the directory in which the editor buffer is to be placed. If this
directory is not writable by the user, the editor shall quit.

edcompatible, ed

[Default unset]

Causes the presence of g and c suffixes on substitute commands to be remembered, and toggled
by repeating the suffixes.

errorbells, eb

[Default unset]

If the editor is in ex mode, and the terminal does not support a standout mode (such as inverse
video), and errorbells is set, error messages shall be preceded by alerting the terminal.

exrc

[Default unset]

If exrc is set, ex shall access any .exrc file in the current directory, as described in Initialization in
ex and vi (on page 2842). If exrc is not set, ex shall ignore any .exrc file in the current directory
during initialization, unless the current directory is that named by the HOME environment
variable.

2878 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95770

95771

95772

95773

95774

95775

95776

95777

95778

95779

95780

95781

95782

95783

95784

95785

95786

95787

95788

95789

95790

95791

95792

95793

95794

95795

95796

95797

95798

95799

95800

95801

95802

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

ignorecase, ic

[Default unset]

If ignorecase is set, characters that have uppercase and lowercase representations shall have
those representations considered as equivalent for purposes of regular expression comparison.

The ignorecase edit option shall affect all remembered regular expressions; for example,
unsetting the ignorecase edit option shall cause a subsequent vi n command to search for the
last basic regular expression in a case-sensitive fashion.

list

[Default unset]

If list is set, edit buffer lines written while in ex command mode shall be written as specified for
the print command with the l flag specified. In open or visual mode, each edit buffer line shall
be displayed as specified for the ex print command with the l flag specified. In open or visual
text input mode, when the cursor does not rest on any character in the line, it shall rest on the
'$' marking the end of the line.

magic

[Default set]

If magic is set, modify the interpretation of characters in regular expressions and substitution
replacement strings (see Regular Expressions in ex (on page 2875) and Replacement Strings in
ex, on page 2876).

mesg

[Default set]

If mesg is set, the permission for others to use the write or talk commands to write to the
terminal shall be turned on while in open or visual mode. The shell-level command mesg n shall
take precedence over any setting of the ex mesg option; that is, if mesg y was issued before the
editor started (or in a shell escape), such as:

:!mesg y

the mesg option in ex shall suppress incoming messages, but the mesg option shall not enable
incoming messages if mesg n was issued.

number, nu

[Default unset]

If number is set, edit buffer lines written while in ex command mode shall be written with line
numbers, in the format specified by the print command with the # flag specified. In ex text input
mode, each line shall be preceded by the line number it will have in the file.

In open or visual mode, each edit buffer line shall be displayed with a preceding line number, in
the format specified by the ex print command with the # flag specified. This line number shall
not be considered part of the line for the purposes of evaluating the current column; that is,
column position 1 shall be the first column position after the format specified by the print
command.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2879

95803

95804

95805

95806

95807

95808

95809

95810

95811

95812

95813

95814

95815

95816

95817

95818

95819

95820

95821

95822

95823

95824

95825

95826

95827

95828

95829

95830

95831

95832

95833

95834

95835

95836

95837

95838

95839

95840

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

paragraphs, para

[Default in the POSIX locale IPLPPPQPP LIpplpipbp]

The paragraphs edit option shall define additional paragraph boundaries for the open and
visual mode commands. The paragraphs edit option can be set to a character string consisting of
zero or more character pairs. It shall be an error to set it to an odd number of characters.

prompt

[Default set]

If prompt is set, ex command mode input shall be prompted for with a <colon> (':'); when
unset, no prompt shall be written.

readonly

[Default see text]

If the readonly edit option is set, read-only mode shall be enabled (see Write, on page 2871). The
readonly edit option shall be initialized to set if either of the following conditions are true:

• The command-line option −R was specified.

• Performing actions equivalent to the access() function called with the following arguments
indicates that the file lacks write permission:

1. The current pathname is used as the path argument.

2. The constant W_OK is used as the amode argument.

The readonly edit option may be initialized to set for other, implementation-defined reasons.
The readonly edit option shall not be initialized to unset based on any special privileges of the
user or process. The readonly edit option shall be reinitialized each time that the contents of the
edit buffer are replaced (for example, by an edit or next command) unless the user has explicitly
set it, in which case it shall remain set until the user explicitly unsets it. Once unset, it shall again
be reinitialized each time that the contents of the edit buffer are replaced.

redraw

[Default unset]

If redraw is set and the terminal is a type incapable of supporting open or visual modes, the
editor shall redraw the screen when necessary in order to update its contents. (Since this is
likely to require a large amount of output to the terminal, it is useful only at high transmission
speeds.)

remap

[Default set]

If remap is set, map translation shall allow for maps defined in terms of other maps; translation
shall continue until a final product is obtained. If unset, only a one-step translation shall be
done.

2880 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95841

95842

95843

95844

95845

95846

95847

95848

95849

95850

95851

95852

95853

95854

95855

95856

95857

95858

95859

95860

95861

95862

95863

95864

95865

95866

95867

95868

95869

95870

95871

95872

95873

95874

95875

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

report

[Default 5]

The value of this report edit option specifies what number of lines being added, copied, deleted,
or modified in the edit buffer will cause an informational message to be written to the user. The
following conditions shall cause an informational message. The message shall contain the
number of lines added, copied, deleted, or modified, but is otherwise unspecified.

• An ex or vi editor command, other than open, undo, or visual, that modifies at least the
value of the report edit option number of lines, and which is not part of an ex global or v
command, or ex or vi buffer execution, shall cause an informational message to be written.

• An ex yank or vi y or Y command, that copies at least the value of the report edit option
plus 1 number of lines, and which is not part of an ex global or v command, or ex or vi
buffer execution, shall cause an informational message to be written.

• An ex global, v, open, undo, or visual command or ex or vi buffer execution, that adds or
deletes a total of at least the value of the report edit option number of lines, and which is
not part of an ex global or v command, or ex or vi buffer execution, shall cause an
informational message to be written. (For example, if 3 lines were added and 8 lines
deleted during an ex visual command, 5 would be the number compared against the
report edit option after the command completed.)

scroll, scr

[Default (number of lines in the display −1)/2]

The value of the scroll edit option shall determine the number of lines scrolled by the ex
<control>-D and z commands. For the vi <control>-D and <control>-U commands, it shall be the
initial number of lines to scroll when no previous <control>-D or <control>-U command has
been executed.

sections

[Default in the POSIX locale NHSHH HUnhsh]

The sections edit option shall define additional section boundaries for the open and visual mode
commands. The sections edit option can be set to a character string consisting of zero or more
character pairs; it shall be an error to set it to an odd number of characters.

shell, sh

[Default from the environment variable SHELL]

The value of this option shall be a string. The default shall be taken from the SHELL
environment variable. If the SHELL environment variable is null or empty, the sh (see sh) utility
shall be the default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2881

95876

95877

95878

95879

95880

95881

95882

95883

95884

95885

95886

95887

95888

95889

95890

95891

95892

95893

95894

95895

95896

95897

95898

95899

95900

95901

95902

95903

95904

95905

95906

95907

95908

95909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

shiftwidth, sw

[Default 8]

The value of this option shall give the width in columns of an indentation level used during
autoindentation and by the shift commands (< and >).

showmatch, sm

[Default unset]

The functionality described for the showmatch edit option need not be supported on block-
mode terminals or terminals with insufficient capabilities.

If showmatch is set, in open or visual mode, when a ')' or '}' is typed, if the matching '(' or
'{' is currently visible on the display, the matching '(' or '{' shall be flagged moving the
cursor to its location for an unspecified amount of time.

showmode

[Default unset]

If showmode is set, in open or visual mode, the current mode that the editor is in shall be
displayed on the last line of the display. Command mode and text input mode shall be
differentiated; other unspecified modes and implementation-defined information may be
displayed.

slowopen

[Default unset]

If slowopen is set during open and visual text input modes, the editor shall not update portions
of the display other than those display line columns that display the characters entered by the
user (see Input Mode Commands in vi, on page 3561).

tabstop, ts

[Default 8]

The value of this edit option shall specify the column boundary used by a <tab> in the display
(see autoprint, ap (on page 2877) and Input Mode Commands in vi, on page 3561).

taglength, tl

[Default zero]

The value of this edit option shall specify the maximum number of characters that are
considered significant in the user-specified tag name and in the tag name from the tags file. If
the value is zero, all characters in both tag names shall be significant.

2882 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95910

95911

95912

95913

95914

95915

95916

95917

95918

95919

95920

95921

95922

95923

95924

95925

95926

95927

95928

95929

95930

95931

95932

95933

95934

95935

95936

95937

95938

95939

95940

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

tags

[Default see text]

The value of this edit option shall be a string of <blank>-delimited pathnames of files used by
the tag command. The default value is unspecified.

term

[Default from the environment variable TERM]

The value of this edit option shall be a string. The default shall be taken from the TERM variable
in the environment. If the TERM environment variable is empty or null, the default is
unspecified. The editor shall use the value of this edit option to determine the type of the display
device.

The results are unspecified if the user changes the value of the term edit option after editor
initialization.

terse

[Default unset]

If terse is set, error messages may be less verbose. However, except for this caveat, error
messages are unspecified. Furthermore, not all error messages need change for different settings
of this option.

warn

[Default set]

If warn is set, and the contents of the edit buffer have been modified since they were last
completely written, the editor shall write a warning message before certain ! commands (see
Escape, on page 2873).

window

[Default see text]

A value used in open and visual mode, by the <control>-B and <control>-F commands, and, in
visual mode, to specify the number of lines displayed when the screen is repainted.

If the −w command-line option is not specified, the default value shall be set to the value of the
LINES environment variable. If the LINES environment variable is empty or null, the default
shall be the number of lines in the display minus 1.

Setting the window edit option to zero or to a value greater than the number of lines in the
display minus 1 (either explicitly or based on the −w option or the LINES environment variable)
shall cause the window edit option to be set to the number of lines in the display minus 1.

The baud rate of the terminal line may change the default in an implementation-defined manner.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2883

95941

95942

95943

95944

95945

95946

95947

95948

95949

95950

95951

95952

95953

95954

95955

95956

95957

95958

95959

95960

95961

95962

95963

95964

95965

95966

95967

95968

95969

95970

95971

95972

95973

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

wrapmargin, wm

[Default 0]

If the value of this edit option is zero, it shall have no effect.

If not in the POSIX locale, the effect of this edit option is implementation-defined.

Otherwise, it shall specify a number of columns from the ending margin of the terminal.

During open and visual text input modes, for each character for which any part of the character
is displayed in a column that is less than wrapmargin columns from the ending margin of the
display line, the editor shall behave as follows:

1. If the character triggering this event is a <blank>, it, and all immediately preceding
<blank> characters on the current line entered during the execution of the current text
input command, shall be discarded, and the editor shall behave as if the user had entered
a single <newline> instead. In addition, if the next user-entered character is a <space>, it
shall be discarded as well.

2. Otherwise, if there are one or more <blank> characters on the current line immediately
preceding the last group of inserted non-<blank> characters which was entered during
the execution of the current text input command, the <blank> characters shall be replaced
as if the user had entered a single <newline> instead.

If the autoindent edit option is set, and the events described in 1. or 2. are performed, any
<blank> characters at or after the cursor in the current line shall be discarded.

The ending margin shall be determined by the system or overridden by the user, as described for
COLUMNS in the ENVIRONMENT VARIABLES section and XBD Chapter 8 (on page 167).

wrapscan, ws

[Default set]

If wrapscan is set, searches (the ex / or ? addresses, or open and visual mode /, ?, N, and n
commands) shall wrap around the beginning or end of the edit buffer; when unset, searches
shall stop at the beginning or end of the edit buffer.

writeany, wa

[Default unset]

If writeany is set, some of the checks performed when executing the ex write commands shall be
inhibited, as described in editor option autowrite.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When any error is encountered and the standard input is not a terminal device file, in addition
to the default requirements described in Section 1.4 (on page 2462), ex shall neither write the file
(if one has been opened) nor return to command or text input mode.

Otherwise, when an unrecoverable error is encountered, it shall be equivalent to a SIGHUP
asynchronous event.

2884 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

95974

95975

95976

95977

95978

95979

95980

95981

95982

95983

95984

95985

95986

95987

95988

95989

95990

95991

95992

95993

95994

95995

95996

95997

95998

95999

96000

96001

96002

96003

96004

96005

96006

96007

96008

96009

96010

96011

96012

96013

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Otherwise, when an error is encountered, the editor shall behave as specified in Command Line
Parsing in ex (on page 2846).

APPLICATION USAGE
If a SIGSEGV signal is received while ex is saving a file, the file might not be successfully saved.

The next command can accept more than one file, so usage such as:

next `ls [abc]*`

is valid; it would not be valid for the edit or read commands, for example, because they expect
only one file and unspecified results occur.

Unlike the system() function, ex does not pass "--" between the "-c" argument and the
command string, so that programs for which −c takes an option-argument can be used in the
shell edit option. Users who want to use an escape command to execute a utility whose name
starts with '-' or '+' need to provide a pathname for that utility that does not start with either
of those characters, or precede the utility name with a <blank> character.

EXAMPLES
None.

RATIONALE
The ex/vi specification is based on the historical practice found in the 4 BSD and System V
implementations of ex and vi.

A restricted editor (both the historical red utility and modifications to ex) were considered and
rejected for inclusion. Neither option provided the level of security that users might expect.

It is recognized that ex visual mode and related features would be difficult, if not impossible, to
implement satisfactorily on a block-mode terminal, or a terminal without any form of cursor
addressing; thus, it is not a mandatory requirement that such features should work on all
terminals. It is the intention, however, that an ex implementation should provide the full set of
capabilities on all terminals capable of supporting them.

Options

The −c replacement for +command was inspired by the −e option of sed. Historically, all such
commands (see edit and next as well) were executed from the last line of the edit buffer. This
meant, for example, that "+/pattern" would fail unless the wrapscan option was set.
POSIX.1-2024 requires conformance to historical practice. The +command option is no longer
specified by POSIX.1-2024 but may be present in some implementations. Historically, some
implementations restricted the ex commands that could be listed as part of the command line
arguments. For consistency, POSIX.1-2024 does not permit these restrictions.

In historical implementations of the editor, the −R option (and the readonly edit option) only
prevented overwriting of files; appending to files was still permitted, mapping loosely into the
csh noclobber variable. Some implementations, however, have not followed this semantic, and
readonly does not permit appending either. POSIX.1-2024 follows the latter practice, believing
that it is a more obvious and intuitive meaning of readonly.

The −s option suppresses all interactive user feedback and is useful for editing scripts in batch
jobs. The list of specific effects is historical practice. The terminal type ``incapable of supporting
open and visual modes’’ has historically been named ``dumb’’.

The −t option was required because the ctags utility appears in POSIX.1-2024 and the option is
available in all historical implementations of ex.

Historically, the ex and vi utilities accepted a −x option, which did encryption based on the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2885

96014

96015

96016

96017

96018

96019

96020

96021

96022

96023

96024

96025

96026

96027

96028

96029

96030

96031

96032

96033

96034

96035

96036

96037

96038

96039

96040

96041

96042

96043

96044

96045

96046

96047

96048

96049

96050

96051

96052

96053

96054

96055

96056

96057

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

algorithm found in the historical crypt utility. The −x option for encryption, and the associated
crypt utility, were omitted because the algorithm used was not specifiable and the export control
laws of some nations make it difficult to export cryptographic technology. In addition, it did not
historically provide the level of security that users might expect.

Standard Input

An end-of-file condition is not equivalent to an end-of-file character. A common end-of-file
character, <control>-D, is historically an ex command.

There was no maximum line length in historical implementations of ex. Specifically, as it was
parsed in chunks, the addresses had a different maximum length than the filenames. Further, the
maximum line buffer size was declared as BUFSIZ, which was different lengths on different
systems. This version selected the value of {LINE_MAX} to impose a reasonable restriction on
portable usage of ex and to aid test suite writers in their development of realistic tests that
exercise this limit.

Input Files

It was an explicit decision by the standard developers that a <newline> be added to any file
lacking one. It was believed that this feature of ex and vi was relied on by users in order to make
text files lacking a trailing <newline> more portable. It is recognized that this will require a user-
specified option or extension for implementations that permit ex and vi to edit files of type other
than text if such files are not otherwise identified by the system. It was agreed that the ability to
edit files of arbitrary type can be useful, but it was not considered necessary to mandate that an
ex or vi implementation be required to handle files other than text files.

The paragraph in the INPUT FILES section, ``By default, . . .’’, is intended to close a long-
standing security problem in ex and vi; that of the ``modeline’’ or ``modelines’’ edit option. This
feature allows any line in the first or last five lines of the file containing the strings "ex:" or
"vi:" (and, apparently, "ei:" or "vx:") to be a line containing editor commands, and ex
interprets all the text up to the next ':' or <newline> as a command. Consider the
consequences, for example, of an unsuspecting user using ex or vi as the editor when replying to
a mail message in which a line such as:

ex:! rm -rf :

appeared in the signature lines. The standard developers believed strongly that an editor should
not by default interpret any lines of a file. Vendors are strongly urged to delete this feature from
their implementations of ex and vi.

Asynchronous Events

The intention of the phrase ``complete write’’ is that the entire edit buffer be written to stable
storage. The note regarding temporary files is intended for implementations that use temporary
files to back edit buffers unnamed by the user.

Historically, SIGQUIT was ignored by ex, but was the equivalent of the Q command in visual
mode; that is, it exited visual mode and entered ex mode. POSIX.1-2024 permits, but does not
require, this behavior. Historically, SIGINT was often used by vi users to terminate text input
mode (<control>-C is often easier to enter than <ESC>). Some implementations of vi alerted the
terminal on this event, and some did not. POSIX.1-2024 requires that SIGINT behave identically
to <ESC>, and that the terminal not be alerted.

Historically, suspending the ex editor during text input mode was similar to SIGINT, as
completed lines were retained, but any partial line discarded, and the editor returned to

2886 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96058

96059

96060

96061

96062

96063

96064

96065

96066

96067

96068

96069

96070

96071

96072

96073

96074

96075

96076

96077

96078

96079

96080

96081

96082

96083

96084

96085

96086

96087

96088

96089

96090

96091

96092

96093

96094

96095

96096

96097

96098

96099

96100

96101

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

command mode. POSIX.1-2024 is silent on this issue; implementations are encouraged to follow
historical practice, where possible.

Historically, the vi editor did not treat SIGTSTP as an asynchronous event, and it was therefore
impossible to suspend the editor in visual text input mode. There are two major reasons for this.
The first is that SIGTSTP is a broadcast signal on UNIX systems, and the chain of events where
the shell execs an application that then execs vi usually caused confusion for the terminal state if
SIGTSTP was delivered to the process group in the default manner. The second was that most
implementations of the UNIX curses package did not handle SIGTSTP safely, and the receipt of
SIGTSTP at the wrong time would cause them to crash. POSIX.1-2024 is silent on this issue;
implementations are encouraged to treat suspension as an asynchronous event if possible.

Historically, modifications to the edit buffer made before SIGINT interrupted an operation were
retained; that is, anywhere from zero to all of the lines to be modified might have been modified
by the time the SIGINT arrived. These changes were not discarded by the arrival of SIGINT.
POSIX.1-2024 permits this behavior, noting that the undo command is required to be able to
undo these partially completed commands.

The action taken for signals other than SIGINT, SIGCONT, SIGHUP, and SIGTERM is
unspecified because some implementations attempt to save the edit buffer in a useful state when
other signals are received.

Standard Error

For ex/vi, diagnostic messages are those messages reported as a result of a failed attempt to
invoke ex or vi, such as invalid options or insufficient resources, or an abnormal termination
condition. Diagnostic messages should not be confused with the error messages generated by
inappropriate or illegal user commands.

Initialization in ex and vi

If an ex command (other than cd, chdir, or source) has a filename argument, one or both of the
alternate and current pathnames will be set. Informally, they are set as follows:

1. If the ex command is one that replaces the contents of the edit buffer, and it succeeds, the
current pathname will be set to the filename argument (the first filename argument in the
case of the next command) and the alternate pathname will be set to the previous current
pathname, if there was one.

2. In the case of the file read/write forms of the read and write commands, if there is no
current pathname, the current pathname will be set to the filename argument.

3. Otherwise, the alternate pathname will be set to the filename argument.

For example, :edit foo and :recover foo, when successful, set the current pathname, and, if there
was a previous current pathname, the alternate pathname. The commands :write, !command,
and :edit set neither the current or alternate pathnames. If the :edit foo command were to fail for
some reason, the alternate pathname would be set. The read and write commands set the
alternate pathname to their file argument, unless the current pathname is not set, in which case
they set the current pathname to their file arguments. The alternate pathname was not
historically set by the :source command. POSIX.1-2024 requires conformance to historical
practice. Implementations adding commands that take filenames as arguments are encouraged
to set the alternate pathname as described here.

Historically, ex and vi read the .exrc file in the $HOME directory twice, if the editor was executed
in the $HOME directory. POSIX.1-2024 prohibits this behavior.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2887

96102

96103

96104

96105

96106

96107

96108

96109

96110

96111

96112

96113

96114

96115

96116

96117

96118

96119

96120

96121

96122

96123

96124

96125

96126

96127

96128

96129

96130

96131

96132

96133

96134

96135

96136

96137

96138

96139

96140

96141

96142

96143

96144

96145

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Historically, the 4 BSD ex and vi read the $HOME and local .exrc files if they were owned by the
real ID of the user, or the sourceany option was set, regardless of other considerations. This was
a security problem because it is possible to put normal UNIX system commands inside a .exrc
file. POSIX.1-2024 does not specify the sourceany option, and historical implementations are
encouraged to delete it.

The .exrc files must be owned by the real ID of the user, and not writable by anyone other than
the owner. The appropriate privileges exception is intended to permit users to acquire special
privileges, but continue to use the .exrc files in their home directories.

System V Release 3.2 and later vi implementations added the option [no]exrc. The behavior is
that local .exrc files are read-only if the exrc option is set. The default for the exrc option was off,
so by default, local .exrc files were not read. The problem this was intended to solve was that
System V permitted users to give away files, so there is no possible ownership or writeability
test to ensure that the file is safe. This is still a security problem on systems where users can give
away files, but there is nothing additional that POSIX.1-2024 can do. The implementation-
defined exception is intended to permit groups to have local .exrc files that are shared by users,
by creating pseudo-users to own the shared files.

POSIX.1-2024 does not mention system-wide ex and vi start-up files. While they exist in several
implementations of ex and vi, they are not present in any implementations considered historical
practice by POSIX.1-2024. Implementations that have such files should use them only if they are
owned by the real user ID or an appropriate user (for example, root on UNIX systems) and if
they are not writable by any user other than their owner. System-wide start-up files should be
read before the EXINIT variable, $HOME/.exrc, or local .exrc files are evaluated.

Historically, any ex command could be entered in the EXINIT variable or the .exrc file, although
ones requiring that the edit buffer already contain lines of text generally caused historical
implementations of the editor to drop core. POSIX.1-2024 requires that any ex command be
permitted in the EXINIT variable and .exrc files, for simplicity of specification and consistency,
although many of them will obviously fail under many circumstances.

The initialization of the contents of the edit buffer uses the phrase ``the effect shall be’’ with
regard to various ex commands. The intent of this phrase is that edit buffer contents loaded
during the initialization phase not be lost; that is, loading the edit buffer should fail if the .exrc
file read in the contents of a file and did not subsequently write the edit buffer. An additional
intent of this phrase is to specify that the initial current line and column is set as specified for the
individual ex commands.

Historically, the −t option behaved as if the tag search were a +command; that is, it was executed
from the last line of the file specified by the tag. This resulted in the search failing if the pattern
was a forward search pattern and the wrapscan edit option was not set. POSIX.1-2024 does not
permit this behavior, requiring that the search for the tag pattern be performed on the entire file,
and, if not found, that the current line be set to a more reasonable location in the file.

Historically, the empty edit buffer presented for editing when a file was not specified by the user
was unnamed. This is permitted by POSIX.1-2024; however, implementations are encouraged to
provide users a temporary filename for this buffer because it permits them the use of ex
commands that use the current pathname during temporary edit sessions.

Historically, the file specified using the −t option was not part of the current argument list. This
practice is permitted by POSIX.1-2024; however, implementations are encouraged to include its
name in the current argument list for consistency.

Historically, the −c command was generally not executed until a file that already exists was
edited. POSIX.1-2024 requires conformance to this historical practice. Commands that could

2888 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96146

96147

96148

96149

96150

96151

96152

96153

96154

96155

96156

96157

96158

96159

96160

96161

96162

96163

96164

96165

96166

96167

96168

96169

96170

96171

96172

96173

96174

96175

96176

96177

96178

96179

96180

96181

96182

96183

96184

96185

96186

96187

96188

96189

96190

96191

96192

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

cause the −c command to be executed include the ex commands edit, next, recover, rewind, and
tag, and the vi commands <control>-ˆ and <control>-]. Historically, reading a file into an edit
buffer did not cause the −c command to be executed (even though it might set the current
pathname) with the exception that it did cause the −c command to be executed if: the editor was
in ex mode, the edit buffer had no current pathname, the edit buffer was empty, and no read
commands had yet been attempted. For consistency and simplicity of specification,
POSIX.1-2024 does not permit this behavior.

Historically, the −r option was the same as a normal edit session if there was no recovery
information available for the file. This allowed users to enter:

vi -r *.c

and recover whatever files were recoverable. In some implementations, recovery was attempted
only on the first file named, and the file was not entered into the argument list; in others,
recovery was attempted for each file named. In addition, some historical implementations
ignored −r if −t was specified or did not support command line file arguments with the −t option.
For consistency and simplicity of specification, POSIX.1-2024 disallows these special cases, and
requires that recovery be attempted the first time each file is edited.

Historically, vi initialized the ` and ' marks, but ex did not. This meant that if the first command
in ex mode was visual or if an ex command was executed first (for example, vi +10 file), vi was
entered without the marks being initialized. Because the standard developers believed the marks
to be generally useful, and for consistency and simplicity of specification, POSIX.1-2024 requires
that they always be initialized if in open or visual mode, or if in ex mode and the edit buffer is
not empty. Not initializing it in ex mode if the edit buffer is empty is historical practice; however,
it has always been possible to set (and use) marks in empty edit buffers in open and visual mode
edit sessions.

Addressing

Historically, ex and vi accepted the additional addressing forms '\/' and '\?'. They were
equivalent to "//" and "??", respectively. They are not required by POSIX.1-2024, mostly
because nobody can remember whether they ever did anything different historically.

Historically, ex and vi permitted an address of zero for several commands, and permitted the %
address in empty files for others. For consistency, POSIX.1-2024 requires support for the former
in the few commands where it makes sense, and disallows it otherwise. In addition, because
POSIX.1-2024 requires that % be logically equivalent to "1,$", it is also supported where it
makes sense and disallowed otherwise.

Historically, the % address could not be followed by further addresses. For consistency and
simplicity of specification, POSIX.1-2024 requires that additional addresses be supported.

All of the following are valid addresses:

+++ Three lines after the current line.

/re/− One line before the next occurrence of re.

−2 Two lines before the current line.

3 − − − − 2 Line one (note intermediate negative address).

1 2 3 Line six.

Any number of addresses can be provided to commands taking addresses; for example,
"1,2,3,4,5p" prints lines 4 and 5, because two is the greatest valid number of addresses
accepted by the print command. This, in combination with the <semicolon> delimiter, permits

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2889

96193

96194

96195

96196

96197

96198

96199

96200

96201

96202

96203

96204

96205

96206

96207

96208

96209

96210

96211

96212

96213

96214

96215

96216

96217

96218

96219

96220

96221

96222

96223

96224

96225

96226

96227

96228

96229

96230

96231

96232

96233

96234

96235

96236

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

users to create commands based on ordered patterns in the file. For example, the command
3;/foo/;+2print will display the first line after line 3 that contains the pattern foo, plus the next
two lines. Note that the address 3; must be evaluated before being discarded because the search
origin for the /foo/ command depends on this.

Historically, values could be added to addresses by including them after one or more <blank>
characters; for example, 3 − 5p wrote the seventh line of the file, and /foo/ 5 was the same as
/foo/+5. However, only absolute values could be added; for example, 5 /foo/ was an error.
POSIX.1-2024 requires conformance to historical practice. Address offsets are separately
specified from addresses because they could historically be provided to visual mode search
commands.

Historically, any missing addresses defaulted to the current line. This was true for leading and
trailing <comma>-delimited addresses, and for trailing <semicolon>-delimited addresses. For
consistency, POSIX.1-2024 requires it for leading <semicolon> addresses as well.

Historically, ex and vi accepted the '^' character as both an address and as a flag offset for
commands. In both cases it was identical to the '−' character. POSIX.1-2024 does not require or
prohibit this behavior.

Historically, the enhancements to basic regular expressions could be used in addressing; for
example, '~', '\<', and '\>'. POSIX.1-2024 requires conformance to historical practice; that
is, that regular expression usage be consistent, and that regular expression enhancements be
supported wherever regular expressions are used.

Command Line Parsing in ex

Historical ex command parsing was even more complex than that described here. POSIX.1-2024
requires the subset of the command parsing that the standard developers believed was
documented and that users could reasonably be expected to use in a portable fashion, and that
was historically consistent between implementations. (The discarded functionality is obscure, at
best.) Historical implementations will require changes in order to comply with POSIX.1-2024;
however, users are not expected to notice any of these changes. Most of the complexity in ex
parsing is to handle three special termination cases:

1. The !, global, v, and the filter versions of the read and write commands are delimited by
<newline> characters (they can contain <vertical-line> characters that are usually shell
pipes).

2. The ex, edit, next, and visual in open and visual mode commands all take ex commands,
optionally containing <vertical-line> characters, as their first arguments.

3. The s command takes a regular expression as its first argument, and uses the delimiting
characters to delimit the command.

Historically, <vertical-line> characters in the +command argument of the ex, edit, next, vi, and
visual commands, and in the pattern and replacement parts of the s command, did not delimit the
command, and in the filter cases for read and write, and the !, global, and v commands, they did
not delimit the command at all. For example, the following commands are all valid:

:edit +25 | s/abc/ABC/ file.c
:s/ | /PIPE/
:read !spell % | columnate
:global/pattern/p | l
:s/a/b/ | s/c/d | set

Historically, empty or <blank> filled lines in .exrc files and sourced files (as well as EXINIT

2890 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96237

96238

96239

96240

96241

96242

96243

96244

96245

96246

96247

96248

96249

96250

96251

96252

96253

96254

96255

96256

96257

96258

96259

96260

96261

96262

96263

96264

96265

96266

96267

96268

96269

96270

96271

96272

96273

96274

96275

96276

96277

96278

96279

96280

96281

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

variables and ex command scripts) were treated as default commands; that is, print commands.
POSIX.1-2024 specifically requires that they be ignored when encountered in .exrc and sourced
files to eliminate a common source of new user error.

Historically, ex commands with multiple adjacent (or <blank>-separated) vertical lines were
handled oddly when executed from ex mode. For example, the command ||| <carriage-return>,
when the cursor was on line 1, displayed lines 2, 3, and 5 of the file. In addition, the command |
would only display the line after the next line, instead of the next two lines. The former worked
more logically when executed from vi mode, and displayed lines 2, 3, and 4. POSIX.1-2024
requires the vi behavior; that is, a single default command and line number increment for each
command separator, and trailing <newline> characters after <vertical-line> separators are
discarded.

Historically, ex permitted a single extra <colon> as a leading command character; for example,
:g/pattern/:p was a valid command. POSIX.1-2024 generalizes this to require that any number of
leading <colon> characters be stripped.

Historically, any prefix of the delete command could be followed without intervening <blank>
characters by a flag character because in the command d p, p is interpreted as the buffer p.
POSIX.1-2024 requires conformance to historical practice.

Historically, the k command could be followed by the mark name without intervening <blank>
characters. POSIX.1-2024 requires conformance to historical practice.

Historically, the s command could be immediately followed by flag and option characters; for
example, s/e/E/|s|sgc3p was a valid command. However, flag characters could not stand alone;
for example, the commands sp and s l would fail, while the command sgp and s gl would
succeed. (Obviously, the '#' flag character was used as a delimiter character if it followed the
command.) Another issue was that option characters had to precede flag characters even when
the command was fully specified; for example, the command s/e/E/pg would fail, while the
command s/e/E/gp would succeed. POSIX.1-2024 requires conformance to historical practice.

Historically, the first command name that had a prefix matching the input from the user was the
executed command; for example, ve, ver, and vers all executed the version command.
Commands were in a specific order, however, so that a matched append, not abbreviate.
POSIX.1-2024 requires conformance to historical practice. The restriction on command search
order for implementations with extensions is to avoid the addition of commands such that the
historical prefixes would fail to work portably.

Historical implementations of ex and vi did not correctly handle multiple ex commands,
separated by <vertical-line> characters, that entered or exited visual mode or the editor. Because
implementations of vi exist that do not exhibit this failure mode, POSIX.1-2024 does not permit
it.

The requirement that alphabetic command names consist of all following alphabetic characters
up to the next non-alphabetic character means that alphabetic command names must be
separated from their arguments by one or more non-alphabetic characters, normally a <blank>
or '!' character, except as specified for the exceptions, the delete, k, and s commands.

Historically, the repeated execution of the ex default print commands (<control>-D, eof ,
<newline>, <carriage-return>) erased any prompting character and displayed the next lines
without scrolling the terminal; that is, immediately below any previously displayed lines. This
provided a cleaner presentation of the lines in the file for the user. POSIX.1-2024 does not require
this behavior because it may be impossible in some situations; however, implementations are
strongly encouraged to provide this semantic if possible.

Historically, it was possible to change files in the middle of a command, and have the rest of the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2891

96282

96283

96284

96285

96286

96287

96288

96289

96290

96291

96292

96293

96294

96295

96296

96297

96298

96299

96300

96301

96302

96303

96304

96305

96306

96307

96308

96309

96310

96311

96312

96313

96314

96315

96316

96317

96318

96319

96320

96321

96322

96323

96324

96325

96326

96327

96328

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

command executed in the new file; for example:

:edit +25 file.c | s/abc/ABC/ | 1

was a valid command, and the substitution was attempted in the newly edited file.
POSIX.1-2024 requires conformance to historical practice. The following commands are
examples that exercise the ex parser:

echo 'foo | bar' > file1; echo 'foo/bar' > file2;
vi
:edit +1 | s/|/PIPE/ | w file1 | e file2 | 1 | s/\//SLASH/ | wq

Historically, there was no protection in editor implementations to avoid ex global, v, @, or *
commands changing edit buffers during execution of their associated commands. Because this
would almost invariably result in catastrophic failure of the editor, and implementations exist
that do exhibit these problems, POSIX.1-2024 requires that changing the edit buffer during a
global or v command, or during a @ or * command for which there will be more than a single
execution, be an error. Implementations supporting multiple edit buffers simultaneously are
strongly encouraged to apply the same semantics to switching between buffers as well.

The ex command quoting required by POSIX.1-2024 is a superset of the quoting in historical
implementations of the editor. For example, it was not historically possible to escape a <blank>
in a filename; for example, :edit foo\\\ bar would report that too many filenames had been
entered for the edit command, and there was no method of escaping a <blank> in the first
argument of an edit, ex, next, or visual command at all. POSIX.1-2024 extends historical
practice, requiring that quoting behavior be made consistent across all ex commands, except for
the map, unmap, abbreviate, and unabbreviate commands, which historically used <control>-V
instead of <backslash> characters for quoting. For those four commands, POSIX.1-2024 requires
conformance to historical practice.

Backslash quoting in ex is non-intuitive. <backslash>-escapes are ignored unless they escape a
special character; for example, when performing file argument expansion, the string "\\%" is
equivalent to '\%', not "\<current pathname>". This can be confusing for users because
<backslash> is usually one of the characters that causes shell expansion to be performed, and
therefore shell quoting rules must be taken into consideration. Generally, quoting characters are
only considered if they escape a special character, and a quoting character must be provided for
each layer of parsing for which the character is special. As another example, only a single
<backslash> is necessary for the '\l' sequence in substitute replacement patterns, because the
character 'l' is not special to any parsing layer above it.

<control>-V quoting in ex is slightly different from backslash quoting. In the four commands
where <control>-V quoting applies (abbreviate, unabbreviate, map, and unmap), any character
may be escaped by a <control>-V whether it would have a special meaning or not. POSIX.1-2024
requires conformance to historical practice.

Historical implementations of the editor did not require delimiters within character classes to be
escaped; for example, the command :s/[/]// on the string "xxx/yyy" would delete the '/' from
the string. POSIX.1-2024 disallows this historical practice for consistency and because it places a
large burden on implementations by requiring that knowledge of regular expressions be built
into the editor parser.

Historically, quoting <newline> characters in ex commands was handled inconsistently. In most
cases, the <newline> character always terminated the command, regardless of any preceding
escape character, because <backslash> characters did not escape <newline> characters for most
ex commands. However, some ex commands (for example, s, map, and abbreviation) permitted
<newline> characters to be escaped (although in the case of map and abbreviation, <control>-V

2892 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96329

96330

96331

96332

96333

96334

96335

96336

96337

96338

96339

96340

96341

96342

96343

96344

96345

96346

96347

96348

96349

96350

96351

96352

96353

96354

96355

96356

96357

96358

96359

96360

96361

96362

96363

96364

96365

96366

96367

96368

96369

96370

96371

96372

96373

96374

96375

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

characters escaped them instead of <backslash> characters). This was true in not only the
command line, but also .exrc and sourced files. For example, the command:

map = foo<control-V><newline>bar

would succeed, although it was sometimes difficult to get the <control>-V and the inserted
<newline> passed to the ex parser. For consistency and simplicity of specification, POSIX.1-2024
requires that it be possible to escape <newline> characters in ex commands at all times, using
<backslash> characters for most ex commands, and using <control>-V characters for the map
and abbreviation commands. For example, the command print<newline>list is required to be
parsed as the single command print<newline>list. While this differs from historical practice,
POSIX.1-2024 developers believed it unlikely that any script or user depended on the historical
behavior.

Historically, an error in a command specified using the −c option did not cause the rest of the −c
commands to be discarded. POSIX.1-2024 disallows this for consistency with mapped keys, the
@, global, source, and v commands, the EXINIT environment variable, and the .exrc files.

Input Editing in ex

One of the common uses of the historical ex editor is over slow network connections. Editors that
run in canonical mode can require far less traffic to and from, and far less processing on, the host
machine, as well as more easily supporting block-mode terminals. For these reasons,
POSIX.1-2024 requires that ex be implemented using canonical mode input processing, as was
done historically.

POSIX.1-2024 does not require the historical 4 BSD input editing characters ``word erase’’ or
``literal next’’. For this reason, it is unspecified how they are handled by ex, although they must
have the required effect. Implementations that resolve them after the line has been ended using a
<newline> or <control>-M character, and implementations that rely on the underlying system
terminal support for this processing, are both conforming. Implementations are strongly urged
to use the underlying system functionality, if at all possible, for compatibility with other system
text input interfaces.

Historically, when the eof character was used to decrement the autoindent level, the cursor
moved to display the new end of the autoindent characters, but did not move the cursor to a
new line, nor did it erase the <control>-D character from the line. POSIX.1-2024 does not specify
that the cursor remain on the same line or that the rest of the line is erased; however,
implementations are strongly encouraged to provide the best possible user interface; that is, the
cursor should remain on the same line, and any <control>-D character on the line should be
erased.

POSIX.1-2024 does not require the historical 4 BSD input editing character ``reprint’’,
traditionally <control>-R, which redisplayed the current input from the user. For this reason,
and because the functionality cannot be implemented after the line has been terminated by the
user, POSIX.1-2024 makes no requirements about this functionality. Implementations are
strongly urged to make this historical functionality available, if possible.

Historically, <control>-Q did not perform a literal next function in ex, as it did in vi.
POSIX.1-2024 requires conformance to historical practice to avoid breaking historical ex scripts
and .exrc files.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2893

96376

96377

96378

96379

96380

96381

96382

96383

96384

96385

96386

96387

96388

96389

96390

96391

96392

96393

96394

96395

96396

96397

96398

96399

96400

96401

96402

96403

96404

96405

96406

96407

96408

96409

96410

96411

96412

96413

96414

96415

96416

96417

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

eof

Whether the eof character immediately modifies the autoindent characters in the prompt is left
unspecified so that implementations can conform in the presence of systems that do not support
this functionality. Implementations are encouraged to modify the line and redisplay it
immediately, if possible.

The specification of the handling of the eof character differs from historical practice only in that
eof characters are not discarded if they follow normal characters in the text input. Historically,
they were always discarded.

Command Descriptions in ex

Historically, several commands (for example, global, v, visual, s, write, wq, yank, !, <, >, &, and
˜) were executable in empty files (that is, the default address(es) were 0), or permitted explicit
addresses of 0 (for example, 0 was a valid address, or 0,0 was a valid range). Addresses of 0, or
command execution in an empty file, make sense only for commands that add new text to the
edit buffer or write commands (because users may wish to write empty files). POSIX.1-2024
requires this behavior for such commands and disallows it otherwise, for consistency and
simplicity of specification.

A count to an ex command has been historically corrected to be no greater than the last line in a
file; for example, in a five-line file, the command 1,6print would fail, but the command
1print300 would succeed. POSIX.1-2024 requires conformance to historical practice.

Historically, the use of flags in ex commands could be obscure. General historical practice was as
described by POSIX.1-2024, but there were some special cases. For instance, the list, number,
and print commands ignored trailing address offsets; for example, 3p +++# would display line
3, and 3 would be the current line after the execution of the command. The open and visual
commands ignored both the trailing offsets and the trailing flags. Also, flags specified to the
open and visual commands interacted badly with the list edit option, and setting and then
unsetting it during the open/visual session would cause vi to stop displaying lines in the
specified format. For consistency and simplicity of specification, POSIX.1-2024 does not permit
any of these exceptions to the general rule.

POSIX.1-2024 uses the word copy in several places when discussing buffers. This is not intended
to imply implementation.

Historically, ex users could not specify numeric buffers because of the ambiguity this would
cause; for example, in the command 3 delete 2, it is unclear whether 2 is a buffer name or a
count. POSIX.1-2024 requires conformance to historical practice by default, but does not
preclude extensions.

Historically, the contents of the unnamed buffer were frequently discarded after commands that
did not explicitly affect it; for example, when using the edit command to switch files. For
consistency and simplicity of specification, POSIX.1-2024 does not permit this behavior.

The ex utility did not historically have access to the numeric buffers, and, furthermore, deleting
lines in ex did not modify their contents. For example, if, after doing a delete in vi, the user
switched to ex, did another delete, and then switched back to vi, the contents of the numeric
buffers would not have changed. POSIX.1-2024 requires conformance to historical practice.
Numeric buffers are described in the ex utility in order to confine the description of buffers to a
single location in POSIX.1-2024.

The metacharacters that trigger shell expansion in file arguments match historical practice, as
does the method for doing shell expansion. Implementations wishing to provide users with the
flexibility to alter the set of metacharacters are encouraged to provide a shellmeta string edit

2894 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96418

96419

96420

96421

96422

96423

96424

96425

96426

96427

96428

96429

96430

96431

96432

96433

96434

96435

96436

96437

96438

96439

96440

96441

96442

96443

96444

96445

96446

96447

96448

96449

96450

96451

96452

96453

96454

96455

96456

96457

96458

96459

96460

96461

96462

96463

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

option.

Historically, ex commands executed from vi refreshed the screen when it did not strictly need to
do so; for example, :!date > /dev/null does not require a screen refresh because the output of
the UNIX date command requires only a single line of the screen. POSIX.1-2024 requires that the
screen be refreshed if it has been overwritten, but makes no requirements as to how an
implementation should make that determination. Implementations may prompt and refresh the
screen regardless.

Abbreviate

Historical practice was that characters that were entered as part of an abbreviation replacement
were subject to map expansions, the showmatch edit option, further abbreviation expansions,
and so on; that is, they were logically pushed onto the terminal input queue, and were not a
simple replacement. POSIX.1-2024 requires conformance to historical practice. Historical
practice was that whenever a non-word character (that had not been escaped by a <control>-V)
was entered after a word character, vi would check for abbreviations. The check was based on
the type of the character entered before the word character of the word/non-word pair that
triggered the check. The word character of the word/non-word pair that triggered the check and
all characters entered before the trigger pair that were of that type were included in the check,
with the exception of <blank> characters, which always delimited the abbreviation.

This means that, for the abbreviation to work, the lhs must end with a word character, there can
be no transitions from word to non-word characters (or vice versa) other than between the last
and next-to-last characters in the lhs, and there can be no <blank> characters in the lhs. In
addition, because of the historical quoting rules, it was impossible to enter a literal <control>-V
in the lhs. POSIX.1-2024 requires conformance to historical practice. Historical implementations
did not inform users when abbreviations that could never be used were entered;
implementations are strongly encouraged to do so.

For example, the following abbreviations will work:

:ab (p REPLACE
:ab p REPLACE
:ab ((p REPLACE

The following abbreviations will not work:

:ab (REPLACE
:ab (pp REPLACE

Historical practice is that words on the vi colon command line were subject to abbreviation
expansion, including the arguments to the abbrev (and more interestingly) the unabbrev
command. Because there are implementations that do not do abbreviation expansion for the first
argument to those commands, this is permitted, but not required, by POSIX.1-2024. However,
the following sequence:

:ab foo bar
:ab foo baz

resulted in the addition of an abbreviation of "baz" for the string "bar" in historical ex/vi, and
the sequence:

:ab foo1 bar
:ab foo2 bar
:unabbreviate foo2

deleted the abbreviation "foo1", not "foo2". These behaviors are not permitted by

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2895

96464

96465

96466

96467

96468

96469

96470

96471

96472

96473

96474

96475

96476

96477

96478

96479

96480

96481

96482

96483

96484

96485

96486

96487

96488

96489

96490

96491

96492

96493

96494

96495

96496

96497

96498

96499

96500

96501

96502

96503

96504

96505

96506

96507

96508

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

POSIX.1-2024 because they clearly violate the expectations of the user.

It was historical practice that <control>-V, not <backslash>, characters be interpreted as escaping
subsequent characters in the abbreviate command. POSIX.1-2024 requires conformance to
historical practice; however, it should be noted that an abbreviation containing a <blank> will
never work.

Append

Historically, any text following a <vertical-line> command separator after an append, change, or
insert command became part of the insert text. For example, in the command:

:g/pattern/append|stuff1

a line containing the text "stuff1" would be appended to each line matching pattern. It was
also historically valid to enter:

:append|stuff1
stuff2
.

and the text on the ex command line would be appended along with the text inserted after it.
There was an historical bug, however, that the user had to enter two terminating lines (the '.'
lines) to terminate text input mode in this case. POSIX.1-2024 requires conformance to historical
practice, but disallows the historical need for multiple terminating lines.

Change

See the RATIONALE for the append command. Historical practice for cursor positioning after
the change command when no text is input, is as described in POSIX.1-2024. However, one
System V implementation is known to have been modified such that the cursor is positioned on
the first address specified, and not on the line before the first address. POSIX.1-2024 disallows
this modification for consistency.

Historically, the change command did not support buffer arguments, although some
implementations allow the specification of an optional buffer. This behavior is neither required
nor disallowed by POSIX.1-2024.

Change Directory

A common extension in ex implementations is to use the elements of a cdpath edit option as
prefix directories for path arguments to chdir that are relative pathnames and that do not have
'.' or ".." as their first component. Elements in the cdpath edit option are <colon>-separated.
The initial value of the cdpath edit option is the value of the shell CDPATH environment
variable. This feature was not included in POSIX.1-2024 because it does not exist in any of the
implementations considered historical practice.

Copy

Historical implementations of ex permitted copies to lines inside of the specified range; for
example, :2,5copy3 was a valid command. POSIX.1-2024 requires conformance to historical
practice.

2896 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96509

96510

96511

96512

96513

96514

96515

96516

96517

96518

96519

96520

96521

96522

96523

96524

96525

96526

96527

96528

96529

96530

96531

96532

96533

96534

96535

96536

96537

96538

96539

96540

96541

96542

96543

96544

96545

96546

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Delete

POSIX.1-2024 requires support for the historical parsing of a delete command followed by flags,
without any intervening <blank> characters. For example:

1dp Deletes the first line and prints the line that was second.

1delep As for 1dp.

1d Deletes the first line, saving it in buffer p.

1d p1l (Pee-one-ell.) Deletes the first line, saving it in buffer p, and listing the line that was
second.

Edit

Historically, any ex command could be entered as a +command argument to the edit command,
although some (for example, insert and append) were known to confuse historical
implementations. For consistency and simplicity of specification, POSIX.1-2024 requires that any
command be supported as an argument to the edit command.

Historically, the command argument was executed with the current line set to the last line of the
file, regardless of whether the edit command was executed from visual mode or not.
POSIX.1-2024 requires conformance to historical practice.

Historically, the +command specified to the edit and next commands was delimited by the first
<blank>, and there was no way to quote them. For consistency, POSIX.1-2024 requires that the
usual ex backslash quoting be provided.

Historically, specifying the +command argument to the edit command required a filename to be
specified as well; for example, :edit +100 would always fail. For consistency and simplicity of
specification, POSIX.1-2024 does not permit this usage to fail for that reason.

Historically, only the cursor position of the last file edited was remembered by the editor.
POSIX.1-2024 requires that this be supported; however, implementations are permitted to
remember and restore the cursor position for any file previously edited.

File

Historical versions of the ex editor file command displayed a current line and number of lines in
the edit buffer of 0 when the file was empty, while the vi <control>-G command displayed a
current line and number of lines in the edit buffer of 1 in the same situation. POSIX.1-2024 does
not permit this discrepancy, instead requiring that a message be displayed indicating that the file
is empty.

Global

The two-pass operation of the global and v commands is not intended to imply implementation,
only the required result of the operation.

The current line and column are set as specified for the individual ex commands. This
requirement is cumulative; that is, the current line and column must track across all the
commands executed by the global or v commands.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2897

96547

96548

96549

96550

96551

96552

96553

96554

96555

96556

96557

96558

96559

96560

96561

96562

96563

96564

96565

96566

96567

96568

96569

96570

96571

96572

96573

96574

96575

96576

96577

96578

96579

96580

96581

96582

96583

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Insert

See the RATIONALE for the append command.

Historically, insert could not be used with an address of zero; that is, not when the edit buffer
was empty. POSIX.1-2024 requires that this command behave consistently with the append
command.

Join

The action of the join command in relation to the special characters is only defined for the
POSIX locale because the correct amount of white space after a period varies; in Japanese none is
required, in French only a single space, and so on.

List

The historical output of the list command was potentially ambiguous. The standard developers
believed correcting this to be more important than adhering to historical practice, and
POSIX.1-2024 requires unambiguous output.

Map

Historically, command mode maps only applied to command names; for example, if the
character 'x' was mapped to 'y', the command fx searched for the 'x' character, not the 'y'
character. POSIX.1-2024 requires this behavior. Historically, entering <control>-V as the first
character of a vi command was an error. Several implementations have extended the semantics
of vi such that <control>-V means that the subsequent command character is not mapped. This
is permitted, but not required, by POSIX.1-2024. Regardless, using <control>-V to escape the
second or later character in a sequence of characters that might match a map command, or any
character in text input mode, is historical practice, and stops the entered keys from matching a
map. POSIX.1-2024 requires conformance to historical practice.

Historical implementations permitted digits to be used as a map command lhs, but then ignored
the map. POSIX.1-2024 requires that the mapped digits not be ignored.

The historical implementation of the map command did not permit map commands that were
more than a single character in length if the first character was printable. This behavior is
permitted, but not required, by POSIX.1-2024.

Historically, mapped characters were remapped unless the remap edit option was not set, or the
prefix of the mapped characters matched the mapping characters; for example, in the map:

:map ab abcd

the characters "ab" were used as is and were not remapped, but the characters "cd" were
mapped if appropriate. This can cause infinite loops in the vi mapping mechanisms.
POSIX.1-2024 requires conformance to historical practice, and that such loops be interruptible.

Text input maps had the same problems with expanding the lhs for the ex map! and unmap!
command as did the ex abbreviate and unabbreviate commands. See the RATIONALE for the ex
abbreviate command. POSIX.1-2024 requires similar modification of some historical practice for
the map and unmap commands, as described for the abbreviate and unabbreviate commands.

Historically, maps that were subsets of other maps behaved differently depending on the order
in which they were defined. For example:

:map! ab short
:map! abc long

2898 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96584

96585

96586

96587

96588

96589

96590

96591

96592

96593

96594

96595

96596

96597

96598

96599

96600

96601

96602

96603

96604

96605

96606

96607

96608

96609

96610

96611

96612

96613

96614

96615

96616

96617

96618

96619

96620

96621

96622

96623

96624

96625

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

would always translate the characters "ab" to "short", regardless of how fast the characters
"abc" were entered. If the entry order was reversed:

:map! abc long
:map! ab short

the characters "ab" would cause the editor to pause, waiting for the completing 'c' character,
and the characters might never be mapped to "short". For consistency and simplicity of
specification, POSIX.1-2024 requires that the shortest match be used at all times.

The length of time the editor spends waiting for the characters to complete the lhs is unspecified
because the timing capabilities of systems are often inexact and variable, and it may depend on
other factors such as the speed of the connection. The time should be long enough for the user to
be able to complete the sequence, but not long enough for the user to have to wait. Some
implementations of vi have added a keytime option, which permits users to set the number of
0,1 seconds the editor waits for the completing characters. Because mapped terminal function
and cursor keys tend to start with an <ESC> character, and <ESC> is the key ending vi text input
mode, maps starting with <ESC> characters are generally exempted from this timeout period,
or, at least timed out differently.

Mark

Historically, users were able to set the ``previous context’’ marks explicitly. In addition, the ex
commands '' and '` and the vi commands '', `̀ , `', and '` all referred to the same mark. In addition,
the previous context marks were not set if the command, with which the address setting the
mark was associated, failed. POSIX.1-2024 requires conformance to historical practice.
Historically, if marked lines were deleted, the mark was also deleted, but would reappear if the
change was undone. POSIX.1-2024 requires conformance to historical practice.

The description of the special events that set the ` and ' marks matches historical practice. For
example, historically the command /a/,/b/ did not set the ` and ' marks, but the command
/a/,/b/delete did.

Next

Historically, any ex command could be entered as a +command argument to the next command,
although some (for example, insert and append) were known to confuse historical
implementations. POSIX.1-2024 requires that any command be permitted and that it behave as
specified. The next command can accept more than one file, so usage such as:

next `ls [abc] `

is valid; it need not be valid for the edit or read commands, for example, because they expect
only one filename.

Historically, the next command behaved differently from the :rewind command in that it
ignored the force flag if the autowrite flag was set. For consistency, POSIX.1-2024 does not
permit this behavior.

Historically, the next command positioned the cursor as if the file had never been edited before,
regardless. POSIX.1-2024 does not permit this behavior, for consistency with the edit command.

Implementations wanting to provide a counterpart to the next command that edited the
previous file have used the command prev[ious], which takes no file argument. POSIX.1-2024
does not require this command.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2899

96626

96627

96628

96629

96630

96631

96632

96633

96634

96635

96636

96637

96638

96639

96640

96641

96642

96643

96644

96645

96646

96647

96648

96649

96650

96651

96652

96653

96654

96655

96656

96657

96658

96659

96660

96661

96662

96663

96664

96665

96666

96667

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Open

Historically, the open command would fail if the open edit option was not set. POSIX.1-2024
does not mention the open edit option and does not require this behavior. Some historical
implementations do not permit entering open mode from open or visual mode, only from ex
mode. For consistency, POSIX.1-2024 does not permit this behavior.

Historically, entering open mode from the command line (that is, vi +open) resulted in
anomalous behaviors; for example, the ex file and set commands, and the vi command
<control>-G did not work. For consistency, POSIX.1-2024 does not permit this behavior.

Historically, the open command only permitted '/' characters to be used as the search pattern
delimiter. For consistency, POSIX.1-2024 requires that the search delimiters used by the s, global,
and v commands be accepted as well.

Preserve

The preserve command does not historically cause the file to be considered unmodified for the
purposes of future commands that may exit the editor. POSIX.1-2024 requires conformance to
historical practice.

Historical documentation stated that mail was not sent to the user when preserve was executed;
however, historical implementations did send mail in this case. POSIX.1-2024 requires
conformance to the historical implementations.

Print

The writing of NUL by the print command is not specified as a special case because the standard
developers did not want to require ex to support NUL characters. Historically, characters were
displayed using the ARPA standard mappings, which are as follows:

1. Printable characters are left alone.

2. Control characters less than \177 are represented as '^' followed by the character offset
from the '@' character in the ASCII map; for example, \007 is represented as '^G'.

3. \177 is represented as '^' followed by '?'.

The display of characters having their eighth bit set was less standard. Existing implementations
use hex (0x00), octal (\000), and a meta-bit display. (The latter displayed bytes that had their
eighth bit set as the two characters "M-" followed by the seven-bit display as described above.)
The latter probably has the best claim to historical practice because it was used for the −v option
of 4 BSD and 4 BSD-derived versions of the cat utility since 1980.

No specific display format is required by POSIX.1-2024.

Explicit dependence on the ASCII character set has been avoided where possible, hence the use
of the phrase an ``implementation-defined multi-character sequence’’ for the display of non-
printable characters in preference to the historical usage of, for instance, "^I" for the <tab>.
Implementations are encouraged to conform to historical practice in the absence of any strong
reason to diverge.

Historically, all ex commands beginning with the letter 'p' could be entered using capitalized
versions of the commands; for example, P[rint], Pre[serve], and Pu[t] were all valid command
names. POSIX.1-2024 permits, but does not require, this historical practice because capital forms
of the commands are used by some implementations for other purposes.

2900 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96668

96669

96670

96671

96672

96673

96674

96675

96676

96677

96678

96679

96680

96681

96682

96683

96684

96685

96686

96687

96688

96689

96690

96691

96692

96693

96694

96695

96696

96697

96698

96699

96700

96701

96702

96703

96704

96705

96706

96707

96708

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Put

Historically, an ex put command, executed from open or visual mode, was the same as the open
or visual mode P command, if the buffer was named and was cut in character mode, and the
same as the p command if the buffer was named and cut in line mode. If the unnamed buffer
was the source of the text, the entire line from which the text was taken was usually put, and the
buffer was handled as if in line mode, but it was possible to get extremely anomalous behavior.
In addition, using the Q command to switch into ex mode, and then doing a put often resulted in
errors as well, such as appending text that was unrelated to the (supposed) contents of the
buffer. For consistency and simplicity of specification, POSIX.1-2024 does not permit these
behaviors. All ex put commands are required to operate in line mode, and the contents of the
buffers are not altered by changing the mode of the editor.

Read

Historically, an ex read command executed from open or visual mode, executed in an empty file,
left an empty line as the first line of the file. For consistency and simplicity of specification,
POSIX.1-2024 does not permit this behavior. Historically, a read in open or visual mode from a
program left the cursor at the last line read in, not the first. For consistency, POSIX.1-2024 does
not permit this behavior.

Historical implementations of ex were unable to undo read commands that read from the output
of a program. For consistency, POSIX.1-2024 does not permit this behavior.

Historically, the ex and vi message after a successful read or write command specified
``characters’’, not ``bytes’’. POSIX.1-2024 requires that the number of bytes be displayed, not the
number of characters, because it may be difficult in multi-byte implementations to determine the
number of characters read. Implementations are encouraged to clarify the message displayed to
the user.

Historically, reads were not permitted on files other than type regular, except that FIFO files
could be read (probably only because they did not exist when ex and vi were originally written).
Because the historical ex evaluated read! and read ! equivalently, there can be no optional way
to force the read. POSIX.1-2024 permits, but does not require, this behavior.

Recover

Some historical implementations of the editor permitted users to recover the edit buffer contents
from a previous edit session, and then exit without saving those contents (or explicitly
discarding them). The intent of POSIX.1-2024 in requiring that the edit buffer be treated as
already modified is to prevent this user error.

Rewind

Historical implementations supported the rewind command when the user was editing the first
file in the list; that is, the file that the rewind command would edit. POSIX.1-2024 requires
conformance to historical practice.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2901

96709

96710

96711

96712

96713

96714

96715

96716

96717

96718

96719

96720

96721

96722

96723

96724

96725

96726

96727

96728

96729

96730

96731

96732

96733

96734

96735

96736

96737

96738

96739

96740

96741

96742

96743

96744

96745

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Substitute

Historically, ex accepted an r option to the s command. The effect of the r option was to use the
last regular expression used in any command as the pattern, the same as the ˜ command. The r
option is not required by POSIX.1-2024. Historically, the c and g options were toggled; for
example, the command :s/abc/def/ was the same as s/abc/def/ccccgggg. For simplicity of
specification, POSIX.1-2024 does not permit this behavior.

The tilde command is often used to replace the last search RE. For example, in the sequence:

s/red/blue/
/green
~

the ˜ command is equivalent to:

s/green/blue/

Historically, ex accepted all of the following forms:

s/abc/def/
s/abc/def
s/abc/
s/abc

POSIX.1-2024 requires conformance to this historical practice.

The s command presumes that the '^' character only occupies a single column in the display.
Much of the ex and vi specification presumes that the <space> only occupies a single column in
the display. There are no known character sets for which this is not true.

Historically, the final column position for the substitute commands was based on previous
column movements; a search for a pattern followed by a substitution would leave the column
position unchanged, while a 0 command followed by a substitution would change the column
position to the first non-<blank>. For consistency and simplicity of specification, POSIX.1-2024
requires that the final column position always be set to the first non-<blank>.

Set

Historical implementations redisplayed all of the options for each occurrence of the all keyword.
POSIX.1-2024 permits, but does not require, this behavior.

Tag

No requirement is made as to where ex and vi shall look for the file referenced by the tag entry.
Historical practice has been to look for the path found in the tags file, based on the current
directory. A useful extension found in some implementations is to look based on the directory
containing the tags file that held the entry, as well. No requirement is made as to which reference
for the tag in the tags file is used. This is deliberate, in order to permit extensions such as
multiple entries in a tags file for a tag.

Because users often specify many different tags files, some of which need not be relevant or exist
at any particular time, POSIX.1-2024 requires that error messages about problem tags files be
displayed only if the requested tag is not found, and then, only once for each time that the tag
edit option is changed.

The requirement that the current edit buffer be unmodified is only necessary if the file indicated
by the tag entry is not the same as the current file (as defined by the current pathname).
Historically, the file would be reloaded if the filename had changed, as well as if the filename

2902 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96746

96747

96748

96749

96750

96751

96752

96753

96754

96755

96756

96757

96758

96759

96760

96761

96762

96763

96764

96765

96766

96767

96768

96769

96770

96771

96772

96773

96774

96775

96776

96777

96778

96779

96780

96781

96782

96783

96784

96785

96786

96787

96788

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

was different from the current pathname. For consistency and simplicity of specification,
POSIX.1-2024 does not permit this behavior, requiring that the name be the only factor in the
decision.

Historically, vi only searched for tags in the current file from the current cursor to the end of the
file, and therefore, if the wrapscan option was not set, tags occurring before the current cursor
were not found. POSIX.1-2024 considers this a bug, and implementations are required to search
for the first occurrence in the file, regardless.

Undo

The undo description deliberately uses the word ``modified’’. The undo command is not
intended to undo commands that replace the contents of the edit buffer, such as edit, next, tag,
or recover.

Cursor positioning after the undo command was inconsistent in the historical vi, sometimes
attempting to restore the original cursor position (global, undo, and v commands), and
sometimes, in the presence of maps, placing the cursor on the last line added or changed instead
of the first. POSIX.1-2024 requires a simplified behavior for consistency and simplicity of
specification.

Version

The version command cannot be exactly specified since there is no widely-accepted definition of
what the version information should contain. Implementations are encouraged to do something
reasonably intelligent.

Write

Historically, the ex and vi message after a successful read or write command specified
``characters’’, not ``bytes’’. POSIX.1-2024 requires that the number of bytes be displayed, not the
number of characters because it may be difficult in multi-byte implementations to determine the
number of characters written. Implementations are encouraged to clarify the message displayed
to the user.

Implementation-defined tests are permitted so that implementations can make additional
checks; for example, for locks or file modification times.

Historically, attempting to append to a nonexistent file caused an error. It has been left
unspecified in POSIX.1-2024 to permit implementations to let the write succeed, so that the
append semantics are similar to those of the historical csh.

Historical vi permitted empty edit buffers to be written. However, since the way vi got around
dealing with ``empty’’ files was to always have a line in the edit buffer, no matter what, it wrote
them as files of a single, empty line. POSIX.1-2024 does not permit this behavior.

Historically, ex restored standard output and standard error to their values as of when ex was
invoked, before writes to programs were performed. This could disturb the terminal
configuration as well as be a security issue for some terminals. POSIX.1-2024 does not permit
this, requiring that the program output be captured and displayed as if by the ex print
command.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2903

96789

96790

96791

96792

96793

96794

96795

96796

96797

96798

96799

96800

96801

96802

96803

96804

96805

96806

96807

96808

96809

96810

96811

96812

96813

96814

96815

96816

96817

96818

96819

96820

96821

96822

96823

96824

96825

96826

96827

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

Adjust Window

Historically, the line count was set to the value of the scroll option if the type character was end-
of-file. This feature was broken on most historical implementations long ago, however, and is
not documented anywhere. For this reason, POSIX.1-2024 is resolutely silent.

Historically, the z command was <blank>-sensitive and z + and z − did different things than z+
and z− because the type could not be distinguished from a flag. (The commands z . and z =
were historically invalid.) POSIX.1-2024 requires conformance to this historical practice.

Historically, the z command was further <blank>-sensitive in that the count could not be
<blank>-delimited; for example, the commands z= 5 and z− 5 were also invalid. Because the
count is not ambiguous with respect to either the type character or the flags, this is not permitted
by POSIX.1-2024.

Escape

Historically, ex filter commands only read the standard output of the commands, letting
standard error appear on the terminal as usual. The vi utility, however, read both standard
output and standard error. POSIX.1-2024 requires the latter behavior for both ex and vi, for
consistency.

In Issue 8 the system() function was changed to require that the POSIX shell be invoked with
"sh", "-c", "--", and command arguments to make it easier to execute programs with
<hyphen-minus> ('-') or <plus-sign> ('+') as the first character of the program’s filename. A
similar request to have the ex escape command do the same was not accepted. Unlike system()
(which always invokes a POSIX shell), ex invokes the program named by the shell edit option.
For example, the csh and tcsh shells that are frequently used as login shells do not recognize
"--" after "-c" as an end-of-options indicator. The program need not even be one that
recognizes any POSIX shell command line syntax. Some users invoke shell scripts to process
lines that are being supplied to the specified utility. These utilities know that they will be given
"-c" as a first argument and just ignore it. Any utilities used in this manner would have to be
modified to skip over another argument (the "--") to find the desired argument.

Shift Left and Shift Right

Historically, it was possible to add shift characters to increase the effect of the command; for
example, <<< outdented (or >>> indented) the lines 3 levels of indentation instead of the default
1. POSIX.1-2024 requires conformance to historical practice.

<control>-D

Historically, the <control>-D command erased the prompt, providing the user with an unbroken
presentation of lines from the edit buffer. This is not required by POSIX.1-2024; implementations
are encouraged to provide it if possible. Historically, the <control>-D command took, and then
ignored, a count. POSIX.1-2024 does not permit this behavior.

2904 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96828

96829

96830

96831

96832

96833

96834

96835

96836

96837

96838

96839

96840

96841

96842

96843

96844

96845

96846

96847

96848

96849

96850

96851

96852

96853

96854

96855

96856

96857

96858

96859

96860

96861

96862

96863

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Write Line Number

Historically, the ex = command, when executed in ex mode in an empty edit buffer, reported 0,
and from open or visual mode, reported 1. For consistency and simplicity of specification,
POSIX.1-2024 does not permit this behavior.

Execute

Historically, ex did not correctly handle the inclusion of text input commands (that is, append,
insert, and change) in executed buffers. POSIX.1-2024 does not permit this exclusion for
consistency.

Historically, the logical contents of the buffer being executed did not change if the buffer itself
were modified by the commands being executed; that is, buffer execution did not support self-
modifying code. POSIX.1-2024 requires conformance to historical practice.

Historically, the @ command took a range of lines, and the @ buffer was executed once per line,
with the current line ('.') set to each specified line. POSIX.1-2024 requires conformance to
historical practice.

Some historical implementations did not notice if errors occurred during buffer execution. This,
coupled with the ability to specify a range of lines for the ex @ command, makes it trivial to
cause them to drop core. POSIX.1-2024 requires that implementations stop buffer execution if
any error occurs, if the specified line doesn’t exist, or if the contents of the edit buffer itself are
replaced (for example, the buffer executes the ex :edit command).

Regular Expressions in ex

Historical practice is that the characters in the replacement part of the last s command—that is,
those matched by entering a '~' in the regular expression—were not further expanded by the
regular expression engine. So, if the characters contained the string "a.," they would match
'a' followed by ".," and not 'a' followed by any character. POSIX.1-2024 requires
conformance to historical practice.

Edit Options in ex

The following paragraphs describe the historical behavior of some edit options that were not, for
whatever reason, included in POSIX.1-2024. Implementations are strongly encouraged to only
use these names if the functionality described here is fully supported.

extended The extended edit option has been used in some implementations of vi to provide
extended regular expressions instead of basic regular expressions This option was
omitted from POSIX.1-2024 because it is not widespread historical practice.

flash The flash edit option historically caused the screen to flash instead of beeping on
error. This option was omitted from POSIX.1-2024 because it is not found in some
historical implementations.

hardtabs The hardtabs edit option historically defined the number of columns between
hardware tab settings. This option was omitted from POSIX.1-2024 because it was
believed to no longer be generally useful.

modeline The modeline (sometimes named modelines) edit option historically caused ex or
vi to read the five first and last lines of the file for editor commands. This option is
a security problem, and vendors are strongly encouraged to delete it from
historical implementations.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2905

96864

96865

96866

96867

96868

96869

96870

96871

96872

96873

96874

96875

96876

96877

96878

96879

96880

96881

96882

96883

96884

96885

96886

96887

96888

96889

96890

96891

96892

96893

96894

96895

96896

96897

96898

96899

96900

96901

96902

96903

96904

96905

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

open The open edit option historically disallowed the ex open and visual commands.
This edit option was omitted because these commands are required by
POSIX.1-2024.

optimize The optimize edit option historically expedited text throughput by setting the
terminal to not do automatic <carriage-return> characters when printing more
than one logical line of output. This option was omitted from POSIX.1-2024
because it was intended for terminals without addressable cursors, which are
rarely, if ever, still used.

ruler The ruler edit option has been used in some implementations of vi to present a
current row/column ruler for the user. This option was omitted from POSIX.1-2024
because it is not widespread historical practice.

sourceany The sourceany edit option historically caused ex or vi to source start-up files that
were owned by users other than the user running the editor. This option is a
security problem, and vendors are strongly encouraged to remove it from their
implementations.

timeout The timeout edit option historically enabled the (now standard) feature of only
waiting for a short period before returning keys that could be part of a macro. This
feature was omitted from POSIX.1-2024 because its behavior is now standard, it is
not widely useful, and it was rarely documented.

verbose The verbose edit option has been used in some implementations of vi to cause vi to
output error messages for common errors; for example, attempting to move the
cursor past the beginning or end of the line instead of only alerting the screen. (The
historical vi only alerted the terminal and presented no message for such errors.
The historical editor option terse did not select when to present error messages, it
only made existing error messages more or less verbose.) This option was omitted
from POSIX.1-2024 because it is not widespread historical practice; however,
implementors are encouraged to use it if they wish to provide error messages for
naive users.

wraplen The wraplen edit option has been used in some implementations of vi to specify an
automatic margin measured from the left margin instead of from the right margin.
This is useful when multiple screen sizes are being used to edit a single file. This
option was omitted from POSIX.1-2024 because it is not widespread historical
practice; however, implementors are encouraged to use it if they add this
functionality.

autoindent, ai

Historically, the command 0a did not do any autoindentation, regardless of the current
indentation of line 1. POSIX.1-2024 requires that any indentation present in line 1 be used.

autoprint, ap

Historically, the autoprint edit option was not completely consistent or based solely on
modifications to the edit buffer. Exceptions were the read command (when reading from a file,
but not from a filter), the append, change, insert, global, and v commands, all of which were not
affected by autoprint, and the tag command, which was affected by autoprint. POSIX.1-2024
requires conformance to historical practice.

Historically, the autoprint option only applied to the last of multiple commands entered using
<vertical-line> delimiters; for example, delete <newline> was affected by autoprint, but

2906 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96906

96907

96908

96909

96910

96911

96912

96913

96914

96915

96916

96917

96918

96919

96920

96921

96922

96923

96924

96925

96926

96927

96928

96929

96930

96931

96932

96933

96934

96935

96936

96937

96938

96939

96940

96941

96942

96943

96944

96945

96946

96947

96948

96949

96950

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

delete|version <newline> was not. POSIX.1-2024 requires conformance to historical practice.

autowrite, aw

Appending the '!' character to the ex next command to avoid performing an automatic write
was not supported in historical implementations. POSIX.1-2024 requires that the behavior match
the other ex commands for consistency.

ignorecase, ic

Historical implementations of case-insensitive matching (the ignorecase edit option) lead to
counter-intuitive situations when uppercase characters were used in range expressions.
Historically, the process was as follows:

1. Take a line of text from the edit buffer.

2. Convert uppercase to lowercase in text line.

3. Convert uppercase to lowercase in regular expressions, except in character class
specifications.

4. Match regular expressions against text.

This would mean that, with ignorecase in effect, the text:

The cat sat on the mat

would be matched by

/^the/

but not by:

/^[A-Z]he/

For consistency with other commands implementing regular expressions, POSIX.1-2024 does not
permit this behavior.

paragraphs, para

The ISO POSIX-2: 1993 standard made the default paragraphs and sections edit options
implementation-defined, arguing they were historically oriented to the UNIX system troff text
formatter, and a ``portable user’’ could use the {, }, [[,]], (, and) commands in open or visual
mode and have the cursor stop in unexpected places. POSIX.1-2024 specifies their values in the
POSIX locale because the unusual grouping (they only work when grouped into two characters
at a time) means that they cannot be used for general-purpose movement, regardless.

readonly

Implementations are encouraged to provide the best possible information to the user as to the
read-only status of the file, with the exception that they should not consider the current special
privileges of the process. This provides users with a safety net because they must force the
overwrite of read-only files, even when running with additional privileges.

The readonly edit option specification largely conforms to historical practice. The only
difference is that historical implementations did not notice that the user had set the readonly
edit option in cases where the file was already marked read-only for some reason, and would
therefore reinitialize the readonly edit option the next time the contents of the edit buffer were
replaced. This behavior is disallowed by POSIX.1-2024.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2907

96951

96952

96953

96954

96955

96956

96957

96958

96959

96960

96961

96962

96963

96964

96965

96966

96967

96968

96969

96970

96971

96972

96973

96974

96975

96976

96977

96978

96979

96980

96981

96982

96983

96984

96985

96986

96987

96988

96989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

report

The requirement that lines copied to a buffer interact differently than deleted lines is historical
practice. For example, if the report edit option is set to 3, deleting 3 lines will cause a report to be
written, but 4 lines must be copied before a report is written.

The requirement that the ex global, v, open, undo, and visual commands present reports based
on the total number of lines added or deleted during the command execution, and that
commands executed by the global and v commands not present reports, is historical practice.
POSIX.1-2024 extends historical practice by requiring that buffer execution be treated similarly.
The reasons for this are two-fold. Historically, only the report by the last command executed
from the buffer would be seen by the user, as each new report would overwrite the last. In
addition, the standard developers believed that buffer execution had more in common with
global and v commands than it did with other ex commands, and should behave similarly, for
consistency and simplicity of specification.

showmatch, sm

The length of time the cursor spends on the matching character is unspecified because the
timing capabilities of systems are often inexact and variable. The time should be long enough for
the user to notice, but not long enough for the user to become annoyed. Some implementations
of vi have added a matchtime option that permits users to set the number of 0,1 second intervals
the cursor pauses on the matching character.

showmode

The showmode option has been used in some historical implementations of ex and vi to display
the current editing mode when in open or visual mode. The editing modes have generally
included ``command’’ and ``input’’, and sometimes other modes such as ``replace’’ and
``change’’. The string was usually displayed on the bottom line of the screen at the far right-hand
corner. In addition, a preceding '*' character often denoted whether the contents of the edit
buffer had been modified. The latter display has sometimes been part of the showmode option,
and sometimes based on another option. This option was not available in the 4 BSD historical
implementation of vi, but was viewed as generally useful, particularly to novice users, and is
required by POSIX.1-2024.

The smd shorthand for the showmode option was not present in all historical implementations
of the editor. POSIX.1-2024 requires it, for consistency.

Not all historical implementations of the editor displayed a mode string for command mode,
differentiating command mode from text input mode by the absence of a mode string.
POSIX.1-2024 permits this behavior for consistency with historical practice, but implementations
are encouraged to provide a display string for both modes.

slowopen

Historically, the slowopen option was automatically set if the terminal baud rate was less than
1 200 baud, or if the baud rate was 1 200 baud and the redraw option was not set. The slowopen
option had two effects. First, when inserting characters in the middle of a line, characters after
the cursor would not be pushed ahead, but would appear to be overwritten. Second, when
creating a new line of text, lines after the current line would not be scrolled down, but would
appear to be overwritten. In both cases, ending text input mode would cause the screen to be
refreshed to match the actual contents of the edit buffer. Finally, terminals that were sufficiently
intelligent caused the editor to ignore the slowopen option. POSIX.1-2024 permits most
historical behavior, extending historical practice to require slowopen behaviors if the edit option

2908 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

96990

96991

96992

96993

96994

96995

96996

96997

96998

96999

97000

97001

97002

97003

97004

97005

97006

97007

97008

97009

97010

97011

97012

97013

97014

97015

97016

97017

97018

97019

97020

97021

97022

97023

97024

97025

97026

97027

97028

97029

97030

97031

97032

97033

97034

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

is set by the user.

tags

The default path for tags files is left unspecified as implementations may have their own tags
implementations that do not correspond to the historical ones. The default tags option value
should probably at least include the file ./tags.

term

Historical implementations of ex and vi ignored changes to the term edit option after the initial
terminal information was loaded. This is permitted by POSIX.1-2024; however, implementations
are encouraged to permit the user to modify their terminal type at any time.

terse

Historically, the terse edit option optionally provided a shorter, less descriptive error message,
for some error messages. This is permitted, but not required, by POSIX.1-2024. Historically, most
common visual mode errors (for example, trying to move the cursor past the end of a line) did
not result in an error message, but simply alerted the terminal. Implementations wishing to
provide messages for novice users are urged to do so based on the edit option verbose, and not
terse.

window

In historical implementations, the default for the window edit option was based on the baud
rate as follows:

1. If the baud rate was less than 1 200, the edit option w300 set the window value; for
example, the line:

set w300=12

would set the window option to 12 if the baud rate was less than 1 200.

2. If the baud rate was equal to 1 200, the edit option w1200 set the window value.

3. If the baud rate was greater than 1 200, the edit option w9600 set the window value.

The w300, w1200, and w9600 options do not appear in POSIX.1-2024 because of their
dependence on specific baud rates.

In historical implementations, the size of the window displayed by various commands was
related to, but not necessarily the same as, the window edit option. For example, the size of the
window was set by the ex command visual 10, but it did not change the value of the window
edit option. However, changing the value of the window edit option did change the number of
lines that were displayed when the screen was repainted. POSIX.1-2024 does not permit this
behavior in the interests of consistency and simplicity of specification, and requires that all
commands that change the number of lines that are displayed do it by setting the value of the
window edit option.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2909

97035

97036

97037

97038

97039

97040

97041

97042

97043

97044

97045

97046

97047

97048

97049

97050

97051

97052

97053

97054

97055

97056

97057

97058

97059

97060

97061

97062

97063

97064

97065

97066

97067

97068

97069

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ex Utilities

wrapmargin, wm

Historically, the wrapmargin option did not affect maps inserting characters that also had
associated counts; for example :map K 5aABC DEF. Unfortunately, there are widely used
maps that depend on this behavior. For consistency and simplicity of specification,
POSIX.1-2024 does not permit this behavior.

Historically, wrapmargin was calculated using the column display width of all characters on the
screen. For example, an implementation using "^I" to represent <tab> characters when the list
edit option was set, where '^' and 'I' each took up a single column on the screen, would
calculate the wrapmargin based on a value of 2 for each <tab>. The number edit option
similarly changed the effective length of the line as well. POSIX.1-2024 requires conformance to
historical practice.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
Section 2.9.1.4 (on page 2502), ctags , ed , sed , sh , stty , vi

XBD Table 5-1 (on page 113), Chapter 8 (on page 167), Section 9.3 (on page 181), Section 12.2 (on
page 215)

XSH access()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed, removing the +command and − options.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the map command description, the sequence #digit is added.

• The directory, edcompatible, redraw, and slowopen edit options are added.

The ex utility is extensively changed for alignment with the IEEE P1003.2b draft standard. This
includes changes as a result of the IEEE PASC Interpretations 1003.2 #31, #38, #49, #50, #51, #52,
#55, #56, #57, #61, #62, #63, #64, #65, and #78.

The −l option is removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/23 is applied, correcting a URL.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/8 is applied, making an editorial
correction in the EXTENDED DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/9 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

2910 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97070

97071

97072

97073

97074

97075

97076

97077

97078

97079

97080

97081

97082

97083

97084

97085

97086

97087

97088

97089

97090

97091

97092

97093

97094

97095

97096

97097

97098

97099

97100

97101

97102

97103

97104

97105

97106

97107

97108

97109

97110

97111

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ex

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if an operand is
'−'.

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for BREs.

Austin Group Interpretation 1003.1-2001 #121 is applied, clarifying the ex write command.

Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0093 [584] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1185 is applied, changing the SIGCONT entry in ASYNCHRONOUS
EVENTS and adding a SIGWINCH entry.

Austin Group Defect 1251 is applied, clarifying the set command, changing ``addr ’’ to ``2addr ’’
in the ! command synopsis, and adding spaces in some synopsis lines.

Austin Group Defect 1281 is applied, changing the description of the substitute command to
clarify that it is an error if the substitution fails on every addressed line.

Austin Group Defect 1298 is applied, changing the CONSEQUENCES OF ERRORS section.

Austin Group Defect 1378 is applied, changing the description of the LC_MESSAGES
environment variable.

Austin Group Defect 1529 is applied, changing the synopsis of the escape command and adding
related paragraphs to the APPLICATION USAGE and RATIONALE sections.

Austin Group Defect 1642 is applied, changing the description of the redraw edit option.

Austin Group Defect 1662 is applied, clarifying requirements relating to delimiters in addresses
and in s commands.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2911

97112

97113

97114

97115

97116

97117

97118

97119

97120

97121

97122

97123

97124

97125

97126

97127

97128

97129

97130

97131

97132

97133

97134

97135

97136

97137

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

expand Utilities

NAME
expand — convert tabs to spaces

SYNOPSIS
expand [-t tablist] [file...]

DESCRIPTION
The expand utility shall write files or the standard input to the standard output with <tab>
characters replaced with one or more <space> characters needed to pad to the next tab stop. Any
<backspace> characters shall be copied to the output and cause the column position count for
tab stop calculations to be decremented; the column position count shall not be decremented
below zero.

OPTIONS
The expand utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−t tablist Specify the tab stops. The application shall ensure that the argument tablist consists
of either a single positive decimal integer or a list of tabstops. If a single number is
given, tabs shall be set that number of column positions apart instead of the
default 8.

If a list of tabstops is given, the application shall ensure that it consists of a list of
two or more positive decimal integers, separated by <blank> or <comma>
characters, in ascending order. The <tab> characters shall be set at those specific
column positions. Each tab stop N shall be an integer value greater than zero, and
the list is in strictly ascending order. This is taken to mean that, from the start of a
line of output, tabbing to position N shall cause the next character output to be in
the (N+1)th column position on that line.

In the event of expand having to process a <tab> at a position beyond the last of
those specified in a multiple tab-stop list, the <tab> shall be replaced by a single
<space> in the output.

OPERANDS
The following operand shall be supported:

file The pathname of a text file to be used as input.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of expand:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the processing of <tab> and <space> characters, and
for the determination of the width in column positions each character would

2912 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97138

97139

97140

97141

97142

97143

97144

97145

97146

97147

97148

97149

97150

97151

97152

97153

97154

97155

97156

97157

97158

97159

97160

97161

97162

97163

97164

97165

97166

97167

97168

97169

97170

97171

97172

97173

97174

97175

97176

97177

97178

97179

97180

97181

97182

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities expand

occupy on an output device.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be equivalent to the input files with <tab> characters converted into
the appropriate number of <space> characters.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion

>0 An error occurred.

CONSEQUENCES OF ERRORS
The expand utility shall terminate with an error message and non-zero exit status upon
encountering difficulties accessing one of the file operands.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The expand utility is useful for preprocessing text files (before sorting, looking at specific
columns, and so on) that contain <tab> characters.

See XBD Section 3.75 (on page 42).

The tablist option-argument consists of integers in ascending order. Utility Syntax Guideline 8
mandates that expand shall accept the integers (within the single argument) separated using
either <comma> or <blank> characters.

Earlier versions of this standard allowed the following form in the SYNOPSIS:

expand [-tabstop][-tab1,tab2,...,tabn][file ...]

This form is no longer specified by POSIX.1-2024 but may be present in some implementations.

FUTURE DIRECTIONS
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2913

97183

97184

97185

97186

97187

97188

97189

97190

97191

97192

97193

97194

97195

97196

97197

97198

97199

97200

97201

97202

97203

97204

97205

97206

97207

97208

97209

97210

97211

97212

97213

97214

97215

97216

97217

97218

97219

97220

97221

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

expand Utilities

SEE ALSO
tabs , unexpand

XBD Section 3.75 (on page 42), Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent SYNOPSIS is removed.

The LC_CTYPE environment variable description is updated to align with the IEEE P1003.2b
draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The expand utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2914 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97222

97223

97224

97225

97226

97227

97228

97229

97230

97231

97232

97233

97234

97235

97236

97237

97238

97239

97240

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities expr

NAME
expr — evaluate arguments as an expression

SYNOPSIS
expr operand...

DESCRIPTION
The expr utility shall evaluate an expression and write the result to standard output.

OPTIONS
None.

OPERANDS
The single expression evaluated by expr shall be formed from the operand operands, as described
in the EXTENDED DESCRIPTION section. The application shall ensure that each of the
expression operator symbols:

() | & = > >= < <= != + - * / % :

and the symbols integer and string in the table are provided as separate arguments to expr.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of expr:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions and by the string
comparison operators.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments) and the behavior of character classes within regular expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The expr utility shall evaluate the expression and write the result, followed by a <newline>, to
standard output.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2915

97241

97242

97243

97244

97245

97246

97247

97248

97249

97250

97251

97252

97253

97254

97255

97256

97257

97258

97259

97260

97261

97262

97263

97264

97265

97266

97267

97268

97269

97270

97271

97272

97273

97274

97275

97276

97277

97278

97279

97280

97281

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

expr Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The formation of the expression to be evaluated is shown in the following table. The symbols
expr, expr1, and expr2 represent expressions formed from integer and string symbols and the
expression operator symbols (all separate arguments) by recursive application of the constructs
described in the table. The expressions are listed in order of decreasing precedence, with equal-
precedence operators grouped between horizontal lines. All of the operators shall be left-
associative.

Expression Description
integer An argument consisting only of an (optional) unary minus

followed by digits.
string A string argument; see below.
(expr) Grouping symbols. Any expression can be placed within

parentheses. Parentheses can be nested to a depth of
{EXPR_NEST_MAX}.

expr1 : expr2 Matching expression; see below.
expr1 * expr2 Multiplication of decimal integer-valued arguments.
expr1 / expr2 Integer division of decimal integer-valued arguments, producing

an integer result.
expr1 % expr2 Remainder of integer division of decimal integer-valued

arguments.
expr1 + expr2 Addition of decimal integer-valued arguments.
expr1 − expr2 Subtraction of decimal integer-valued arguments.

Returns the result of a decimal integer comparison if both
arguments are integers; otherwise, returns the result of a string
comparison using the locale-specific collation sequence. The
result of each comparison is 1 if the specified relationship is true,
or 0 if the relationship is false.

expr1 = expr2 Equal.
expr1 > expr2 Greater than.
expr1 >= expr2 Greater than or equal.
expr1 < expr2 Less than.
expr1 <= expr2 Less than or equal.
expr1 != expr2 Not equal.
expr1 & expr2 Returns the evaluation of expr1 if neither expression evaluates to

null or zero; otherwise, returns zero.
expr1 | expr2 Returns the evaluation of expr1 if it is neither null nor zero;

otherwise, returns the evaluation of expr2 if it is not null;
otherwise, zero.

2916 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97282

97283

97284

97285

97286

97287

97288

97289

97290

97291

97292

97293

97294

97295

97296

97297

97298

97299

97300

97301

97302

97303

97304

97305

97306

97307

97308

97309

97310

97311

97312

97313

97314

97315

97316

97317

97318

97319

97320

97321

97322

97323

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities expr

Matching Expression

The ':' matching operator shall compare the string resulting from the evaluation of expr1 with
the regular expression pattern resulting from the evaluation of expr2. Regular expression syntax
shall be that defined in XBD Section 9.3 (on page 181), except that all patterns are anchored to
the beginning of the string (that is, only sequences starting at the first character of a string are
matched by the regular expression) and, therefore, it is unspecified whether '^' is a special
character in that context. Usually, the matching operator shall return a string representing the
number of characters matched ('0' on failure). Alternatively, if the pattern contains at least one
regular expression subexpression "\(...\)", the string matched by the back-reference
expression "\1" shall be returned. If the back-reference expression "\1" does not match, then
the null string shall be returned.

Identification as Integer or String

An argument or the value of a subexpression that consists only of an optional unary minus
followed by digits is a candidate for treatment as an integer if it is used as the left argument to
the | operator or as either argument to any of the following operators: & = > >= < <= != +
- * / %. Otherwise, the argument or subexpression value shall be treated as a string.

The use of string arguments length, substr, index, or match produces unspecified results.

EXIT STATUS
The following exit values shall be returned:

0 The expression evaluated to neither null nor zero, and the output specified in STDOUT was
successfully written to standard output.

1 The expression evaluated to null or zero, and the output specified in STDOUT was
successfully written to standard output.

2 Invalid expression error.

>2 Another error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The expr utility has a rather difficult syntax:

• Many of the operators are also shell control operators or reserved words, so they have to
be escaped on the command line.

• Each part of the expression is composed of separate arguments, so liberal usage of <blank>
characters is required. For example:

Invalid Valid
expr 1+2 expr 1 + 2
expr "1 + 2" expr 1 + 2
expr 1 + (2 * 3) expr 1 + \(2 * 3 \)

In many cases, the arithmetic and string features provided as part of the shell command
language are easier to use than their equivalents in expr. Newly written scripts should avoid
expr in favor of the new features within the shell; see Section 2.5 (on page 2478) and Section 2.6.4
(on page 2490).

After argument processing by the shell, expr is not required to be able to tell the difference
between an operator and an operand except by the value. If "$a" is '=', the command:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2917

97324

97325

97326

97327

97328

97329

97330

97331

97332

97333

97334

97335

97336

97337

97338

97339

97340

97341

97342

97343

97344

97345

97346

97347

97348

97349

97350

97351

97352

97353

97354

97355

97356

97357

97358

97359

97360

97361

97362

97363

97364

97365

97366

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

expr Utilities

expr "$a" = '='

looks like:

expr = = =

as the arguments are passed to expr (and they all may be taken as the '=' operator). The
following works reliably:

expr "X$a" = X=

Also note that this volume of POSIX.1-2024 permits implementations to extend utilities. The expr
utility permits the integer arguments to be preceded with a unary minus. This means that an
integer argument could look like an option. Therefore, the conforming application must employ
the "--" construct of Guideline 10 of XBD Section 12.2 (on page 215) to protect its operands if
there is any chance the first operand might be a negative integer (or any string with a leading
minus).

For testing string equality the test utility is preferred over expr, as it is usually implemented as a
shell built-in. However, the functionality is not quite the same because the expr = and !=
operators check whether strings collate equally, whereas test checks whether they are identical.
Therefore, they can produce different results in locales where the collation sequence does not
have a total ordering of all characters (see XBD Section 7.3.2, on page 139).

EXAMPLES
The following command:

a=$(expr "$a" + 1)

adds 1 to the variable a.

The following command, for "$a" equal to either /usr/abc/file or just file:

expr $a : '.*/\(.*\)' \| $a

returns the last segment of a pathname (that is, file). Applications should avoid the character
'/' used alone as an argument; expr may interpret it as the division operator.

The following command:

expr "//$a" : '.*/\(.*\)'

is a better representation of the previous example. The addition of the "//" characters
eliminates any ambiguity about the division operator and simplifies the whole expression. Also
note that pathnames may contain characters contained in the IFS variable and should be quoted
to avoid having "$a" expand into multiple arguments.

The following command:

expr "X$VAR" : '.*' - 1

returns the number of characters in VAR.

RATIONALE
In an early proposal, EREs were used in the matching expression syntax. This was changed to
BREs to avoid breaking historical applications.

The use of a leading <circumflex> in the BRE is unspecified because many historical
implementations have treated it as a special character, despite their system documentation. For
example:

expr foo : ^foo expr ^foo : ^foo

2918 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97367

97368

97369

97370

97371

97372

97373

97374

97375

97376

97377

97378

97379

97380

97381

97382

97383

97384

97385

97386

97387

97388

97389

97390

97391

97392

97393

97394

97395

97396

97397

97398

97399

97400

97401

97402

97403

97404

97405

97406

97407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities expr

return 3 and 0, respectively, on those systems; their documentation would imply the reverse.
Thus, the anchoring condition is left unspecified to avoid breaking historical scripts relying on
this undocumented feature.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 2478), Section 2.6.4 (on page 2490)

XBD Section 7.3.2 (on page 139), Chapter 8 (on page 167), Section 9.3 (on page 181), Section 12.2
(on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The expr utility is aligned with the IEEE P1003.2b draft standard, to include resolution of IEEE
PASC Interpretation 1003.2 #104.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for BREs.

The SYNOPSIS and OPERANDS sections are revised to explicitly state that the name of each of
the operands is operand.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0094 [942], XCU/TC2-2008/0095
[709], XCU/TC2-2008/0096 [942], XCU/TC2-2008/0097 [963], and XCU/TC2-2008/0098 [942]
are applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1500 is applied, changing the EXIT STATUS section.

Austin Group Defect 1757 is applied, changing "[\(...\)]" to "\(...\)".

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2919

97408

97409

97410

97411

97412

97413

97414

97415

97416

97417

97418

97419

97420

97421

97422

97423

97424

97425

97426

97427

97428

97429

97430

97431

97432

97433

97434

97435

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

false Utilities

NAME
false — return false value

SYNOPSIS
false

DESCRIPTION
The false utility shall return with a non-zero exit code.

OPTIONS
None.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Not used.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The false utility shall always exit with a value between 1 and 125, inclusive.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
true

2920 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97436

97437

97438

97439

97440

97441

97442

97443

97444

97445

97446

97447

97448

97449

97450

97451

97452

97453

97454

97455

97456

97457

97458

97459

97460

97461

97462

97463

97464

97465

97466

97467

97468

97469

97470

97471

97472

97473

97474

97475

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities false

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/24 is applied, changing the STDERR
section from ``None.’’ to ``Not used.’’ for alignment withSection 1.4 (on page 2462).

Issue 8
Austin Group Defect 1321 is applied, changing the EXIT STATUS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2921

97476

97477

97478

97479

97480

97481

97482

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fc Utilities

NAME
fc — process the command history list

SYNOPSIS
UP fc [-r] [-e editor] [first [last]]

fc -l [-nr] [first [last]]

fc -s [old=new] [first]

DESCRIPTION
The fc utility shall list, or shall edit and re-execute, commands previously entered to an
interactive sh.

The command history list shall reference commands by number. The first number in the list is
selected arbitrarily. The relationship of a number to its command shall not change except when
the user logs in and no other process is accessing the list, at which time the system may reset the
numbering to start the oldest retained command at another number (usually 1). When the
number reaches an implementation-defined upper limit, which shall be no smaller than the
value in HISTSIZE or 32 767 (whichever is greater), the shell may wrap the numbers, starting the
next command with a lower number (usually 1). However, despite this optional wrapping of
numbers, fc shall maintain the time-ordering sequence of the commands. For example, if four
commands in sequence are given the numbers 32 766, 32 767, 1 (wrapped), and 2 as they are
executed, command 32 767 is considered the command previous to 1, even though its number is
higher.

When commands are edited (when the −l option is not specified), the resulting lines shall be
entered at the end of the history list and then re-executed by sh. The fc command that caused the
editing shall not be entered into the history list. If the editor returns a non-zero exit status, this
shall suppress the entry into the history list and the command re-execution. Any command line
variable assignments or redirection operators used with fc shall affect both the fc command itself
as well as the command that results; for example:

fc -s -- -1 2>/dev/null

reinvokes the previous command, suppressing standard error for both fc and the previous
command.

OPTIONS
The fc utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−e editor Use the editor named by editor to edit the commands. The editor string is a utility
name, subject to search via the PA TH variable (see XBD Chapter 8, on page 167).
The value in the FCEDIT variable shall be used as a default when −e is not
specified. If FCEDIT is null or unset, ed shall be used as the editor.

−l (The letter ell.) List the commands rather than invoking an editor on them. The
commands shall be written in the sequence indicated by the first and last operands,
as affected by −r, with each command preceded by the command number.

−n Suppress command numbers when listing with −l.

−r Reverse the order of the commands listed (with −l) or edited (with neither −l nor
−s).

2922 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97483

97484

97485

97486

97487

97488

97489

97490

97491

97492

97493

97494

97495

97496

97497

97498

97499

97500

97501

97502

97503

97504

97505

97506

97507

97508

97509

97510

97511

97512

97513

97514

97515

97516

97517

97518

97519

97520

97521

97522

97523

97524

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities fc

−s Re-execute the command without invoking an editor.

OPERANDS
The following operands shall be supported:

first, last Select the commands to list or edit. The number of previous commands that can be
accessed shall be determined by the value of the HISTSIZE variable. The value of
first or last or both shall be one of the following:

[+]number A positive number representing a command number; command
numbers can be displayed with the −l option.

−number A negative decimal number representing the command that was
executed number of commands previously. For example, −1 is the
immediately previous command.

string A string indicating the most recently entered command that begins
with that string. If the old=new operand is not also specified with −s,
the string form of the first operand cannot contain an embedded
<equals-sign>.

When the synopsis form with −s is used:

• If first is omitted, the previous command shall be used.

For the synopsis forms without −s:

• If last is omitted, last shall default to the previous command when −l is
specified; otherwise, it shall default to first.

• If first and last are both omitted, the previous 16 commands shall be listed or
the previous single command shall be edited (based on the −l option).

• If first and last are both present, all of the commands from first to last shall be
edited (without −l) or listed (with −l). Editing multiple commands shall be
accomplished by presenting to the editor all of the commands at one time,
each command starting on a new line. If first represents a newer command
than last, the commands shall be listed or edited in reverse sequence,
equivalent to using −r. For example, the following commands on the first
line are equivalent to the corresponding commands on the second:

fc -r 10 20 fc 30 40
fc 20 10 fc -r 40 30

• When a range of commands is used, it shall not be an error to specify first or
last values that are not in the history list; fc shall substitute the value
representing the oldest or newest command in the list, as appropriate. For
example, if there are only ten commands in the history list, numbered 1 to 10:

fc -l
fc 1 99

shall list and edit, respectively, all ten commands.

old=new Replace the first occurrence of string old in the commands to be re-executed by the
string new.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2923

97525

97526

97527

97528

97529

97530

97531

97532

97533

97534

97535

97536

97537

97538

97539

97540

97541

97542

97543

97544

97545

97546

97547

97548

97549

97550

97551

97552

97553

97554

97555

97556

97557

97558

97559

97560

97561

97562

97563

97564

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fc Utilities

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fc:

FCEDIT This variable, when expanded by the shell, shall determine the default value for
the −e editor option’s editor option-argument. If FCEDIT is null or unset, ed shall be
used as the editor.

HISTFILE Determine a pathname naming a command history file. If the HISTFILE variable is
not set, the shell may attempt to access or create a file .sh_history in the directory
referred to by the HOME environment variable. If the shell cannot obtain both read
and write access to, or create, the history file, it shall use an unspecified
mechanism that allows the history to operate properly. (References to history ``file’’
in this section shall be understood to mean this unspecified mechanism in such
cases.) An implementation may choose to access this variable only when
initializing the history file; this initialization shall occur when fc or sh first attempt
to retrieve entries from, or add entries to, the file, as the result of commands issued
by the user, the file named by the ENV variable, or implementation-defined system
start-up files. In some historical shells, the history file is initialized just after the
ENV file has been processed. Therefore, it is implementation-defined whether
changes made to HISTFILE after the history file has been initialized are effective.
Implementations may choose to disable the history list mechanism for users with
appropriate privileges who do not set HISTFILE; the specific circumstances under
which this occurs are implementation-defined. If more than one instance of the
shell is using the same history file, it is unspecified how updates to the history file
from those shells interact. As entries are deleted from the history file, they shall be
deleted oldest first. It is unspecified when history file entries are physically
removed from the history file.

HISTSIZE Determine a decimal number representing the limit to the number of previous
commands that are accessible. If this variable is unset, an unspecified default
greater than or equal to 128 shall be used. The maximum number of commands in
the history list is unspecified, but shall be at least 128. An implementation may
choose to access this variable only when initializing the history file, as described
under HISTFILE. Therefore, it is unspecified whether changes made to HISTSIZE
after the history file has been initialized are effective.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

2924 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97565

97566

97567

97568

97569

97570

97571

97572

97573

97574

97575

97576

97577

97578

97579

97580

97581

97582

97583

97584

97585

97586

97587

97588

97589

97590

97591

97592

97593

97594

97595

97596

97597

97598

97599

97600

97601

97602

97603

97604

97605

97606

97607

97608

97609

97610

97611

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities fc

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −l option is used to list commands, the format of each command in the list shall be as
follows:

"%d\t%s\n", <line number>, <command>

If both the −l and −n options are specified, the format of each command shall be:

"\t%s\n", <command>

If the <command> consists of more than one line, the lines after the first shall be displayed as:

"\t%s\n", <continued-command>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion of the listing.

>0 An error occurred.

Otherwise, the exit status shall be that of the commands executed by fc.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Since editors sometimes use file descriptors as integral parts of their editing, redirecting their file
descriptors as part of the fc command can produce unexpected results. For example, if vi is the
FCEDIT editor, the command:

fc -s | more

does not work correctly on many systems.

Users on windowing systems may want to have separate history files for each window by
setting HISTFILE as follows:

HISTFILE=$HOME/.sh_hist$$

EXAMPLES
None.

RATIONALE
This utility is based on the fc built-in of the KornShell.

An early proposal specified the −e option as [−e editor [old= new]], which is not historical
practice. Historical practice in fc of either [−e editor] or [−e − [old= new]] is acceptable, but not

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2925

97612

97613

97614

97615

97616

97617

97618

97619

97620

97621

97622

97623

97624

97625

97626

97627

97628

97629

97630

97631

97632

97633

97634

97635

97636

97637

97638

97639

97640

97641

97642

97643

97644

97645

97646

97647

97648

97649

97650

97651

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fc Utilities

both together. To clarify this, a new option −s was introduced replacing the [−e −]. This resolves
the conflict and makes fc conform to the Utility Syntax Guidelines.

HISTFILE Some implementations of the KornShell check for the superuser and do not create
a history file unless HISTFILE is set. This is done primarily to avoid creating
unlinked files in the root file system when logging in during single-user mode.
HISTFILE must be set for the superuser to have history.

HISTSIZE Needed to limit the size of history files. It is the intent of the standard developers
that when two shells share the same history file, commands that are entered in one
shell shall be accessible by the other shell. Because of the difficulties of
synchronization over a network, the exact nature of the interaction is unspecified.

The initialization process for the history file can be dependent on the system start-up files, in
that they may contain commands that effectively preempt the settings the user has for HISTFILE
and HISTSIZE. For example, function definition commands are recorded in the history file. If
the system administrator includes function definitions in some system start-up file called before
the ENV file, the history file is initialized before the user can influence its characteristics. In some
historical shells, the history file is initialized just after the ENV file has been processed. Because
of these situations, the text requires the initialization process to be implementation-defined.

Consideration was given to omitting the fc utility in favor of the command line editing feature in
sh. For example, in vi editing mode, typing "<ESC> v" is equivalent to:

EDITOR=vi fc

However, the fc utility allows the user the flexibility to edit multiple commands simultaneously
(such as fc 10 20) and to use editors other than those supported by sh for command line editing.

In the KornShell, the alias r (``re-do’’) is preset to fc −e − (equivalent to the POSIX fc −s). This is
probably an easier command name to remember than fc (``fix command’’), but it does not meet
the Utility Syntax Guidelines. Renaming fc to hist or redo was considered, but since this
description closely matches historical KornShell practice already, such a renaming was seen as
gratuitous. Users are free to create aliases whenever odd historical names such as fc, awk, cat,
grep, or yacc are standardized by POSIX.

Command numbers have no ordering effects; they are like serial numbers. The −r option and
−number operand address the sequence of command execution, regardless of serial numbers. So,
for example, if the command number wrapped back to 1 at some arbitrary point, there would be
no ambiguity associated with traversing the wrap point. For example, if the command history
were:

32766: echo 1
32767: echo 2
1: echo 3

the number −2 refers to command 32 767 because it is the second previous command, regardless
of serial number.

FUTURE DIRECTIONS
None.

SEE ALSO
sh

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

2926 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97652

97653

97654

97655

97656

97657

97658

97659

97660

97661

97662

97663

97664

97665

97666

97667

97668

97669

97670

97671

97672

97673

97674

97675

97676

97677

97678

97679

97680

97681

97682

97683

97684

97685

97686

97687

97688

97689

97690

97691

97692

97693

97694

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities fc

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

In the ENVIRONMENT VARIABLES section, the text ``user ’s home directory’’ is updated to
``directory referred to by the HOME environment variable’’.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2927

97695

97696

97697

97698

97699

97700

97701

97702

97703

97704

97705

97706

97707

97708

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fg Utilities

NAME
fg — run jobs in the foreground

SYNOPSIS
UP fg [job_id]

DESCRIPTION
If job control is enabled (see the description of set −m), the shell is interactive, and the current
shell execution environment (see Section 2.13, on page 2522) is not a subshell environment, the fg
utility shall move a background job in the current execution environment into the foreground, as
described in Section 2.11 (on page 2518); it may also do so if the shell is non-interactive or the
current shell execution environment is a subshell environment.

Using fg to place a job into the foreground shall remove its process ID from the list of those
``known in the current shell execution environment’’; see Section 2.9.3.1 (on page 2506).

OPTIONS
None.

OPERANDS
The following operand shall be supported:

job_id Specify the job to be run as a foreground job. If no job_id operand is given, the
job_id for the job that was most recently suspended, placed in the background, or
run as a background job shall be used. The format of job_id is described in XBD
Section 3.182 (on page 57).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fg:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

2928 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97709

97710

97711

97712

97713

97714

97715

97716

97717

97718

97719

97720

97721

97722

97723

97724

97725

97726

97727

97728

97729

97730

97731

97732

97733

97734

97735

97736

97737

97738

97739

97740

97741

97742

97743

97744

97745

97746

97747

97748

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities fg

STDOUT
The fg utility shall write the command line of the job to standard output in the following format:

"%s\n", <command>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If the fg utility succeeds, it does not return an exit status. Instead, the shell waits for the job that
fg moved into the foreground.

If fg does not move a job into the foreground, the following exit value shall be returned:

>0 An error occurred.

CONSEQUENCES OF ERRORS
If job control is disabled, the fg utility shall exit with an error and no job shall be placed in the
foreground.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

The fg utility does not work as expected when it is operating in its own utility execution
environment because that environment has no applicable jobs to manipulate. See the
APPLICATION USAGE section for bg . For this reason, fg is generally implemented as a shell
regular built-in.

EXAMPLES
None.

RATIONALE
The extensions to the shell specified in this volume of POSIX.1-2024 have mostly been based on
features provided by the KornShell. The job control features provided by bg, fg, and jobs are also
based on the KornShell. The standard developers examined the characteristics of the C shell
versions of these utilities and found that differences exist. Despite widespread use of the C shell,
the KornShell versions were selected for this volume of POSIX.1-2024 to maintain a degree of
uniformity with the rest of the KornShell features selected (such as the very popular command
line editing features).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.3.1 (on page 2506), Section 2.13 (on page 2522), bg , kill , jobs , wait

XBD Section 3.182 (on page 57), Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 4.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2929

97749

97750

97751

97752

97753

97754

97755

97756

97757

97758

97759

97760

97761

97762

97763

97764

97765

97766

97767

97768

97769

97770

97771

97772

97773

97774

97775

97776

97777

97778

97779

97780

97781

97782

97783

97784

97785

97786

97787

97788

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fg Utilities

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The JC marking is removed from the SYNOPSIS since job control is mandatory is this version.

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1254 is applied, updating the DESCRIPTION to account for the addition of
Section 2.11 (on page 2518) and changing the EXIT STATUS section.

2930 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97789

97790

97791

97792

97793

97794

97795

97796

97797

97798

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities file

NAME
file — determine file type

SYNOPSIS
file [-dh] [-M file] [-m file] file...

file -i [-h] file...

DESCRIPTION
The file utility shall perform a series of tests in sequence on each specified file in an attempt to
classify it:

1. If file does not exist, cannot be read, or its file status could not be determined, the output
shall indicate that the file was processed, but that its type could not be determined.

2. If the file is not a regular file, its file type shall be identified. The file types directory,
FIFO, socket, block special, and character special shall be identified as such. Other
implementation-defined file types may also be identified. If file is a symbolic link, by
default the link shall be resolved and file shall test the type of file referenced by the
symbolic link. (See the −h and −i options below.)

3. If the length of file is zero, it shall be identified as an empty file.

4. The file utility shall examine an initial segment of file and shall make a guess at
identifying its contents based on position-sensitive tests. (The answer is not guaranteed to
be correct; see the −d, −M, and −m options below.)

5. The file utility shall examine file and make a guess at identifying its contents based on
context-sensitive default system tests. (The answer is not guaranteed to be correct.)

6. The file shall be identified as a data file.

If file does not exist, cannot be read, or its file status could not be determined, the output shall
indicate that the file was processed, but that its type could not be determined.

If file is a symbolic link, by default the link shall be resolved and file shall test the type of file
referenced by the symbolic link.

OPTIONS
The file utility shall conform to XBD Section 12.2 (on page 215), except that the order of the −m,
−d, and −M options shall be significant.

The following options shall be supported by the implementation:

−d Apply any position-sensitive default system tests and context-sensitive default
system tests to the file. This is the default if no −M or −m option is specified.

−h When a symbolic link is encountered, identify the file as a symbolic link. If −h is
not specified and file is a symbolic link that refers to a nonexistent file, file shall
identify the file as a symbolic link, as if −h had been specified.

−i If a file is a regular file, do not attempt to classify the type of the file further, but
identify the file as specified in the STDOUT section.

−M file Specify the name of a file containing position-sensitive tests that shall be applied to
a file in order to classify it (see the EXTENDED DESCRIPTION). No position-
sensitive default system tests nor context-sensitive default system tests shall be
applied unless the −d option is also specified.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2931

97799

97800

97801

97802

97803

97804

97805

97806

97807

97808

97809

97810

97811

97812

97813

97814

97815

97816

97817

97818

97819

97820

97821

97822

97823

97824

97825

97826

97827

97828

97829

97830

97831

97832

97833

97834

97835

97836

97837

97838

97839

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

file Utilities

−m file Specify the name of a file containing position-sensitive tests that shall be applied to
a file in order to classify it (see the EXTENDED DESCRIPTION).

If the −m option is specified without specifying the −d option or the −M option, position-
sensitive default system tests shall be applied after the position-sensitive tests specified by the
−m option. If the −M option is specified with the −d option, the −m option, or both, or the −m
option is specified with the −d option, the concatenation of the position-sensitive tests specified
by these options shall be applied in the order specified by the appearance of these options. If a
−M or −m file option-argument is −, the results are unspecified.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be tested.

STDIN
The standard input shall be used if a file operand is '−' and the implementation treats the '−'
as meaning standard input. Otherwise, the standard input shall not be used.

INPUT FILES
The file can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of file:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
In the POSIX locale, the following format shall be used to identify each operand, file specified:

"%s: %s\n", <file>, <type>

The values for <type> are unspecified, except that in the POSIX locale, if file is identified as one
of the types listed in the following table, <type> shall contain (but is not limited to) the
corresponding string, unless the file is identified by a position-sensitive test specified by a −M or
−m option. Each <space> shown in the strings shall be exactly one <space>.

2932 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97840

97841

97842

97843

97844

97845

97846

97847

97848

97849

97850

97851

97852

97853

97854

97855

97856

97857

97858

97859

97860

97861

97862

97863

97864

97865

97866

97867

97868

97869

97870

97871

97872

97873

97874

97875

97876

97877

97878

97879

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities file

Table 3-10 File Utility Output Strings

If file is: <type> shall contain the string: Notes
Nonexistent cannot open

Block special block special 1
Character special character special 1
Directory directory 1
FIFO fifo 1
Socket socket 1
Symbolic link symbolic link to 1
Regular file regular file 1,2
Empty regular file empty 3
Regular file that cannot be read cannot open 3

Executable binary executable 3,4,6
ar archive library (see ar) archive 3,4,6
Extended cpio format (see pax) cpio archive 3,4,6
Extended tar format (see ustar in pax) tar archive 3,4,6

Shell script commands text 3,5,6
C-language source c program text 3,5,6
FORTRAN source fortran program text 3,5,6

Regular file whose type cannot be determined data 3

Notes:

1. This is a file type test.

2. This test is applied only if the −i option is specified.

3. This test is applied only if the −i option is not specified.

4. This is a position-sensitive default system test.

5. This is a context-sensitive default system test.

6. Position-sensitive default system tests and context-sensitive default system tests are not
applied if the −M option is specified unless the −d option is also specified.

In the POSIX locale, if file is identified as a symbolic link (see the −h option), the following
alternative output format shall be used:

"%s: %s %s\n", <file>, <type>, <contents of link>"

If the file named by the file operand does not exist, cannot be read, or the type of the file named
by the file operand cannot be determined, this shall not be considered an error that affects the
exit status.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2933

97880

97881

97882

97883

97884

97885

97886

97887

97888

97889

97890

97891

97892

97893

97894

97895

97896

97897

97898

97899

97900

97901

97902

97903

97904

97905

97906

97907

97908

97909

97910

97911

97912

97913

97914

97915

97916

97917

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

file Utilities

EXTENDED DESCRIPTION
A file specified as an option-argument to the −m or −M options shall contain one position-
sensitive test per line, which shall be applied to the file. If the test succeeds, the message field of
the line shall be printed and no further tests shall be applied, with the exception that tests on
immediately following lines beginning with a single '>' character shall be applied.

Each line shall be composed of the following four <tab>-separated fields. (Implementations may
allow any combination of one or more white-space characters other than <newline> to act as
field separators.)

offset An unsigned number (optionally preceded by a single '>' character) specifying
the offset, in bytes, of the value in the file that is to be compared against the value
field of the line. If the file is shorter than the specified offset, the test shall fail.

If the offset begins with the character '>', the test contained in the line shall not be
applied to the file unless the test on the last line for which the offset did not begin
with a '>' was successful. By default, the offset shall be interpreted as an unsigned
decimal number. With a leading 0x or 0X, the offset shall be interpreted as a
hexadecimal number; otherwise, with a leading 0, the offset shall be interpreted as
an octal number.

type The type of the value in the file to be tested. The type shall consist of the type
specification characters d, s, and u, specifying signed decimal, string, and
unsigned decimal, respectively.

The type string shall be interpreted as the bytes from the file starting at the
specified offset and including the same number of bytes specified by the value field.
If insufficient bytes remain in the file past the offset to match the value field, the test
shall fail.

The type specification characters d and u can be followed by an optional unsigned
decimal integer that specifies the number of bytes represented by the type. The
type specification characters d and u can be followed by an optional C, S, I, or L,
indicating that the value is of type char, short, int, or long, respectively.

The default number of bytes represented by the type specifiers d, f, and u shall
correspond to their respective C-language types as follows. If the system claims
conformance to the C-Language Development Utilities option, those specifiers
shall correspond to the default sizes used in the c17 utility. Otherwise, the default
sizes shall be implementation-defined.

For the type specifier characters d and u, the default number of bytes shall
correspond to the size of a basic integer type of the implementation. For these
specifier characters, the implementation shall support values of the optional
number of bytes to be converted corresponding to the number of bytes in the C-
language types char, short, int, or long. These numbers can also be specified by an
application as the characters C, S, I, and L, respectively. The byte order used when
interpreting numeric values is implementation-defined, but shall correspond to the
order in which a constant of the corresponding type is stored in memory on the
system.

All type specifiers, except for s, can be followed by a mask specifier of the form
&number. The mask value shall be AND’ed with the value of the input file before
the comparison with the value field of the line is made. By default, the mask shall
be interpreted as an unsigned decimal number. With a leading 0x or 0X, the mask
shall be interpreted as an unsigned hexadecimal number; otherwise, with a leading

2934 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

97918

97919

97920

97921

97922

97923

97924

97925

97926

97927

97928

97929

97930

97931

97932

97933

97934

97935

97936

97937

97938

97939

97940

97941

97942

97943

97944

97945

97946

97947

97948

97949

97950

97951

97952

97953

97954

97955

97956

97957

97958

97959

97960

97961

97962

97963

97964

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities file

0, the mask shall be interpreted as an unsigned octal number.

The strings byte, short, long, and string shall also be supported as type fields,
being interpreted as dC, dS, dL, and s, respectively.

value The value to be compared with the value from the file.

If the specifier from the type field is s or string, then interpret the value as a string.
Otherwise, interpret it as a number. If the value is a string, then the test shall
succeed only when a string value exactly matches the bytes from the file.

If the value is a string, it can contain the following sequences:

\character The <backslash>-escape sequences as specified in XBD Table 5-1
(on page 113) ('\\', '\a', '\b', '\f', '\n', '\r', '\t',
'\v'). In addition, the escape sequence '\ ' (the <backslash>
character followed by a <space> character) shall be recognized to
represent a <space> character. The results of using any other
character, other than an octal digit, following the <backslash>
are unspecified.

\octal Octal sequences that can be used to represent characters with
specific coded values. An octal sequence shall consist of a
<backslash> followed by the longest sequence of one, two, or
three octal-digit characters (01234567).

By default, any value that is not a string shall be interpreted as a signed decimal
number. Any such value, with a leading 0x or 0X, shall be interpreted as an
unsigned hexadecimal number; otherwise, with a leading zero, the value shall be
interpreted as an unsigned octal number.

If the value is not a string, it can be preceded by a character indicating the
comparison to be performed. Permissible characters and the comparisons they
specify are as follows:

= The test shall succeed if the value from the file equals the value field.

< The test shall succeed if the value from the file is less than the value field.

> The test shall succeed if the value from the file is greater than the value field.

& The test shall succeed if all of the set bits in the value field are set in the value
from the file.

ˆ The test shall succeed if at least one of the set bits in the value field is not set in
the value from the file.

x The test shall succeed if the file is large enough to contain a value of the type
specified starting at the offset specified.

message The message to be printed if the test succeeds. The message shall be interpreted
using the notation for the printf formatting specification; see printf. If the value
field was a string, then the value from the file shall be the argument for the printf
formatting specification; otherwise, the value from the file shall be the argument.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2935

97965

97966

97967

97968

97969

97970

97971

97972

97973

97974

97975

97976

97977

97978

97979

97980

97981

97982

97983

97984

97985

97986

97987

97988

97989

97990

97991

97992

97993

97994

97995

97996

97997

97998

97999

98000

98001

98002

98003

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

file Utilities

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The file utility can only be required to guess at many of the file types because only exhaustive
testing can determine some types with certainty. For example, binary data on some
implementations might match the initial segment of an executable or a tar archive.

Note that the table indicates that the output contains the stated string. Systems may add text
before or after the string. For executables, as an example, the machine architecture and various
facts about how the file was link-edited may be included. Note also that on systems that
recognize shell script files starting with "#!" as executable files, these may be identified as
executable binary files rather than as shell scripts.

EXAMPLES
Determine whether an argument is a binary executable file:

file -- "$1" | grep -q ':.*executable' &&
printf "%s is executable.\n" "$1"

RATIONALE
The −f option was omitted because the same effect can (and should) be obtained using the xargs
utility.

Historical versions of the file utility attempt to identify the following types of files: symbolic link,
directory, character special, block special, socket, tar archive, cpio archive, SCCS archive, archive
library, empty, compress output, pack output, binary data, C source, FORTRAN source, assembler
source, nroff/troff/eqn/tbl source troff output, shell script, C shell script, English text, ASCII text,
various executables, APL workspace, compiled terminfo entries, and CURSES screen images.
Only those types that are reasonably well specified in POSIX or are directly related to POSIX
utilities are listed in the table.

Historical systems have used a ``magic file’’ named /etc/magic to help identify file types. Because
it is generally useful for users and scripts to be able to identify special file types, the −m flag and
a portable format for user-created magic files has been specified. No requirement is made that an
implementation of file use this method of identifying files, only that users be permitted to add
their own classifying tests.

In addition, three options have been added to historical practice. The −d flag has been added to
permit users to cause their tests to follow any default system tests. The −i flag has been added to
permit users to test portably for regular files in shell scripts. The −M flag has been added to
permit users to ignore any default system tests.

The POSIX.1-2024 description of default system tests and the interaction between the −d, −M,
and −m options did not clearly indicate that there were two types of ``default system tests’’. The
``position-sensitive tests’’ determine file types by looking for certain string or binary values at
specific offsets in the file being examined. These position-sensitive tests were implemented in
historical systems using the magic file described above. Some of these tests are now built into
the file utility itself on some implementations so the output can provide more detail than can be
provided by magic files. For example, a magic file can easily identify a file containing a core
image on most implementations, but cannot name the program file that dropped the core. A

2936 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98004

98005

98006

98007

98008

98009

98010

98011

98012

98013

98014

98015

98016

98017

98018

98019

98020

98021

98022

98023

98024

98025

98026

98027

98028

98029

98030

98031

98032

98033

98034

98035

98036

98037

98038

98039

98040

98041

98042

98043

98044

98045

98046

98047

98048

98049

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities file

magic file could produce output such as:

/home/dwc/core: ELF 32-bit MSB core file SPARC Version 1

but by building the test into the file utility, you could get output such as:

/home/dwc/core: ELF 32-bit MSB core file SPARC Version 1, from 'testprog'

These extended built-in tests are still to be treated as position-sensitive default system tests even
if they are not listed in /etc/magic or any other magic file.

The context-sensitive default system tests were always built into the file utility. These tests
looked for language constructs in text files trying to identify shell scripts, C, FORTRAN, and
other computer language source files, and even plain text files. With the addition of the −m and
−M options the distinction between position-sensitive and context-sensitive default system tests
became important because the order of testing is important. The context-sensitive system default
tests should never be applied before any position-sensitive tests even if the −d option is specified
before a −m option or −M option due to the high probability that the context-sensitive system
default tests will incorrectly identify arbitrary text files as text files before position-sensitive tests
specified by the −m or −M option would be applied to give a more accurate identification.

Leaving the meaning of −M − and −m − unspecified allows an existing prototype of these
options to continue to work in a backwards-compatible manner. (In that implementation, −M −
was roughly equivalent to −d in POSIX.1-2024.)

The historical −c option was omitted as not particularly useful to users or portable shell scripts.
In addition, a reasonable implementation of the file utility would report any errors found each
time the magic file is read.

The historical format of the magic file was the same as that specified by the Rationale in the
ISO POSIX-2: 1993 standard for the offset, value, and message fields; however, it used less precise
type fields than the format specified by the current normative text. The new type field values are
a superset of the historical ones.

The following is an example magic file:

0 short 070707 cpio archive
0 short 0143561 Byte-swapped cpio archive
0 string 070707 ASCII cpio archive
0 long 0177555 Very old archive
0 short 0177545 Old archive
0 short 017437 Old packed data
0 string \037\036 Packed data
0 string \377\037 Compacted data
0 string \037\235 Compressed data
>2 byte&0x80 >0 Block compressed
>2 byte&0x1f x %d bits
0 string \032\001 Compiled Terminfo Entry
0 short 0433 Curses screen image
0 short 0434 Curses screen image
0 string <ar> System V Release 1 archive
0 string !<arch>\n__.SYMDEF Archive random library
0 string !<arch> Archive
0 string ARF_BEGARF PHIGS clear text archive
0 long 0x137A2950 Scalable OpenFont binary
0 long 0x137A2951 Encrypted scalable OpenFont binary

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2937

98050

98051

98052

98053

98054

98055

98056

98057

98058

98059

98060

98061

98062

98063

98064

98065

98066

98067

98068

98069

98070

98071

98072

98073

98074

98075

98076

98077

98078

98079

98080

98081

98082

98083

98084

98085

98086

98087

98088

98089

98090

98091

98092

98093

98094

98095

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

file Utilities

The use of a basic integer data type is intended to allow the implementation to choose a word
size commonly used by applications on that architecture.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
ar , ls , pax , printf

XBD Table 5-1 (on page 113), Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Options and an EXTENDED DESCRIPTION are added as specified in the IEEE P1003.2b draft
standard.

IEEE PASC Interpretations 1003.2 #192 and #178 are applied.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/25 is applied, making major changes to
address ambiguities raised in defect reports.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/26 is applied, making it clear in the
OPTIONS section that the −m, −d, and −M options do not comply with Guideline 11 of the
Utility Syntax Guidelines.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/10 is applied, clarifying the specification
characters.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/11 is applied, allowing application
developers to create portable magic files that can match characters in strings, and allowing
common extensions found in existing implementations.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/12 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-4 is applied, adding further entries in the Notes column in Table 3-10.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The file utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

The EXAMPLES section is revised to correct an error with the pathname "$1".

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being

2938 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98096

98097

98098

98099

98100

98101

98102

98103

98104

98105

98106

98107

98108

98109

98110

98111

98112

98113

98114

98115

98116

98117

98118

98119

98120

98121

98122

98123

98124

98125

98126

98127

98128

98129

98130

98131

98132

98133

98134

98135

98136

98137

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities file

used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1141 is applied, changing ``core file’’ to ``file containing a core image’’.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2939

98138

98139

98140

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

find Utilities

NAME
find — find files

SYNOPSIS
find [-H|-L] path... [operand_expression...]

DESCRIPTION
The find utility shall recursively descend the directory hierarchy from each file specified by path,
evaluating a Boolean expression composed of the primaries described in the OPERANDS section
for each file encountered. Each path operand shall be evaluated unaltered as it was provided,
including all trailing <slash> characters; all pathnames for other files encountered in the
hierarchy shall consist of the concatenation of the current path operand, a <slash> if the current
path operand did not end in one, and the filename relative to the path operand. The relative
portion shall contain no dot or dot-dot components, no trailing <slash> characters, and only
single <slash> characters between pathname components.

The find utility shall be able to descend to arbitrary depths in a file hierarchy and shall not fail
due to path length limitations (unless a path operand specified by the application exceeds
{PATH_MAX} requirements).

The find utility shall detect infinite loops; that is, entering a previously visited directory that is an
ancestor of the last file encountered. When it detects an infinite loop, find shall write a
diagnostic message to standard error and shall either recover its position in the hierarchy or
terminate. In either case, the final exit status shall be non-zero.

If a file is removed from or added to the directory hierarchy being searched it is unspecified
whether or not find includes that file in its search.

OPTIONS
The find utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−H Cause the file information and file type evaluated for each symbolic link
encountered as a path operand on the command line to be those of the file
referenced by the link, and not the link itself. If the referenced file does not exist,
the file information and type shall be for the link itself. File information and type
for symbolic links encountered during the traversal of a file hierarchy shall be that
of the link itself.

−L Cause the file information and file type evaluated for each symbolic link
encountered as a path operand on the command line or encountered during the
traversal of a file hierarchy to be those of the file referenced by the link, and not the
link itself. If the referenced file does not exist, the file information and type shall be
for the link itself.

Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
an error. The last option specified shall determine the behavior of the utility. If neither the −H
nor the −L option is specified, then the file information and type for symbolic links encountered
as a path operand on the command line or encountered during the traversal of a file hierarchy
shall be that of the link itself.

OPERANDS
The following operands shall be supported:

The first operand and subsequent operands up to but not including the first operand that starts
with a '-', or is a '!' or a '(', shall be interpreted as path operands. If the first operand starts
with a '-', or is a '!' or a '(', the behavior is unspecified. Each path operand is a pathname of

2940 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98141

98142

98143

98144

98145

98146

98147

98148

98149

98150

98151

98152

98153

98154

98155

98156

98157

98158

98159

98160

98161

98162

98163

98164

98165

98166

98167

98168

98169

98170

98171

98172

98173

98174

98175

98176

98177

98178

98179

98180

98181

98182

98183

98184

98185

98186

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities find

a starting point in the file hierarchy.

The first operand that starts with a '-', or is a '!' or a '(', and all subsequent arguments shall
be interpreted as an expression made up of the following primaries and operators. In the
descriptions, wherever n is used as a primary argument, it shall be interpreted as a decimal
integer optionally preceded by a <plus-sign> ('+') or <hyphen-minus> ('-'), as follows:

+n More than n.

n Exactly n.

−n Less than n.

The following primaries shall be supported:

−name pattern
The primary shall evaluate as true if the basename of the current pathname
matches pattern using the pattern matching notation described in Section 2.14 (on
page 2523). The additional rules in Section 2.14.3 (on page 2525) do not apply as
this is a matching operation, not an expansion.

−iname pattern
The −iname primary shall be equivalent to −name, except that the match shall be
case insensitive. See XBD Section 4.1 (on page 95).

−path pattern
The primary shall evaluate as true if the current pathname matches pattern using
the pattern matching notation described in Section 2.14 (on page 2523). The
additional rules in Section 2.14.3 (on page 2525) do not apply as this is a matching
operation, not an expansion.

−nouser The primary shall evaluate as true if the file belongs to a user ID for which the
getpwuid() function defined in the System Interfaces volume of POSIX.1-2024 (or
equivalent) returns NULL.

−nogroup The primary shall evaluate as true if the file belongs to a group ID for which the
getgrgid() function defined in the System Interfaces volume of POSIX.1-2024 (or
equivalent) returns NULL.

−mount The primary shall always evaluate as true; it shall cause find to act only on files that
have the same device ID (st_dev, see XSH fstatat()) as the path operand below
which they are encountered and cause find not to descend below directories that
have a different device ID than that path operand. If any −mount primary is
specified, it shall apply to the entire expression even if the −mount primary would
not normally be evaluated.

−xdev The primary shall always evaluate as true; it shall cause find not to descend below
directories that have a different device ID (st_dev, see XSH fstatat()) than the path
operand below which they are encountered; that is, when a directory with a
different device ID is encountered, find shall act on the directory itself (unless
−mount is specified) but shall not act on any files below the directory. If any −xdev
primary is specified, it shall apply to the entire expression even if the −xdev
primary would not normally be evaluated.

−prune The primary shall always evaluate as true; it shall cause find not to descend the
current pathname if it is a directory. If the −depth primary is specified, the −prune
primary shall have no effect.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2941

98187

98188

98189

98190

98191

98192

98193

98194

98195

98196

98197

98198

98199

98200

98201

98202

98203

98204

98205

98206

98207

98208

98209

98210

98211

98212

98213

98214

98215

98216

98217

98218

98219

98220

98221

98222

98223

98224

98225

98226

98227

98228

98229

98230

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

find Utilities

−perm [−]mode
The mode argument is used to represent file mode bits. It shall be processed in an
identical manner to the symbolic_mode operand described in chmod, except that:

1. The changes to file mode bits shall be applied to a template instead of to any
files. The template shall initially have all file mode bits cleared.

2. The op symbol '-' cannot be the first character of mode; this avoids
ambiguity with the optional leading <hyphen-minus>. Since the initial
mode is all bits off, there are not any symbolic modes that need to use '-'
as the first character.

If the <hyphen-minus> is omitted, the primary shall evaluate as true when the file
permission bits exactly match the value of the resulting template.

Otherwise, if mode is prefixed by a <hyphen-minus>, the primary shall evaluate as
true if at least all the bits in the resulting template are set in the file permission bits.

−perm [−]onum
If the <hyphen-minus> is omitted, the primary shall evaluate as true when the file
mode bits exactly match the value of the octal number onum (see the description of
the octal mode in chmod). Otherwise, if onum is prefixed by a <hyphen-minus>, the
primary shall evaluate as true if at least all of the bits specified in onum are set. In
both cases, the behavior is unspecified when onum exceeds 07777.

−type c The primary shall evaluate as true if the type of the file is c, where c is 'b', 'c',
'd', 'l', 'p', 'f', or 's' for block special file, character special file, directory,
symbolic link, FIFO, regular file, or socket, respectively.

−links n The primary shall evaluate as true if the file has n links.

−user uname The primary shall evaluate as true if the file belongs to the user uname. If uname is
a decimal integer and the getpwnam() (or equivalent) function does not return a
valid user name, uname shall be interpreted as a user ID.

−group gname
The primary shall evaluate as true if the file belongs to the group gname. If gname
is a decimal integer and the getgrnam() (or equivalent) function does not return a
valid group name, gname shall be interpreted as a group ID.

−size n[c] The primary shall evaluate as true if the file size in bytes, divided by 512 and
rounded up to the next integer, is n. If n is followed by the character 'c', the size
shall be in bytes.

−atime n The primary shall evaluate as true if the file access time subtracted from the
initialization time, divided by 86 400 (with any remainder discarded), is n.

−ctime n The primary shall evaluate as true if the time of last change of file status
information subtracted from the initialization time, divided by 86 400 (with any
remainder discarded), is n.

−mtime n The primary shall evaluate as true if the file modification time subtracted from the
initialization time, divided by 86 400 (with any remainder discarded), is n.

−exec utility_name [argument . . .] ;
−exec utility_name [argument . . .] { } +

The end of the primary expression shall be punctuated by a <semicolon> or by a
<plus-sign>. Only a <plus-sign> that immediately follows an argument
containing only the two characters "{}" shall punctuate the end of the primary

2942 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98231

98232

98233

98234

98235

98236

98237

98238

98239

98240

98241

98242

98243

98244

98245

98246

98247

98248

98249

98250

98251

98252

98253

98254

98255

98256

98257

98258

98259

98260

98261

98262

98263

98264

98265

98266

98267

98268

98269

98270

98271

98272

98273

98274

98275

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities find

expression. Other uses of the <plus-sign> shall not be treated as special.

If the primary expression is punctuated by a <semicolon>, the utility utility_name
shall be invoked once for each pathname and the primary shall evaluate as true if
the utility returns a zero value as exit status. A utility_name or argument containing
only the two characters "{}" shall be replaced by the current pathname. If a
utility_name or argument string contains the two characters "{}", but not just the
two characters "{}", it is implementation-defined whether find replaces those two
characters or uses the string without change.

If the primary expression is punctuated by a <plus-sign>, the primary shall always
evaluate as true, and the pathnames for which the primary is evaluated shall be
aggregated into sets. The utility utility_name shall be invoked once for each set of
aggregated pathnames. Each invocation shall begin after the last pathname in the
set is aggregated, and shall be completed before the find utility exits and before the
first pathname in the next set (if any) is aggregated for this primary, but it is
otherwise unspecified whether the invocation occurs before, during, or after the
evaluations of other primaries. If any invocation returns a non-zero value as exit
status, the find utility shall return a non-zero exit status. An argument containing
only the two characters "{}" shall be replaced by the set of aggregated
pathnames, with each pathname passed as a separate argument to the invoked
utility in the same order that it was aggregated. The size of any set of two or more
pathnames shall be limited such that execution of the utility does not cause the
system’s {ARG_MAX} limit to be exceeded. If more than one argument containing
the two characters "{}" is present, the behavior is unspecified.

The current directory for the invocation of utility_name shall be the same as the
current directory when the find utility was started. If the utility_name names any of
the special built-in utilities (see Section 2.15, on page 2526), the results are
undefined.

−ok utility_name [argument . . .] ;
The −ok primary shall be equivalent to −exec, except that the use of a <plus-sign>
to punctuate the end of the primary expression need not be supported, and find
shall request affirmation of the invocation of utility_name using the current file as
an argument by writing to standard error as described in the STDERR section. If
the response on standard input is affirmative, the utility shall be invoked.
Otherwise, the command shall not be invoked and the value of the −ok operand
shall be false.

−print The primary shall always evaluate as true; it shall cause the current pathname to
be written to standard output, followed by a <newline>.

−print0 The primary shall always evaluate as true; it shall cause the current pathname to
be written to standard output, followed by a null byte.

−newer file The primary shall evaluate as true if the modification time of the current file is
more recent than the modification time of the file named by the pathname file. If
file names a symbolic link, the modification time used shall be that of the file
referenced by the symbolic link if either the −H or −L option is specified; if neither
−H nor −L is specified, it is unspecified whether the modification time is that of the
symbolic link itself or of the file referenced by the symbolic link. In either case, if
the referenced file does not exist, the modification time used shall be that of the
link itself. If file is a relative pathname, it shall be resolved relative to the current
working directory that was inherited by find when it was invoked.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2943

98276

98277

98278

98279

98280

98281

98282

98283

98284

98285

98286

98287

98288

98289

98290

98291

98292

98293

98294

98295

98296

98297

98298

98299

98300

98301

98302

98303

98304

98305

98306

98307

98308

98309

98310

98311

98312

98313

98314

98315

98316

98317

98318

98319

98320

98321

98322

98323

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

find Utilities

−depth The primary shall always evaluate as true; it shall cause descent of the directory
hierarchy to be done so that all entries in a directory are acted on before the
directory itself. If a −depth primary is not specified, all entries in a directory shall
be acted on after the directory itself. If any −depth primary is specified, it shall
apply to the entire expression even if the −depth primary would not normally be
evaluated.

The primaries can be combined using the following operators (in order of decreasing
precedence):

(expression) True if expression is true.

! expression Negation of a primary; the unary NOT operator.

expression [−a] expression
Conjunction of primaries; the AND operator is implied by the juxtaposition of two
primaries or made explicit by the optional −a operator. The second expression shall
not be evaluated if the first expression is false.

expression −o expression
Alternation of primaries; the OR operator. The second expression shall not be
evaluated if the first expression is true.

If no expression is present, −print shall be used as the expression. Otherwise, if the given
expression does not contain any of the primaries −exec, −ok, or −print, the given expression
shall be effectively replaced by:

(given_expression) -print

The −user, −group, and −newer primaries each shall evaluate their respective arguments only
once.

When the file type evaluated for the current file is a symbolic link, the results of evaluating the
−perm primary are implementation-defined.

STDIN
If the −ok primary is used, the response shall be read from the standard input. An entire line
shall be read as the response. Otherwise, the standard input shall not be used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of find:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the pattern matching notation for the −name,
−iname, and −path primaries and in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

2944 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98324

98325

98326

98327

98328

98329

98330

98331

98332

98333

98334

98335

98336

98337

98338

98339

98340

98341

98342

98343

98344

98345

98346

98347

98348

98349

98350

98351

98352

98353

98354

98355

98356

98357

98358

98359

98360

98361

98362

98363

98364

98365

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities find

LC_CTYPE This variable determines the locale for the interpretation of sequences of bytes of
text data as characters (for example, single-byte as opposed to multi-byte
characters in arguments), the behavior of character classes within the pattern
matching notation used for the −name, −iname, and −path primaries, and the
behavior of character classes within regular expressions used in the extended
regular expression defined for the yesexpr locale keyword in the LC_MESSAGES
category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the location of the utility_name for the −exec and −ok primaries, as
described in XBD Chapter 8 (on page 167).

ASYNCHRONOUS EVENTS
Default.

STDOUT
The −print primary shall cause the current pathname to be written to standard output. The
format shall be:

"%s\n", <path>

The −print0 primary shall cause the current pathname to be written to standard output,
followed by a null byte.

STDERR
The −ok primary shall write a prompt to standard error containing at least the utility_name to be
invoked and the current pathname. In the POSIX locale, the last non-<blank> in the prompt shall
be '?'. The exact format used is unspecified.

Otherwise, the standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All path operands were traversed successfully, the output (if any) specified in STDOUT was
successfully written to standard output, and all commands (if any) executed using the −exec
primary punctuated by a <plus-sign> exited with exit status 0.

>0 A command executed using the −exec primary punctuated by a <plus-sign> exited with
non-zero status, or an error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2945

98366

98367

98368

98369

98370

98371

98372

98373

98374

98375

98376

98377

98378

98379

98380

98381

98382

98383

98384

98385

98386

98387

98388

98389

98390

98391

98392

98393

98394

98395

98396

98397

98398

98399

98400

98401

98402

98403

98404

98405

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

find Utilities

APPLICATION USAGE
When used in operands, pattern matching notation, <semicolon>, <left-parenthesis>, and
<right-parenthesis> characters are special to the shell and must be quoted (see Section 2.2, on
page 2472).

When restricting the search to files on one file system, it can sometimes be desirable for the
crossing points themselves to be acted on and sometimes for them not to be acted on. (Crossing
points are mount points and, if the −L option is specified, symbolic links to directories on other
file systems.) The −xdev primary acts on them and the −mount primary does not. However,
−mount also does not act on symbolic links to non-directory files on other file systems (if −L is
specified). If there is a need for an application to exclude crossing points but include symbolic
links to non-directory files on other file systems, this can be achieved by using two find
commands as follows:

find -L dir -mount -type d -print
find -L dir -xdev ! -type d -print

(in a subshell whose output is piped to sort, if the order matters).

If both −mount and −xdev are specified, find obeys both primaries but the end result is the same
as if −xdev were not specified.

The bit that is traditionally used for sticky (historically 01000) is specified in the −perm primary
using the octal number argument form. Since this bit is not defined by this volume of
POSIX.1-2024, applications must not assume that it actually refers to the traditional sticky bit.

EXAMPLES

1. The following commands are equivalent:

find .
find . -print

They both write out the entire directory hierarchy from the current directory.

With this output format, if any pathnames include <newline> characters, it is not possible
to tell where each pathname begins and ends. This problem can be avoided by omitting
such pathnames:

LC_ALL=POSIX find . -name $’*\n*’ -prune -o -print

or by using a sentinel in the pathname that find would never otherwise produce, such as:

find .//. -print

or by using −print0 instead of −print and processing the output with a utility that can
accept null-terminated pathnames as input, such as xargs with the −0 option or read with
−d "", for example:

find . -print0 | while IFS= read -rd "" file
do

process "$file"
done

It should be noted that using find with −print0 to pipe input to xargs −r0 is less safe than
using find with −exec because if find −print0 is terminated after it has written a partial
pathname, the partial pathname may be processed as if it was a complete pathname.

2946 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98406

98407

98408

98409

98410

98411

98412

98413

98414

98415

98416

98417

98418

98419

98420

98421

98422

98423

98424

98425

98426

98427

98428

98429

98430

98431

98432

98433

98434

98435

98436

98437

98438

98439

98440

98441

98442

98443

98444

98445

98446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities find

2. The following command:

find / \(-name tmp -o -name '*.xx' \) ! -type d -mtime +7 \
-exec rm {} +

removes all files named tmp or ending in .xx that have not been modified for more than
seven (that is, eight or more) 24-hour periods.

3. The following command:

find . -perm -o+w,+s

prints (−print is assumed) the names of all files in or below the current directory, with all
of the file permission bits S_ISUID, S_ISGID, and S_IWOTH set, regardless of the value of
the file creation mask. (Note that the file creation mask is only specified for the file
permission bits, and not S_ISUID, S_ISGID or S_ISVTX.)

4. The following command:

find . -perm -+w

prints (−print is assumed) the names of all files in or below the current directory, with
S_IWUSR set if the file creation mask does not have S_IWUSR set (otherwise the
S_IWUSR bit is ignored), S_IWGRP set if the file creation mask does not have S_IWGRP
set (otherwise S_IWGRP is ignored), and S_IWOTH set if the file creation mask does not
have S_IWOTH set (otherwise S_IWOTH is ignored).

5. The following command:

find . -name SCCS -prune -o -print

recursively prints pathnames of all files in the current directory and below, but skips
directories named SCCS and files in them.

6. The following command:

find . -print -name SCCS -prune

behaves as in the previous example, but prints the names of the SCCS directories.

7. The following command is roughly equivalent to the −nt extension to test:

if [-n "$(find file1 -prune -newer file2)"]; then
printf %s\\n "file1 is newer than file2"

fi

8. The descriptions of −atime, −ctime, and −mtime use the terminology n ``86 400 second
periods (days)’’. For example, a file accessed at 23:59 is selected by:

find . -atime -1 -print

at 00:01 the next day (less than 24 hours later, not more than one day ago); the midnight
boundary between days has no effect on the 24-hour calculation.

9. The following command:

find . ! -name . -prune -name '*.old' -exec \
sh -c 'mv "$@" ../old/' sh {} +

performs the same task as:

mv ./*.old ./.old ./.*.old ../old/

while avoiding an ``Argument list too long’’ error if there are a large number of files

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2947

98447

98448

98449

98450

98451

98452

98453

98454

98455

98456

98457

98458

98459

98460

98461

98462

98463

98464

98465

98466

98467

98468

98469

98470

98471

98472

98473

98474

98475

98476

98477

98478

98479

98480

98481

98482

98483

98484

98485

98486

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

find Utilities

ending with .old and without running mv if there are no such files (and avoiding ``No
such file or directory’’ errors if ./.old does not exist or no files match ./*.old or ./.*.old).

The alternative:

find . ! -name . -prune -name '*.old' -exec mv {} ../old/ \;

is less efficient if there are many files to move because it executes one mv command per
file.

10. On systems configured to mount removable media on directories under /media, the
following command searches the file hierarchy for files of size larger than 100 000 KiB
without searching any mounted removable media:

find / -path /media -prune -o -size +200000 -print

11. Except for the root directory, and "//" on implementations where "//" does not refer to
the root directory, no pattern given to −name will match a <slash>, because trailing
<slash> characters are ignored when computing the basename of the file under
evaluation. Given two empty directories named foo and bar, the following command:

find foo/// bar/// -name foo -o -name 'bar?*'

prints only the line "foo///".

RATIONALE
The −a operator was retained as an optional operator for compatibility with historical shell
scripts, even though it is redundant with expression concatenation.

The descriptions of the '-' modifier on the mode and onum arguments to the −perm primary
agree with historical practice on BSD and System V implementations. System V and BSD
documentation both describe it in terms of checking additional bits; in fact, it uses the same bits,
but checks for having at least all of the matching bits set instead of having exactly the matching
bits set.

The exact format of the interactive prompts is unspecified. Only the general nature of the
contents of prompts are specified because:

• Implementations may desire more descriptive prompts than those used on historical
implementations.

• Since the historical prompt strings do not terminate with <newline> characters, there is no
portable way for another program to interact with the prompts of this utility via pipes.

Therefore, an application using this prompting option relies on the system to provide the most
suitable dialog directly with the user, based on the general guidelines specified.

The −size operand refers to the size of a file, rather than the number of blocks it may occupy in
the file system. The intent is that the st_size field defined in the System Interfaces volume of
POSIX.1-2024 should be used, not the st_blocks found in historical implementations. There are at
least two reasons for this:

1. In both System V and BSD, find only uses st_size in size calculations for the operands
specified by this volume of POSIX.1-2024. (BSD uses st_blocks only when processing the
−ls primary.)

2. Users usually think of file size in terms of bytes, which is also the unit used by the ls
utility for the output from the −l option. (In both System V and BSD, ls uses st_size for the
−l option size field and uses st_blocks for the ls −s calculations. This volume of
POSIX.1-2024 does not specify ls −s.)

2948 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98487

98488

98489

98490

98491

98492

98493

98494

98495

98496

98497

98498

98499

98500

98501

98502

98503

98504

98505

98506

98507

98508

98509

98510

98511

98512

98513

98514

98515

98516

98517

98518

98519

98520

98521

98522

98523

98524

98525

98526

98527

98528

98529

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities find

The descriptions of −atime, −ctime, and −mtime were changed from the SVID description of n
``days’’ to n being the result of the integer division of the time difference in seconds by 86 400.
The description is also different in terms of the exact timeframe for the n case (versus the +n or
−n), but it matches all known historical implementations. It refers to one 86 400 second period in
the past, not any time from the beginning of that period to the current time. For example, −atime
2 is true if the file was accessed any time in the period from 72 hours to 48 hours ago.

Historical implementations do not modify "{}" when it appears as a substring of an −exec or
−ok utility_name or argument string. There have been numerous user requests for this extension,
so this volume of POSIX.1-2024 allows the desired behavior. At least one recent implementation
does support this feature, but encountered several problems in managing memory allocation
and dealing with multiple occurrences of "{}" in a string while it was being developed, so it is
not yet required behavior.

Assuming the presence of −print was added to correct a historical pitfall that plagues novice
users, it is entirely upwards-compatible from the historical System V find utility. In its simplest
form (find directory), it could be confused with the historical BSD fast find. The BSD developers
agreed that adding −print as a default expression was the correct decision and have added the
fast find functionality within a new utility called locate.

Historically, the −L option was implemented using the primary −follow. The −H and −L options
were added for two reasons. First, they offer a finer granularity of control and consistency with
other programs that walk file hierarchies. Second, the −follow primary always evaluated to true.
As they were historically really global variables that took effect before the traversal began, some
valid expressions had unexpected results. An example is the expression −print −o −follow.
Because −print always evaluates to true, the standard order of evaluation implies that −follow
would never be evaluated. This was never the case. Historical practice for the −follow primary,
however, is not consistent. Some implementations always follow symbolic links on the
command line whether −follow is specified or not. Others follow symbolic links on the
command line only if −follow is specified. Both behaviors are provided by the −H and −L
options, but scripts using the current −follow primary would be broken if the −follow option is
specified to work either way.

Since the −L option resolves all symbolic links and the −type l primary is true for symbolic links
that still exist after symbolic links have been resolved, the command:

find -L . -type l

prints a list of symbolic links reachable from the current directory that do not resolve to
accessible files.

A feature of SVR4’s find utility was the −exec primary’s + terminator. This allowed filenames
containing special characters (especially <newline> characters) to be grouped together without
the problems that occur if such filenames are piped to xargs.

The "-exec ... {} +" syntax adopted was a result of IEEE PASC Interpretation 1003.2 #210.
It should be noted that this is an incompatible change to IEEE Std 1003.2-1992. For example, the
following command printed all files with a '-' after their name if they are regular files, and a
'+' otherwise:

find / -type f -exec echo {} - ';' -o -exec echo {} + ';'

The change invalidates usage like this. Even though the previous standard stated that this usage
would work, in practice many did not support it and the standard developers felt it better to
now state that this was not allowable.

Historically, many find implementations supported −mount and −xdev as synonymous

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2949

98530

98531

98532

98533

98534

98535

98536

98537

98538

98539

98540

98541

98542

98543

98544

98545

98546

98547

98548

98549

98550

98551

98552

98553

98554

98555

98556

98557

98558

98559

98560

98561

98562

98563

98564

98565

98566

98567

98568

98569

98570

98571

98572

98573

98574

98575

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

find Utilities

primaries and earlier versions of this standard only required support for −xdev. However, the
behavior of find with −xdev differed from that of the nftw() function with FTW_MOUNT as
regards whether the mount point itself was included or excluded. Therefore the standard now
requires support for both primaries with slightly differing behaviors: −mount behaves in the
manner of nftw() with the traditional FTW_MOUNT flag, and −xdev in the manner of nftw()
with a new FTW_XDEV flag.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
Section 2.2 (on page 2472), Section 2.14 (on page 2523), Section 2.15 (on page 2526), chmod , mv ,
pax , sh , test

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH fstatat(), getgrgid(), getpwuid()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −perm [−]onum primary is supported.

The find utility is aligned with the IEEE P1003.2b draft standard, to include processing of
symbolic links and changes to the description of the atime, ctime, and mtime operands.

IEEE PASC Interpretation 1003.2 #210 is applied, extending the −exec operand.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/13 is applied, updating the RATIONALE
section to be consistent with the normative text.

Issue 7
Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

Austin Group Interpretation 1003.1-2001 #127 is applied, rephrasing the description of the −exec
primary to be ``immediately follows’’.

Austin Group Interpretation 1003.1-2001 #185 is applied, clarifying the requirements for the −H
and −L options.

Austin Group Interpretation 1003.1-2001 #186 is applied, clarifying the requirements for the
evaluation of path operands.

Austin Group Interpretation 1003.1-2001 #195 is applied, clarifying the interpretation of the first
operand.

SD5-XCU-ERN-48 is applied, clarifying the −L option in the case that the referenced file does not
exist.

SD5-XCU-ERN-89 is applied, updating the OPERANDS section.

2950 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98576

98577

98578

98579

98580

98581

98582

98583

98584

98585

98586

98587

98588

98589

98590

98591

98592

98593

98594

98595

98596

98597

98598

98599

98600

98601

98602

98603

98604

98605

98606

98607

98608

98609

98610

98611

98612

98613

98614

98615

98616

98617

98618

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities find

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-117 is applied, clarifying the −perm operand.

SD5-XCU-ERN-122 is applied, adding a new EXAMPLE.

The description of the −name primary is revised and the −path primary is added (with a new
example).

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0086 [365], XCU/TC1-2008/0087
[310], XCU/TC1-2008/0088 [309,310,430], XCU/TC1-2008/0089 [235], and XCU/TC1-2008/0090
[445] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0099 [584], XCU/TC2-2008/0100
[584], and XCU/TC2-2008/0101 [584] are applied.

Issue 8
Austin Group Defect 243 is applied, adding the −print0 primary.

Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1031 is applied, adding the −iname primary.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1133 is applied, adding the −mount primary.

Austin Group Defects 1259 and 1777 are applied, changing the EXAMPLES section.

Austin Group Defect 1392 is applied, changing the effect of the file creation mask on the mode
argument for the −perm primary to be consistent with chmod.

Austin Group Defect 1501 is applied, changing the EXIT STATUS section.

Austin Group Defect 1553 is applied, changing the ENVIRONMENT VARIABLES section.

Austin Group Defect 1554 is applied, changing the RATIONALE section.

Austin Group Defect 1606 is applied, clarifying that if find detects an infinite loop and recovers
its position, the final exit status is non-zero.

Austin Group Defect 1776 is applied, clarifying how symbolic links are handled by the −newer
file primary.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2951

98619

98620

98621

98622

98623

98624

98625

98626

98627

98628

98629

98630

98631

98632

98633

98634

98635

98636

98637

98638

98639

98640

98641

98642

98643

98644

98645

98646

98647

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fold Utilities

NAME
fold — filter for folding lines

SYNOPSIS
fold [-bs] [-w width] [file...]

DESCRIPTION
The fold utility is a filter that shall fold lines from its input files, breaking the lines to have a
maximum of width column positions (or bytes, if the −b option is specified). Lines shall be
broken by the insertion of a <newline> such that each output line (referred to later in this section
as a segment) is the maximum width possible that does not exceed the specified number of
column positions (or bytes). A line shall not be broken in the middle of a character. The behavior
is undefined if width is less than the number of columns any single character in the input would
occupy.

If the <carriage-return>, <backspace>, or <tab> characters are encountered in the input, and the
−b option is not specified, they shall be treated specially:

<backspace> The current count of line width shall be decremented by one, although the count
never shall become negative. The fold utility shall not insert a <newline>
immediately before or after any <backspace>, unless the following character has a
width greater than 1 and would cause the line width to exceed width.

<carriage-return>
The current count of line width shall be set to zero. The fold utility shall not insert a
<newline> immediately before or after any <carriage-return>.

<tab> Each <tab> encountered shall advance the column position pointer to the next tab
stop. Tab stops shall be at each column position n such that n modulo 8 equals 1.

OPTIONS
The fold utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−b Count width in bytes rather than column positions.

−s If a segment of a line contains a <blank> within the first width column positions (or
bytes), break the line after the last such <blank> meeting the width constraints. If
there is no <blank> meeting the requirements, the −s option shall have no effect for
that output segment of the input line.

−w width Specify the maximum line length, in column positions (or bytes if −b is specified).
The results are unspecified if width is not a positive decimal number. The default
value shall be 80.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to be folded. If no file operands are specified, the standard
input shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

2952 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98648

98649

98650

98651

98652

98653

98654

98655

98656

98657

98658

98659

98660

98661

98662

98663

98664

98665

98666

98667

98668

98669

98670

98671

98672

98673

98674

98675

98676

98677

98678

98679

98680

98681

98682

98683

98684

98685

98686

98687

98688

98689

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities fold

INPUT FILES
If the −b option is specified, the input files shall be text files except that the lines are not limited
to {LINE_MAX} bytes in length. If the −b option is not specified, the input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fold:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and for the determination of the width in column
positions each character would occupy on a constant-width font output device.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be a file containing a sequence of characters whose order shall be
preserved from the input files, possibly with inserted <newline> characters.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2953

98690

98691

98692

98693

98694

98695

98696

98697

98698

98699

98700

98701

98702

98703

98704

98705

98706

98707

98708

98709

98710

98711

98712

98713

98714

98715

98716

98717

98718

98719

98720

98721

98722

98723

98724

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fold Utilities

APPLICATION USAGE
The cut and fold utilities can be used to create text files out of files with arbitrary line lengths.
The cut utility should be used when the number of lines (or records) needs to remain constant.
The fold utility should be used when the contents of long lines need to be kept contiguous.

The fold utility is frequently used to send text files to printers that truncate, rather than fold, lines
wider than the printer is able to print (usually 80 or 132 column positions).

EXAMPLES
An example invocation that submits a file of possibly long lines to the printer (under the
assumption that the user knows the line width of the printer to be assigned by lp):

fold -w 132 bigfile | lp

RATIONALE
Although terminal input in canonical processing mode requires the erase character (frequently
set to <backspace>) to erase the previous character (not byte or column position), terminal
output is not buffered and is extremely difficult, if not impossible, to parse correctly; the
interpretation depends entirely on the physical device that actually displays/prints/stores the
output. In all known internationalized implementations, the utilities producing output for
mixed column-width output assume that a <backspace> character backs up one column position
and outputs enough <backspace> characters to return to the start of the character when
<backspace> is used to provide local line motions to support underlining and emboldening
operations. Since fold without the −b option is dealing with these same constraints, <backspace>
is always treated as backing up one column position rather than backing up one character.

Historical versions of the fold utility assumed 1 byte was one character and occupied one column
position when written out. This is no longer always true. Since the most common usage of fold is
believed to be folding long lines for output to limited-length output devices, this capability was
preserved as the default case. The −b option was added so that applications could fold files with
arbitrary length lines into text files that could then be processed by the standard utilities. Note
that although the width for the −b option is in bytes, a line is never split in the middle of a
character. (It is unspecified what happens if a width is specified that is too small to hold a single
character found in the input followed by a <newline>.)

The tab stops are hardcoded to be every eighth column to meet historical practice. No new
method of specifying other tab stops was invented.

FUTURE DIRECTIONS
None.

SEE ALSO
cut

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

2954 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98725

98726

98727

98728

98729

98730

98731

98732

98733

98734

98735

98736

98737

98738

98739

98740

98741

98742

98743

98744

98745

98746

98747

98748

98749

98750

98751

98752

98753

98754

98755

98756

98757

98758

98759

98760

98761

98762

98763

98764

98765

98766

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities fold

Austin Group Interpretation 1003.1-2001 #204 is applied, updating the DESCRIPTION to clarify
when a <newline> can be inserted before or after a <backspace>.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2955

98767

98768

98769

98770

98771

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fuser Utilities

NAME
fuser — list process IDs of all processes that are using one or more named files

SYNOPSIS
XSI fuser [-cfu] file...

DESCRIPTION
For each file operand, in order, fuser shall write one line of output, some of it to standard output,
and the rest to standard error, giving information about processes running on the local system
that are using the file. A process shall be considered to be using a file if it has at least one open
file descriptor associated with the file or if the file is a directory that is the current working
directory or the root directory for the process, and may be considered to be using a file for other
implementation-dependent reasons. If file names a block special device that contains a mounted
file system, and the −f option is not specified, any processes using any file on that mounted file
system and any processes that are using the device file itself shall be listed.

Any output for processes running on remote systems that are using a named file is unspecified.

A user may need appropriate privileges to invoke the fuser utility.

When standard output and standard error are directed to the same file, the output for each file
operand shall be interleaved so that it is written to the file in the following order:

• On standard error, a pathname for the file, immediately followed by a <colon> and zero or
more <blank> characters. The pathname shall be either the file operand (unaltered) or the
pathname that would result from a successful call to the realpath() function, defined in the
System Interfaces volume of POSIX.1-2024, with the file operand as its file_name argument.

• For each process using the file:

— On standard output, the process ID in the format:

" %1d", <process ID>

— On standard error, information about the file’s use by the process, in the following
format:

"%s", <use chars>

if the −u option is not specified, or in the following format:

"%s(%s)", <use chars>, <user name>

if the −u option is specified, where <use chars> is a string of zero or more characters
indicating the use of the file and <user name> is the user name corresponding to the
real user ID of the process or, if the user name cannot be resolved from the real user
ID of the process, the real user ID of the process in decimal. The value of <use chars>
shall include the character 'c' if the process is using the file as its current directory
and the character 'r' if the process is using the file as its root directory;
implementations may include other alphabetic characters to indicate other uses of
the file.

• On standard error, a <newline> character.

When standard output and standard error are not directed to the same file, the data written to
each shall be as described above but the ordering of writes to standard output relative to writes
to standard error is unspecified. For example, fuser might first write the information for all file
operands to standard error and then write all of the process IDs to standard output.

2956 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98772

98773

98774

98775

98776

98777

98778

98779

98780

98781

98782

98783

98784

98785

98786

98787

98788

98789

98790

98791

98792

98793

98794

98795

98796

98797

98798

98799

98800

98801

98802

98803

98804

98805

98806

98807

98808

98809

98810

98811

98812

98813

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities fuser

OPTIONS
The fuser utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c If a file operand names a directory that is the mount point of a mounted file system,
all processes using any file on that file system shall be listed as if they were using
the named directory. The behavior for any file operand that names an existing file
that is not the mount point of a mounted file system is unspecified.

−f The report shall be only for the named files.

−u The user name, in parentheses, associated with each process ID written to standard
output shall be written to standard error.

OPERANDS
The following operand shall be supported:

file A pathname of a file for which the processes using the file are to be reported.

STDIN
Not used.

INPUT FILES
The user database.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fuser:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See DESCRIPTION.

STDERR
The fuser utility shall write diagnostic messages to standard error.

The fuser utility also shall write information to standard error as specified in the DESCRIPTION
section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2957

98814

98815

98816

98817

98818

98819

98820

98821

98822

98823

98824

98825

98826

98827

98828

98829

98830

98831

98832

98833

98834

98835

98836

98837

98838

98839

98840

98841

98842

98843

98844

98845

98846

98847

98848

98849

98850

98851

98852

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

fuser Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Things can change while fuser is running; the snapshot it gives is only true for an instant, and
might not be accurate by the time it is displayed.

EXAMPLES
The command:

fuser -fu .

writes to standard output the process IDs of processes that are using the current directory and
writes to standard error an indication of how those processes are using the directory and the
user names associated with the processes that are using the current directory.

fuser -c <mount point>

writes to standard output the process IDs of processes that are using any file in the file system
which is mounted on <mount point> and writes to standard error an indication of how those
processes are using the files.

fuser <mount point>

writes to standard output the process IDs of processes that are using the file which is named by
<mount point> and writes to standard error an indication of how those processes are using the
file.

fuser <mounted block device>

writes to standard output the process IDs of processes that are using any file on the mounted file
system contained by <mounted block device> and of processes that are using the device file
<mounted block device> itself, and writes to standard error an indication of how those processes
are using the files.

fuser -f <mounted block device>

writes to standard output the process IDs of processes that are using the file <mounted block
device> itself and writes to standard error an indication of how those processes are using the file.

RATIONALE
The definition of the fuser utility follows existing practice.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

2958 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98853

98854

98855

98856

98857

98858

98859

98860

98861

98862

98863

98864

98865

98866

98867

98868

98869

98870

98871

98872

98873

98874

98875

98876

98877

98878

98879

98880

98881

98882

98883

98884

98885

98886

98887

98888

98889

98890

98891

98892

98893

98894

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities fuser

SEE ALSO
XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 5.

Issue 7
SD5-XCU-ERN-90 is applied, updating the EXAMPLES section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1746 is applied, clarifying the output written to standard output and
standard error.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2959

98895

98896

98897

98898

98899

98900

98901

98902

98903

98904

98905

98906

98907

98908

98909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gencat Utilities

NAME
gencat — generate a formatted message catalog

SYNOPSIS
gencat catfile msgfile...

DESCRIPTION
The gencat utility shall merge the message text source file msgfile into a formatted message
catalog catfile. The file catfile shall be created if it does not already exist. If catfile does exist, its
messages shall be included in the new catfile. If set and message numbers collide, the new
message text defined in msgfile shall replace the old message text currently contained in catfile.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

catfile A pathname of the formatted message catalog. If '−' is specified, standard output
shall be used. The format of the message catalog produced is unspecified.

msgfile A pathname of a message text source file. If '−' is specified for an instance of
msgfile, standard input shall be used. The format of message text source files is
defined in the EXTENDED DESCRIPTION section.

STDIN
The standard input shall not be used unless a msgfile operand is specified as '−'.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of gencat:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall not be used unless the catfile operand is specified as '−'.

2960 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98910

98911

98912

98913

98914

98915

98916

98917

98918

98919

98920

98921

98922

98923

98924

98925

98926

98927

98928

98929

98930

98931

98932

98933

98934

98935

98936

98937

98938

98939

98940

98941

98942

98943

98944

98945

98946

98947

98948

98949

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities gencat

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The content of a message text file shall be in the format defined as follows. Note that the fields of
a message text source line are separated by a single <blank> character. Any other <blank>
characters are considered to be part of the subsequent field.

$set n comment
This line specifies the set identifier of the following messages until the next $set or
end-of-file appears. The n denotes the set identifier, which is defined as a number
in the range [1, {NL_SETMAX}] (see the <limits.h> header defined in the Base
Definitions volume of POSIX.1-2024). The application shall ensure that set
identifiers are presented in ascending order within a single source file, but need
not be contiguous. Any string following the set identifier shall be treated as a
comment. If no $set directive is specified in a message text source file, all messages
shall be located in an implementation-defined default message set NL_SETD (see
the <nl_types.h> header defined in the Base Definitions volume of POSIX.1-2024).

$delset n comment
This line deletes message set n from an existing message catalog. The n denotes the
set number [1, {NL_SETMAX}]. Any string following the set number shall be
treated as a comment.

$ comment A line beginning with '$' followed by a <blank> shall be treated as a comment.

m message-text
The m denotes the message identifier, which is defined as a number in the range [1,
{NL_MSGMAX}] (see the <limits.h> header). The message-text shall be stored in the
message catalog with the set identifier specified by the last $set directive, and with
message identifier m. If the message-text is empty, and a <blank> field separator is
present, an empty string shall be stored in the message catalog. If a message source
line has a message number, but neither a field separator nor message-text, the
existing message with that number (if any) shall be deleted from the catalog. The
application shall ensure that message identifiers are in ascending order within a
single set, but need not be contiguous. The application shall ensure that the length
of message-text is in the range [0, {NL_TEXTMAX}] (see the <limits.h> header).

$quote c This line specifies an optional quote character c, which can be used to surround
message-text so that trailing <space> characters or null (empty) messages are visible
in a message source line. By default, or if an empty $quote directive is supplied, no
quoting of message-text shall be recognized.

Empty lines in a message text source file shall be ignored. The effects of lines starting with any
character other than those defined above are implementation-defined.

Text strings can contain the special characters and escape sequences defined in the following
table:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2961

98950

98951

98952

98953

98954

98955

98956

98957

98958

98959

98960

98961

98962

98963

98964

98965

98966

98967

98968

98969

98970

98971

98972

98973

98974

98975

98976

98977

98978

98979

98980

98981

98982

98983

98984

98985

98986

98987

98988

98989

98990

98991

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gencat Utilities

Description Symbol Sequence
<newline> NL(LF) \n
Horizontal-tab HT \t
<vertical-tab> VT \v
<backspace> BS \b
<carriage-return> CR \r
<form-feed> FF \f
Backslash \ \\
Bit pattern ddd \ddd

The escape sequence "\ddd" consists of <backslash> followed by one, two, or three octal digits,
which shall be taken to specify the value of the desired character. If the character following a
<backslash> is not one of those specified, the <backslash> shall be ignored.

A <backslash> followed by a <newline> is also used to continue a string on the following line.
Thus, the following two lines describe a single message string:

1 This line continues \
to the next line

which shall be equivalent to:

1 This line continues to the next line

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Message catalogs produced by gencat are binary encoded, meaning that their portability cannot
be guaranteed between different types of machine. Thus, just as C programs need to be
recompiled for each type of machine, so message catalogs must be recreated via gencat.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv

XBD Chapter 8 (on page 167), <limits.h>, <nl_types.h>

CHANGE HISTORY
First released in Issue 3.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

2962 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

98992

98993

98994

98995

98996

98997

98998

98999

99000

99001

99002

99003

99004

99005

99006

99007

99008

99009

99010

99011

99012

99013

99014

99015

99016

99017

99018

99019

99020

99021

99022

99023

99024

99025

99026

99027

99028

99029

99030

99031

99032

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities gencat

Issue 7
The gencat utility is moved from the XSI option to the Base.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1463 is applied, changing n to c in the definition of $quote.

Austin Group Defect 1516 is applied, adding XSI shading to text relating to NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2963

99033

99034

99035

99036

99037

99038

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

get Utilities

NAME
get — get a version of an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI get [-begkmnlLpst] [-c cutoff] [-i list] [-r SID] [-x list] file...

DESCRIPTION
The get utility shall generate a text file from each named SCCS file according to the specifications
given by its options.

The generated text shall normally be written into a file called the g-file whose name is derived
from the SCCS filename by simply removing the leading "s.".

OPTIONS
The get utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−r SID Indicate the SCCS Identification String (SID) of the version (delta) of an SCCS file
to be retrieved. The table shows, for the most useful cases, what version of an
SCCS file is retrieved (as well as the SID of the version to be eventually created by
delta if the −e option is also used), as a function of the SID specified.

−c cutoff Indicate the cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

For the YY component, values in the range [69,99] shall refer to years 1969 to 1999
inclusive, and values in the range [00,68] shall refer to years 2000 to 2068 inclusive.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

No changes (deltas) to the SCCS file that were created after the specified cutoff
date-time shall be included in the generated text file. Units omitted from the date-
time default to their maximum possible values; for example, −c 7502 is equivalent
to −c 750228235959.

Any number of non-numeric characters may separate the various 2-digit pieces of
the cutoff date-time. This feature allows the user to specify a cutoff date in the form:
−c "77/2/2 9:22:25".

−e Indicate that the get is for the purpose of editing or making a change (delta) to the
SCCS file via a subsequent use of delta. The −e option used in a get for a particular
version (SID) of the SCCS file shall prevent further get commands from editing on
the same SID until delta is executed or the j (joint edit) flag is set in the SCCS file.
Concurrent use of get −e for different SIDs is always allowed.

If the g-file generated by get with a −e option is accidentally ruined in the process
of editing, it may be regenerated by re-executing the get command with the −k
option in place of the −e option.

SCCS file protection specified via the ceiling, floor, and authorized user list stored
in the SCCS file shall be enforced when the −e option is used.

−b Use with the −e option to indicate that the new delta should have an SID in a new
branch as shown in the table below. This option shall be ignored if the b flag is not
present in the file or if the retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the SCCS file tree.)

2964 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99039

99040

99041

99042

99043

99044

99045

99046

99047

99048

99049

99050

99051

99052

99053

99054

99055

99056

99057

99058

99059

99060

99061

99062

99063

99064

99065

99066

99067

99068

99069

99070

99071

99072

99073

99074

99075

99076

99077

99078

99079

99080

99081

99082

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities get

Note: A branch delta may always be created from a non-leaf delta.

−i list Indicate a list of deltas to be included (forced to be applied) in the creation of the
generated file. The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID - SID

SID, the SCCS Identification of a delta, may be in any form shown in the ``SID
Specified’’ column of the table in the EXTENDED DESCRIPTION section, except
that the result of supplying a partial SID is unspecified. A diagnostic message shall
be written if the first SID in the range is not an ancestor of the second SID in the
range.

−x list Indicate a list of deltas to be excluded (forced not to be applied) in the creation of
the generated file. See the −i option for the list format.

−k Suppress replacement of identification keywords (see below) in the retrieved text
by their value. The −k option shall be implied by the −e option.

−l Write a delta summary into an l-file.

−L Write a delta summary to standard output. All informative output that normally is
written to standard output shall be written to standard error instead, unless the −s
option is used, in which case it shall be suppressed.

−p Write the text retrieved from the SCCS file to the standard output. No g-file shall
be created. All informative output that normally goes to the standard output shall
go to standard error instead, unless the −s option is used, in which case it shall
disappear.

−s Suppress all informative output normally written to standard output. However,
fatal error messages (which shall always be written to the standard error) shall
remain unaffected.

−m Precede each text line retrieved from the SCCS file by the SID of the delta that
inserted the text line in the SCCS file. The format shall be:

"%s\t%s", <SID>, <text line>

−n Precede each generated text line with the %M% identification keyword value (see
below). The format shall be:

"%s\t%s", <%M% value>, <text line>

When both the −m and −n options are used, the <text line> shall be replaced by the
−m option-generated format.

−g Suppress the actual retrieval of text from the SCCS file. It is primarily used to
generate an l-file, or to verify the existence of a particular SID.

−t Use to access the most recently created (top) delta in a given release (for example,
−r 1), or release and level (for example, −r 1.2).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2965

99083

99084

99085

99086

99087

99088

99089

99090

99091

99092

99093

99094

99095

99096

99097

99098

99099

99100

99101

99102

99103

99104

99105

99106

99107

99108

99109

99110

99111

99112

99113

99114

99115

99116

99117

99118

99119

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

get Utilities

OPERANDS
The following operands shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the get
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is '−', the standard input shall be read;
each line of the standard input is taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only if the file operand is specified as '−'. Each line
of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
The SCCS files shall be files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of get:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output (or standard error, if the −p option is used).

NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone in which the times and dates written in the SCCS file are
evaluated. If the TZ variable is unset or NULL, an unspecified system default
timezone is used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
For each file processed, get shall write to standard output the SID being accessed and the
number of lines retrieved from the SCCS file, in the following format:

"%s\n%d lines\n", <SID>, <number of lines>

If the −e option is used, the SID of the delta to be made shall appear after the SID accessed and
before the number of lines generated, in the POSIX locale:

"%s\nnew delta %s\n%d lines\n", <SID accessed>,
<SID to be made>, <number of lines>

If there is more than one named file or if a directory or standard input is named, each pathname

2966 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99120

99121

99122

99123

99124

99125

99126

99127

99128

99129

99130

99131

99132

99133

99134

99135

99136

99137

99138

99139

99140

99141

99142

99143

99144

99145

99146

99147

99148

99149

99150

99151

99152

99153

99154

99155

99156

99157

99158

99159

99160

99161

99162

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities get

shall be written before each of the lines shown in one of the preceding formats:

"\n%s:\n", <pathname>

If the −L option is used, a delta summary shall be written following the format specified below
for l-files.

If the −i option is used, included deltas shall be listed following the notation, in the POSIX
locale:

"Included:\n"

If the −x option is used, excluded deltas shall be listed following the notation, in the POSIX
locale:

"Excluded:\n"

If the −p or −L options are specified, the standard output shall consist of the text retrieved from
the SCCS file.

STDERR
The standard error shall be used only for diagnostic messages, except if the −p or −L options are
specified, it shall include all informative messages normally sent to standard output.

OUTPUT FILES
Several auxiliary files may be created by get. These files are known generically as the g-file, l-
file, p-file, and z-file. The letter before the <hyphen-minus> is called the tag. An auxiliary
filename shall be formed from the SCCS filename: the application shall ensure that the last
component of all SCCS filenames is of the form s.module-name; the auxiliary files shall be named
by replacing the leading s with the tag. The g-file shall be an exception to this scheme: the g-file
is named by removing the s. prefix. For example, for s.xyz.c, the auxiliary filenames would be
xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, shall be created in the current directory (unless the
−p option is used). A g-file shall be created in all cases, whether or not any lines of text were
generated by the get. It shall be owned by the real user. If the −k option is used or implied, the
g-file shall be writable by the owner only (read-only for everyone else); otherwise, it shall be
read-only. Only the real user need have write permission in the current directory.

The l-file shall contain a table showing which deltas were applied in generating the retrieved
text. The l-file shall be created in the current directory if the −l option is used; it shall be read-
only and it is owned by the real user. Only the real user need have write permission in the
current directory.

Lines in the l-file shall have the following format:

"%c%c%cΔ%s\t%sΔ%s\n", <code1>, <code2>, <code3>,
<SID>, <date-time>, <login>

where the entries are:

<code1> A <space> if the delta was applied; '*' otherwise.

<code2> A <space> if the delta was applied or was not applied and ignored; '*' if the delta
was not applied and was not ignored.

<code3> A character indicating a special reason why the delta was or was not applied:

I Included.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2967

99163

99164

99165

99166

99167

99168

99169

99170

99171

99172

99173

99174

99175

99176

99177

99178

99179

99180

99181

99182

99183

99184

99185

99186

99187

99188

99189

99190

99191

99192

99193

99194

99195

99196

99197

99198

99199

99200

99201

99202

99203

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

get Utilities

X Excluded.

C Cut off (by a −c option).

<date-time> Date and time (using the format of the date utility’s %y/%m/%d %T conversion
specification format) of creation.

<login> Login name of person who created delta.

The comments and MR data shall follow on subsequent lines, indented one <tab>. A blank line
shall terminate each entry.

The p-file shall be used to pass information resulting from a get with a −e option along to delta.
Its contents shall also be used to prevent a subsequent execution of get with a −e option for the
same SID until delta is executed or the joint edit flag, j, is set in the SCCS file. The p-file shall be
created in the directory containing the SCCS file and the application shall ensure that the
effective user has write permission in that directory. It shall be writable by owner only, and
owned by the effective user. Each line in the p-file shall have the following format:

"%sΔ%sΔ%sΔ%s%s%s\n", <g-file SID>,
<SID of new delta>, <login-name of real user>,
<date-time>, <i-value>, <x-value>

where <i-value> uses the format "" if no −i option was specified, and shall use the format:

"Δ-i%s", <-i option option-argument>

if a −i option was specified and <x-value> uses the format "" if no −x option was specified, and
shall use the format:

"Δ-x%s", <-x option option-argument>

if a −x option was specified. There can be an arbitrary number of lines in the p-file at any time;
no two lines shall have the same new delta SID.

The z-file shall serve as a lock-out mechanism against simultaneous updates. Its contents shall
be the binary process ID of the command (that is, get) that created it. The z-file shall be created
in the directory containing the SCCS file for the duration of get. The same protection restrictions
as those for the p-file shall apply for the z-file. The z-file shall be created read-only.

2968 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99204

99205

99206

99207

99208

99209

99210

99211

99212

99213

99214

99215

99216

99217

99218

99219

99220

99221

99222

99223

99224

99225

99226

99227

99228

99229

99230

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities get

EXTENDED DESCRIPTION

Determination of SCCS Identification String

SID* −b Keyletter Other SID SID of Delta
Specified Used† Conditions Retrieved to be Created

none‡ no R defaults to mR mR.mL mR.(mL+1)
none‡ yes R defaults to mR mR.mL mR.mL.(mB+1).1

R no R > mR mR.mL R.1***
R no R = mR mR.mL mR.(mL+1)
R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R − hR.mL** hR.mL.(mB+1).1R < mR and

R does not exist
R − R.mL R.mL.(mB+1).1Tr unk successor in release > R

and R exists

R.L no No trunk successor R.L R.(L+1)
R.L yes No trunk successor R.L R.L.(mB+1).1
R.L − R.L R.L.(mB+1).1Tr unk successor

in release ≥ R

R.L.B no No branch successor R.L.B.mS R.L.B.(mS+1)
R.L.B yes No branch successor R.L.B.mS R.L.(mB+1).1

R.L.B.S no No branch successor R.L.B.S R.L.B.(S+1)
R.L.B.S yes No branch successor R.L.B.S R.L.(mB+1).1
R.L.B.S − Branch successor R.L.B.S R.L.(mB+1).1

* R, L, B, and S are the release, level, branch, and sequence components of the SID,
respectively; m means maximum. Thus, for example, R.mL means ``the maximum level
number within release R’’; R.L.(mB+1).1 means ``the first sequence number on the new
branch (that is, maximum branch number plus one) of level L within release R’’. Note
that if the SID specified is of the form R.L, R.L.B, or R.L.B.S, each of the specified
components shall exist.

** hR is the highest existing release that is lower than the specified, nonexistent, release R.

*** This is used to force creation of the first delta in a new release.

† The −b option is effective only if the b flag is present in the file. An entry of '−' means
``irrelevant’’.

‡ This case applies if the d (default SID) flag is not present in the file. If the d flag is
present in the file, then the SID obtained from the d flag is interpreted as if it had been
specified on the command line. Thus, one of the other cases in this table applies.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2969

99231

99232

99233

99234

99235

99236

99237

99238

99239

99240

99241

99242

99243

99244

99245

99246

99247

99248

99249

99250

99251

99252

99253

99254

99255

99256

99257

99258

99259

99260

99261

99262

99263

99264

99265

99266

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

get Utilities

System Date and Time

When a g-file is generated, the creation time of deltas in the SCCS file may be taken into
account. If any of these times are apparently in the future, the behavior is unspecified.

Identification Keywords

Identifying information shall be inserted into the text retrieved from the SCCS file by replacing
identification keywords with their value wherever they occur. The following keywords may be
used in the text stored in an SCCS file:

%M% Module name: either the value of the m flag in the file, or if absent, the name of the
SCCS file with the leading s. removed.

%I% SCCS identification (SID) (%R%.%L% or %R%.%L%.%B%.%S%) of the retrieved
text.

%R% Release.

%L% Level.

%B% Branch.

%S% Sequence.

%D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y% Module type: value of the t flag in the SCCS file.

%F% SCCS filename.

%P% SCCS absolute pathname.

%Q% The value of the q flag in the file.

%C% Current line number. This keyword is intended for identifying messages output by
the program, such as ``this should not have happened’’ type errors. It is not
intended to be used on every line to provide sequence numbers.

%Z% The four-character string "@(#)" recognizable by what.

%W% A shorthand notation for constructing what strings:

%W%=% Z %% M %<tab>% I %

%A% Another shorthand notation for constructing what strings:

%A%=% Z %% Y %% M %% I %% Z %

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

2970 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99267

99268

99269

99270

99271

99272

99273

99274

99275

99276

99277

99278

99279

99280

99281

99282

99283

99284

99285

99286

99287

99288

99289

99290

99291

99292

99293

99294

99295

99296

99297

99298

99299

99300

99301

99302

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities get

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Problems can arise if the system date and time have been modified (for example, put forward
and then back again, or unsynchronized clocks across a network) and can also arise when
different values of the TZ environment variable are used.

Problems of a similar nature can also arise for the operation of the delta utility, which compares
the previous file body against the working file as part of its normal operation.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
admin , delta , prs , what

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
A correction is made to the first format string in STDOUT.

The interpretation of the YY component of the −c cutoff argument is noted.

Issue 6
The obsolescent SYNOPSIS is removed, removing the −lp option.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The Open Group Corrigendum U025/5 is applied, correcting text in the OPTIONS section.

The Open Group Corrigendum U048/1 is applied.

The Open Group Interpretation PIN4C.00014 is applied.

The Open Group Base Resolution bwg2001-007 is applied as follows:

• The EXTENDED DESCRIPTION section is updated to make partial SID handling
unspecified, reflecting common usage, and to clarify SID ranges.

• New text is added to the EXTENDED DESCRIPTION and APPLICATION USAGE sections
regarding how the system date and time may be taken into account.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2971

99303

99304

99305

99306

99307

99308

99309

99310

99311

99312

99313

99314

99315

99316

99317

99318

99319

99320

99321

99322

99323

99324

99325

99326

99327

99328

99329

99330

99331

99332

99333

99334

99335

99336

99337

99338

99339

99340

99341

99342

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

get Utilities

• The TZ environment variable is added to the ENVIRONMENT VARIABLES section.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0104 [584] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to behave as follows:

a. Report an error if a utility is directed to display a pathname that contains any bytes that
have the encoded value of a <newline> character when <newline> is a terminator or
separator in the output format being used.

b. Disallow the creation of filenames containing any bytes that have the encoded value of a
<newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

2972 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99343

99344

99345

99346

99347

99348

99349

99350

99351

99352

99353

99354

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities getconf

NAME
getconf — get configuration values

SYNOPSIS
getconf [-v specification] system_var

getconf [-v specification] path_var pathname

DESCRIPTION
In the first synopsis form, the getconf utility shall write to the standard output the value of the
variable specified by the system_var operand.

In the second synopsis form, the getconf utility shall write to the standard output the value of the
variable specified by the path_var operand for the path specified by the pathname operand.

The value of each configuration variable shall be determined as if it were obtained by calling the
function from which it is defined to be available by this volume of POSIX.1-2024 or by the
System Interfaces volume of POSIX.1-2024 (see the OPERANDS section). The value shall reflect
conditions in the current operating environment.

OPTIONS
The getconf utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−v specification
Indicate a specific specification and version for which configuration variables shall
be determined. If this option is not specified, the values returned correspond to an
implementation default conforming compilation environment.

If the command:

getconf _POSIX_V8_ILP32_OFF32

does not write "-1\n" or "undefined\n" to standard output, then commands of
the form:

getconf -v POSIX_V8_ILP32_OFF32 ...

determine values for configuration variables corresponding to the
POSIX_V8_ILP32_OFF32 compilation environment specified in c17 , the
EXTENDED DESCRIPTION.

If the command:

getconf _POSIX_V8_ILP32_OFFBIG

does not write "-1\n" or "undefined\n" to standard output, then commands of
the form:

getconf -v POSIX_V8_ILP32_OFFBIG ...

determine values for configuration variables corresponding to the
POSIX_V8_ILP32_OFFBIG compilation environment specified in c17 , the
EXTENDED DESCRIPTION.

If the command:

getconf _POSIX_V8_LP64_OFF64

does not write "-1\n" or "undefined\n" to standard output, then commands of
the form:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2973

99355

99356

99357

99358

99359

99360

99361

99362

99363

99364

99365

99366

99367

99368

99369

99370

99371

99372

99373

99374

99375

99376

99377

99378

99379

99380

99381

99382

99383

99384

99385

99386

99387

99388

99389

99390

99391

99392

99393

99394

99395

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getconf Utilities

getconf -v POSIX_V8_LP64_OFF64 ...

determine values for configuration variables corresponding to the
POSIX_V8_LP64_OFF64 compilation environment specified in c17 , the
EXTENDED DESCRIPTION.

If the command:

getconf _POSIX_V8_LPBIG_OFFBIG

does not write "-1\n" or "undefined\n" to standard output, then commands of
the form:

getconf -v POSIX_V8_LPBIG_OFFBIG ...

determine values for configuration variables corresponding to the
POSIX_V8_LPBIG_OFFBIG compilation environment specified in c17 , the
EXTENDED DESCRIPTION.

OPERANDS
The following operands shall be supported:

path_var A name of a configuration variable. All of the variables in the Variable column of
the table in the DESCRIPTION of the fpathconf() function defined in the System
Interfaces volume of POSIX.1-2024, without the enclosing braces, shall be
supported. The implementation may add other local variables.

pathname A pathname for which the variable specified by path_var is to be determined.

system_var A name of a configuration variable. All of the following variables shall be
supported:

• The names, without the enclosing braces, in the Variable column of the table
in the DESCRIPTION of the sysconf() function in the System Interfaces
volume of POSIX.1-2024, except for the entries corresponding to
_SC_CLK_TCK, _SC_GETGR_R_SIZE_MAX, _SC_GETPW_R_SIZE_MAX,
_SC_NPROCESSORS_CONF, _SC_NPROCESSORS_ONLN, and _SC_NSIG.

For compatibility with earlier versions, the following variable names shall
also be supported:

POSIX2_C_BIND
POSIX2_C_DEV
POSIX2_CHAR_TERM
POSIX2_FORT_RUN
POSIX2_LOCALEDEF
POSIX2_SW_DEV
POSIX2_UPE
POSIX2_VERSION

and shall be equivalent to the same name prefixed with an <underscore>.
This requirement may be removed in a future version.

• The names NPROCESSORS_CONF and NPROCESSORS_ONLN. The values
of these configuration variables shall be determined as if they were obtained
by calling the function sysconf() with the argument
_SC_NPROCESSORS_CONF or _SC_NPROCESSORS_ONLN, respectively.

2974 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99396

99397

99398

99399

99400

99401

99402

99403

99404

99405

99406

99407

99408

99409

99410

99411

99412

99413

99414

99415

99416

99417

99418

99419

99420

99421

99422

99423

99424

99425

99426

99427

99428

99429

99430

99431

99432

99433

99434

99435

99436

99437

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities getconf

• The names of the symbolic constants used as the name argument of the
confstr() function in the System Interfaces volume of POSIX.1-2024, without
the _CS_ prefix.

• The names of the symbolic constants listed under the headings ``Maximum
Values’’ and ``Minimum Values’’ in the description of the <limits.h> header
in the Base Definitions volume of POSIX.1-2024, without the enclosing
braces.

For compatibility with earlier versions, the following variable names shall
also be supported:

POSIX2_BC_BASE_MAX
POSIX2_BC_DIM_MAX
POSIX2_BC_SCALE_MAX
POSIX2_BC_STRING_MAX
POSIX2_COLL_WEIGHTS_MAX
POSIX2_EXPR_NEST_MAX
POSIX2_LINE_MAX
POSIX2_RE_DUP_MAX

and shall be equivalent to the same name prefixed with an <underscore>.
This requirement may be removed in a future version.

The implementation may add other local values.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of getconf:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2975

99438

99439

99440

99441

99442

99443

99444

99445

99446

99447

99448

99449

99450

99451

99452

99453

99454

99455

99456

99457

99458

99459

99460

99461

99462

99463

99464

99465

99466

99467

99468

99469

99470

99471

99472

99473

99474

99475

99476

99477

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getconf Utilities

STDOUT
If the specified variable is defined on the system and its value is described to be available from
the confstr() function defined in the System Interfaces volume of POSIX.1-2024, its value shall be
written in the following format:

"%s\n", <value>

Otherwise, if the specified variable is defined on the system, its value shall be written in the
following format:

"%d\n", <value>

If the specified variable is valid, but is undefined on the system, getconf shall write using the
following format:

"undefined\n"

If the variable name is invalid or an error occurs, nothing shall be written to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The specified variable is valid and information about its current state was written
successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
The following example illustrates the value of {NGROUPS_MAX}:

getconf NGROUPS_MAX

The following example illustrates the value of {NAME_MAX} for a specific directory:

getconf NAME_MAX /usr

The following example shows how to deal more carefully with results that might be unspecified:

if value=$(getconf PATH_MAX /usr); then
if ["$value" = "undefined"]; then

echo PATH_MAX in /usr is indeterminate.
else

echo PATH_MAX in /usr is $value.
fi

else
echo Error in getconf.

fi

2976 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99478

99479

99480

99481

99482

99483

99484

99485

99486

99487

99488

99489

99490

99491

99492

99493

99494

99495

99496

99497

99498

99499

99500

99501

99502

99503

99504

99505

99506

99507

99508

99509

99510

99511

99512

99513

99514

99515

99516

99517

99518

99519

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities getconf

RATIONALE
The original need for this utility, and for the confstr() function, was to provide a way of finding
the configuration-defined default value for the PA TH environment variable. Since PA TH can be
modified by the user to include directories that could contain utilities replacing the standard
utilities, shell scripts need a way to determine the system-supplied PA TH environment variable
value that contains the correct search path for the standard utilities. It was later suggested that
access to the other variables described in this volume of POSIX.1-2024 could also be useful to
applications.

This functionality of getconf would not be adequately subsumed by another command such as:

grep var /etc/conf

because such a strategy would provide correct values for neither those variables that can vary at
runtime, nor those that can vary depending on the path.

Early proposal versions of getconf specified exit status 1 when the specified variable was valid,
but not defined on the system. The output string "undefined" is now used to specify this case
with exit code 0 because so many things depend on an exit code of zero when an invoked utility
is successful.

FUTURE DIRECTIONS
None.

SEE ALSO
c17

XBD Chapter 8 (on page 167), Section 12.2 (on page 215), <limits.h>

XSH confstr(), fpathconf(), sysconf(), system()

CHANGE HISTORY
First released in Issue 4.

Issue 5
In the OPERANDS section:

• {NL_MAX} is changed to {NL_NMAX}.

• Entries beginning NL_ are deleted from the list of standard configuration variables.

• The list of variables previously marked UX is merged with the list marked EX.

• Operands are added to support new Option Groups.

• Operands are added so that getconf can determine supported programming environments.

Issue 6
The Open Group Corrigendum U029/4 is applied, correcting the example command in the last
paragraph of the OPTIONS section.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• Operands are added to determine supported programming environments.

This reference page is updated for alignment with the ISO/IEC 9899: 1999 standard. Specifically,
new macros for c99 programming environments are introduced.

XSI marked system_var (XBS5_*) values are marked LEGACY.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/27 is applied, correcting the descriptions

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2977

99520

99521

99522

99523

99524

99525

99526

99527

99528

99529

99530

99531

99532

99533

99534

99535

99536

99537

99538

99539

99540

99541

99542

99543

99544

99545

99546

99547

99548

99549

99550

99551

99552

99553

99554

99555

99556

99557

99558

99559

99560

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getconf Utilities

of path_var and system_var in the OPERANDS section.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The EXAMPLES section is corrected.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0091 [125] is applied.

Issue 8
Austin Group Defect 339 is applied, adding the system_var names NPROCESSORS_CONF and
NPROCESSORS_ONLN.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1330 is applied, removing obsolescent interfaces and changing ``_V7_’’ to
``_V8_’’.

2978 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99561

99562

99563

99564

99565

99566

99567

99568

99569

99570

99571

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities getopts

NAME
getopts — parse utility options

SYNOPSIS
getopts optstring name [param...]

DESCRIPTION
The getopts utility shall retrieve options and option-arguments from a list of parameters. It shall
support the Utility Syntax Guidelines 3 to 10, inclusive, described in XBD Section 12.2 (on page
215).

When the shell is first invoked, the shell variable OPTIND shall be initialized to 1. Each time
getopts is invoked, it shall place the value of the next option found in the parameter list in the
shell variable specified by the name operand and the shell variable OPTIND shall be set as
follows:

• When getopts successfully parses an option that takes an option-argument (that is, a
character followed by <colon> in optstring, and exit status is 0), the value of OPTIND shall
be the integer index of the next element of the parameter list (if any; see OPERANDS
below) to be searched for an option character. Index 1 identifies the first element of the
parameter list.

• When getopts reports end of options (that is, when exit status is 1), the value of OPTIND
shall be the integer index of the next element of the parameter list (if any).

• In all other cases, the value of OPTIND is unspecified, but shall encode the information
needed for the next invocation of getopts to resume parsing options after the option just
parsed.

When the option requires an option-argument, the getopts utility shall place it in the shell
variable OPTARG. If no option was found, or if the option that was found does not have an
option-argument, OPTARG shall be unset.

If an option character not contained in the optstring operand is found where an option character
is expected, the shell variable specified by name shall be set to the <question-mark> ('?')
character. In this case, if the first character in optstring is a <colon> (':'), the shell variable
OPTARG shall be set to the option character found, but no output shall be written to standard
error; otherwise, the shell variable OPTARG shall be unset and a diagnostic message shall be
written to standard error. This condition shall be considered to be an error detected in the way
arguments were presented to the invoking application, but shall not be an error in getopts
processing.

If an option-argument is missing:

• If the first character of optstring is a <colon>, the shell variable specified by name shall be
set to the <colon> character and the shell variable OPTARG shall be set to the option
character found.

• Otherwise, the shell variable specified by name shall be set to the <question-mark>
character, the shell variable OPTARG shall be unset, and a diagnostic message shall be
written to standard error. This condition shall be considered to be an error detected in the
way arguments were presented to the invoking application, but shall not be an error in
getopts processing; a diagnostic message shall be written as stated, but the exit status shall
be zero.

When the end of options is encountered, the getopts utility shall exit with a return value of one;
the shell variable OPTIND shall be set to the index of the argument containing the first operand
in the parameter list, or the value 1 plus the number of elements in the parameter list if there are

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2979

99572

99573

99574

99575

99576

99577

99578

99579

99580

99581

99582

99583

99584

99585

99586

99587

99588

99589

99590

99591

99592

99593

99594

99595

99596

99597

99598

99599

99600

99601

99602

99603

99604

99605

99606

99607

99608

99609

99610

99611

99612

99613

99614

99615

99616

99617

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getopts Utilities

no operands in the parameter list; the name variable shall be set to the <question-mark>
character. Any of the following shall identify the end of options: the first "--" element of the
parameter list that is not an option-argument, finding an element of the parameter list that is not
an option-argument and does not begin with a '-', or encountering an error.

The shell variables OPTIND and OPTARG shall not be exported by default. An error in setting
any of these variables (such as if name has previously been marked readonly) shall be considered
an error of getopts processing, and shall result in a return value greater than one.

The getopts utility can affect OPTIND, OPTARG, and the shell variable specified by the name
operand, within the current shell execution environment; see Section 2.13 (on page 2522).

If the application sets OPTIND to the value 1, a new set of parameters can be used: either the
current positional parameters or new param values. Any other attempt to invoke getopts multiple
times in a single shell execution environment with parameters (positional parameters or param
operands) that are not the same in all invocations, or with an OPTIND value modified by the
application to be a value other than 1, produces unspecified results.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

optstring A string containing the option characters recognized by the utility invoking getopts.
If a character is followed by a <colon>, the option shall be expected to have an
argument, which should be supplied as a separate argument. Applications should
specify an option character and its option-argument as separate arguments, but
getopts shall interpret the characters following an option character requiring
arguments as an argument whether or not this is done. An explicit null option-
argument need not be recognized if it is not supplied as a separate argument when
getopts is invoked. (See also the getopt() function defined in the System Interfaces
volume of POSIX.1-2024.) The characters <question-mark> and <colon> shall not
be used as option characters by an application. The use of other option characters
that are not alphanumeric produces unspecified results. Whether or not the option-
argument is supplied as a separate argument from the option character, the value
in OPTARG shall only be the characters of the option-argument. The first character
in optstring determines how getopts behaves if an option character is not known or
an option-argument is missing.

name The name of a shell variable that shall be set by the getopts utility to the option
character that was found.

By default, the list of parameters parsed by the getopts utility shall be the positional parameters
currently set in the invoking shell environment ("$@"). If param operands are given, they shall
be parsed instead of the positional parameters. Note that the next element of the parameter list
need not exist; in this case, OPTIND will be set to $#+1 or the number of param operands plus 1.

STDIN
Not used.

INPUT FILES
None.

2980 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99618

99619

99620

99621

99622

99623

99624

99625

99626

99627

99628

99629

99630

99631

99632

99633

99634

99635

99636

99637

99638

99639

99640

99641

99642

99643

99644

99645

99646

99647

99648

99649

99650

99651

99652

99653

99654

99655

99656

99657

99658

99659

99660

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities getopts

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of getopts:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

OPTIND This variable shall be used by the getopts utility as the index of the next argument
to be processed.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Whenever an error is detected and the first character in the optstring operand is not a <colon>
(':'), a diagnostic message shall be written to standard error with the following information in
an unspecified format:

• The invoking program name shall be identified in the message. The invoking program
name shall be the value of the shell special parameter 0 (see Section 2.5.2, on page 2479) at
the time the getopts utility is invoked. A name equivalent to:

basename "$0"

may be used.

• If an option is found that was not specified in optstring, this error is identified and the
invalid option character shall be identified in the message.

• If an option requiring an option-argument is found, but an option-argument is not found,
this error shall be identified and the invalid option character shall be identified in the
message.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 An option, specified or unspecified by optstring, was found.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2981

99661

99662

99663

99664

99665

99666

99667

99668

99669

99670

99671

99672

99673

99674

99675

99676

99677

99678

99679

99680

99681

99682

99683

99684

99685

99686

99687

99688

99689

99690

99691

99692

99693

99694

99695

99696

99697

99698

99699

99700

99701

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getopts Utilities

1 The end of options was encountered.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Since getopts affects the current shell execution environment, it is generally provided as a shell
regular built-in. If it is called in a subshell or separate utility execution environment, such as one
of the following:

(getopts abc value "$@")
nohup getopts ...
find . -exec getopts ... \;

it does not affect the shell variables in the caller’s environment.

Note that shell functions share OPTIND with the calling shell even though the positional
parameters are changed. If the calling shell and any of its functions uses getopts to parse
arguments, the results are unspecified.

EXAMPLES
The following example script parses and displays its arguments:

aflag=
bflag=
while getopts ab: name
do

case $name in
a) aflag=1;;
b) bflag=1

bval="$OPTARG";;
?) printf "Usage: %s: [-a] [-b value] args\n" $0

exit 2;;
esac

done
if [-n "$aflag"]; then

printf "Option -a specified\n"
fi
if [-n "$bflag"]; then

printf 'Option -b "%s" specified\n' "$bval"
fi
shift $(($OPTIND - 1))
printf "Remaining arguments are: %s\n" "$*"

RATIONALE
The getopts utility was chosen in preference to the System V getopt utility because getopts handles
option-arguments containing <blank> characters.

The OPTARG variable is not mentioned in the ENVIRONMENT VARIABLES section because it
does not affect the execution of getopts; it is one of the few ``output-only’’ variables used by the
standard utilities.

The <colon> is not allowed as an option character because that is not historical behavior, and it
violates the Utility Syntax Guidelines. The <colon> is now specified to behave as in the

2982 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99702

99703

99704

99705

99706

99707

99708

99709

99710

99711

99712

99713

99714

99715

99716

99717

99718

99719

99720

99721

99722

99723

99724

99725

99726

99727

99728

99729

99730

99731

99732

99733

99734

99735

99736

99737

99738

99739

99740

99741

99742

99743

99744

99745

99746

99747

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities getopts

KornShell version of the getopts utility; when used as the first character in the optstring operand,
it disables diagnostics concerning missing option-arguments and unexpected option characters.
This replaces the use of the OPTERR variable that was specified in an early proposal.

Although a leading <plus-sign> in optstring is required to have no effect on the behavior of
getopt(), this standard intentionally allows implementations of the getopts utility to use a leading
<plus-sign> as an extension that alters behavior. In fact, a <plus-sign> anywhere in the optstring
in the getopts utility produces unspecified behavior.

The formats of the diagnostic messages produced by the getopts utility and the getopt() function
are not fully specified because implementations with superior (``friendlier ’’) formats objected to
the formats used by some historical implementations. The standard developers considered it
important that the information in the messages used be uniform between getopts and getopt().
Exact duplication of the messages might not be possible, particularly if a utility is built on
another system that has a different getopt() function, but the messages must have specific
information included so that the program name, invalid option character, and type of error can
be distinguished by a user.

Only a rare application program intercepts a getopts standard error message and wants to parse
it. Therefore, implementations are free to choose the most usable messages they can devise. The
following formats are used by many historical implementations:

"%s: illegal option -- %c\n", <program name>, <option character>

"%s: option requires an argument -- %c\n", <program name>, \
<option character>

Historical shells with built-in versions of getopt() or getopts have used different formats,
frequently not even indicating the option character found in error.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.2 (on page 2479)

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH getopt()

CHANGE HISTORY
First released in Issue 4.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0092 [159] is applied.

Issue 8
Austin Group Defect 191 is applied, adding a paragraph about leading <plus-sign> to the
RATIONALE section.

Austin Group Defect 367 is applied, requiring that getopts distinguishes between encountering
the end of options and an error occurring, setting its exit status to one and greater than one,
respectively.

Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2983

99748

99749

99750

99751

99752

99753

99754

99755

99756

99757

99758

99759

99760

99761

99762

99763

99764

99765

99766

99767

99768

99769

99770

99771

99772

99773

99774

99775

99776

99777

99778

99779

99780

99781

99782

99783

99784

99785

99786

99787

99788

99789

99790

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

getopts Utilities

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1442 is applied, changing the EXAMPLES section.

Austin Group Defect 1784 is applied, clarifying several aspects of getopts behavior and changing
the value of OPTIND to be unspecified in some circumstances.

2984 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99791

99792

99793

99794

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities gettext

NAME
gettext, ngettext — retrieve text string from messages object

SYNOPSIS
gettext [-e|-E] [-d textdomain] [textdomain] msgid

gettext [-e|-E] [-n] -s [-d textdomain] msgid...

ngettext [-e|-E] [-d textdomain] [textdomain] msgid msgid_plural n

DESCRIPTION
The gettext and ngettext utilities shall write to standard output the message string(s) that would
result from the following calls to functions defined in the System Interfaces volume of
POSIX.1-2024:

if (textdomainname == NULL || textdomainname[0] == ’\0’)
message_string = msgid;

else {
setlocale(LC_ALL, "");
if (textdomaindir != NULL)

bindtextdomain(textdomainname, textdomaindir);
if (msgid_plural == NULL)

message_string = dgettext(textdomainname, msgid);
else

message_string = dngettext(textdomainname, msgid, msgid_plural, n);
}

where:

• The textdomaindir variable is a string containing the value of the TEXTDOMAINDIR
environment variable, if set and not empty, or is NULL otherwise.

• The textdomainname variable is a string containing the text domain name obtained from, in
decreasing order of precedence:

— The optional operand textdomain, if present

— The −d textdomain option, if specified

— The TEXTDOMAIN environment variable, if set and not empty

If the text domain name cannot be obtained from these sources, the textdomainname
variable is NULL.

• If the −s option of gettext is not specified and for the ngettext utility, the msgid variable is a
string containing:

— The value of the msgid operand, if the −E option is specified

— The value of the msgid operand with C-language escape sequences processed (see
below), if the −e option is specified

— The value of the msgid operand with C-language escape sequences optionally
processed (see below), otherwise

• If the −s option of gettext is specified, the msgid variable is a string containing:

— The value of each msgid operand in turn, if the −E option is specified or neither the −e
nor the −E option is specified

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2985

99795

99796

99797

99798

99799

99800

99801

99802

99803

99804

99805

99806

99807

99808

99809

99810

99811

99812

99813

99814

99815

99816

99817

99818

99819

99820

99821

99822

99823

99824

99825

99826

99827

99828

99829

99830

99831

99832

99833

99834

99835

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gettext Utilities

— The value of each msgid operand in turn with C-language escape sequences
processed (see below), if the −e option is specified

• For the gettext utility, the msgid_plural variable is NULL. For the ngettext utility, the
msgid_plural variable is a string containing:

— The value of the msgid_plural operand, if the −E option is specified

— The value of the msgid_plural operand with C-language escape sequences processed
(see below), if the −e option is specified

— The value of the msgid_plural operand with C-language escape sequences optionally
processed (see below), otherwise

• For the gettext utility, the n variable is 1 (one). For the ngettext utility the n variable is the n
operand, parsed as an integer as if by using the strtoul() function with a base argument of
10.

When C-language escape sequences are processed, they shall be processed as specified for
character string literals in the ISO C standard, except that universal-character-name escape
sequences need not be supported. Implementations may also support a <backslash> 'c' escape
sequence; if supported, the '\c' and all characters following it shall be removed and, if the −s
option is specified, the behavior shall be as if the −n option is also specified.

For the ngettext utility, and for the gettext utility if the −s option is not specified, the resulting
message string shall be written to standard output. If the −s option of gettext is specified, the
resulting message string for each msgid shall be written to standard output with consecutive
message strings separated by a single <space> character and, if the −n option is not specified, a
<newline> shall be written after the last message string. If the −s and −n options are specified,
the trailing <newline> shall be omitted.

Under conditions where the textdomainname variable in the above code would be NULL, these
utilities may write a diagnostic message to standard error and exit with non-zero status.

OPTIONS
These utilities shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−d textdomain
Retrieve the translated message from the domain textdomain, if textdomain is not
specified as an operand.

−e Process C-language escape sequences in msgid and msgid_plural operands.

−E Do not process C-language escape sequences in msgid and msgid_plural operands.

The gettext utility shall also support the following options:

−n Modify the behavior of the −s option such that a <newline> is not appended to the
output.

−s Separate the message strings obtained from each msgid operand with <space>
characters in the output, and (if −n is not also specified) append a <newline> to the
output.

If neither of the mutually exclusive −e and −E options is specified, it is unspecified which is the
default, except that if the −s option of gettext is specified then −E shall be the default.

2986 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99836

99837

99838

99839

99840

99841

99842

99843

99844

99845

99846

99847

99848

99849

99850

99851

99852

99853

99854

99855

99856

99857

99858

99859

99860

99861

99862

99863

99864

99865

99866

99867

99868

99869

99870

99871

99872

99873

99874

99875

99876

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities gettext

OPERANDS
The following operands shall be supported:

textdomain A text domain name used to retrieve the translated message. This shall override
the specification by the −d option, if present.

msgid A key to retrieve the translated message.

msgid_plural A default plural if no corresponding plural message can be found.

n A non-negative decimal integer to be used as the n argument to dngettext() (see the
DESCRIPTION).

STDIN
Not used.

INPUT FILES
The input files are messages object files (see msgfmt).

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of gettext and ngettext:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

XSI LANGUAGE Determine the location of messages objects if NLSPATH is not set or the evaluation
of NLSPATH did not lead to a suitable messages object being found.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_MESSAGES
Determine the locale name used to locate messages objects, and the locale that
should be used to affect the format and contents of diagnostic messages written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TEXTDOMAIN
Specify the text domain name. (See XBD Section 3.386 (on page 88).)

TEXTDOMAINDIR
XSI Specify the pathname to the messages object hierarchy. NLSPATH shall have

precedence over TEXTDOMAINDIR.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2987

99877

99878

99879

99880

99881

99882

99883

99884

99885

99886

99887

99888

99889

99890

99891

99892

99893

99894

99895

99896

99897

99898

99899

99900

99901

99902

99903

99904

99905

99906

99907

99908

99909

99910

99911

99912

99913

99914

99915

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gettext Utilities

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since it is unspecified which of the −e or −E options is the default, except when the −s option of
gettext is specified, portable applications need to ensure that −e, −E, or (for gettext) −s is specified
whenever a msgid or msgid_plural operand contains, or might contain, a <backslash> character.

Note that, unless the −s option of gettext is specified without −n, the message(s) written to
standard output are not followed by a <newline>. (Therefore the output only ends with a
<newline> if the last message ends with one.)

Both msgid and msgid_plural should be properly quoted for the shell.

EXAMPLES
The following examples assume that the following portable messages object source file (dot-po
file) has been compiled to a valid file mail.mo by the msgfmt utility. See the EXTENDED
DESCRIPTION section of the msgfmt utility for a description of the dot-po file format.

msgid ""
msgstr ""
"Content-Type: text/plain; charset=utf-8\n"
"Plural-Forms: nplurals=4; plural=n==1?0: (n>1&&n<=10)?1: (n==0)?2:3;\n"

msgid "recipient"
msgid_plural "recipients"
msgstr[0] "1 recipient"
msgstr[1] "2 to 10 recipients"
msgstr[2] "no recipients"
msgstr[3] "more than 10 recipients"

msgid "%d attachment\n"
msgid_plural "%d attachments\n"
msgstr[0] "1 (%d) attachment\n"
msgstr[1] "2 to 10 (%d) attachments\n"
msgstr[2] "no (%d) attachments\n"
msgstr[3] "more than 10 (%d) attachments\n"

They also assume that mail.mo is installed in the directory that gettext and ngettext search for the
current locale. See the OPTIONS and ENVIRONMENT VARIABLES sections above and the
description of gettext() for details on how this search is performed.

The command

ngettext -d mail recipient recipients 0

will write "no recipients".

The command

2988 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99916

99917

99918

99919

99920

99921

99922

99923

99924

99925

99926

99927

99928

99929

99930

99931

99932

99933

99934

99935

99936

99937

99938

99939

99940

99941

99942

99943

99944

99945

99946

99947

99948

99949

99950

99951

99952

99953

99954

99955

99956

99957

99958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities gettext

ngettext -d mail recipient recipients 1

will write "1 recipient".

The command

ngettext -d mail recipient recipients 5

will write "2 to 10 recipients".

The command

ngettext -d mail recipient recipients 11

will write "more than 10 recipients".

The command

ngettext -d mail Call Calls 1

will write "Call". Note that "Call" is not in the messages object.

The command

ngettext -d mail Call Calls 0

will write "Calls".

The command

ngettext -d mail Call Calls 10

will write "Calls".

The command

ngettext -ed mail "%d attachment\n" "%d attachments\n" 1

will write the same as

printf "1 (%%d) attachment\n"

(i.e. "1 (%d) attachment" followed by a <newline> character). The output of ngettext can be
used as a format string for printf.

The command

printf "$(ngettext -ed mail "%d attachment\n" "%d attachments\n" 1)" 10

will write the same as

printf "1 (%d) attachment\n" 10

(i.e. "1 (10) attachment" followed by a <newline> character).

The command

ngettext -e -d mail "\tsubject\n" "\tsubjects\n" 0

will write the same as

printf "\tsubjects\n"

(i.e. a <tab> character, followed by "subjects" followed by a <newline> character). Note that
"\tsubject\n" is not in the messages object.

The command

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2989

99959

99960

99961

99962

99963

99964

99965

99966

99967

99968

99969

99970

99971

99972

99973

99974

99975

99976

99977

99978

99979

99980

99981

99982

99983

99984

99985

99986

99987

99988

99989

99990

99991

99992

99993

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

gettext Utilities

printf "%s\n" "$(ngettext -E -d mail "subject" "subjects" 0)"

will write the same as

printf "subjects\n"

(i.e. "subjects" followed by a <newline> character). Note that "subject" is not in the
messages object.

The command

gettext -s -d mail "recipient"

will write "1 recipient" followed by a <newline> character.

The command

gettext -s -n -d mail "recipient"

will write "1 recipient" without a <newline> character.

RATIONALE
Historical implementations did not support the '\a' C-language escape sequence. This
standard requires it to be supported for consistency with other utilities that support the table in
XBD Chapter 5 (on page 113).

Unlike other standard utilities, the behavior of gettext and ngettext is not undefined when
NLSPATH overrides the system default path; see XBD Section 8.2 (on page 169). This is so that
applications can use these utilities to obtain message strings from messages objects in other
locations. However, it also means that they need to be implemented in such a way that they do
not do anything that would result in undefined behavior when they need to write a diagnostic
message. In particular, they should not use a string obtained from a message catalog or a
messages object as a format string (or should only do so after checking that the string contains
the correct conversions).

FUTURE DIRECTIONS
None.

SEE ALSO
msgfmt , printf

XBD Chapter 7 (on page 127), Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH gettext , iconv(), setlocale()

CHANGE HISTORY
First released in Issue 8.

2990 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

99994

99995

99996

99997

99998

99999

100000

100001

100002

100003

100004

100005

100006

100007

100008

100009

100010

100011

100012

100013

100014

100015

100016

100017

100018

100019

100020

100021

100022

100023

100024

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities grep

NAME
grep — search a file for a pattern

SYNOPSIS
grep [-E|-F] [-c|-l|-q] [-insvx] -e pattern_list

[-e pattern_list]... [-f pattern_file]... [file...]

grep [-E|-F] [-c|-l|-q] [-insvx] [-e pattern_list]...
-f pattern_file [-f pattern_file]... [file...]

grep [-E|-F] [-c|-l|-q] [-insvx] pattern_list [file...]

DESCRIPTION
The grep utility shall search the input files, selecting lines matching one or more patterns; the
types of patterns are controlled by the options specified. The patterns are specified by the −e
option, −f option, or the pattern_list operand. The pattern_list’s value shall consist of one or more
patterns separated by <newline> characters; the pattern_file’s contents shall consist of one or
more patterns terminated by a <newline> character. By default, an input line shall be selected if
any pattern, treated as an entire basic regular expression (BRE) as described in XBD Section 9.3
(on page 181), matches any part of the line excluding the terminating <newline>; a null BRE
shall match every line. By default, each selected input line shall be written to the standard
output.

Regular expression matching shall be based on text lines. Since a <newline> separates or
terminates patterns (see the −e and −f options below), regular expressions cannot contain a
<newline>. Similarly, since patterns are matched against individual lines (excluding the
terminating <newline> characters) of the input, there is no way for a pattern to match a
<newline> found in the input.

OPTIONS
The grep utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−E Match using extended regular expressions. Treat each pattern specified as an ERE,
as described in XBD Section 9.4 (on page 187). If any entire ERE pattern matches
some part of an input line excluding the terminating <newline>, the line shall be
matched. A null ERE shall match every line.

−F Match using fixed strings. Treat each pattern specified as a string instead of a
regular expression. If an input line contains any of the patterns as a contiguous
sequence of bytes, the line shall be matched. A null string shall match every line.

−c Write only a count of selected lines to standard output.

−e pattern_list
Specify one or more patterns to be used during the search for input. The
application shall ensure that patterns in pattern_list are separated by a <newline>.
A null pattern can be specified by two adjacent <newline> characters in
pattern_list. Unless the −E or −F option is also specified, each pattern shall be
treated as a BRE, as described in XBD Section 9.3 (on page 181). Multiple −e and −f
options shall be accepted by the grep utility. All of the specified patterns shall be
used when matching lines, but the order of evaluation is unspecified.

−f pattern_file
Read one or more patterns from the file named by the pathname pattern_file.
Patterns in pattern_file shall be terminated by a <newline>. A null pattern can be
specified by an empty line in pattern_file. Unless the −E or −F option is also

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2991

100025

100026

100027

100028

100029

100030

100031

100032

100033

100034

100035

100036

100037

100038

100039

100040

100041

100042

100043

100044

100045

100046

100047

100048

100049

100050

100051

100052

100053

100054

100055

100056

100057

100058

100059

100060

100061

100062

100063

100064

100065

100066

100067

100068

100069

100070

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

grep Utilities

specified, each pattern shall be treated as a BRE, as described in XBD Section 9.3
(on page 181).

−i Perform pattern matching in a case-insensitive manner; see XBD Section 9.2 (on
page 180).

−l (The letter ell.) Write only the names of files containing selected lines to standard
output. Pathnames shall be written once per file searched. If the standard input is
searched, a pathname of "(standard input)" shall be written, in the POSIX
locale. In other locales, "standard input" may be replaced by something more
appropriate in those locales.

−n Precede each output line by its relative line number in the file, each file starting at
line 1. The line number counter shall be reset for each file processed.

−q Quiet. Nothing shall be written to the standard output, regardless of matching
lines. Exit with zero status if an input line is selected.

−s Suppress the error messages ordinarily written for nonexistent or unreadable files.
Other error messages shall not be suppressed.

−v Select lines not matching any of the specified patterns. If the −v option is not
specified, selected lines shall be those that match any of the specified patterns.

−x Consider only input lines that use all characters in the line excluding the
terminating <newline> to match an entire fixed string or regular expression to be
matching lines.

OPERANDS
The following operands shall be supported:

pattern_list Specify one or more patterns to be used during the search for input. This operand
shall be treated as if it were specified as −e pattern_list.

file A pathname of a file to be searched for the patterns. If no file operands are
specified, the standard input shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of grep:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

2992 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100071

100072

100073

100074

100075

100076

100077

100078

100079

100080

100081

100082

100083

100084

100085

100086

100087

100088

100089

100090

100091

100092

100093

100094

100095

100096

100097

100098

100099

100100

100101

100102

100103

100104

100105

100106

100107

100108

100109

100110

100111

100112

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities grep

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −l option is in effect, the following shall be written for each file containing at least one
selected input line:

"%s\n", <file>

Otherwise, if more than one file argument appears, and −q is not specified, the grep utility shall
prefix each output line by:

"%s:", <file>

The remainder of each output line shall depend on the other options specified:

• If the −c option is in effect, the remainder of each output line shall contain:

"%d\n", <count>

• Otherwise, if −c is not in effect and the −n option is in effect, the following shall be written
to standard output:

"%d:", <line number>

• Finally, the following shall be written to standard output:

"%s", <selected-line contents>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 One or more lines were selected and the output specified in STDOUT was successfully
written to standard output.

1 No lines were selected.

>1 An error occurred.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2993

100113

100114

100115

100116

100117

100118

100119

100120

100121

100122

100123

100124

100125

100126

100127

100128

100129

100130

100131

100132

100133

100134

100135

100136

100137

100138

100139

100140

100141

100142

100143

100144

100145

100146

100147

100148

100149

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

grep Utilities

CONSEQUENCES OF ERRORS
If the −q option is specified, the exit status shall be zero if an input line is selected, even if an
error was detected. Otherwise, default actions shall be performed.

APPLICATION USAGE
Care should be taken when using characters in pattern_list that may also be meaningful to the
command interpreter. It is safest to enclose the entire pattern_list argument in single-quotes:

'...'

The −e pattern_list option has the same effect as the pattern_list operand, but is useful when
pattern_list begins with the <hyphen-minus> delimiter. It is also useful when it is more
convenient to provide multiple patterns as separate arguments.

Multiple −e and −f options are accepted and grep uses all of the patterns it is given while
matching input text lines. (Note that the order of evaluation is not specified. If an
implementation finds a null string as a pattern, it is allowed to use that pattern first, matching
every line, and effectively ignore any other patterns.)

The −q option provides a means of easily determining whether or not a pattern (or string) exists
in a group of files. When searching several files, it provides a performance improvement
(because it can quit as soon as it finds the first match) and requires less care by the user in
choosing the set of files to supply as arguments (because it exits zero if it finds a match even if
grep detected an access or read error on earlier file operands).

When using grep to process pathnames, it is recommended that LC_ALL, or at least LC_CTYPE
and LC_COLLATE, are set to POSIX or C in the environment, since pathnames can contain byte
sequences that do not form valid characters in some locales, in which case the utility’s behavior
would be undefined. In the POSIX locale each byte is a valid single-byte character, and therefore
this problem is avoided.

EXAMPLES

1. To find all uses of the word "Posix" (in any case) in file text.mm and write with line
numbers:

grep -i -n posix text.mm

2. To find all empty lines in the standard input:

grep ^$

or:

grep -v .

3. Both of the following commands print all lines containing strings "abc" or "def" or
both:

grep -E 'abc|def'

grep -F 'abc
def'

4. Both of the following commands print all lines matching exactly "abc" or "def":

grep -E '^abc$|^def$'

grep -F -x 'abc
def'

2994 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100150

100151

100152

100153

100154

100155

100156

100157

100158

100159

100160

100161

100162

100163

100164

100165

100166

100167

100168

100169

100170

100171

100172

100173

100174

100175

100176

100177

100178

100179

100180

100181

100182

100183

100184

100185

100186

100187

100188

100189

100190

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities grep

RATIONALE
This grep has been enhanced in an upwards-compatible way to provide the exact functionality of
the historical egrep and fgrep commands as well. It was the clear intention of the standard
developers to consolidate the three greps into a single command.

The old egrep and fgrep commands are likely to be supported for many years to come as
implementation extensions, allowing historical applications to operate unmodified.

Historical implementations usually silently ignored all but one of multiply-specified −e and −f
options, but were not consistent as to which specification was actually used.

The −b option was omitted from the OPTIONS section because block numbers are
implementation-defined.

The System V restriction on using − to mean standard input was omitted.

A definition of action taken when given a null BRE or ERE is specified. This is an error
condition in some historical implementations.

The −l option previously indicated that its use was undefined when no files were explicitly
named. This behavior was historical and placed an unnecessary restriction on future
implementations. It has been removed.

The historical BSD grep −s option practice is easily duplicated by redirecting standard output to
/dev/null. The −s option required here is from System V.

The −x option, historically available only with fgrep, is available here for all of the non-
obsolescent versions.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
sed

XBD Chapter 8 (on page 167), Chapter 9 (on page 179), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The Open Group Corrigendum U029/5 is applied, correcting the SYNOPSIS.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/28 is applied, correcting the examples
using the grep −F option which did not match the normative description of the −F option.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-98 is applied, updating the STDOUT section.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0105 [584] and XCU/TC2-2008/0106
[663] are applied.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2995

100191

100192

100193

100194

100195

100196

100197

100198

100199

100200

100201

100202

100203

100204

100205

100206

100207

100208

100209

100210

100211

100212

100213

100214

100215

100216

100217

100218

100219

100220

100221

100222

100223

100224

100225

100226

100227

100228

100229

100230

100231

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

grep Utilities

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1031 is applied, changing the description of the −i option.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1502 is applied, changing the EXIT STATUS section.

2996 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100232

100233

100234

100235

100236

100237

100238

100239

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities hash

NAME
hash — remember or report utility locations

SYNOPSIS
hash [utility...]

hash -r

DESCRIPTION
The hash utility shall affect the way the current shell environment remembers the locations of
utilities found as described in Section 2.9.1.4 (on page 2502). Depending on the arguments
specified, it shall add utility locations to its list of remembered locations or it shall purge the
contents of the list. When no arguments are specified, it shall report on the contents of the list.

Utilities provided as built-ins to the shell and functions shall not be reported by hash.

OPTIONS
The hash utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−r Forget all previously remembered utility locations.

OPERANDS
The following operand shall be supported:

utility The name of a utility to be searched for and added to the list of remembered
locations. If the search does not find utility, it is unspecified whether or not this is
treated as an error. If utility contains one or more <slash> characters, the results are
unspecified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of hash:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the location of utility, as described in XBD Chapter 8 (on page 167).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2997

100240

100241

100242

100243

100244

100245

100246

100247

100248

100249

100250

100251

100252

100253

100254

100255

100256

100257

100258

100259

100260

100261

100262

100263

100264

100265

100266

100267

100268

100269

100270

100271

100272

100273

100274

100275

100276

100277

100278

100279

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

hash Utilities

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output of hash shall be used when no arguments are specified. Its format is
unspecified, but includes the pathname of each utility in the list of remembered locations for the
current shell environment. This list shall consist of those utilities named in previous hash
invocations that have been invoked, and may contain those invoked and found through the
normal command search process. This list shall be cleared when the contents of the PA TH
environment variable are changed.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Since hash affects the current shell execution environment, it is always provided as a shell
regular built-in. If it is called in a separate utility execution environment, such as one of the
following:

nohup hash -r
find . -type f -exec hash {} +

it does not affect the command search process of the caller’s environment.

The hash utility may be implemented as an alias—for example, alias −t −, in which case utilities
found through normal command search are not listed by the hash command.

The effects of hash −r can also be achieved portably by resetting the value of PA TH; in the
simplest form, this can be:

PATH="$PATH"

The use of hash with utility names is unnecessary for most applications, but may provide a
performance improvement on a few implementations; normally, the hashing process is included
by default.

EXAMPLES
None.

2998 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100280

100281

100282

100283

100284

100285

100286

100287

100288

100289

100290

100291

100292

100293

100294

100295

100296

100297

100298

100299

100300

100301

100302

100303

100304

100305

100306

100307

100308

100309

100310

100311

100312

100313

100314

100315

100316

100317

100318

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities hash

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
Section 2.9.1.4 (on page 2502)

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 7
The hash utility is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0093 [241] is applied.

Issue 8
Austin Group Defect 248 is applied, changing a command line in the APPLICATION USAGE
section.

Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1063 is applied, clarifying that functions are not reported by hash, and that
the list of remembered locations is cleared when the contents of PA TH are changed.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1460 is applied, making it explicitly unspecified whether or not hash
reports an error if it cannot find utility.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 2999

100319

100320

100321

100322

100323

100324

100325

100326

100327

100328

100329

100330

100331

100332

100333

100334

100335

100336

100337

100338

100339

100340

100341

100342

100343

100344

100345

100346

100347

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

head Utilities

NAME
head — copy the first part of files

SYNOPSIS
head [-c number|-n number] [file...]

DESCRIPTION
The head utility shall copy its input files to the standard output, ending the output for each file at
a designated point.

Copying shall end at the point in the file indicated by the −c number or −n number options. The
option-argument number shall be counted in units of lines or bytes, according to the options −n
and −c. Both line and byte counts start from 1.

OPTIONS
The head utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c number The first number bytes of each input file shall be copied to standard output. The
application shall ensure that the number option-argument is a positive decimal
integer.

−n number This option shall be equivalent to −c number, except that the ending location in the
file shall be measured in lines instead of bytes.

When a file contains less than number bytes or lines, it shall be copied to standard output in its
entirety. This shall not be an error.

If no options are specified, head shall act as if −n 10 had been specified.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, the standard input
shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
If the −c option is specified, the input files can contain arbitrary data; otherwise, the input files
shall be text files, but the line length shall not be restricted to {LINE_MAX} bytes.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of head:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

3000 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100348

100349

100350

100351

100352

100353

100354

100355

100356

100357

100358

100359

100360

100361

100362

100363

100364

100365

100366

100367

100368

100369

100370

100371

100372

100373

100374

100375

100376

100377

100378

100379

100380

100381

100382

100383

100384

100385

100386

100387

100388

100389

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities head

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall contain designated portions of the input files.

If multiple file operands are specified, head shall precede the output for each with the header:

"\n==> %s <==\n", <pathname>

except that the first header written shall not include the initial <newline>.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
When using head to process pathnames, it is recommended that LC_ALL, or at least LC_CTYPE
and LC_COLLATE, are set to POSIX or C in the environment, since pathnames can contain byte
sequences that do not form valid characters in some locales, in which case the utility’s behavior
would be undefined. In the POSIX locale each byte is a valid single-byte character, and therefore
this problem is avoided.

EXAMPLES
To write the first ten lines of all files (except those with a leading period) in the directory:

head -- *

RATIONALE
Although it is possible to simulate head with sed 10q for a single file, the standard developers
decided that the popularity of head on historical BSD systems warranted its inclusion alongside
tail.

POSIX.1-2024 version of head follows the Utility Syntax Guidelines. The −n option was added to
this new interface so that head and tail would be more logically related. Earlier versions of this
standard allowed a −number option. This form is no longer specified by POSIX.1-2024 but may
be present in some implementations.

The head and tail utilities have not historically been symmetric. For example, this standard only
requires tail to support at most one file operand, while head must operate on multiple files.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3001

100390

100391

100392

100393

100394

100395

100396

100397

100398

100399

100400

100401

100402

100403

100404

100405

100406

100407

100408

100409

100410

100411

100412

100413

100414

100415

100416

100417

100418

100419

100420

100421

100422

100423

100424

100425

100426

100427

100428

100429

100430

100431

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

head Utilities

Conversely, this standard requires tail to be able to start at a position relative to the start of a file,
but head need not support stopping at a position relative to the end of the file. Implementations
may choose to make head and tail symmetric as an extension, but applications should not rely on
this.

Older implementations of head did not support −c number, but emulating this via dd ibs=1
count=number is much less efficient and emulating via dd obs=pipe_buf | dd ibs=size
count=number_of_blocks is cumbersome, somewhat less efficient, and can only be used if
the number of bytes to be copied is a multiple of a suitable block size less than or equal to
{PIPE_BUF}.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
dd , sed , tail

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
The obsolescent −number form is removed.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The DESCRIPTION is updated to clarify that when a file contains less than the number of lines
requested, the entire file is copied to standard output.

Issue 7
Austin Group Interpretations 1003.1-2001 #027 and #092 are applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The APPLICATION USAGE section is removed and the EXAMPLES section is corrected.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0107 [663] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 407 is applied, adding the −c number option.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3002 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100432

100433

100434

100435

100436

100437

100438

100439

100440

100441

100442

100443

100444

100445

100446

100447

100448

100449

100450

100451

100452

100453

100454

100455

100456

100457

100458

100459

100460

100461

100462

100463

100464

100465

100466

100467

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities iconv

NAME
iconv — codeset conversion

SYNOPSIS
iconv [-cs] -f frommap -t tomap [file...]

iconv -f fromcode [-cs] [-t tocode] [file...]

iconv -t tocode [-cs] [-f fromcode] [file...]

iconv -l

DESCRIPTION
The iconv utility shall convert the encoding of characters in file from one codeset to another and
write the results to standard output.

When the options indicate that charmap files are used to specify the codesets (see OPTIONS),
the codeset conversion shall be accomplished by performing a logical join on the symbolic
character names in the two charmaps. The implementation need not support the use of charmap
files for codeset conversion unless the POSIX2_LOCALEDEF symbol is defined on the system.

OPTIONS
The iconv utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Omit any characters that are invalid in the codeset of the input file from the
output. When −c is not used, the results of encountering invalid characters in the
input stream (either those that are not characters in the codeset of the input file or
that have no corresponding character in the codeset of the output file) shall be
specified in the system documentation. The presence or absence of −c shall not
affect the exit status of iconv.

−f fromcodeset
Identify the codeset of the input file. The implementation shall recognize the
following two forms of the fromcodeset option-argument:

fromcode The fromcode option-argument can not contain a <slash> character. It
shall be interpreted as the name of one of the codeset descriptions
provided by the implementation in an unspecified format. Valid
values of fromcode are implementation-defined.

frommap The frommap option-argument needs to contain a <slash> character. It
shall be interpreted as the pathname of a charmap file as defined in
XBD Section 6.4 (on page 121). If the pathname does not represent a
valid, readable charmap file, the results are undefined.

If this option is omitted, the codeset of the current locale shall be used.

−l Write all supported fromcode and tocode values to standard output in an unspecified
format.

−s Suppress any messages written to standard error concerning invalid characters.
When −s is not used, the results of encountering invalid characters in the input
stream (either those that are not valid characters in the codeset of the input file or
that have no corresponding character in the codeset of the output file) shall be
specified in the system documentation. The presence or absence of −s shall not
affect the exit status of iconv.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3003

100468

100469

100470

100471

100472

100473

100474

100475

100476

100477

100478

100479

100480

100481

100482

100483

100484

100485

100486

100487

100488

100489

100490

100491

100492

100493

100494

100495

100496

100497

100498

100499

100500

100501

100502

100503

100504

100505

100506

100507

100508

100509

100510

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iconv Utilities

−t tocodeset Identify the codeset to be used for the output file. The implementation shall
recognize the following two forms of the tocodeset option-argument:

tocode The semantics shall be equivalent to the −f fromcode option.

tomap The semantics shall be equivalent to the −f frommap option.

If this option is omitted, the codeset of the current locale shall be used.

If either −f or −t represents a charmap file, but the other does not (or is omitted), or both −f and
−t are omitted, the results are undefined.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, or if a file operand is
'−', the standard input shall be used.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is '−'.

INPUT FILES
The input file shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of iconv:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments). During translation of the file, this variable is superseded by the use of
the fromcode option-argument.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −l option is used, the standard output shall contain all supported fromcode and tocode
values, written in an unspecified format.

When the −l option is not used, the standard output shall contain the sequence of characters
read from the input files, translated to the specified codeset. Nothing else shall be written to the
standard output.

STDERR
The standard error shall be used only for diagnostic messages.

3004 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100511

100512

100513

100514

100515

100516

100517

100518

100519

100520

100521

100522

100523

100524

100525

100526

100527

100528

100529

100530

100531

100532

100533

100534

100535

100536

100537

100538

100539

100540

100541

100542

100543

100544

100545

100546

100547

100548

100549

100550

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities iconv

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The user must ensure that both charmap files use the same symbolic names for characters the
two codesets have in common.

EXAMPLES
The following example converts the contents of file mail.x400 from the ISO/IEC 6937: 2001
standard codeset to the ISO/IEC 8859-1: 1998 standard codeset, and stores the results in file
mail.local:

iconv -f IS6937 -t IS8859 mail.x400 > mail.local

RATIONALE
The iconv utility can be used portably only when the user provides two charmap files as option-
arguments. This is because a single charmap provided by the user cannot reliably be joined with
the names in a system-provided character set description. The valid values for fromcode and
tocode are implementation-defined and do not have to have any relation to the charmap
mechanisms. As an aid to interactive users, the −l option was adopted from the Plan 9 operating
system. It writes information concerning these implementation-defined values. The format is
unspecified because there are many possible useful formats that could be chosen, such as a
matrix of valid combinations of fromcode and tocode. The −l option is not intended for shell script
usage; conforming applications will have to use charmaps.

The iconv utility may support the conversion between ASCII and EBCDIC-based encodings, but
is not required to do so. In an XSI-compliant implementation, the dd utility is the only method
guaranteed to support conversion between these two character sets.

FUTURE DIRECTIONS
None.

SEE ALSO
dd , gencat

XBD Section 6.4 (on page 121), Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 3.

Issue 6
This utility has been rewritten to align with the IEEE P1003.2b draft standard. Specifically, the
ability to use charmap files for conversion has been added.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/29 is applied, making changes to address
inconsistencies with the iconv() function in the System Interfaces volume of POSIX.1-2024.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3005

100551

100552

100553

100554

100555

100556

100557

100558

100559

100560

100561

100562

100563

100564

100565

100566

100567

100568

100569

100570

100571

100572

100573

100574

100575

100576

100577

100578

100579

100580

100581

100582

100583

100584

100585

100586

100587

100588

100589

100590

100591

100592

100593

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

iconv Utilities

Issue 7
Austin Group Interpretation 1003.1-2001 #206 is applied, correcting the tomap option.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0094 [291] and XCU/TC1-2008/0095
[291] are applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3006 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100594

100595

100596

100597

100598

100599

100600

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities id

NAME
id — return user identity

SYNOPSIS
id [user]

id -G [-n] [user]

id -g [-nr] [user]

id -u [-nr] [user]

DESCRIPTION
If no user operand is provided, the id utility shall write the user and group IDs and the
corresponding user and group names of the invoking process to standard output. If the effective
and real IDs do not match, both shall be written. If multiple groups are supported by the
underlying system (see the description of {NGROUPS_MAX} in the System Interfaces volume of
POSIX.1-2024), the supplementary group affiliations of the invoking process shall also be
written.

If a user operand is provided and the process has appropriate privileges, the user and group IDs
of the selected user shall be written. In this case, effective IDs shall be assumed to be identical to
real IDs. If the selected user has more than one allowable group membership listed in the group
database, these shall be written in the same manner as the supplementary groups described in
the preceding paragraph.

OPTIONS
The id utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−G Output all different group IDs (effective, real, and supplementary) only, using the
format "%u\n". If there is more than one distinct group affiliation, output each
such affiliation, using the format " %u", before the <newline> is output.

−g Output only the effective group ID, using the format "%u\n".

−n Output the name in the format "%s" instead of the numeric ID using the format
"%u".

−r Output the real ID instead of the effective ID.

−u Output only the effective user ID, using the format "%u\n".

OPERANDS
The following operand shall be supported:

user The login name for which information is to be written.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of id:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3007

100601

100602

100603

100604

100605

100606

100607

100608

100609

100610

100611

100612

100613

100614

100615

100616

100617

100618

100619

100620

100621

100622

100623

100624

100625

100626

100627

100628

100629

100630

100631

100632

100633

100634

100635

100636

100637

100638

100639

100640

100641

100642

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

id Utilities

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The following formats shall be used when the LC_MESSAGES locale category specifies the
POSIX locale. In other locales, the strings uid, gid, euid, egid, and groups may be replaced with
more appropriate strings corresponding to the locale.

"uid=%u(%s) gid=%u(%s)\n", <real user ID>, <user-name>,
<real group ID>, <group-name>

If the effective and real user IDs do not match, the following shall be inserted immediately
before the '\n' character in the previous format:

" euid=%u(%s)"

with the following arguments added at the end of the argument list:

<effective user ID>, <effective user-name>

If the effective and real group IDs do not match, the following shall be inserted directly before
the '\n' character in the format string (and after any addition resulting from the effective and
real user IDs not matching):

" egid=%u(%s)"

with the following arguments added at the end of the argument list:

<effective group-ID>, <effective group name>

If the process has supplementary group affiliations or the selected user is allowed to belong to
multiple groups, the first shall be added directly before the <newline> in the format string:

" groups=%u(%s)"

with the following arguments added at the end of the argument list:

<supplementary group ID>, <supplementary group name>

and the necessary number of the following added after that for any remaining supplementary
group IDs:

",%u(%s)"

and the necessary number of the following arguments added at the end of the argument list:

<supplementary group ID>, <supplementary group name>

If any of the user ID, group ID, effective user ID, effective group ID, or supplementary/multiple

3008 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100643

100644

100645

100646

100647

100648

100649

100650

100651

100652

100653

100654

100655

100656

100657

100658

100659

100660

100661

100662

100663

100664

100665

100666

100667

100668

100669

100670

100671

100672

100673

100674

100675

100676

100677

100678

100679

100680

100681

100682

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities id

group IDs cannot be mapped by the system into printable user or group names, the
corresponding "(%s)" and name argument shall be omitted from the corresponding format
string.

When any of the options are specified, the output format shall be as described in the OPTIONS
section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Output produced by the −G option and by the default case could potentially produce very long
lines on systems that support large numbers of supplementary groups. (On systems with user
and group IDs that are 32-bit integers and with group names with a maximum of 8 bytes per
name, 93 supplementary groups plus distinct effective and real group and user IDs could
theoretically overflow the 2 048-byte {LINE_MAX} text file line limit on the default output case.
It would take about 186 supplementary groups to overflow the 2 048-byte barrier using id −G).
This is not expected to be a problem in practice, but in cases where it is a concern, applications
should consider using fold −s before post-processing the output of id.

EXAMPLES
None.

RATIONALE
The functionality provided by the 4 BSD groups utility can be simulated using:

id -Gn [user]

The 4 BSD command groups was considered, but it was not included because it did not provide
the functionality of the id utility of the SVID. Also, it was thought that it would be easier to
modify id to provide the additional functionality necessary to systems with multiple groups than
to invent another command.

The options −u, −g, −n, and −r were added to ease the use of id with shell commands
substitution. Without these options it is necessary to use some preprocessor such as sed to select
the desired piece of information. Since output such as that produced by:

id -u -n

is frequently wanted, it seemed desirable to add the options.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3009

100683

100684

100685

100686

100687

100688

100689

100690

100691

100692

100693

100694

100695

100696

100697

100698

100699

100700

100701

100702

100703

100704

100705

100706

100707

100708

100709

100710

100711

100712

100713

100714

100715

100716

100717

100718

100719

100720

100721

100722

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

id Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
fold , logname , who

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH getgid(), getgroups(), getuid()

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3010 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100723

100724

100725

100726

100727

100728

100729

100730

100731

100732

100733

100734

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ipcrm

NAME
ipcrm — remove an XSI message queue, semaphore set, or shared memory segment identifier

SYNOPSIS
XSI ipcrm [-q msgid|-Q msgkey|-s semid|-S semkey|-m shmid|-M shmkey]...

DESCRIPTION
The ipcrm utility shall remove zero or more message queues, semaphore sets, or shared memory
segments. The interprocess communication facilities to be removed are specified by the options.

Only a user with appropriate privileges shall be allowed to remove an interprocess
communication facility that was not created by or owned by the user invoking ipcrm.

OPTIONS
The ipcrm utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−q msgid Remove the message queue identifier msgid from the system and destroy the
message queue and data structure associated with it.

−m shmid Remove the shared memory identifier shmid from the system. The shared memory
segment and data structure associated with it shall be destroyed when all
processes with the segment attached have either detached the segment or
terminated. If the segment is not attached to any process, it shall be destroyed
immediately.

−s semid Remove the semaphore identifier semid from the system and destroy the set of
semaphores and data structure associated with it.

−Q msgkey Remove the message queue identifier, created with key msgkey, from the system
and destroy the message queue and data structure associated with it.

−M shmkey Remove the shared memory identifier, created with key shmkey, from the system.
The shared memory segment and data structure associated with it shall be
destroyed after the last detach.

−S semkey Remove the semaphore identifier, created with key semkey, from the system and
destroy the set of semaphores and data structure associated with it.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ipcrm:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3011

100735

100736

100737

100738

100739

100740

100741

100742

100743

100744

100745

100746

100747

100748

100749

100750

100751

100752

100753

100754

100755

100756

100757

100758

100759

100760

100761

100762

100763

100764

100765

100766

100767

100768

100769

100770

100771

100772

100773

100774

100775

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ipcrm Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ipcs

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH msgctl(), semctl(), shmctl()

CHANGE HISTORY
First released in Issue 5.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3012 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100776

100777

100778

100779

100780

100781

100782

100783

100784

100785

100786

100787

100788

100789

100790

100791

100792

100793

100794

100795

100796

100797

100798

100799

100800

100801

100802

100803

100804

100805

100806

100807

100808

100809

100810

100811

100812

100813

100814

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ipcrm

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1240 is applied, clarifying the description of the −m option.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3013

100815

100816

100817

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ipcs Utilities

NAME
ipcs — report XSI interprocess communication facilities status

SYNOPSIS
XSI ipcs [-qms] [-a|-bcopt]

DESCRIPTION
The ipcs utility shall write information about active interprocess communication facilities.

Without options, information shall be written in short format for message queues, shared
memory segments, and semaphore sets that are currently active in the system. Otherwise, the
information that is displayed is controlled by the options specified.

OPTIONS
The ipcs utility shall conform to XBD Section 12.2 (on page 215).

The ipcs utility accepts the following options:

−q Write information about active message queues.

−m Write information about active shared memory segments.

−s Write information about active semaphore sets.

If −q, −m, or −s are specified, only information about those facilities shall be written. If none of
these three are specified, information about all three shall be written subject to the following
options:

−a Use all print options. (This is a shorthand notation for −b, −c, −o, −p, and −t.)

−b Write information on maximum allowable size. (Maximum number of bytes in
messages on queue for message queues, size of segments for shared memory, and
number of semaphores in each set for semaphores.)

−c Write creator ’s user name and group name; see below.

−o Write information on outstanding usage. (Number of messages on queue and total
number of bytes in messages on queue for message queues, and number of
processes attached to shared memory segments.)

−p Write process number information. (Process ID of the last process to send a
message and process ID of the last process to receive a message on message
queues, process ID of the creating process, and process ID of the last process to
attach or detach on shared memory segments.)

−t Write time information. (Time of the last control operation that changed the access
permissions for all facilities, time of the last msgsnd() and msgrcv() operations on
message queues, time of the last shmat() and shmdt() operations on shared
memory, and time of the last semop() operation on semaphores.)

OPERANDS
None.

STDIN
Not used.

INPUT FILES

• The group database

3014 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100818

100819

100820

100821

100822

100823

100824

100825

100826

100827

100828

100829

100830

100831

100832

100833

100834

100835

100836

100837

100838

100839

100840

100841

100842

100843

100844

100845

100846

100847

100848

100849

100850

100851

100852

100853

100854

100855

100856

100857

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ipcs

• The user database

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ipcs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone for the date and time strings written by ipcs. If TZ is unset
or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
An introductory line shall be written with the format:

"IPC status from %s as of %s\n", <source>, <date>

where <source> indicates the source used to gather the statistics and <date> is the information
that would be produced by the date command when invoked in the POSIX locale.

The ipcs utility then shall create up to three reports depending upon the −q, −m, and −s options.
The first report shall indicate the status of message queues, the second report shall indicate the
status of shared memory segments, and the third report shall indicate the status of semaphore
sets.

If the corresponding facility is not installed or has not been used since the last reboot, then the
report shall be written out in the format:

"%s facility not in system.\n", <facility>

where <facility> is Message Queue, Shared Memory, or Semaphore, as appropriate. If the facility has
been installed and has been used since the last reboot, column headings separated by one or
more <space> characters and followed by a <newline> shall be written as indicated below
followed by the facility name written out using the format:

"%s:\n", <facility>

where <facility> is Message Queues, Shared Memory, or Semaphores, as appropriate. On the second
and third reports the column headings need not be written if the last column headings written
already provide column headings for all information in that report.

The column headings provided in the first column below and the meaning of the information in
those columns shall be given in order below; the letters in parentheses indicate the options that
shall cause the corresponding column to appear; ``all’’ means that the column shall always
appear. Each column is separated by one or more <space> characters. Note that these options

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3015

100858

100859

100860

100861

100862

100863

100864

100865

100866

100867

100868

100869

100870

100871

100872

100873

100874

100875

100876

100877

100878

100879

100880

100881

100882

100883

100884

100885

100886

100887

100888

100889

100890

100891

100892

100893

100894

100895

100896

100897

100898

100899

100900

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ipcs Utilities

only determine what information is provided for each report; they do not determine which
reports are written.

T (all) Type of facility:

q Message queue.

m Shared memory segment.

s Semaphore.

This field is a single character written using the format %c.

ID (all) The identifier for the facility entry. This field shall be written using the format
%d.

KEY (all) The key used as an argument to msgget(), semget(), or shmget() to create the
facility entry.

Note: The key of a shared memory segment is changed to IPC_PRIVATE when the
segment has been removed until all processes attached to the segment
detach it.

This field shall be written using the format 0x%x.

MODE (all) The facility access modes and flags. The mode shall consist of 11 characters
that are interpreted as follows.

The first character shall be:

S If a process is waiting on a msgsnd() operation.

− If the above is not true.

The second character shall be:

R If a process is waiting on a msgrcv() operation.

C or − If the associated shared memory segment is to be cleared when the
first attach operation is executed.

− If none of the above is true.

The next nine characters shall be interpreted as three sets of three bits each.
The first set refers to the owner’s permissions; the next to permissions of
others in the usergroup of the facility entry; and the last to all others. Within
each set, the first character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and the last character is
a <hyphen-minus> ('−').

The permissions shall be indicated as follows:

r If read permission is granted.

w If write permission is granted.

a If alter permission is granted.

− If the indicated permission is not granted.

The first character following the permissions specifies if there is an alternate or
additional access control method associated with the facility. If there is no
alternate or additional access control method associated with the facility, a
single <space> shall be written; otherwise, another printable character is

3016 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100901

100902

100903

100904

100905

100906

100907

100908

100909

100910

100911

100912

100913

100914

100915

100916

100917

100918

100919

100920

100921

100922

100923

100924

100925

100926

100927

100928

100929

100930

100931

100932

100933

100934

100935

100936

100937

100938

100939

100940

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ipcs

written.

OWNER (all) The user name of the owner of the facility entry. If the user name of the owner
is found in the user database, at least the first eight column positions of the
name shall be written using the format %s. Otherwise, the user ID of the
owner shall be written using the format %d.

GROUP (all) The group name of the owner of the facility entry. If the group name of the
owner is found in the group database, at least the first eight column positions
of the name shall be written using the format %s. Otherwise, the group ID of
the owner shall be written using the format %d.

The following nine columns shall be only written out for message queues:

CREATOR (a,c) The user name of the creator of the facility entry. If the user name of the
creator is found in the user database, at least the first eight column positions of
the name shall be written using the format %s. Otherwise, the user ID of the
creator shall be written using the format %d.

CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
creator is found in the group database, at least the first eight column positions
of the name shall be written using the format %s. Otherwise, the group ID of
the creator shall be written using the format %d.

CBYTES (a,o) The number of bytes in messages currently outstanding on the associated
message queue. This field shall be written using the format %d.

QNUM (a,o) The number of messages currently outstanding on the associated message
queue. This field shall be written using the format %d.

QBYTES (a,b) The maximum number of bytes allowed in messages outstanding on the
associated message queue. This field shall be written using the format %d.

LSPID (a,p) The process ID of the last process to send a message to the associated queue.
This field shall be written using the format:

"%d", <pid>

where <pid> is 0 if no message has been sent to the corresponding message
queue; otherwise, <pid> shall be the process ID of the last process to send a
message to the queue.

LRPID (a,p) The process ID of the last process to receive a message from the associated
queue. This field shall be written using the format:

"%d", <pid>

where <pid> is 0 if no message has been received from the corresponding
message queue; otherwise, <pid> shall be the process ID of the last process to
receive a message from the queue.

STIME (a,t) The time the last message was sent to the associated queue. If a message has
been sent to the corresponding message queue, the hour, minute, and second
of the last time a message was sent to the queue shall be written using the
format %d:%2.2d:%2.2d. Otherwise, the format " no-entry" shall be
written.

RTIME (a,t) The time the last message was received from the associated queue. If a
message has been received from the corresponding message queue, the hour,
minute, and second of the last time a message was received from the queue

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3017

100941

100942

100943

100944

100945

100946

100947

100948

100949

100950

100951

100952

100953

100954

100955

100956

100957

100958

100959

100960

100961

100962

100963

100964

100965

100966

100967

100968

100969

100970

100971

100972

100973

100974

100975

100976

100977

100978

100979

100980

100981

100982

100983

100984

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ipcs Utilities

shall be written using the format %d:%2.2d:%2.2d. Otherwise, the format
" no-entry" shall be written.

The following eight columns shall be only written out for shared memory segments.

CREATOR (a,c) The user of the creator of the facility entry. If the user name of the creator is
found in the user database, at least the first eight column positions of the
name shall be written using the format %s. Otherwise, the user ID of the
creator shall be written using the format %d.

CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
creator is found in the group database, at least the first eight column positions
of the name shall be written using the format %s. Otherwise, the group ID of
the creator shall be written using the format %d.

NATTCH (a,o) The number of processes attached to the associated shared memory segment.
This field shall be written using the format %d.

SEGSZ (a,b) The size of the associated shared memory segment. This field shall be written
using the format %d.

CPID (a,p) The process ID of the creator of the shared memory entry. This field shall be
written using the format %d.

LPID (a,p) The process ID of the last process to attach or detach the shared memory
segment. This field shall be written using the format:

"%d", <pid>

where <pid> is 0 if no process has attached the corresponding shared memory
segment; otherwise, <pid> shall be the process ID of the last process to attach
or detach the segment.

ATIME (a,t) The time the last attach on the associated shared memory segment was
completed. If the corresponding shared memory segment has ever been
attached, the hour, minute, and second of the last time the segment was
attached shall be written using the format %d:%2.2d:%2.2d. Otherwise, the
format " no-entry" shall be written.

DTIME (a,t) The time the last detach on the associated shared memory segment was
completed. If the corresponding shared memory segment has ever been
detached, the hour, minute, and second of the last time the segment was
detached shall be written using the format %d:%2.2d:%2.2d. Otherwise, the
format " no-entry" shall be written.

The following four columns shall be only written out for semaphore sets:

CREATOR (a,c) The user of the creator of the facility entry. If the user name of the creator is
found in the user database, at least the first eight column positions of the
name shall be written using the format %s. Otherwise, the user ID of the
creator shall be written using the format %d.

CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
creator is found in the group database, at least the first eight column positions
of the name shall be written using the format %s. Otherwise, the group ID of
the creator shall be written using the format %d.

3018 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

100985

100986

100987

100988

100989

100990

100991

100992

100993

100994

100995

100996

100997

100998

100999

101000

101001

101002

101003

101004

101005

101006

101007

101008

101009

101010

101011

101012

101013

101014

101015

101016

101017

101018

101019

101020

101021

101022

101023

101024

101025

101026

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ipcs

NSEMS (a,b) The number of semaphores in the set associated with the semaphore entry.
This field shall be written using the format %d.

OTIME (a,t) The time the last semaphore operation on the set associated with the
semaphore entry was completed. If a semaphore operation has ever been
performed on the corresponding semaphore set, the hour, minute, and second
of the last semaphore operation on the semaphore set shall be written using
the format %d:%2.2d:%2.2d. Otherwise, the format " no-entry" shall be
written.

The following column shall be written for all three reports when it is requested:

CTIME (a,t) The time the associated entry was created or changed. The hour, minute, and
second of the time when the associated entry was created shall be written
using the format %d:%2.2d:%2.2d.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Things can change while ipcs is running; the information it gives is guaranteed to be accurate
only when it was retrieved.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
ipcrm

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH msgrcv(), msgsnd(), semget(), semop(), shmat(), shmdt(), shmget()

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3019

101027

101028

101029

101030

101031

101032

101033

101034

101035

101036

101037

101038

101039

101040

101041

101042

101043

101044

101045

101046

101047

101048

101049

101050

101051

101052

101053

101054

101055

101056

101057

101058

101059

101060

101061

101062

101063

101064

101065

101066

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ipcs Utilities

CHANGE HISTORY
First released in Issue 5.

Issue 6
The Open Group Corrigendum U020/1 is applied, correcting the SYNOPSIS.

The Open Group Corrigenda U032/1 and U032/2 are applied, clarifying the output format.

The Open Group Base Resolution bwg98-004 is applied.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-139 is applied, adding the ipcrm utility to the SEE ALSO section.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0108 [584] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3020 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101067

101068

101069

101070

101071

101072

101073

101074

101075

101076

101077

101078

101079

101080

101081

101082

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities jobs

NAME
jobs — display status of jobs in the current shell execution environment

SYNOPSIS
UP jobs [-l|-p] [job_id...]

DESCRIPTION
If the current shell execution environment (see Section 2.13, on page 2522) is not a subshell
environment, the jobs utility shall display the status of background jobs that were created in the
current shell execution environment; it may also do so if the current shell execution environment
is a subshell environment.

When jobs reports the termination status of a job, the shell shall remove the job from the
background jobs list and the associated process ID from the list of those ``known in the current
shell execution environment’’; see Section 2.9.3.1 (on page 2506). If a write error occurs when
jobs writes to standard output, some process IDs might have been removed from the list but not
successfully reported.

OPTIONS
The jobs utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−l (The letter ell.) Provide more information about each job listed. See STDOUT for
details.

−p Display only the process IDs for the process group leaders of job-control
background jobs and the process IDs associated with non-job-control background
jobs (if supported).

By default, the jobs utility shall display the status of all background jobs, both running and
suspended, and all jobs whose status has changed and have not been reported by the shell.

OPERANDS
The following operand shall be supported:

job_id Specifies the jobs for which the status is to be displayed. If no job_id is given, the
status information for all jobs shall be displayed. The format of job_id is described
in XBD Section 3.182 (on page 57).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of jobs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3021

101083

101084

101085

101086

101087

101088

101089

101090

101091

101092

101093

101094

101095

101096

101097

101098

101099

101100

101101

101102

101103

101104

101105

101106

101107

101108

101109

101110

101111

101112

101113

101114

101115

101116

101117

101118

101119

101120

101121

101122

101123

101124

101125

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

jobs Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −p option is specified, the output shall consist of one line for each process ID:

"%d\n", <process ID>

Otherwise, if the −l option is not specified, the output shall be a series of lines of the form:

"[%d] %c %s %s\n", <job-number>, <current>, <state>, <command>

where the fields shall be as follows:

<current> The character '+' identifies the job that would be used as a default for the fg or bg
utilities; this job can also be specified using the job_id %+ or "%%". The character
'−' identifies the job that would become the default if the current default job were
to exit; this job can also be specified using the job_id %−. For other jobs, this field is
a <space>. At most one job can be identified with '+' and at most one job can be
identified with '−'. If there is any suspended job, then the current job shall be a
suspended job. If there are at least two suspended jobs, then the previous job also
shall be a suspended job.

<job-number> A number that can be used to identify the job to the wait, fg, bg, and kill utilities.
Using these utilities, the job can be identified by prefixing the job number with
'%'.

<state> One of the following strings (in the POSIX locale):

Running Indicates that the job has not been suspended by a signal and has not
exited.

Done Indicates that the job completed and returned exit status zero.

Done(code) Indicates that the job completed normally and that it exited with the
specified non-zero exit status, code, expressed as a decimal number.

Stopped Indicates that the job was suspended by the SIGTSTP signal.

Stopped (SIGTSTP)
Indicates that the job was suspended by the SIGTSTP signal.

Stopped (SIGSTOP)
Indicates that the job was suspended by the SIGSTOP signal.

Stopped (SIGTTIN)
Indicates that the job was suspended by the SIGTTIN signal.

Stopped (SIGTTOU)
Indicates that the job was suspended by the SIGTTOU signal.

The implementation may substitute the string Suspended in place of Stopped. If
the job was terminated by a signal, the format of <state> is unspecified, but it shall
be visibly distinct from all of the other <state> formats shown here and shall

3022 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101126

101127

101128

101129

101130

101131

101132

101133

101134

101135

101136

101137

101138

101139

101140

101141

101142

101143

101144

101145

101146

101147

101148

101149

101150

101151

101152

101153

101154

101155

101156

101157

101158

101159

101160

101161

101162

101163

101164

101165

101166

101167

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities jobs

indicate the name or description of the signal causing the termination.

<command> The associated command that was given to the shell.

If the −l option is specified:

• For job-control background jobs, a field containing the process group ID shall be inserted
before the <state> field. Also, more processes in a process group may be output on separate
lines, using only the process ID and <command> fields.

• For non-job-control background jobs (if supported), a field containing the process ID
associated with the job shall be inserted before the <state> field. Also, more processes
created to execute the job may be output on separate lines, using only the process ID and
<command> fields.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The output specified in STDOUT was successfully written to standard output.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

The −p option is the only portable way to find out the process group of a job-control background
job because different implementations have different strategies for defining the process group of
the job. Usage such as $(jobs −p) provides a way of referring to the process group of the job in an
implementation-independent way.

The jobs utility does not work as expected when it is operating in its own utility execution
environment because that environment has no applicable jobs to manipulate. See the
APPLICATION USAGE section for bg . For this reason, jobs is generally implemented as a shell
regular built-in.

EXAMPLES
None.

RATIONALE
Both "%%" and "%+" are used to refer to the current job. Both forms are of equal validity—the
"%%" mirroring "$$" and "%+" mirroring the output of jobs. Both forms reflect historical
practice of the KornShell and the C shell with job control.

The job control features provided by bg, fg, and jobs are based on the KornShell. The standard
developers examined the characteristics of the C shell versions of these utilities and found that
differences exist. Despite widespread use of the C shell, the KornShell versions were selected for
this volume of POSIX.1-2024 to maintain a degree of uniformity with the rest of the KornShell
features selected (such as the very popular command line editing features).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3023

101168

101169

101170

101171

101172

101173

101174

101175

101176

101177

101178

101179

101180

101181

101182

101183

101184

101185

101186

101187

101188

101189

101190

101191

101192

101193

101194

101195

101196

101197

101198

101199

101200

101201

101202

101203

101204

101205

101206

101207

101208

101209

101210

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

jobs Utilities

The jobs utility is not dependent on job control being enabled, as are the seemingly related bg
and fg utilities because jobs is useful for examining background jobs, regardless of the current
state of job control. When job control has been disabled using set +m, the jobs utility can still be
used to examine the job-control background jobs and (if supported) non-job-control background
jobs that were created in the current shell execution environment. See also the RATIONALE for
kill and wait.

The output for terminated jobs is left unspecified to accommodate various historical systems.
The following formats have been witnessed:

1. Killed(signal name)

2. signal name

3. signal name(coredump)

4. signal description− core dumped

Most users should be able to understand these formats, although it means that applications have
trouble parsing them.

The calculation of job IDs was not described since this would suggest an implementation, which
may impose unnecessary restrictions.

In an early proposal, a −n option was included to ``Display the status of jobs that have changed,
exited, or stopped since the last status report’’. It was removed because the shell always writes
any changed status of jobs before each prompt.

If jobs uses buffered writes to standard output, a write error could be detected when attempting
to flush a buffer containing multiple reports of terminated jobs, resulting in some unreported
jobs having their process IDs removed from the list of those known in the current shell execution
environment (because they were removed when the report was added to the buffer).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.13 (on page 2522), bg , fg , kill , wait

XBD Section 3.182 (on page 57), Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The JC shading is removed as job control is mandatory in this version.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1254 is applied, updating various requirements for the jobs utility to
account for the addition of Section 2.11 (on page 2518).

Austin Group Defect 1492 is applied, clarifying the requirements when a write error to standard

3024 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101211

101212

101213

101214

101215

101216

101217

101218

101219

101220

101221

101222

101223

101224

101225

101226

101227

101228

101229

101230

101231

101232

101233

101234

101235

101236

101237

101238

101239

101240

101241

101242

101243

101244

101245

101246

101247

101248

101249

101250

101251

101252

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities jobs

output occurs.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3025

101253

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

join Utilities

NAME
join — relational database operator

SYNOPSIS
join [-a file_number|-v file_number] [-e string] [-o list] [-t char]

[-1 field] [-2 field] file1 file2

DESCRIPTION
The join utility shall perform an equality join on the files file1 and file2. The joined files shall be
written to the standard output.

The join field is a field in each file on which the files are compared. The join utility shall write
one line in the output for each pair of lines in file1 and file2 that have join fields that collate
equally. The output line by default shall consist of the join field, then the remaining fields from
file1, then the remaining fields from file2. This format can be changed by using the −o option
(see below). The −a option can be used to add unmatched lines to the output. The −v option can
be used to output only unmatched lines.

The files file1 and file2 shall be ordered in the collating sequence of sort −b on the fields on which
they shall be joined, by default the first in each line. All selected output shall be written in the
same collating sequence.

The default input field separators shall be <blank> characters. In this case, multiple separators
shall count as one field separator, and leading separators shall be ignored. The default output
field separator shall be a <space>.

The field separator and collating sequence can be changed by using the −t option (see below).

If the same key appears more than once in either file, all combinations of the set of remaining
fields in file1 and the set of remaining fields in file2 are output in the order of the lines
encountered.

If the input files are not in the appropriate collating sequence, the results are unspecified.

OPTIONS
The join utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a file_number
Produce a line for each unpairable line in file file_number, where file_number is 1 or
2, in addition to the default output. If both −a1 and −a2 are specified, all unpairable
lines shall be output.

−e string Replace empty output fields in the list selected by −o with the string string.

−o list Construct the output line to comprise the fields specified in list, each element of
which shall have one of the following two forms:

1. file_number.field, where file_number is a file number and field is a decimal
integer field number

2. 0 (zero), representing the join field

The elements of list shall be either <comma>-separated or <blank>-separated, as
specified in Guideline 8 of XBD Section 12.2 (on page 215). The fields specified by
list shall be written for all selected output lines. Fields selected by list that do not
appear in the input shall be treated as empty output fields. (See the −e option.)
Only specifically requested fields shall be written. The application shall ensure that
list is a single command line argument.

3026 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101254

101255

101256

101257

101258

101259

101260

101261

101262

101263

101264

101265

101266

101267

101268

101269

101270

101271

101272

101273

101274

101275

101276

101277

101278

101279

101280

101281

101282

101283

101284

101285

101286

101287

101288

101289

101290

101291

101292

101293

101294

101295

101296

101297

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities join

−t char Use character char as a separator, for both input and output. Every appearance of
char in a line shall be significant. When this option is specified, the collating
sequence shall be the same as sort without the −b option.

−v file_number
Instead of the default output, produce a line only for each unpairable line in
file_number, where file_number is 1 or 2. If both −v1 and −v2 are specified, all
unpairable lines shall be output.

−1 field Join on the fieldth field of file 1. Fields are decimal integers starting with 1.

−2 field Join on the fieldth field of file 2. Fields are decimal integers starting with 1.

OPERANDS
The following operands shall be supported:

file1, file2 A pathname of a file to be joined. If either of the file1 or file2 operands is '−', the
standard input shall be used in its place.

STDIN
The standard input shall be used only if the file1 or file2 operand is '−'. See the INPUT FILES
section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of join:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale of the collating sequence join expects to have been used when
the input files were sorted.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The join utility output shall be a concatenation of selected character fields. When the −o option
is not specified, the output shall be:

"%s%s%s\n", <join field>, <other file1 fields>,
<other file2 fields>

If the join field is not the first field in a file, the <other file fields> for that file shall be:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3027

101298

101299

101300

101301

101302

101303

101304

101305

101306

101307

101308

101309

101310

101311

101312

101313

101314

101315

101316

101317

101318

101319

101320

101321

101322

101323

101324

101325

101326

101327

101328

101329

101330

101331

101332

101333

101334

101335

101336

101337

101338

101339

101340

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

join Utilities

<fields preceding join field>, <fields following join field>

When the −o option is specified, the output format shall be:

"%s\n", <concatenation of fields>

where the concatenation of fields is described by the −o option, above.

For either format, each field (except the last) shall be written with its trailing separator character.
If the separator is the default (<blank> characters), a single <space> shall be written after each
field (except the last).

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Pathnames consisting of numeric digits or of the form string.string should not be specified
directly following the −o list.

If the collating sequence of the current locale does not have a total ordering of all characters (see
XBD Section 7.3.2, on page 139), join treats fields that collate equally but are not identical as
being the same. If this behavior is not desired, it can be avoided by forcing the use of the POSIX
locale (although this means re-sorting the input files into the POSIX locale collating sequence.)

When using join to process pathnames, it is recommended that LC_ALL, or at least LC_CTYPE
and LC_COLLATE, are set to POSIX or C in the environment, since pathnames can contain byte
sequences that do not form valid characters in some locales, in which case the utility’s behavior
would be undefined. In the POSIX locale each byte is a valid single-byte character, and therefore
this problem is avoided.

EXAMPLES
The −o 0 field essentially selects the union of the join fields. For example, given file phone:

!Name Phone Number
Don +1 123-456-7890
Hal +1 234-567-8901
Yasushi +2 345-678-9012

and file fax:

!Name Fax Number
Don +1 123-456-7899
Keith +1 456-789-0122
Yasushi +2 345-678-9011

3028 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101341

101342

101343

101344

101345

101346

101347

101348

101349

101350

101351

101352

101353

101354

101355

101356

101357

101358

101359

101360

101361

101362

101363

101364

101365

101366

101367

101368

101369

101370

101371

101372

101373

101374

101375

101376

101377

101378

101379

101380

101381

101382

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities join

(where the large expanses of white space are meant to each represent a single <tab>), the
command:

join -t "<tab>" -a 1 -a 2 -e '(unknown)' -o 0,1.2,2.2 phone fax

(where <tab> is a literal <tab> character) would produce:

!Name Phone Number Fax Number
Don +1 123-456-7890 +1 123-456-7899
Hal +1 234-567-8901 (unknown)
Keith (unknown) +1 456-789-0122
Yasushi +2 345-678-9012 +2 345-678-9011

Multiple instances of the same key will produce combinatorial results. The following:

fa:
a x
a y
a z

fb:
a p

will produce:

a x p
a y p
a z p

And the following:

fa:
a b c
a d e

fb:
a w x
a y z
a o p

will produce:

a b c w x
a b c y z
a b c o p
a d e w x
a d e y z
a d e o p

RATIONALE
The −e option is only effective when used with −o because, unless specific fields are identified
using −o, join is not aware of what fields might be empty. The exception to this is the join field,
but identifying an empty join field with the −e string is not historical practice and some scripts
might break if this were changed.

The 0 field in the −o list was adopted from the Tenth Edition version of join to satisfy
international objections that the join in the base documents for IEEE Std 1003.2-1992 did not
support the ``full join’’ or ``outer join’’ described in relational database literature. Although it has
been possible to include a join field in the output (by default, or by field number using −o), the
join field could not be included for an unpaired line selected by −a. The −o 0 field essentially

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3029

101383

101384

101385

101386

101387

101388

101389

101390

101391

101392

101393

101394

101395

101396

101397

101398

101399

101400

101401

101402

101403

101404

101405

101406

101407

101408

101409

101410

101411

101412

101413

101414

101415

101416

101417

101418

101419

101420

101421

101422

101423

101424

101425

101426

101427

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

join Utilities

selects the union of the join fields.

This sort of outer join was not possible with the join commands in the base documents for
IEEE Std 1003.2-1992. The −o 0 field was chosen because it is an upwards-compatible change for
applications. An alternative was considered: have the join field represent the union of the fields
in the files (where they are identical for matched lines, and one or both are null for unmatched
lines). This was not adopted because it would break some historical applications.

The ability to specify file2 as − is not historical practice; it was added for completeness.

The −v option is not historical practice, but was considered necessary because it permitted the
writing of only those lines that do not match on the join field, as opposed to the −a option, which
prints both lines that do and do not match. This additional facility is parallel with the −v option
of grep.

Some historical implementations have been encountered where a blank line in one of the input
files was considered to be the end of the file; the description in this volume of POSIX.1-2024 does
not cite this as an allowable case.

Earlier versions of this standard allowed −j, −j1, −j2 options, and a form of the −o option that
allowed the list option-argument to be multiple arguments. These forms are no longer specified
by POSIX.1-2024 but may be present in some implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
awk , comm , sort , uniq

XBD Section 7.3.2 (on page 139), Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent −j options and the multi-argument −o option are removed in this version.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0109 [963], XCU/TC2-2008/0110 [663],
XCU/TC2-2008/0111 [971], and XCU/TC2-2008/0112 [885] are applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3030 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101428

101429

101430

101431

101432

101433

101434

101435

101436

101437

101438

101439

101440

101441

101442

101443

101444

101445

101446

101447

101448

101449

101450

101451

101452

101453

101454

101455

101456

101457

101458

101459

101460

101461

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities kill

NAME
kill — terminate or signal processes

SYNOPSIS
kill [-s signal_name] pid...

kill -l [exit_status]

XSI kill [-signal_name] pid...

kill [-signal_number] pid...

DESCRIPTION
The kill utility shall send a signal to the process or processes specified by each pid operand.

For each pid operand, the kill utility shall perform actions equivalent to the kill() function
defined in the System Interfaces volume of POSIX.1-2024 called with the following arguments:

• The value of the pid operand shall be used as the pid argument.

• The sig argument is the value specified by the −s option, −signal_number option, or the
−signal_name option, or by SIGTERM, if none of these options is specified.

OPTIONS
XSI The kill utility shall conform to XBD Section 12.2 (on page 215), except that in the last two

SYNOPSIS forms, the −signal_number and −signal_name options are usually more than a single
character.

The following options shall be supported:

−l (The letter ell.) Write all values of signal_name supported by the implementation, if
no operand is given. If an exit_status operand is given and it is a value of the '?'
shell special parameter (see Section 2.5.2 (on page 2479) and wait) corresponding to
a process that was terminated or stopped by a signal, the signal_name
corresponding to the signal that terminated or stopped the process shall be written.
If an exit_status operand is given and it is the unsigned decimal integer value of a
signal number, the signal_name (the symbolic constant name without the SIG prefix
defined in the Base Definitions volume of POSIX.1-2024) corresponding to that
signal shall be written. Otherwise, the results are unspecified.

−s signal_name
Specify the signal to send, using one of the symbolic names defined in the
<signal.h> header. Values of signal_name shall be recognized in a case-independent
fashion, without the SIG prefix. In addition, the symbolic name 0 shall be
recognized, representing the signal value zero. The corresponding signal shall be
sent instead of SIGTERM.

XSI −signal_name
Equivalent to −s signal_name.

XSI −signal_number
Specify a non-negative decimal integer, signal_number, representing the signal to be
used instead of SIGTERM, as the sig argument in the effective call to kill(). The
correspondence between integer values and the sig value used is shown in the
following list.

The effects of specifying any signal_number other than those listed below are
undefined.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3031

101462

101463

101464

101465

101466

101467

101468

101469

101470

101471

101472

101473

101474

101475

101476

101477

101478

101479

101480

101481

101482

101483

101484

101485

101486

101487

101488

101489

101490

101491

101492

101493

101494

101495

101496

101497

101498

101499

101500

101501

101502

101503

101504

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

kill Utilities

0 0

1 SIGHUP

2 SIGINT

3 SIGQUIT

6 SIGABRT

9 SIGKILL

14 SIGALRM

15 SIGTERM

If the first argument is a negative integer, it shall be interpreted as a −signal_number
option, not as a negative pid operand specifying a process group.

OPERANDS
The following operands shall be supported:

pid One of the following:

1. A decimal integer specifying a process or process group to be signaled. The
process or processes selected by positive, negative, and zero values of the
pid operand shall be as described for the kill() function. If process number 0
is specified, all processes in the current process group shall be signaled. For
the effects of negative pid numbers, see the kill() function defined in the
System Interfaces volume of POSIX.1-2024. If the first pid operand is
negative, it should be preceded by "--" to keep it from being interpreted as
an option.

2. A job ID (see XBD Section 3.182, on page 57) that identifies a process group
in the case of a job-control background job, or a process ID in the case of a
non-job-control background job (if supported), to be signaled. The job ID
notation is applicable only for invocations of kill in the current shell
execution environment; see Section 2.13 (on page 2522).

Note: The job ID type of pid is only available on systems supporting the User
Portability Utilities option or supporting non-job-control background
jobs.

exit_status A decimal integer specifying a signal number or the exit status of a process
terminated by a signal.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of kill:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

3032 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101505

101506

101507

101508

101509

101510

101511

101512

101513

101514

101515

101516

101517

101518

101519

101520

101521

101522

101523

101524

101525

101526

101527

101528

101529

101530

101531

101532

101533

101534

101535

101536

101537

101538

101539

101540

101541

101542

101543

101544

101545

101546

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities kill

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −l option is not specified, the standard output shall not be used.

When the −l option is specified, the symbolic name of each signal shall be written in the
following format:

"%s%c", <signal_name>, <separator>

where the <signal_name> is in uppercase, without the SIG prefix, and the <separator> shall be
either a <newline> or a <space>. For the last signal written, <separator> shall be a <newline>.

When both the −l option and exit_status operand are specified, the symbolic name of the
corresponding signal shall be written in the following format:

"%s\n", <signal_name>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The −l option was specified and the output specified in STDOUT was successfully written
to standard output; or, the −l option was not specified, at least one matching process was
found for each pid operand, and the specified signal was successfully processed for at least
one matching process.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3033

101547

101548

101549

101550

101551

101552

101553

101554

101555

101556

101557

101558

101559

101560

101561

101562

101563

101564

101565

101566

101567

101568

101569

101570

101571

101572

101573

101574

101575

101576

101577

101578

101579

101580

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

kill Utilities

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Process numbers can be found by using ps.

The use of job ID notation is not dependent on job control being enabled. When job control has
been disabled using set +m, kill can still be used to signal the process group associated with a
job-control background job, or the process ID associated with a non-control background job (if
supported), using

kill %<background job number>

See also the RATIONALE for jobs and wait.

The job ID notation is not required to work as expected when kill is operating in its own utility
execution environment. In either of the following examples:

nohup kill %1 &
system("kill %1");

the kill operates in a different environment and does not share the shell’s understanding of job
numbers.

EXAMPLES
Any of the commands:

kill -9 100 -165
kill -s kill 100 -165
kill -s KILL 100 -165

sends the SIGKILL signal to the process whose process ID is 100 and to all processes whose
process group ID is 165, assuming the sending process has permission to send that signal to the
specified processes, and that they exist.

The System Interfaces volume of POSIX.1-2024 and this volume of POSIX.1-2024 do not require
specific signal numbers for any signal_names. Even the −signal_number option provides symbolic
(although numeric) names for signals. If a process is terminated by a signal, its exit status
indicates the signal that killed it, but the exact values are not specified. The kill −l option,
however, can be used to map decimal signal numbers and exit status values into the name of a
signal. The following example reports the status of a terminated job:

job
stat=$?
if [$stat -eq 0]
then

echo job completed successfully.
elif [$stat -gt 128]
then

echo job terminated by signal SIG$(kill -l $stat).
else

echo job terminated with error code $stat.
fi

To send the default signal to a process group (say 123), an application should use a command
similar to one of the following:

kill -s TERM -- -123
kill -- -123

3034 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101581

101582

101583

101584

101585

101586

101587

101588

101589

101590

101591

101592

101593

101594

101595

101596

101597

101598

101599

101600

101601

101602

101603

101604

101605

101606

101607

101608

101609

101610

101611

101612

101613

101614

101615

101616

101617

101618

101619

101620

101621

101622

101623

101624

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities kill

RATIONALE
The −l option originated from the C shell, and is also implemented in the KornShell. The C shell
output can consist of multiple output lines because the signal names do not always fit on a
single line on some terminal screens. The KornShell output also included the implementation-
defined signal numbers and was considered by the standard developers to be too difficult for
scripts to parse conveniently. The specified output format is intended not only to accommodate
the historical C shell output, but also to permit an entirely vertical or entirely horizontal listing
on systems for which this is appropriate.

An early proposal invented the name SIGNULL as a signal_name for signal 0 (used by the System
Interfaces volume of POSIX.1-2024 to test for the existence of a process without sending it a
signal). Since the signal_name 0 can be used in this case unambiguously, SIGNULL has been
removed.

An early proposal also required symbolic signal_names to be recognized with or without the SIG
prefix. Historical versions of kill have not written the SIG prefix for the −l option and have not
recognized the SIG prefix on signal_names. Since neither applications portability nor ease-of-use
would be improved by requiring this extension, it is no longer required.

To avoid an ambiguity of an initial negative number argument specifying either a signal number
or a process group, POSIX.1-2024 mandates that it is always considered the former by
implementations that support the XSI option. It also requires that conforming applications
always use the "--" options terminator argument when specifying a process group.

The −s option was added in response to international interest in providing some form of kill that
meets the Utility Syntax Guidelines.

The job ID notation is not required to work as expected when kill is operating in its own utility
execution environment. In either of the following examples:

nohup kill %1 &
system("kill %1");

the kill operates in a different environment and does not understand how the shell has managed
its job numbers.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), ps , wait

XBD Section 3.182 (on page 57), Chapter 8 (on page 167), Section 12.2 (on page 215), <signal.h>

XSH kill()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent versions of the SYNOPSIS are turned into non-obsolescent features of the XSI
option, corresponding to a similar change in the trap special built-in.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3035

101625

101626

101627

101628

101629

101630

101631

101632

101633

101634

101635

101636

101637

101638

101639

101640

101641

101642

101643

101644

101645

101646

101647

101648

101649

101650

101651

101652

101653

101654

101655

101656

101657

101658

101659

101660

101661

101662

101663

101664

101665

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

kill Utilities

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1254 is applied, clarifying the −l option with regard to an exit_status
operand corresponding to a stopped process, changing ``job control job ID’’ to ``job ID’’, and
adding a paragraph to the RATIONALE section.

Austin Group Defect 1260 is applied, changing the SYNOPSIS and EXAMPLES sections in
relation to the −s option, and the RATIONALE section in relation to the use of "--" when
specifying a process group.

Austin Group Defect 1504 is applied, changing the EXIT STATUS section.

3036 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101666

101667

101668

101669

101670

101671

101672

101673

101674

101675

101676

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lex

NAME
lex — generate programs for lexical tasks (DEVELOPMENT)

SYNOPSIS
CD lex [-t] [-n|-v] [file...]

DESCRIPTION
The lex utility shall generate C programs to be used in lexical processing of character input, and
that can be used as an interface to yacc. The C programs shall be generated from lex source code
and conform to the ISO C standard, without depending on any undefined, unspecified, or
implementation-defined behavior, except in cases where the code is copied directly from the
supplied source, or in cases that are documented by the implementation. Usually, the lex utility
shall write the program it generates to the file lex.yy.c; the state of this file is unspecified if lex
exits with a non-zero exit status. See the EXTENDED DESCRIPTION section for a complete
description of the lex input language.

OPTIONS
The lex utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

−n Suppress the summary of statistics usually written with the −v option. If no table
sizes are specified in the lex source code and the −v option is not specified, then −n
is implied.

−t Write the resulting program to standard output instead of lex.yy.c.

−v Write a summary of lex statistics to the standard output. (See the discussion of lex
table sizes in Definitions in lex (on page 3039).) If the −t option is specified and −n
is not specified, this report shall be written to standard error. If table sizes are
specified in the lex source code, and if the −n option is not specified, the −v option
may be enabled.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If more than one such file is specified, all files shall be
concatenated to produce a single lex program. If no file operands are specified, or if
a file operand is '−', the standard input shall be used.

STDIN
The standard input shall be used if no file operands are specified, or if a file operand is '−'. See
INPUT FILES.

INPUT FILES
The input files shall be text files containing lex source code, as described in the EXTENDED
DESCRIPTION section.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of lex:

LANG Provide a default value for the internationalization variables that are unset or null.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3037

101677

101678

101679

101680

101681

101682

101683

101684

101685

101686

101687

101688

101689

101690

101691

101692

101693

101694

101695

101696

101697

101698

101699

101700

101701

101702

101703

101704

101705

101706

101707

101708

101709

101710

101711

101712

101713

101714

101715

101716

101717

101718

101719

101720

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lex Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

If the values (if any) of the LANG, LC_COLLATE, LC_CTYPE, and LC_ALL variables result in the
locale in effect for the LC_CTYPE or LC_COLLATE category not being the POSIX locale, the
behavior is unspecified. (See XBD Section 8.2 (on page 169) for the precedence of
internationalization variables used to determine the values of locale categories.)

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −t option is specified, the text file of C source code output of lex shall be written to
standard output.

If the −t option is not specified:

• Implementation-defined informational, error, and warning messages concerning the
contents of lex source code input shall be written to either the standard output or standard
error.

• If the −v option is specified and the −n option is not specified, lex statistics shall also be
written to either the standard output or standard error, in an implementation-defined
format. These statistics may also be generated if table sizes are specified with a '%'
operator in the Definitions section, as long as the −n option is not specified.

STDERR
If the −t option is specified, implementation-defined informational, error, and warning messages
concerning the contents of lex source code input shall be written to the standard error.

If the −t option is not specified:

1. Implementation-defined informational, error, and warning messages concerning the
contents of lex source code input shall be written to either the standard output or
standard error.

2. If the −v option is specified and the −n option is not specified, lex statistics shall also be
written to either the standard output or standard error, in an implementation-defined
format. These statistics may also be generated if table sizes are specified with a '%'
operator in the Definitions section, as long as the −n option is not specified.

OUTPUT FILES
A text file containing C source code shall be written to lex.yy.c, or to the standard output if the −t
option is present.

EXTENDED DESCRIPTION
Each input file shall contain lex source code, which is a table of regular expressions with
corresponding actions in the form of C program fragments.

When lex.yy.c is compiled and linked with the lex library (using the −l l operand with c17), the
resulting program shall read character input from the standard input and shall partition it into

3038 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101721

101722

101723

101724

101725

101726

101727

101728

101729

101730

101731

101732

101733

101734

101735

101736

101737

101738

101739

101740

101741

101742

101743

101744

101745

101746

101747

101748

101749

101750

101751

101752

101753

101754

101755

101756

101757

101758

101759

101760

101761

101762

101763

101764

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lex

strings that match the given expressions.

When an expression is matched, these actions shall occur:

• The input string that was matched shall be left in yytext as a null-terminated string; yytext
shall either be an external character array or a pointer to a character string. As explained in
Definitions in lex, the type can be explicitly selected using the %array or %pointer
declarations, but the default is implementation-defined.

• The external int yyleng shall be set to the length of the matching string.

• The expression’s corresponding program fragment, or action, shall be executed.

During pattern matching, lex shall search the set of patterns for the single longest possible
match. Among rules that match the same number of characters, the rule given first shall be
chosen.

The general format of lex source shall be:

Definitions
%%
Rules
%%
UserSubroutines

The first "%%" is required to mark the beginning of the rules (regular expressions and actions);
the second "%%" is required only if user subroutines follow.

Any line in the Definitions section beginning with a <blank> shall be assumed to be a C program
fragment and shall be copied to the external definition area of the lex.yy.c file. Similarly,
anything in the Definitions section included between delimiter lines containing only "%{" and
"%}" shall also be copied unchanged to the external definition area of the lex.yy.c file.

Any such input (beginning with a <blank> or within "%{" and "%}" delimiter lines) appearing
at the beginning of the Rules section before any rules are specified shall be written to lex.yy.c
after the declarations of variables for the yylex() function and before the first line of code in
yylex(). Thus, user variables local to yylex() can be declared here, as well as application code to
execute upon entry to yylex().

The action taken by lex when encountering any input beginning with a <blank> or within "%{"
and "%}" delimiter lines appearing in the Rules section but coming after one or more rules is
undefined. The presence of such input may result in an erroneous definition of the yylex()
function.

C-language code in the input shall not contain C-language trigraphs. The C-language code
within "%{" and "%}" delimiter lines shall not contain any lines consisting only of "%}", or
only of "%%".

Definitions in lex

Definitions appear before the first "%%" delimiter. Any line in this section not contained between
"%{" and "%}" lines and not beginning with a <blank> shall be assumed to define a lex
substitution string. The format of these lines shall be:

name substitute

If a name does not meet the requirements for identifiers in the ISO C standard, the result is
undefined. The string substitute shall replace the string {name} when it is used in a rule. The name
string shall be recognized in this context only when the braces are provided and when it does

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3039

101765

101766

101767

101768

101769

101770

101771

101772

101773

101774

101775

101776

101777

101778

101779

101780

101781

101782

101783

101784

101785

101786

101787

101788

101789

101790

101791

101792

101793

101794

101795

101796

101797

101798

101799

101800

101801

101802

101803

101804

101805

101806

101807

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lex Utilities

not appear within a bracket expression or within double-quotes.

In the Definitions section, any line beginning with a <percent-sign> ('%') character and followed
by an alphanumeric word beginning with either 's' or 'S' shall define a set of start conditions.
Any line beginning with a '%' followed by a word beginning with either 'x' or 'X' shall
define a set of exclusive start conditions. When the generated scanner is in a %s state, patterns
with no state specified shall be also active; in a %x state, such patterns shall not be active. The
rest of the line, after the first word, shall be considered to be one or more <blank>-separated
names of start conditions. Start condition names shall be constructed in the same way as
definition names. Start conditions can be used to restrict the matching of regular expressions to
one or more states as described in Regular Expressions in lex (on page 3041).

Implementations shall accept either of the following two mutually-exclusive declarations in the
Definitions section:

%array Declare the type of yytext to be a null-terminated character array.

%pointer Declare the type of yytext to be a pointer to a null-terminated character string.

The default type of yytext is implementation-defined. If an application refers to yytext outside of
the scanner source file (that is, via an extern), the application shall include the appropriate
%array or %pointer declaration in the scanner source file.

Implementations shall accept declarations in the Definitions section for setting certain internal
table sizes. The declarations are shown in the following table.

Table 3-11 Table Size Declarations in lex

Declaration Description Minimum Value
%p n Number of positions 2 500
%n n Number of states 500
%a n Number of transitions 2 000
%e n Number of parse tree nodes 1 000
%k n Number of packed character classes 1 000
%o n Size of the output array 3 000

In the table, n represents a positive decimal integer, preceded by one or more <blank>
characters. The exact meaning of these table size numbers is implementation-defined. The
implementation shall document how these numbers affect the lex utility and how they are
related to any output that may be generated by the implementation should limitations be
encountered during the execution of lex. It shall be possible to determine from this output
which of the table size values needs to be modified to permit lex to successfully generate tables
for the input language. The values in the column Minimum Value represent the lowest values
conforming implementations shall provide.

Rules in lex

The rules in lex source files are a table in which the left column contains regular expressions and
the right column contains actions (C program fragments) to be executed when the expressions
are recognized.

ERE action
ERE action
...

The extended regular expression (ERE) portion of a row shall be separated from action by one or
more <blank> characters. A regular expression containing <blank> characters shall be

3040 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101808

101809

101810

101811

101812

101813

101814

101815

101816

101817

101818

101819

101820

101821

101822

101823

101824

101825

101826

101827

101828

101829

101830

101831

101832

101833

101834

101835

101836

101837

101838

101839

101840

101841

101842

101843

101844

101845

101846

101847

101848

101849

101850

101851

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lex

recognized under one of the following conditions:

• The entire expression appears within double-quotes.

• The <blank> characters appear within double-quotes or square brackets.

• Each <blank> is preceded by a <backslash> character.

User Subroutines in lex

Anything in the user subroutines section shall be copied to lex.yy.c following yylex().

Regular Expressions in lex

The lex utility shall support the set of extended regular expressions (see XBD Section 9.4, on page
187), with the following additions and exceptions to the syntax:

"..." Any string enclosed in double-quotes shall represent the characters within the
double-quotes as themselves, except that <backslash>-escapes (which appear in
the following table) shall be recognized. Any <backslash>-escape sequence shall be
terminated by the closing quote. For example, "\01""1" represents a single
string: the octal value 1 followed by the character '1'.

<state>r, <state1,state2,. . .>r
The regular expression r shall be matched only when the program is in one of the
start conditions indicated by state, state1, and so on; see Actions in lex (on page
3043). (As an exception to the typographical conventions of the rest of this volume
of POSIX.1-2024, in this case <state> does not represent a metavariable, but the
literal angle-bracket characters surrounding a symbol.) The start condition shall be
recognized as such only at the beginning of a regular expression.

r/x The regular expression r shall be matched only if it is followed by an occurrence of
regular expression x (x is the instance of trailing context, further defined below).
The token returned in yytext shall only match r. If the trailing portion of r matches
the beginning of x, the result is unspecified. The r expression cannot include
further trailing context or the '$' (match-end-of-line) operator; x cannot include
the '^' (match-beginning-of-line) operator, nor trailing context, nor the '$'
operator. That is, only one occurrence of trailing context is allowed in a lex regular
expression, and the '^' operator only can be used at the beginning of such an
expression.

{name} When name is one of the substitution symbols from the Definitions section, the
string, including the enclosing braces, shall be replaced by the substitute value. The
substitute value shall be treated in the extended regular expression as if it were
enclosed in parentheses. No substitution shall occur if {name} occurs within a
bracket expression or within double-quotes.

Within an ERE, a <backslash> character shall be considered to begin an escape sequence as
specified in the table in XBD Chapter 5 (on page 113) ('\\', '\a', '\b', '\f', '\n', '\r',
'\t', '\v'). In addition, the escape sequences in the following table shall be recognized.

A literal <newline> cannot occur within an ERE; the escape sequence '\n' can be used to
represent a <newline>. A <newline> shall not be matched by a period operator.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3041

101852

101853

101854

101855

101856

101857

101858

101859

101860

101861

101862

101863

101864

101865

101866

101867

101868

101869

101870

101871

101872

101873

101874

101875

101876

101877

101878

101879

101880

101881

101882

101883

101884

101885

101886

101887

101888

101889

101890

101891

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lex Utilities

Table 3-12 Escape Sequences in lex

Escape
Sequence Description Meaning
\digits A <backslash> character followed by

the longest sequence of one, two, or
three octal-digit characters (01234567).
If all of the digits are 0 (that is,
representation of the NUL character),
the behavior is undefined.

The character whose encoding is
represented by the one, two, or three-
digit octal integer. Multi-byte
characters require multiple,
concatenated escape sequences of this
type, including the leading
<backslash> for each byte.

\xdigits A <backslash> character followed by
the longest sequence of hexadecimal-
digit characters
(01234567abcdefABCDEF). If all of the
digits are 0 (that is, representation of
the NUL character), the behavior is
undefined.

The character whose encoding is
represented by the hexadecimal
integer.

\c A <backslash> character followed by
any character not described in this
table or in the table in XBD Chapter 5
(on page 113) ('\\', '\a', '\b',
'\f', '\n', '\r', '\t', '\v').

The character 'c', unchanged.

Note: If a '\x' sequence needs to be immediately followed by a hexadecimal digit character, a
sequence such as "\x1""1" can be used, which represents a character containing the value 1,
followed by the character '1'.

The order of precedence given to extended regular expressions for lex differs from that specified
in XBD Section 9.4 (on page 187). The order of precedence for lex shall be as shown in the
following table, from high to low.

Note: The escaped characters entry is not meant to imply that these are operators, but they are
included in the table to show their relationships to the true operators. The start condition,
trailing context, and anchoring notations have been omitted from the table because of the
placement restrictions described in this section; they can only appear at the beginning or ending
of an ERE.

Table 3-13 ERE Precedence in lex

Extended Regular Expression Precedence
collation-related bracket symbols [= =] [: :] [. .]
escaped characters \<special character>
bracket expression []
quoting "..."
grouping ()
definition {name}
single-character RE duplication * + ?
concatenation
interval expression {m,n}
alternation |

The ERE anchoring operators '^' and '$' do not appear in the table. With lex regular

3042 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101892

101893

101894

101895

101896

101897

101898

101899

101900

101901

101902

101903

101904

101905

101906

101907

101908

101909

101910

101911

101912

101913

101914

101915

101916

101917

101918

101919

101920

101921

101922

101923

101924

101925

101926

101927

101928

101929

101930

101931

101932

101933

101934

101935

101936

101937

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lex

expressions, these operators are restricted in their use: the '^' operator can only be used at the
beginning of an entire regular expression, and the '$' operator only at the end. The operators
apply to the entire regular expression. Thus, for example, the pattern "(^abc)|(def$)" is
undefined; it can instead be written as two separate rules, one with the regular expression
"^abc" and one with "def$", which share a common action via the special '|' action (see
below). If the pattern were written "^abc|def$", it would match either "abc" or "def" on a
line by itself.

Unlike the general ERE rules, embedded anchoring is not allowed by most historical lex
implementations. An example of embedded anchoring would be for patterns such as
"(^|)foo(|$)" to match "foo" when it exists as a complete word. This functionality can
be obtained using existing lex features:

^foo/[\n] |
" foo"/[\n] /* Found foo as a separate word. */

Note also that '$' is a form of trailing context (it is equivalent to "/\n") and as such cannot be
used with regular expressions containing another instance of the operator (see the preceding
discussion of trailing context).

The additional regular expressions trailing-context operator '/' can be used as an ordinary
character if presented within double-quotes, "/"; preceded by a <backslash>, "\/"; or within a
bracket expression, "[/]". The start-condition '<' and '>' operators shall be special only in a
start condition at the beginning of a regular expression; elsewhere in the regular expression they
shall be treated as ordinary characters.

Actions in lex

The action to be taken when an ERE is matched can be a C program fragment or the special
actions described below; the program fragment can contain one or more C statements, and can
also include special actions. The empty C statement ';' shall be a valid action; any string in the
lex.yy.c input that matches the pattern portion of such a rule is effectively ignored or skipped.
However, the absence of an action shall not be valid, and the action lex takes in such a condition
is undefined.

The specification for an action, including C statements and special actions, can extend across
several lines if enclosed in braces:

ERE <one or more blanks> { program statement
program statement }

The program statements shall not contain unbalanced curly brace preprocessing tokens.

The default action when a string in the input to a lex.yy.c program is not matched by any
expression shall be to copy the string to the output. Because the default behavior of a program
generated by lex is to read the input and copy it to the output, a minimal lex source program that
has just "%%" shall generate a C program that simply copies the input to the output unchanged.

Four special actions shall be available:

| ECHO; REJECT; BEGIN

| The action '|' means that the action for the next rule is the action for this rule.
Unlike the other three actions, '|' cannot be enclosed in braces or be
<semicolon>-terminated; the application shall ensure that it is specified alone, with
no other actions.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3043

101938

101939

101940

101941

101942

101943

101944

101945

101946

101947

101948

101949

101950

101951

101952

101953

101954

101955

101956

101957

101958

101959

101960

101961

101962

101963

101964

101965

101966

101967

101968

101969

101970

101971

101972

101973

101974

101975

101976

101977

101978

101979

101980

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lex Utilities

ECHO; Write the contents of the string yytext on the output.

REJECT; Usually only a single expression is matched by a given string in the input.
REJECT means ``continue to the next expression that matches the current input’’,
and shall cause whatever rule was the second choice after the current rule to be
executed for the same input. Thus, multiple rules can be matched and executed for
one input string or overlapping input strings. For example, given the regular
expressions "xyz" and "xy" and the input "xyz", usually only the regular
expression "xyz" would match. The next attempted match would start after z. If
the last action in the "xyz" rule is REJECT, both this rule and the "xy" rule
would be executed. The REJECT action may be implemented in such a fashion that
flow of control does not continue after it, as if it were equivalent to a goto to
another part of yylex(). The use of REJECT may result in somewhat larger and
slower scanners.

BEGIN The action:

BEGIN newstate;

switches the state (start condition) to newstate. If the string newstate has not been
declared previously as a start condition in the Definitions section, the results are
unspecified. The initial state is indicated by the digit '0' or the token INITIAL.

The functions or macros described below are accessible to user code included in the lex input. It
is unspecified whether they appear in the C code output of lex, or are accessible only through the
−l l operand to c17 (the lex library).

int yylex(void)
Performs lexical analysis on the input; this is the primary function generated by the lex
utility. The function shall return zero when the end of input is reached; otherwise, it shall
return non-zero values (tokens) determined by the actions that are selected.

int yymore(void)
When called, indicates that when the next input string is recognized, it is to be appended to
the current value of yytext rather than replacing it; the value in yyleng shall be adjusted
accordingly.

int yyless(int n)
Retains n initial characters in yytext, NUL-terminated, and treats the remaining characters as
if they had not been read; the value in yyleng shall be adjusted accordingly.

int input(void)
Returns the next character from the input, or zero on end-of-file. It shall obtain input from
the stream pointer yyin, although possibly via an intermediate buffer. Thus, once scanning
has begun, the effect of altering the value of yyin is undefined. The character read shall be
removed from the input stream of the scanner without any processing by the scanner.

int unput(int c)
Returns the character 'c' to the input; yytext and yyleng are undefined until the next
expression is matched. The result of using unput() for more characters than have been input
is unspecified.

The following functions shall appear only in the lex library accessible through the −l l operand;
they can therefore be redefined by a conforming application:

int yywrap(void)
Called by yylex() at end-of-file; the default yywrap() shall always return 1. If the application
requires yylex() to continue processing with another source of input, then the application

3044 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101981

101982

101983

101984

101985

101986

101987

101988

101989

101990

101991

101992

101993

101994

101995

101996

101997

101998

101999

102000

102001

102002

102003

102004

102005

102006

102007

102008

102009

102010

102011

102012

102013

102014

102015

102016

102017

102018

102019

102020

102021

102022

102023

102024

102025

102026

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lex

can include a function yywrap(), which associates another file with the external variable
FILE * yyin and shall return a value of zero.

int main(int argc, char *argv[])
Calls yylex() to perform lexical analysis, then exits. The user code can contain main() to
perform application-specific operations, calling yylex() as applicable.

Except for input(), unput(), and main(), all external and static names generated by lex shall begin
with the prefix yy or YY.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Conforming applications are warned that in the Rules section, an ERE without an action is not
acceptable, but need not be detected as erroneous by lex. This may result in compilation or
runtime errors.

The purpose of input() is to take characters off the input stream and discard them as far as the
lexical analysis is concerned. A common use is to discard the body of a comment once the
beginning of a comment is recognized.

The lex utility is not fully internationalized in its treatment of regular expressions in the lex
source code or generated lexical analyzer. It would seem desirable to have the lexical analyzer
interpret the regular expressions given in the lex source according to the environment specified
when the lexical analyzer is executed, but this is not possible with the current lex technology.
Furthermore, the very nature of the lexical analyzers produced by lex must be closely tied to the
lexical requirements of the input language being described, which is frequently locale-specific
anyway. (For example, writing an analyzer that is used for French text is not automatically
useful for processing other languages.)

EXAMPLES
The following is an example of a lex program that implements a rudimentary scanner for a
Pascal-like syntax:

%{
/* Need this for the call to atof() below. */
#include <math.h>
/* Need this for printf(), fopen(), and stdin below. */
#include <stdio.h>
%}

DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,

atoi(yytext));
}

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3045

102027

102028

102029

102030

102031

102032

102033

102034

102035

102036

102037

102038

102039

102040

102041

102042

102043

102044

102045

102046

102047

102048

102049

102050

102051

102052

102053

102054

102055

102056

102057

102058

102059

102060

102061

102062

102063

102064

102065

102066

102067

102068

102069

102070

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lex Utilities

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,

atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"*"|"/" printf("An operator: %s\n", yytext);

"{"[^}\n]*"}" /* Eat up one-line comments. */

[\t\n]+ /* Eat up white space. */

. printf("Unrecognized character: %s\n", yytext);

%%

int main(int argc, char *argv[])
{

++argv, --argc; /* Skip over program name. */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();
}

RATIONALE
Even though references to the C language are retained in this description, lex may be generalized
to other languages, as was done at one time for EFL, the Extended FORTRAN Language. Since
the lex input specification is essentially language-independent, versions of this utility could be
written to produce Ada, Modula-2, or Pascal code, and there are known historical
implementations that do so.

The current description of lex bypasses the issue of dealing with internationalized EREs in the lex
source code or generated lexical analyzer. If it follows the model used by awk (the source code is
assumed to be presented in the POSIX locale, but input and output are in the locale specified by
the environment variables), then the tables in the lexical analyzer produced by lex would
interpret EREs specified in the lex source in terms of the environment variables specified when
lex was executed. The desired effect would be to have the lexical analyzer interpret the EREs
given in the lex source according to the environment specified when the lexical analyzer is
executed, but this is not possible with the current lex technology.

The description of octal and hexadecimal-digit escape sequences agrees with the ISO C standard
use of escape sequences.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

There is no detailed output format specification. The observed behavior of lex under four
different historical implementations was that none of these implementations consistently
reported the line numbers for error and warning messages. Furthermore, there was a desire that
lex be allowed to output additional diagnostic messages. Leaving message formats unspecified
avoids these formatting questions and problems with internationalization.

3046 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102071

102072

102073

102074

102075

102076

102077

102078

102079

102080

102081

102082

102083

102084

102085

102086

102087

102088

102089

102090

102091

102092

102093

102094

102095

102096

102097

102098

102099

102100

102101

102102

102103

102104

102105

102106

102107

102108

102109

102110

102111

102112

102113

102114

102115

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lex

Although the %x specifier for exclusive start conditions is not historical practice, it is believed to
be a minor change to historical implementations and greatly enhances the usability of lex
programs since it permits an application to obtain the expected functionality with fewer
statements.

The %array and %pointer declarations were added as a compromise between historical systems.
The System V-based lex copies the matched text to a yytext array. The flex program, supported in
BSD and GNU systems, uses a pointer. In the latter case, significant performance improvements
are available for some scanners. Most historical programs should require no change in porting
from one system to another because the string being referenced is null-terminated in both cases.
(The method used by flex in its case is to null-terminate the token in place by remembering the
character that used to come right after the token and replacing it before continuing on to the next
scan.) Multi-file programs with external references to yytext outside the scanner source file
should continue to operate on their historical systems, but would require one of the new
declarations to be considered strictly portable.

The description of EREs avoids unnecessary duplication of ERE details because their meanings
within a lex ERE are the same as that for the ERE in this volume of POSIX.1-2024.

The reason for the undefined condition associated with text beginning with a <blank> or within
"%{" and "%}" delimiter lines appearing in the Rules section is historical practice. Both the BSD
and System V lex copy the indented (or enclosed) input in the Rules section (except at the
beginning) to unreachable areas of the yylex() function (the code is written directly after a break
statement). In some cases, the System V lex generates an error message or a syntax error,
depending on the form of indented input.

The intention in breaking the list of functions into those that may appear in lex.yy.c versus those
that only appear in libl.a is that only those functions in libl.a can be reliably redefined by a
conforming application.

The descriptions of standard output and standard error are somewhat complicated because
historical lex implementations chose to issue diagnostic messages to standard output (unless −t
was given). POSIX.1-2024 allows this behavior, but leaves an opening for the more expected
behavior of using standard error for diagnostics. Also, the System V behavior of writing the
statistics when any table sizes are given is allowed, while BSD-derived systems can avoid it. The
programmer can always precisely obtain the desired results by using either the −t or −n options.

The OPERANDS section does not mention the use of − as a synonym for standard input; not all
historical implementations support such usage for any of the file operands.

A description of the translation table was deleted from early proposals because of its relatively
low usage in historical applications.

The change to the definition of the input() function that allows buffering of input presents the
opportunity for major performance gains in some applications.

The following examples clarify the differences between lex regular expressions and regular
expressions appearing elsewhere in this volume of POSIX.1-2024. For regular expressions of the
form "r/x", the string matching r is always returned; confusion may arise when the beginning
of x matches the trailing portion of r. For example, given the regular expression "a*b/cc" and
the input "aaabcc", yytext would contain the string "aaab" on this match. But given the
regular expression "x*/xy" and the input "xxxy", the token xxx, not xx, is returned by some
implementations because xxx matches "x*".

In the rule "ab*/bc", the "b*" at the end of r extends r’s match into the beginning of the
trailing context, so the result is unspecified. If this rule were "ab/bc", however, the rule
matches the text "ab" when it is followed by the text "bc". In this latter case, the matching of r

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3047

102116

102117

102118

102119

102120

102121

102122

102123

102124

102125

102126

102127

102128

102129

102130

102131

102132

102133

102134

102135

102136

102137

102138

102139

102140

102141

102142

102143

102144

102145

102146

102147

102148

102149

102150

102151

102152

102153

102154

102155

102156

102157

102158

102159

102160

102161

102162

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lex Utilities

cannot extend into the beginning of x, so the result is specified.

FUTURE DIRECTIONS
None.

SEE ALSO
c17 , ed , yacc

XBD Chapter 5 (on page 113), Chapter 8 (on page 167), Chapter 9 (on page 179), Section 12.2 (on
page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the C-Language Development Utilities option.

The obsolescent −c option is removed.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/14 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the requirements for
generated code to conform to the ISO C standard.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of C-language
trigraphs and curly brace preprocessing tokens.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1453 is applied, changing the ENVIRONMENT VARIABLES section.

Austin Group Defect 1517 is applied, removing a reference to the −c option from the
RATIONALE section.

3048 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102163

102164

102165

102166

102167

102168

102169

102170

102171

102172

102173

102174

102175

102176

102177

102178

102179

102180

102181

102182

102183

102184

102185

102186

102187

102188

102189

102190

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities link

NAME
link — call link() function

SYNOPSIS
XSI link file1 file2

DESCRIPTION
The link utility shall perform the function call:

link(file1, file2);

A user may need appropriate privileges to invoke the link utility.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

file1 The pathname of an existing file.

file2 The pathname of the new directory entry to be created.

STDIN
Not used.

INPUT FILES
Not used.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of link:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3049

102191

102192

102193

102194

102195

102196

102197

102198

102199

102200

102201

102202

102203

102204

102205

102206

102207

102208

102209

102210

102211

102212

102213

102214

102215

102216

102217

102218

102219

102220

102221

102222

102223

102224

102225

102226

102227

102228

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

link Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
ln , unlink

XBD Chapter 8 (on page 167)

XSH link()

CHANGE HISTORY
First released in Issue 5.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3050 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102229

102230

102231

102232

102233

102234

102235

102236

102237

102238

102239

102240

102241

102242

102243

102244

102245

102246

102247

102248

102249

102250

102251

102252

102253

102254

102255

102256

102257

102258

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ln

NAME
ln — link files

SYNOPSIS
ln [-fs] [-L|-P] source_file target_file

ln [-fs] [-L|-P] source_file... target_dir

DESCRIPTION
In the first synopsis form, the ln utility shall create a new directory entry at the destination path
specified by the target_file operand. If the −s option is specified, a symbolic link shall be created
with the contents specified by the source_file operand (which need not name an existing file);
otherwise, a hard link shall be created to the file named by the source_file operand. This first
synopsis form shall be assumed when the final operand does not name an existing directory; if
more than two operands are specified and the final is not an existing directory, an error shall
result.

In the second synopsis form, the ln utility shall create a new directory entry for each source_file
operand, at a destination path in the existing directory named by target_dir. If the −s option is
specified, a symbolic link shall be created with the contents specified by each source_file operand
(which need not name an existing file); otherwise, a hard link shall be created to each file named
by a source_file operand.

If the last operand specifies an existing file of a type not specified by the System Interfaces
volume of POSIX.1-2024, the behavior is implementation-defined.

The corresponding destination path for each source_file shall be the concatenation of the target
directory pathname, a <slash> character if the target directory pathname did not end in a
<slash>, and the last pathname component of the source_file. The second synopsis form shall be
assumed when the final operand names an existing directory.

For each source_file:

1. If the destination path exists and was created by a previous step, it is unspecified whether
ln writes a diagnostic message to standard error, does nothing more with the current
source_file, and goes on to any remaining source_files; or continues processing the current
source_file. If the destination path exists:

a. If the −f option is not specified, ln shall write a diagnostic message to standard
error, do nothing more with the current source_file, and go on to any remaining
source_files.

b. If the destination path names the same directory entry as the current source_file ln
shall write a diagnostic message to standard error, do nothing more with the
current source_file, and go on to any remaining source_files.

c. Actions shall be performed equivalent to the unlink() function defined in the
System Interfaces volume of POSIX.1-2024, called using the destination path as the
path argument. If this fails for any reason, ln shall write a diagnostic message to
standard error, do nothing more with the current source_file, and go on to any
remaining source_files.

2. If the −s option is specified, actions shall be performed equivalent to the symlink()
function with source_file as the path1 argument and the destination path as the path2
argument. The ln utility shall do nothing more with source_file and shall go on to any
remaining files.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3051

102259

102260

102261

102262

102263

102264

102265

102266

102267

102268

102269

102270

102271

102272

102273

102274

102275

102276

102277

102278

102279

102280

102281

102282

102283

102284

102285

102286

102287

102288

102289

102290

102291

102292

102293

102294

102295

102296

102297

102298

102299

102300

102301

102302

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ln Utilities

3. If source_file is a symbolic link:

a. If the −P option is in effect, actions shall be performed equivalent to the linkat()
function with source_file as the path1 argument, the destination path as the path2
argument, AT_FDCWD as the fd1 and fd2 arguments, and zero as the flag
argument.

b. If the −L option is in effect, actions shall be performed equivalent to the linkat()
function with source_file as the path1 argument, the destination path as the path2
argument, AT_FDCWD as the fd1 and fd2 arguments, and
AT_SYMLINK_FOLLOW as the flag argument.

The ln utility shall do nothing more with source_file and shall go on to any remaining files.

4. Actions shall be performed equivalent to the link() function defined in the System
Interfaces volume of POSIX.1-2024 using source_file as the path1 argument, and the
destination path as the path2 argument.

OPTIONS
The ln utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f Force existing destination pathnames to be removed to allow the link.

−L For each source_file operand that names a file of type symbolic link, create a hard
link to the file referenced by the symbolic link.

−P For each source_file operand that names a file of type symbolic link, create a hard
link to the symbolic link itself.

−s Create symbolic links instead of hard links. If the −s option is specified, the −L and
−P options shall be silently ignored.

Specifying more than one of the mutually-exclusive options −L and −P shall not be considered
an error. The last option specified shall determine the behavior of the utility (unless the −s
option causes it to be ignored).

If the −s option is not specified and neither a −L nor a −P option is specified, it is
implementation-defined which of the −L and −P options is used as the default.

OPERANDS
The following operands shall be supported:

source_file A pathname of a file to be linked. If the −s option is specified, no restrictions on the
type of file or on its existence shall be made. If the −s option is not specified,
whether a directory can be linked is implementation-defined.

target_file The pathname of the new directory entry to be created.

target_dir A pathname of an existing directory in which the new directory entries are created.

STDIN
Not used.

INPUT FILES
None.

3052 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102303

102304

102305

102306

102307

102308

102309

102310

102311

102312

102313

102314

102315

102316

102317

102318

102319

102320

102321

102322

102323

102324

102325

102326

102327

102328

102329

102330

102331

102332

102333

102334

102335

102336

102337

102338

102339

102340

102341

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ln

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ln:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The CONSEQUENCES OF ERRORS section does not require ln −f a b to remove b if a
subsequent link operation would fail.

Some historic versions of ln (including the one specified by the SVID) unlink the destination file,
if it exists, by default. If the mode does not permit writing, these versions prompt for
confirmation before attempting the unlink. In these versions the −f option causes ln not to
attempt to prompt for confirmation.

This allows ln to succeed in creating links when the target file already exists, even if the file itself

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3053

102342

102343

102344

102345

102346

102347

102348

102349

102350

102351

102352

102353

102354

102355

102356

102357

102358

102359

102360

102361

102362

102363

102364

102365

102366

102367

102368

102369

102370

102371

102372

102373

102374

102375

102376

102377

102378

102379

102380

102381

102382

102383

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ln Utilities

is not writable (although the directory must be). Early proposals specified this functionality.

This volume of POSIX.1-2024 does not allow the ln utility to unlink existing destination paths by
default for the following reasons:

• The ln utility has historically been used to provide locking for shell applications, a usage
that is incompatible with ln unlinking the destination path by default. There was no
corresponding technical advantage to adding this functionality.

• This functionality gave ln the ability to destroy the link structure of files, which changes
the historical behavior of ln.

• This functionality is easily replicated with a combination of rm and ln.

• It is not historical practice in many systems; BSD and BSD-derived systems do not support
this behavior. Unfortunately, whichever behavior is selected can cause scripts written
expecting the other behavior to fail.

• It is preferable that ln perform in the same manner as the link() function, which does not
permit the target to exist already.

This volume of POSIX.1-2024 retains the −f option to provide support for shell scripts depending
on the SVID semantics. It seems likely that shell scripts would not be written to handle
prompting by ln and would therefore have specified the −f option.

The −f option is an undocumented feature of many historical versions of the ln utility, allowing
linking to directories. These versions require modification.

Early proposals of this volume of POSIX.1-2024 also required a −i option, which behaved like the
−i options in cp and mv, prompting for confirmation before unlinking existing files. This was not
historical practice for the ln utility and has been omitted.

The −L and −P options allow for implementing both common behaviors of the ln utility. Earlier
versions of this standard did not specify these options and required the behavior now described
for the −L option. Many systems by default or as an alternative provided a non-conforming ln
utility with the behavior now described for the −P option. Since applications could not rely on ln
following links in practice, the −L and −P options were added to specify the desired behavior for
the application.

The −L and −P options are ignored when −s is specified in order to allow an alias to be created to
alter the default behavior when creating hard links (for example, alias ln='ln −L'). They serve no
purpose when −s is specified, since source_file is then just a string to be used as the contents of
the created symbolic link and need not exist as a file.

The specification ensures that ln a a with or without the −f option will not unlink the file a.
Earlier versions of this standard were unclear in this case.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
chmod , find , pax , readlink , realpath , rm

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH link(), unlink()

3054 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102384

102385

102386

102387

102388

102389

102390

102391

102392

102393

102394

102395

102396

102397

102398

102399

102400

102401

102402

102403

102404

102405

102406

102407

102408

102409

102410

102411

102412

102413

102414

102415

102416

102417

102418

102419

102420

102421

102422

102423

102424

102425

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ln

CHANGE HISTORY
First released in Issue 2.

Issue 6
The ln utility is updated to include symbolic link processing as defined in the IEEE P1003.2b
draft standard.

Issue 7
Austin Group Interpretations 1003.1-2001 #164, #168, and #169 are applied.

SD5-XCU-ERN-27 is applied, adding a new paragraph to the RATIONALE.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The −L and −P options are added to make it implementation-defined whether the ln utility
follows symbolic links.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0096 [136] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0113 [930] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1380 is applied, changing text using the term ``link’’ in line with its
updated definition.

Austin Group Defect 1457 is applied, adding readlink and realpath to the SEE ALSO section.

Austin Group Defect 1506 is applied, changing the EXIT STATUS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3055

102426

102427

102428

102429

102430

102431

102432

102433

102434

102435

102436

102437

102438

102439

102440

102441

102442

102443

102444

102445

102446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

locale Utilities

NAME
locale — get locale-specific information

SYNOPSIS
locale [-a|-m]

locale [-ck] name...

DESCRIPTION
The locale utility shall write information about the current locale environment, or all public
locales, to the standard output. For the purposes of this section, a public locale is one provided by
the implementation that is accessible to the application.

When locale is invoked without any arguments, it shall summarize the current locale
environment for each locale category as determined by the settings of the environment variables
defined in XBD Chapter 7 (on page 127).

When invoked with operands, it shall write values that have been assigned to the keywords in
the locale categories, as follows:

• Specifying a keyword name shall select the named keyword and the category containing
that keyword.

• Specifying a category name shall select the named category and all keywords in that
category.

OPTIONS
The locale utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Write information about all available public locales. The available locales shall
include POSIX, representing the POSIX locale. The manner in which the
implementation determines what other locales are available is implementation-
defined.

−c Write the names of selected locale categories; see the STDOUT section. The −c
option increases readability when more than one category is selected (for example,
via more than one keyword name or via a category name). It is valid both with
and without the −k option.

−k Write the names and values of selected keywords. The implementation may omit
values for some keywords; see the OPERANDS section.

−m Write names of available charmaps; see XBD Section 6.1 (on page 117).

OPERANDS
The following operand shall be supported:

name The name of a locale category as defined in XBD Chapter 7 (on page 127), the name
of a keyword in a locale category, or the reserved name charmap. The named
category or keyword shall be selected for output. If a single name represents both a
locale category name and a keyword name in the current locale, the results are
unspecified. Otherwise, both category and keyword names can be specified as
name operands, in any sequence. It is implementation-defined whether any
keyword values are written for the categories LC_CTYPE and LC_COLLATE.

3056 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102447

102448

102449

102450

102451

102452

102453

102454

102455

102456

102457

102458

102459

102460

102461

102462

102463

102464

102465

102466

102467

102468

102469

102470

102471

102472

102473

102474

102475

102476

102477

102478

102479

102480

102481

102482

102483

102484

102485

102486

102487

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities locale

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of locale:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

XSI The application shall ensure that the LANG, LC_*, and NLSPATH environment variables specify
the current locale environment to be written out; they shall be used if the −a option is not
specified.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The LANG variable shall be written first using the format:

"LANG=%s\n", <value>

If LANG is not set or is an empty string, the value is the empty string.

If locale is invoked without any options or operands, the names and values of the LC_*
environment variables described in this volume of POSIX.1-2024 shall be written to the standard
output, one variable per line, and each line using the following format. Only those variables set
in the environment and not overridden by LC_ALL shall be written using this format:

"%s=%s\n", <variable_name>, <value>

The names of those LC_* variables associated with locale categories defined in this volume of
POSIX.1-2024 that are not set in the environment or are overridden by LC_ALL shall be written
in the following format:

"%s=\"%s\"\n", <variable_name>, <implied value>

The <implied value> shall be the name of the locale that has been selected for that category by the
implementation, based on the values in LANG and LC_ALL, as described in XBD Chapter 8 (on
page 167).

The <value> and <implied value> shown above shall be properly quoted for possible later reentry
to the shell. The <value> shall not be quoted using double-quotes (so that it can be distinguished
by the user from the <implied value> case, which always requires double-quotes).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3057

102488

102489

102490

102491

102492

102493

102494

102495

102496

102497

102498

102499

102500

102501

102502

102503

102504

102505

102506

102507

102508

102509

102510

102511

102512

102513

102514

102515

102516

102517

102518

102519

102520

102521

102522

102523

102524

102525

102526

102527

102528

102529

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

locale Utilities

The LC_ALL variable shall be written last, using the first format shown above. If it is not set, it
shall be written as:

"LC_ALL=\n"

If any arguments are specified:

1. If the −a option is specified, the names of all the public locales shall be written, each in the
following format:

"%s\n", <locale name>

2. If the −c option is specified, the names of all selected categories shall be written, each in
the following format:

"%s\n", <category name>

If keywords are also selected for writing (see following items), the category name output
shall precede the keyword output for that category.

If the −c option is not specified, the names of the categories shall not be written; only the
keywords, as selected by the <name> operand, shall be written.

3. If the −k option is specified, the names and values of selected keywords shall be written.
If a value is non-numeric and is not a compound keyword value, it shall be written in the
following format:

"%s=\"%s\"\n", <keyword name>, <keyword value>

If a value is a non-numeric compound keyword value, it shall either be written in the
format:

"%s=\"%s\"\n", <keyword name>, <keyword value>

where the <keyword value> is a single string of values separated by <semicolon>
characters, or it shall be written in the format:

"%s=%s\n", <keyword name>, <keyword value>

where the <keyword value> is encoded as a set of strings, each enclosed in double-
quotation-marks, separated by <semicolon> characters.

If the keyword was charmap, the name of the charmap (if any) that was specified via the
localedef −f option when the locale was created shall be written, with the word charmap as
<keyword name>.

If a value is numeric, it shall be written in one of the following formats:

"%s=%d\n", <keyword name>, <keyword value>

"%s=%c%o\n", <keyword name>, <escape character>, <keyword value>

"%s=%cx%x\n", <keyword name>, <escape character>, <keyword value>

where the <escape character> is that identified by the escape_char keyword in the current
locale; see XBD Section 7.3 (on page 128).

Compound keyword values (list entries) shall be separated in the output by <semicolon>
characters. When included in keyword values, the <semicolon>, <backslash>, double-
quote, and any control character shall be preceded (escaped) with the escape character.

3058 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102530

102531

102532

102533

102534

102535

102536

102537

102538

102539

102540

102541

102542

102543

102544

102545

102546

102547

102548

102549

102550

102551

102552

102553

102554

102555

102556

102557

102558

102559

102560

102561

102562

102563

102564

102565

102566

102567

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities locale

4. If the −k option is not specified, selected keyword values shall be written, each in the
following format:

"%s\n", <keyword value>

If the keyword was charmap, the name of the charmap (if any) that was specified via the
localedef −f option when the locale was created shall be written.

5. If the −m option is specified, then a list of all available charmaps shall be written, each in
the format:

"%s\n", <charmap>

where <charmap> is in a format suitable for use as the option-argument to the localedef −f
option.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All the requested information was found and output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If the LANG environment variable is not set or set to an empty value, or one of the LC_*
environment variables is set to an unrecognized value, the actual locales assumed (if any) are
implementation-defined as described in XBD Chapter 8 (on page 167).

Implementations are not required to write out the actual values for keywords in the categories
LC_CTYPE and LC_COLLATE; however, they must write out the categories (allowing an
application to determine, for example, which character classes are available).

EXAMPLES
In the following examples, the assumption is that locale environment variables are set as
follows:

LANG=locale_x
LC_COLLATE=locale_y

The command locale would result in the following output:

LANG=locale_x
LC_CTYPE="locale_x"
LC_COLLATE=locale_y
LC_TIME="locale_x"
LC_NUMERIC="locale_x"
LC_MONETARY="locale_x"
LC_MESSAGES="locale_x"
LC_ALL=

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3059

102568

102569

102570

102571

102572

102573

102574

102575

102576

102577

102578

102579

102580

102581

102582

102583

102584

102585

102586

102587

102588

102589

102590

102591

102592

102593

102594

102595

102596

102597

102598

102599

102600

102601

102602

102603

102604

102605

102606

102607

102608

102609

102610

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

locale Utilities

The order of presentation of the categories is not specified by this volume of POSIX.1-2024.

The command:

LC_ALL=POSIX locale -ck decimal_point

would produce:

LC_NUMERIC
decimal_point="."

The following command shows an application of locale to determine whether a user-supplied
response is affirmative:

printf 'Prompt for response: '
read response
if printf "%s\n" "$response" | grep -Eq -- "$(locale yesexpr)"
then

affirmative processing goes here
else

non-affirmative processing goes here
fi

RATIONALE
The output for categories LC_CTYPE and LC_COLLATE has been made implementation-defined
because there is a questionable value in having a shell script receive an entire array of characters.
It is also difficult to return a logical collation description, short of returning a complete localedef
source.

The −m option was included to allow applications to query for the existence of charmaps. The
output is a list of the charmaps (implementation-supplied and user-supplied, if any) on the
system.

The −c option was included for readability when more than one category is selected (for
example, via more than one keyword name or via a category name). It is valid both with and
without the −k option.

The charmap keyword, which returns the name of the charmap (if any) that was used when the
current locale was created, was included to allow applications needing the information to
retrieve it.

According to XBD Section 6.1 (on page 117), the standard requires that all supported locales
must have the same encoding for <period> and <slash>, because these two characters are used
within the locale-independent pathname resolution sequence. Therefore, it would be an error if
locale −a listed both ASCII and EBCDIC-based locales, since those two encodings do not share
the same representation for either <period> or <slash>. Any system that supports both
environments would be expected to provide two POSIX locales, one in either codeset, where
only the locales appropriate to the current environment can be visible at a time. In an XSI-
compliant implementation, the dd utility is the only portable means for performing conversions
between the two character sets.

FUTURE DIRECTIONS
None.

SEE ALSO
localedef

XBD Section 6.1 (on page 117), Chapter 7 (on page 127), Chapter 8 (on page 167), Section 12.2 (on
page 215)

3060 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102611

102612

102613

102614

102615

102616

102617

102618

102619

102620

102621

102622

102623

102624

102625

102626

102627

102628

102629

102630

102631

102632

102633

102634

102635

102636

102637

102638

102639

102640

102641

102642

102643

102644

102645

102646

102647

102648

102649

102650

102651

102652

102653

102654

102655

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities locale

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/30 is applied, correcting an editorial error
in the STDOUT section.

Issue 7
Austin Group Interpretations 1003.1-2001 #017, #021, and #088 are applied, clarifying the
standard output for the −k option when LANG is not set or is an empty string.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0097 [291] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0114 [941] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1262 is applied, changing the EXAMPLES section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3061

102656

102657

102658

102659

102660

102661

102662

102663

102664

102665

102666

102667

102668

102669

102670

102671

102672

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

localedef Utilities

NAME
localedef — define locale environment

SYNOPSIS
localedef [-c] [-f charmap] [-i sourcefile] [-u code_set_name] name

DESCRIPTION
The localedef utility shall convert source definitions for locale categories into a format usable by
the functions and utilities whose operational behavior is determined by the setting of the locale
environment variables defined in XBD Chapter 7 (on page 127). It is implementation-defined
whether users have the capability to create new locales, in addition to those supplied by the
implementation. If the symbolic constant POSIX2_LOCALEDEF is defined, the system supports

XSI the creation of new locales. On XSI-conformant systems, the symbolic constant
POSIX2_LOCALEDEF shall be defined.

The utility shall read source definitions for one or more locale categories belonging to the same
locale from the file named in the −i option (if specified) or from standard input.

The name operand identifies the target locale. The utility shall support the creation of public, or
generally accessible locales, as well as private, or restricted-access locales. Implementations may
restrict the capability to create or modify public locales to users with appropriate privileges.

Each category source definition shall be identified by the corresponding environment variable
name and terminated by an END category-name statement. The following categories shall be
supported. In addition, the input may contain source for implementation-defined categories.

LC_CTYPE Defines character classification and case conversion.

LC_COLLATE
Defines collation rules.

LC_MONETARY
Defines the format and symbols used in formatting of monetary information.

LC_NUMERIC
Defines the decimal delimiter, grouping, and grouping symbol for non-monetary
numeric editing.

LC_TIME Defines the format and content of date and time information.

LC_MESSAGES
Defines the format and values of affirmative and negative responses.

If the LC_COLLATE category defines a collation sequence that does not have a total ordering of
all characters, localedef shall write a warning message to standard error and, if the exit status
would otherwise have been zero, shall exit with status 1.

OPTIONS
The localedef utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Create permanent output even if warning messages have been issued.

−f charmap Specify the pathname of a file containing a mapping of character symbols and
collating element symbols to actual character encodings. The format of the
charmap is described in XBD Section 6.4 (on page 121). The application shall ensure
that this option is specified if symbolic names (other than collating symbols
defined in a collating-symbol keyword) are used. If the −f option is not present, an
implementation-defined character mapping shall be used.

3062 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102673

102674

102675

102676

102677

102678

102679

102680

102681

102682

102683

102684

102685

102686

102687

102688

102689

102690

102691

102692

102693

102694

102695

102696

102697

102698

102699

102700

102701

102702

102703

102704

102705

102706

102707

102708

102709

102710

102711

102712

102713

102714

102715

102716

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities localedef

−i inputfile The pathname of a file containing the source definitions. If this option is not
present, source definitions shall be read from standard input. The format of the
inputfile is described in XBD Section 7.3 (on page 128).

−u code_set_name
Specify the name of a codeset used as the target mapping of character symbols and
collating element symbols whose encoding values are defined in terms of the
ISO/IEC 10646: 2020 standard position constant values.

OPERANDS
The following operand shall be supported:

name Identifies the locale; see XBD Chapter 7 (on page 127) for a description of the use of
this name. If the name contains one or more <slash> characters, name shall be
interpreted as a pathname where the created locale definitions shall be stored. If
name does not contain any <slash> characters, the interpretation of the name is
implementation-defined and the locale shall be public. The ability to create public
locales in this way may be restricted to users with appropriate privileges. (As a
consequence of specifying one name, although several categories can be processed
in one execution, only categories belonging to the same locale can be processed.)

STDIN
Unless the −i option is specified, the standard input shall be a text file containing one or more
locale category source definitions, as described in XBD Section 7.3 (on page 128). When lines are
continued using the escape character mechanism, there is no limit to the length of the
accumulated continued line.

INPUT FILES
The character set mapping file specified as the charmap option-argument is described in XBD
Section 6.4 (on page 121). If a locale category source definition contains a copy statement, as
defined in XBD Chapter 7 (on page 127), and the copy statement names a valid, existing locale,
then localedef shall behave as if the source definition had contained a valid category source
definition for the named locale.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of localedef:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
(This variable has no affect on localedef; the POSIX locale is used for this category.)

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files). This variable has no affect on the processing of localedef
input data; the POSIX locale is used for this purpose, regardless of the value of this
variable.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3063

102717

102718

102719

102720

102721

102722

102723

102724

102725

102726

102727

102728

102729

102730

102731

102732

102733

102734

102735

102736

102737

102738

102739

102740

102741

102742

102743

102744

102745

102746

102747

102748

102749

102750

102751

102752

102753

102754

102755

102756

102757

102758

102759

102760

102761

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

localedef Utilities

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The utility shall report all categories successfully processed, in an unspecified format.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The format of the created output is unspecified. If the name operand does not contain a <slash>,
the existence of an output file for the locale is unspecified.

EXTENDED DESCRIPTION
When the −u option is used, the code_set_name option-argument shall be interpreted as an
implementation-defined name of a codeset to which the ISO/IEC 10646: 2020 standard position
constant values shall be converted via an implementation-defined method. Both the
ISO/IEC 10646: 2020 standard position constant values and other formats (decimal,
hexadecimal, or octal) shall be valid as encoding values within the charmap file. The codeset
represented by the implementation-defined name can be any codeset that is supported by the
implementation.

When conflicts occur between the charmap specification of <code_set_name>, <mb_cur_max>, or
<mb_cur_min> and the implementation-defined interpretation of these respective items for the
codeset represented by the −u option-argument code_set_name, the result is unspecified.

When conflicts (including omissions) occur between the charmap encoding values specified for
symbolic names of characters of the portable character set and the implementation-defined
assignment of character encoding values, the result is unspecified. If the result is that localedef
creates the specified locale, any attempted use of that locale by an application or utility results in
undefined behavior.

If a non-printable character in the charmap has a width specified that is not −1, the result is
undefined.

EXIT STATUS
The following exit values shall be returned:

0 No errors occurred and the locales were successfully created.

1 Warnings occurred and the locales were successfully created.

2 The locale specification exceeded implementation limits or the coded character set or sets
used were not supported by the implementation, and no locale was created.

3 The capability to create new locales is not supported by the implementation.

>3 Warnings or errors occurred and no output was created.

CONSEQUENCES OF ERRORS
If an error is detected, no permanent output shall be created.

If warnings occur, permanent output shall be created if the −c option was specified. The
following conditions shall cause warning messages to be issued:

• If a symbolic name not found in the charmap file is used for the descriptions of the
LC_CTYPE or LC_COLLATE categories (for other categories, this shall be an error
condition).

3064 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102762

102763

102764

102765

102766

102767

102768

102769

102770

102771

102772

102773

102774

102775

102776

102777

102778

102779

102780

102781

102782

102783

102784

102785

102786

102787

102788

102789

102790

102791

102792

102793

102794

102795

102796

102797

102798

102799

102800

102801

102802

102803

102804

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities localedef

• If the number of operands to the order keyword exceeds the {COLL_WEIGHTS_MAX}
limit.

• If optional keywords not supported by the implementation are present in the source.

Other implementation-defined conditions may also cause warnings.

APPLICATION USAGE
The charmap definition is optional, and is contained outside the locale definition. This allows
both completely self-defined source files, and generic sources (applicable to more than one
codeset). To aid portability, all charmap definitions must use the same symbolic names for the
portable character set. As explained in XBD Section 6.4 (on page 121), it is implementation-
defined whether or not users or applications can provide additional character set description
files. Therefore, the −f option might be operable only when an implementation-defined charmap
is named.

EXAMPLES
None.

RATIONALE
The output produced by the localedef utility is implementation-defined. The name operand is
used to identify the specific locale. (As a consequence, although several categories can be
processed in one execution, only categories belonging to the same locale can be processed.)

When conflicts (including omissions) occur between the charmap encoding values specified for
symbolic names of characters of the portable character set and the implementation-defined
assignment of character encoding values, it is recommended that localedef treats this as an error
in order to prevent the undefined behavior that results if localedef creates the specified locale and
an application or utility attempts to use it.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
locale

XBD Section 6.4 (on page 121), Chapter 7 (on page 127), Chapter 8 (on page 167), Section 12.2 (on
page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
The −u option is added, as specified in the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/15 is applied, rewording text in the
OPERANDS section describing the ability to create public locales.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/16 is applied, making the text consistent
with the descriptions of WIDTH and WIDTH_DEFAULT in the Base Definitions volume of
POSIX.1-2024.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3065

102805

102806

102807

102808

102809

102810

102811

102812

102813

102814

102815

102816

102817

102818

102819

102820

102821

102822

102823

102824

102825

102826

102827

102828

102829

102830

102831

102832

102833

102834

102835

102836

102837

102838

102839

102840

102841

102842

102843

102844

102845

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

localedef Utilities

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1070 is applied, requiring that localedef issues a warning if the
LC_COLLATE category defines a collation sequence that does not have a total ordering of all
characters.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1609 is applied, clarifying the behavior when conflicts (including
omissions) occur between the charmap encoding values specified for symbolic names of
characters of the portable character set and the implementation-defined assignment of character
encoding values.

3066 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102846

102847

102848

102849

102850

102851

102852

102853

102854

102855

102856

102857

102858

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities logger

NAME
logger — log messages

SYNOPSIS
logger [-i] [-f file] [-p priority] [-t tag] [string...]

DESCRIPTION
The logger utility shall send messages to an implementation-defined logging facility, which may
log them in an implementation-defined system log, write them to the system console, forward
them to a list of users, or forward them to the logging facility on another host over the network.
Each logged message shall include a message header and a message body. The message header
shall contain at least a timestamp and a tag string.

If one or more string operands are specified, they shall be logged; otherwise, the message bodies
to be logged shall be read from standard input if no −f option is specified, or from the specified
file if the −f option is present.

It is implementation-defined whether messages written in locales other than the POSIX locale
are effective.

OPTIONS
The logger utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f file Read the log message bodies from file instead of standard input.

−i Log the process ID of the logger process with each message.

−p priority Log the message with priority set to priority. The priority is specified as a
facility.level pair. The following values for facility shall be supported:

user Messages generated by arbitrary processes.

local0 Reserved for local use.

local1 Reserved for local use.

local2 Reserved for local use.

local3 Reserved for local use.

local4 Reserved for local use.

local5 Reserved for local use.

local6 Reserved for local use.

local7 Reserved for local use.

The following values for level shall be supported:

emerg A panic condition.

alert A condition that should be corrected immediately, such as a corrupted
system database.

crit Critical conditions, such as hard device errors.

err Errors.

warning Warning messages.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3067

102859

102860

102861

102862

102863

102864

102865

102866

102867

102868

102869

102870

102871

102872

102873

102874

102875

102876

102877

102878

102879

102880

102881

102882

102883

102884

102885

102886

102887

102888

102889

102890

102891

102892

102893

102894

102895

102896

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

logger Utilities

notice Conditions that are not error conditions, but that may require special
handling.

info Informational messages.

debug Messages that contain information normally of use only when
debugging a program.

If the −p option is not specified, the priority shall be user.notice.

−t tag Use the string tag as the tag string in the message header. The default tag is
unspecified.

OPERANDS
The following operand shall be supported:

string One of the string arguments whose contents are concatenated together, in the order
specified, separated by single <space> characters.

STDIN
The standard input shall be used if no string operands are specified and either the −f option is
not specified or the −f option is specified with a file option-argument of '-' and the
implementation treats the '-' as meaning standard input. Otherwise, the standard input shall
not be used. See the INPUT FILES section.

Each non-empty line shall be logged as a separate message. It is unspecified whether an empty
line is also logged as a separate message.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of logger:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error. (This means diagnostics from logger
to the user or application, not diagnostic messages that the user is sending to the
system administrator.)

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

3068 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102897

102898

102899

102900

102901

102902

102903

102904

102905

102906

102907

102908

102909

102910

102911

102912

102913

102914

102915

102916

102917

102918

102919

102920

102921

102922

102923

102924

102925

102926

102927

102928

102929

102930

102931

102932

102933

102934

102935

102936

102937

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities logger

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Unspecified.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility allows logging of information for later use by a system administrator or programmer
in determining why non-interactive utilities have failed. The locations of the saved messages,
their format, and retention period are all unspecified. There is no method for a conforming
application to read messages, once written.

EXAMPLES
A batch application, running non-interactively, tries to read a configuration file and fails; it may
attempt to notify the system administrator with:

logger myname: unable to read file foo. [timestamp]

RATIONALE
The standard developers believed strongly that some method of alerting administrators to errors
was necessary. The obvious example is a batch utility, running non-interactively, that is unable to
read its configuration files or that is unable to create or write its results file. However, the
standard developers did not wish to define the format or delivery mechanisms as they have
historically been (and will probably continue to be) very system-specific, as well as involving
functionality clearly outside the scope of this volume of POSIX.1-2024.

The text with LC_MESSAGES about diagnostic messages means diagnostics from logger to the
user or application, not diagnostic messages that the user is sending to the system administrator.

Multiple string arguments are allowed, similar to echo, for ease-of-use.

Like the utilities mailx and lp, logger is admittedly difficult to test. This was not deemed sufficient
justification to exclude these utilities from this volume of POSIX.1-2024. It is also arguable that
they are, in fact, testable, but that the tests themselves are not portable.

FUTURE DIRECTIONS
None.

SEE ALSO
lp , mailx , write

XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 4.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3069

102938

102939

102940

102941

102942

102943

102944

102945

102946

102947

102948

102949

102950

102951

102952

102953

102954

102955

102956

102957

102958

102959

102960

102961

102962

102963

102964

102965

102966

102967

102968

102969

102970

102971

102972

102973

102974

102975

102976

102977

102978

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

logger Utilities

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 917 is applied, adding the −f, −i, −p, and −t options, and specifying the
behavior when logger is executed with no operands.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3070 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102979

102980

102981

102982

102983

102984

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities logname

NAME
logname — return the user’s login name

SYNOPSIS
logname

DESCRIPTION
The logname utility shall write the user’s login name to standard output. The login name shall be
the string that would be returned by the getlogin() function defined in the System Interfaces
volume of POSIX.1-2024. Under the conditions where the getlogin() function would fail, the
logname utility shall write a diagnostic message to standard error and exit with a non-zero exit
status.

OPTIONS
None.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of logname:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The logname utility output shall be a single line consisting of the user’s login name:

"%s\n", <login name>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3071

102985

102986

102987

102988

102989

102990

102991

102992

102993

102994

102995

102996

102997

102998

102999

103000

103001

103002

103003

103004

103005

103006

103007

103008

103009

103010

103011

103012

103013

103014

103015

103016

103017

103018

103019

103020

103021

103022

103023

103024

103025

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

logname Utilities

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The logname utility explicitly ignores the LOGNAME environment variable because environment
changes could produce erroneous results.

EXAMPLES
None.

RATIONALE
The passwd file is not listed as required because the implementation may have other means of
mapping login names.

FUTURE DIRECTIONS
None.

SEE ALSO
id , who

XBD Chapter 8 (on page 167)

XSH getlogin()

CHANGE HISTORY
First released in Issue 2.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3072 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103026

103027

103028

103029

103030

103031

103032

103033

103034

103035

103036

103037

103038

103039

103040

103041

103042

103043

103044

103045

103046

103047

103048

103049

103050

103051

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lp

NAME
lp — send files to a printer

SYNOPSIS
lp [-c] [-d dest] [-n copies] [-msw] [-o option]... [-t title] [file...]

DESCRIPTION
The lp utility shall copy the input files to an output destination in an unspecified manner. The
default output destination should be to a hardcopy device, such as a printer or microfilm
recorder, that produces non-volatile, human-readable documents. If such a device is not
available to the application, or if the system provides no such device, the lp utility shall exit with
a non-zero exit status.

The actual writing to the output device may occur some time after the lp utility successfully
exits. During the portion of the writing that corresponds to each input file, the implementation
shall guarantee exclusive access to the device.

The lp utility shall associate a unique request ID with each request.

Normally, a banner page is produced to separate and identify each print job. This page may be
suppressed by implementation-defined conditions, such as an operator command or one of the
−o option values.

OPTIONS
The lp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Exit only after further access to any of the input files is no longer required. The
application can then safely delete or modify the files without affecting the output
operation. Normally, files are not copied, but are linked whenever possible. If the
−c option is not given, then the user should be careful not to remove any of the
files before the request has been printed in its entirety. It should also be noted that
in the absence of the −c option, any changes made to the named files after the
request is made but before it is printed may be reflected in the printed output. On
some implementations, −c may be on by default.

−d dest Specify a string that names the destination (dest). If dest is a printer, the request
shall be printed only on that specific printer. If dest is a class of printers, the request
shall be printed on the first available printer that is a member of the class. Under
certain conditions (printer unavailability, file space limitation, and so on), requests
for specific destinations need not be accepted. Destination names vary between
systems.

If −d is not specified, and neither the LPDEST nor PRINTER environment variable
is set, an unspecified destination is used. The −d dest option shall take precedence
over LPDEST, which in turn shall take precedence over PRINTER. Results are
undefined when dest contains a value that is not a valid destination name.

−m Send mail (see mailx) after the files have been printed. By default, no mail is sent
upon normal completion of the print request.

−n copies Write copies number of copies of the files, where copies is a positive decimal integer.
The methods for producing multiple copies and for arranging the multiple copies
when multiple file operands are used are unspecified, except that each file shall be
output as an integral whole, not interleaved with portions of other files.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3073

103052

103053

103054

103055

103056

103057

103058

103059

103060

103061

103062

103063

103064

103065

103066

103067

103068

103069

103070

103071

103072

103073

103074

103075

103076

103077

103078

103079

103080

103081

103082

103083

103084

103085

103086

103087

103088

103089

103090

103091

103092

103093

103094

103095

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lp Utilities

−o option Specify printer-dependent or class-dependent options. Several such options may be
collected by specifying the −o option more than once.

−s Suppress messages from lp.

−t title Write title on the banner page of the output.

−w Write a message on the user’s terminal after the files have been printed. If the user
is not logged in, then mail shall be sent instead.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be output. If no file operands are specified, or if a file
operand is '−', the standard input shall be used. If a file operand is used, but the
−c option is not specified, the process performing the writing to the output device
may have user and group permissions that differ from that of the process invoking
lp.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is '−'.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of lp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the format and contents of date and time strings displayed in the lp
banner page, if any.

LPDEST Determine the destination. If the LPDEST environment variable is not set, the
PRINTER environment variable shall be used. The −d dest option takes precedence
over LPDEST. Results are undefined when −d is not specified and LPDEST
contains a value that is not a valid destination name.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PRINTER Determine the output device or destination. If the LPDEST and PRINTER
environment variables are not set, an unspecified output device is used. The −d
dest option and the LPDEST environment variable shall take precedence over
PRINTER. Results are undefined when −d is not specified, LPDEST is unset, and
PRINTER contains a value that is not a valid device or destination name.

3074 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103096

103097

103098

103099

103100

103101

103102

103103

103104

103105

103106

103107

103108

103109

103110

103111

103112

103113

103114

103115

103116

103117

103118

103119

103120

103121

103122

103123

103124

103125

103126

103127

103128

103129

103130

103131

103132

103133

103134

103135

103136

103137

103138

103139

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lp

TZ Determine the timezone used to calculate date and time strings displayed in the lp
banner page, if any. If TZ is unset or null, an unspecified default timezone shall be
used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The lp utility shall write a request ID to the standard output, unless −s is specified. The format of
the message is unspecified. The request ID can be used on systems supporting the historical
cancel and lpstat utilities.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

>0 No output device was available, or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The pr and fold utilities can be used to achieve reasonable formatting for the implementation’s
default page size.

A conforming application can use one of the file operands only with the −c option or if the file is
publicly readable and guaranteed to be available at the time of printing. This is because
POSIX.1-2024 gives the implementation the freedom to queue up the request for printing at
some later time by a different process that might not be able to access the file.

EXAMPLES

1. To print file file:

lp -c file

2. To print multiple files with headers:

pr file1 file2 | lp

RATIONALE
The lp utility was designed to be a basic version of a utility that is already available in many
historical implementations. The standard developers considered that it should be implementable
simply as:

cat "$@" > /dev/lp

after appropriate processing of options, if that is how the implementation chose to do it and if
exclusive access could be granted (so that two users did not write to the device simultaneously).
Although in the future the standard developers may add other options to this utility, it should
always be able to execute with no options or operands and send the standard input to an

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3075

103140

103141

103142

103143

103144

103145

103146

103147

103148

103149

103150

103151

103152

103153

103154

103155

103156

103157

103158

103159

103160

103161

103162

103163

103164

103165

103166

103167

103168

103169

103170

103171

103172

103173

103174

103175

103176

103177

103178

103179

103180

103181

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

lp Utilities

unspecified output device.

This volume of POSIX.1-2024 makes no representations concerning the format of the printed
output, except that it must be ``human-readable’’ and ``non-volatile’’. Thus, writing by default to
a disk or tape drive or a display terminal would not qualify. (Such destinations are not
prohibited when −d dest, LPDEST, or PRINTER are used, however.)

This volume of POSIX.1-2024 is worded such that a ``print job’’ consisting of multiple input files,
possibly in multiple copies, is guaranteed to print so that any one file is not intermixed with
another, but there is no statement that all the files or copies have to print out together.

The −c option may imply a spooling operation, but this is not required. The utility can be
implemented to wait until the printer is ready and then wait until it is finished. Because of that,
there is no attempt to define a queuing mechanism (priorities, classes of output, and so on).

On some historical systems, the request ID reported on the STDOUT can be used to later cancel
or find the status of a request using utilities not defined in this volume of POSIX.1-2024.

Although the historical System V lp and BSD lpr utilities have provided similar functionality,
they used different names for the environment variable specifying the destination printer. Since
the name of the utility here is lp, LPDEST (used by the System V lp utility) was given precedence
over PRINTER (used by the BSD lpr utility). Since environments of users frequently contain one
or the other environment variable, the lp utility is required to recognize both. If this was not
done, many applications would send output to unexpected output devices when users moved
from system to system.

Some have commented that lp has far too little functionality to make it worthwhile. Requests
have proposed additional options or operands or both that added functionality. The requests
included:

• Wording requiring the output to be ``hardcopy’’

• A requirement for multiple printers

• Options for supporting various page-description languages

Given that a compliant system is not required to even have a printer, placing further restrictions
upon the behavior of the printer is not useful. Since hardcopy format is so application-
dependent, it is difficult, if not impossible, to select a reasonable subset of functionality that
should be required on all compliant systems.

The term unspecified is used in this section in lieu of implementation-defined as most known
implementations would not be able to make definitive statements in their conformance
documents; the existence and usage of printers is very dependent on how the system
administrator configures each individual system.

Since the default destination, device type, queuing mechanisms, and acceptable forms of input
are all unspecified, usage guidelines for what a conforming application can do are as follows:

• Use the command in a pipeline, or with −c, so that there are no permission problems and
the files can be safely deleted or modified.

• Limit output to text files of reasonable line lengths and printable characters and include no
device-specific formatting information, such as a page description language. The meaning
of ``reasonable’’ in this context can only be answered as a quality-of-implementation issue,
but it should be apparent from historical usage patterns in the industry and the locale. The
pr and fold utilities can be used to achieve reasonable formatting for the default page size
of the implementation.

3076 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103182

103183

103184

103185

103186

103187

103188

103189

103190

103191

103192

103193

103194

103195

103196

103197

103198

103199

103200

103201

103202

103203

103204

103205

103206

103207

103208

103209

103210

103211

103212

103213

103214

103215

103216

103217

103218

103219

103220

103221

103222

103223

103224

103225

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities lp

Alternatively, the application can arrange its installation in such a way that it requires the system
administrator or operator to provide the appropriate information on lp options and environment
variable values.

At a minimum, having this utility in this volume of POSIX.1-2024 tells the industry that
conforming applications require a means to print output and provides at least a command name
and LPDEST routing mechanism that can be used for discussions between vendors, application
developers, and users. The use of ``should’’ in the DESCRIPTION of lp clearly shows the intent
of the standard developers, even if they cannot mandate that all systems (such as laptops) have
printers.

This volume of POSIX.1-2024 does not specify what the ownership of the process performing the
writing to the output device may be. If −c is not used, it is unspecified whether the process
performing the writing to the output device has permission to read file if there are any
restrictions in place on who may read file until after it is printed. Also, if −c is not used, the
results of deleting file before it is printed are unspecified.

FUTURE DIRECTIONS
None.

SEE ALSO
mailx

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the requirement to associate a unique request ID, and the normal
generation of a banner page is added.

• In the OPTIONS section:

— The −d dest description is expanded, but references to lpstat are removed.

— The −m, −o, −s, −t, and −w options are added.

• In the ENVIRONMENT VARIABLES section, LC_TIME may now affect the execution.

• The STDOUT section is added.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3077

103226

103227

103228

103229

103230

103231

103232

103233

103234

103235

103236

103237

103238

103239

103240

103241

103242

103243

103244

103245

103246

103247

103248

103249

103250

103251

103252

103253

103254

103255

103256

103257

103258

103259

103260

103261

103262

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ls Utilities

NAME
ls — list directory contents

SYNOPSIS
XSI ls [-ikqrs] [-glno] [-A|-a] [-C|-m|-x|-1] \

[-F|-p] [-H|-L] [-R|-d] [-S|-f|-t] [-c|-u] [file...]

DESCRIPTION
For each operand that names a file of a type other than directory or symbolic link to a directory,
ls shall write the name of the file as well as any requested, associated information. For each
operand that names a file of type directory, ls shall write the names of files contained within the
directory as well as any requested, associated information. Filenames beginning with a <period>
('.') and any associated information shall not be written out unless explicitly referenced, the
−A or −a option is supplied, or an implementation-defined condition causes them to be written.
If one or more of the −d, −F, or −l options are specified, and neither the −H nor the −L option is
specified, for each operand that names a file of type symbolic link to a directory, ls shall write the
name of the file as well as any requested, associated information. If none of the −d, −F, or −l
options are specified, or the −H or −L options are specified, for each operand that names a file of
type symbolic link to a directory, ls shall write the names of files contained within the directory
as well as any requested, associated information. In each case where the names of files contained
within a directory are written, if the directory contains any symbolic links then ls shall evaluate
the file information and file type to be those of the symbolic link itself, unless the −L option is
specified.

If no operands are specified, ls shall behave as if a single operand of dot ('.') had been
specified. If more than one operand is specified, ls shall write non-directory operands first; it
shall sort directory and non-directory operands separately according to the collating sequence in
the current locale.

Whenever ls sorts filenames or pathnames according to the collating sequence in the current
locale, if this collating sequence does not have a total ordering of all characters (see XBD Section
7.3.2, on page 139), then any filenames or pathnames that collate equally shall be further
compared byte-by-byte using the collating sequence for the POSIX locale.

The ls utility shall detect infinite loops; that is, entering a previously visited directory that is an
ancestor of the last file encountered. When it detects an infinite loop, ls shall write a diagnostic
message to standard error and shall either recover its position in the hierarchy or terminate.

OPTIONS
The ls utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−A Write out all directory entries, including those whose names begin with a <period>
('.') but excluding the entries dot and dot-dot (if they exist).

−C Write multi-text-column output with entries sorted down the columns, according
to the collating sequence. The number of text columns and the column separator
characters are unspecified, but should be adapted to the nature of the output
device. This option disables long format output.

Note: Since the output from this option may use separator characters that include
characters that might appear in filenames (in addition to the problems related to
<newline>s in filenames), −C should not be used when filenames might be
extracted from the output by a script.

3078 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103263

103264

103265

103266

103267

103268

103269

103270

103271

103272

103273

103274

103275

103276

103277

103278

103279

103280

103281

103282

103283

103284

103285

103286

103287

103288

103289

103290

103291

103292

103293

103294

103295

103296

103297

103298

103299

103300

103301

103302

103303

103304

103305

103306

103307

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ls

−F Do not follow symbolic links named as operands unless the −H or −L options are
specified. Write a <slash> ('/') immediately after each pathname that is a
directory, an <asterisk> ('*') after each that is executable, a <vertical-line> ('|')
after each that is a FIFO, an <equals-sign> ('=') after each that is a socket, and a
<commercial-at> ('@') after each that is a symbolic link. For other file types, other
symbols may be written.

−H Evaluate the file information and file type for symbolic links specified on the
command line to be those of the file referenced by the link, and not the link itself;
however, ls shall write the name of the link itself and not the file referenced by the
link.

−L Evaluate the file information and file type for all symbolic links (whether named
on the command line or encountered in a file hierarchy) to be those of the file
referenced by the link, and not the link itself; however, ls shall write the name of
the link itself and not the file referenced by the link. When −L is used with −l, write
the contents of symbolic links in the long format (see the STDOUT section).

−R Recursively list subdirectories encountered. Subdirectories with filenames
beginning with a <period> ('.') shall be recursively listed if and only if the
subdirectory name was included in the filenames listed for the containing
directory. When a symbolic link to a directory is encountered, the directory shall
not be recursively listed unless the −L option is specified. The use of −R with −d or
−f produces unspecified results.

−S Sort with the primary key being file size (in decreasing order) and the secondary
key being filename in the collating sequence (in increasing order). For a symbolic
link, the size used as the sort key is that of the symbolic link itself, unless ls is
evaluating its file information to be that of the file referenced by the link (see the
−H and −L options).

−a Write out all directory entries, including those whose names begin with a <period>
('.').

−c Use time of last modification of the file status information (see XBD <sys/stat.h>)
instead of last modification of the file itself for sorting (−t) or writing (−l).

−d Do not follow symbolic links named as operands unless the −H or −L options are
specified. Do not treat directories differently than other types of files. The use of −d
with −R or −f produces unspecified results.

−f List the entries in directory operands in the order they appear in the directory. The
behavior for non-directory operands is unspecified. This option shall turn on −a.
When −f is specified, any occurrences of the −r, −S, and −t options shall be ignored

XSIXSI and any occurrences of the −A, −g, −l, −n, −o, and −s options may be ignored. The
use of −f with −R or −d produces unspecified results.

XSI −g Turn on the −l (ell) option, but disable writing the file’s owner name or number.
Disable the −C, −m, and −x options.

−i For each file, write the file’s file serial number (see stat() in the System Interfaces
volume of POSIX.1-2024).

−k Set the block size for the −s option and the per-directory block count written for
XSI the −l, −n, −s, −g, and −o options (see the STDOUT section) to 1 024 bytes.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3079

103308

103309

103310

103311

103312

103313

103314

103315

103316

103317

103318

103319

103320

103321

103322

103323

103324

103325

103326

103327

103328

103329

103330

103331

103332

103333

103334

103335

103336

103337

103338

103339

103340

103341

103342

103343

103344

103345

103346

103347

103348

103349

103350

103351

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ls Utilities

−l (The letter ell.) Do not follow symbolic links named as operands unless the −H or
−L options are specified. Write out in long format (see the STDOUT section).
Disable the −C, −m, and −x options.

−m Stream output format; list pathnames across the page, separated by a <comma>
character followed by a <space> character. Use a <newline> character as the list
terminator and after the separator sequence when there is not room on a line for
the next list entry. This option disables long format output.

−n Turn on the −l (ell) option, but when writing the file’s owner or group, write the
file’s numeric UID or GID rather than the user or group name, respectively. Disable
the −C, −m, and −x options.

XSI −o Turn on the −l (ell) option, but disable writing the file’s group name or number.
Disable the −C, −m, and −x options.

−p Write a <slash> ('/') after each pathname if that file is a directory.

−q Force each instance of non-printable filename characters (including <newline>,
<tab>, and other control characters) to be written as the <question-mark> ('?')
character. Implementations may provide this option by default if the output is to a
terminal device.

−r Reverse the order of the sort to get reverse collating sequence, oldest first, or
smallest file size first depending on the other options given.

−s Indicate the total number of file system blocks consumed by each file displayed. If
the −k option is also specified, the block size shall be 1 024 bytes; otherwise, the
block size is implementation-defined.

−t Sort with the primary key being time modified (most recently modified first) and
the secondary key being filename in the collating sequence. For a symbolic link,
the time used as the sort key is that of the symbolic link itself, unless ls is
evaluating its file information to be that of the file referenced by the link (see the
−H and −L options).

−u Use time of last access (see XBD <sys/stat.h>) instead of last modification of the file
for sorting (−t) or writing (−l).

−x The same as −C, except that the multi-text-column output is produced with entries
sorted across, rather than down, the columns. This option disables long format
output.

−1 (The numeric digit one.) Force output to be one entry per line. This option does
XSI not disable long format output. (Long format output is enabled by −g, −l (ell), −n,
XSI and −o; and disabled by −C, −m, and −x.)

XSIXSI If an option that enables long format output (−g, −l (ell), −n, and −o) is given with an option that
disables long format output (−C, −m, and −x), this shall not be considered an error. The last of
these options specified shall determine whether long format output is written.

If −R, −d, or −f are specified, the results of specifying these mutually-exclusive options are
specified by the descriptions of these options above. If more than one of any of the other options
shown in the SYNOPSIS section in mutually-exclusive sets are given, this shall not be considered
an error; the last option specified in each set shall determine the output.

Note that if −t is specified, −c and −u are not only mutually-exclusive with each other, they are
also mutually-exclusive with −S when determining sort order. But even if −S is specified after all
occurrences of −c, −t, and −u, the last use of −c or −u determines the timestamp printed when

3080 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103352

103353

103354

103355

103356

103357

103358

103359

103360

103361

103362

103363

103364

103365

103366

103367

103368

103369

103370

103371

103372

103373

103374

103375

103376

103377

103378

103379

103380

103381

103382

103383

103384

103385

103386

103387

103388

103389

103390

103391

103392

103393

103394

103395

103396

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ls

producing long format output.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be written. If the file specified is not found, a diagnostic
message shall be output on standard error.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ls:

COLUMNS Override the system-selected horizontal display line size, used to determine the
column position width for writing multiple text-column output. See XBD Chapter
8 (on page 167) for valid values and results when it is unset or null. The ls utility
shall use this value to calculate how many pathname text columns to write (see
−C). The column width chosen to write the names of files in any given directory
shall be constant. Filenames shall not be truncated to fit into the multiple text-
column output.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for character collation information in determining the
pathname collation sequence.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments) and which characters are defined as printable (character class print).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the format and contents for date and time strings written by ls.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone for date and time strings written by ls. If TZ is unset or
null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The default format shall be to list one entry per line to standard output; the exceptions are to
terminals or when one of the −C, −m, or −x options is specified. If the output is to a terminal, the
format is implementation-defined.

In the formats specified below, except where specified otherwise the <pathname> field shall

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3081

103397

103398

103399

103400

103401

103402

103403

103404

103405

103406

103407

103408

103409

103410

103411

103412

103413

103414

103415

103416

103417

103418

103419

103420

103421

103422

103423

103424

103425

103426

103427

103428

103429

103430

103431

103432

103433

103434

103435

103436

103437

103438

103439

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ls Utilities

consist of the file’s pathname and, if the −F or −p option is specified, any indicator character
written after the pathname as described for those options.

When −m is specified, the format used for the last element of the list shall be:

"%s\n", <pathname>

The format used for each other element of the list shall be:

"%s,%s", <pathname>, <separator>

where, if there is not room for the next element of the list to fit within the current line length,
<separator> is a string containing an optional <space> character and a mandatory <newline>
character; otherwise it is a single <space> character.

If the −i option is specified, the file’s file serial number (see XBD <sys/stat.h>) shall be written in
the following format before any other output for the corresponding entry:

%u ", <file serial number>

If the −l option is specified, the following information shall be written for files other than
character special and block special files:

"%s %u %s %s %u %s %s\n", <file mode>, <number of links>,
<owner name>, <group name>, <size>, <date and time>,
<pathname>

If the −l option is specified, the following information shall be written for character special and
block special files:

"%s %u %s %s %s %s %s\n", <file mode>, <number of links>,
<owner name>, <group name>, <device info>, <date and time>,
<pathname>

In both cases if the file is a symbolic link and the −L option is also specified, this information
shall be for the file resolved from the symbolic link, except that the <pathname> field shall
contain the pathname of the symbolic link itself. If the file is a symbolic link and the −L option is
not specified, this information shall be about the link itself and the <pathname> field shall be one
of the following forms:

• "%s%sΔ->Δ%s", <pathname of link>, <link type indicator>,
<contents of link>

• "%sΔ->Δ%s%s", <pathname of link>, <contents of link>,
<file type indicator>

• "%s%sΔ->Δ%s%s", <pathname of link>, <link type indicator>,
<contents of link>, <file type indicator>

where <link type indicator> is a <commercial-at> ('@') if the −F option is specified, or an empty
string otherwise and <file type indicator> is the required indicator character, if any, for the file
resolved from the symbolic link if the −F or −p option is specified, or an empty string otherwise.
If pathname resolution fails when following the symbolic link, this shall not be treated as an
error and the <file type indicator> field shall be an empty string.

XSI The −n, −g, and −o options use the same format as −l, but with omitted items and their
associated <blank> characters. See the OPTIONS section.

In both the preceding −l forms, if <owner name> or <group name> cannot be determined, or if −n
is given, they shall be replaced with their associated numeric values using the format %u.

3082 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103440

103441

103442

103443

103444

103445

103446

103447

103448

103449

103450

103451

103452

103453

103454

103455

103456

103457

103458

103459

103460

103461

103462

103463

103464

103465

103466

103467

103468

103469

103470

103471

103472

103473

103474

103475

103476

103477

103478

103479

103480

103481

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ls

The <size> field shall contain the value that would be returned for the file in the st_size field of
struct stat (see XBD <sys/stat.h>). Note that for some file types this value is unspecified.

The <device info> field shall contain implementation-defined information associated with the
device in question.

The <date and time> field shall contain the appropriate date and timestamp of when the file was
last modified. In the POSIX locale, the field shall be the equivalent of the output of the following
date command:

date "+%b %e %H:%M"

if the file has been modified in the last six months, or:

date "+%b %e %Y"

(where two <space> characters are used between %e and %Y) if the file has not been modified in
the last six months or if the modification date is in the future, except that, in both cases, the final
<newline> produced by date shall not be included and the output shall be as if the date
command were executed at the time of the last modification date of the file rather than the
current time. When the LC_TIME locale category is not set to the POSIX locale, a different format
and order of presentation of this field may be used.

If the pathname was specified as a file operand, it shall be written as specified.

XSI The file mode written under the −l, −n, −g, and −o options shall consist of the following format:

"%c%s%s%s%s", <entry type>, <owner permissions>,
<group permissions>, <other permissions>,
<optional alternate access method flag>

The <optional alternate access method flag> shall be the empty string if there is no alternate or
additional access control method associated with the file; otherwise, it shall be a string
containing a single printable character that is not a <blank>.

The <entry type> character shall describe the type of file, as follows:

d Directory.

b Block special file.

c Character special file.

l (ell) Symbolic link.

p FIFO.

s Socket.

− Regular file.

Implementations may add other characters to this list to represent other implementation-defined
file types.

The next three fields shall be three characters each:

<owner permissions>
Permissions for the file owner class (see XBD Section 4.7, on page 97).

<group permissions>
Permissions for the file group class.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3083

103482

103483

103484

103485

103486

103487

103488

103489

103490

103491

103492

103493

103494

103495

103496

103497

103498

103499

103500

103501

103502

103503

103504

103505

103506

103507

103508

103509

103510

103511

103512

103513

103514

103515

103516

103517

103518

103519

103520

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ls Utilities

<other permissions>
Permissions for the file other class.

Each field shall have three character positions:

1. If 'r', the file is readable; if '−', the file is not readable.

2. If 'w', the file is writable; if '−', the file is not writable.

3. The first of the following that applies:

S If in <owner permissions>, the file is not executable and set-user-ID mode is set. If in
<group permissions>, the file is not executable and set-group-ID mode is set.

s If in <owner permissions>, the file is executable and set-user-ID mode is set. If in
<group permissions>, the file is executable and set-group-ID mode is set.

XSI T If in <other permissions> and the file is a directory, search permission is not granted to
others, and the restricted deletion flag is set.

XSI t If in <other permissions> and the file is a directory, search permission is granted to
others, and the restricted deletion flag is set.

x The file is executable or the directory is searchable.

− None of the attributes of 'S', 's', 'T', 't', or 'x' applies.

Implementations may add other characters to this list for the third character position.
Such additions shall, however, be written in lowercase if the file is executable or
searchable, and in uppercase if it is not.

XSI If any of the −l, −n, −s, −g, or −o options is specified, each list of files within a directory shall be
preceded by a status line indicating the number of file system blocks occupied by the listed files
for that directory in 512-byte units if the −k option is not specified, or 1 024-byte units if the −k
option is specified, rounded up to the next integral number of units, if necessary. In the POSIX
locale, the format shall be:

"total %u\n", <number of units in the directory>

If more than one directory, or a combination of non-directory files and directories are written,
either as a result of specifying multiple operands, or the −R option, each list of files within a
directory shall be preceded by:

"\n%s:\n", <directory name>

The above string may be omitted for the directory named by the operand if only one operand is
present. It may also be omitted for dot ('.') if no operands are present. If this string is the first
thing to be written, the first <newline> shall not be written. This output shall precede the
number of units in the directory.

If the −s option is given, each file shall be written with the number of blocks used by the file.
XSI Along with −C, −1, −m, or −x, the number and a <space> shall precede the filename; with −l, −n,

−g, or −o, they shall precede each line describing a file.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

3084 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103521

103522

103523

103524

103525

103526

103527

103528

103529

103530

103531

103532

103533

103534

103535

103536

103537

103538

103539

103540

103541

103542

103543

103544

103545

103546

103547

103548

103549

103550

103551

103552

103553

103554

103555

103556

103557

103558

103559

103560

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ls

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
It is difficult for an application to use every part of the file modes field of ls −l in a portable
manner. Certain file types and executable bits are not guaranteed to be exactly as shown, as
implementations may have extensions. Applications can use this field to pass directly to a user
printout or prompt, but actions based on its contents should generally be deferred, instead, to
the test utility.

The output of ls (with the −l and related options) contains information that logically could be
used by utilities such as chmod and touch to restore files to a known state. However, this
information is presented in a format that cannot be used directly by those utilities or be easily
translated into a format that can be used. A character has been added to the end of the
permissions string so that applications at least have an indication that they may be working in
an area they do not understand instead of assuming that they can translate the permissions
string into something that can be used. Future versions or related documents may define one or
more specific characters to be used based on different standard additional or alternative access
control mechanisms.

As with many of the utilities that deal with filenames, the output of ls for multiple files or in one
of the long listing formats must be used carefully on systems where filenames can contain
embedded white space. Systems and system administrators should institute policies and user
training to limit the use of such filenames.

The number of disk blocks occupied by the file that it reports varies depending on underlying
file system type, block size units reported, and the method of calculating the number of blocks.
On some file system types, the number is the actual number of blocks occupied by the file
(counting indirect blocks and ignoring holes in the file); on others it is calculated based on the
file size (usually making an allowance for indirect blocks, but ignoring holes).

The total number provided when using ls −l does not necessarily correspond to the space that
would be reclaimed if all the listed files were removed, because of hard links (and symbolic links
if −L is present). The space for each listed file is counted in the total regardless of any
relationship between the files.

EXAMPLES
An example of a small directory tree being fully listed with ls −laRF a in the POSIX locale:

a:
total 11
drwxr-xr-x 3 fox prog 64 Jul 4 12:07 ./
drwxrwxrwx 4 fox prog 3264 Jul 4 12:09 ../
drwxr-xr-x 2 fox prog 48 Jul 4 12:07 b/
-rwxr--r-- 1 fox prog 572 Jul 4 12:07 foo*

a/b:
total 4

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3085

103561

103562

103563

103564

103565

103566

103567

103568

103569

103570

103571

103572

103573

103574

103575

103576

103577

103578

103579

103580

103581

103582

103583

103584

103585

103586

103587

103588

103589

103590

103591

103592

103593

103594

103595

103596

103597

103598

103599

103600

103601

103602

103603

103604

103605

103606

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ls Utilities

drwxr-xr-x 2 fox prog 48 Jul 4 12:07 ./
drwxr-xr-x 3 fox prog 64 Jul 4 12:07 ../
-rw-r--r-- 1 fox prog 700 Jul 4 12:07 bar

where the "a:" line may be omitted by some implementations.

RATIONALE
Some historical implementations of the ls utility show all entries in a directory except dot and
dot-dot when a superuser invokes ls without specifying the −a option. When ``normal’’ users
invoke ls without specifying −a, they should not see information about any files with names
beginning with a <period> unless they were named as file operands.

Implementations are expected to traverse arbitrary depths when processing the −R option. The
only limitation on depth should be based on running out of physical storage for keeping track of
untraversed directories.

The −1 (one) option was historically found in BSD and BSD-derived implementations only. It is
required in this volume of POSIX.1-2024 so that conforming applications might ensure that
output is one entry per line, even if the output is to a terminal.

The −S option was added in Issue 7, but had been provided by several implementations for
many years. The description given in the standard documents historic practice, but does not
match much of the documentation that described its behavior. Historical documentation
typically described it as something like:

−S Sort by size (largest size first) instead of by name. Special character devices (listed
last) are sorted by name.

even though the file type was never considered when sorting the output. Character special files
do typically sort close to the end of the list because their file size on most implementations is
zero. But they are sorted alphabetically with any other files that happen to have the same file
size (zero), not sorted separately and added to the end.

This volume of POSIX.1-2024 is frequently silent about what happens when mutually-exclusive
options are specified. Except for −R, −d, and −f, the ls utility is required to accept multiple
options from each mutually-exclusive option set without treating them as errors and to use the
behavior specified by the last option given in each mutually-exclusive set. Since ls is one of the
most aliased commands, it is important that the implementation perform intuitively. For
example, if the alias were:

alias ls="ls -C"

and the user typed ls −1 (one), single-text-column output should result, not an error.

The −g, −l (ell), −n, and −o options are not mutually-exclusive options. They all enable long
format output. They work together to determine whether the file’s owner is written (no if −g is
present), file’s group is written (no if −o is present), and if the file’s group or owner is written
whether it is written as the name (default) or a string representation of the UID or GID number
(if −n is present). The −C, −m, −x, and −1 (one) are mutually-exclusive options and the first three
of these disable long format output. The −1 (one) option does not directly change whether or not
long format output is enabled, but by overriding −C, −m, and −x, it can re-enable long format
output that had been disabled by one of these options.

Earlier versions of this standard did not describe the BSD −A option (like −a, but dot and dot-dot
are not written out). It has been added due to widespread implementation.

Implementations may make −q the default for terminals to prevent trojan horse attacks on
terminals with special escape sequences. This is not required because:

3086 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103607

103608

103609

103610

103611

103612

103613

103614

103615

103616

103617

103618

103619

103620

103621

103622

103623

103624

103625

103626

103627

103628

103629

103630

103631

103632

103633

103634

103635

103636

103637

103638

103639

103640

103641

103642

103643

103644

103645

103646

103647

103648

103649

103650

103651

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ls

• Some control characters may be useful on some terminals; for example, a system might
write them as "\001" or "^A".

• Special behavior for terminals is not relevant to applications portability.

An early proposal specified that the <optional alternate access method flag> had to be '+' if there
was an alternate access method used on the file or <space> if there was not. This was changed to
be <space> if there is not and a single printable character if there is. This was done for three
reasons:

1. There are historical implementations using characters other than '+'.

2. There are implementations that vary this character used in that position to distinguish
between various alternate access methods in use.

3. The standard developers did not want to preclude future specifications that might need a
way to specify more than one alternate access method.

Nonetheless, implementations providing a single alternate access method are encouraged to use
'+'.

Earlier versions of this standard did not have the −k option, which meant that the −s option
could not be used portably as its block size was implementation-defined, and the units used to
specify the number of blocks occupied by files in a directory in an ls −l listing were fixed as
512-byte units. The −k option has been added to provide a way for the −s option to be used
portably, and for consistency it also changes the aforementioned units from 512-byte to
1 024-byte.

The <date and time> field in the −l format is specified only for the POSIX locale. As noted, the
format can be different in other locales. No mechanism for defining this is present in this volume
of POSIX.1-2024, as the appropriate vehicle is a messaging system; that is, the format should be
specified as a ``message’’.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

Allowing −f to ignore the −A, −g, −l, −n, −o, and −s options may be removed in a future version.

SEE ALSO
chmod , find , readlink

XBD Section 7.3.2 (on page 139), Section 4.7 (on page 97), Chapter 8 (on page 167), Section 12.2
(on page 215), <sys/stat.h>

XSH fstatat()

CHANGE HISTORY
First released in Issue 2.

Issue 5
A second FUTURE DIRECTION is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3087

103652

103653

103654

103655

103656

103657

103658

103659

103660

103661

103662

103663

103664

103665

103666

103667

103668

103669

103670

103671

103672

103673

103674

103675

103676

103677

103678

103679

103680

103681

103682

103683

103684

103685

103686

103687

103688

103689

103690

103691

103692

103693

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ls Utilities

• In the −F option, other symbols are allowed for other file types.

Tr eatment of symbolic links is added, as defined in the IEEE P1003.2b draft standard.

The Open Group Base Resolution bwg2001-010 is applied, adding the T and t fields as part of
the XSI option.

Issue 7
Austin Group Interpretation 1003.1-2001 #101 is applied, clarifying the optional alternate access
method flag in the STDOUT section.

Austin Group Interpretation 1003.1-2001 #128 is applied, clarifying the DESCRIPTION and the
definition of the −R option.

Austin Group Interpretation 1003.1-2001 #129 is applied, clarifying the behavior of ls when no
operands are specified.

Austin Group Interpretation 1003.1-2001 #198 is applied, clarifying the requirements for the −H
option.

SD5-XCU-ERN-50 is applied, adding the −A option.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The −S option is added from The Open Group Technical Standard, 2006, Extended API Set
Part 1.

The −f, −m, −n, −p, −s, and −x options are moved from the XSI option to the Base.

The description of the −f, −s, and −t options are revised and the −k option is added.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0098 [424], XCU/TC1-2008/0099
[424], XCU/TC1-2008/0100 [424], XCU/TC1-2008/0101 [424], XCU/TC1-2008/0102 [424],
XCU/TC1-2008/0103 [424], XCU/TC1-2008/0104 [424], XCU/TC1-2008/0105 [423,424],
XCU/TC1-2008/0106 [424], XCU/TC1-2008/0107 [424], XCU/TC1-2008/0108 [424],
XCU/TC1-2008/0109 [424], XCU/TC1-2008/0110 [424], XCU/TC1-2008/0111 [423],
XCU/TC1-2008/0112 [117], XCU/TC1-2008/0113 [117], XCU/TC1-2008/0114 [117],
XCU/TC1-2008/0115 [424], and XCU/TC1-2008/0116 [424] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0115 [963] and XCU/TC2-2008/0116
[963] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1023 is applied, clarifying the −R option with respect to subdirectory
filenames beginning with a <period>.

Austin Group Defect 1070 is applied, requiring that any filenames or pathnames that collate
equally are further compared byte-by-byte using the collating sequence for the POSIX locale.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1146 is applied, clarifying the requirements for the status line written by ls
−l.

Austin Group Defect 1147 is applied, clarifying the requirements for trailing file type indicators
(such as '/' for a directory).

3088 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103694

103695

103696

103697

103698

103699

103700

103701

103702

103703

103704

103705

103706

103707

103708

103709

103710

103711

103712

103713

103714

103715

103716

103717

103718

103719

103720

103721

103722

103723

103724

103725

103726

103727

103728

103729

103730

103731

103732

103733

103734

103735

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ls

Austin Group Defect 1148 is applied, clarifying the behavior of the −S option for symbolic links.

Austin Group Defect 1149 is applied, inserting a comma in the description of the −r option.

Austin Group Defect 1185 is applied, changing the COLUMNS entry in ENVIRONMENT
VARIABLES.

Austin Group Defect 1217 is applied, adding file type indicators for sockets.

Austin Group Defect 1261 is applied, changing the STDOUT and EXAMPLES sections in relation
to the <directory name> output.

Austin Group Defect 1457 is applied, adding readlink to the SEE ALSO section.

Austin Group Defect 1703 is applied, changing ``at-sign’’ to ``<commercial-at>’’.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3089

103736

103737

103738

103739

103740

103741

103742

103743

103744

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

m4 Utilities

NAME
m4 — macro processor

SYNOPSIS
m4 [-s] [-D name[=val]]... [-U name]... [file...]

DESCRIPTION
The m4 utility is a macro processor that shall read one or more text files, process them according
to their included macro statements, and write the results to standard output.

OPTIONS
The m4 utility shall conform to XBD Section 12.2 (on page 215), except that the order of the −D
and −U options shall be significant, and options can be interspersed with operands.

The following options shall be supported:

−s Enable line synchronization output for the c17 preprocessor phase (that is, #line
directives).

−D name[=val]
Define name to val or to null if =val is omitted.

−U name Undefine name.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to be processed. If no file is given, or if it is '−', the
standard input shall be read.

STDIN
The standard input shall be a text file that is used if no file operand is given, or if it is '−'.

INPUT FILES
The input file named by the file operand shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of m4:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

3090 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103745

103746

103747

103748

103749

103750

103751

103752

103753

103754

103755

103756

103757

103758

103759

103760

103761

103762

103763

103764

103765

103766

103767

103768

103769

103770

103771

103772

103773

103774

103775

103776

103777

103778

103779

103780

103781

103782

103783

103784

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities m4

STDOUT
The standard output shall be the same as the input files, after being processed for macro
expansion.

STDERR
The standard error shall be used to display strings with the errprint macro, macro tracing
enabled by the traceon macro, the defined text for macros written by the dumpdef macro, or for
diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The m4 utility shall compare each token from the input against the set of built-in and user-
defined macros. If the token matches the name of a macro, then the token shall be replaced by
the macro’s defining text, if any, then scanning for tokens shall resume at the start of the macro’s
defining text concatenated with the subsequent input. If a token does not match the name of a
macro, it shall be written to standard output. Macros may have arguments, in which case the
arguments shall be substituted into the defining text before it is rescanned.

No special meaning shall be given to characters enclosed between matching left and right
quoting strings, other than identifying nested quoting while finding the matching right quoting
string, but the outermost quoting strings shall themselves be discarded. By default, the left
quoting string consists of a grave accent (backquote) and the right quoting string consists of an
acute accent (single-quote); see also the changequote macro.

Comments are written but not scanned for matching macro names; by default, the begin-
comment string consists of the <number-sign> character and the end-comment string consists of
a <newline>. See also the changecom and dnl macros.

Name tokens shall consist of the longest possible sequence of letters, digits, and underscores,
where the first character is not a digit. Tokens not of this form shall not be treated as name
tokens. A macro call is a name token that matches the name of a built-in or user-defined macro.
Macro calls can have either of the following forms, which shall be distinguished by whether or
not the macro name is immediately followed by a <left-parenthesis>:

name

name(arg1, arg2, ..., argn)

The application shall ensure that the <left-parenthesis> immediately follows the name of the
macro. If a token matching the name of a macro is not followed by a <left-parenthesis>, it shall
be handled as a use of that macro without arguments.

If a macro name is followed by a <left-parenthesis>, the subsequent text shall be tokenized and
expanded until a token is encountered that is not a quoted string and whose expansion includes
a matching unquoted <right-parenthesis>. The expanded text between the <left-parenthesis>
and the matching unquoted <right-parenthesis> is the macro’s argument text. An unquoted
<comma> character within the macro’s argument text shall mark the end of one argument and
the beginning of the next argument unless the unquoted <comma> is enclosed within a nested
unquoted <left-parenthesis>, <right-parenthesis> pair. The unquoted <comma> characters that
separate the arguments, and any unquoted white-space characters at the beginning of each
argument, shall be discarded. All other characters in the macro’s argument text, including any
white-space characters at the end of an argument and any nested parenthesized text, shall be
retained. The input text containing the macro name, the following <left-parenthesis>, and all
tokens up to and including the token whose expansion contained the matching unquoted <right-
parenthesis> shall be replaced, and tokenization shall resume on the result of performing

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3091

103785

103786

103787

103788

103789

103790

103791

103792

103793

103794

103795

103796

103797

103798

103799

103800

103801

103802

103803

103804

103805

103806

103807

103808

103809

103810

103811

103812

103813

103814

103815

103816

103817

103818

103819

103820

103821

103822

103823

103824

103825

103826

103827

103828

103829

103830

103831

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

m4 Utilities

argument substition on the macro’s defining text followed by any expanded text that followed
the matching unquoted <right-parenthesis>. Otherwise, the macro name was not followed by a
<left-parenthesis>, and tokenization shall resume on the result of performing argument
substitution with zero arguments on the macro’s defining text.

During argument substitution, arguments shall be positionally defined and referenced. The
string "$1" in the defining text shall be replaced by the first argument. Systems shall support at
least nine arguments; only the first nine can be referenced, using the strings "$1" to "$9",
inclusive. The string "$0" shall be replaced with the name of the macro. The string "$#" shall
be replaced by the number of arguments as a minimal string of decimal digits ('0' if the macro
was invoked without being followed by a <left-parenthesis>, otherwise 1 more than the number
of unquoted <comma> characters that divided arguments in the macro’s argument text). The
string "$*" shall be replaced by a list of all of the arguments, separated by <comma> characters.
The string "$@" shall be replaced by a list of all of the arguments separated by <comma>
characters, and each argument shall be quoted using the current left and right quoting strings.
The string "${" produces unspecified behavior.

If fewer arguments are supplied than are in the macro definition, the omitted arguments are
taken to be null. It is not an error if more arguments are supplied than are in the macro
definition.

The m4 utility shall make available the following built-in macros. They can be redefined, but
once this is done the original meaning is lost. Their values shall be null unless otherwise stated.
In the descriptions below, the term defining text refers to the value of the macro: the second
argument to the define macro, among other things. Except for the first argument to the eval
macro, all numeric arguments to built-in macros shall be interpreted as decimal values. The
string values produced as the defining text of the decr, divnum, incr, index, len, and sysval
built-in macros shall be in the form of a decimal-constant as defined in the C language.

changecom The changecom macro shall set the begin-comment and end-comment strings.
With no arguments, the comment mechanism shall be disabled. With a single non-
null argument, that argument shall become the begin-comment and the <newline>
shall become the end-comment string. With two non-null arguments, the first
argument shall become the begin-comment string and the second argument shall
become the end-comment string. The behavior is unspecified if either argument is
provided but null, or if either argument includes letters, digits, underscore, or
<left-parenthesis>. Systems shall support comment strings of at least five
characters.

changequote The changequote macro shall set the begin-quote and end-quote strings. With no
arguments, the quote strings shall be set to the default values (that is, `’). The
behavior is unspecified if there is a single argument, or if either argument is null or
includes letters, digits, underscore, or <left-parenthesis>. With two non-null
arguments, the first argument shall become the begin-quote string and the second
argument shall become the end-quote string. Systems shall support quote strings
of at least five characters.

decr The defining text of the decr macro shall be its first argument decremented by 1. It
shall be an error to specify an argument containing any non-numeric characters.
The behavior is unspecified if decr is not immediately followed by a <left-
parenthesis>.

define The second argument shall become the defining text of the macro whose name is
the first argument. It is unspecified whether the define macro deletes all prior
definitions of the macro named by its first argument or preserves all but the

3092 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103832

103833

103834

103835

103836

103837

103838

103839

103840

103841

103842

103843

103844

103845

103846

103847

103848

103849

103850

103851

103852

103853

103854

103855

103856

103857

103858

103859

103860

103861

103862

103863

103864

103865

103866

103867

103868

103869

103870

103871

103872

103873

103874

103875

103876

103877

103878

103879

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities m4

current definition of the macro. The behavior is unspecified if define is not
immediately followed by a <left-parenthesis>.

defn The defining text of the defn macro shall be the quoted definition (using the
current quoting strings) of its arguments. The behavior is unspecified if defn is not
immediately followed by a <left-parenthesis>.

divert The m4 utility maintains nine temporary buffers, numbered 1 to 9, inclusive.
When the last of the input has been processed, any output that has been placed in
these buffers shall be written to standard output in buffer-numerical order. The
divert macro shall divert future output to the buffer specified by its argument.
Specifying no argument or an argument of 0 shall resume the normal output
process. Output diverted to a stream with a negative number shall be discarded.
Behavior is implementation-defined if a stream number larger than 9 is specified. It
shall be an error to specify an argument containing any non-numeric characters.

divnum The defining text of the divnum macro shall be the number of the current output
stream as a string.

dnl The dnl macro shall cause m4 to discard all input characters up to and including
the next <newline>.

dumpdef The dumpdef macro shall write the defined text to standard error for each of the
macros specified as arguments, or, if no arguments are specified, for all macros.

errprint The errprint macro shall write its arguments to standard error. The behavior is
unspecified if errprint is not immediately followed by a <left-parenthesis>.

eval The eval macro shall evaluate its first argument as an arithmetic expression, using
signed integer arithmetic with at least 32-bit precision. At least the following C-
language operators shall be supported, with precedence, associativity, and
behavior as described in Section 1.1.2.1 (on page 2457):

()
unary +
unary -
~

!
binary *
/
%
binary +
binary -
<<
>>
<
<=
>
>=
==
!=
binary &
^
|
&&

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3093

103880

103881

103882

103883

103884

103885

103886

103887

103888

103889

103890

103891

103892

103893

103894

103895

103896

103897

103898

103899

103900

103901

103902

103903

103904

103905

103906

103907

103908

103909

103910

103911

103912

103913

103914

103915

103916

103917

103918

103919

103920

103921

103922

103923

103924

103925

103926

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

m4 Utilities

||

Systems shall support octal and hexadecimal numbers as in the ISO C standard.
The second argument, if specified, shall set the radix for the result; if the argument
is blank or unspecified, the default is 10. Behavior is unspecified if the radix falls
outside the range 2 to 36, inclusive. The third argument, if specified, sets the
minimum number of digits in the result. Behavior is unspecified if the third
argument is less than zero. It shall be an error to specify the second or third
argument containing any non-numeric characters. The behavior is unspecified if
eval is not immediately followed by a <left-parenthesis>.

ifdef If the first argument to the ifdef macro is defined, the defining text shall be the
second argument. Otherwise, the defining text shall be the third argument, if
specified, or the null string, if not. The behavior is unspecified if ifdef is not
immediately followed by a <left-parenthesis>.

ifelse The ifelse macro takes three or more arguments. If the first two arguments
compare as equal strings, the defining text shall be the third argument. If the first
two arguments do not compare as equal strings and there are three arguments, the
defining text shall be null. If the first two arguments do not compare as equal
strings and there are four or five arguments, the defining text shall be the fourth
argument. If the first two arguments do not compare as equal strings and there are
six or more arguments, the first three arguments shall be discarded and processing
shall restart with the remaining arguments. The behavior is unspecified if ifelse is
not immediately followed by a <left-parenthesis>.

include The defining text for the include macro shall be the contents of the file named by
the first argument. It shall be an error if the file cannot be read. The behavior is
unspecified if include is not immediately followed by a <left-parenthesis>.

incr The defining text of the incr macro shall be its first argument incremented by 1. It
shall be an error to specify an argument containing any non-numeric characters.
The behavior is unspecified if incr is not immediately followed by a <left-
parenthesis>.

index The defining text of the index macro shall be the first character position (as a
string) in the first argument where a string matching the second argument begins
(zero origin), or −1 if the second argument does not occur. The behavior is
unspecified if index is not immediately followed by a <left-parenthesis>.

len The defining text of the len macro shall be the length (as a string) of the first
argument. The behavior is unspecified if len is not immediately followed by a
<left-parenthesis>.

m4exit Exit from the m4 utility. If the first argument is specified, it shall be the exit code. If
no argument is specified, the exit code shall be zero. It shall be an error to specify
an argument containing any non-numeric characters. If the first argument is zero
or no argument is specified, and an error has previously occurred (for example, a
file operand that could not be opened), the exit status shall be non-zero.

m4wrap The first argument shall be processed when EOF is reached. If the m4wrap macro
is used multiple times, the arguments specified shall be processed in the order in
which the m4wrap macros were processed. The behavior is unspecified if m4wrap
is not immediately followed by a <left-parenthesis>.

3094 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

103927

103928

103929

103930

103931

103932

103933

103934

103935

103936

103937

103938

103939

103940

103941

103942

103943

103944

103945

103946

103947

103948

103949

103950

103951

103952

103953

103954

103955

103956

103957

103958

103959

103960

103961

103962

103963

103964

103965

103966

103967

103968

103969

103970

103971

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities m4

mkstemp The defining text shall be as if it were the resulting pathname after a successful call
to the mkstemp() function defined in the System Interfaces volume of POSIX.1-2024
called with the first argument to the macro invocation. If a file is created, that file
shall be closed. If a file could not be created, the m4 utility shall write a diagnostic
message to standard error and shall continue processing input but its final exit
status shall be non-zero; the defining text of the macro shall be the empty string.
The behavior is unspecified if mkstemp is not immediately followed by a <left-
parenthesis>.

popdef The popdef macro shall delete the current definition of its arguments, replacing
that definition with the previous one. If there is no previous definition, the macro
is undefined. The behavior is unspecified if popdef is not immediately followed by
a <left-parenthesis>.

pushdef The pushdef macro shall be equivalent to the define macro with the exception that
it shall preserve any current definition for future retrieval using the popdef macro.
The behavior is unspecified if pushdef is not immediately followed by a <left-
parenthesis>.

shift The defining text for the shift macro shall be a comma-separated list of its
arguments except the first one. Each argument shall be quoted using the current
quoting strings. The behavior is unspecified if shift is not immediately followed
by a <left-parenthesis>.

sinclude The sinclude macro shall be equivalent to the include macro, except that it shall
not be an error if the file is inaccessible. The behavior is unspecified if sinclude is
not immediately followed by a <left-parenthesis>.

substr The defining text for the substr macro shall be the substring of the first argument
beginning at the zero-offset character position specified by the second argument.
The third argument, if specified, shall be the number of characters to select; if not
specified, the characters from the starting point to the end of the first argument
shall become the defining text. It shall not be an error to specify a starting point
beyond the end of the first argument and the defining text shall be null. It shall be
an error to specify an argument containing any non-numeric characters. The
behavior is unspecified if substr is not immediately followed by a <left-
parenthesis>.

syscmd The syscmd macro shall interpret its first argument as a shell command line. The
defining text shall be the string result of that command. The string result shall not
be rescanned for macros while setting the defining text. No output redirection shall
be performed by the m4 utility. The exit status value from the command can be
retrieved using the sysval macro. The behavior is unspecified if syscmd is not
immediately followed by a <left-parenthesis>.

sysval The defining text of the sysval macro shall be the exit value of the utility last
invoked by the syscmd macro (as a string).

traceon The traceon macro shall enable tracing for the macros specified as arguments, or, if
no arguments are specified, for all macros. The trace output shall be written to
standard error in an unspecified format.

traceoff The traceoff macro shall disable tracing for the macros specified as arguments, or,
if no arguments are specified, for all macros.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3095

103972

103973

103974

103975

103976

103977

103978

103979

103980

103981

103982

103983

103984

103985

103986

103987

103988

103989

103990

103991

103992

103993

103994

103995

103996

103997

103998

103999

104000

104001

104002

104003

104004

104005

104006

104007

104008

104009

104010

104011

104012

104013

104014

104015

104016

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

m4 Utilities

translit The defining text of the translit macro shall be the first argument with every
character that occurs in the second argument replaced with the corresponding
character from the third argument. If no replacement character is specified for
some source character because the second argument is longer than the third
argument, that character shall be deleted from the first argument in translit’s
defining text. The behavior is unspecified if the '−' character appears within the
second or third argument anywhere besides the first or last character. The behavior
is unspecified if the same character appears more than once in the second
argument. The behavior is unspecified if translit is not immediately followed by a
<left-parenthesis>.

undefine The undefine macro shall delete all definitions (including those preserved using
the pushdef macro) of the macros named by its arguments. The behavior is
unspecified if undefine is not immediately followed by a <left-parenthesis>.

undivert The undivert macro shall cause immediate output of any text in temporary buffers
named as arguments, or all temporary buffers if no arguments are specified.
Buffers can be undiverted into other temporary buffers. Undiverting shall discard
the contents of the temporary buffer. The behavior is unspecified if an argument
contains any non-numeric characters.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred

If the m4exit macro is used, the exit value can be specified by the input file.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The defn macro is useful for renaming macros, especially built-ins.

Since eval defers to the ISO C standard, some operations have undefined behavior. In some
implementations, division or remainder by zero cause a fatal signal, even if the division occurs
on the short-circuited branch of "&&" or "||". Any operation that overflows in signed
arithmetic produces undefined behavior. Likewise, using the shift operators with a shift amount
that is not positive and smaller than the precision is undefined, as is shifting a negative number
to the right. Historically, not all implementations obeyed C-language precedence rules: '~' and
'!' were lower than '=='; '==' and '!=' were not lower than '<'; and '|' was not lower
than '^'; the liberal use of "()" can force the desired precedence even with these non-
compliant implementations. Furthermore, some traditional implementations treated '^' as an
exponentiation operator, although most implementations now use "**" as an extension for this
purpose.

When a macro has been multiply defined via the pushdef macro, it is unspecified whether the
define macro will alter only the most recent definition (as though by popdef and pushdef), or
replace the entire stack of definitions with a single definition (as though by undefine and
pushdef). An application desiring particular behavior for the define macro in this case can
redefine it accordingly.

3096 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104017

104018

104019

104020

104021

104022

104023

104024

104025

104026

104027

104028

104029

104030

104031

104032

104033

104034

104035

104036

104037

104038

104039

104040

104041

104042

104043

104044

104045

104046

104047

104048

104049

104050

104051

104052

104053

104054

104055

104056

104057

104058

104059

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities m4

EXAMPLES
If the file m4src contains the lines:

The value of `VER' is "VER".
ifdef(`VER', ``VER'' is defined to be VER., VER is not defined.)
ifelse(VER, 1, ``VER'' is `VER'.)
ifelse(VER, 2, ``VER'' is `VER'., ``VER'' is not 2.)
end

then the command

m4 m4src

or the command:

m4 -U VER m4src

produces the output:

The value of VER is "VER".
VER is not defined.

VER is not 2.
end

The command:

m4 -D VER m4src

produces the output:

The value of VER is "".
VER is defined to be .

VER is not 2.
end

The command:

m4 -D VER=1 m4src

produces the output:

The value of VER is "1".
VER is defined to be 1.
VER is 1.
VER is not 2.
end

The command:

m4 -D VER=2 m4src

produces the output:

The value of VER is "2".
VER is defined to be 2.

VER is 2.
end

In the following six examples, an additional line is evaluated after this prologue of three
definitions:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3097

104060

104061

104062

104063

104064

104065

104066

104067

104068

104069

104070

104071

104072

104073

104074

104075

104076

104077

104078

104079

104080

104081

104082

104083

104084

104085

104086

104087

104088

104089

104090

104091

104092

104093

104094

104095

104096

104097

104098

104099

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

m4 Utilities

define(`macro', `argument 2 is :`$2':, called with $# arguments')dnl
define(`argumentsa', `Arguments')dnl
define(`a', `.')dnl

1. The additional line:

macro`'a

produces:

argument 2 is ::, called with 0 arguments.

Explanation: macro is called with 0 arguments (as shown by the $# substitution), the
substitution of $2 is the empty string, and the empty quoted string after the expansion
text prevents concatenation with the subsequent 'a', which in turn lets macro a expand
to the final '.'.

2. The additional line:

macro()a

produces:

argument 2 is ::, called with 1 Arguments

Explanation: macro is called with one (empty string) argument; then the defining text
ending in "arguments" is concatenated with the subsequent 'a' to form the next macro
name argumentsa which is expanded into Arguments before the final output.

3. The additional line:

macro(1, (,2,) , `3')

produces:

argument 2 is :(,2,) :, called with 3 arguments

Explanation: Leading (but not internal or trailing) space is removed before the argument
substituted for $2, and the unquoted commas embedded in parentheses do not delineate
arguments.

4. The additional line:

macro(`1', `mac2(,`2',)', `3')

produces:

argument 2 is :mac2(,`2',):, called with 3 arguments

Explanation: Regardless of whether mac2 is a defined macro, quoting in the macro call
prevents interpretation of "mac2" during argument collection, and the quoting in the
defining text of macro prevents interpretation of "mac2" in the substitution of $2 during
rescan of the output of macro.

5. The additional line:

undefine(`mac2')macro(1, mac2(,2,), 3)

produces:

argument 2 is :mac2(,2,):, called with 3 arguments

Explanation: mac2 is not a macro name when scanned during argument collection, so it
and the subsequent parenthesized text are used literally.

3098 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104100

104101

104102

104103

104104

104105

104106

104107

104108

104109

104110

104111

104112

104113

104114

104115

104116

104117

104118

104119

104120

104121

104122

104123

104124

104125

104126

104127

104128

104129

104130

104131

104132

104133

104134

104135

104136

104137

104138

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities m4

6. The additional line:

define(`mac2', `hi $@')macro(1, mac2(,2,), 3)

produces:

argument 2 is :hi :, called with 5 arguments

Explanation: mac2 is a macro name, so collecting the arguments to macro requires
scanning the output of mac2(,2,) (the text hi `',`2',`' after substitution of $@); this
output contains unquoted commas causing additional arguments to be visible to macro.

RATIONALE
Historic System V-based behavior treated "${" in a macro definition as two literal characters.
However, this sequence is left unspecified so that implementations may offer extensions such as
"${11}" meaning the eleventh argument. Macros can still be defined with appropriate uses of
nested quoting to result in a literal "${" in the output after rescanning removes the nested
quotes.

In the translit built-in, historic System V-based behavior treated '−' as a literal; GNU behavior
treats it as a range. This version of the standard allows either behavior.

Earlier versions of this standard allowed the exit status to be either zero or non-zero when
m4exit(0) is called after an error has occurred. Exiting with zero status is now disallowed as
this hides the fact that an error occurred from shell scripts that check the exit status of m4.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
c17

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The phrase ``the defined text for macros written by the dumpdef macro’’ is added to the
description of STDERR, and the description of dumpdef is updated to indicate that output is
written to standard error. The description of eval is updated to indicate that the list of excluded
C operators excludes unary '&' and '.'. In the description of ifdef, the phrase ``and it is not
defined to be zero’’ is deleted.

Issue 6
In the EXTENDED DESCRIPTION, the eval text is updated to include a '&' character in the
excepted list.

The EXTENDED DESCRIPTION of divert is updated to clarify that there are only nine diversion
buffers.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The Open Group Base Resolution bwg2000-006 is applied.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/31 is applied, replacing the EXAMPLES
section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3099

104139

104140

104141

104142

104143

104144

104145

104146

104147

104148

104149

104150

104151

104152

104153

104154

104155

104156

104157

104158

104159

104160

104161

104162

104163

104164

104165

104166

104167

104168

104169

104170

104171

104172

104173

104174

104175

104176

104177

104178

104179

104180

104181

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

m4 Utilities

Issue 7
Austin Group Interpretation 1003.1-2001 #117 is applied, marking the maketemp macro
obsolescent and adding a new mkstemp macro.

Austin Group Interpretation 1003.1-2001 #207 is applied, clarifying the handling of white-space
characters that precede or trail any macro arguments.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply (options can be interspersed with operands).

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-99 is applied, clarifying the definition of the divert macro in the EXTENDED
DESCRIPTION.

SD5-XCU-ERN-100 is applied, clarifying the definition of the syscmd macro in the EXTENDED
DESCRIPTION.

SD5-XCU-ERN-101 is applied, clarifying the definition of the undivert macro in the EXTENDED
DESCRIPTION.

SD5-XCU-ERN-111 is applied to the EXTENDED DESCRIPTION, clarifying that the string "${"
produces unspecified behavior.

SD5-XCU-ERN-112 is applied, updating the changequote macro.

SD5-XCU-ERN-118 is applied, clarifying the definition of the define macro in the EXTENDED
DESCRIPTION and APPLICATION USAGE sections.

SD5-XCU-ERN-119 is applied, clarifying the definition of the translit macro in the EXTENDED
DESCRIPTION and RATIONALE sections.

SD5-XCU-ERN-130, SD5-XCU-ERN-131, and SD5-XCU-ERN-137 are applied.

The m4 utility is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0117 [241], XCU/TC1-2008/0118
[242,431], XCU/TC1-2008/0119 [242,431], and XCU/TC1-2008/0120 [325,430] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0117 [964], XCU/TC2-2008/0118 [970],
and XCU/TC2-2008/0119 [964] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 984 is applied, requiring that the exit status of m4 is non-zero when m4exit
is called with a first argument of zero or with no arguments after an error has occurred.

Austin Group Defect 1072 is applied, clarifying the handling of macro arguments.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1330 is applied, removing the obsolescent maketemp macro.

Austin Group Defect 1514 is applied, changing the RATIONALE section to use the same
terminology as the normative text to which it refers.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

Austin Group Defect 1658 is applied, changing ``whitespace characters’’ to ``white-space

3100 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104182

104183

104184

104185

104186

104187

104188

104189

104190

104191

104192

104193

104194

104195

104196

104197

104198

104199

104200

104201

104202

104203

104204

104205

104206

104207

104208

104209

104210

104211

104212

104213

104214

104215

104216

104217

104218

104219

104220

104221

104222

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities m4

characters’’.

Austin Group Defect 1730 is applied, adding square brackets around file... in the
SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3101

104223

104224

104225

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

NAME
mailx — process messages

SYNOPSIS

Send Mode

mailx [-E] [-s subject] address...

Receive Mode

UP mailx -e

mailx [-HiNn] [-F] [-u user]

mailx -f [-HiNn] [-F] [file]

DESCRIPTION
The mailx utility provides a message sending and receiving facility. It has two major modes,
selected by the options used: Send Mode and Receive Mode.

On systems that do not support the User Portability Utilities option, an application using mailx
shall have the ability to send messages in an unspecified manner (Send Mode). Unless the first
character of one or more lines is <tilde> ('~'), all characters in the input message shall appear in
the delivered message, but additional characters may be inserted in the message before it is
retrieved.

UP On systems supporting the User Portability Utilities option, mail-receiving capabilities and other
interactive features, Receive Mode, described below, also shall be enabled.

Send Mode

Send Mode can be used by applications or users to send messages from the text in standard
input. The message shall be passed to the mail delivery software. The mail delivery software
shall process passed messages according to the rules of IETF RFC 5322.

UP Receive Mode

Receive Mode is more oriented towards interactive users. Mail can be read and sent in this
interactive mode.

When reading mail, mailx provides commands to facilitate saving, deleting, and responding to
messages. When sending mail, mailx allows editing, reviewing, and other modification of the
message as it is entered.

Incoming mail shall be stored in one or more unspecified locations for each user, collectively
called the system mailbox for that user. When mailx is invoked in Receive Mode, the system
mailbox shall be the default place to find new mail. As messages are read, they shall be marked
to be moved to a secondary file for storage, unless specific action is taken. This secondary file is
called the mbox and is normally located in the directory referred to by the HOME environment
variable (see MBOX in the ENVIRONMENT VARIABLES section for a description of this file).
Messages shall remain in this file until explicitly removed. When the −f option is used to read
mail messages from secondary files, messages shall be retained in those files unless specifically
removed. All three of these locations—system mailbox, mbox, and secondary file—are referred
to in this section as simply ``mailboxes’’, unless more specific identification is required.

3102 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104226

104227

104228

104229

104230

104231

104232

104233

104234

104235

104236

104237

104238

104239

104240

104241

104242

104243

104244

104245

104246

104247

104248

104249

104250

104251

104252

104253

104254

104255

104256

104257

104258

104259

104260

104261

104262

104263

104264

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

OPTIONS
The mailx utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported. (Only the −E and −s subject options are required on all
systems. The other options are required only on systems supporting the User Portability Utilities
option.)

−E Discard messages with an empty message body.

UP −e Test for the presence of mail in the system mailbox. The mailx utility shall write
nothing and exit with a successful return code if there is mail to read.

UP −f Read messages from the file named by the file operand instead of the system
mailbox. (See also folder.) If no file operand is specified, read messages from mbox
instead of the system mailbox.

UP −F Record the message in a file named after the first recipient. The name is the login-
name portion of the address found first in the To field in the message header.
Overrides the record variable, if set (see Internal Variables in mailx, on page 3109).

UP −H Write a header summary only.

UP −i Ignore interrupts. (See also ignore.)

UP −n Do not initialize from the system default start-up file. See the EXTENDED
DESCRIPTION section.

UP −N Do not write an initial header summary.

−s subject Set the Subject header field to subject. All characters in the subject string shall
appear in the delivered message. The results are unspecified if subject is longer
than {LINE_MAX} − 10 bytes or contains a <newline>.

UP −u user Read the system mailbox of the login name user. This shall only be successful if
the invoking user has appropriate privileges to read the system mailbox of that
user.

OPERANDS
The following operands shall be supported:

address Addressee of message. When −n is specified and no user start-up files are accessed
(see the EXTENDED DESCRIPTION section), the user or application shall ensure
this is an address to pass to the mail delivery system. Any system or user start-up
files may enable aliases (see alias under Commands in mailx, on page 3112) that
may modify the form of address before it is passed to the mail delivery system.

UP file A pathname of a file to be read instead of the system mailbox when −f is specified.
The meaning of the file operand shall be affected by the contents of the folder
internal variable; see Internal Variables in mailx (on page 3109).

STDIN
When mailx is invoked in Send Mode (the first synopsis line), standard input shall be the

UP message to be delivered to the specified addresses. When in Receive Mode, user commands
shall be accepted from stdin. If the User Portability Utilities option is not supported, standard
input lines beginning with a <tilde> ('~') character produce unspecified results.

UP If the User Portability Utilities option is supported, then in both Send and Receive Modes,
standard input lines beginning with the escape character (usually <tilde> ('~')) shall affect
processing as described in Command Escapes in mailx (on page 3122).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3103

104265

104266

104267

104268

104269

104270

104271

104272

104273

104274

104275

104276

104277

104278

104279

104280

104281

104282

104283

104284

104285

104286

104287

104288

104289

104290

104291

104292

104293

104294

104295

104296

104297

104298

104299

104300

104301

104302

104303

104304

104305

104306

104307

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

INPUT FILES
When mailx is used as described by this volume of POSIX.1-2024, the file operand (see the −f
option) and the mbox shall be text files containing mail messages, formatted as described in the
OUTPUT FILES section. The nature of the system mailbox is unspecified; it need not be a file.

ENVIRONMENT VARIABLES
UP Some of the functionality described in this section shall be provided on implementations that

support the User Portability Utilities option as described in the text, and is not further shaded
for this option.

The following environment variables shall affect the execution of mailx:

DEAD Determine the pathname of the file in which to save partial messages in case of
interrupts or delivery errors. The default shall be dead.letter in the directory
named by the HOME variable. The behavior of mailx in saving partial messages is
unspecified if the User Portability Utilities option is not supported and DEAD is
not defined with the value /dev/null.

EDITOR Determine the name of a utility to invoke when the edit (see Commands in mailx,
on page 3112) or ˜e (see Command Escapes in mailx, on page 3122) command is

XSI used. The default editor is unspecified. On XSI-conformant systems it is ed. The
effects of this variable are unspecified if the User Portability Utilities option is not
supported.

HOME Determine the pathname of the user’s home directory.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the handling of case-insensitive address and header
field name comparisons.

LC_TIME This variable may determine the format and contents of the date and time strings
written by mailx. This volume of POSIX.1-2024 specifies the effects of this variable
only for systems supporting the User Portability Utilities option.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LISTER Determine a string representing the command for writing the contents of the
folder directory to standard output when the folders command is given (see
folders in Commands in mailx, on page 3112). Any string acceptable as a
command_string operand to the sh −c command shall be valid. If this variable is null
or not set, the output command shall be ls. The effects of this variable are
unspecified if the User Portability Utilities option is not supported.

MAILRC Determine the pathname of the user start-up file. The default shall be .mailrc in the
directory referred to by the HOME environment variable. The behavior of mailx is
unspecified if the User Portability Utilities option is not supported and MAILRC is
not defined with the value /dev/null.

3104 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104308

104309

104310

104311

104312

104313

104314

104315

104316

104317

104318

104319

104320

104321

104322

104323

104324

104325

104326

104327

104328

104329

104330

104331

104332

104333

104334

104335

104336

104337

104338

104339

104340

104341

104342

104343

104344

104345

104346

104347

104348

104349

104350

104351

104352

104353

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

MBOX Determine a pathname of the file to save messages from the system mailbox that
have been read. The exit command shall override this function, as shall saving the
message explicitly in another file. The default shall be mbox in the directory
named by the HOME variable. The effects of this variable are unspecified if the
User Portability Utilities option is not supported.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PAGER Determine a string representing an output filtering or pagination command for
writing the output to the terminal. Any string acceptable as a command_string
operand to the sh −c command shall be valid. When standard output is a terminal
device, the message output shall be piped through the command if the mailx
internal variable crt is set to a value less than the total number of lines in the
message; see Internal Variables in mailx (on page 3109). When standard output is
not a terminal device, it is unspecified whether the message output is written
directly to standard output or is subject to pagination. If the PAGER variable is null
or not set, the paginator shall be either more or another paginator utility
documented in the system documentation. The effects of this variable are
unspecified if the User Portability Utilities option is not supported.

SHELL Determine the name of a preferred command interpreter. The default shall be sh.
The effects of this variable are unspecified if the User Portability Utilities option is
not supported.

TERM If the internal variable screen is not specified, determine the name of the terminal
type to indicate in an unspecified manner the number of lines in a screenful of
header summaries. If TERM is not set or is set to null, an unspecified default
terminal type shall be used and the value of a screenful is unspecified. The effects
of this variable are unspecified if the User Portability Utilities option is not
supported.

TZ This variable may determine the timezone used to calculate date and time strings
written by mailx. If TZ is unset or null, an unspecified default timezone shall be
used.

VISUAL Determine a pathname of a utility to invoke when the visual command (see
Commands in mailx, on page 3112) or ˜v command-escape (see Command Escapes
in mailx, on page 3122) is used. If this variable is null or not set, the full-screen
editor shall be vi. The effects of this variable are unspecified if the User Portability
Utilities option is not supported.

ASYNCHRONOUS EVENTS
When mailx is in Send Mode and standard input is not a terminal, it shall take the standard
action for all signals.

UP In Receive Mode, or in Send Mode when standard input is a terminal, if a SIGINT signal is
received:

UP 1. If in command mode, the current command, if there is one, shall be aborted, and a
command-mode prompt shall be written.

2. If in input mode:

UP a. If ignore is set, mailx shall write "@\n", discard the current input line, and
continue processing, bypassing the message-abort mechanism described in item
2b.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3105

104354

104355

104356

104357

104358

104359

104360

104361

104362

104363

104364

104365

104366

104367

104368

104369

104370

104371

104372

104373

104374

104375

104376

104377

104378

104379

104380

104381

104382

104383

104384

104385

104386

104387

104388

104389

104390

104391

104392

104393

104394

104395

104396

104397

104398

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

UP b. If the interrupt was received while sending mail, either when in Receive Mode or
in Send Mode, a message shall be written, and another subsequent interrupt, with
no other intervening characters typed, shall be required to abort the mail message.

UP If in Receive Mode and another interrupt is received, a command-mode prompt
shall be written. If in Send Mode and another interrupt is received, mailx shall
terminate with a non-zero status.

In both cases listed in item b, if the message is not empty:

UP i. If save is enabled and the file named by DEAD can be created, the message
shall be written to the file named by DEAD. If the file exists, the message
shall be written to replace the contents of the file.

UP ii. If save is not enabled, or the file named by DEAD cannot be created, the
message shall not be saved.

The mailx utility shall take the standard action for all other signals.

STDOUT
In command and input modes, all output, including prompts and messages, shall be written to
standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Various mailx commands and command escapes can create or add to files, including the mbox,
the dead-letter file, and secondary mailboxes. When mailx is used as described in this volume of
POSIX.1-2024, these files shall be text files, formatted as follows:

line beginning with From<space>
[one or more header fields; see Commands in mailx (on page 3112)]
empty line
[zero or more body lines
empty line]
[line beginning with From<space>...]

where each message begins with the From <space> line shown, preceded by the beginning of
the file or an empty line. (The From <space> line is considered to be part of the message header,
but not one of the header fields referred to in Commands in mailx (on page 3112); thus, it shall
not be affected by the discard, ignore, or retain commands.) The formats of the remainder of the
From <space> line and any additional header lines are unspecified, except that none shall be
empty. The format of a message body line is also unspecified, except that no line following an
empty line shall start with From <space>; mailx shall modify any such user-entered message
body lines (following an empty line and beginning with From <space>) by adding one or more
characters to precede the 'F'; it may add these characters to From <space> lines that are not
preceded by an empty line.

When a message from the system mailbox or entered by the user is not a text file, it is
implementation-defined how such a message is stored in files written by mailx.

EXTENDED DESCRIPTION
UP The functionality in the entire EXTENDED DESCRIPTION section shall be provided on

implementations supporting the User Portability Utilities option. The functionality described in
this section shall be provided on implementations that support the User Portability Utilities
option (and the rest of this section is not further shaded for this option).

3106 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104399

104400

104401

104402

104403

104404

104405

104406

104407

104408

104409

104410

104411

104412

104413

104414

104415

104416

104417

104418

104419

104420

104421

104422

104423

104424

104425

104426

104427

104428

104429

104430

104431

104432

104433

104434

104435

104436

104437

104438

104439

104440

104441

104442

104443

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

The mailx utility need not support for all character encodings in all circumstances. For example,
inter-system mail may be restricted to 7-bit data by the underlying network, 8-bit data need not
be portable to non-internationalized systems, and so on. Under these circumstances, it is
recommended that only characters defined in the ISO/IEC 646: 1991 standard International
Reference Version (equivalent to ASCII) 7-bit range of characters be used.

When mailx is invoked using one of the Receive Mode synopsis forms, it shall write a page of
header-summary lines (if −N was not specified and there are messages, see below), followed by
a prompt indicating that mailx can accept regular commands (see Commands in mailx, on page
3112); this is termed command mode. The page of header-summary lines shall contain the first
new message if there are new messages, or the first unread message if there are unread
messages, or the first message. When mailx is invoked using the Send Mode synopsis and
standard input is a terminal, if no subject is specified on the command line and the asksub
variable is set, a prompt for the subject shall be written. At this point, mailx shall be in input
mode. This input mode shall also be entered when using one of the Receive Mode synopsis
forms and a reply or new message is composed using the reply, Reply, followup, Followup, or
mail commands and standard input is a terminal. When the message is typed and the end of the
message is encountered, the message shall be passed to the mail delivery software. Commands
can be entered by beginning a line with the escape character (by default, <tilde> ('~')) followed
by a single command letter and optional arguments. See Commands in mailx (on page 3112) for
a summary of these commands. It is unspecified what effect these commands will have if
standard input is not a terminal when a message is entered using either the Send Mode
synopsis, or the Read Mode commands reply, Reply, followup, Followup, or mail.

Note: For notational convenience, this section uses the default escape character, <tilde>, in all
references and examples.

At any time, the behavior of mailx shall be governed by a set of environmental and internal
variables. These are flags and valued parameters that can be set and cleared via the mailx set
and unset commands.

Regular commands are of the form:

[command] [msglist] [argument ...]

If no command is specified in command mode, next shall be assumed. In input mode, commands
shall be recognized by the escape character, and lines not treated as commands shall be taken as
input for the message.

In command mode, each message shall be assigned a sequential number, starting with 1.

All messages have a state that shall affect how they are displayed in the header summary and
how they are retained or deleted upon termination of mailx. There is at any time the notion of a
current message, which shall be marked by a '>' at the beginning of a line in the header
summary. When mailx is invoked using one of the Receive Mode synopsis forms, the current
message shall be the first new message, if there is a new message, or the first unread message if
there is an unread message, or the first message if there are any messages, or unspecified if there
are no messages in the mailbox. Each command that takes an optional list of messages (msglist)
or an optional single message (message) on which to operate shall leave the current message set
to the highest-numbered message of the messages specified, unless the command deletes
messages, in which case the current message shall be set to the first undeleted message (that is, a
message not in the deleted state) after the highest-numbered message deleted by the command,
if one exists, or the first undeleted message before the highest-numbered message deleted by the
command, if one exists, or to an unspecified value if there are no remaining undeleted messages.
All messages shall be in one of the following states:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3107

104444

104445

104446

104447

104448

104449

104450

104451

104452

104453

104454

104455

104456

104457

104458

104459

104460

104461

104462

104463

104464

104465

104466

104467

104468

104469

104470

104471

104472

104473

104474

104475

104476

104477

104478

104479

104480

104481

104482

104483

104484

104485

104486

104487

104488

104489

104490

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

new The message is present in the system mailbox and has not been viewed by the user
or moved to any other state. Messages in state new when mailx quits shall be
retained in the system mailbox.

unread The message has been present in the system mailbox for more than one invocation
of mailx and has not been viewed by the user or moved to any other state.
Messages in state unread when mailx quits shall be retained in the system mailbox.

read The message has been processed by one of the following commands: ˜f, ˜m, ˜F, ˜M,
copy, mbox, next, pipe, print, Print, top, type, Type, undelete. The dp and dt
commands shall also cause the message they write, if any, to be marked as read. If
the autoprint variable is set, the delete command shall also cause the message it
writes, if any, to be marked as read. Messages that are in the system mailbox and in
state read when mailx quits shall be saved in the mbox, unless the internal variable
hold was set. Messages that are in the mbox or in a secondary mailbox and in state
read when mailx quits shall be retained in their current location.

deleted The message has been processed by one of the following commands: delete, dp, dt.
Messages in state deleted when mailx quits shall be deleted. Deleted messages shall
be ignored until mailx quits or changes mailboxes or they are specified to the
undelete command; for example, the message specification /string shall only
search the Subject header fields of messages that have not yet been deleted, unless
the command operating on the list of messages is undelete. No deleted message
or deleted message header shall be displayed by any mailx command other than
undelete.

preserved The message has been processed by a preserve command. When mailx quits, the
message shall be retained in its current location.

saved The message has been processed by one of the following commands: save or write.
If the current mailbox is the system mailbox, and the internal variable keepsave is
set, messages in the state saved shall be saved to the file designated by the MBOX
variable (see the ENVIRONMENT VARIABLES section). If the current mailbox is
the system mailbox, messages in the state saved shall be deleted from the current
mailbox, when the quit or file command is used to exit the current mailbox.

The header-summary line for each message shall indicate the state of the message.

Many commands take an optional list of messages (msglist) on which to operate, which defaults
to the current message. A msglist is a list of message specifications separated by <blank>
characters, which can include:

n Message number n.

+ The next undeleted message, or the next deleted message for the undelete command.

− The next previous undeleted message, or the next previous deleted message for the
undelete command.

. The current message.

ˆ The first undeleted message, or the first deleted message for the undelete command.

$ The last message.

* All messages.

3108 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104491

104492

104493

104494

104495

104496

104497

104498

104499

104500

104501

104502

104503

104504

104505

104506

104507

104508

104509

104510

104511

104512

104513

104514

104515

104516

104517

104518

104519

104520

104521

104522

104523

104524

104525

104526

104527

104528

104529

104530

104531

104532

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

n-m An inclusive range of message numbers.

address All messages from address; any address as shown in a header summary shall be
matchable in this form.

/string All messages with string in the Subject header field (case ignored).

:c All messages of type c, where c shall be one of:

d Deleted messages.

n New messages.

o Old messages (any not in state read or new).

r Read messages.

u Unread messages.

Other commands take an optional message (message) on which to operate, which defaults to the
current message. All of the forms allowed for msglist are also allowed for message, but if more
than one message is specified, only the first shall be operated on.

Other arguments are usually arbitrary strings whose usage depends on the command involved.

Start-Up in mailx

At start-up time, mailx shall take the following steps in sequence:

1. Establish all variables at their stated default values.

2. Process command line options, overriding corresponding default values.

3. Import any of the DEAD, EDITOR, MBOX, LISTER, PAGER, SHELL, or VISUAL variables
that are present in the environment, overriding the corresponding default values.

4. Read mailx commands from an unspecified system start-up file, unless the −n option is
given, to initialize any internal mailx variables and aliases.

5. Process the user start-up file of mailx commands named in the user MAILRC variable.

Most regular mailx commands are valid inside start-up files, the most common use being to set
up initial display options and alias lists. The following commands shall be invalid in a start-up
file: !, edit, hold, mail, preserve, reply, Reply, Save, shell, visual, Copy, followup, and
Followup. Any errors in a start-up file shall either cause mailx to terminate with a diagnostic
message and a non-zero status or to continue after writing a diagnostic message, ignoring the
remainder of the lines in the file.

A blank line in a start-up file shall be ignored.

Internal Variables in mailx

The following variables are internal mailx variables. Each internal variable can be set via the
mailx set command at any time. The unset and set noname commands can be used to erase
variables.

In the following list, variables shown as:

variable

represent Boolean values. Variables shown as:

variable=value

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3109

104533

104534

104535

104536

104537

104538

104539

104540

104541

104542

104543

104544

104545

104546

104547

104548

104549

104550

104551

104552

104553

104554

104555

104556

104557

104558

104559

104560

104561

104562

104563

104564

104565

104566

104567

104568

104569

104570

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

shall be assigned string or numeric values. For string values, the rules in Commands in mailx
(on page 3112) concerning filenames and quoting shall also apply.

The defaults specified here may be changed by the unspecified system start-up file unless the
user specifies the −n option.

allnet All network names whose login name components match shall be treated as
identical. This shall cause the msglist message specifications to behave similarly.
The default shall be noallnet. See also the alternates command and the metoo
variable.

append Append messages to the end of the mbox file upon termination instead of placing
them at the beginning. The default shall be noappend. This variable shall not
affect the save command when saving to mbox.

ask, asksub Prompt for a value for the Subject header field on outgoing mail if one is not
specified on the command line with the −s option. The ask and asksub forms are
synonyms; the system shall refer to asksub and noasksub in its messages, but shall
accept ask and noask as user input to mean asksub and noasksub. It shall not be
possible to set both ask and noasksub, or noask and asksub. The default shall be
asksub, but no prompting shall be done if standard input is not a terminal.

askbcc Prompt for the blind copy list. The default shall be noaskbcc.

askcc Prompt for the copy list. The default shall be noaskcc.

autoprint Enable automatic writing of messages after delete and undelete commands. The
default shall be noautoprint.

bang Enable the special-case treatment of <exclamation-mark> characters ('!') in !
commands and ˜!command escapes; see the Invoke Shell Command command and
Command Escapes in mailx (on page 3122). The default shall be nobang, disabling
the expansion of '!' in the command argument to the ! command and the
˜!command escape.

cmd=command
Set the default command to be invoked by the pipe command. The default shall be
nocmd.

crt=number Paginate message output as described for the PAGER variable. The default shall be
nocrt, disabling this pagination. If it is set to null, the value used is
implementation-defined.

XSI debug Enable verbose diagnostics for debugging. Messages are not delivered. The
default shall be nodebug.

dot When dot is set, a <period> on a line by itself during message input from a
terminal shall also signify end-of-file (in addition to normal end-of-file). The
default shall be nodot. If ignoreeof is set (see below), a setting of nodot shall be
ignored and <period> and the ˜. command escape are the only methods to
terminate input mode.

escape=c Set the command escape character to be the character 'c'. By default, the
command escape character shall be <tilde>. If escape is unset, <tilde> shall be
used; if it is set to null, command escaping shall be disabled.

flipr Reverse the meanings of the R and r commands. The default shall be noflipr.

3110 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104571

104572

104573

104574

104575

104576

104577

104578

104579

104580

104581

104582

104583

104584

104585

104586

104587

104588

104589

104590

104591

104592

104593

104594

104595

104596

104597

104598

104599

104600

104601

104602

104603

104604

104605

104606

104607

104608

104609

104610

104611

104612

104613

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

folder=directory
The default directory for saving mail files. User-specified filenames beginning with
a <plus-sign> ('+') shall be expanded by preceding the filename with this
directory name to obtain the real pathname. If directory does not start with a
<slash> ('/'), the contents of HOME shall be prefixed to it. The default shall be
nofolder. If folder is unset, user-specified filenames beginning with '+' shall
refer to files in the current directory that begin with the literal '+' character. See
also outfolder below. The folder value need not affect the processing of the files
named in MBOX and DEAD.

header Enable writing of the header summary when entering mailx in Receive Mode. The
default shall be header.

hold Disable message moving of read messages from the system mailbox to the mbox
save file upon normal program termination or folder change. This automatic mail
management is complemented with the commands hold (and preserve), mbox,
and touch, which partially override the hold variable. The default shall be nohold.

ignore Ignore interrupts while entering messages. The default shall be noignore.

ignoreeof Ignore normal end-of-file during message input. Input can be terminated only by
entering a <period> ('.') on a line by itself or by the ˜. command escape. The
default shall be noignoreeof. See also dot above.

indentprefix=string
A string that shall be added as a prefix to each line that is inserted into the message
by the ˜m command escape. This variable shall default to one <tab>.

keep When a system mailbox, secondary mailbox, or mbox is empty, truncate it to zero
length instead of removing it. The default shall be nokeep.

keepsave Keep the messages that have been saved from the system mailbox into other files
in the file designated by the variable MBOX, instead of deleting them. The default
shall be nokeepsave.

metoo Suppress the deletion of the user’s login name from the recipient list when
replying to a message or sending to a group. The default shall be nometoo.

XSI onehop When responding to a message that was originally sent to several recipients, the
other recipient addresses are normally forced to be relative to the originating
author ’s machine for the response. This flag disables alteration of the recipients’
addresses, improving efficiency in a network where all machines can send directly
to all other machines (that is, one hop away). The default shall be noonehop.

outfolder Cause the files used to record outgoing messages to be located in the directory
specified by the folder variable unless the pathname is absolute. The default shall
be nooutfolder. See the record variable.

page Insert a <form-feed> after each message sent through the pipe created by the pipe
command. The default shall be nopage.

prompt=string
Set the command-mode prompt to string. If string is null or if noprompt is set, no
prompting shall occur. The default shall be to prompt with the string "? ".

quiet Refrain from writing the opening message and version when entering mailx. The
default shall be noquiet.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3111

104614

104615

104616

104617

104618

104619

104620

104621

104622

104623

104624

104625

104626

104627

104628

104629

104630

104631

104632

104633

104634

104635

104636

104637

104638

104639

104640

104641

104642

104643

104644

104645

104646

104647

104648

104649

104650

104651

104652

104653

104654

104655

104656

104657

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

record=file Record all outgoing mail in the file with the pathname file. The default shall be
norecord. See also outfolder above.

save Enable saving of messages in the dead-letter file on interrupt or delivery error. See
the variable DEAD for the location of the dead-letter file. The default shall be save.

screen=number
Set the number of lines in a screenful of headers for the headers and z commands.
If screen is not specified, a value based on the terminal type identified by the
TERM environment variable, the window size, the baud rate, or some combination
of these shall be used. The default shall be noscreen.

sendwait Wait for the background mailer to finish before returning. The default shall be
nosendwait.

showto When the sender of the message was the user who is invoking mailx, write the
information from the To field instead of the From field in the header summary. The
default shall be noshowto.

sign=string Set the variable inserted into the text of a message when the ˜a command escape is
given. The default shall be nosign. The character sequences '\t' and '\n' shall
be recognized in the variable as <tab> and <newline> characters, respectively. (See
also ˜i in Command Escapes in mailx (on page 3122).)

Sign=string Set the variable inserted into the text of a message when the ˜A command escape is
given. The default shall be noSign. The character sequences '\t' and '\n' shall
be recognized in the variable as <tab> and <newline> characters, respectively.

toplines=number
Set the number of lines of the message to write with the top command. The default
shall be 5.

Commands in mailx

The following mailx commands shall be provided. In the following list, header refers to lines from
the message header, as shown in the OUTPUT FILES section. Header field refers to a line or set of
lines within the header that begins with one or more non-white-space characters immediately
followed by a <colon> and white space, and continuing up to and including a <newline> that
immediately precedes either the next line beginning with a non-white-space character or an
empty line. Field name refers to the portion of a header field prior to the first <colon>.

For each of the commands listed below, the command can be entered as the abbreviation (those
characters in the Synopsis command word preceding the '['), the full command (all characters
shown for the command word, omitting the '[' and ']'), or any truncation of the full
command down to the abbreviation. For example, the exit command (shown as ex[it] in the
Synopsis) can be entered as ex, exi, or exit.

The arguments to commands can be quoted, using the following methods:

• An argument can be enclosed between paired double-quotes ("") or single-quotes ('');
any white space, shell word expansion, or <backslash> characters within the quotes shall
be treated literally as part of the argument. A double-quote shall be treated literally within
single-quotes and vice versa. These special properties of the <quotation-mark> characters
shall occur only when they are paired at the beginning and end of the argument.

• A <backslash> outside of the enclosing quotes shall be discarded and the following
character treated literally as part of the argument.

3112 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104658

104659

104660

104661

104662

104663

104664

104665

104666

104667

104668

104669

104670

104671

104672

104673

104674

104675

104676

104677

104678

104679

104680

104681

104682

104683

104684

104685

104686

104687

104688

104689

104690

104691

104692

104693

104694

104695

104696

104697

104698

104699

104700

104701

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

• An unquoted <backslash> at the end of a command line shall be discarded and the next
line shall continue the command.

Filenames, where expected, shall be subjected to the following transformations, in sequence:

• If the filename begins with an unquoted <plus-sign>, and the folder variable is defined
(see the folder variable), the <plus-sign> shall be replaced by the value of the folder
variable followed by a <slash>. If the folder variable is unset or is set to null, the filename
shall be unchanged.

• Shell word expansions shall be applied to the filename (see Section 2.6, on page 2483). If
more than a single pathname results from this expansion and the command is expecting
one file, the effects are unspecified.

Declare Aliases

Synopsis: a[lias] [alias [address...]]
g[roup] [alias [address...]]

Add the given addresses to the alias specified by alias. The names shall be substituted when
alias is used as a recipient address specified by the user in an outgoing message (that is, other
recipients addressed indirectly through the reply command shall not be substituted in this
manner). Mail address alias substitution shall apply only when the alias string is used as a full
address; for example, when hlj is an alias, hlj@posix.com does not trigger the alias substitution.
Recursive expansion of an alias group member can be prevented by prefixing it with an
unquoted <backslash>. If no arguments are given, write a listing of the current aliases to
standard output. If only an alias argument is given, write a listing of the specified alias to
standard output. These listings need not reflect the same order of addresses that were entered.

Declare Alternatives

Synopsis: alt[ernates] name...

Declare a list of alternative addresses for the address consisting of the user’s login name. When
responding to a message, these alternative addresses shall be removed from the list of recipients.
The comparison of addresses shall be performed in a case-insensitive manner. With no
arguments, alternates shall write the current list of alternative addresses.

Change Current Directory

Synopsis: cd [directory]
ch[dir] [directory]

Change directory. If directory is not specified, the contents of HOME shall be used.

Copy Messages

Synopsis: c[opy] [file]
c[opy] [msglist] file
C[opy] [msglist]

Copy messages to the file named by the pathname file without marking the messages as saved.
Otherwise, it shall be equivalent to the save command.

In the capitalized form, save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as saved. Otherwise, it shall
be equivalent to the Save command.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3113

104702

104703

104704

104705

104706

104707

104708

104709

104710

104711

104712

104713

104714

104715

104716

104717

104718

104719

104720

104721

104722

104723

104724

104725

104726

104727

104728

104729

104730

104731

104732

104733

104734

104735

104736

104737

104738

104739

104740

104741

104742

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

Delete Messages

Synopsis: d[elete] [msglist]

Mark messages for deletion from the mailbox. The deletions shall not occur until mailx quits (see
the quit command) or changes mailboxes (see the folder command). If autoprint is set and there
are messages remaining after the delete command, the current message shall be written as
described for the print command (see the print command); otherwise, the mailx prompt shall be
written.

Discard Header Fields

Synopsis: di[scard] [field-name...]
ig[nore] [field-name...]

Suppress header fields with the specified field names when writing messages. Specified field-
name arguments shall be added to the list of suppressed field names. Examples of field names to
ignore are status and cc. The header fields shall be included when the message is saved. The
Print and Type commands shall override this command. The comparison of field names shall be
performed in a case-insensitive manner. If no arguments are specified, write a list of the
currently suppressed field names to standard output; the listing need not reflect the same order
of field names that were entered.

If both retain and discard commands are given, discard commands shall be ignored.

Delete Messages and Display

Synopsis: dp [msglist]
dt [msglist]

Delete the specified messages as described for the delete command, except that the autoprint
variable shall have no effect, and the current message shall be written only if it was set to a
message after the last message deleted by the command. Otherwise, an informational message
to the effect that there are no further messages in the mailbox shall be written, followed by the
mailx prompt.

Echo a String

Synopsis: ec[ho] string ...

Echo the given strings, equivalent to the shell echo utility.

Edit Messages

Synopsis: e[dit] [msglist]

Edit the given messages. The messages shall be placed in a temporary file and the utility named
by the EDITOR variable is invoked to edit each file in sequence. The default EDITOR is
unspecified.

The edit command does not modify the contents of those messages in the mailbox.

3114 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104743

104744

104745

104746

104747

104748

104749

104750

104751

104752

104753

104754

104755

104756

104757

104758

104759

104760

104761

104762

104763

104764

104765

104766

104767

104768

104769

104770

104771

104772

104773

104774

104775

104776

104777

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

Exit

Synopsis: ex[it]
x[it]

Exit from mailx without performing automatic message moving, or any other management tasks.
See also quit.

Change Folder

Synopsis: fi[le] [file]
fold[er] [file]

If no argument is given, write the name and status of the current mailbox. Otherwise, close the
current file of messages after performing actions as specified for the quit command (except for
terminating mailx) and then read in the file named by the pathname file. The behavior is
unspecified if file is not a valid mbox.

Several unquoted special characters shall be recognized when used as file names, with the
following substitutions:

% The system mailbox for the invoking user.

%user The system mailbox for user.

The previous file.

& The current mbox.

+file The named file in the folder directory. (See the folder variable.)

The default file shall be the current mailbox.

Display List of Folders

Synopsis: folders

Write the names of the files in the directory set by the folder variable. The command specified
by the LISTER environment variable shall be used (see the ENVIRONMENT VARIABLES
section).

Follow Up Specified Messages

Synopsis: fo[llowup] [message]
F[ollowup] [msglist]

The followup and Followup commands shall be equivalent to reply and Reply, respectively,
except that:

• They shall ignore the record variable.

• The followup command shall record the response in a file whose name is derived from the
author of the message.

• The Followup command shall record the response in a file whose name is derived from the
author of the first message in the msglist.

See also the save and copy commands and outfolder.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3115

104778

104779

104780

104781

104782

104783

104784

104785

104786

104787

104788

104789

104790

104791

104792

104793

104794

104795

104796

104797

104798

104799

104800

104801

104802

104803

104804

104805

104806

104807

104808

104809

104810

104811

104812

104813

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

Display Header Summary for Specified Messages

Synopsis: f[rom] [msglist]

Write the header summary for the specified messages.

Display Header Summaries

Synopsis: h[eaders] [message]

Write the page of header summaries that includes the message specified. If the message
argument is not specified, the current message shall not change. However, if the message
argument is specified, the current message shall become the message that appears at the top of
the page of header summaries that includes the message specified. The screen variable sets the
number of header summaries per page. See also the z command.

Help

Synopsis: hel[p]
?

Write a summary of commands.

Hold Messages

Synopsis: ho[ld] [msglist]
pre[serve] [msglist]

Allowed only in the system mailbox. Mark the messages in msglist to be preserved, as if the hold
variable were set, upon normal termination or when the folder is changed. This shall override
any commands that might previously have marked the messages to be deleted, and only the
delete, dp, or dt, as well as the mbox and touch commands, shall remove the preserve mark of a
message.

Execute Commands Conditionally

Synopsis: i[f] s|r
mail-commands
el[se]
mail-commands
en[dif]

Execute commands conditionally, where if s executes the following mail-commands, up to an
else or endif, if the program is in Send Mode, and if r shall cause the mail-commands to be
executed only in Receive Mode.

List Available Commands

Synopsis: l[ist]

Write a list of all commands available. No explanation shall be given.

3116 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104814

104815

104816

104817

104818

104819

104820

104821

104822

104823

104824

104825

104826

104827

104828

104829

104830

104831

104832

104833

104834

104835

104836

104837

104838

104839

104840

104841

104842

104843

104844

104845

104846

104847

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

Mail a Message

Synopsis: m[ail] address...

Mail a message to the specified addresses or aliases.

Direct Messages to mbox

Synopsis: mb[ox] [msglist]

Allowed only in the system mailbox. Arrange for the given messages to end up in the secondary
mailbox, overriding a possibly set hold variable, upon normal termination or when the folder is
changed. Overrides a former hold or preserve request. See MBOX in the ENVIRONMENT
VARIABLES section. See also the exit and quit commands.

Process Next Specified Message

Synopsis: n[ext] [message]

If the current message has not been written (for example, by the print command) since mailx
started or since any other message was the current message, behave as if the print command
was entered. Otherwise, if there is an undeleted message after the current message, make it the
current message and behave as if the print command was entered. Otherwise, an informational
message to the effect that there are no further messages in the mailbox shall be written, followed
by the mailx prompt. Should the current message location be the result of an immediately
preceding hold, mbox, preserve, or touch command, next shall act as if the current message has
already been written.

Pipe Message

Synopsis: pi[pe] [[msglist] command]
| [[msglist] command]

Pipe the messages through the given command by invoking the command interpreter specified
by SHELL with three arguments: "-c", "--", and command. (See also sh −c.) The application
shall ensure that the command is given as a single argument. Quoting, described previously, can
be used to accomplish this. If no arguments are given, the current message shall be piped
through the command specified by the value of the cmd variable. If the page variable is set, a
<form-feed> shall be inserted after each message.

Display Message with Header

Synopsis: P[rint] [msglist]
T[ype] [msglist]

Write the specified messages, including all header fields, to standard output. This command
shall override suppression of header fields by the discard, ignore, and retain commands. If crt is
set, the output shall be paginated as described for the PAGER variable.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3117

104848

104849

104850

104851

104852

104853

104854

104855

104856

104857

104858

104859

104860

104861

104862

104863

104864

104865

104866

104867

104868

104869

104870

104871

104872

104873

104874

104875

104876

104877

104878

104879

104880

104881

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

Display Message

Synopsis: p[rint] [msglist]
t[ype] [msglist]

Write the specified messages to standard output. If crt is set, the output shall be paginated as
described for the PAGER variable.

Quit

Synopsis: q[uit]
end-of-file

Terminate mailx normally, performing automatic message moving as specified in the description
of the variable hold, deleting messages that have been explicitly saved (unless keepsave is set),
discarding messages that have been deleted, and saving all remaining messages in the mailbox.

Reply to a Message or a Message List

Synopsis: r[eply] [message]
r[espond] [message]
R[eply] [msglist]
R[espond] [msglist]

Mail a reply message to one or more addresses taken from certain header fields in the specified
message or message list. If the flipr variable is unset, these commands shall behave as described
below. If the flipr variable is set, commands in the lowercase form shall behave as described
below for commands in the capitalized form, and vice versa; the synopsis forms shown above
shall also be swapped accordingly.

The recipients of the reply message shall be determined by first constructing an initial list of
recipients and then modifying it to form the list that is in effect when mailx enters input mode.

In the capitalized form, the initial list of recipients shall be taken from the header of each
message in the msglist as follows:

• If the header contains a Reply-To field, the address or addresses in that field shall be
added to the list.

• Otherwise, the address or addresses in the From field of the header shall be added to the
list.

In the lowercase form, the initial list of recipients shall be taken from the header of the message as
follows:

• If the header does not contain a Reply-To field, all of the addresses in the From, To, and Cc
fields shall be included in the list.

• Otherwise, it is implementation-defined whether all of the addresses in the Reply-To, To,
and Cc fields are included in the list or only the address or addresses in the Reply-To field.

The initial list of recipients shall be marked for placement in the header fields of the reply
message as follows. Recipient addresses taken from a From or Reply-To header field shall be
marked for placement in the To field of the reply message. Recipient addresses taken from a Cc
header field shall be marked for placement in the Cc field of the reply message. Recipient
addresses taken from a To header field shall be marked for placement in either the To or the Cc
field of the reply message. Implementations shall provide a way to place them in the To field.
Implementations may, but need not, provide an implementation-defined way to place them in
the Cc field.

3118 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104882

104883

104884

104885

104886

104887

104888

104889

104890

104891

104892

104893

104894

104895

104896

104897

104898

104899

104900

104901

104902

104903

104904

104905

104906

104907

104908

104909

104910

104911

104912

104913

104914

104915

104916

104917

104918

104919

104920

104921

104922

104923

104924

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

The modifications applied to the initial list of recipients shall be as follows:

• If the metoo variable is unset, addresses consisting of the login name of the user and any
alternative addresses declared using the alternates command shall be removed from the
list.

• The set of recipients marked for placement in the To header field of the reply message shall
have duplicates within that set removed.

• The set of recipients marked for placement in the Cc header field of the reply message shall
have duplicates within that set removed and may have recipients that are also marked for
placement in the To field removed.

The values for the To and Cc header fields of the reply message shall be constructed from the
addresses in the modified list of recipients that are marked for placement in each of those fields.

The value for the Subject header field of the reply message shall be formed from the value of the
Subject header field of the message or the first message in msglist by prefixing it with
Re:<space>, unless it already begins with that string.

The values of the To, Cc, and Subject header fields set as described above can be modified by
the user after mailx enters input mode through the use of the ˜t, ˜c, ˜s, and ˜h command escapes.

If record is set to a pathname, the response shall be saved at the end of that file.

Retain Header Fields

Synopsis: ret[ain] [field-name...]

Retain header fields with the specified field names when writing messages. This command shall
override all discard and ignore commands. The comparison of field names shall be performed
in a case-insensitive manner. If no arguments are specified, write a list of the currently retained
field names to standard output; the listing need not reflect the same order of field names that
were entered.

Save Messages

Synopsis: s[ave] [file]
s[ave] [msglist] file
S[ave] [msglist]

Save the specified messages in the file named by the pathname file, or the mbox if the file
argument is omitted. The file shall be created if it does not exist; otherwise, the messages shall be
appended to the file. The message shall be put in the state saved, and shall behave as specified in
the description of the saved state when the current mailbox is exited by the quit or file
command.

In the capitalized form, save the specified messages in a file whose name is derived from the
author of the first message. The name of the file shall be taken to be the author’s name with all
network addressing stripped off. See also the Copy, followup, and Followup commands and
outfolder variable.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3119

104925

104926

104927

104928

104929

104930

104931

104932

104933

104934

104935

104936

104937

104938

104939

104940

104941

104942

104943

104944

104945

104946

104947

104948

104949

104950

104951

104952

104953

104954

104955

104956

104957

104958

104959

104960

104961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

Set Variables

Synopsis: se[t] [name[=[string]] ...] [name=number ...] [noname ...]

Define one or more variables called name. The variable can be given a null, string, or numeric
value. Quoting and <backslash>-escapes can occur anywhere in string, as described previously,
as if the string portion of the argument were the entire argument. The forms name and name=
shall be equivalent to name="" for variables that take string values. The set command without
arguments shall write a list of all defined variables and their values. The no name form shall be
equivalent to unset name.

Invoke a Shell

Synopsis: sh[ell]

Invoke an interactive command interpreter (see also SHELL).

Display Message Size

Synopsis: si[ze] [msglist]

Write the size in bytes of each of the specified messages.

Read mailx Commands From a File

Synopsis: so[urce] file

Read and execute commands from the file named by the pathname file and return to command
mode.

Display Beginning of Messages

Synopsis: to[p] [msglist]

Write the top few lines of each of the specified messages. If the toplines variable is set, it is taken
as the number of lines to write. The default shall be 5.

Touch Messages

Synopsis: tou[ch] [msglist]

Allowed only in the system mailbox. Touch the specified messages. Unless overridden by the
hold variable, any message in msglist that is not specifically deleted nor saved in a file shall be
placed in the mbox upon normal termination or when the folder is changed. Overrides a former
hold or preserve request.

Delete Aliases

Synopsis: una[lias] [alias]...

Delete the specified alias names. If a specified alias does not exist, the results are unspecified.

3120 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

104962

104963

104964

104965

104966

104967

104968

104969

104970

104971

104972

104973

104974

104975

104976

104977

104978

104979

104980

104981

104982

104983

104984

104985

104986

104987

104988

104989

104990

104991

104992

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

Undelete Messages

Synopsis: u[ndelete] [msglist]

Change the state of the specified messages from deleted to read. If autoprint is set, the last
message of those restored shall be written. If msglist is not specified, the message shall be
selected as follows:

• If there are any deleted messages that follow the current message, the first of these shall be
chosen.

• Otherwise, the last deleted message that also precedes the current message shall be chosen.

Unset Variables

Synopsis: uns[et] name...

Cause the specified variables to be erased.

Edit Message with Full-Screen Editor

Synopsis: v[isual] [msglist]

Edit the given messages with a screen editor. Each message shall be placed in a temporary file,
and the utility named by the VISUAL variable shall be invoked to edit each file in sequence. The
default editor shall be vi.

The visual command does not modify the contents of those messages in the mailbox.

Write Messages to a File

Synopsis: w[rite] [msglist] file

Write the given messages to the file specified by the pathname file, minus the message header.
Otherwise, it shall be equivalent to the save command.

Scroll Header Display

Synopsis: z[+|-]

Scroll the header display forward (if '+' is specified or if no option is specified) or backward (if
'−' is specified) one screenful. The number of header summaries written shall be set by the
screen variable.

Invoke Shell Command

Synopsis: !command

Invoke the command interpreter specified by SHELL with three arguments: "-c", "--", and
command. (See also sh −c.) If the bang variable is set, each unescaped occurrence of '!' in
command shall be replaced with the command executed by the previous ! command or ˜!
command escape.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3121

104993

104994

104995

104996

104997

104998

104999

105000

105001

105002

105003

105004

105005

105006

105007

105008

105009

105010

105011

105012

105013

105014

105015

105016

105017

105018

105019

105020

105021

105022

105023

105024

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

Null Command

Synopsis: # comment

This null command (comment) shall be ignored by mailx.

Display Current Message Number

Synopsis: =

Write the current message number.

Command Escapes in mailx

The following commands can be entered only from input mode, by beginning a line with the
escape character (by default, <tilde> ('~')). See the escape variable description for changing
this special character. The format for the commands shall be:

<escape-character><command-char><separator>[<arguments>]

where the <separator> can be zero or more <blank> characters.

In the following descriptions, the application shall ensure that the argument command (but not
mailx-command) is a shell command string. Any string acceptable to the command interpreter
specified by the SHELL variable when it is invoked as SHELL −c command_string shall be valid.
The command can be presented as multiple arguments (that is, quoting is not required).

Command escapes that are listed with msglist or mailx-command arguments are invalid in Send
Mode and produce unspecified results.

˜! command Invoke the command interpreter specified by SHELL with three arguments: "-c",
"--", and command; and then return to input mode. If the bang variable is set,
each unescaped occurrence of '!' in command shall be replaced with the command
executed by the previous ! command or ˜! command escape.

˜. Simulate end-of-file (terminate message input).

˜: mailx-command, ˜_ mailx-command
Perform the command-level request.

˜? Write a summary of command escapes.

˜A This shall be equivalent to ˜i Sign.

˜a This shall be equivalent to ˜i sign.

˜b name. . . Add the names to the blind carbon copy (Bcc) list.

˜c name. . . Add the names to the carbon copy (Cc) list.

˜d Read in the dead-letter file. See DEAD for a description of this file.

˜e Invoke the editor, as specified by the EDITOR environment variable, on the partial
message.

˜f [msglist] Forward the specified messages. The specified messages, including their headers,
shall be inserted into the current message without alteration. The header fields
included in each header shall be affected by the discard, ignore, and retain
commands.

3122 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105025

105026

105027

105028

105029

105030

105031

105032

105033

105034

105035

105036

105037

105038

105039

105040

105041

105042

105043

105044

105045

105046

105047

105048

105049

105050

105051

105052

105053

105054

105055

105056

105057

105058

105059

105060

105061

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

˜F [msglist] This shall be the equivalent of the ˜f command escape, except that all header fields
shall be included in the message headers, regardless of previous discard, ignore,
and retain commands.

˜h If standard input is a terminal, prompt for values for the Subject, To, Cc, and Bcc
header fields. Other implementation-defined header fields may also be presented
for editing. If the header field is written with an initial value, it can be edited as if it
had just been typed.

˜i string Insert the value of the named variable, followed by a <newline>, into the text of
the message. If the string is unset or null, the message shall not be changed.

˜m [msglist] Insert the specified messages, including their headers, into the current message,
prefixing non-empty lines with the string in the indentprefix variable. The header
fields included in each header shall be affected by the discard, ignore, and retain
commands.

˜M [msglist] This shall be the equivalent of the ˜m command escape, except that all header
fields shall be included in the message headers, regardless of previous discard,
ignore, and retain commands.

˜p Write the message being entered. If the message is longer than crt lines (see
Internal Variables in mailx, on page 3109), the output shall be paginated as
described for the PAGER variable.

˜q Quit (see the quit command) from input mode by simulating an interrupt. If the
body of the message is not empty, the partial message shall be saved in the dead-
letter file. See DEAD for a description of this file.

˜r file, ˜< file, ˜r !command, ˜< !command
Read in the file specified by the pathname file. If the argument begins with an
<exclamation-mark> ('!'), the rest of the string shall be taken as an arbitrary
system command; the command interpreter specified by SHELL shall be invoked
with three arguments: "-c", "--", and command. The standard output of
command shall be inserted into the message.

˜s string Set the value for the Subject header field to string.

˜t name. . . Add the given names to the To list.

˜v Invoke the full-screen editor, as specified by the VISUAL environment variable, on
the partial message.

˜w file Write the partial message, without the header, onto the file named by the
pathname file. The file shall be created or the message shall be appended to it if
the file exists.

˜x Exit as with ˜q, except the message shall not be saved in the dead-letter file.

˜| command Pipe the body of the message through the given command by invoking the
command interpreter specified by SHELL with three arguments: "-c", "--", and
command. If the command returns a successful exit status, the standard output of
the command shall replace the message. Otherwise, the message shall remain
unchanged. If the command fails, an error message giving the exit status shall be
written.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3123

105062

105063

105064

105065

105066

105067

105068

105069

105070

105071

105072

105073

105074

105075

105076

105077

105078

105079

105080

105081

105082

105083

105084

105085

105086

105087

105088

105089

105090

105091

105092

105093

105094

105095

105096

105097

105098

105099

105100

105101

105102

105103

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

EXIT STATUS
UP When the −e option is specified, the following exit values are returned:

0 Mail was found.

>0 Mail was not found or an error occurred.

Otherwise, the following exit values are returned:

0 Successful completion; note that this status implies that any messages that mailx was
instructed to send were all successfully either sent or discarded (see −E), but it gives no
assurances that any of them were actually delivered.

>0 An error occurred.

CONSEQUENCES OF ERRORS
UP When in input mode (Receive Mode) or Send Mode:

• If an error is encountered processing an input line beginning with a <tilde> ('~')
UP character, (see Command Escapes in mailx, on page 3122), a diagnostic message shall be

written to standard error, and the message being composed may be modified, but this
condition shall not prevent the message from being sent.

• Other errors shall prevent the sending of the message.

UP When in command mode:

• Default.

APPLICATION USAGE
Delivery of messages to remote systems requires the existence of communication paths to such
systems. These need not exist.

Input lines are limited to {LINE_MAX} bytes, but mailers between systems may impose more
severe line-length restrictions. This volume of POSIX.1-2024 does not place any restrictions on
the length of messages handled by mailx, and for delivery of local messages the only limitations
should be the normal problems of available disk space for the target mail file. When sending
messages to external machines, applications are advised to limit messages to less than 100 000
bytes because some mail gateways impose message-length restrictions.

The format of the system mailbox is intentionally unspecified. Not all systems implement
system mailboxes as flat files, particularly with the advent of multimedia mail messages. Some
system mailboxes may be multiple files, others records in a database. The internal format of the
messages themselves is specified with the historical format from Version 7, but only after the
messages have been saved in some file other than the system mailbox. This was done so that
many historical applications expecting text-file mailboxes are not broken.

Some new formats for messages can be expected in the future, probably including binary data,
bit maps, and various multimedia objects. As described here, mailx is not prohibited from
handling such messages, but it must store them as text files in secondary mailboxes (unless some
extension, such as a variable or command line option, is used to change the stored format). Its
method of doing so is implementation-defined and might include translating the data into text
file-compatible or readable form or omitting certain portions of the message from the stored
output.

The discard and ignore commands are not inverses of the retain command. The retain
command discards all header fields except those explicitly retained. The discard command

3124 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105104

105105

105106

105107

105108

105109

105110

105111

105112

105113

105114

105115

105116

105117

105118

105119

105120

105121

105122

105123

105124

105125

105126

105127

105128

105129

105130

105131

105132

105133

105134

105135

105136

105137

105138

105139

105140

105141

105142

105143

105144

105145

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

keeps all header fields except those explicitly discarded. If field names exist on the retained field
names list, discard and ignore commands are ignored.

EXAMPLES
None.

RATIONALE
The standard developers felt strongly that a method for applications to send messages to specific
users was necessary. The obvious example is a batch utility, running non-interactively, that
wishes to communicate errors or results to a user. However, the actual format, delivery
mechanism, and method of reading the message are clearly beyond the scope of this volume of
POSIX.1-2024.

The intent of this command is to provide a simple, portable interface for sending messages non-
interactively. It merely defines a ``front-end’’ to the historical mail system. It is suggested that
implementations explicitly denote the sender and recipient in the body of the delivered message.
Further specification of formats for either the message envelope or the message itself were
deliberately not made, as the industry is in the midst of changing from the current standards to a
more internationalized standard and it is probably incorrect, at this time, to require either one.

Implementations are encouraged to conform to the various delivery mechanisms described in
the CCITT X.400 standards or to the equivalent Internet standards, described in Internet Request
for Comment (RFC) documents RFC 819, RFC 920, RFC 921, RFC 1123, and RFC 5322.

Many historical systems modified each body line that started with From by prefixing the 'F'
with '>'. It is unnecessary, but allowed, to do that when the string does not follow a blank line
because it cannot be confused with the next header.

The edit and visual commands merely edit the specified messages in a temporary file. They do
not modify the contents of those messages in the mailbox; such a capability could be added as an
extension, such as by using different command names.

The restriction on the value for a Subject header field being {LINE_MAX}−10 bytes is based on
the historical format that consumes 10 bytes for Subject: and the trailing <newline>. Many
historical mailers that a message may encounter on other systems are not able to handle lines
that long, however.

Like the utilities logger and lp, mailx admittedly is difficult to test. This was not deemed sufficient
justification to exclude this utility from this volume of POSIX.1-2024. It is also arguable that it is,
in fact, testable, but that the tests themselves are not portable.

When mailx is being used by an application that wishes to receive the results as if none of the
User Portability Utilities option features were supported, the DEAD environment variable must
be set to /dev/null. Otherwise, it may be subject to the file creations described in mailx
ASYNCHRONOUS EVENTS. Similarly, if the MAILRC environment variable is not set to
/dev/null, historical versions of mailx and Mail read initialization commands from a file before
processing begins. Since the initialization that a user specifies could alter the contents of
messages an application is trying to send, such applications must set MAILRC to /dev/null.

The description of LC_TIME uses ``may affect’’ because many historical implementations do not
or cannot manipulate the date and time strings in the incoming mail headers. Some header fields
found in incoming mail do not have enough information to determine the timezone in which the
mail originated, and, therefore, mailx cannot convert the date and time strings into the internal
form that then is parsed by routines like strftime() that can take LC_TIME settings into account.
Changing all these times to a user-specified format is allowed, but not required.

The paginator selected when PAGER is null or unset is partially unspecified to allow the System

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3125

105146

105147

105148

105149

105150

105151

105152

105153

105154

105155

105156

105157

105158

105159

105160

105161

105162

105163

105164

105165

105166

105167

105168

105169

105170

105171

105172

105173

105174

105175

105176

105177

105178

105179

105180

105181

105182

105183

105184

105185

105186

105187

105188

105189

105190

105191

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

V historical practice of using pg as the default. Bypassing the pagination function, such as by
declaring that cat is the paginator, would not meet with the intended meaning of this
description. However, any ``portable user’’ would have to set PAGER explicitly to get his or her
preferred paginator on all systems. The paginator choice was made partially unspecified, unlike
the VISUAL editor choice (mandated to be vi) because most historical pagers follow a common
theme of user input, whereas editors differ dramatically.

Options to specify addresses as cc (carbon copy) or bcc (blind carbon copy) were considered to
be format details and were omitted.

A zero exit status implies that all messages were sent, but it gives no assurances that any of them
were actually delivered. The reliability of the delivery mechanism is unspecified and is an
appropriate marketing distinction between systems.

In order to conform to the Utility Syntax Guidelines, a solution was required to the optional file
option-argument to −f. By making file an operand, the guidelines are satisfied and users remain
portable. However, it does force implementations to support usage such as:

mailx -fin mymail.box

The no name method of unsetting variables is not present in all historical systems, but it is in
System V and provides a logical set of commands corresponding to the format of the display of
options from the mailx set command without arguments.

The ask and asksub variables are the names selected by BSD and System V, respectively, for the
same feature. They are synonyms in this volume of POSIX.1-2024.

The mailx echo command was not documented in the BSD version and has been omitted here
because it is not obviously useful for interactive users.

The default prompt on the System V mailx is a <question-mark>, on BSD Mail an <ampersand>.
Since this volume of POSIX.1-2024 chose the mailx name, it kept the System V default, assuming
that BSD users would not have difficulty with this minor incompatibility (that they can
override).

The meanings of r and R are reversed between System V mailx and SunOS Mail. Once again,
since this volume of POSIX.1-2024 chose the mailx name, it kept the System V default, but allows
the SunOS user to achieve the desired results using flipr, an internal variable in System V mailx,
although it has not been documented in the SVID.

The indentprefix variable, the retain and unalias commands, and the ˜F and ˜M command
escapes were adopted from 4.3 BSD Mail.

The version command was not included because no sufficiently general specification of the
version information could be devised that would still be useful to a portable user. This
command name should be used by suppliers who wish to provide version information about the
mailx command.

The ``implementation-specific (unspecified) system start-up file’’ historically has been named
/etc/mailx.rc, but this specific name and location are not required.

The intent of the wording for the next command is that if any command has already displayed
the current message it should display a following message, but, otherwise, it should display the
current message. Consider the command sequence:

next 3
delete 3
next

3126 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105192

105193

105194

105195

105196

105197

105198

105199

105200

105201

105202

105203

105204

105205

105206

105207

105208

105209

105210

105211

105212

105213

105214

105215

105216

105217

105218

105219

105220

105221

105222

105223

105224

105225

105226

105227

105228

105229

105230

105231

105232

105233

105234

105235

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

where the autoprint option was not set. The normative text specifies that the second next
command should display a message following the third message, because even though the
current message has not been displayed since it was set by the delete command, it has been
displayed since the current message was anything other than message number 3. This does not
always match historical practice in some implementations, where the command file address
followed by next (or the default command) would skip the message for which the user had
searched.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
Chapter 2 (on page 2472), ed , ls , more , vi

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The description of the EDITOR environment variable is changed to indicate that ed is the default
editor if this variable is not set. In previous issues, this default was not stated explicitly at this
point but was implied further down in the text.

The FUTURE DIRECTIONS section is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −F option is added.

• The allnet, debug, and sendwait internal variables are added.

• The C, ec, fo, F, and S mailx commands are added.

In the DESCRIPTION and ENVIRONMENT VARIABLES sections, text stating ``HOME
directory’’ is replaced by ``directory referred to by the HOME environment variable’’.

The mailx utility is aligned with the IEEE P1003.2b draft standard, which includes various
clarifications to resolve IEEE PASC Interpretations submitted for the ISO POSIX-2: 1993
standard. In particular, the changes here address IEEE PASC Interpretations 1003.2 #10, #11,
#103, #106, #108, #114, #115, #122, and #129.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/32 is applied, applying a change to the
EXTENDED DESCRIPTION, raised by IEEE PASC Interpretation 1003.2 #122, which was
overlooked in the first version of this standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/17 is applied, updating the EXTENDED
DESCRIPTION (Internal Variables in mailx). The system start-up file is changed from
``implementation-defined’’ to ``unspecified’’ for consistency with other text in the EXTENDED
DESCRIPTION.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3127

105236

105237

105238

105239

105240

105241

105242

105243

105244

105245

105246

105247

105248

105249

105250

105251

105252

105253

105254

105255

105256

105257

105258

105259

105260

105261

105262

105263

105264

105265

105266

105267

105268

105269

105270

105271

105272

105273

105274

105275

105276

105277

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mailx Utilities

Issue 7
Austin Group Interpretation 1003.1-2001 #089 is applied, clarifying the effect of the LC_TIME
environment variable.

Austin Group Interpretation 1003.1-2001 #090 is applied, updating the description of the next
command.

SD5-XCU-ERN-69 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Shading to indicate support for the User Portability Utilities option is added.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0120 [855] and XCU/TC2-2008/0121
[619] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 956 is applied, clarifying how the PAGER environment variable and the crt
internal variable affect pagination.

Austin Group Defects 990 and 991 are applied, changing the description of the mbox command.

Austin Group Defect 999 is applied, adding Save to the list of commands that are invalid in a
start-up file.

Austin Group Defect 1034 is applied, clarifying that ˜. can be used to terminate input mode
when ignoreeof is set.

Austin Group Defect 1109 is applied, changing the description of the bang internal variable.

Austin Group Defect 1113 is applied, changing the description of the read state.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1176 is applied, changing ``option-argument’’ to ``operand’’.

Austin Group Defect 1306 is applied, changing the description of the folder internal variable.

Austin Group Defect 1367 is applied, adding the −E option.

Austin Group Defect 1401 is applied, changing the requirements for the reply, Reply, followup,
and Followup commands.

Austin Group Defect 1405 is applied, changing the terminology related to mail messages to
match IETF RFC 5322.

Austin Group Defect 1408 is applied, changing the description of Send Mode.

Austin Group Defect 1507 is applied, changing the EXIT STATUS section.

Austin Group Defect 1528 is applied, adding a "--" argument to be passed between "-c" and
command when executing shell commands.

Austin Group Defect 1634 is applied, clarifying handling of the system mailbox.

Austin Group Defect 1685 is applied, updating RFC references.

Austin Group Defect 1725 is applied, clarifying that the default for the screen internal variable is
noscreen.

Austin Group Defect 1743 is applied, changing the descriptions of the metoo internal variable

3128 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105278

105279

105280

105281

105282

105283

105284

105285

105286

105287

105288

105289

105290

105291

105292

105293

105294

105295

105296

105297

105298

105299

105300

105301

105302

105303

105304

105305

105306

105307

105308

105309

105310

105311

105312

105313

105314

105315

105316

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mailx

and the alternates command.

Austin Group Defect 1747 is applied, changing the description of the alias command.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3129

105317

105318

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

NAME
make — maintain, update, and regenerate files (DEVELOPMENT)

SYNOPSIS
SD make [-einpqrst] [-f makefile]... [-j maxjobs] [-k|-S]

[macro[::[:]]=value...] [target_name...]

DESCRIPTION
The make utility shall update files that are derived from other files. A typical case is one where
object files are derived from the corresponding source files. The make utility examines time
relationships and shall update those derived files (called targets) that have modified times
earlier than the modified times of the files (called prerequisites) from which they are derived. A
description file (makefile) contains a description of the relationships between files, and the
commands that need to be executed to update the targets to reflect changes in their
prerequisites. Each specification, or rule, shall consist of a target, optional prerequisites, and
optional commands to be executed when a prerequisite is newer than the target. There are two
kinds of rule:

1. Inference rules, which have one target name with at least one <period> ('.') and no
<slash> ('/')

2. Target rules, which can have more than one target name

In addition, make shall have a collection of built-in macros and inference rules that infer
prerequisite relationships to simplify maintenance of programs.

To receive exactly the behavior described in this section, a portable makefile shall:

• Include the special target .POSIX

• Omit any special target reserved for implementations (a leading period followed by
uppercase letters) that has not been specified by this section

The behavior of make is unspecified if either or both of these conditions are not met.

OPTIONS
The make utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

−e Cause environment variables, including those with null values, to override macro
assignments within makefiles.

−f makefile Specify a different makefile. The argument makefile is a pathname of a description
file, which is also referred to as the makefile. A pathname of '−' shall denote the
standard input. There can be multiple instances of this option, and they shall be
processed in the order specified. The effect of specifying the same option-argument
more than once is unspecified.

−i Ignore error codes returned by invoked commands. This mode shall be the same as
if the special target .IGNORE were specified without prerequisites.

−j maxjobs Set the maximum number of targets that can be updated concurrently. If this
option is specified multiple times, the last value of maxjobs specified shall take
precedence. If this option is not specified, or if maxjobs is 1, only one target shall be
updated at a time (no parallelization). If the value of maxjobs is non-positive, the
behavior is unspecified. When maxjobs is greater than 1, make shall create a pool of
up to maxjobs − 1 tokens. (Note that implementations are not required to create a
pool of exactly maxjobs − 1 tokens. For example, an implementation could limit the

3130 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105319

105320

105321

105322

105323

105324

105325

105326

105327

105328

105329

105330

105331

105332

105333

105334

105335

105336

105337

105338

105339

105340

105341

105342

105343

105344

105345

105346

105347

105348

105349

105350

105351

105352

105353

105354

105355

105356

105357

105358

105359

105360

105361

105362

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

pool size based on the number of processors available.) If the size of the token pool
would be 0, make need not implement a token pool.

When all of the following are true:

• There is a target with commands that is not up-to-date

• The target’s prerequisites (if any) are up-to-date

• make is not waiting to bring the target up-to-date (see .WAIT)

• make is currently bringing a different target with commands up-to-date

• make is not currently bringing maxjobs targets up-to-date in parallel

• The special target .NOTPARALLEL is not specified

• The token pool is not empty

then make may attempt to remove one token from the pool. If a token is
successfully removed, it shall attempt to bring this target up-to-date in parallel,
and after this processing completes shall return the token to the pool. When make is
bringing a target without commands up-to-date, it need not remove a token from
the pool.

If a rule invokes a sub-make either via the MAKE macro or via a command line that
begins with '+', the sub-make is the same implementation as the make that invoked
the sub-make, and the −j option is passed to the sub-make via the MAKEFLAGS
environment variable with the same maxjobs value and is not overridden by a
maxjobs value from another source (even if it has the same value), the sub-make
shall use the same token pool as its invoking make rather than create a new token
pool. Otherwise, it is unspecified whether the sub-make uses the same token pool
as its invoking make or creates a new token pool. If a rule executes multiple sub-
make processes asynchronously the behavior is unspecified.

−k Continue to update other targets that do not depend on the current target if a non-
ignored error occurs while executing the commands to bring a target up-to-date.

−n Write commands that would be executed on standard output, but do not execute
them. However, lines with a <plus-sign> ('+') prefix, lines that expand the MAKE
macro, and lines being processed in order to create an include file or to bring it up-
to-date (see Include Lines in the EXTENDED DESCRIPTION section) shall be
executed. In this mode, lines with a <commercial-at> ('@') character prefix shall
be written to standard output.

−p Write to standard output the complete set of macro definitions and target
descriptions. The output format is unspecified.

−q Return a zero exit value if the target file is up-to-date; otherwise, return an exit
value of 1. Targets shall not be updated if this option is specified. However, a
makefile command line (associated with the targets) with a <plus-sign> ('+')
prefix shall be executed and it is unspecified whether command lines that do not
have a <plus-sign> prefix and either expand the MAKE macro or are being
processed in order to create an include file or to bring it up-to-date (see Include
Lines in the EXTENDED DESCRIPTION section) are executed.

−r Clear the suffix list and do not use the built-in rules.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3131

105363

105364

105365

105366

105367

105368

105369

105370

105371

105372

105373

105374

105375

105376

105377

105378

105379

105380

105381

105382

105383

105384

105385

105386

105387

105388

105389

105390

105391

105392

105393

105394

105395

105396

105397

105398

105399

105400

105401

105402

105403

105404

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

−S Terminate make if an error occurs while executing the commands to bring a target
up-to-date. This shall be the default and the opposite of −k.

−s Do not write makefile execution lines (see Makefile Execution, on page 3136) or
touch messages (see −t) to standard output before executing. This mode shall be
the same as if the special target .SILENT were specified without prerequisites.

−t Update the modification time of each target as though a touch target had been
executed. Targets that have prerequisites but no commands (see Target Rules, on
page 3137), or that are already up-to-date, shall not be touched in this manner.
Write messages to standard output for each target file indicating the name of the
file and that it was touched. Normally, the makefile command lines associated with
each target are not executed. However, a command line with a <plus-sign> ('+')
prefix shall be executed and it is unspecified whether command lines that do not
have a <plus-sign> prefix and either expand the MAKE macro or are being
processed in order to create an include file or to bring it up-to-date (see Include
Lines in the EXTENDED DESCRIPTION section) are executed.

Any options specified in the MAKEFLAGS environment variable shall be evaluated before any
options specified on the make utility command line. If the −k and −S options are both specified
on the make utility command line or by the MAKEFLAGS environment variable, the last option
specified shall take precedence. If the −f or −p options appear in the MAKEFLAGS environment
variable, the result is undefined.

OPERANDS
The following operands shall be supported:

target_name Target names, as defined in the EXTENDED DESCRIPTION section. If no target
is specified, while make is processing the makefiles, the first target that make
encounters that is not a special target or an inference rule shall be used.

macro=value
macro::=value
macro:::=value Delayed and immediate expansion macro definitions, as defined in Macros (on

page 3139).

Delayed and immediate expansion macro definitions can be intermixed, and shall be processed
in the order specified. If any macro definition appears after a target_name operand on the make
utility command line, the results are unspecified.

STDIN
The standard input shall be used only if the makefile option-argument is '−'. See the INPUT
FILES section.

INPUT FILES
The input file, otherwise known as the makefile, is a text file containing rules, macro definitions,
include lines, and comments. See the EXTENDED DESCRIPTION section.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of make:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

3132 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105405

105406

105407

105408

105409

105410

105411

105412

105413

105414

105415

105416

105417

105418

105419

105420

105421

105422

105423

105424

105425

105426

105427

105428

105429

105430

105431

105432

105433

105434

105435

105436

105437

105438

105439

105440

105441

105442

105443

105444

105445

105446

105447

105448

105449

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

MAKEFLAGS
This variable shall be interpreted as a character string representing a series of
option characters to be used as the default options. The implementation shall
accept both of the following formats (but need not accept them when intermixed):

• The characters are option letters without the leading <hyphen-minus>
characters or <blank> separation used on a make utility command line.

• The characters are formatted in a manner similar to the use of the make utility
in shell commands: options are preceded by <hyphen-minus> characters and
<blank>-separated as described in XBD Section 12.2 (on page 215). The
macro=value macro definition operands can also be included. The difference
between the contents of MAKEFLAGS and the use of the make utility in shell
commands is that the contents of the variable shall not be subjected to the
word expansions (see Section 2.6, on page 2483) associated with parsing shell
command lines.

XSI NLSPATH Determine the location of messages objects and message catalogs.

XSI PROJECTDIR
Provide a directory to be used to search for SCCS files not found in the current
directory. In all of the following cases, the search for SCCS files is made in the
directory SCCS in the identified directory. If the value of PROJECTDIR begins with
a <slash>, it shall be considered an absolute pathname; otherwise, the value of
PROJECTDIR is treated as a user name and that user’s initial working directory
shall be examined for a subdirectory src or source. If such a directory is found, it
shall be used. Otherwise, the value is used as a relative pathname.

If PROJECTDIR is not set or has a null value, the search for SCCS files shall be
made in the directory SCCS in the current directory.

The setting of PROJECTDIR affects all files listed in the remainder of this utility
description for files with a component named SCCS.

The value of the SHELL environment variable shall not be used as a macro and shall not be
modified by defining the SHELL macro in a makefile or on the command line. All other
environment variables, including those with null values, shall be used as macros, as defined in
Macros (on page 3139).

ASYNCHRONOUS EVENTS
For SIGHUP, SIGINT, SIGQUIT, and SIGTERM signals, if the signal was not inherited as
ignored, none of the −n, −p, or −q options was specified, make is currently processing a target or
inference rule, and the current target is neither a directory nor a prerequisite of the special
targets .PHONY or .PRECIOUS:

• The make utility shall catch the signal and, if the time of last data modification of the
current target has changed since make began processing the rule to bring that target up to
date, remove that target; it may also remove that target if the time of last data modification
has not changed. Any targets removed in this manner shall be reported in diagnostic or

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3133

105450

105451

105452

105453

105454

105455

105456

105457

105458

105459

105460

105461

105462

105463

105464

105465

105466

105467

105468

105469

105470

105471

105472

105473

105474

105475

105476

105477

105478

105479

105480

105481

105482

105483

105484

105485

105486

105487

105488

105489

105490

105491

105492

105493

105494

105495

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

informational messages of unspecified format, written to standard error.

• If make writes a diagnostic message to standard error, it shall exit with a status that
indicates an error occurred; otherwise, it shall set the signal to default and re-signal itself.

In all other circumstances, make shall take the standard action for all signals; see Section 1.4 (on
page 2462).

STDOUT
If make is invoked without any work needing to be done, it may write a message to standard
output indicating that no action was taken. Otherwise, the make utility shall write all commands
to be executed (and the filenames of files touched for the −t option in a message of unspecified
format) to standard output unless the −s option was specified, the command is prefixed with a
<commercial-at> ('@'), or the special target .SILENT has either the current target as a
prerequisite or has no prerequisites.

STDERR
The standard error shall be used for diagnostic messages and may be used for informational
messages about target removals (see ASYNCHRONOUS EVENTS).

OUTPUT FILES
Files can be created when the −t option is present. Additional files can also be created by the
utilities invoked by make.

EXTENDED DESCRIPTION
The make utility attempts to perform the actions, specified in one or more makefiles, required to
ensure that specified targets are up-to-date. By default, the following files shall be tried in
sequence: ./makefile and ./Makefile. If neither ./makefile nor ./Makefile is found, other

XSI implementation-defined files may also be tried. On XSI-conformant systems, the additional
files ./s.makefile, SCCS/s.makefile, ./s.Makefile, and SCCS/s.Makefile shall also be tried. The
−f option shall direct make to ignore any of these default files and use the specified option-
argument as a makefile instead. If this option-argument is '−', standard input shall be used.

The term makefile is used to refer to any makefile contents provided by the user, whether in
./makefile or its variants, or specified by the −f option.

A target shall be considered up-to-date if it exists and is newer than all of its prerequisites, or if it
has already been made up-to-date by the current invocation of make (regardless of the target’s
existence or age), except that targets that are made up-to-date in order for them to be processed
as include line pathnames (see Include Lines below) need not be considered up-to-date during
later processing. A target may also be considered up-to-date if it exists, is the same age as one or
more of its prerequisites, and is newer than the remaining prerequisites (if any). The make utility
shall treat all prerequisites as targets themselves and recursively ensure that they are up-to-date,
processing them in the order in which they appear in the rule. The make utility shall use the
modification times of files to determine whether the corresponding targets are out-of-date.

To ensure that a target is up-to-date, make shall ensure that all of the prerequisites of the target
are up-to-date, then check to see if the target itself is up-to-date. If the target is not up-to-date,
the target shall be made up-to-date by executing the rule’s commands (if any). If the target does
not exist after the target has been successfully made up-to-date, the target shall be treated as
being newer than any target for which it is a prerequisite.

If a target exists and there is neither a target rule nor an inference rule for the target, the target
shall be considered up-to-date. It shall be an error if make attempts to ensure that a target is up-
to-date but the target does not exist and there is neither a target rule nor an inference rule for the
target.

3134 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105496

105497

105498

105499

105500

105501

105502

105503

105504

105505

105506

105507

105508

105509

105510

105511

105512

105513

105514

105515

105516

105517

105518

105519

105520

105521

105522

105523

105524

105525

105526

105527

105528

105529

105530

105531

105532

105533

105534

105535

105536

105537

105538

105539

105540

105541

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

Makefile Syntax

A makefile can contain rules, macro definitions (see Macros, on page 3139), include lines, and
comments. There are two kinds of rules: target rules, including special targets (see Target Rules,
on page 3137), and inference rules (see Inference Rules, on page 3143). The make utility shall
contain a set of built-in inference rules. If the −r option is present, the built-in rules shall not be
used and the suffix list shall be cleared. Additional rules of both kinds can be specified in a
makefile. If a rule is defined more than once, the value of the rule shall be that of the last one
specified. Macros can also be defined more than once, and the value of the macro is specified in
Macros (on page 3139). There are three kinds of comments: blank lines, empty lines, and a
<number-sign> ('#') and all following characters up to the first unescaped <newline>
character. Blank lines, empty lines, and lines with <number-sign> ('#') as the first character on
the line are also known as comment lines.

Target and inference rules can contain command lines. Command lines can have a prefix that
shall be removed before execution (see Makefile Execution, on page 3136).

When an escaped <newline> (one preceded by a <backslash>) is found anywhere in the
makefile except in a command line after macro expansion, an include line, or a line immediately
preceding an include line, it shall be replaced, along with any leading white space on the next
line, with a single <space>. After all macro expansion is complete, when an escaped <newline>
is found in a command line in a makefile, the command line that is executed shall contain the
<backslash>, the <newline>, and the next line, except that the first character of the next line shall
not be included if it is a <tab>. When an escaped <newline> is found in an include line or in a
line immediately preceding an include line, the behavior is unspecified.

Include Lines

If the word include, optionally prefixed with a <hyphen-minus> character, appears at the
beginning of a line and is followed by one or more <blank> characters, the string formed by the
remainder of the line shall be processed as follows to produce one or more pathnames:

• The trailing <newline>, any <blank> characters immediately preceding a comment, and
any comment shall be discarded. If the resulting string contains any double-quote
characters ('"') the behavior is unspecified.

• The resulting string shall be processed for macro expansion (see Macros, on page 3139).

• Any <blank> characters that appear after the first non-<blank> shall be used as separators
to divide the macro-expanded string into fields. It is unspecified whether pathname
expansion (see Section 2.14, on page 2523) is also performed.

• If the processing of separators and optional pathname expansion results in zero non-empty
fields, the behavior is unspecified. If it results in at least one non-empty field, these fields
are taken as pathnames.

For each pathname so identified, in the order specified:

• If the pathname does not begin with a '/', it shall be treated as relative to the current
working directory of the process, not relative to the directory containing the makefile.

• The make utility shall use one of the following two methods to attempt to create the file or
bring it up-to-date:

1. The ``immediate remaking’’ method

If make uses this method, any target rules or inference rules for the pathname that
were parsed before the include line was parsed shall be used to attempt to create the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3135

105542

105543

105544

105545

105546

105547

105548

105549

105550

105551

105552

105553

105554

105555

105556

105557

105558

105559

105560

105561

105562

105563

105564

105565

105566

105567

105568

105569

105570

105571

105572

105573

105574

105575

105576

105577

105578

105579

105580

105581

105582

105583

105584

105585

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

file or to bring it up-to-date before opening the file.

2. The ``delayed remaking’’ method

If make uses this method, no attempt shall be made to create the file or bring it up-
to-date until after the makefile(s) have been read. During processing of the include
line, make shall read the current contents of the file, if it exists, or treat it as an empty
file if it does not exist. Once the makefile(s) have been read, make shall use any
applicable target rule or inference rule for the pathname, regardless of whether it is
parsed before or after the include line, when creating the file or bringing it up-to-
date. Additionally in this case, the new contents of the file, if it is successfully
created or updated, shall be used when processing rules for the following targets
after the makefile(s) have been read:

• The target_name operands, if any.

• The first target make encounters that is not a special target or an inference rule,
if no target_name operands are specified.

• All targets that are prerequisites, directly or recursively, of the above targets.

If the pathname is relative, the file does not exist, and an attempt to create it using a rule
has not been made and will not be made, it is unspecified whether additional directories
are searched for an existing file of the same relative pathname.

If, after proceeding as described above, the file still cannot be opened:

• If the word include was prefixed with a <hyphen-minus> character, the file shall be
ignored.

• Otherwise, an error shall occur.

• The contents of the file specified by the pathname shall be read and processed as if they
appeared in the makefile in place of the include line. If the file ends with an escaped
<newline> the behavior is unspecified.

• The file may itself contain further include lines. Implementations shall support nesting of
include files up to a depth of at least 16.

Makefile Execution

Makefile command lines shall be processed one at a time.

Makefile command lines can have one or more of the following prefixes: a <hyphen-minus>
('-'), a <commercial-at> ('@'), or a <plus-sign> ('+'). These shall modify the way in which
make processes the command.

− If the command prefix contains a <hyphen-minus>, or the −i option is present, or the special
target .IGNORE has either the current target as a prerequisite or has no prerequisites, any
error found while executing the command shall be ignored.

@ If the command prefix contains a <commercial-at> and the make utility command line −n
option is not specified, or the −s option is present, or the special target .SILENT has either
the current target as a prerequisite or has no prerequisites, the command shall not be
written to standard output before it is executed.

+ If the command prefix contains a <plus-sign>, the command shall be executed even if −n,
−q, or −t is specified.

An execution line is built from the command line by removing any prefix characters. Except as

3136 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105586

105587

105588

105589

105590

105591

105592

105593

105594

105595

105596

105597

105598

105599

105600

105601

105602

105603

105604

105605

105606

105607

105608

105609

105610

105611

105612

105613

105614

105615

105616

105617

105618

105619

105620

105621

105622

105623

105624

105625

105626

105627

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

described under the <commercial-at> ('@') prefix, the execution line shall be written to the
standard output, optionally preceded by a <tab>. The execution line shall then be executed by a
shell as if it were passed as the argument to the system() interface, except that if errors are not
being ignored then the shell −e option shall also be in effect. If errors are being ignored for the
command (as a result of the −i option, a '−' command prefix, or a .IGNORE special target), the
shell −e option shall not be in effect. The environment for the command being executed shall
contain all of the variables in the environment of make.

By default, when make receives a non-zero status from the execution of a command, it shall
terminate with an error message to standard error.

Target Rules

Target rules are formatted as follows:

target [target...]: [prerequisite...][;command]
[<tab>command
<tab>command
...]

Target entries are specified by a <blank>-separated, non-null list of targets, then a <colon>, then
a <blank>-separated, possibly empty list of prerequisites. Text following a <semicolon>, if any,
and all following lines that begin with a <tab>, are makefile command lines to be executed to
update the target. The first non-empty line that does not begin with a <tab> or '#' shall begin a
new entry. Any comment line may begin a new entry.

Applications shall select target names from the set of characters consisting solely of slashes,
hyphens, periods, underscores, digits, and alphabetics from the portable character set (see XBD
Section 6.1, on page 117). Implementations may allow other characters in target names as
extensions. The interpretation of targets containing the characters '%' and '"' is
implementation-defined.

A target that has prerequisites, but does not have any commands, can be used to add to the
prerequisite list for that target. Only one target rule for any given target can contain commands.

Lines that begin with one of the following are called special targets and control the operation of
make:

.DEFAULT If the makefile contains this special target, the application shall ensure that it is
specified with commands, but without prerequisites. The commands shall be used
by make if there are no other rules available to build a target.

.IGNORE Prerequisites of this special target are targets themselves; this shall cause errors
from commands associated with them to be ignored in the same manner as
specified by the −i option. Subsequent occurrences of .IGNORE shall add to the
list of targets ignoring command errors. If no prerequisites are specified, make shall
behave as if the −i option had been specified and errors from all commands
associated with all targets shall be ignored.

.NOTPARALLEL
The application shall ensure that this special target is specified without
prerequisites or commands. When specified, make shall update one target at a time,
regardless of whether the −j maxjobs option is specified. If the −j maxjobs option is
specified, the option shall continue to be passed unchanged to sub-make
invocations via MAKEFLAGS.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3137

105628

105629

105630

105631

105632

105633

105634

105635

105636

105637

105638

105639

105640

105641

105642

105643

105644

105645

105646

105647

105648

105649

105650

105651

105652

105653

105654

105655

105656

105657

105658

105659

105660

105661

105662

105663

105664

105665

105666

105667

105668

105669

105670

105671

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

.PHONY Prerequisites of this special target are targets themselves; these targets (known as
phony targets) shall be considered always out-of-date when the make utility begins
executing. If a phony target’s commands are executed, that phony target shall then
be considered up-to-date until the execution of make completes. Subsequent
occurrences of .PHONY shall add to the list of phony targets. A .PHONY special
target with no prerequisites shall be ignored. If the −t option is specified, phony
targets shall not be touched. Phony targets shall not be removed if make receives
one of the asynchronous events explicitly described in the ASYNCHRONOUS
EVENTS section.

.POSIX The application shall ensure that this special target is specified without
prerequisites or commands. If it appears as the first non-comment line in the
makefile, make shall process the makefile as specified by this section; otherwise, the
behavior of make is unspecified.

.PRECIOUS Prerequisites of this special target shall not be removed if make receives one of the
asynchronous events explicitly described in the ASYNCHRONOUS EVENTS
section. Subsequent occurrences of .PRECIOUS shall add to the list of precious
files. If no prerequisites are specified, all targets in the makefile shall be treated as
if specified with .PRECIOUS.

XSI .SCCS_GET The application shall ensure that this special target is specified without
prerequisites. If this special target is included in a makefile, the commands
specified with this target shall replace the default commands associated with this
special target (see Default Rules, on page 3146). The commands specified with this
target are used to get all SCCS files that are not found in the current directory.

When source files are named in a list of prerequisites, make shall treat them just like
any other target. Because the source file is presumed to be present in the directory,
there is no need to add an entry for it to the makefile. When a target has no
prerequisites, but is present in the directory, make shall assume that that file is up-
to-date. If, however, an SCCS file named SCCS/s.source_file is found for a target
source_file, make compares the timestamp of the target file with that of the
SCCS/s.source_file to ensure the target is up-to-date. If the target is missing, or if
the SCCS file is newer, make shall automatically issue the commands specified for
the .SCCS_GET special target to retrieve the most recent version. However, if the
target is writable by anyone, make shall not retrieve a new version.

.SILENT Prerequisites of this special target are targets themselves; this shall cause
commands associated with them not to be written to the standard output before
they are executed. Subsequent occurrences of .SILENT shall add to the list of
targets with silent commands. If no prerequisites are specified, make shall behave
as if the −s option had been specified and no commands or touch messages
associated with any target shall be written to standard output.

.SUFFIXES Prerequisites of .SUFFIXES shall be appended to the list of known suffixes and are
used in conjunction with the inference rules (see Inference Rules, on page 3143). If
.SUFFIXES does not have any prerequisites, the list of known suffixes shall be
cleared.

.WAIT The application shall ensure that this special target, if specified as a target, is
specified without prerequisites or commands. When .WAIT appears as a target, it
shall have no effect. When .WAIT appears in a target rule as a prerequisite, it shall
not itself be treated as a prerequisite; however, make shall not recursively process
the prerequisites (if any) to the right of the .WAIT until the prerequisites (if any) to

3138 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105672

105673

105674

105675

105676

105677

105678

105679

105680

105681

105682

105683

105684

105685

105686

105687

105688

105689

105690

105691

105692

105693

105694

105695

105696

105697

105698

105699

105700

105701

105702

105703

105704

105705

105706

105707

105708

105709

105710

105711

105712

105713

105714

105715

105716

105717

105718

105719

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

the left of it have been brought up-to-date. Implementations may also enforce the
same ordering between the affected prerequisites while processing other target
rules that have some or all of the same affected prerequisites.

The special targets .IGNORE, .NOTPARALLEL, .PHONY, .POSIX, .PRECIOUS, .SILENT,
.SUFFIXES, and .WAIT shall be specified without commands.

Targets and prerequisites consisting of a leading <period> followed by the uppercase letters
"POSIX" and then any other characters are reserved for future standardization. Targets and
prerequisites consisting of a leading <period> followed by one or more uppercase letters, that
are not described above, are reserved for implementation extensions.

Macros

A macro can be one of two flavors, delayed-expansion or immediate-expansion.

The following form defines a delayed-expansion macro (replacing any previous definition of the
macro named by string1):

string1 = [string2]

The following form defines an immediate-expansion macro (replacing any previous definition of
the macro named by string1):

string1 ::= [string2]

The following form defines a delayed-expansion macro (replacing any previous definition of the
macro named by string1):

string1 :::= [string2]

by immediately expanding macros in string2, if any, before assigning the value.

The following form defines a delayed-expansion macro (replacing any previous definition of the
macro named by string1):

string1 != [string2]

by immediately expanding macros in string2, if any, and then executing the result as a shell
command as if it were passed as the argument to the system() interface. The make utility shall
capture the standard output from the shell execution and shall remove all white space at the
beginning, remove a single trailing <newline> character (if there is one), and then replace all
remaining <newline> characters with <space> characters to produce the value assigned to the
macro named by string1. It shall not be an error if the shell command has non-zero exit status.

The following form defines a delayed-expansion macro, but only if the macro named by string1
is not already defined:

string1 ?= [string2]

The following form (the append form) appends additional text to the value of a macro:

string1 += [string2]

When using the append form:

• If the macro named by string1 does not exist, this form shall be equivalent to the delayed-
expansion form

string1 = [string2]

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3139

105720

105721

105722

105723

105724

105725

105726

105727

105728

105729

105730

105731

105732

105733

105734

105735

105736

105737

105738

105739

105740

105741

105742

105743

105744

105745

105746

105747

105748

105749

105750

105751

105752

105753

105754

105755

105756

105757

105758

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

• If the macro named by string1 exists and is an immediate-expansion macro, then a <space>
or <tab> character followed by the evaluation of string2 shall be appended to the value
currently assigned to the macro named by string1.

• If the macro named by string1 exists and is a delayed-expansion macro, then a <space> or
<tab> character followed by the unevaluated string2 shall be appended to the value
currently assigned to the macro named by string1.

In all cases the value of string1 is defined as all characters from the first non-<blank> character to
the last non-<blank> character, inclusive, before the =, ::=, :::=, !=, ?=, or +=. Portable
applications shall ensure that a <blank> precedes the ::=, :::=, !=, ?=, or += in those forms to
avoid any parsing ambiguity with implementations that permit <colon>, <exclamation-mark>,
<question-mark>, or <plus-sign> in macro names as extensions. The value of string2 is defined
as all characters from the first non-<blank> character, if any, after the <equals-sign>, up to but
not including a comment character ('#') or an unescaped <newline>.

Portable applications shall select macro names from the set of characters consisting solely of
characters from the portable filename character set. Implementations may allow other characters
in macro names as extensions; however, a macro name shall not contain an <equals-sign>,
<blank>, or control character.

Macro expansions in string1 of macro definition lines shall be evaluated when read. Macro
expansions in string2 of macro definition lines shall be performed according to the form of
macro definition used. In immediate-expansion forms (including appending to an existing
immediate-expansion macro), they shall be expanded in the macro definition line and the result
of the expansion shall not be scanned for further macros when the macro identified by string1 is
expanded. In delayed-expansion forms (including appending to an existing delayed-expansion
macro, and conditional assignment to a macro not previously existing), they shall not be
expanded in the macro definition line; they shall be expanded when the macro identified by
string1 is expanded, and the result of the expansion shall be scanned for further macros.
Implementations shall support at least 100 levels of indirection.

Macros can appear anywhere in the makefile. Macro expansions using the forms $(string1) or
${string1} shall be replaced by string2, as follows:

• Macros in target lines shall be evaluated when the target line is read.

• Macros in makefile command lines shall be evaluated when the command is executed.

• Macros in the string before the <equals-sign> in a macro definition shall be evaluated
when the macro assignment is made.

• Immediate-expansion macros shall be evaluated immediately when the macro assignment
is made, and this value shall be used as the replacement until the immediate-expansion
macro is redefined.

• Delayed-expansion macros after the <equals-sign> in macro definitions other than the
:::=, !=, and += forms, and after the <equals-sign> in += form macro definitions where
the macro named by string1 exists and is a delayed-expansion macro, shall only be
evaluated when the defined macro is expanded.

The parentheses or braces are optional if string1 is a single character. The string "$$" shall be
replaced by the single character '$', except during the immediate expansion performed for the
:::= operator, where it shall be left unmodified. If string1 in a macro expansion contains a
macro expansion, that inner macro expansion shall be performed first and the result substituted
into string1 to produce the macro name used for the outer macro expansion.

Macro expansions using the forms $(string1:subst1=[subst2]) or ${string1:subst1=[subst2]} can be

3140 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105759

105760

105761

105762

105763

105764

105765

105766

105767

105768

105769

105770

105771

105772

105773

105774

105775

105776

105777

105778

105779

105780

105781

105782

105783

105784

105785

105786

105787

105788

105789

105790

105791

105792

105793

105794

105795

105796

105797

105798

105799

105800

105801

105802

105803

105804

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

used to replace all occurrences of subst1 with subst2 when the macro substitution is performed.
The subst1 to be replaced shall be recognized when it is a suffix at the end of a word in string1
(where a word, in this context, is defined to be a string delimited by the beginning of the value, a
<blank>, or a <newline>). If string1 in a macro expansion contains a macro expansion, that inner
macro expansion shall be performed as described above and the result substituted into string1 to
produce the macro name used for the outer macro expansion.

Macro expansions using the forms $(string1:[op]%[os]=[np][%][ns]) or
${string1:[op]%[os]=[np][%][ns]} are called pattern macro expansions, where op is the old prefix,
os is the old suffix, np is the new prefix and ns is the new suffix. Any item inside square brackets
is optional. With this form, when the macro string1 is expanded each white-space-separated
word that completely matches the [op]%[os] pattern on the left-hand side of the <equals-sign>
('='), where the <percent> ('%') character matches zero or more characters, shall be replaced
by the right-hand side of the <equals-sign> and shall then be further modified according to the
use of <percent> characters as described below. Any words that do not match shall be
unmodified in the expansion.

If more than one <percent> character appears on the left-hand side of the <equals-sign> ('='),
the second and subsequent <percent> characters shall be treated as literal characters in os.

If no <percent> character appears on the right-hand side of the <equals-sign>, no further
modification of the word shall be performed. If a single <percent> character appears on the
right-hand side, the <percent> character in the word shall be replaced with the characters
matched by the <percent> on the left-hand side. If more than one <percent> character appears
on the right-hand side, it is unspecified whether the first <percent> character in the word is
replaced with the characters matched by the <percent> on the left-hand side and all remaining
<percent> characters are left unchanged, or each <percent> character is replaced with the
characters matched by the <percent> on the left-hand side.

In both macro expansion forms, any macro expansions on the right-hand side of the <colon>
shall be recursively expanded before further examination. If this results in more than one
<equals-sign> after the <colon>, the first one shall be the separator.

In all forms of macro expansion, if the value of the macro named by string1 is an empty string, or
if the macro named by string1 does not exist, the final result shall be an empty string.

Note: It is not safe to assume that a macro which has not intentionally been set to a specific value will
not exist. See APPLICATION USAGE for more information.

Macro definitions shall be taken from the following sources, in the following logical order,
before the makefile(s) are read.

1. Macros specified on the make utility command line, in the order specified on the
command line. It is unspecified whether the internal macros defined in Internal Macros
(on page 3144) are accepted from this source.

2. Macros defined by the MAKEFLAGS environment variable, in the order specified in the
environment variable. It is unspecified whether the internal macros defined in Internal
Macros (on page 3144) are accepted from this source.

3. The contents of the environment, excluding the MAKEFLAGS and SHELL variables and
including the variables with null values.

4. Macros defined in the inference rules built into make.

Macro definitions from these sources shall not override macro definitions from a lower-
numbered source. Macro definitions from a single source (for example, the make utility
command line, the MAKEFLAGS environment variable, or the other environment variables)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3141

105805

105806

105807

105808

105809

105810

105811

105812

105813

105814

105815

105816

105817

105818

105819

105820

105821

105822

105823

105824

105825

105826

105827

105828

105829

105830

105831

105832

105833

105834

105835

105836

105837

105838

105839

105840

105841

105842

105843

105844

105845

105846

105847

105848

105849

105850

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

shall override previous macro definitions from the same source.

Macros defined in the makefile(s) shall override macro definitions that occur before them in the
makefile(s) and macro definitions from source 4. If the −e option is not specified, macros defined
in the makefile(s) shall override macro definitions from source 3. Macros defined in the
makefile(s) shall not override macro definitions from source 1 or source 2.

Before the makefile(s) are read, all of the make utility command line options (except −f and −p)
and make utility command line macro definitions (except any for the MAKEFLAGS macro), not
already included in the MAKEFLAGS macro, shall be added to the MAKEFLAGS macro, quoted
in an implementation-defined manner such that when MAKEFLAGS is read by another instance
of the make command, the original macro’s value is recovered. Other implementation-defined
options and macros, with the exception of the CURDIR macro, may also be added to the
MAKEFLAGS macro. If this modifies the value of the MAKEFLAGS macro, or, if the
MAKEFLAGS macro is modified at any subsequent time, the MAKEFLAGS environment variable
shall be modified to match the new value of the MAKEFLAGS macro. The result of setting
MAKEFLAGS in the Makefile is unspecified.

Before the makefile(s) are read, all of the make utility command line macro definitions (except the
MAKEFLAGS macro or the SHELL macro) shall be added to the environment of make. Other
implementation-defined variables may also be added to the environment of make. Macros
defined by the MAKEFLAGS environment variable and macros defined in the makefile(s) shall
not be added to the environment of make if they are not already in its environment. With the
exception of SHELL (see below), it is unspecified whether macros defined in these ways update
the value of an environment variable that already exists in the environment of make.

The MAKE macro shall be treated specially. If MAKE is not defined in the environment, the
MAKE macro shall be provided by make and set to the value of argv[0] passed to main() (or
equivalent, if make is not a C program). If this value contains at least one <slash> and is a relative
pathname, make shall convert it to an absolute pathname. If MAKE is defined in the makefile or
is specified on the command line, it shall replace the original value of the MAKE macro.

The SHELL macro shall be treated specially. It shall be provided by make and set to the pathname
of the shell command language interpreter (see sh). The SHELL environment variable shall not
affect the value of the SHELL macro. If SHELL is defined in the makefile or is specified on the
command line, it shall replace the original value of the SHELL macro, but shall not affect the
SHELL environment variable. Other effects of defining SHELL in the makefile or on the
command line are implementation-defined.

The CURDIR macro shall be treated specially. It shall be provided by make and set to an absolute
pathname of the current working directory when make is executed. The value shall be the same
as the pathname that would be output by the pwd utility with either the −L or −P option; if they
differ, it is unspecified which value is used. The CURDIR environment variable shall not affect
the value of the CURDIR macro unless the −e option is specified. If the −e option is not specified,
there is a CURDIR environment variable set, and its value is different from the CURDIR macro
value, the environment variable value shall be set to the macro value. If CURDIR is defined in
the makefile, present in the MAKEFLAGS environment variable, or specified on the command
line, it shall replace the original value of the CURDIR macro in accordance with the logical order
described above, but shall not cause make to change its current working directory.

3142 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105851

105852

105853

105854

105855

105856

105857

105858

105859

105860

105861

105862

105863

105864

105865

105866

105867

105868

105869

105870

105871

105872

105873

105874

105875

105876

105877

105878

105879

105880

105881

105882

105883

105884

105885

105886

105887

105888

105889

105890

105891

105892

105893

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

Inference Rules

Inference rules are formatted as follows:

target:
<tab>command
[<tab>command]
...

line that does not begin with <tab> or #

The application shall ensure that the target portion is a valid target name (see Target Rules, on
page 3137) of the form .s2 or .s1.s2 (where .s1 and .s2 are suffixes that have been given as
prerequisites of the .SUFFIXES special target and s1 and s2 do not contain any <slash> or
<period> characters.) If there is only one <period> in the target, it is a single-suffix inference
rule. Targets with two periods are double-suffix inference rules. Inference rules can have only
one target before the <colon>.

The application shall ensure that the makefile does not specify prerequisites for inference rules;
no characters other than white space shall follow the <colon> in the first line, except when
creating the empty rule, described below. Prerequisites are inferred, as described below.

Inference rules can be redefined. A target that matches an existing inference rule shall overwrite
the old inference rule. An empty rule can be created with a command consisting of simply a
<semicolon> (that is, the rule still exists and is found during inference rule search, but since it is
empty, execution has no effect). The empty rule can also be formatted as follows:

rule: ;

where zero or more <blank> characters separate the <colon> and <semicolon>.

The make utility uses the suffixes of targets and their prerequisites to infer how a target can be
made up-to-date. A list of inference rules defines the commands to be executed. By default, make
contains a built-in set of inference rules. Additional rules can be specified in the makefile.

The special target .SUFFIXES contains as its prerequisites a list of suffixes that shall be used by
the inference rules. The order in which the suffixes are specified defines the order in which the
inference rules for the suffixes are used. New suffixes shall be appended to the current list by
specifying a .SUFFIXES special target in the makefile. A .SUFFIXES target with no prerequisites
shall clear the list of suffixes. An empty .SUFFIXES target followed by a new .SUFFIXES list is
required to change the order of the suffixes.

Normally, the user would provide an inference rule for each suffix. The inference rule to update
a target with a suffix .s1 from a prerequisite with a suffix .s2 is specified as a target .s2.s1. The
internal macros provide the means to specify general inference rules (see Internal Macros, on
page 3144).

When no target rule with commands is found to update a target, the inference rules shall be
checked. The suffix of the target (.s1) to be built shall be compared to the list of suffixes specified
by the .SUFFIXES special targets. If the .s1 suffix is found in .SUFFIXES, the inference rules
shall be searched in the order defined for the first .s2.s1 rule whose prerequisite file ($*.s2) exists.
If the target is out-of-date with respect to this prerequisite, the commands for that inference rule
shall be executed. Prerequisites added by target rules without commands shall not affect the
selection of the applicable inference rule.

If the target to be built does not contain a suffix and there is no rule for the target, the single-
suffix inference rules shall be checked. The single-suffix inference rules define how to build a
target if a file is found with a name that matches the target name with one of the single suffixes

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3143

105894

105895

105896

105897

105898

105899

105900

105901

105902

105903

105904

105905

105906

105907

105908

105909

105910

105911

105912

105913

105914

105915

105916

105917

105918

105919

105920

105921

105922

105923

105924

105925

105926

105927

105928

105929

105930

105931

105932

105933

105934

105935

105936

105937

105938

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

appended. A rule with one suffix .s2 is the definition of how to build target from target.s2. The
other suffix (.s1) is treated as null.

XSI A <tilde> ('~') in the above rules refers to an SCCS file in the current directory. Thus, the rule
.c˜.o would transform an SCCS C-language source file into an object file (.o). Because the s. of
the SCCS files is a prefix, it is incompatible with make’s suffix point of view. Hence, the '~' is a
way of changing any file reference into an SCCS file reference.

Libraries

If a target or prerequisite contains parentheses, it shall be treated as a member of an archive
library. For the lib(member.o) expression lib refers to the name of the archive library and member.o
to the member name. The application shall ensure that the member is an object file with the .o
suffix. The modification time of the expression is the modification time for the member as kept
in the archive library; see ar . The .a suffix shall refer to an archive library. The .s2.a rule shall be
used to update a member in the library from a file with a suffix .s2.

Internal Macros

The make utility shall maintain a set of internal macros that can be used in the commands of
target and inference rules, as described below. In order to clearly define the meaning of these
macros, some clarification of the terms target rule, inference rule, target, and prerequisite is
necessary.

Target rules are specified by the user in a makefile for a particular target. Inference rules are
user-specified or make-specified rules for a particular class of target name. Explicit prerequisites
are those prerequisites specified in a makefile on target lines. Implicit prerequisites are those
prerequisites that are generated when inference rules are used. Inference rules are applied to
implicit prerequisites or to explicit prerequisites that do not have target rules defined for them in
the makefile. Target rules are applied to targets specified in the makefile.

Before any target in the makefile is updated, each of its prerequisites (both explicit and implicit)
shall be updated. This shall be accomplished by recursively processing each prerequisite. Upon
recursion, each prerequisite shall become a target itself. Its prerequisites in turn shall be
processed recursively until a target is found that has no prerequisites, or further recursion would
require applying two inference rules one immediately after the other, at which point the
recursion shall stop. As an extension, implementations may continue recursion when two or
more successive inference rules need to be applied; however, if there are multiple different
chains of such rules that could be used to create the target, it is unspecified which chain is used.
The recursion shall then back up, updating each target as it goes.

In the definitions that follow, the word target refers to one of:

• A target specified in the makefile

• An explicit prerequisite specified in the makefile that becomes the target when make
processes it during recursion

• An implicit prerequisite that becomes a target when make processes it during recursion

In the definitions that follow, the word prerequisite refers to one of:

• An explicit prerequisite specified in the makefile for a particular target

• An implicit prerequisite generated as a result of locating an appropriate inference rule and
corresponding file that matches the suffix of the target

The internal macros are:

3144 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

105939

105940

105941

105942

105943

105944

105945

105946

105947

105948

105949

105950

105951

105952

105953

105954

105955

105956

105957

105958

105959

105960

105961

105962

105963

105964

105965

105966

105967

105968

105969

105970

105971

105972

105973

105974

105975

105976

105977

105978

105979

105980

105981

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

$@ The $@ macro shall evaluate to the full target name of the current target, or the archive
filename part of a library archive target. It shall be evaluated for both target and
inference rules.

For example, in the .c.a inference rule, $@ represents the out-of-date .a file to be built.
Similarly, in a makefile target rule to build lib.a from file.c, $@ represents the out-of-
date lib.a.

$% The $% macro shall be evaluated only when the current target is an archive library
member of the form libname(member.o). In these cases, $@ shall evaluate to libname and
$% shall evaluate to member.o. The $% macro shall be evaluated for both target and
inference rules.

For example, in a makefile target rule to build lib.a(file.o), $% represents file.o, as
opposed to $@, which represents lib.a.

$^ The $^ macro shall evaluate to the list of prerequisites for the current target, with any
duplicates (except the first) removed. It shall be evaluated for both target and inference
rules. If the list of prerequisites of the target contains any .WAIT special targets, the
results of expanding $^ are unspecified.

For example, in a makefile target rule to build prog from file1.o, file2.o, and file3.o, and
regardless of which prerequisites prog is out-of-date with respect to, $^ represents
file1.o, file2.o, and file3.o.

$+ The $+ macro shall be equivalent to $^, except that duplicates shall not be removed; all
prerequisites shall appear in the order they were listed in the makefile.

$? The $? macro shall evaluate to the list of prerequisites that are newer than the current
target. It shall be evaluated for both target and inference rules.

For example, in a makefile target rule to build prog from file1.o, file2.o, and file3.o, and
where prog is not out-of-date with respect to file1.o, but is out-of-date with respect to
file2.o and file3.o, $? represents file2.o and file3.o.

$< In an inference rule, the $< macro shall evaluate to the filename whose existence
allowed the inference rule to be chosen for the target. In the .DEFAULT rule, the $<
macro shall evaluate to the current target name. The meaning of the $< macro is
otherwise unspecified.

For example, in the .c.a inference rule, $< represents the prerequisite .c file.

$* The $* macro shall evaluate to the current target name with its suffix deleted. It shall be
evaluated at least for inference rules.

For example, in the .c.a inference rule, $*.o represents the out-of-date .o file that
corresponds to the prerequisite .c file.

Each of the internal macros has an alternative form. When an uppercase 'D' or 'F' is appended
to any of the macros, the meaning shall be changed to the directory part for 'D' and filename part
for 'F'. The directory part is the path prefix of the file without a trailing <slash>; for the current
directory, the directory part is '.'. When the $? macro contains more than one prerequisite
filename, the $(?D) and $(?F) (or ${?D} and ${?F}) macros expand to a list of directory name parts
and filename parts respectively.

For the target lib(member.o) and the .s2.a rule, the internal macros shall be defined as:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3145

105982

105983

105984

105985

105986

105987

105988

105989

105990

105991

105992

105993

105994

105995

105996

105997

105998

105999

106000

106001

106002

106003

106004

106005

106006

106007

106008

106009

106010

106011

106012

106013

106014

106015

106016

106017

106018

106019

106020

106021

106022

106023

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

$< member.s2

$* member

$@ lib

$^ member.s2

$? member.s2

$% member.o

Default Rules

The default rules and macro values for make shall achieve results that are the same as if the
following were used, except that where a result includes the literal value of a macro, this value
may differ. Implementations that do not support the C-Language Development Utilities option
may omit CC, CFLAGS, YACC, YFLAGS, LEX, LFLAGS, LDFLAGS, and the .c, .y, and .l
inference rules. Implementations may provide additional macros and rules.

SPECIAL TARGETS

XSI .SCCS_GET:
sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@

XSI .SUFFIXES: .o .c .y .l .a .sh .c~ .y~ .l~ .sh~

MACROS

AR=ar
ARFLAGS=-rv
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LDFLAGS=
CC=c17
CFLAGS=-O 1

XSI GET=get
GFLAGS=
SCCSFLAGS=
SCCSGETFLAGS=-s

SINGLE-SUFFIX RULES

.c:
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $<

.sh:
cp $< $@
chmod a+x $@

XSI .c~:
$(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $*.c

.sh~:
$(GET) $(GFLAGS) -p $< > $*.sh

3146 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106024

106025

106026

106027

106028

106029

106030

106031

106032

106033

106034

106035

106036

106037

106038

106039

106040

106041

106042

106043

106044

106045

106046

106047

106048

106049

106050

106051

106052

106053

106054

106055

106056

106057

106058

106059

106060

106061

106062

106063

106064

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

cp $*.sh $@
chmod a+x $@

DOUBLE-SUFFIX RULES

.c.o:
$(CC) $(CFLAGS) -c $<

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm -f y.tab.c
mv y.tab.o $@

.l.o:
$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c
mv lex.yy.o $@

.y.c:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

.l.c:
$(LEX) $(LFLAGS) $<
mv lex.yy.c $@

XSI .c~.o:
$(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c

.y~.o:
$(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) -c y.tab.c
rm -f y.tab.c
mv y.tab.o $@

.l~.o:
$(GET) $(GFLAGS) -p $< > $*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c
mv lex.yy.o $@

.y~.c:
$(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $@

.l~.c:
$(GET) $(GFLAGS) -p $< > $*.l
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $@

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3147

106065

106066

106067

106068

106069

106070

106071

106072

106073

106074

106075

106076

106077

106078

106079

106080

106081

106082

106083

106084

106085

106086

106087

106088

106089

106090

106091

106092

106093

106094

106095

106096

106097

106098

106099

106100

106101

106102

106103

106104

106105

106106

106107

106108

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

.c.a:
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

EXIT STATUS
When the −q option is specified, the make utility shall exit with one of the following values:

0 All specified targets were already up-to-date.

1 One or more targets were not up-to-date.

>1 An error occurred.

When the −q option is not specified, the make utility shall exit with one of the following values:

0 All specified targets were already up-to-date, or all commands executed to bring targets up-
to-date either exited with status 0 or had a non-zero exit status that was specified (via the −i
option, the special target .IGNORE, or a '-' command prefix) to be ignored.

>0 An error occurred, or at least one command executed to bring a target up-to-date exited
with a non-zero exit status that was not specified to be ignored.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If there is a source file (such as ./source.c) and there are two SCCS files corresponding to it
(./s.source.c and ./SCCS/s.source.c), on XSI-conformant systems make uses the SCCS file in the
current directory. However, users are advised to use the underlying SCCS utilities (admin, delta,
get, and so on) or the sccs utility for all source files in a given directory. If both forms are used for
a given source file, future developers are very likely to be confused.

It is incumbent upon portable makefiles to specify the .POSIX special target in order to
guarantee that they are not affected by local extensions.

The −k and −S options are both present so that the relationship between the command line, the
MAKEFLAGS variable, and the makefile can be controlled precisely. If the k flag is passed in
MAKEFLAGS and a command is of the form:

$(MAKE) -S foo

then the default behavior is restored for the child make.

When the −n option is specified, it is always added to MAKEFLAGS. This allows a recursive
make −n target to be used to see all of the actions that would be taken to update target.

Because of widespread historical practice, interpreting a <number-sign> ('#') inside a variable
as the start of a comment has the unfortunate side-effect of making it impossible to place a
<number-sign> in a variable, thus forbidding something like:

CFLAGS = -D "COMMENT_CHAR='#'"

Many historical make utilities stop chaining together inference rules when an intermediate target
is nonexistent. For example, it might be possible for a make to determine that both .y.c and .c.o
could be used to convert a .y to a .o. Instead, in this case, make requires the use of a .y.o rule.

The standard set of default rules uses only features provided by other parts of this volume of
POSIX.1-2024. They include rules for optional utilities in this volume of POSIX.1-2024, but only
rules pertaining to utilities that are provided are needed in an implementation’s default set.

3148 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106109

106110

106111

106112

106113

106114

106115

106116

106117

106118

106119

106120

106121

106122

106123

106124

106125

106126

106127

106128

106129

106130

106131

106132

106133

106134

106135

106136

106137

106138

106139

106140

106141

106142

106143

106144

106145

106146

106147

106148

106149

106150

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

Although make expands macros that do not exist to an empty string, it is not safe to assume that
a macro which has not intentionally been set to a specific value will expand to an empty string
for everyone who uses the makefile. There are two reasons for this:

1. When another user executes make, they might happen to have an environment variable of
the same name (which they have set for some unrelated purpose) with a non-empty
value.

2. A different implementation of make (or a later version of the same implementation) might
have a non-empty value for the macro in its default set.

This is one aspect of a more general problem, which is that any macro that is not one for which
this standard requires a default value, and is not explicitly set either in the makefile or on the
make command line, can have an unexpected value (or unexpectedly not exist) when the
makefile is used by a different user or with a different make implementation.

For this reason, it is recommended that makefile authors do not design makefile schemes in
which values for non-standard macros are obtained from the user’s environment variables. Safer
methods of allowing users to configure macro values include:

• Setting the macros to default values in a make include file where the user can edit the
values.

• Executing make from one or more wrapper scripts which set macro values on the command
line (and which do not obtain those values from environment variables).

Makefile authors who follow this recommendation may wish to check for any macros they have
overlooked by using a make implementation that provides, as an extension, a command-line
option that causes make to report attempts to expand (or append to) macros that do not exist.
Users of makefiles written by others can also benefit from the use of such an option to detect the
opposite problem (where the author had a macro being set from an environment variable but the
user does not have the variable set). This can avoid misbehaviors that would otherwise be hard
to debug, such as a file-processing utility reading from standard input because it was not given
any pathnames to process.

Makefile authors who choose not to follow the recommendation can minimize the risk of
misbehavior by ensuring all non-standard macros have names that begin with a suitable project-
specific prefix.

Use of the −e option is strongly discouraged, as it makes the problem discussed above even
more likely by introducing the possibility of unexpected values occurring even for macros set in
the makefile. If a specific macro needs a value from the environment to override a value set in
the makefile, it is safer to set just that macro on the command line, using for example
make MYPROJ_FOO="$MYPROJ_FOO". Alternatively, the makefile can be modified to use the
?= assignment operator for that macro.

Delayed-expansion macros are evaluated when they are used rather than when they are defined.
Therefore:

MACRO = value1
Immed ::= $(MACRO)
DELAY = $(MACRO)
MACRO = value2

target:
echo $(Immed) $(DELAY)

would produce "value1 value2", since Immed was expanded while MACRO was value1,

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3149

106151

106152

106153

106154

106155

106156

106157

106158

106159

106160

106161

106162

106163

106164

106165

106166

106167

106168

106169

106170

106171

106172

106173

106174

106175

106176

106177

106178

106179

106180

106181

106182

106183

106184

106185

106186

106187

106188

106189

106190

106191

106192

106193

106194

106195

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

but DELAY was not expanded until it was needed in the echo command line when MACRO was
value2.

Because the behavior of the += assignment differs depending on whether the macro being
appended to is a delayed-expansion macro or an immediate-expansion macro, it is
recommended that when both macro types are used in a set of multiple makefiles and include
files, a naming convention is adopted to distinguish the two macro types. This avoids any
confusion about whether += will append the expanded or unexpanded value. A suitable
convention might be to name delayed-expansion macros using uppercase and underscore
characters and immediate-expansion macros using a name that contains at least one lowercase
character.

Some historical applications have been known to intermix target_name and macro=name operands
on the command line, expecting that all of the macros are processed before any of the targets are
dealt with. Conforming applications do not do this, although some backwards-compatibility
support may be included in some implementations.

The following characters in filenames may give trouble: '=', ':', '`', single-quote, and '@'.
In include filenames, pattern matching characters and '"' should also be avoided, as they may
be treated as special by some implementations.

For inference rules, the descriptions of $< and $? seem similar. However, an example shows the
minor difference. In a makefile containing:

foo.o: foo.h

if foo.h is newer than foo.o, yet foo.c is older than foo.o, the built-in rule to make foo.o from
foo.c is used, with $< equal to foo.c and $? equal to foo.h. If foo.c is also newer than foo.o, $< is
equal to foo.c and $? is equal to foo.h foo.c.

As a consequence of the general rules for target updating, a useful special case is that if a target
has no prerequisites and no commands, and the target of the rule is a nonexistent file, then make
acts as if this target has been updated whenever its rule is run.

Note: This implies that all targets depending on this one will always have their commands run.

Shell command sequences like make; cp original copy; make may have problems on
filesystems where the timestamp resolution is the minimum (1 second) required by the standard
and where make considers identical timestamps to be up-to-date. Conversely, rules like
copy: original; cp -p original copy will result in redundant work on make
implementations that consider identical timestamps to be out-of-date.

The requirements relating to dynamic include files (ones that have rules to create or update
them) allow two different methods of implementing them, as explained in RATIONALE below.
In order to write a set of makefiles and include files (both dynamic and static) that work with
both methods, applications need to ensure the following:

• Rules containing commands for creating dynamic include files (and any prerequisites)
precede the include line that will cause the file to be read.

• Include lines and rules for creating dynamic include files do not depend on the contents of
any earlier dynamic include file. For example, defining a macro in a dynamic include file
and using that macro in a later include line should be avoided (unless the later include line
is itself inside the dynamic include file).

• One of the rules used in creating a dynamic include file, or a dynamic prerequisite of an
include file, contains commands to create its target and does not ignore creation failure.

Note that although the first point above appears at first sight to preclude a dynamic include file

3150 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106196

106197

106198

106199

106200

106201

106202

106203

106204

106205

106206

106207

106208

106209

106210

106211

106212

106213

106214

106215

106216

106217

106218

106219

106220

106221

106222

106223

106224

106225

106226

106227

106228

106229

106230

106231

106232

106233

106234

106235

106236

106237

106238

106239

106240

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

that defines its own prerequisites, this can be achieved by having two include lines that name
the same file (provided the rules in the file do not contain command lines), as shown in
EXAMPLES.

This standard does not specify precedence between macro definition and include directives.
Thus, the behavior of:

include =foo.mk

is unspecified. To define a variable named include, either the white space before the <equal-
sign> should be removed, or another macro should be used, as in:

INCLUDE_NAME = include
$(INCLUDE_NAME) =foo.mk

On the other hand, if the intent is to include a file which starts with an <equal-sign>, either the
filename should be changed to ./=foo.mk, or the makefile should be written as:

INCLUDE_FILE = =foo.mk
include $(INCLUDE_FILE)

It is important to be careful when using parallel execution (the −j option) and archives. If
multiple $(AR) commands run at the same time on the same archive file, they will not know
about each other and can corrupt the file. If the −j option is used, it is necessary to use .WAIT in
between archive member prerequisites to prevent this (see EXAMPLES).

EXAMPLES

1. The following command:

make

makes the first target found in the makefile.

2. The following command:

make junk

makes the target junk.

3. The following makefile says that pgm depends on two files, a.o and b.o, and that they in
turn depend on their corresponding source files (a.c and b.c), and a common file incl.h:

.POSIX:
pgm: a.o b.o

c17 a.o b.o -o pgm
a.o: incl.h a.c

c17 -c a.c
b.o: incl.h b.c

c17 -c b.c

4. The following is an extended version of the previous example that generates make include
files containing the prerequisites for each object file. The include file also defines its own
prerequisites, and the makefile arranges that these are used by including the file twice.
With implementations of make that create include files during parsing, the first time make
is run the file does not exist but the use of the <hyphen-minus> prefix on the first include
line means it is ignored and is then generated by the rule preceding the second include
line. On subsequent runs, if any of the source or header files previously identified has
changed, the include file will be updated. There are other ways of updating the include
file when headers change, but they involve recursive execution of make.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3151

106241

106242

106243

106244

106245

106246

106247

106248

106249

106250

106251

106252

106253

106254

106255

106256

106257

106258

106259

106260

106261

106262

106263

106264

106265

106266

106267

106268

106269

106270

106271

106272

106273

106274

106275

106276

106277

106278

106279

106280

106281

106282

106283

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

.POSIX:

.SUFFIXES: .c .d

OFILES = a.o b.o

pgm: $(OFILES)
c17 $(OFILES) -o pgm

a.o:
c17 -c a.c

b.o:
c17 -c b.c

-include $(OFILES:.o=.d)
.c.d:

+{ \
set -o pipefail; cfile=$<; ofile=$${cfile%.c}.o; \
printf '%s %s: %s ' "$$ofile" $@ $<; \
c17 -E $< | LC_ALL=C sed -n \
'/^#[[:blank:]]*[[:digit:]]/s/.*"\([^"]*\.h\)".*/\1/p' | \
LC_ALL=C sort -u | tr '\n' ' '; \

echo; \
} > $@

include $(OFILES:.o=.d)

This example does not cope with a header file being removed (make will complain that it
does not know how to make it), necessitating that *.d be removed and the make run again.
Alternatively, this can be handled by updating the commands which generate the .d file
so that they add an empty target rule for each of its prerequisites.

5. An example for making optimized .o files from .c files is:

.c.o:
c17 -c -O 1 $*.c

or:

.c.o:
c17 -c -O 1 $<

6. The most common use of the archive interface follows. Here, it is assumed that the source
files are all C-language source:

lib.a: lib.a(file1.o) .WAIT lib.a(file2.o) .WAIT lib.a(file3.o)
@echo lib.a is now up-to-date

The .c.a rule is used to make file1.o, file2.o, and file3.o and insert them into lib.a.

7. The treatment of escaped <newline> characters throughout the makefile is historical
practice. For example, the inference rule:

.c.o\
:

works, and the macro:

f= bar baz\
biz

a:

3152 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106284

106285

106286

106287

106288

106289

106290

106291

106292

106293

106294

106295

106296

106297

106298

106299

106300

106301

106302

106303

106304

106305

106306

106307

106308

106309

106310

106311

106312

106313

106314

106315

106316

106317

106318

106319

106320

106321

106322

106323

106324

106325

106326

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

echo ==$f==

echoes "==bar baz biz==".

If $? were:

/usr/include/stdio.h /usr/include/unistd.h foo.h

then $(?D) would be:

/usr/include /usr/include .

and $(?F) would be:

stdio.h unistd.h foo.h

8. The contents of the built-in rules can be viewed by running:

make -p -f /dev/null 2>/dev/null

9. With the following makefile, make -j 10 all may bring one and two up-to-date in
parallel despite the .WAIT in the prerequisite list for foo. This is because the .WAIT does
not stop make from recursively processing bar and its prerequisites in parallel. However,
if only foo is specified (make -j 10 foo), make will wait for one to be brought up-to-
date before bringing two up-to-date. Note also that the .WAIT does not create a
prerequisite relationship between one and two, so make -j 10 two will not build one.

all: foo bar
foo: one .WAIT two
bar: one two
foo bar one two: ; @echo $@

RATIONALE
The make utility described in this volume of POSIX.1-2024 is intended to provide the means for
changing portable source code into executables that can be run on a POSIX.1-2024-conforming
system. It reflects the most common features present in System V and BSD makes.

Historically, the make utility has been an especially fertile ground for vendor and research
organization-specific syntax modifications and extensions. Examples include:

• Syntax supporting parallel execution (such as from various multi-processor vendors, GNU,
and others)

• Additional ``operators’’ separating targets and their prerequisites (System V, BSD, and
others)

• Modifications of the meaning of internal macros when referencing libraries (BSD and
others)

• Using a single instance of the shell for all of the command lines of the target (BSD and
others)

• Allowing <space> characters as well as <tab> characters to delimit command lines (BSD)

• Adding C preprocessor-style ``include’’ and ``ifdef ’’ constructs (System V, GNU, BSD, and
others)

• Remote execution of command lines (Sprite and others)

• Specifying additional special targets (BSD, System V, and most others)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3153

106327

106328

106329

106330

106331

106332

106333

106334

106335

106336

106337

106338

106339

106340

106341

106342

106343

106344

106345

106346

106347

106348

106349

106350

106351

106352

106353

106354

106355

106356

106357

106358

106359

106360

106361

106362

106363

106364

106365

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

• Specifying an alternate shell to use to process commands.

Additionally, many vendors and research organizations have rethought the basic concepts of
make, creating vastly extended, as well as completely new, syntaxes. Each of these versions of
make fulfills the needs of a different community of users; it is unreasonable for this volume of
POSIX.1-2024 to require behavior that would be incompatible (and probably inferior) to
historical practice for such a community.

In similar circumstances, when the industry has enough sufficiently incompatible formats as to
make them irreconcilable, this volume of POSIX.1-2024 has followed one or both of two courses
of action. Commands have been renamed (cksum, echo, and pax) and/or command line options
have been provided to select the desired behavior (grep, od, and pax).

Because the syntax specified for the make utility was, by and large, a subset of the syntaxes
accepted by almost all versions of make when the original IEEE Std 1003.2-1992 shell and utilities
standard was being developed, it was decided that it would be counter-productive to change the
name. And since the makefile itself is a basic unit of portability, it would not be completely
effective to reserve a new option letter, such as make −P, to achieve the portable behavior.
Therefore, the special target .POSIX was added to the makefile, allowing users to specify
``standard’’ behavior. This special target does not preclude extensions in the make utility, nor
does it preclude such extensions being used by the makefile specifying the target; it does,
however, preclude any extensions from being applied that could alter the behavior of previously
valid syntax; such extensions must be controlled via command line options or new special
targets. It is incumbent upon portable makefiles to specify the .POSIX special target in order to
guarantee that they are not affected by local extensions.

The portable version of make described in this reference page is not intended to be the state-of-
the-art software generation tool and, as such, some newer and more leading-edge features have
not been included. An attempt has been made to describe the portable makefile in a manner that
does not preclude such extensions as long as they do not disturb the portable behavior described
here.

When the −n option is specified, it is always added to MAKEFLAGS. This allows a recursive
make −n target to be used to see all of the actions that would be taken to update target.

The definition of MAKEFLAGS allows both the System V letter string and the BSD command
line formats. The two formats are sufficiently different to allow implementations to support both
without ambiguity.

Early proposals stated that an ``unquoted’’ <number-sign> was treated as the start of a
comment. The make utility does not pay any attention to quotes. A <number-sign> starts a
comment regardless of its surroundings.

The text about ``other implementation-defined pathnames may also be tried’’ in addition to
./makefile and ./Makefile is to allow such extensions as SCCS/s.Makefile and other variations.
It was made an implementation-defined requirement (as opposed to unspecified behavior) to
highlight surprising implementations that might select something unexpected like
/etc/Makefile. XSI-conformant systems also try ./s.makefile, SCCS/s.makefile, ./s.Makefile,
and SCCS/s.Makefile.

The default rules are based on System V. The default CC= value is c17 instead of cc because this
volume of POSIX.1-2024 does not standardize the utility named cc. Thus, every conforming
application would be required to define CC=c17 to expect to run. There is no advantage
conferred by the hope that the makefile might hit the ``preferred’’ compiler because this cannot
be guaranteed to work. Also, since the portable makescript can only use the c17 options, no
advantage is conferred in terms of what the script can do. It is a quality-of-implementation issue

3154 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106366

106367

106368

106369

106370

106371

106372

106373

106374

106375

106376

106377

106378

106379

106380

106381

106382

106383

106384

106385

106386

106387

106388

106389

106390

106391

106392

106393

106394

106395

106396

106397

106398

106399

106400

106401

106402

106403

106404

106405

106406

106407

106408

106409

106410

106411

106412

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

as to whether c17 is as valuable as cc.

Implementations are permitted to include any macro of their choosing in the default set.
However, they are encouraged to keep such additions to a minimum in order to reduce the risk
of name clashes with user macros.

Implementations are encouraged to provide, as an extension, a command-line option that causes
make to report attempts to expand (or append to) macros that do not exist. See APPLICATION
USAGE for the intended use cases of such an option.

The −d option to make is frequently used to produce debugging information, but is too
implementation-defined to add to this volume of POSIX.1-2024.

The −p option is not passed in MAKEFLAGS on most historical implementations and to change
this would cause many implementations to break without sufficiently increased portability.

Commands that begin with a <plus-sign> ('+') are executed even if the −n option is present.
Based on the GNU version of make, the behavior of −n when the <plus-sign> prefix is
encountered has been extended to apply to −q and −t as well. The System V convention of
forcing command execution with −n when the command line of a target expands the MAKE
macro was not adopted in earlier versions of this standard, but it is now required because it has
become widespread existing practice.

The double <colon> in the target rule format is supported in BSD systems to allow more than
one target line containing the same target name to have commands associated with it. Since this
is not functionality described in the SVID or XPG3 it has been allowed as an extension, but not
mandated.

The default rules are provided with text specifying that the built-in rules shall be the same as if
the listed set were used. The intent is that implementations should be able to use the rules
without change, but will be allowed to alter them in ways that do not affect the primary
behavior.

One point of discussion was whether to drop the default rules list from this volume of
POSIX.1-2024. They provide convenience, but do not enhance portability of applications. The
prime benefit is in portability of users who wish to type make command and have the command
build from a command.c file.

The historical MAKESHELL feature, and related features provided by other make
implementations, were omitted. In some implementations it is used to let a user override the
shell to be used to run make commands. This was confusing; for a portable make, the shell should
be chosen by the makefile writer. Further, a makefile writer cannot require an alternate shell to
be used and still consider the makefile portable. While it would be possible to standardize a
mechanism for specifying an alternate shell, existing implementations do not agree on such a
mechanism, and makefile writers can already invoke an alternate shell by specifying the shell
name in the rule for a target; for example:

python -c "foo"

The make utilities in most historical implementations process the prerequisites of a target in left-
to-right order, and the makefile format requires this. It supports the standard idiom used in
many makefiles that produce yacc programs; for example:

foo: y.tab.o lex.o main.o
$(CC) $(CFLAGS) -o $@ y.tab.o lex.o main.o

In this example, if make chose any arbitrary order, the lex.o might not be made with the correct
y.tab.h. Although there may be better ways to express this relationship, it is widely used

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3155

106413

106414

106415

106416

106417

106418

106419

106420

106421

106422

106423

106424

106425

106426

106427

106428

106429

106430

106431

106432

106433

106434

106435

106436

106437

106438

106439

106440

106441

106442

106443

106444

106445

106446

106447

106448

106449

106450

106451

106452

106453

106454

106455

106456

106457

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

historically. Implementations that desire to update prerequisites in parallel should require an
explicit extension to make or the makefile format to accomplish it, as described previously.

The algorithm for determining a new entry for target rules is partially unspecified. Some
historical makes allow comment lines (including blank and empty lines) within the collection of
commands marked by leading <tab> characters. A conforming makefile must ensure that each
command starts with a <tab>, but implementations are free to ignore comments without
triggering the start of a new entry.

The ASYNCHRONOUS EVENTS section includes having SIGTERM and SIGHUP, along with
the more traditional SIGINT and SIGQUIT, remove the current target unless directed not to do
so. SIGTERM and SIGHUP were added to parallel other utilities that have historically cleaned
up their work as a result of these signals. When make receives any signal other than SIGQUIT, it
is required to resend itself the signal it received so that it exits with a status that reflects the
signal. The results from SIGQUIT are partially unspecified because, on systems that create a file
named core upon receipt of SIGQUIT, the core file from make would conflict with a core file from
the command that was running when the SIGQUIT arrived. The main concern was to prevent
damaged files from appearing up-to-date when make is rerun.

The .PRECIOUS special target was extended to affect all targets globally (by specifying no
prerequisites). The .IGNORE and .SILENT special targets were extended to allow prerequisites;
it was judged to be more useful in some cases to be able to turn off errors or echoing for a list of
targets than for the entire makefile. These extensions to make in System V were made to match
historical practice from the BSD make.

Macros are not exported to the environment of commands to be run. This was never the case in
any historical make and would have serious consequences. The environment is the same as the
environment to make except that MAKEFLAGS and macros defined on the make command line
are added, and except that macros defined by the MAKEFLAGS environment variable and
macros defined in the makefile(s) may update the value of an existing environment variable
(other than SHELL).

Some implementations do not use system() for all command lines, as required by the portable
makefile format; as a performance enhancement, they select lines without shell metacharacters
for direct execution by execve(). There is no requirement that system() be used specifically, but
merely that the same results be achieved. The metacharacters typically used to bypass the direct
execve() execution have been any of:

= | ^ () ; & < > * ? [] : $ ` ' " \ \n

The default in some advanced versions of make is to group all the command lines for a target and
execute them using a single shell invocation; the System V method is to pass each line
individually to a separate shell. The single-shell method has the advantages in performance and
the lack of a requirement for many continued lines. However, converting to this newer method
has caused portability problems with many historical makefiles, so the behavior with the POSIX
makefile is specified to be the same as that of System V. It is suggested that the special target
.ONESHELL be used as an implementation extension to achieve the single-shell grouping for a
target or group of targets.

Novice users of make have had difficulty with the historical need to start commands with a
<tab>. Since it is often difficult to discern differences between <tab> and <space> characters on
terminals or printed listings, confusing bugs can arise. In early proposals, an attempt was made
to correct this problem by allowing leading <blank> characters instead of <tab> characters.
However, implementors reported many makefiles that failed in subtle ways following this
change, and it is difficult to implement a make that unambiguously can differentiate between
macro and command lines. There is extensive historical practice of allowing leading <space>

3156 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106458

106459

106460

106461

106462

106463

106464

106465

106466

106467

106468

106469

106470

106471

106472

106473

106474

106475

106476

106477

106478

106479

106480

106481

106482

106483

106484

106485

106486

106487

106488

106489

106490

106491

106492

106493

106494

106495

106496

106497

106498

106499

106500

106501

106502

106503

106504

106505

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

characters before macro definitions. Forcing macro lines into column 1 would be a significant
backwards-compatibility problem for some makefiles. Therefore, historical practice was
restored.

There is substantial variation in the handling of include lines by different implementations.
However, there is enough commonality for the standard to be able to specify a minimum set of
requirements that allow the feature to be used portably. Known variations have been explicitly
called out as unspecified behavior in the description.

The System V dynamic dependency feature was not included. It would support:

cat: $$@.c

that would expand to;

cat: cat.c

This feature exists only in the new version of System V make and, while useful, is not in wide
usage. This means that macros are expanded twice for prerequisites: once at makefile parse time
and once at target update time.

Consideration was given to adding metarules to the POSIX make. This would make %.o: %.c the
same as .c.o:. This is quite useful and available from some vendors, but it would cause too many
changes to this make to support. It would have introduced rule chaining and new substitution
rules. However, the rules for target names have been set to reserve the '%' and '"' characters.
These are traditionally used to implement metarules and quoting of target names, respectively.
Implementors are strongly encouraged to use these characters only for these purposes.

A request was made to extend the suffix delimiter character from a <period> to any character.
The metarules feature in newer makes solves this problem in a more general way. This volume of
POSIX.1-2024 is staying with the more conservative historical definition.

The standard output format for the −p option is not described because it is primarily a
debugging option and because the format is not generally useful to programs. In historical
implementations the output is not suitable for use in generating makefiles. The −p format has
been variable across historical implementations. Therefore, the definition of −p was only to
provide a consistently named option for obtaining make script debugging information.

Some historical implementations have not cleared the suffix list with −r.

Implementations should be aware that some historical applications have intermixed target_name
and macro=value operands on the command line, expecting that all of the macros are processed
before any of the targets are dealt with. Conforming applications do not do this, but some
backwards-compatibility support may be warranted.

Empty inference rules are specified with a <semicolon> command rather than omitting all
commands, as described in an early proposal. The latter case has no traditional meaning and is
reserved for implementation extensions, such as in GNU make.

Earlier versions of this standard defined comment lines only as lines with '#' as the first
character. Many places then talked about comments, blank lines, and empty lines; but some
places inadvertently only mentioned comments when blank lines and empty lines had also been
accepted in all known implementations. The standard now defines comment lines to be blank
lines, empty lines, and lines starting with a '#' character and explicitly lists cases where blank
lines and empty lines are not acceptable.

On most historic systems, the make utility considered a target with a prerequisite that had an
identical timestamp as up-to-date. One implementation of make treated it as out-of-date. Note
that up-to-date and out-of-date are antonyms. The standard now allows either behavior, but

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3157

106506

106507

106508

106509

106510

106511

106512

106513

106514

106515

106516

106517

106518

106519

106520

106521

106522

106523

106524

106525

106526

106527

106528

106529

106530

106531

106532

106533

106534

106535

106536

106537

106538

106539

106540

106541

106542

106543

106544

106545

106546

106547

106548

106549

106550

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

implementations are encouraged to treat such targets as out-of-date. This is especially important
on file systems where the timestamp resolution is the minimum (1 second) required by the
standard. All implementations of make should make full use of the finest timestamp resolution
available on the file systems holding targets and prerequisites to ensure that targets are up-to-
date even for prerequisite files with timestamps that were updated within the same second.
However, if the timestamp resolutions of the file systems containing a target and a prerequisite
are different, the timestamp with the more precise resolution should be rounded down to the
resolution of the less precise timestamp for the comparison.

The traditional semantics of delayed-expansion macros have often been the source of subtle
bugs for makefile writers not aware of those semantics. Furthermore, in implementations that
support an extension of assigning the output of an arbitrary command to a macro definition, the
use of delayed-expansion macros could result in an undesirable growth in execution time, as
each use of the macro would re-run the arbitrary command. Historically, several
implementations independently developed a form of immediate expansion, usually via the
operator ":=", so that execution of an arbitrary command happens once at the definition of the
macro rather than each use of the macro; however, there are subtle differences in the expansion
rules of those various implementations when the expanded value of string2 contained a '$'.
Other implementations used the operator ":=" for conditional expansion, altogether unrelated
to immediate-expansion macro definition.

The standard developers felt that immediate-expansion semantics were useful enough to
standardize, but requiring the semantics of any one implementation of ":=" would cause
confusion in makefiles written for other implementation semantics, necessitating a reader to
determine if .POSIX: had been specified at the beginning of the file (or worse, at the beginning
of some other file that then includes the fragment in question) to know which semantics would
be in use. Therefore, the standard developers opted to require two new operators, "::=" and
":::=", with specific semantics; the "::=" operator has semantics closest to the GNU make
implementation of ":=", where '$' characters occurring in the immediate expansion of string2
are not further expanded in subsequent use of the macro, and the ":::=" operator has
semantics closest to the BSD make and smake implementations of ":=", where immediate
expansion is performed when assigning to a delayed-expansion macro and "$$" is preserved. It
was felt that other implementations could easily support the required semantics.

Implementations that previously provided ":=" as an extension are encouraged to leave this
extension intact, with no change in the implementation’s particular semantics, to avoid breaking
non-portable makefiles that had been targeting that particular implementation. A portable
makefile, with .POSIX: specified at the beginning, should not use the ":=" operator.

Traditionally, constructs such as

DIR: FORCE
(commands)

FORCE:

were used to allow make DIR to always run (commands); however, this depended on the user
never creating a file named FORCE. The addition of the .PHONY special target provides a more
efficient manner of providing a target whose commands are always run, and where the user
cannot create a file that influences the behavior in an unexpected manner.

This standard allows two different methods of creating include files or bringing them up-to-
date, reflecting established practice in SunPro make and GNU make. The former performs this
action during parsing, before the include file is opened. The latter delays performing the action
until after all makefiles have been read. Implementors who opt for the ``delayed remaking’’
method should be aware of the following potential issues:

3158 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106551

106552

106553

106554

106555

106556

106557

106558

106559

106560

106561

106562

106563

106564

106565

106566

106567

106568

106569

106570

106571

106572

106573

106574

106575

106576

106577

106578

106579

106580

106581

106582

106583

106584

106585

106586

106587

106588

106589

106590

106591

106592

106593

106594

106595

106596

106597

106598

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

• Diagnostic messages about missing include files must be deferred until the final exit status
is known. Note that this is a conformance issue, not just a quality of implementation issue.

• If the way make handles using updated include file contents is to start over after include
files have been made up-to-date, it is possible for a poorly written makefile to cause make
to enter a sequence of restarts where nothing changes each time, resulting in the sequence
continuing indefinitely unless the situation is detected. Implementors are encouraged to
include a mechanism for detecting and reporting this, rather than allowing make to
consume an arbitrary amount of system resource until it is forcibly terminated.

• If make uses this start-over method, makefile contents read from a pipe on standard input
or from a FIFO must be copied to a temporary file, and when make starts over it must use
this file instead.

• If make starts over by executing itself using the exec family of functions, the need to replace
'-' or the pathnames of FIFOs with the pathnames of temporary files can lead to the exec
call failing with an [E2BIG] error if the original execution was close to the {ARG_MAX}
limit. Although this is a quality of implementation issue, not a conformance issue (since
the general rules for utility errors allow utilities to fail when they encounter a variety of
internal errors - see Section 1.4, on page 2462), implementors are encouraged to explore
ways to prevent it, such as passing information via a temporary file instead of on the
command line when an [E2BIG] error has occurred. Another solution might be to jump
(e.g. using siglongjmp()) back to the start of main() as the way to start over. Making a
recursive call to main() is not recommended, as that would run into the stack limit if
sufficiently many restarts are needed.

This standard specifies that a non-existent include file is first created if possible, and only if not
possible can other directories be searched. Historical versions of GNU make first searched the
include directories, then attempted to create the include file. This behavior was not considered
suitable for standardization as it means writers of portable applications have to use absolute
pathnames for all include files that need to be created via a rule (because they can never be sure
what relative pathnames are safe to use, since a file with the same relative pathname might
happen to exist in one of the searched directories when installing the application on a new
system). Note, however, that this only applies to directories searched by default. If an
application uses an extension to specify that one or more directories are searched, this standard
does not place any constraints on when the specified directories are searched.

This standard specifies a way for portable applications to request parallel updating of targets
with commands by using the −j maxjobs option. This feature is described in terms of a token pool
initially containing up to maxjobs − 1 tokens. Note that this is not intended to prescribe a
particular implementation design; the usual ``as if’’ rule applies.

Implementations are permitted to silently limit the pool size for a few reasons, including:

• Implementations that do not support parallelism can support the −j option by simply
ignoring the option (other than passing it to sub-make invocations via the MAKEFLAGS
environment variable). In effect, such an implementation silently restricts the size of the
token pool to zero (and therefore need not create a token pool).

• Some historical implementations dynamically limit the token pool size based on the
current system load to avoid overloading the system.

• Implementations may want to limit the token pool size based on the number of processors
available.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3159

106599

106600

106601

106602

106603

106604

106605

106606

106607

106608

106609

106610

106611

106612

106613

106614

106615

106616

106617

106618

106619

106620

106621

106622

106623

106624

106625

106626

106627

106628

106629

106630

106631

106632

106633

106634

106635

106636

106637

106638

106639

106640

106641

106642

106643

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

• Implementations may want to limit the token pool size based on resource limits.

Limiting the pool size does not change the value of maxjobs that is passed to sub-make
invocations via the MAKEFLAGS environment variable.

When a different maxjobs value is passed to a sub-make, some historical make implementations
created a separate pool of tokens while other historical make implementations continued to
obtain tokens from the invoking make but limited the number of tokens held at a time to the new
value of maxjobs − 1. Both behaviors are believed to have merit in different situations: the former
gives a sub-make complete control the amount of parallelism, while the latter allows the user to
control the overall system load. This standard permits either behavior.

This standard calls for a token pool of size maxjobs − 1, and for removal from that pool only for
the second and subsequent tasks in a set of parallel tasks. This design was chosen because this is
effectively what existing implementations do, and also because the token consumed by a parallel
task that invokes a sub-make is effectively lent to the sub-make. Lending the token to the sub-
make has the following advantages:

• It prevents the sub-make from being completely idle due to token starvation, allowing it to
always make some progress regardless of how many tokens other sub-make invocations
have consumed.

• It prevents token pool exhaustion caused by a long chain of sub-make invocations. If the
token consumed by the invoking rule was not effectively lent to the sub-make, then the
pool would be exhausted by a chain of sub-make invocations that is maxjobs long. Such a
chain would never accomplish any work, and would thus never complete.

When a rule invokes multiple sub-make processes asynchronously (for example by using an
asynchronous list in the shell), some implementations allow each sub-make to execute at least
one rule even though this would cause the total number of parallel rule executions across all
make instances to exceed maxjobs (after discounting the rules that execute sub-make processes).
This behavior may not be ideal, but it is easier to implement and is unlikely to cause problems in
practice because applications typically do not have any rules that invoke multiple sub-make
processes asynchronously. For this reason the behavior is unspecified if a rule executes multiple
sub-make processes asynchronously.

When multiple sub-make processes are running in parallel there is no requirement placed on the
ordering of output from these processes. Some implementations of make attempt to serialize
output from each sub-make; others make no such attempt. If diagnostic messages from failed
commands are intermixed, the usual way to deal with this is to repeat the make without −j (or
with −j 1) so that intermixing will not occur.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

Some implementations of make include an export directive to add specified make variables to the
environment. This may be considered for standardization in a future version.

A future version of this standard may add a command-line option that causes make to report
attempts to expand (or append to) macros that do not exist.

A future version of this standard may require that a target with a prerequisite with an identical
timestamp is considered out-of-date.

3160 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106644

106645

106646

106647

106648

106649

106650

106651

106652

106653

106654

106655

106656

106657

106658

106659

106660

106661

106662

106663

106664

106665

106666

106667

106668

106669

106670

106671

106672

106673

106674

106675

106676

106677

106678

106679

106680

106681

106682

106683

106684

106685

106686

106687

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

SEE ALSO
Chapter 2 (on page 2472), ar , c17 , get , lex , sccs , sh , yacc

XBD Section 6.1 (on page 117), Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH exec , system()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the Software Development Utilities option.

The Open Group Corrigendum U029/1 is applied, correcting a typographical error in the
SPECIAL TARGETS section.

In the ENVIRONMENT VARIABLES section, the PROJECTDIR description is updated from
``otherwise, the home directory of a user of that name is examined’’ to ``otherwise, the value of
PROJECTDIR is treated as a user name and that user’s initial working directory is examined’’.

It is specified whether the command line is related to the makefile or to the make command, and
the macro processing rules are updated to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

PASC Interpretation 1003.2 #193 is applied.

Issue 7
SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Include lines in makefiles are introduced.

Austin Group Interpretation 1003.1-2001 #131 is applied, changing the Makefile Execution
section.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0121 [257] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0122 [509], XCU/TC2-2008/0123
[584], XCU/TC2-2008/0124 [857], XCU/TC2-2008/0125 [505], XCU/TC2-2008/0126 [584],
XCU/TC2-2008/0127 [505], XCU/TC2-2008/0128 [865], XCU/TC2-2008/0129 [693],
XCU/TC2-2008/0130 [602], XCU/TC2-2008/0131 [848], XCU/TC2-2008/0132 [763],
XCU/TC2-2008/0133 [857], XCU/TC2-2008/0134 [866], XCU/TC2-2008/0135 [525],
XCU/TC2-2008/0136 [848], XCU/TC2-2008/0137 [769], XCU/TC2-2008/0138 [525],
XCU/TC2-2008/0139 [769], XCU/TC2-2008/0140 [505], XCU/TC2-2008/0141 [693],
XCU/TC2-2008/0142 [505], XCU/TC2-2008/0143 [857], and XCU/TC2-2008/0144 [693,865] are
applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defects 330, 1417, 1422, 1709, and 1710 are applied, adding new forms of macro
assignment using the "::=", "?=", and "+=" operators.

Austin Group Defect 333 is applied, adding support for ``silent includes’’ using −include.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3161

106688

106689

106690

106691

106692

106693

106694

106695

106696

106697

106698

106699

106700

106701

106702

106703

106704

106705

106706

106707

106708

106709

106710

106711

106712

106713

106714

106715

106716

106717

106718

106719

106720

106721

106722

106723

106724

106725

106726

106727

106728

106729

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

make Utilities

Austin Group Defects 336 and 1711 are applied, specifying the behavior when string1 in a macro
expansion contains a macro expansion.

Austin Group Defect 337 is applied, adding a new form of macro assignment using the "!="
operator.

Austin Group Defects 373 and 1417 are applied, changing the set of characters that portable
applications can use in macro names to the entire portable filename character set (thus adding
<hyphen-minus> to the set that could previously be used).

Austin Group Defects 514 and 1520 are applied, adding the $+ and $^ internal macros.

Austin Group Defect 518 is applied, allowing multiple files to be specified on an include line.

Austin Group Defects 519, 1712, and 1715 are applied, adding support for pattern macro
expansions.

Austin Group Defects 523, 1708, and 1749 are applied, adding the .PHONY special target.

Austin Group Defect 875 is applied, clarifying the requirements for inference rules.

Austin Group Defect 1104 is applied, changing ``s2.a’’ to ``.s2.a’’.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1141 is applied, changing ``core files’’ to ``a file named core’’.

Austin Group Defect 1155 is applied, clarifying the handling of the MAKE macro.

Austin Group Defect 1325 is applied, adding requirements relating to the creation of include
files.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1419 is applied, updating the .SCCS_GET default rule.

Austin Group Defect 1420 is applied, clarifying where internal macros can be used.

Austin Group Defect 1421 is applied, changing the APPLICATION USAGE section.

Austin Group Defects 1424, 1658, 1690, 1701, 1702, 1703, 1704, 1707, 1719, 1720, 1721, 1722, and
1750 are applied, making various minor editorial wording changes.

Austin Group Defects 1436, 1437, 1652, 1660, 1661, and 1733 are applied, adding the −j maxjobs
option and the .NOTPARALLEL and .WAIT special targets, and changing the −n option.

Austin Group Defects 1471 and 1513 are applied, adding a new form of macro assignment using
the ":::=" operator.

Austin Group Defect 1479 is applied, clarifying the requirements for default rules and macro
values.

Austin Group Defect 1492 is applied, changing the EXIT STATUS section.

Austin Group Defect 1505 is applied, clarifying the requirements for expansion of macros that
do not exist.

Austin Group Defect 1510 is applied, correcting a typographic error in the RATIONALE section.

Austin Group Defect 1549 is applied, clarifying the requirements for an escaped <newline> in a
command line.

Austin Group Defect 1615 is applied, allowing target names to contain slashes and hyphens.

Austin Group Defect 1626 is applied, adding the CURDIR macro.

3162 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106730

106731

106732

106733

106734

106735

106736

106737

106738

106739

106740

106741

106742

106743

106744

106745

106746

106747

106748

106749

106750

106751

106752

106753

106754

106755

106756

106757

106758

106759

106760

106761

106762

106763

106764

106765

106766

106767

106768

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities make

Austin Group Defect 1631 is applied, adding information about use of the −j option with the .c.a
default rule to the APPLICATION USAGE and EXAMPLES sections.

Austin Group Defect 1650 is applied, changing the few occurrences of ``dependencies’’ to use the
more common ``prerequisites’’.

Austin Group Defect 1653 is applied, clarifying the difference between how MAKEFLAGS is
parsed compared to shell commands that use the make utility.

Austin Group Defects 1654 and 1655 are applied, changing the APPLICATION USAGE section.

Austin Group Defect 1656 is applied, changing the NAME section.

Austin Group Defect 1657 is applied, moving some requirements unrelated to makefile syntax
from the Makefile Syntax subsection to the beginning of the EXTENDED DESCRIPTION section.

Austin Group Defect 1689 is applied, removing some redundant wording from the
DESCRIPTION section.

Austin Group Defect 1692 is applied, allowing make, when invoked with the −q or −t option, to
execute command lines (without a <plus-sign> prefix) that expand the MAKE macro.

Austin Group Defect 1693 is applied, changing ``command lines’’ to ``execution lines’’ in the
description of the −s option.

Austin Group Defect 1694 is applied, changing ``in the order they appear’’ to ``in the order
specified’’ in the OPERANDS section.

Austin Group Defect 1696 is applied, changing the STDOUT section.

Austin Group Defect 1697 is applied, changing the RATIONALE and FUTURE DIRECTIONS
sections.

Austin Group Defect 1698 is applied, changing ``of a target’’ to ``of the target’’ in the EXTENDED
DESCRIPTION section.

Austin Group Defect 1699 is applied, addressing some inconsistencies in the use of the term
``rules’’.

Austin Group Defect 1706 is applied, removing a line from the format specified for target rules.

Austin Group Defect 1714 is applied, changing ``beginning of the line’’ to ``beginning of the
value’’.

Austin Group Defect 1716 is applied, changing the typographic convention used for variable
elements within target names, in particular the inference rule suffixes s1 and s2.

Austin Group Defect 1723 is applied, adding historical context to a paragraph in the
RATIONALE section.

Austin Group Defect 1772 is applied, clarifying the ASYNCHRONOUS EVENTS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3163

106769

106770

106771

106772

106773

106774

106775

106776

106777

106778

106779

106780

106781

106782

106783

106784

106785

106786

106787

106788

106789

106790

106791

106792

106793

106794

106795

106796

106797

106798

106799

106800

106801

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

man Utilities

NAME
man — display system documentation

SYNOPSIS
UP man [-k] name...

DESCRIPTION
The man utility shall write information about each of the name operands. If name is the name of a
standard utility, man at a minimum shall write a message describing the syntax used by the
standard utility, its options, operands, environment variables affecting its execution, and its list
of exit status codes. If more information is available, the man utility shall provide it in an
implementation-defined manner.

An implementation may provide information for values of name other than the standard utilities.
Standard utilities that are listed as optional and that are not supported by the implementation
either shall cause a brief message indicating that fact to be displayed or shall cause a full display
of information as described previously.

OPTIONS
The man utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−k Interpret name operands as keywords to be used in searching a utilities summary
database that contains a brief purpose entry for each standard utility and write lines
from the summary database that match any of the keywords. The keyword search shall
produce results that are the equivalent of the output of the following command:

grep -Ei '
name
name
...
' summary-database

This assumes that the summary-database is a text file with a single entry per line; this
organization is not required and the example using grep −Ei is merely illustrative of the
type of search intended. The purpose entry to be included in the database shall consist
of a terse description of the purpose of the utility.

OPERANDS
The following operand shall be supported:

name A keyword or the name of a standard utility. When −k is not specified and name
does not represent one of the standard utilities, the results are unspecified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of man:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

3164 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106802

106803

106804

106805

106806

106807

106808

106809

106810

106811

106812

106813

106814

106815

106816

106817

106818

106819

106820

106821

106822

106823

106824

106825

106826

106827

106828

106829

106830

106831

106832

106833

106834

106835

106836

106837

106838

106839

106840

106841

106842

106843

106844

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities man

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and in the summary database). The value of LC_CTYPE need not affect
the format of the information written about the name operands.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PAGER Determine an output filtering command for writing the output to a terminal. Any
string acceptable as a command_string operand to the sh −c command shall be valid.
When standard output is a terminal device, the reference page output shall be
piped through the command. If the PAGER variable is null or not set, the command
shall be either more or another paginator utility documented in the system
documentation.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The man utility shall write text describing the syntax of the utility name, its options and its
operands, or, when −k is specified, lines from the summary database. The format of this text is
implementation-defined.

STDERR
The standard error shall be used for diagnostic messages, and may also be used for
informational messages of unspecified format.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3165

106845

106846

106847

106848

106849

106850

106851

106852

106853

106854

106855

106856

106857

106858

106859

106860

106861

106862

106863

106864

106865

106866

106867

106868

106869

106870

106871

106872

106873

106874

106875

106876

106877

106878

106879

106880

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

man Utilities

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
It is recognized that the man utility is only of minimal usefulness as specified. The opinion of the
standard developers was strongly divided as to how much or how little information man should
be required to provide. They considered, however, that the provision of some portable way of
accessing documentation would aid user portability. The arguments against a fuller specification
were:

• Large quantities of documentation should not be required on a system that does not have
excess disk space.

• The current manual system does not present information in a manner that greatly aids user
portability.

• A ``better help system’’ is currently an area in which vendors feel that they can add value
to their POSIX implementations.

The −f option was considered, but due to implementation differences, it was not included in this
volume of POSIX.1-2024.

The description was changed to be more specific about what has to be displayed for a utility. The
standard developers considered it insufficient to allow a display of only the synopsis without
giving a short description of what each option and operand does.

The ``purpose’’ entry to be included in the database can be similar to the section title (less the
numeric prefix) from this volume of POSIX.1-2024 for each utility. These titles are similar to
those used in historical systems for this purpose.

See mailx for rationale concerning the default paginator.

The caveat in the LC_CTYPE description was added because it is not a requirement that an
implementation provide reference pages for all of its supported locales on each system;
changing LC_CTYPE does not necessarily translate the reference page into another language.
This is equivalent to the current state of LC_MESSAGES in POSIX.1-2024—locale-specific
messages are not yet a requirement.

The historical MANPATH variable is not included in POSIX because no attempt is made to
specify naming conventions for reference page files, nor even to mandate that they are files at
all. On some implementations they could be a true database, a hypertext file, or even fixed
strings within the man executable. The standard developers considered the portability of
reference pages to be outside their scope of work. However, users should be aware that
MANPATH is implemented on a number of historical systems and that it can be used to tailor
the search pattern for reference pages from the various categories (utilities, functions, file
formats, and so on) when the system administrator reveals the location and conventions for
reference pages on the system.

The keyword search can rely on at least the text of the section titles from these utility
descriptions, and the implementation may add more keywords. The term ``section titles’’ refers
to the strings such as:

man — Display system documentation
ps — Report process status

3166 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106881

106882

106883

106884

106885

106886

106887

106888

106889

106890

106891

106892

106893

106894

106895

106896

106897

106898

106899

106900

106901

106902

106903

106904

106905

106906

106907

106908

106909

106910

106911

106912

106913

106914

106915

106916

106917

106918

106919

106920

106921

106922

106923

106924

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities man

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
more

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #108 is applied, clarifying that informational messages
may appear on standard error.

Issue 8
Austin Group Defect 190 is applied, marking the man utility as part of the User Portability
Utilities option, and adding a requirement for the message it writes for a standard utility to
include the environment variables affecting its execution and its list of exit status codes.

Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3167

106925

106926

106927

106928

106929

106930

106931

106932

106933

106934

106935

106936

106937

106938

106939

106940

106941

106942

106943

106944

106945

106946

106947

106948

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mesg Utilities

NAME
mesg — permit or deny messages

SYNOPSIS
mesg [y|n]

DESCRIPTION
The mesg utility shall control whether other users are allowed to send messages via write, talk, or
other utilities to a terminal device. The terminal device affected shall be determined by searching
for the first terminal in the sequence of devices associated with standard input, standard output,
and standard error, respectively. With no arguments, mesg shall report the current state without
changing it. Processes with appropriate privileges may be able to send messages to the terminal
independent of the current state.

OPTIONS
None.

OPERANDS
The following operands shall be supported in the POSIX locale:

y Grant permission to other users to send messages to the terminal device.

n Deny permission to other users to send messages to the terminal device.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of mesg:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written (by mesg) to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If no operand is specified, mesg shall display the current terminal state in an unspecified format.

STDERR
The standard error shall be used only for diagnostic messages.

3168 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106949

106950

106951

106952

106953

106954

106955

106956

106957

106958

106959

106960

106961

106962

106963

106964

106965

106966

106967

106968

106969

106970

106971

106972

106973

106974

106975

106976

106977

106978

106979

106980

106981

106982

106983

106984

106985

106986

106987

106988

106989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mesg

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Receiving messages is allowed.

1 Receiving messages is not allowed.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The mechanism by which the message status of the terminal is changed is unspecified.
Therefore, unspecified actions may cause the status of the terminal to change after mesg has
successfully completed. These actions may include, but are not limited to: another invocation of
the mesg utility, login procedures; invocation of the stty utility, invocation of the chmod utility or
chmod() function, and so on.

EXAMPLES
None.

RATIONALE
The terminal changed by mesg is that associated with the standard input, output, or error, rather
than the controlling terminal for the session. This is because users logged in more than once
should be able to change any of their login terminals without having to stop the job running in
those sessions. This is not a security problem involving the terminals of other users because
appropriate privileges would be required to affect the terminal of another user.

The method of checking each of the first three file descriptors in sequence until a terminal is
found was adopted from System V.

The file /dev/tty is not specified for the terminal device because it was thought to be too
restrictive. Typical environment changes for the n operand are that write permissions are
removed for others and group from the appropriate device. It was decided to leave the actual
description of what is done as unspecified because of potential differences between
implementations.

The format for standard output is unspecified because of differences between historical
implementations. This output is generally not useful to shell scripts (they can use the exit status),
so exact parsing of the output is unnecessary.

FUTURE DIRECTIONS
None.

SEE ALSO
talk , write

XBD Chapter 8 (on page 167)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3169

106990

106991

106992

106993

106994

106995

106996

106997

106998

106999

107000

107001

107002

107003

107004

107005

107006

107007

107008

107009

107010

107011

107012

107013

107014

107015

107016

107017

107018

107019

107020

107021

107022

107023

107024

107025

107026

107027

107028

107029

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mesg Utilities

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
The mesg utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3170 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107030

107031

107032

107033

107034

107035

107036

107037

107038

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mkdir

NAME
mkdir — make directories

SYNOPSIS
mkdir [-p] [-m mode] dir...

DESCRIPTION
The mkdir utility shall create the directories specified by the operands, in the order specified.

For each dir operand, the mkdir utility shall perform actions equivalent to the mkdir() function
defined in the System Interfaces volume of POSIX.1-2024, called with the following arguments:

1. The dir operand is used as the path argument.

2. The value of the bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO is used as
the mode argument. (If the −m option is specified, the value of the mkdir() mode argument
is unspecified, but the directory shall at no time have permissions less restrictive than the
−m mode option-argument.)

OPTIONS
The mkdir utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−m mode Set the file permission bits of the newly-created directory to the specified mode
value. The mode option-argument shall be the same as the mode operand defined
for the chmod utility. In the symbolic_mode strings, the op characters '+' and '−'
shall be interpreted relative to an assumed initial mode of a=rwx; '+' shall add
permissions to the default mode, '−' shall delete permissions from the default
mode.

−p Create any missing intermediate pathname components.

For each dir operand that does not name an existing directory, before performing
the actions described in the DESCRIPTION above, the mkdir utility shall create any
pathname components of the path prefix of dir that do not name an existing
directory by performing actions equivalent to first calling the mkdir() function with
the following arguments:

1. A pathname naming the missing pathname component, ending with a
trailing <slash> character, as the path argument

2. The value zero as the mode argument

and then calling the chmod() function with the following arguments:

1. The same path argument as in the mkdir() call

2. The value (S_IWUSR|S_IXUSR|~filemask)&0777 as the mode
argument, where filemask is the file mode creation mask of the process (see
XSH umask())

Each dir operand that names an existing directory shall be ignored without error.

OPERANDS
The following operand shall be supported:

dir A pathname of a directory to be created.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3171

107039

107040

107041

107042

107043

107044

107045

107046

107047

107048

107049

107050

107051

107052

107053

107054

107055

107056

107057

107058

107059

107060

107061

107062

107063

107064

107065

107066

107067

107068

107069

107070

107071

107072

107073

107074

107075

107076

107077

107078

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkdir Utilities

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of mkdir:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All the specified directories were created successfully, or the −p option was specified and all
the specified directories either already existed or were created successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

3172 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107079

107080

107081

107082

107083

107084

107085

107086

107087

107088

107089

107090

107091

107092

107093

107094

107095

107096

107097

107098

107099

107100

107101

107102

107103

107104

107105

107106

107107

107108

107109

107110

107111

107112

107113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mkdir

APPLICATION USAGE
The default file mode for directories is a=rwx (777 on most systems) with selected permissions
removed in accordance with the file mode creation mask. For intermediate pathname
components created by mkdir, the mode is the default modified by u+wx so that the
subdirectories can always be created regardless of the file mode creation mask; if different
ultimate permissions are desired for the intermediate directories, they can be changed
afterwards with chmod.

Note that some of the requested directories may have been created even if an error occurs.

EXAMPLES
None.

RATIONALE
The System V −m option was included to control the file mode.

The System V −p option was included to create any needed intermediate directories and to
complement the functionality provided by rmdir for removing directories in the path prefix as
they become empty. Because no error is produced if any path component already exists, the −p
option is also useful to ensure that a particular directory exists.

The functionality of mkdir is described substantially through a reference to the mkdir() function
in the System Interfaces volume of POSIX.1-2024. For example, by default, the mode of the
directory is affected by the file mode creation mask in accordance with the specified behavior of
the mkdir() function. In this way, there is less duplication of effort required for describing details
of the directory creation.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
chmod , rm , rmdir , umask

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH mkdir(), umask()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 7
SD5-XCU-ERN-56 is applied, aligning the −m option with the IEEE P1003.2b draft standard to
clarify an ambiguity.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0122 [161] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0145 [843] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3173

107114

107115

107116

107117

107118

107119

107120

107121

107122

107123

107124

107125

107126

107127

107128

107129

107130

107131

107132

107133

107134

107135

107136

107137

107138

107139

107140

107141

107142

107143

107144

107145

107146

107147

107148

107149

107150

107151

107152

107153

107154

107155

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkdir Utilities

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3174 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107156

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mkfifo

NAME
mkfifo — make FIFO special files

SYNOPSIS
mkfifo [-m mode] file...

DESCRIPTION
The mkfifo utility shall create the FIFO special files specified by the operands, in the order
specified.

For each file operand, the mkfifo utility shall perform actions equivalent to the mkfifo() function
defined in the System Interfaces volume of POSIX.1-2024, called with the following arguments:

1. The file operand is used as the path argument.

2. The value of the bitwise-inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP,
S_IROTH, and S_IWOTH is used as the mode argument. (If the −m option is specified, the
value of the mkfifo() mode argument is unspecified, but the FIFO shall at no time have
permissions less restrictive than the −m mode option-argument.)

OPTIONS
The mkfifo utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−m mode Set the file permission bits of the newly-created FIFO to the specified mode value.
The mode option-argument shall be the same as the mode operand defined for the
chmod utility. In the symbolic_mode strings, the op characters '+' and '−' shall be
interpreted relative to an assumed initial mode of a=rw.

OPERANDS
The following operand shall be supported:

file A pathname of the FIFO special file to be created.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of mkfifo:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3175

107157

107158

107159

107160

107161

107162

107163

107164

107165

107166

107167

107168

107169

107170

107171

107172

107173

107174

107175

107176

107177

107178

107179

107180

107181

107182

107183

107184

107185

107186

107187

107188

107189

107190

107191

107192

107193

107194

107195

107196

107197

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mkfifo Utilities

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All the specified FIFO special files were created successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
This utility was added to permit shell applications to create FIFO special files.

The −m option was added to control the file mode, for consistency with the similar functionality
provided by the mkdir utility.

Early proposals included a −p option similar to the mkdir −p option that created intermediate
directories leading up to the FIFO specified by the final component. This was removed because
it is not commonly needed and is not common practice with similar utilities.

The functionality of mkfifo is described substantially through a reference to the mkfifo() function
in the System Interfaces volume of POSIX.1-2024. For example, by default, the mode of the FIFO
file is affected by the file mode creation mask in accordance with the specified behavior of the
mkfifo() function. In this way, there is less duplication of effort required for describing details of
the file creation.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
chmod , umask

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH mkfifo()

3176 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107198

107199

107200

107201

107202

107203

107204

107205

107206

107207

107208

107209

107210

107211

107212

107213

107214

107215

107216

107217

107218

107219

107220

107221

107222

107223

107224

107225

107226

107227

107228

107229

107230

107231

107232

107233

107234

107235

107236

107237

107238

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mkfifo

CHANGE HISTORY
First released in Issue 3.

Issue 6
The −m option is aligned with the IEEE P1003.2b draft standard to clarify an ambiguity.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3177

107239

107240

107241

107242

107243

107244

107245

107246

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

more Utilities

NAME
more — display files on a page-by-page basis

SYNOPSIS
UP more [-ceisu] [-n number] [-p command] [-t tagstring] [file...]

DESCRIPTION
The more utility shall read files and either write them to the terminal on a page-by-page basis or
filter them to standard output. If standard output is not a terminal device, all input files shall be
copied to standard output in their entirety, without modification, except as specified for the −s
option. If standard output is a terminal device, the files shall be written a number of lines (one
screenful) at a time under the control of user commands. See the EXTENDED DESCRIPTION
section.

Certain block-mode terminals do not have all the capabilities necessary to support the complete
more definition; they are incapable of accepting commands that are not terminated with a
<newline>. Implementations that support such terminals shall provide an operating mode to
more in which all commands can be terminated with a <newline> on those terminals. This mode:

• Shall be documented in the system documentation

• Shall, at invocation, inform the user of the terminal deficiency that requires the <newline>
usage and provide instructions on how this warning can be suppressed in future
invocations

• Shall not be required for implementations supporting only fully capable terminals

• Shall not affect commands already requiring <newline> characters

• Shall not affect users on the capable terminals from using more as described in this volume
of POSIX.1-2024

OPTIONS
The more utility shall conform to XBD Section 12.2 (on page 215), except that '+' may be
recognized as an option delimiter as well as '−'.

The following options shall be supported:

−c If a screen is to be written that has no lines in common with the current screen, or
more is writing its first screen, more shall not scroll the screen, but instead shall
redraw each line of the screen in turn, from the top of the screen to the bottom. In
addition, if more is writing its first screen, the screen shall be cleared. This option
may be silently ignored on devices with insufficient terminal capabilities.

−e Exit immediately after writing the last line of the last file in the argument list; see
the EXTENDED DESCRIPTION section.

−i Perform pattern matching in a case-insensitive manner; see XBD Section 9.2 (on
page 180).

−n number Specify the number of lines per screenful. The number argument is a positive
decimal integer. The −n option shall override any values obtained from any other
source.

−p command Each time a screen from a new file is displayed or redisplayed (including as a
result of more commands; for example, :p), execute the more command(s) in the
command arguments in the order specified, as if entered by the user after the first
screen has been displayed. No intermediate results shall be displayed (that is, if the
command is a movement to a screen different from the normal first screen, only the

3178 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107247

107248

107249

107250

107251

107252

107253

107254

107255

107256

107257

107258

107259

107260

107261

107262

107263

107264

107265

107266

107267

107268

107269

107270

107271

107272

107273

107274

107275

107276

107277

107278

107279

107280

107281

107282

107283

107284

107285

107286

107287

107288

107289

107290

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities more

screen resulting from the command shall be displayed.) If any of the commands
fail for any reason, an informational message to this effect shall be written, and no
further commands specified using the −p option shall be executed for this file.

−s Behave as if consecutive empty lines were a single empty line.

−t tagstring Write the screenful of the file containing the tag named by the tagstring argument.
See the ctags utility. The tags feature represented by −t tagstring and the :t
command is optional. It shall be provided on any system that also provides a
conforming implementation of ctags; otherwise, the use of −t produces undefined
results.

The filename resulting from the −t option shall be logically added as a prefix to the
list of command line files, as if specified by the user. If the tag named by the
tagstring argument is not found, it shall be an error, and more shall take no further
action.

If the tag specifies a line number, the first line of the display shall contain the
beginning of that line. If the tag specifies a pattern, the first line of the display shall
contain the beginning of the matching text from the first line of the file that
contains that pattern. If the line does not exist in the file or matching text is not
found, an informational message to this effect shall be displayed, and more shall
display the default screen as if −t had not been specified.

If both the −t tagstring and −p command options are given, the −t tagstring shall be
processed first; that is, the file and starting line for the display shall be as specified
by −t, and then the −p more command shall be executed. If the line (matching text)
specified by the −t command does not exist (is not found), no −p more command
shall be executed for this file at any time.

−u Tr eat a <backspace> as a printable control character, displayed as an
implementation-defined character sequence (see the EXTENDED DESCRIPTION
section), suppressing backspacing and the special handling that produces
underlined or standout mode text on some terminal types. Also, do not ignore a
<carriage-return> at the end of a line.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, the standard input
shall be used. If a file is '−', the standard input shall be read at that point in the
sequence.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is '−'.

INPUT FILES
The input files being examined shall be text files. If standard output is a terminal, standard error
shall be used to read commands from the user. If standard output is a terminal, standard error is
not readable, and command input is needed, more may attempt to obtain user commands from
the controlling terminal (for example, /dev/tty); otherwise, more shall terminate with an error
indicating that it was unable to read user commands. If standard output is not a terminal, no
error shall result if standard error cannot be opened for reading.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3179

107291

107292

107293

107294

107295

107296

107297

107298

107299

107300

107301

107302

107303

107304

107305

107306

107307

107308

107309

107310

107311

107312

107313

107314

107315

107316

107317

107318

107319

107320

107321

107322

107323

107324

107325

107326

107327

107328

107329

107330

107331

107332

107333

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

more Utilities

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of more:

COLUMNS Override the system-selected horizontal display line size. See XBD Chapter 8 (on
page 167) for valid values and results when it is unset or null.

EDITOR Used by the v command to select an editor. See the EXTENDED DESCRIPTION
section.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

LINES Override the system-selected vertical screen size, used as the number of lines in a
screenful. See XBD Chapter 8 (on page 167) for valid values and results when it is
unset or null. The −n option shall take precedence over the LINES variable for
determining the number of lines in a screenful.

MORE Determine a string containing options described in the OPTIONS section preceded
with <hyphen-minus> characters and <blank>-separated as on the command line.
Any command line options shall be processed after those in the MORE variable, as
if the command line were:

more $MORE options operands

The MORE variable shall take precedence over the TERM and LINES variables for
determining the number of lines in a screenful.

TERM Determine the name of the terminal type. If this variable is unset or null, an
unspecified default terminal type is used.

ASYNCHRONOUS EVENTS
The following actions shall be taken upon receipt of signals:

SIGCONT The actions described below for SIGWINCH shall be taken, except that the screen
shall always be refreshed (regardless of whether the terminal window size
changed).

SIGWINCH If standard output is a terminal, the current terminal window size associated with
the terminal on standard output shall be obtained, as if by a call to XSH
tcgetwinsize(). If the terminal window size is successfully obtained, it shall be used

3180 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107334

107335

107336

107337

107338

107339

107340

107341

107342

107343

107344

107345

107346

107347

107348

107349

107350

107351

107352

107353

107354

107355

107356

107357

107358

107359

107360

107361

107362

107363

107364

107365

107366

107367

107368

107369

107370

107371

107372

107373

107374

107375

107376

107377

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities more

as follows:

• If the COLUMNS environment variable is unset or does not contain a
number, the horizontal display line size shall be set to the number of columns
in the obtained terminal window size.

• If the −n option was not specified (neither on the command line nor via the
MORE environment variable) and the LINES environment variable is unset
or does not contain a number, the vertical screen size shall be set to the
number of rows in the obtained terminal window size.

If the above resulted in either the vertical screen size or the horizontal display line
size (or both) changing to a different value, the number of lines available per
screen and the number of columns available per line shall be updated
correspondingly (see XBD Chapter 8, on page 167) and the screen shall be
refreshed; otherwise, the screen may be refreshed.

The action taken for all other signals shall be the default.

STDOUT
The standard output shall be used to write the contents of the input files.

STDERR
The standard error shall be used for diagnostic messages and user commands (see the INPUT
FILES section), and, if standard output is a terminal device, to write a prompting string. The
prompting string shall appear on the screen line below the last line of the file displayed in the
current screenful. The prompt shall contain the name of the file currently being examined and
shall contain an end-of-file indication and the name of the next file, if any, when prompting at
the end-of-file. If an error or informational message is displayed, it is unspecified whether it is
contained in the prompt. If it is not contained in the prompt, it shall be displayed and then the
user shall be prompted for a continuation character, at which point another message or the user
prompt may be displayed. The prompt is otherwise unspecified. It is unspecified whether
informational messages are written for other user commands.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The following section describes the behavior of more when the standard output is a terminal
device. If the standard output is not a terminal device, no options other than −s shall have any
effect, and all input files shall be copied to standard output otherwise unmodified, at which time
more shall exit without further action.

The number of lines available per screen shall be determined by the −n option, if present, or by
obtaining the vertical screen size from the LINES environment variable (see the
ENVIRONMENT VARIABLES section) or from the terminal window size associated with the
terminal on standard output (see XSH tcgetwinsize()), with a default value as described in XBD
Chapter 8 (on page 167).

The maximum number of lines written shall be one less than this number, because the screen
line after the last line written shall be used to write a user prompt and user input. If the number
of lines in the screen is less than two, the results are undefined. It is unspecified whether user
input is permitted to be longer than the remainder of the single line where the prompt has been
written.

The number of columns available per line shall be determined by obtaining the horizontal
display line size from the COLUMNS environment variable (see the ENVIRONMENT

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3181

107378

107379

107380

107381

107382

107383

107384

107385

107386

107387

107388

107389

107390

107391

107392

107393

107394

107395

107396

107397

107398

107399

107400

107401

107402

107403

107404

107405

107406

107407

107408

107409

107410

107411

107412

107413

107414

107415

107416

107417

107418

107419

107420

107421

107422

107423

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

more Utilities

VARIABLES section) or from the terminal window size associated with the terminal on standard
output (see XSH tcgetwinsize()), with a default value as described in XBD Chapter 8 (on page
167).

Lines that are longer than the display shall be folded; the length at which folding occurs is
unspecified, but should be appropriate for the output device. Folding may occur between glyphs
of single characters that take up multiple display columns.

When standard output is a terminal and −u is not specified, more shall treat <backspace> and
<carriage-return> characters specially:

• A character, followed first by a sequence of n <backspace> characters (where n is the same
as the number of column positions that the character occupies), then by n <underscore>
characters ('_'), shall cause that character to be written as underlined text, if the terminal
type supports that. The n <underscore> characters, followed first by n <backspace>
characters, then any character with n column positions, shall also cause that character to be
written as underlined text, if the terminal type supports that.

• A sequence of n <backspace> characters (where n is the same as the number of column
positions that the previous character occupies) that appears between two identical
printable characters shall cause the first of those two characters to be written as
emboldened text (that is, visually brighter, standout mode, or inverse-video mode), if the
terminal type supports that, and the second to be discarded. Immediately subsequent
occurrences of <backspace>/character pairs for that same character shall also be
discarded. (For example, the sequence "a\ba\ba\ba" is interpreted as a single
emboldened 'a'.)

• The more utility shall logically discard all other <backspace> characters from the line as
well as the character which precedes them, if any.

• A <carriage-return> at the end of a line shall be ignored, rather than being written as a
non-printable character, as described in the next paragraph.

It is implementation-defined how other non-printable characters are written. Implementations
should use the same format that they use for the ex print command; see the OPTIONS section
within the ed utility. It is unspecified whether a multi-column character shall be separated if it
crosses a display line boundary; it shall not be discarded. The behavior is unspecified if the
number of columns on the display is less than the number of columns any single character in the
line being displayed would occupy.

When each new file is displayed (or redisplayed), more shall write the first screen of the file.
Once the initial screen has been written, more shall prompt for a user command. If the execution
of the user command results in a screen that has lines in common with the current screen, and
the device has sufficient terminal capabilities, more shall scroll the screen; otherwise, it is
unspecified whether the screen is scrolled or redrawn.

For all files but the last (including standard input if no file was specified, and for the last file as
well, if the −e option was not specified), when more has written the last line in the file, more shall
prompt for a user command. This prompt shall contain the name of the next file as well as an
indication that more has reached end-of-file. If the user command is f, <control>-F, <space>, j,
<newline>, d, <control>-D, or s, more shall display the next file. Otherwise, if displaying the last
file, more shall exit. Otherwise, more shall execute the user command specified.

Several of the commands described in this section display a previous screen from the input
stream. In the case that text is being taken from a non-rewindable stream, such as a pipe, it is
implementation-defined how much backwards motion is supported. If a command cannot be
executed because of a limitation on backwards motion, an error message to this effect shall be

3182 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107424

107425

107426

107427

107428

107429

107430

107431

107432

107433

107434

107435

107436

107437

107438

107439

107440

107441

107442

107443

107444

107445

107446

107447

107448

107449

107450

107451

107452

107453

107454

107455

107456

107457

107458

107459

107460

107461

107462

107463

107464

107465

107466

107467

107468

107469

107470

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities more

displayed, the current screen shall not change, and the user shall be prompted for another
command.

If a command cannot be performed because there are insufficient lines to display, more shall alert
the terminal. If a command cannot be performed because there are insufficient lines to display or
a / command fails: if the input is the standard input, the last screen in the file may be displayed;
otherwise, the current file and screen shall not change, and the user shall be prompted for
another command.

The interactive commands in the following sections shall be supported. Some commands can be
preceded by a decimal integer, called count in the following descriptions. If not specified with
the command, count shall default to 1. In the following descriptions, pattern is a basic regular
expression, as described in XBD Section 9.3 (on page 181). The term ``examine’’ is historical
usage meaning ``open the file for viewing’’; for example, more foo would be expressed as
examining file foo.

In the following descriptions, unless otherwise specified, line is a line in the more display, not a
line from the file being examined.

In the following descriptions, the current position refers to two things:

1. The position of the current line on the screen

2. The line number (in the file) of the current line on the screen

Usually, the line on the screen corresponding to the current position is the third line on the
screen. If this is not possible (there are fewer than three lines to display or this is the first page of
the file, or it is the last page of the file), then the current position is either the first or last line on
the screen as described later.

Help

Synopsis: h

Write a summary of these commands and other implementation-defined commands. The
behavior shall be as if the more utility were executed with the −e option on a file that contained
the summary information. The user shall be prompted as described earlier in this section when
end-of-file is reached. If the user command is one of those specified to continue to the next file,
more shall return to the file and screen state from which the h command was executed.

Scroll Forward One Screenful

Synopsis: [count]f
[count]<control>-F

Scroll forward count lines, with a default of one screenful. If count is more than the screen size,
only the final screenful shall be written.

Scroll Backward One Screenful

Synopsis: [count]b
[count]<control>-B

Scroll backward count lines, with a default of one screenful (see the −n option). If count is more
than the screen size, only the final screenful shall be written.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3183

107471

107472

107473

107474

107475

107476

107477

107478

107479

107480

107481

107482

107483

107484

107485

107486

107487

107488

107489

107490

107491

107492

107493

107494

107495

107496

107497

107498

107499

107500

107501

107502

107503

107504

107505

107506

107507

107508

107509

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

more Utilities

Scroll Forward One Line

Synopsis: [count]<space>
[count]j
[count]<newline>

Scroll forward count lines. The default count for the <space> shall be one screenful; for j and
<newline>, one line. The entire count lines shall be written, even if count is more than the screen
size.

Scroll Backward One Line

Synopsis: [count]k

Scroll backward count lines. The entire count lines shall be written, even if count is more than the
screen size.

Scroll Forward One Half Screenful

Synopsis: [count]d
[count]<control>-D

Scroll forward count lines, with a default of one half of the screen size. If count is specified, it
shall become the new default for subsequent d, <control>-D, and u commands.

Skip Forward One Line

Synopsis: [count]s

Display the screenful beginning with the line count lines after the last line on the current screen.
If count would cause the current position to be such that less than one screenful would be
written, the last screenful in the file shall be written.

Scroll Backward One Half Screenful

Synopsis: [count]u
[count]<control>-U

Scroll backward count lines, with a default of one half of the screen size. If count is specified, it
shall become the new default for subsequent d, <control>−D, u, and <control>−U commands.
The entire count lines shall be written, even if count is more than the screen size.

Go to Beginning of File

Synopsis: [count]g

Display the screenful beginning with line count.

Go to End-of-File

Synopsis: [count]G

If count is specified, display the screenful beginning with the line count. Otherwise, display the
last screenful of the file.

3184 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107510

107511

107512

107513

107514

107515

107516

107517

107518

107519

107520

107521

107522

107523

107524

107525

107526

107527

107528

107529

107530

107531

107532

107533

107534

107535

107536

107537

107538

107539

107540

107541

107542

107543

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities more

Refresh the Screen

Synopsis: r
<control>-L

Refresh the screen.

Discard and Refresh

Synopsis: R

Refresh the screen, discarding any buffered input. If the current file is non-seekable, buffered
input shall not be discarded and the R command shall be equivalent to the r command.

Mark Position

Synopsis: mletter

Mark the current position with the letter named by letter, where letter represents the name of one
of the lowercase letters of the portable character set. When a new file is examined, all marks may
be lost.

Return to Mark

Synopsis: 'letter

Return to the position that was previously marked with the letter named by letter, making that
line the current position.

Return to Previous Position

Synopsis: ''

Return to the position from which the last large movement command was executed (where a
``large movement’’ is defined as any movement of more than a screenful of lines). If no such
movements have been made, return to the beginning of the file.

Search Forward for Pattern

Synopsis: [count]/[!]pattern<newline>

Display the screenful beginning with the countth line containing the pattern. The search shall
start after the first line currently displayed. The null regular expression ('/' followed by a
<newline>) shall repeat the search using the previous regular expression, with a default count. If
the character '!' is included, the matching lines shall be those that do not contain the pattern. If
no match is found for the pattern, a message to that effect shall be displayed.

Search Backward for Pattern

Synopsis: [count]?[!]pattern<newline>

Display the screenful beginning with the countth previous line containing the pattern. The search
shall start on the last line before the first line currently displayed. The null regular expression
('?' followed by a <newline>) shall repeat the search using the previous regular expression,
with a default count. If the character '!' is included, matching lines shall be those that do not
contain the pattern. If no match is found for the pattern, a message to that effect shall be
displayed.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3185

107544

107545

107546

107547

107548

107549

107550

107551

107552

107553

107554

107555

107556

107557

107558

107559

107560

107561

107562

107563

107564

107565

107566

107567

107568

107569

107570

107571

107572

107573

107574

107575

107576

107577

107578

107579

107580

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

more Utilities

Repeat Search

Synopsis: [count]n

Repeat the previous search for countth line containing the last pattern (or not containing the last
pattern, if the previous search was "/!" or "?!").

Repeat Search in Reverse

Synopsis: [count]N

Repeat the search in the opposite direction of the previous search for the countth line containing
the last pattern (or not containing the last pattern, if the previous search was "/!" or "?!").

Examine New File

Synopsis: :e [filename]<newline>

Examine a new file. If the filename argument is not specified, the current file (see the :n and :p
commands below) shall be re-examined. The filename shall be subjected to the process of shell
word expansions (see Section 2.6, on page 2483); if more than a single pathname results, the
effects are unspecified. If filename is a <number-sign> ('#'), the previously examined file shall
be re-examined. If filename is not accessible for any reason (including that it is a non-seekable
file), an error message to this effect shall be displayed and the current file and screen shall not
change.

Examine Next File

Synopsis: [count]:n

Examine the next file. If a number count is specified, the countth next file shall be examined. If
filename refers to a non-seekable file, the results are unspecified.

Examine Previous File

Synopsis: [count]:p

Examine the previous file. If a number count is specified, the countth previous file shall be
examined. If filename refers to a non-seekable file, the results are unspecified.

Go to Tag

Synopsis: :t tagstring<newline>

If the file containing the tag named by the tagstring argument is not the current file, examine the
file, as if the :e command was executed with that file as the argument. Otherwise, or in addition,
display the screenful beginning with the tag, as described for the −t option (see the OPTIONS
section). If the ctags utility is not supported by the system, the use of :t produces undefined
results.

3186 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107581

107582

107583

107584

107585

107586

107587

107588

107589

107590

107591

107592

107593

107594

107595

107596

107597

107598

107599

107600

107601

107602

107603

107604

107605

107606

107607

107608

107609

107610

107611

107612

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities more

Invoke Editor

Synopsis: v

Invoke an editor to edit the current file being examined. If standard input is being examined, the
results are unspecified. The name of the editor shall be taken from the environment variable
EDITOR, or shall default to vi. If the last pathname component in EDITOR is either vi or ex, the
editor shall be invoked with a −c linenumber command line argument, where linenumber is the
line number of the file line containing the display line currently displayed as the first line of the
screen. It is implementation-defined whether line-setting options are passed to editors other
than vi and ex.

When the editor exits, more shall resume with the same file and screen as when the editor was
invoked.

Display Position

Synopsis: =
<control>-G

Write a message for which the information references the first byte of the line after the last line of
the file on the screen. This message shall include the name of the file currently being examined,
its number relative to the total number of files there are to examine, the line number in the file,
the byte number and the total bytes in the file, and what percentage of the file precedes the
current position. If more is reading from standard input, or the file is shorter than a single screen,
the line number, the byte number, the total bytes, and the percentage need not be written.

Quit

Synopsis: q
:q
ZZ

Exit more.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If an error is encountered accessing a file when using the :n command, more shall attempt to
examine the next file in the argument list, but the final exit status shall be affected. If an error is
encountered accessing a file via the :p command, more shall attempt to examine the previous file
in the argument list, but the final exit status shall be affected. If an error is encountered accessing
a file via the :e command, more shall remain in the current file and the final exit status shall not
be affected.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3187

107613

107614

107615

107616

107617

107618

107619

107620

107621

107622

107623

107624

107625

107626

107627

107628

107629

107630

107631

107632

107633

107634

107635

107636

107637

107638

107639

107640

107641

107642

107643

107644

107645

107646

107647

107648

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

more Utilities

APPLICATION USAGE
When the standard output is not a terminal, only the −s filter-modification option is effective.
This is based on historical practice. For example, a typical implementation of man pipes its
output through more −s to squeeze excess white space for terminal users. When man is piped to
lp, however, it is undesirable for this squeezing to happen.

EXAMPLES
The −p allows arbitrary commands to be executed at the start of each file. Examples are:

more −p G file1 file2
Examine each file starting with its last screenful.

more −p 100 file1 file2
Examine each file starting with line 100 in the current position (usually the third line, so line
98 would be the first line written).

more −p /100 file1 file2
Examine each file starting with the first line containing the string "100" in the current
position

RATIONALE
The more utility, available in BSD and BSD-derived systems, was chosen as the prototype for the
POSIX file display program since it is more widely available than either the public-domain
program less or than pg, a pager provided in System V. The 4.4 BSD more is the model for the
features selected; it is almost fully upwards-compatible from the 4.3 BSD version in wide use
and has become more amenable for vi users. Several features originally derived from various file
editors, found in both less and pg, have been added to this volume of POSIX.1-2024 as they have
proved extremely popular with users.

There are inconsistencies between more and vi that result from historical practice. For example,
the single-character commands h, f, b, and <space> are screen movers in more, but cursor
movers in vi. These inconsistencies were maintained because the cursor movements are not
applicable to more and the powerful functionality achieved without the use of the control key
justifies the differences.

The tags interface has been included in a program that is not a text editor because it promotes
another degree of consistent operation with vi. It is conceivable that the paging environment of
more would be superior for browsing source code files in some circumstances.

The operating mode referred to for block-mode terminals effectively adds a <newline> to each
Synopsis line that currently has none. So, for example, d<newline> would page one screenful.
The mode could be triggered by a command line option, environment variable, or some other
method. The details are not imposed by this volume of POSIX.1-2024 because there are so few
systems known to support such terminals. Nevertheless, it was considered that all systems
should be able to support more given the exception cited for this small community of terminals
because, in comparison to vi, the cursor movements are few and the command set relatively
amenable to the optional <newline> characters.

Historically some versions of more did not obtain the terminal window size on receipt of
SIGCONT, resulting in incorrect screen contents when the screen was refreshed if the size had
been changed while more was suspended. This is considered to be a bug in those
implementations.

Some versions of more provide a shell escaping mechanism similar to the ex ! command. The
standard developers did not consider that this was necessary in a paginator, particularly given
the wide acceptance of multiple window terminals and job control features. (They chose to
retain such features in the editors and mailx because the shell interaction also gives an

3188 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107649

107650

107651

107652

107653

107654

107655

107656

107657

107658

107659

107660

107661

107662

107663

107664

107665

107666

107667

107668

107669

107670

107671

107672

107673

107674

107675

107676

107677

107678

107679

107680

107681

107682

107683

107684

107685

107686

107687

107688

107689

107690

107691

107692

107693

107694

107695

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities more

opportunity to modify the editing buffer, which is not applicable to more.)

The −p (position) option replaces the + command because of the Utility Syntax Guidelines. The
+command option is no longer specified by POSIX.1-2024 but may be present in some
implementations. In early proposals, it took a pattern argument, but historical less provided the
more general facility of a command. It would have been desirable to use the same −c as ex and vi,
but the letter was already in use.

The text stating ``from a non-rewindable stream . . . implementations may limit the amount of
backwards motion supported’’ would allow an implementation that permitted no backwards
motion beyond text already on the screen. It was not possible to require a minimum amount of
backwards motion that would be effective for all conceivable device types. The implementation
should allow the user to back up as far as possible, within device and reasonable memory
allocation constraints.

Historically, non-printable characters were displayed using the ARPA standard mappings,
which are as follows:

1. Printable characters are left alone.

2. Control characters less than \177 are represented as followed by the character offset from
the '@' character in the ASCII map; for example, \007 is represented as 'G'.

3. \177 is represented as followed by '?'.

The display of characters having their eighth bit set was less standard. Existing implementations
use hex (0x00), octal (\000), and a meta-bit display. (The latter displayed characters with their
eighth bit set as the two characters "M-", followed by the seven-bit display as described
previously.) The latter probably has the best claim to historical practice because it was used with
the −v option of 4 BSD and 4 BSD-derived versions of the cat utility since 1980.

No specific display format is required by POSIX.1-2024. Implementations are encouraged to
conform to historic practice in the absence of any strong reason to diverge.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), ctags , ed , ex , vi

XBD Chapter 8 (on page 167), Section 9.2 (on page 180), Section 9.3 (on page 181), Section 12.2
(on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed.

The utility has been extensively reworked for alignment with the IEEE P1003.2b draft standard:

• Changes have been made as a result of IEEE PASC Interpretations 1003.2 #37 and #109.

• The more utility should be able to handle underlined and emboldened displays of
characters that are wider than a single column position.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3189

107696

107697

107698

107699

107700

107701

107702

107703

107704

107705

107706

107707

107708

107709

107710

107711

107712

107713

107714

107715

107716

107717

107718

107719

107720

107721

107722

107723

107724

107725

107726

107727

107728

107729

107730

107731

107732

107733

107734

107735

107736

107737

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

more Utilities

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that '+' may be recognized
as an option delimiter in the OPTIONS section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0123 [265] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0146 [584] is applied.

Issue 8
Austin Group Defect 1031 is applied, changing the description of the −i option.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1185 is applied, changing the ASYNCHRONOUS EVENTS and
EXTENDED DESCRIPTION sections in relation to the terminal window size.

3190 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107738

107739

107740

107741

107742

107743

107744

107745

107746

107747

107748

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities msgfmt

NAME
msgfmt — create messages objects from portable messages object source files

SYNOPSIS
msgfmt [-cfSv] [-D dir] [-o outputfile] pathname...

DESCRIPTION
The msgfmt utility shall create messages object files from portable messages object source files
(dot-po files).

A dot-po file contains messages to be output by system commands or by applications. The
messages in these files should be able to be translated to any language supported by the system.

The msgfmt utility shall interpret message strings for output as characters according to the
codeset specified in the dot-po file or, if not present, the current setting of the LC_CTYPE locale
category.

OPTIONS
The msgfmt utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c If this option and −v are both specified, msgfmt shall detect and diagnose input file
abnormalities which might represent translation errors. The msgid and msgstr
strings shall be compared. It shall be considered abnormal if one string starts or
ends with a <newline> while the other does not. Also, if the flag c-format appears
in a "#," comment for a msgid directive (see EXTENDED DESCRIPTION), it shall
be considered abnormal if the strings do not have the same number of '%'
conversion specifiers, or if corresponding conversion specifiers take different
argument types (see XSH fprintf(), on page 995). If an abnormality is detected, the
exit status shall be non-zero and a diagnostic message shall be output. Additional
checks beyond those described here may also be performed. These checks may
produce diagnostics or informational messages and need not affect the exit status.
If −c is specified without −v or −v is specified without −c, the behavior is
unspecified.

−D dir Add dir to the list of directories to search for input files.

−f Use fuzzy entries in output. If this option is not specified, fuzzy entries shall not be
included in the output.

−o outputfile
Specify the name of an output file to be used instead of the default filename(s)
specified in EXTENDED DESCRIPTION. All domain domainname directives in the
dot-po file(s) shall be ignored.

−S Append the suffix .mo to each generated messages object filename if it does not
have this suffix.

−v See −c.

OPERANDS
The following operand shall be supported:

pathname A pathname of a dot-po file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3191

107749

107750

107751

107752

107753

107754

107755

107756

107757

107758

107759

107760

107761

107762

107763

107764

107765

107766

107767

107768

107769

107770

107771

107772

107773

107774

107775

107776

107777

107778

107779

107780

107781

107782

107783

107784

107785

107786

107787

107788

107789

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msgfmt Utilities

STDIN
Not used.

INPUT FILES
The input files shall be text files in the format described in EXTENDED DESCRIPTION.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of msgfmt:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

XSI LANGUAGE Determine the location of messages objects if NLSPATH is not set or the evaluation
of NLSPATH did not lead to a suitable messages object being found.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale name used to locate messages objects, and the locale that
should be used to affect the format and contents of diagnostic messages written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not Used.

STDERR
The standard error shall be used for diagnostic messages and may also be used for warning
messages. If the −c and −v options are specified, additional unspecified informational messages
may be written to standard error.

OUTPUT FILES
The format of the created messages object files is unspecified.

EXTENDED DESCRIPTION
The msgfmt utility shall accept portable messages object source files (dot-po files) in the
following format.

A dot-po file contains zero or more lines, with each non-blank line containing a comment, a
statement, or a statement continuation. A comment has an unquoted <number-sign> ('#') as
the first non-<blank> character and ends with the next <newline> character. A statement
continuation is a double-quoted string on a line by itself, optionally preceded and/or followed
by <blank> characters, and the string shall be concatenated with the string on the previous
statement line. If a comment occurs between a statement and a statement continuation, the
behavior is unspecified. All other comments, except for comments beginning with <number-
sign><comma> ("#,"), and blank lines shall be ignored.

The format of a statement is:

directive value

3192 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107790

107791

107792

107793

107794

107795

107796

107797

107798

107799

107800

107801

107802

107803

107804

107805

107806

107807

107808

107809

107810

107811

107812

107813

107814

107815

107816

107817

107818

107819

107820

107821

107822

107823

107824

107825

107826

107827

107828

107829

107830

107831

107832

107833

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities msgfmt

The directive starts at the first non-<blank> character of the line and is separated from the value
by one or more <blank> characters. The value consists of a double-quoted string optionally
followed by <blank> characters. Zero or more statement continuation lines (see above) can
follow the statement. The following directives shall be supported:

domain domainname
msgid message_identifier
msgid_plural untranslated_string_plural
msgstr message_string
msgstr[index] message_string

A dot-po file consists of zero or more sections. Each section specifies the messages to be
processed in a domain. The first directive in each section shall be a domain directive (except for
the first section which shall behave as if

domain "messages"

had been specified if the first directive is not a domain directive).

The behavior of the domain directive is affected by the options used. See OPTIONS for the
behavior when the −o option is specified. If the −o option is not specified, all data obtained from
the non-domain directives in a dot-po section shall be output to the messages object file named
domainname.mo when the −S option is specified. When the −S option is not specified, it is
implementation-defined whether domainname or domainname.mo is used.

If multiple domain directives specify the same domainname, the sections shall be processed as if
there was only one section that starts with a domain domainname statement which contained the
statements of the sections, in the same order, excluding all but the first domain domainname
statement.

Within each section, there can be a header. A header is identified by having a msgid directive
with the empty string ("") as the message_identifier immediately followed by a statement
containing a msgstr directive. The message_string in this msgstr statement in a header shall be
treated specially. If message_string contains a specification of the form:

"nplurals=count; plural=expression"

then count indicates the number of plural forms for messages in that domain, and expression is a
C-language expression that evaluates to an unsigned integer value which determines the
msgstr[index] directive to be used. The value of expression is used as the index value. The
variable n in expression is assigned the value of the n argument to the ngettext(), ngettext_l(),
dngettext(), dngettext_l(), dcngettext(), and dcngettext_l() functions or of the n operand of the
ngettext utility before expression is evaluated. The application shall ensure that expression
evaluates to a non-negative value less than count for all n that can be supplied by the
aforementioned functions and utility.

If message_string in the header contains a specification of the form:

"charset=codeset"

then codeset indicates the codeset to be used to encode the message strings in this section’s
domain (overriding LC_CTYPE). If the output string’s codeset is different from the message
string’s codeset, codeset conversion from the message string’s codeset to the output string’s
codeset shall be performed by the gettext family of functions and by the gettext and ngettext
utilities. See XSH gettext and gettext . The output string’s codeset shall be determined by the
current or specified locale’s codeset.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3193

107834

107835

107836

107837

107838

107839

107840

107841

107842

107843

107844

107845

107846

107847

107848

107849

107850

107851

107852

107853

107854

107855

107856

107857

107858

107859

107860

107861

107862

107863

107864

107865

107866

107867

107868

107869

107870

107871

107872

107873

107874

107875

107876

107877

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msgfmt Utilities

Note: It is the responsibility of translators to ensure that the characters they enter into message strings
in a dot-po file are encoded in the codeset specified in the header.

If a header is present in a section, the application shall ensure that the header is provided by the
first msgid directive in that section.

After the header, if present, zero or more messages are identified by a msgid directive with a
message_identifier that is not an empty string. Each of these directives start a subsection that is
used to get a translated message from the gettext family of functions and from the gettext and
ngettext utilities. If the message_identifier string is the string identified by the gettext family of
functions msgid argument or by the gettext and ngettext utility msgid operand, this subsection
specifies how that translation is to be processed.

If there is only a singular form for the given message_identifier, the application shall ensure that
the statement containing the msgid directive is immediately followed by a msgstr directive.

If there are plural forms for the given message_identifier and the header for this section exists and
contains an

"nplurals=count; plural=expression"

specification, the application shall ensure that the statement containing the msgid directive is
immediately followed by a msgid_plural directive and that each statement containing a
msgid_plural directive is followed by count statements containing msgstr[index] directives,
starting with msgstr[0] and ending with msgstr[count−1] in increasing order, with no duplicate
index values. If a header for this section does not exist or does not contain an

"nplurals=count; plural=expression"

specification, the application shall ensure that no msgid_plural or msgstr[index] directives are
used in this section.

For example, if the header’s message_string contains the specification:

"nplurals=2; plural= n == 1 ? 0 : 1"

there are two forms in the domain; msgstr[0] is used if n is equal to 1, otherwise msgstr[1] is
used. For another example, if the header’s message_string contains:

"nplurals=3; plural= n == 1 ? 0 : n == 2 ? 1 : 2"

there are three forms in the domain; msgstr[0] is used if n is equal to 1, msgstr[1] is used if n is
equal to 2, otherwise msgstr[2] is used.

C-language escape sequences in strings shall be processed as specified for character string
literals in the ISO C standard, except that universal-character-name escape sequences need not be
supported.

Comments in a dot-po file can be in one of the following formats:

#: reference
#. utility-added-comments
#, flag
#translator-comments (where translator-comments does not begin with '.', ':' or ',')

A #: reference comment indicates the location(s) of the msgid string in the source files, in

pathname1:linenumber1 [pathname2:linenumber2 ...]

format. They can be added, as might "#." prefixed additional comments of unspecified format,
by the xgettext utility. All comments that do not begin with "#," are informative only and shall
be silently ignored by the msgfmt utility. In "#," comments the following values for flag can be

3194 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107878

107879

107880

107881

107882

107883

107884

107885

107886

107887

107888

107889

107890

107891

107892

107893

107894

107895

107896

107897

107898

107899

107900

107901

107902

107903

107904

107905

107906

107907

107908

107909

107910

107911

107912

107913

107914

107915

107916

107917

107918

107919

107920

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities msgfmt

specified:

fuzzy This flag indicates that the msgstr string might not be a correct translation at this
point in time. Only the translator can judge if the translation requires further
modification or is acceptable as is. Once satisfied with the translation, the
translator should remove this fuzzy flag. If this flag is specified, the msgfmt utility
shall not generate the entry for the next following msgid in the output message
catalog, unless the −f option is specified. If other flag comments are specified
between fuzzy and the msgid, the behavior is unspecified.

c-format
no-c-format The c-format flag indicates that the next following msgid string contains a printf()

format string. When the c-format flag is given and the −c and −v options are
specified, the msgfmt utility shall perform additional tests to check the validity of
the translation (see OPTIONS); these additional tests may also be performed if
neither c-format nor no-c-format is given. When the no-c-format flag is given for a
string, no additional checks shall be performed for the string. When both the c-
format and the no-c-format flags are given, the last flag specified takes precedence.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
The msgfmt utility need not continue processing later pathname operands when an error
condition that affects the exit status is detected. It is unspecified whether a messages object file is
written when checks performed for the −c and −v options fail.

APPLICATION USAGE
The xgettext utility can be used to create template dot-po files from C-language source files.

Installing messages object files for the POSIX or C locale is not recommended, since they may be
ignored for the sake of efficiency.

The first section for each domain in a dot-po file should include a header containing a

"charset=codeset"

specification. If this specification is omitted, message conversions in the gettext family of
functions and in the gettext and ngettext utilities may fail.

The msgid_plural directive’s untranslated_string_plural string comes from the msgid_plural
arguments in calls to the ngettext(), ngettext_l(), dngettext(), dngettext_l(), dcngettext(), and
dcngettext_l() functions when a prototype dot-po file is created by the xgettext utility. These
strings (and the msgid_plural operands in calls to the ngettext utility) can provide context when a
translator is modifying a template dot-po file into a dot-po file for a specific language. These
functions and the ngettext utility do not try to match the msgid_plural arguments or operands
with anything in a messages object file; they only match the msgid arguments and operands.

Unlike shell command language strings, double-quoted strings in dot-po files cannot contain a
literal <newline> character.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3195

107921

107922

107923

107924

107925

107926

107927

107928

107929

107930

107931

107932

107933

107934

107935

107936

107937

107938

107939

107940

107941

107942

107943

107944

107945

107946

107947

107948

107949

107950

107951

107952

107953

107954

107955

107956

107957

107958

107959

107960

107961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

msgfmt Utilities

EXAMPLES
In this example, module1.po and module2.po are portable messages object source files.

$ cat module1.po
default domain "messages"
msgid ""
msgstr "charset=utf-8"
msgid "msg 1"
msgstr "msg 1 translation"
#
domain "help_domain"
msgid ""
msgstr "charset=utf-8"
msgid "help 2"
msgstr "help 2 translation"
#
domain "error_domain"
msgid ""
msgstr "charset=utf-8"
msgid "error 3"
msgstr "error 3 translation"

$ cat module2.po
default domain "messages"
msgid ""
msgstr "charset=utf-8"
msgid "mesg 4"
msgstr "mesg 4 translation"
#
domain "error_domain"
msgid ""
msgstr "charset=utf-8"
#, c-format
msgid "error 5 %s"
msgstr "error 5 translation %s"
#
domain "window_domain"
msgid ""
msgstr "charset=utf-8"
msgid "window 6"
msgstr "window 6 translation"

$ cat module3.po
default domain "messages"
header will be used for the whole output file in the third example
msgid ""
msgstr "charset=utf-8"
msgid "info 0"
msgstr "info 0 translation"

$ cat opt_debug.po
#
domain "debug_domain"
msgid "debug 8"

3196 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

107962

107963

107964

107965

107966

107967

107968

107969

107970

107971

107972

107973

107974

107975

107976

107977

107978

107979

107980

107981

107982

107983

107984

107985

107986

107987

107988

107989

107990

107991

107992

107993

107994

107995

107996

107997

107998

107999

108000

108001

108002

108003

108004

108005

108006

108007

108008

108009

108010

108011

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities msgfmt

msgstr "debug 8 translation"

The following command will produce the output files messages.mo, help_domain.mo, and
error_domain.mo:

$ msgfmt -S module1.po

The following command will produce the output files messages.mo, help_domain.mo,
error_domain.mo, and window_domain.mo:

$ msgfmt -S module1.po module2.po

The following command will produce the output file hello.mo:

$ msgfmt -o hello.mo module3.po opt_debug.po

RATIONALE
Some implementations are less strict about the format of dot-po files and simply treat all
occurrences of one or more white space characters as a separator. The format described in this
standard is accepted by all known implementations.

In some implementations, duplicate msgid directives within a domain are ignored, and only an
entry for the first msgid directive and the following msgid, msgid_plural, msgstr, or
msgstr[index] directives is created. However, some implementations consider duplicate msgid
directives within a domain to be an error and do not produce output at all. Consequently this
standard does not specify the behavior of msgfmt if duplicate msgid directives are encountered
within one domain.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
gettext , xgettext

XSH fprintf(), gettext

CHANGE HISTORY
First released in Issue 8.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3197

108012

108013

108014

108015

108016

108017

108018

108019

108020

108021

108022

108023

108024

108025

108026

108027

108028

108029

108030

108031

108032

108033

108034

108035

108036

108037

108038

108039

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mv Utilities

NAME
mv — move files

SYNOPSIS
mv [-if] source_file target_file

mv [-if] source_file... target_dir

DESCRIPTION
In the first synopsis form, the mv utility shall move the file named by the source_file operand to
the destination specified by the target_file. This first synopsis form is assumed when the final
operand does not name an existing directory and is not a symbolic link referring to an existing
directory. In this case, if source_file names a non-directory file and target_file ends with a trailing
<slash> character, mv shall treat this as an error and no source_file operands shall be processed.

In the second synopsis form, mv shall move each file named by a source_file operand to a
destination file in the existing directory named by the target_dir operand, or referenced if
target_dir is a symbolic link referring to an existing directory. The destination path for each
source_file shall be the concatenation of the target directory, a single <slash> character if the
target did not end in a <slash>, and the last pathname component of the source_file. This second
form is assumed when the final operand names an existing directory.

If any operand specifies an existing file of a type not specified by the System Interfaces volume
of POSIX.1-2024, the behavior is implementation-defined.

For each source_file the following steps shall be taken:

1. If the destination path exists, the −f option is not specified, and either of the following
conditions is true:

a. The permissions of the destination path do not permit writing and the standard
input is a terminal.

b. The −i option is specified.

the mv utility shall write a prompt to standard error and read a line from standard input.
If the response is not affirmative, mv shall do nothing more with the current source_file
and go on to any remaining source_files.

2. If the source_file operand and destination path resolve to either the same existing directory
entry or different directory entries for the same existing file, then the destination path
shall not be removed, and one of the following shall occur:

a. No change is made to source_file, no error occurs, and no diagnostic is issued.

b. No change is made to source_file, a diagnostic is issued to standard error
identifying the two names, and the exit status is affected.

c. If the source_file operand and destination path name distinct directory entries, then
the source_file operand is removed, no error occurs, and no diagnostic is issued.

The mv utility shall do nothing more with the current source_file, and go on to any
remaining source_files.

3. The mv utility shall perform actions equivalent to the rename() function defined in the
System Interfaces volume of POSIX.1-2024, called with the following arguments:

a. The source_file operand is used as the old argument.

3198 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108040

108041

108042

108043

108044

108045

108046

108047

108048

108049

108050

108051

108052

108053

108054

108055

108056

108057

108058

108059

108060

108061

108062

108063

108064

108065

108066

108067

108068

108069

108070

108071

108072

108073

108074

108075

108076

108077

108078

108079

108080

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mv

b. The destination path is used as the new argument.

If this succeeds, mv shall do nothing more with the current source_file and go on to any
remaining source_files. If this fails for any reasons other than those described for the errno
[EXDEV] in the System Interfaces volume of POSIX.1-2024, mv shall write a diagnostic
message to standard error, do nothing more with the current source_file, and go on to any
remaining source_files.

4. If the destination path exists, and it is a file of type directory and source_file is not a file of
type directory, or it is a file not of type directory and source_file is a file of type directory,
mv shall write a diagnostic message to standard error, do nothing more with the current
source_file, and go on to any remaining source_files. If the destination path exists and was
created by a previous step, it is unspecified whether this will treated as an error or the
destination path will be overwritten.

5. If the destination path exists, mv shall attempt to remove it. If this fails for any reason, mv
shall write a diagnostic message to standard error, do nothing more with the current
source_file, and go on to any remaining source_files.

6. The file hierarchy rooted in source_file shall be duplicated as a file hierarchy rooted in the
destination path. If source_file or any of the files below it in the hierarchy are symbolic
links, the links themselves shall be duplicated, including their contents, rather than any
files to which they refer. The following characteristics of each file in the file hierarchy
shall be duplicated:

• The time of last data modification and time of last access

• The user ID and group ID

• The file mode

If the user ID, group ID, or file mode of a regular file cannot be duplicated, the file mode
bits S_ISUID and S_ISGID shall not be duplicated.

When files are duplicated to another file system, the implementation may require that the
process invoking mv has read access to each file being duplicated.

If files being duplicated to another file system have hard links to other files, it is
unspecified whether the files copied to the new file system have the hard links preserved
or separate copies are created for the linked files.

If the duplication of the file hierarchy fails for any reason, mv shall write a diagnostic
message to standard error, do nothing more with the current source_file, and go on to any
remaining source_files.

If the duplication of the file characteristics fails for any reason, mv shall write a diagnostic
message to standard error, but this failure shall not cause mv to modify its exit status.

7. The file hierarchy rooted in source_file shall be removed. If this fails for any reason, mv
shall write a diagnostic message to the standard error, do nothing more with the current
source_file, and go on to any remaining source_files.

OPTIONS
The mv utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f Do not prompt for confirmation if the destination path exists. Any previous
occurrence of the −i option is ignored.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3199

108081

108082

108083

108084

108085

108086

108087

108088

108089

108090

108091

108092

108093

108094

108095

108096

108097

108098

108099

108100

108101

108102

108103

108104

108105

108106

108107

108108

108109

108110

108111

108112

108113

108114

108115

108116

108117

108118

108119

108120

108121

108122

108123

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mv Utilities

−i Prompt for confirmation if the destination path exists. Any previous occurrence of
the −f option is ignored.

Specifying more than one of the −f or −i options shall not be considered an error. The last option
specified shall determine the behavior of mv.

OPERANDS
The following operands shall be supported:

source_file A pathname of a file or directory to be moved.

target_file A new pathname for the file or directory being moved.

target_dir A pathname of an existing directory into which to move the input files.

STDIN
The standard input shall be used to read an input line in response to each prompt specified in
the STDERR section. Otherwise, the standard input shall not be used.

INPUT FILES
The input files specified by each source_file operand can be of any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of mv:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes used in the extended
regular expression defined for the yesexpr locale keyword in the LC_MESSAGES
category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Prompts shall be written to the standard error under the conditions specified in the
DESCRIPTION section. The prompts shall contain the destination pathname, but their format is
otherwise unspecified. Otherwise, the standard error shall be used only for diagnostic

3200 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108124

108125

108126

108127

108128

108129

108130

108131

108132

108133

108134

108135

108136

108137

108138

108139

108140

108141

108142

108143

108144

108145

108146

108147

108148

108149

108150

108151

108152

108153

108154

108155

108156

108157

108158

108159

108160

108161

108162

108163

108164

108165

108166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mv

messages.

OUTPUT FILES
The output files may be of any file type.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All requested files (excluding files where a non-affirmative response was given to a request
for confirmation) were successfully moved.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If the copying or removal of source_file is prematurely terminated by a signal or error, mv may
leave a partial copy of source_file at the source or destination. The mv utility shall not modify
both source_file and the destination path simultaneously; termination at any point shall leave
either source_file or the destination path complete.

APPLICATION USAGE
Some implementations mark for update the last file status change timestamp of renamed files
and some do not. Applications which make use of the last file status change timestamp may
behave differently with respect to renamed files unless they are designed to allow for either
behavior.

The specification ensures that mv a a will not alter the contents of file a, and allows the
implementation to issue an error that a file cannot be moved onto itself. Likewise, when a and b
are hard links to the same file, mv a b will not alter b, but if a diagnostic is not issued, then it is
unspecified whether a is left untouched (as it would be by the rename() function) or unlinked
(reducing the link count of b).

EXAMPLES
If the current directory contains only files a (of any type defined by the System Interfaces
volume of POSIX.1-2024), b (also of any type), and a directory c:

mv a b c
mv c d

results with the original files a and b residing in the directory d in the current directory.

RATIONALE
Early proposals diverged from the SVID and BSD historical practice in that they required that
when the destination path exists, the −f option is not specified, and input is not a terminal, mv
fails. This was done for compatibility with cp. The current text returns to historical practice. It
should be noted that this is consistent with the rename() function defined in the System
Interfaces volume of POSIX.1-2024, which does not require write permission on the target.

For absolute clarity, paragraph (1), describing the behavior of mv when prompting for
confirmation, should be interpreted in the following manner:

if (exists AND (NOT f_option) AND
((not_writable AND input_is_terminal) OR i_option))

The −i option exists on BSD systems, giving applications and users a way to avoid accidentally
unlinking files when moving others. When the standard input is not a terminal, the 4.3 BSD mv
deletes all existing destination paths without prompting, even when −i is specified; this is

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3201

108167

108168

108169

108170

108171

108172

108173

108174

108175

108176

108177

108178

108179

108180

108181

108182

108183

108184

108185

108186

108187

108188

108189

108190

108191

108192

108193

108194

108195

108196

108197

108198

108199

108200

108201

108202

108203

108204

108205

108206

108207

108208

108209

108210

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

mv Utilities

inconsistent with the behavior of the 4.3 BSD cp utility, which always generates an error when
the file is unwritable and the standard input is not a terminal. The standard developers decided
that use of −i is a request for interaction, so when the destination path exists, the utility takes
instructions from whatever responds to standard input.

The rename() function is able to move directories within the same file system. Some historical
versions of mv have been able to move directories, but not to a different file system. The
standard developers considered that this was an annoying inconsistency, so this volume of
POSIX.1-2024 requires directories to be able to be moved even across file systems. There is no −R
option to confirm that moving a directory is actually intended, since such an option was not
required for moving directories in historical practice. Requiring the application to specify it
sometimes, depending on the destination, seemed just as inconsistent. The semantics of the
rename() function were preserved as much as possible. For example, mv is not permitted to
``rename’’ files to or from directories, even though they might be empty and removable.

Historic implementations of mv did not exit with a non-zero exit status if they were unable to
duplicate any file characteristics when moving a file across file systems, nor did they write a
diagnostic message for the user. The former behavior has been preserved to prevent scripts from
breaking; a diagnostic message is now required, however, so that users are alerted that the file
characteristics have changed.

The exact format of the interactive prompts is unspecified. Only the general nature of the
contents of prompts are specified because implementations may desire more descriptive
prompts than those used on historical implementations. Therefore, an application not using the
−f option or using the −i option relies on the system to provide the most suitable dialog directly
with the user, based on the behavior specified.

When mv is dealing with a single file system and source_file is a symbolic link, the link itself is
moved as a consequence of the dependence on the rename() functionality, per the
DESCRIPTION. Across file systems, this has to be made explicit.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
cp , ln

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH rename()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The mv utility is changed to describe processing of symbolic links as specified in the
IEEE P1003.2b draft standard.

The APPLICATION USAGE section is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #016 is applied.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

Austin Group Interpretations 1003.1-2001 #164, #168, and #169 are applied.

3202 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108211

108212

108213

108214

108215

108216

108217

108218

108219

108220

108221

108222

108223

108224

108225

108226

108227

108228

108229

108230

108231

108232

108233

108234

108235

108236

108237

108238

108239

108240

108241

108242

108243

108244

108245

108246

108247

108248

108249

108250

108251

108252

108253

108254

108255

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities mv

SD5-XCU-ERN-13 is applied, making an editorial correction to the SYNOPSIS.

SD5-XCU-ERN-51 is applied to the DESCRIPTION, defining the behavior for when files are
being duplicated to another file system while having hard links.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0124 [48] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0147 [534] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1732 is applied, changing the EXIT STATUS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3203

108256

108257

108258

108259

108260

108261

108262

108263

108264

108265

108266

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

newgrp Utilities

NAME
newgrp — change to a new group

SYNOPSIS
newgrp [-l] [group]

DESCRIPTION
The newgrp utility shall create a new shell execution environment with a new real and effective
group identification. Of the attributes listed in Section 2.13 (on page 2522), the new shell
execution environment shall retain the working directory, file creation mask, and exported
variables from the previous environment (that is, open files, traps, unexported variables, alias
definitions, shell functions, and set options may be lost). All other aspects of the process
environment that are preserved by the exec family of functions defined in the System Interfaces
volume of POSIX.1-2024 shall also be preserved by newgrp; whether other aspects are preserved
is unspecified.

A failure to assign the new group identifications (for example, for security or password-related
reasons) shall not prevent the new shell execution environment from being created.

The newgrp utility shall affect the supplemental groups for the process as follows:

• On systems where the effective group ID is normally in the supplementary group list (or
whenever the old effective group ID actually is in the supplementary group list):

— If the new effective group ID is also in the supplementary group list, newgrp shall
change the effective group ID.

— If the new effective group ID is not in the supplementary group list, newgrp shall add
the new effective group ID to the list, if there is room to add it.

• On systems where the effective group ID is not normally in the supplementary group list
(or whenever the old effective group ID is not in the supplementary group list):

— If the new effective group ID is in the supplementary group list, newgrp shall delete
it.

— If the old effective group ID is not in the supplementary list, newgrp shall add it if
there is room.

Note: The System Interfaces volume of POSIX.1-2024 does not specify whether the effective group ID
of a process is included in its supplementary group list.

With no operands, newgrp shall change the effective group back to the groups identified in the
user ’s user entry, and shall set the list of supplementary groups to that set in the user’s group
database entries.

If the first argument is '−', the results are unspecified.

If a password is required for the specified group, and the user is not listed as a member of that
group in the group database, the user shall be prompted to enter the correct password for that
group. If the user is listed as a member of that group, no password shall be requested. If no
password is required for the specified group, it is implementation-defined whether users not
listed as members of that group can change to that group. Whether or not a password is
required, implementation-defined system accounting or security mechanisms may impose
additional authorization restrictions that may cause newgrp to write a diagnostic message and
suppress the changing of the group identification.

3204 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108267

108268

108269

108270

108271

108272

108273

108274

108275

108276

108277

108278

108279

108280

108281

108282

108283

108284

108285

108286

108287

108288

108289

108290

108291

108292

108293

108294

108295

108296

108297

108298

108299

108300

108301

108302

108303

108304

108305

108306

108307

108308

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities newgrp

OPTIONS
The newgrp utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified
usage of '−'.

The following option shall be supported:

−l (The letter ell.) Change the environment to what would be expected if the user
actually logged in again.

OPERANDS
The following operand shall be supported:

group A group name from the group database or a non-negative numeric group ID.
Specifies the group ID to which the real and effective group IDs shall be set. If
group is a non-negative numeric string and exists in the group database as a group
name (see getgrnam()), the numeric group ID associated with that group name
shall be used as the group ID.

STDIN
Not used.

INPUT FILES
The file /dev/tty shall be used to read a single line of text for password checking, when one is
required.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of newgrp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic messages and a prompt string for a password, if
one is required. Diagnostic messages may be written in cases where the exit status is not
available. See the EXIT STATUS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3205

108309

108310

108311

108312

108313

108314

108315

108316

108317

108318

108319

108320

108321

108322

108323

108324

108325

108326

108327

108328

108329

108330

108331

108332

108333

108334

108335

108336

108337

108338

108339

108340

108341

108342

108343

108344

108345

108346

108347

108348

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

newgrp Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If newgrp succeeds in creating a new shell execution environment, whether or not the group
identification was changed successfully, the exit status shall be the exit status of the shell.
Otherwise, the following exit value shall be returned:

>0 An error occurred.

CONSEQUENCES OF ERRORS
The invoking shell may terminate.

APPLICATION USAGE
There is no convenient way to enter a password into the group database. Use of group
passwords is not encouraged, because by their very nature they encourage poor security
practices. Group passwords may disappear in the future.

A common implementation of newgrp is that the current shell uses exec to overlay itself with
newgrp, which in turn overlays itself with a new shell after changing group. On some
implementations, however, this may not occur and newgrp may be invoked as a subprocess.

The newgrp command is intended only for use from an interactive terminal. It does not offer a
useful interface for the support of applications.

The exit status of newgrp is generally inapplicable. If newgrp is used in a script, in most cases it
successfully invokes a new shell and the rest of the original shell script is bypassed when the
new shell exits. Used interactively, newgrp displays diagnostic messages to indicate problems.
But usage such as:

newgrp foo
echo $?

is not useful because the new shell might not have access to any status newgrp may have
generated (and most historical systems do not provide this status). A zero status echoed here
does not necessarily indicate that the user has changed to the new group successfully. Following
newgrp with the id command provides a portable means of determining whether the group
change was successful or not.

EXAMPLES
None.

RATIONALE
Most historical implementations use one of the exec functions to implement the behavior of
newgrp. Errors detected before the exec leave the environment unchanged, while errors detected
after the exec leave the user in a changed environment. While it would be useful to have newgrp
issue a diagnostic message to tell the user that the environment changed, it would be
inappropriate to require this change to some historical implementations.

The password mechanism is allowed in the group database, but how this would be
implemented is not specified.

The newgrp utility was retained in this volume of POSIX.1-2024, even given the existence of the
multiple group permissions feature in the System Interfaces volume of POSIX.1-2024, for several
reasons. First, in some implementations, the group ownership of a newly created file is
determined by the group of the directory in which the file is created, as allowed by the System

3206 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108349

108350

108351

108352

108353

108354

108355

108356

108357

108358

108359

108360

108361

108362

108363

108364

108365

108366

108367

108368

108369

108370

108371

108372

108373

108374

108375

108376

108377

108378

108379

108380

108381

108382

108383

108384

108385

108386

108387

108388

108389

108390

108391

108392

108393

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities newgrp

Interfaces volume of POSIX.1-2024; on other implementations, the group ownership of a newly
created file is determined by the effective group ID. On implementations of the latter type,
newgrp allows files to be created with a specific group ownership. Finally, many
implementations use the real group ID in accounting, and on such systems, newgrp allows the
accounting identity of the user to be changed.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), sh

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH exec , getgrnam()

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed.

The text describing supplemental groups is no longer conditional on {NGROUPS_MAX} being
greater than 1. This is because {NGROUPS_MAX} now has a minimum value of 8. This is a FIPS
requirement.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if the first
argument is '−'.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The newgrp utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3207

108394

108395

108396

108397

108398

108399

108400

108401

108402

108403

108404

108405

108406

108407

108408

108409

108410

108411

108412

108413

108414

108415

108416

108417

108418

108419

108420

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ngettext Utilities

NAME
ngettext — retrieve text string from messages object

SYNOPSIS
ngettext [-e|-E] [-d textdomain] [textdomain] msgid msgid_plural n

DESCRIPTION
Refer to gettext .

3208 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108421

108422

108423

108424

108425

108426

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nice

NAME
nice — invoke a utility with an altered nice value

SYNOPSIS
nice [-n increment] utility [argument...]

DESCRIPTION
The nice utility shall invoke a utility, requesting that it be run with a different nice value (see
XBD Section 3.225, on page 64). With no options, the executed utility shall be run with a nice
value that is some implementation-defined quantity greater than or equal to the nice value of the
current process. If the user lacks appropriate privileges to affect the nice value in the requested
manner, the nice utility shall not affect the nice value; in this case, a warning message may be
written to standard error, but this shall not prevent the invocation of utility or affect the exit
status.

OPTIONS
The nice utility shall conform to XBD Section 12.2 (on page 215).

The following option is supported:

−n increment A positive or negative decimal integer which shall have the same effect on the
execution of the utility as if the utility had called the nice() function with the
numeric value of the increment option-argument.

OPERANDS
The following operands shall be supported:

utility The name of a utility that is to be invoked. If the utility operand names any of the
special built-in utilities in Section 2.15 (on page 2526), the results are undefined.

argument Any string to be supplied as an argument when invoking the utility named by the
utility operand.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of nice:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3209

108427

108428

108429

108430

108431

108432

108433

108434

108435

108436

108437

108438

108439

108440

108441

108442

108443

108444

108445

108446

108447

108448

108449

108450

108451

108452

108453

108454

108455

108456

108457

108458

108459

108460

108461

108462

108463

108464

108465

108466

108467

108468

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nice Utilities

PA TH Determine the search path used to locate the utility to be invoked. See XBD
Chapter 8 (on page 167).

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If utility is invoked, the exit status of nice shall be the exit status of utility; otherwise, the nice
utility shall exit with one of the following values:

1-125 An error occurred in the nice utility.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The only guaranteed portable uses of this utility are:

nice utility
Run utility with the default higher or equal nice value.

nice −n <positive integer> utility
Run utility with a higher nice value.

On some implementations they have no discernible effect on the invoked utility and on some
others they are exactly equivalent.

Historical systems have frequently supported the <positive integer> up to 20. Since there is no
error penalty associated with guessing a number that is too high, users without access to the
system conformance document (to see what limits are actually in place) could use the historical 1
to 20 range or attempt to use very large numbers if the job should be truly low priority.

The nice value of a process can be displayed using the command:

ps -o nice

The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit
code 127 if a utility to be invoked cannot be found, so that applications can distinguish ``failure
to find a utility’’ from ``invoked utility exited with an error indication’’. The value 127 was
chosen because it is not commonly used for other meanings; most utilities use small values for
``normal error conditions’’ and the values above 128 can be confused with termination due to
receipt of a signal. The value 126 was chosen in a similar manner to indicate that the utility could
be found, but not invoked. Some scripts produce meaningful error messages differentiating the
126 and 127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice
that uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any

3210 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108469

108470

108471

108472

108473

108474

108475

108476

108477

108478

108479

108480

108481

108482

108483

108484

108485

108486

108487

108488

108489

108490

108491

108492

108493

108494

108495

108496

108497

108498

108499

108500

108501

108502

108503

108504

108505

108506

108507

108508

108509

108510

108511

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nice

attempt to exec the utility fails for any other reason.

EXAMPLES
None.

RATIONALE
The 4.3 BSD version of nice does not check whether increment is a valid decimal integer. The
command nice −x utility, for example, would be treated the same as the command nice − −1
utility. If the user does not have appropriate privileges, this results in a ``permission denied’’
error. This is considered a bug.

When a user without appropriate privileges gives a negative increment, System V treats it like
the command nice −0 utility, while 4.3 BSD writes a ``permission denied’’ message and does not
run the utility. The standard specifies the System V behavior together with an optional BSD-style
``permission denied’’ message.

The C shell has a built-in version of nice that has a different interface from the one described in
this volume of POSIX.1-2024.

The term ``utility’’ is used, rather than ``command’’, to highlight the fact that shell compound
commands, pipelines, and so on, cannot be used. Special built-ins also cannot be used.
However, ``utility’’ includes user application programs and shell scripts, not just utilities defined
in this volume of POSIX.1-2024.

Historical implementations of nice provide a nice value range of 40 or 41 discrete steps, with the
default nice value being the midpoint of that range. By default, they raise the nice value of the
executed utility by 10.

Some historical documentation states that the increment value must be within a fixed range. This
is misleading; the valid increment values on any invocation are determined by the current
process nice value, which is not always the default.

The definition of nice value is not intended to suggest that all processes in a system have
priorities that are comparable. Scheduling policy extensions such as the realtime priorities in the
System Interfaces volume of POSIX.1-2024 make the notion of a single underlying priority for all
scheduling policies problematic. Some implementations may implement the nice-related features
to affect all processes on the system, others to affect just the general time-sharing activities
implied by this volume of POSIX.1-2024, and others may have no effect at all. Because of the use
of ``implementation-defined’’ in nice and renice, a wide range of implementation strategies are
possible.

Earlier versions of this standard allowed a −increment option. This form is no longer specified by
POSIX.1-2024 but may be present in some implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), renice

XBD Section 3.225 (on page 64), Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH nice()

CHANGE HISTORY
First released in Issue 4.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3211

108512

108513

108514

108515

108516

108517

108518

108519

108520

108521

108522

108523

108524

108525

108526

108527

108528

108529

108530

108531

108532

108533

108534

108535

108536

108537

108538

108539

108540

108541

108542

108543

108544

108545

108546

108547

108548

108549

108550

108551

108552

108553

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nice Utilities

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/18 is applied, deleting a paragraph of
RATIONALE that referred to text no longer in the standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied.

SD5-XCU-ERN-32 and SD5-XCU-ERN-33 are applied, updating the DESCRIPTION,
APPLICATION USAGE, and RATIONALE sections.

The nice utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1586 is applied, adding the timeout utility.

Austin Group Defect 1594 is applied, changing the APPLICATION USAGE section.

3212 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108554

108555

108556

108557

108558

108559

108560

108561

108562

108563

108564

108565

108566

108567

108568

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nl

NAME
nl — line numbering filter

SYNOPSIS
XSI nl [-p] [-b type] [-d delim] [-f type] [-h type] [-i incr] [-l num]

[-n format] [-s sep] [-v startnum] [-w width] [file]

DESCRIPTION
The nl utility shall read lines from the named file or the standard input if no file is named and
shall reproduce the lines to standard output. Lines shall be numbered on the left. Additional
functionality may be provided in accordance with the command options in effect.

The nl utility views the text it reads in terms of logical pages. Line numbering shall be reset at
the start of each logical page. A logical page consists of a header, a body, and a footer section.
Empty sections are valid. Different line numbering options are independently available for
header, body, and footer (for example, no numbering of header and footer lines while
numbering blank lines only in the body).

The starts of logical page sections shall be signaled by input lines containing nothing but the
following delimiter characters:

Line Start of
\:\:\: Header
\:\: Body
\: Footer

Unless otherwise specified, nl shall assume the text being read is in a single logical page body.

OPTIONS
The nl utility shall conform to XBD Section 12.2 (on page 215). Only one file can be named.

The following options shall be supported:

−b type Specify which logical page body lines shall be numbered. Recognized types and
their meaning are:

a Number all lines.

t Number only non-empty lines.

n No line numbering.

pstring Number only lines that contain the basic regular expression specified in
string.

The default type for logical page body shall be t (text lines numbered).

−d delim Specify the delimiter characters that indicate the start of a logical page section.
These can be changed from the default characters "\:" to two user-specified
characters. If only one character is entered, the second character shall remain the
default character ':'.

−f type Specify the same as b type except for footer. The default for logical page footer shall
be n (no lines numbered).

−h type Specify the same as b type except for header. The default type for logical page
header shall be n (no lines numbered).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3213

108569

108570

108571

108572

108573

108574

108575

108576

108577

108578

108579

108580

108581

108582

108583

108584

108585

108586

108587

108588

108589

108590

108591

108592

108593

108594

108595

108596

108597

108598

108599

108600

108601

108602

108603

108604

108605

108606

108607

108608

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nl Utilities

−i incr Specify the increment value used to number logical page lines. The default shall be
1.

−l num Specify the number of blank lines to be considered as one. For example, −l 2 results
in only the second adjacent blank line being numbered (if the appropriate −h a,
−b a, or −f a option is set). The default shall be 1.

−n format Specify the line numbering format. Recognized values are: ln, left justified, leading
zeros suppressed; rn, right justified, leading zeros suppressed; rz, right justified,
leading zeros kept. The default format shall be rn (right justified).

−p Specify that numbering should not be restarted at logical page delimiters.

−s sep Specify the characters used in separating the line number and the corresponding
text line. The default sep shall be a <tab>.

−v startnum Specify the initial value used to number logical page lines. The default shall be 1.

−w width Specify the number of characters to be used for the line number. The default width
shall be 6.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to be line-numbered.

STDIN
The standard input shall be used if no file operand is specified, and shall be used if the file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input file shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of nl:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes within regular
expressions, and for deciding which characters are in character class graph (for the
−b t, −f t, and −h t options).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3214 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108609

108610

108611

108612

108613

108614

108615

108616

108617

108618

108619

108620

108621

108622

108623

108624

108625

108626

108627

108628

108629

108630

108631

108632

108633

108634

108635

108636

108637

108638

108639

108640

108641

108642

108643

108644

108645

108646

108647

108648

108649

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nl

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be a text file in the following format:

"%s%s%s", <line number>, <separator>, <input line>

where <line number> is one of the following numeric formats:

%6d When the rn format is used (the default; see −n).

%06d When the rz format is used.

%−6d When the ln format is used.

<empty> When line numbers are suppressed for a portion of the page; the <separator> is also
suppressed.

In the preceding list, the number 6 is the default width; the −w option can change this value.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
In using the −d delim option, care should be taken to escape characters that have special meaning
to the command interpreter.

EXAMPLES
The command:

nl -v 10 -i 10 -d \!+ file1

numbers file1 starting at line number 10 with an increment of 10. The logical page delimiter is
"!+". Note that the '!' has to be escaped when using csh as a command interpreter because of
its history substitution syntax. For ksh and sh the escape is not necessary, but does not do any
harm.

RATIONALE
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3215

108650

108651

108652

108653

108654

108655

108656

108657

108658

108659

108660

108661

108662

108663

108664

108665

108666

108667

108668

108669

108670

108671

108672

108673

108674

108675

108676

108677

108678

108679

108680

108681

108682

108683

108684

108685

108686

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nl Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
pr

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The option [−f type] is added to the SYNOPSIS. The option descriptions are presented in
alphabetic order. The description of −bt is changed to ``Number only non-empty lines’’.

Issue 6
The obsolescent behavior allowing the options to be intermingled with the optional file operand
is removed.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3216 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108687

108688

108689

108690

108691

108692

108693

108694

108695

108696

108697

108698

108699

108700

108701

108702

108703

108704

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nm

NAME
nm — write the name list of an object file (DEVELOPMENT)

SYNOPSIS
SD nm [-APv] [-g|-u] [-t format] file...

XSI nm [-APv] [-efox] [-g|-u] [-t format] file...

DESCRIPTION
The nm utility shall display symbolic information appearing in the object file, executable file, or
object-file library named by file. If no symbolic information is available for a valid input file, the
nm utility shall report that fact, but not consider it an error condition.

XSI The default base used when numeric values are written is unspecified. On XSI-conformant
systems, it shall be decimal if the −P option is not specified.

OPTIONS
The nm utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−A Write the full pathname or library name of an object on each line.

XSI −e Write only external (global) and static symbol information.

XSI −f Produce full output. Write redundant symbols (.text, .data, and .bss), normally
suppressed.

−g Write only external (global) symbol information.

XSI −o Write numeric values in octal (equivalent to −t o).

−P Write information in a portable output format, as specified in the STDOUT section.

−t format Write each numeric value in the specified format. The format shall be dependent
on the single character used as the format option-argument:

XSI d decimal (default if −P is not specified).

o octal.

x hexadecimal (default if −P is specified).

−u Write only undefined symbols.

−v Sort output by value instead of by symbol name.

XSI −x Write numeric values in hexadecimal (equivalent to −t x).

OPERANDS
The following operand shall be supported:

file A pathname of an object file, executable file, or object-file library.

STDIN
See the INPUT FILES section.

INPUT FILES
The input file shall be an object file, an object-file library whose format is the same as those
produced by the ar utility for link editing, or an executable file. The nm utility may accept
additional implementation-defined object library formats for the input file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3217

108705

108706

108707

108708

108709

108710

108711

108712

108713

108714

108715

108716

108717

108718

108719

108720

108721

108722

108723

108724

108725

108726

108727

108728

108729

108730

108731

108732

108733

108734

108735

108736

108737

108738

108739

108740

108741

108742

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nm Utilities

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of nm:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for character collation information for the symbol-name and
symbol-value collation sequences.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If symbolic information is present in the input files, then for each file or for each member of an
archive, the nm utility shall write the following information to standard output. By default, the
format is unspecified, but the output shall be sorted by symbol name according to the collation
sequence in the current locale.

• Library or object name, if −A is specified

• Symbol name

• Symbol type, which shall either be one of the following single characters or an
implementation-defined type represented by a single character:

A Global absolute symbol.

a Local absolute symbol.

B Global ``bss’’ (that is, uninitialized data space) symbol.

b Local bss symbol.

D Global data symbol.

d Local data symbol.

T Global text symbol.

t Local text symbol.

U Undefined symbol.

• Value of the symbol

• The size associated with the symbol, if applicable

This information may be supplemented by additional information specific to the

3218 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108743

108744

108745

108746

108747

108748

108749

108750

108751

108752

108753

108754

108755

108756

108757

108758

108759

108760

108761

108762

108763

108764

108765

108766

108767

108768

108769

108770

108771

108772

108773

108774

108775

108776

108777

108778

108779

108780

108781

108782

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nm

implementation.

If the −P option is specified, the previous information shall be displayed using the following
portable format. The three versions differ depending on whether −t d, −t o, or −t x was specified,
respectively:

"%s%s %s %d %d\n", <library/object name>, <name>, <type>,
<value>, <size>

"%s%s %s %o %o\n", <library/object name>, <name>, <type>,
<value>, <size>

"%s%s %s %x %x\n", <library/object name>, <name>, <type>,
<value>, <size>

where <library/object name> shall be formatted as follows:

• If −A is not specified, <library/object name> shall be an empty string.

• If −A is specified and the corresponding file operand does not name a library:

"%s: ", <file>

• If −A is specified and the corresponding file operand names a library. In this case,
<object file> shall name the object file in the library containing the symbol being described:

"%s[%s]: ", <file>, <object file>

If −A is not specified, then if more than one file operand is specified or if only one file operand is
specified and it names a library, nm shall write a line identifying the object containing the
following symbols before the lines containing those symbols, in the form:

• If the corresponding file operand does not name a library:

"%s:\n", <file>

• If the corresponding file operand names a library; in this case, <object file> shall be the
name of the file in the library containing the following symbols:

"%s[%s]:\n", <file>, <object file>

If −P is specified, but −t is not, the format shall be as if −t x had been specified.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3219

108783

108784

108785

108786

108787

108788

108789

108790

108791

108792

108793

108794

108795

108796

108797

108798

108799

108800

108801

108802

108803

108804

108805

108806

108807

108808

108809

108810

108811

108812

108813

108814

108815

108816

108817

108818

108819

108820

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nm Utilities

APPLICATION USAGE
Mechanisms for dynamic linking make this utility less meaningful when applied to an
executable file because a dynamically linked executable may omit numerous library routines
that would be found in a statically linked executable.

EXAMPLES
None.

RATIONALE
Historical implementations of nm have used different bases for numeric output and supplied
different default types of symbols that were reported. The −t format option, similar to that used
in od and strings, can be used to specify the numeric base; −g and −u can be used to restrict the
amount of output or the types of symbols included in the output.

The compromise of using −t format versus using −d, −o, and other similar options was necessary
because of differences in the meaning of −o between implementations. The −o option from BSD
has been provided here as −A to avoid confusion with the −o from System V (which has been
provided here as −t and as −o on XSI-conformant systems).

The option list was significantly reduced from that provided by historical implementations.

The nm description is a subset of both the System V and BSD nm utilities with no specified
default output.

It was recognized that mechanisms for dynamic linking make this utility less meaningful when
applied to an executable file (because a dynamically linked executable file may omit numerous
library routines that would be found in a statically linked executable file), but the value of nm
during software development was judged to outweigh other limitations.

The default output format of nm is not specified because of differences in historical
implementations. The −P option was added to allow some type of portable output format. After
a comparison of the different formats used in SunOS, BSD, SVR3, and SVR4, it was decided to
create one that did not match the current format of any of these four systems. The format
devised is easy to parse by humans, easy to parse in shell scripts, and does not need to vary
depending on locale (because no English descriptions are included). All of the systems currently
have the information available to use this format.

The format given in nm STDOUT uses <space> characters between the fields, which may be any
number of <blank> characters required to align the columns. The single-character types were
selected to match historical practice, and the requirement that implementation additions also be
single characters made parsing the information easier for shell scripts.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
ar , c17

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

3220 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108821

108822

108823

108824

108825

108826

108827

108828

108829

108830

108831

108832

108833

108834

108835

108836

108837

108838

108839

108840

108841

108842

108843

108844

108845

108846

108847

108848

108849

108850

108851

108852

108853

108854

108855

108856

108857

108858

108859

108860

108861

108862

108863

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nm

Issue 6
This utility is marked as supported when both the User Portability Utilities option and the
Software Development Utilities option are supported.

Issue 7
The nm utility is removed from the User Portability Utilities option. User Portability Utilities is
now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0125 [263] and XCU/TC1-2008/0126
[263] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0148 [744] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1062 is applied, inserting an empty line between the two SYNOPSIS forms.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3221

108864

108865

108866

108867

108868

108869

108870

108871

108872

108873

108874

108875

108876

108877

108878

108879

108880

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nohup Utilities

NAME
nohup — invoke a utility immune to hangups

SYNOPSIS
nohup utility [argument...]

DESCRIPTION
The nohup utility shall invoke the utility named by the utility operand with arguments supplied
as the argument operands. At the time the named utility is invoked, the SIGHUP signal shall be
set to be ignored.

If standard input is associated with a terminal, the nohup utility may redirect standard input
from an unspecified file.

If the standard output is a terminal, all output written by the named utility to its standard output
shall be appended to the end of the file nohup.out in the current directory. If nohup.out cannot
be created or opened for appending, the output shall be appended to the end of the file
nohup.out in the directory specified by the HOME environment variable. If neither file can be
created or opened for appending, utility shall not be invoked. If a file is created, the file’s
permission bits shall be set to S_IRUSR | S_IWUSR.

If standard error is a terminal and standard output is open but is not a terminal, all output
written by the named utility to its standard error shall be redirected to the same open file
description as the standard output. If standard error is a terminal and standard output either is a
terminal or is closed, the same output shall instead be appended to the end of the nohup.out file
as described above.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

utility The name of a utility that is to be invoked. If the utility operand names any of the
special built-in utilities in Section 2.15 (on page 2526), the results are undefined.

argument Any string to be supplied as an argument when invoking the utility named by the
utility operand.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of nohup:

HOME Determine the pathname of the user’s home directory: if the output file nohup.out
cannot be created in the current directory, the nohup utility shall use the directory
named by HOME to create the file.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

3222 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108881

108882

108883

108884

108885

108886

108887

108888

108889

108890

108891

108892

108893

108894

108895

108896

108897

108898

108899

108900

108901

108902

108903

108904

108905

108906

108907

108908

108909

108910

108911

108912

108913

108914

108915

108916

108917

108918

108919

108920

108921

108922

108923

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nohup

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the search path that is used to locate the utility to be invoked. See XBD
Chapter 8 (on page 167).

ASYNCHRONOUS EVENTS
The nohup utility shall take the standard action for all signals except that SIGHUP shall be
ignored.

STDOUT
If the standard output is not a terminal, the standard output of nohup shall be the standard
output generated by the execution of the utility specified by the operands. Otherwise, nothing
shall be written to the standard output.

STDERR
If the standard output is a terminal, a message shall be written to the standard error, indicating
the name of the file to which the output is being appended. The name of the file shall be either
nohup.out or $HOME/nohup.out.

OUTPUT FILES
Output written by the named utility is appended to the file nohup.out (or $HOME/nohup.out),
if the conditions hold as described in the DESCRIPTION.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

126 The utility specified by utility was found but could not be invoked.

127 An error occurred in the nohup utility or the utility specified by utility could not be
found.

Otherwise, the exit status of nohup shall be that of the utility specified by the utility operand.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit
code 127 if a utility to be invoked cannot be found, so that applications can distinguish ``failure
to find a utility’’ from ``invoked utility exited with an error indication’’. However, the command
and nohup utilities also use exit code 127 when an error occurs in those utilities, which means
exit code 127 is not universally a ``not found’’ indicator. The value 127 was chosen because it is
not commonly used for other meanings; most utilities use small values for ``normal error
conditions’’ and the values above 128 can be confused with termination due to receipt of a
signal. The value 126 was chosen in a similar manner to indicate that the utility could be found,
but not invoked. Some scripts produce meaningful error messages differentiating the 126 and
127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice that
uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3223

108924

108925

108926

108927

108928

108929

108930

108931

108932

108933

108934

108935

108936

108937

108938

108939

108940

108941

108942

108943

108944

108945

108946

108947

108948

108949

108950

108951

108952

108953

108954

108955

108956

108957

108958

108959

108960

108961

108962

108963

108964

108965

108966

108967

108968

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

nohup Utilities

attempt to exec the utility fails for any other reason.

EXAMPLES
It is frequently desirable to apply nohup to pipelines or lists of commands. This can be done by
placing pipelines and command lists in a single file; this file can then be invoked as a utility, and
the nohup applies to everything in the file.

Alternatively, the following command can be used to apply nohup to a complex command:

nohup sh -c -- 'complex-command-line' </dev/null

RATIONALE
The 4.3 BSD version ignores SIGTERM and SIGHUP, and if ./nohup.out cannot be used, it fails
instead of trying to use $HOME/nohup.out.

The csh utility has a built-in version of nohup that acts differently from the nohup defined in this
volume of POSIX.1-2024.

The term utility is used, rather than command, to highlight the fact that shell compound
commands, pipelines, special built-ins, and so on, cannot be used directly. However, utility
includes user application programs and shell scripts, not just the standard utilities.

Historical versions of the nohup utility use default file creation semantics. Some more recent
versions use the permissions specified here as an added security precaution.

Some historical implementations ignore SIGQUIT in addition to SIGHUP; others ignore
SIGTERM. An early proposal allowed, but did not require, SIGQUIT to be ignored. Several
reviewers objected that nohup should only modify the handling of SIGHUP as required by this
volume of POSIX.1-2024.

Historical versions of nohup did not affect standard input, but that causes problems in the
common scenario where the user logs into a system, types the command:

nohup make &

at the prompt, and then logs out. If standard input is not affected by nohup, the login session
may not terminate for quite some time, since standard input remains open until make exits. To
avoid this problem, POSIX.1-2024 allows implementations to redirect standard input if it is a
terminal. Since the behavior is implementation-defined, portable applications that may run into
the problem should redirect standard input themselves. For example, instead of:

nohup make &

an application can invoke:

nohup make </dev/null &

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), sh

XBD Chapter 8 (on page 167)

XSH signal()

CHANGE HISTORY
First released in Issue 2.

3224 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

108969

108970

108971

108972

108973

108974

108975

108976

108977

108978

108979

108980

108981

108982

108983

108984

108985

108986

108987

108988

108989

108990

108991

108992

108993

108994

108995

108996

108997

108998

108999

109000

109001

109002

109003

109004

109005

109006

109007

109008

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities nohup

Issue 7
Austin Group Interpretations 1003.1-2001 #104, #105, and #106 are applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1530 is applied, changing ``sh -c’’ to ``sh -c --’’.

Austin Group Defect 1586 is applied, adding the timeout utility.

Austin Group Defect 1594 is applied, changing the APPLICATION USAGE section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3225

109009

109010

109011

109012

109013

109014

109015

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

od Utilities

NAME
od — dump files in various formats

SYNOPSIS
od [-v] [-A address_base] [-j skip] [-N count] [-t type_string]...

[file...]

XSI od [-bcdosx] [file] [[+]offset[.][b]]

DESCRIPTION
The od utility shall write the contents of its input files to standard output in a user-specified
format.

OPTIONS
The od utility shall conform to XBD Section 12.2 (on page 215), except that the order of

XSI presentation of the −t options and the −bcdosx options is significant.

The following options shall be supported:

−A address_base
Specify the input offset base. See the EXTENDED DESCRIPTION section. The
application shall ensure that the address_base option-argument is a character. The
characters 'd', 'o', and 'x' specify that the offset base shall be written in
decimal, octal, or hexadecimal, respectively. The character 'n' specifies that the
offset shall not be written.

XSI −b Interpret bytes in octal. This shall be equivalent to −t o1.

XSI −c Interpret bytes as characters specified by the current setting of the LC_CTYPE
category. Certain non-graphic characters appear as C escapes: "NUL=\0",
"BS=\b", "FF=\f", "NL=\n", "CR=\r", "HT=\t"; others appear as 3-digit octal
numbers.

XSI −d Interpret words (two-byte units) in unsigned decimal. This shall be equivalent to
−t u2.

−j skip Jump over skip bytes from the beginning of the input. The od utility shall read or
seek past the first skip bytes in the concatenated input files. If the combined input is
not at least skip bytes long, the od utility shall write a diagnostic message to
standard error and exit with a non-zero exit status.

By default, the skip option-argument shall be interpreted as a decimal number.
With a leading 0x or 0X, the offset shall be interpreted as a hexadecimal number;
otherwise, with a leading '0', the offset shall be interpreted as an octal number.
Appending the character 'b', 'k', or 'm' to offset shall cause it to be interpreted
as a multiple of 512, 1 024, or 1 048 576 bytes, respectively. If the skip number is
hexadecimal, any appended 'b' shall be considered to be the final hexadecimal
digit.

−N count Format no more than count bytes of input. By default, count shall be interpreted as
a decimal number. With a leading 0x or 0X, count shall be interpreted as a
hexadecimal number; otherwise, with a leading '0', it shall be interpreted as an
octal number. If count bytes of input (after successfully skipping, if −j skip is
specified) are not available, it shall not be considered an error; the od utility shall
format the input that is available.

3226 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109016

109017

109018

109019

109020

109021

109022

109023

109024

109025

109026

109027

109028

109029

109030

109031

109032

109033

109034

109035

109036

109037

109038

109039

109040

109041

109042

109043

109044

109045

109046

109047

109048

109049

109050

109051

109052

109053

109054

109055

109056

109057

109058

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities od

XSI −o Interpret words (two-byte units) in octal. This shall be equivalent to −t o2.

XSI −s Interpret words (two-byte units) in signed decimal. This shall be equivalent to
−t d2.

−t type_string
Specify one or more output types. See the EXTENDED DESCRIPTION section. The
application shall ensure that the type_string option-argument is a string specifying
the types to be used when writing the input data. The string shall consist of the
type specification characters a, c, d, f, o, u, and x, specifying named character,
character, signed decimal, floating point, octal, unsigned decimal, and
hexadecimal, respectively. The type specification characters d, f, o, u, and x can be
followed by an optional unsigned decimal integer that specifies the number of
bytes to be transformed by each instance of the output type. The type specification
character f can be followed by an optional F, D, or L indicating that the conversion
should be applied to an item of type float, double, or long double, respectively.
The type specification characters d, o, u, and x can be followed by an optional C, S,
I, or L indicating that the conversion should be applied to an item of type char,
short, int, or long, respectively. Multiple types can be concatenated within the
same type_string and multiple −t options can be specified. Output lines shall be
written for each type specified in the order in which the type specification
characters are specified.

−v Write all input data. Without the −v option, any number of groups of output lines,
which would be identical to the immediately preceding group of output lines
(except for the byte offsets), shall be replaced with a line containing only an
<asterisk> ('*').

XSI −x Interpret words (two-byte units) in hexadecimal. This shall be equivalent to −t x2.

XSI Multiple types can be specified by using multiple −bcdostx options. Output lines are written for
each type specified in the order in which the types are specified.

OPERANDS
The following operands shall be supported:

file A pathname of a file to be read. If no file operands are specified, the standard input
shall be used.

If there are no more than two operands, none of the −A, −j, −N, −t, or −v options is
specified, and either of the following is true: the first character of the last operand
is a <plus-sign> ('+'), or there are two operands and the first character of the last

XSI operand is numeric; the last operand shall be interpreted as an offset operand on
XSI-conformant systems. Under these conditions, the results are unspecified on
systems that are not XSI-conformant systems.

XSI [+]offset[.][b] The offset operand specifies the offset in the file where dumping is to commence.
This operand is normally interpreted as octal bytes. If '.' is appended, the offset
shall be interpreted in decimal. If 'b' is appended, the offset shall be interpreted
in units of 512 bytes.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3227

109059

109060

109061

109062

109063

109064

109065

109066

109067

109068

109069

109070

109071

109072

109073

109074

109075

109076

109077

109078

109079

109080

109081

109082

109083

109084

109085

109086

109087

109088

109089

109090

109091

109092

109093

109094

109095

109096

109097

109098

109099

109100

109101

109102

109103

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

od Utilities

INPUT FILES
The input files can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of od:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the locale for selecting the radix character used when writing floating-
point formatted output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the EXTENDED DESCRIPTION section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The od utility shall copy sequentially each input file to standard output, transforming the input

XSI data according to the output types specified by the −t option or the −bcdosx options. If no
output type is specified, the default output shall be as if −t oS had been specified.

The number of bytes transformed by the output type specifier c may be variable depending on
the LC_CTYPE category.

The default number of bytes transformed by output type specifiers d, f, o, u, and x corresponds
to the various C-language types as follows. If the c17 compiler is present on the system, these
specifiers shall correspond to the sizes used by default in that compiler. Otherwise, these sizes
may vary among systems that conform to POSIX.1-2024.

• For the type specifier characters d, o, u, and x, the default number of bytes shall
correspond to the size of the underlying implementation’s basic integer type. For these
specifier characters, the implementation shall support values of the optional number of
bytes to be converted corresponding to the number of bytes in the C-language types char,
short, int, and long. These numbers can also be specified by an application as the
characters 'C', 'S', 'I', and 'L', respectively. The implementation shall also support
the values 1, 2, 4, and 8, even if it provides no C-Language types of those sizes. The

3228 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109104

109105

109106

109107

109108

109109

109110

109111

109112

109113

109114

109115

109116

109117

109118

109119

109120

109121

109122

109123

109124

109125

109126

109127

109128

109129

109130

109131

109132

109133

109134

109135

109136

109137

109138

109139

109140

109141

109142

109143

109144

109145

109146

109147

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities od

implementation shall support the decimal value corresponding to the C-language type
long long. The byte order used when interpreting numeric values is implementation-
defined, but shall correspond to the order in which a constant of the corresponding type is
stored in memory on the system.

• For the type specifier character f, the default number of bytes shall correspond to the
number of bytes in the underlying implementation’s basic double precision floating-point
data type. The implementation shall support values of the optional number of bytes to be
converted corresponding to the number of bytes in the C-language types float, double,
and long double. These numbers can also be specified by an application as the characters
'F', 'D', and 'L', respectively.

The type specifier character a specifies that bytes shall be interpreted as named characters from
the International Reference Version (IRV) of the ISO/IEC 646: 1991 standard. Only the least
significant seven bits of each byte shall be used for this type specification. Bytes with the values
listed in the following table shall be written using the corresponding names for those characters.

Table 3-14 Named Characters in od

Value Name Value Name Value Name Value Name
\000 nul \001 soh \002 stx \003 etx
\004 eot \005 enq \006 ack \007 bel
\010 bs \011 ht \012 lf or nl* \013 vt
\014 ff \015 cr \016 so \017 si
\020 dle \021 dc1 \022 dc2 \023 dc3
\024 dc4 \025 nak \026 syn \027 etb
\030 can \031 em \032 sub \033 esc
\034 fs \035 gs \036 rs \037 us
\040 sp \177 del

Note: The "\012" value may be written either as lf or nl.

The type specifier character c specifies that bytes shall be interpreted as characters specified by
the current setting of the LC_CTYPE locale category. Characters listed in the table in XBD
Chapter 5 (on page 113) ('\\', '\a', '\b', '\f', '\n', '\r', '\t', '\v') shall be written as
the corresponding escape sequences, except that <backslash> shall be written as a single
<backslash> and a NUL shall be written as '\0'. Other non-printable characters shall be
written as one three-digit octal number for each byte in the character. Printable multi-byte
characters shall be written in the area corresponding to the first byte of the character; the two-
character sequence "**" shall be written in the area corresponding to each remaining byte in the
character, as an indication that the character is continued. When either the −j skip or −N count
option is specified along with the c type specifier, and this results in an attempt to start or finish
in the middle of a multi-byte character, the result is implementation-defined.

The input data shall be manipulated in blocks, where a block is defined as a multiple of the least
common multiple of the number of bytes transformed by the specified output types. If the least
common multiple is greater than 16, the results are unspecified. Each input block shall be
written as transformed by each output type, one per written line, in the order that the output
types were specified. If the input block size is larger than the number of bytes transformed by
the output type, the output type shall sequentially transform the parts of the input block, and
the output from each of the transformations shall be separated by one or more <blank>
characters.

If, as a result of the specification of the −N option or end-of-file being reached on the last input
file, input data only partially satisfies an output type, the input shall be extended sufficiently

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3229

109148

109149

109150

109151

109152

109153

109154

109155

109156

109157

109158

109159

109160

109161

109162

109163

109164

109165

109166

109167

109168

109169

109170

109171

109172

109173

109174

109175

109176

109177

109178

109179

109180

109181

109182

109183

109184

109185

109186

109187

109188

109189

109190

109191

109192

109193

109194

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

od Utilities

with null bytes to write the last byte of the input.

Unless −A n is specified, the first output line produced for each input block shall be preceded by
the input offset, cumulative across input files, of the next byte to be written. The format of the
input offset is unspecified; however, it shall not contain any <blank> characters, shall start at the
first character of the output line, and shall be followed by one or more <blank> characters. In
addition, the offset of the byte following the last byte written shall be written after all the input
data has been processed, but shall not be followed by any <blank> characters. If −A n is
specified, it is unspecified whether the line that would contain this final offset is written as an
empty line or is not written.

If no −A option is specified, the input offset base is unspecified.

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
XSI-conformant applications are warned not to use filenames starting with '+' or a first
operand starting with a numeric character so that the old functionality can be maintained by
implementations, unless they specify one of the −A, −j, or −N options. To guarantee that one of
these filenames is always interpreted as a filename, an application could always specify the
address base format with the −A option.

EXAMPLES
If a file containing 128 bytes with decimal values zero to 127, in increasing order, is supplied as
standard input to the command:

od -A d -t a

on an implementation using an input block size of 16 bytes, the standard output, independent of
the current locale setting, would be similar to:

0000000 nul soh stx etx eot enq ack bel bs ht nl vt ff cr so si
0000016 dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us
0000032 sp ! " # $ % & ' () * + , - . /
0000048 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
0000064 @ A B C D E F G H I J K L M N O
0000080 P Q R S T U V W X Y Z [\] ^ _
0000096 ` a b c d e f g h i j k l m n o
0000112 p q r s t u v w x y z { | } ~ del
0000128

Note that this volume of POSIX.1-2024 allows nl or lf to be used as the name for the
ISO/IEC 646: 1991 standard IRV character with decimal value 10. The IRV names this character
lf (line feed), but traditional implementations have referred to this character as newline (nl) and
the POSIX locale character set symbolic name for the corresponding character is a <newline>.

The command:

od -A o -t o2x2x -N 18

on a system with 32-bit words and an implementation using an input block size of 16 bytes

3230 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109195

109196

109197

109198

109199

109200

109201

109202

109203

109204

109205

109206

109207

109208

109209

109210

109211

109212

109213

109214

109215

109216

109217

109218

109219

109220

109221

109222

109223

109224

109225

109226

109227

109228

109229

109230

109231

109232

109233

109234

109235

109236

109237

109238

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities od

could write 18 bytes in approximately the following format:

0000000 032056 031440 041123 042040 052516 044530 020043 031464
342e 3320 4253 4420 554e 4958 2023 3334

342e3320 42534420 554e4958 20233334
0000020 032472

353a
353a0000

0000022

The command:

od -A d -t f -t o4 -t x4 -N 24 -j 0x15

on a system with 64-bit doubles (for example, IEEE Std 754-1985 double precision floating-point
format) would skip 21 bytes of input data and then write 24 bytes in approximately the
following format:

0000000 1.00000000000000e+00 1.57350000000000e+01
07774000000 00000000000 10013674121 35341217270

3ff00000 00000000 402f3851 eb851eb8
0000016 1.40668230000000e+02

10030312542 04370303230
40619562 23e18698

0000024

RATIONALE
The od utility went through several names in early proposals, including hd, xd, and most recently
hexdump. There were several objections to all of these based on the following reasons:

• The hd and xd names conflicted with historical utilities that behaved differently.

• The hexdump description was much more complex than needed for a simple dump utility.

• The od utility has been available on all historical implementations and there was no need to
create a new name for a utility so similar to the historical od utility.

The original reasons for not standardizing historical od were also fairly widespread. Those
reasons are given below along with rationale explaining why the standard developers believe
that this version does not suffer from the indicated problem:

• The BSD and System V versions of od have diverged, and the intersection of features
provided by both does not meet the needs of the user community. In fact, the System V
version only provides a mechanism for dumping octal bytes and shorts, signed and
unsigned decimal shorts, hexadecimal shorts, and ASCII characters. BSD added the ability
to dump floats, doubles, named ASCII characters, and octal, signed decimal, unsigned
decimal, and hexadecimal longs. The version presented here provides more normalized
forms for dumping bytes, shorts, ints, and longs in octal, signed decimal, unsigned
decimal, and hexadecimal; float, double, and long double; and named ASCII as well as
current locale characters.

• It would not be possible to come up with a compatible superset of the BSD and System V
flags that met the requirements of the standard developers. The historical default od output
is the specified default output of this utility. None of the option letters chosen for this
version of od conflict with any of the options to historical versions of od.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3231

109239

109240

109241

109242

109243

109244

109245

109246

109247

109248

109249

109250

109251

109252

109253

109254

109255

109256

109257

109258

109259

109260

109261

109262

109263

109264

109265

109266

109267

109268

109269

109270

109271

109272

109273

109274

109275

109276

109277

109278

109279

109280

109281

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

od Utilities

• On systems with different sizes for short, int, and long, there was no way to ask for dumps
of ints, even in the BSD version. Because of the way options are named, the name space
could not be extended to solve these problems. This is why the −t option was added (with
type specifiers more closely matched to the printf() formats used in the rest of this volume
of POSIX.1-2024) and the optional field sizes were added to the d, f, o, u, and x type
specifiers. It is also one of the reasons why the historical practice was not mandated as a
required obsolescent form of od. (Although the old versions of od are not listed as an
obsolescent form, implementations are urged to continue to recognize the older forms for
several more years.) The a, c, f, o, and x types match the meaning of the corresponding
format characters in the historical implementations of od except for the default sizes of the
fields converted. The d format is signed in this volume of POSIX.1-2024 to match the
printf() notation. (Historical versions of od used d as a synonym for u in this version. The
System V implementation uses s for signed decimal; BSD uses i for signed decimal and s
for null-terminated strings.) Other than d and u, all of the type specifiers match format
characters in the historical BSD version of od.

The sizes of the C-language types char, short, int, long, float, double, and long double are
used even though it is recognized that there may be zero or more than one compiler for the
C language on an implementation and that they may use different sizes for some of these
types. (For example, one compiler might use 2 bytes shorts, 2 bytes ints, and 4 bytes longs,
while another compiler (or an option to the same compiler) uses 2 bytes shorts, 4 bytes
ints, and 4 bytes longs.) Nonetheless, there has to be a basic size known by the
implementation for these types, corresponding to the values reported by invocations of the
getconf utility when called with system_var operands {UCHAR_MAX}, {USHORT_MAX},
{UINT_MAX}, and {ULONG_MAX} for the types char, short, int, and long, respectively.
There are similar constants required by the ISO C standard, but not required by the System
Interfaces volume of POSIX.1-2024 or this volume of POSIX.1-2024. They are
{FLT_MANT_DIG}, {DBL_MANT_DIG}, and {LDBL_MANT_DIG} for the types float,
double, and long double, respectively. If the optional c17 utility is provided by the
implementation and used as specified by this volume of POSIX.1-2024, these are the sizes
that would be provided. If an option is used that specifies different sizes for these types,
there is no guarantee that the od utility is able to interpret binary data output by such a
program correctly.

This volume of POSIX.1-2024 requires that the numeric values of these lengths be
recognized by the od utility and that symbolic forms also be recognized. Thus, a
conforming application can always look at an array of unsigned long data elements using
od −t uL.

• The method of specifying the format for the address field based on specifying a starting
offset in a file unnecessarily tied the two together. The −A option now specifies the address
base and the −S option specifies a starting offset.

• It would be difficult to break the dependence on US ASCII to achieve an internationalized
utility. It does not seem to be any harder for od to dump characters in the current locale
than it is for the ed or sed l commands. The c type specifier does this without difficulty and
is completely compatible with the historical implementations of the c format character
when the current locale uses a superset of the ISO/IEC 646: 1991 standard as a codeset. The
a type specifier (from the BSD a format character) was left as a portable means to dump
ASCII (or more correctly ISO/IEC 646: 1991 standard (IRV)) so that headers produced by
pax could be deciphered even on systems that do not use the ISO/IEC 646: 1991 standard
as a subset of their base codeset.

The use of "**" as an indication of continuation of a multi-byte character in c specifier output

3232 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109282

109283

109284

109285

109286

109287

109288

109289

109290

109291

109292

109293

109294

109295

109296

109297

109298

109299

109300

109301

109302

109303

109304

109305

109306

109307

109308

109309

109310

109311

109312

109313

109314

109315

109316

109317

109318

109319

109320

109321

109322

109323

109324

109325

109326

109327

109328

109329

109330

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities od

was chosen based on seeing an implementation that uses this method. The continuation bytes
have to be marked in a way that is not ambiguous with another single-byte or multi-byte
character.

An early proposal used −S and −n, respectively, for the −j and −N options eventually selected.
These were changed to avoid conflicts with historical implementations.

The original standard specified −t o2 as the default when no output type was given. This was
changed to −t oS (the length of a short) to accommodate a supercomputer implementation that
historically used 64 bits as its default (and that defined shorts as 64 bits). This change should not
affect conforming applications. The requirement to support lengths of 1, 2, and 4 was added at
the same time to address an historical implementation that had no two-byte data types in its C
compiler.

The use of a basic integer data type is intended to allow the implementation to choose a word
size commonly used by applications on that architecture.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
All option and operand interfaces marked XSI may be removed in a future version.

SEE ALSO
c17 , sed

XBD Chapter 5 (on page 113), Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
In the description of the −c option, the phrase ``This is equivalent to −t c.’’ is deleted.

The FUTURE DIRECTIONS section is modified.

Issue 6
The od utility is changed to remove the assumption that short was a two-byte entity, as per the
revisions in the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/33 is applied, correcting the examples
which used an undefined −n option, which should have been −N.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/19 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-37 is applied, updating the OPERANDS section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1017 is applied, clarifying that when −A n is specified, the line that would
contain the final offset can either be written as an empty line or not be written.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3233

109331

109332

109333

109334

109335

109336

109337

109338

109339

109340

109341

109342

109343

109344

109345

109346

109347

109348

109349

109350

109351

109352

109353

109354

109355

109356

109357

109358

109359

109360

109361

109362

109363

109364

109365

109366

109367

109368

109369

109370

109371

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

paste Utilities

NAME
paste — merge corresponding or subsequent lines of files

SYNOPSIS
paste [-s] [-d list] file...

DESCRIPTION
The paste utility shall concatenate the corresponding lines of the given input files, and write the
resulting lines to standard output.

The default operation of paste shall concatenate the corresponding lines of the input files. The
<newline> of every line except the line from the last input file shall be replaced with a <tab>.

If an end-of-file condition is detected on one or more input files, but not all input files, paste shall
behave as though empty lines were read from the files on which end-of-file was detected, unless
the −s option is specified.

OPTIONS
The paste utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−d list Unless a <backslash> character appears in list, each character in list is an element
specifying a delimiter character. If a <backslash> character appears in list, the
<backslash> character and one or more characters following it are an element
specifying a delimiter character as described below. These elements specify one or
more delimiters to use, instead of the default <tab>, to replace the <newline> of
the input lines. The elements in list shall be used circularly; that is, when the list is
exhausted the first element from the list is reused. When the −s option is specified:

• The last <newline> in a file shall not be modified.

• The delimiter shall be reset to the first element of list after each file operand is
processed.

When the −s option is not specified:

• The <newline> characters in the file specified by the last file operand shall
not be modified.

• The delimiter shall be reset to the first element of list each time a line is
processed from each file.

If a <backslash> character appears in list, it and the character following it shall be
used to represent the following delimiter characters:

\n <newline>.

\t <tab>.

\\ <backslash> character.

\0 Empty string (not a null character). If '\0' is immediately followed by the
character 'x', the character 'X', or any character defined by the LC_CTYPE
digit keyword (see XBD Chapter 7, on page 127), the results are unspecified.

If any other characters follow the <backslash>, the results are unspecified.

−s Concatenate all of the lines from each input file into one line of output per file, in
command line order. The <newline> of every line except the last line in each input
file shall be replaced with a <tab>, unless otherwise specified by the −d option. If
an input file is empty, the output line corresponding to that file shall consist of

3234 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109372

109373

109374

109375

109376

109377

109378

109379

109380

109381

109382

109383

109384

109385

109386

109387

109388

109389

109390

109391

109392

109393

109394

109395

109396

109397

109398

109399

109400

109401

109402

109403

109404

109405

109406

109407

109408

109409

109410

109411

109412

109413

109414

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities paste

only a <newline> character.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If '−' is specified for one or more of the files, the
standard input shall be used; the standard input shall be read one line at a time,
circularly, for each instance of '−'. Implementations shall support pasting of at
least 12 file operands.

STDIN
The standard input shall be used only if one or more file operands is '−'. See the INPUT FILES
section.

INPUT FILES
The input files shall be text files, except that line lengths shall be unlimited.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of paste:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Concatenated lines of input files shall be separated by the <tab> (or other characters under the
control of the −d option) and terminated by a <newline>.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3235

109415

109416

109417

109418

109419

109420

109421

109422

109423

109424

109425

109426

109427

109428

109429

109430

109431

109432

109433

109434

109435

109436

109437

109438

109439

109440

109441

109442

109443

109444

109445

109446

109447

109448

109449

109450

109451

109452

109453

109454

109455

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

paste Utilities

CONSEQUENCES OF ERRORS
If one or more input files cannot be opened when the −s option is not specified, a diagnostic
message shall be written to standard error, but no output is written to standard output. If the −s
option is specified, the paste utility shall provide the default behavior described in Section 1.4 (on
page 2462).

APPLICATION USAGE
When the escape sequences of the list option-argument are used in a shell script, they must be
quoted; otherwise, the shell treats the <backslash> as a special character.

Conforming applications should only use the specific <backslash>-escaped delimiters presented
in this volume of POSIX.1-2024. Historical implementations treat '\x', where 'x' is not in this
list, as 'x', but future implementations are free to expand this list to recognize other common
escapes similar to those accepted by printf and other standard utilities.

Most of the standard utilities work on text files. The cut utility can be used to turn files with
arbitrary line lengths into a set of text files containing the same data. The paste utility can be used
to create (or recreate) files with arbitrary line lengths. For example, if file contains long lines:

cut -b 1-500 -n file > file1
cut -b 501- -n file > file2

creates file1 (a text file) with lines no longer than 500 bytes (plus the <newline>) and file2 that
contains the remainder of the data from file. Note that file2 is not a text file if there are lines in
file that are longer than 500 + {LINE_MAX} bytes. The original file can be recreated from file1
and file2 using the command:

paste -d "\0" file1 file2 > file

The commands:

paste -d "\0" ...
paste -d "" ...

are not necessarily equivalent; the latter is not specified by this volume of POSIX.1-2024 and
may result in an error. The construct '\0' is used to mean ``no separator’’ because historical
versions of paste did not follow the syntax guidelines, and the command:

paste -d"" ...

could not be handled properly by getopt().

EXAMPLES

1. Write out a directory in four columns:

ls | paste - - - -

2. Combine pairs of lines from a file into single lines:

paste -s -d "\t\n" file

RATIONALE
None.

FUTURE DIRECTIONS
None.

3236 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109456

109457

109458

109459

109460

109461

109462

109463

109464

109465

109466

109467

109468

109469

109470

109471

109472

109473

109474

109475

109476

109477

109478

109479

109480

109481

109482

109483

109484

109485

109486

109487

109488

109489

109490

109491

109492

109493

109494

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities paste

SEE ALSO
Section 1.4 (on page 2462), cut , grep , pr

XBD Chapter 7 (on page 127), Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0149 [973] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3237

109495

109496

109497

109498

109499

109500

109501

109502

109503

109504

109505

109506

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

patch Utilities

NAME
patch — apply changes to files

SYNOPSIS
patch [-blNR] [-c|-e|-n|-u] [-d dir] [-D define] [-i patchfile]

[-o outfile] [-p num] [-r rejectfile] [file]

DESCRIPTION
The patch utility shall read a source (patch) file containing any of four forms of difference (diff)
listings produced by the diff utility (normal, copied context, unified context, or in the style of ed)
and apply those differences to a file. By default, patch shall read from the standard input.

The patch utility shall attempt to determine the type of the diff listing, unless overruled by a −c,
−e, −n, or −u option.

If the patch file contains more than one patch, patch shall attempt to apply each of them as if they
came from separate patch files. (In this case, the application shall ensure that the name of the
patch file is determinable for each diff listing.)

OPTIONS
The patch utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−b Save a copy of the original contents of each modified file, before the differences are
applied, in a file of the same name with the suffix .orig appended to it. If the file
already exists, it shall be overwritten; if multiple patches are applied to the same
file, the .orig file shall be written only for the first patch. When the −o outfile option
is also specified, file.orig shall not be created but, if outfile already exists, outfile.orig
shall be created.

−c Interpret the patch file as a copied context difference (the output of the utility diff
when the −c or −C options are specified).

−d dir Change the current directory to dir before processing as described in the
EXTENDED DESCRIPTION section.

−D define Mark changes with one of the following C preprocessor constructs:

#ifdef define
...
#endif

#ifndef define
...
#endif

optionally combined with the C preprocessor construct #else. If the patched file is
processed with the C preprocessor, where the macro define is defined, the output
shall contain the changes from the patch file; otherwise, the output shall not
contain the patches specified in the patch file.

−e Interpret the patch file as an ed script, rather than a diff script.

−i patchfile Read the patch information from the file named by the pathname patchfile, rather
than the standard input.

−l (The letter ell.) Cause any sequence of <blank> characters in the difference script to
match any sequence of <blank> characters in the input file. Other characters shall
be matched exactly.

3238 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109507

109508

109509

109510

109511

109512

109513

109514

109515

109516

109517

109518

109519

109520

109521

109522

109523

109524

109525

109526

109527

109528

109529

109530

109531

109532

109533

109534

109535

109536

109537

109538

109539

109540

109541

109542

109543

109544

109545

109546

109547

109548

109549

109550

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities patch

−n Interpret the script as a normal difference.

−N Ignore patches where the differences have already been applied to the file; by
default, already-applied patches shall be rejected.

−o outfile Instead of modifying the files (specified by the file operand or the difference
listings) directly, write a copy of the file referenced by each patch, with the
appropriate differences applied, to outfile. Multiple patches for a single file shall be
applied to the intermediate versions of the file created by any previous patches,
and shall result in multiple, concatenated versions of the file being written to
outfile.

−p num For all pathnames in the patch file that indicate the names of files to be patched,
delete num pathname components from the beginning of each pathname. If the
pathname in the patch file is absolute, any leading <slash> characters shall be
considered the first component (that is, −p 1 shall remove the leading <slash>
characters). Specifying −p 0 shall cause the full pathname to be used. If −p is not
specified, only the basename (the final pathname component) shall be used.

−R Reverse the sense of the patch script; that is, assume that the difference script was
created from the new version to the old version. The −R option cannot be used
with ed scripts. The patch utility shall attempt to reverse each portion of the script
before applying it. Rejected differences shall be saved in swapped format. If this
option is not specified, and until a portion of the patch file is successfully applied,
patch attempts to apply each portion in its reversed sense as well as in its normal
sense. If the attempt is successful, the user shall be prompted to determine whether
the −R option should be set.

−r rejectfile Override the default reject filename. In the default case, the reject file shall have the
same name as the output file, with the suffix .rej appended to it; see Patch
Application (on page 3241).

−u Interpret the patch file as a unified context difference (the output of the diff utility
when the −u or −U options are specified).

OPERANDS
The following operand shall be supported:

file A pathname of a file to patch.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of patch:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3239

109551

109552

109553

109554

109555

109556

109557

109558

109559

109560

109561

109562

109563

109564

109565

109566

109567

109568

109569

109570

109571

109572

109573

109574

109575

109576

109577

109578

109579

109580

109581

109582

109583

109584

109585

109586

109587

109588

109589

109590

109591

109592

109593

109594

109595

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

patch Utilities

the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and the behavior of character classes used in the
extended regular expression defined for the yesexpr locale keyword in the
LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

LC_TIME Determine the locale for recognizing the format of file timestamps written by the
diff utility in a context-difference input file.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic and informational messages.

OUTPUT FILES
The output of the patch utility, the save files (.orig suffixes), and the reject files (.rej suffixes) shall
be text files.

EXTENDED DESCRIPTION
A patch file may contain patching instructions for more than one file; filenames shall be
determined as specified in Filename Determination (on page 3241). When the −b option is
specified, for each patched file, the original shall be saved in a file of the same name with the
suffix .orig appended to it.

For each patched file, a reject file may also be created as noted in Patch Application (on page
3241). In the absence of a −r option, the name of this file shall be formed by appending the suffix
.rej to the original filename.

Patch File Format

The patch file shall contain zero or more lines of header information followed by one or more
patches. Each patch shall contain zero or more lines of filename identification in the format
produced by the −c, −C, −u, or −U options of the diff utility, and one or more sets of diff output,
which are customarily called hunks.

The patch utility shall recognize the following expression in the header information:

Index: pathname
The file to be patched is named pathname.

If all lines (including headers) within a patch begin with the same leading sequence of <blank>
characters, the patch utility shall remove this sequence before proceeding. Within each patch, if
the type of difference is common context, the patch utility shall recognize the following
expressions:

3240 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109596

109597

109598

109599

109600

109601

109602

109603

109604

109605

109606

109607

109608

109609

109610

109611

109612

109613

109614

109615

109616

109617

109618

109619

109620

109621

109622

109623

109624

109625

109626

109627

109628

109629

109630

109631

109632

109633

109634

109635

109636

109637

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities patch

*** filename timestamp
The patches arose from filename.

− − − filename timestamp
The patches should be applied to filename.

If the type of difference is unified context, the patch utility shall recognize the following
expressions:

− − − filename timestamp
The patches arose from filename.

+ + + filename timestamp
The patches should be applied to filename.

Each hunk within a patch shall be the diff output to change a line range within the original file.
The line numbers for successive hunks within a patch shall occur in ascending order.

Filename Determination

If no file operand is specified, patch shall perform the following steps to determine the filename
to use:

1. If the type of diff is context, the patch utility shall delete pathname components (as
specified by the −p option) from the filename on the line beginning with "***" (if copied
context) or "---" (if unified context), then test for the existence of this file relative to the
current directory (or the directory specified with the −d option). If the file exists, the patch
utility shall use this filename.

2. If the type of diff is context, the patch utility shall delete the pathname components (as
specified by the −p option) from the filename on the line beginning with "---" (if copied
context) or "+ + +" (if unified context), then test for the existence of this file relative to the
current directory (or the directory specified with the −d option). If the file exists, the patch
utility shall use this filename.

3. If the header information contains a line beginning with the string Index:, the patch utility
shall delete pathname components (as specified by the −p option) from this line, then test
for the existence of this file relative to the current directory (or the directory specified
with the −d option). If the file exists, the patch utility shall use this filename.

XSI 4. If an SCCS directory exists in the current directory, patch shall attempt to perform a get −e
SCCS/s.filename command to retrieve an editable version of the file. If the file exists, the
patch utility shall use this filename.

5. The patch utility shall write a prompt to standard output and request a filename
interactively from the controlling terminal (for example, /dev/tty).

Patch Application

If the −c, −e, −n, or −u option is present, the patch utility shall interpret information within each
hunk as a copied context difference, an ed difference, a normal difference, or a unified context
difference, respectively. In the absence of any of these options, the patch utility shall determine
the type of difference based on the format of information within the hunk.

For each hunk, the patch utility shall begin to search for the place to apply the patch at the line
number at the beginning of the hunk, plus or minus any offset used in applying the previous
hunk. If lines matching the hunk context are not found, patch shall scan both forwards and
backwards at least 1 000 bytes for a set of lines that match the hunk context.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3241

109638

109639

109640

109641

109642

109643

109644

109645

109646

109647

109648

109649

109650

109651

109652

109653

109654

109655

109656

109657

109658

109659

109660

109661

109662

109663

109664

109665

109666

109667

109668

109669

109670

109671

109672

109673

109674

109675

109676

109677

109678

109679

109680

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

patch Utilities

If no such place is found and it is a context difference, then another scan shall take place,
ignoring the first and last line of context. If that fails, the first two and last two lines of context
shall be ignored and another scan shall be made. Implementations may search more extensively
for installation locations.

If no location can be found, the patch utility shall append the hunk to the reject file. A rejected
hunk that is a copied context difference, an ed difference, or a normal difference shall be written
in copied-context-difference format regardless of the format of the patch file. It is
implementation-defined whether a rejected hunk that is a unified context difference is written in
copied-context-difference format or in unified-context-difference format. If the input was a
normal or ed-style difference, the reject file may contain differences with zero lines of context.
The line numbers on the hunks in the reject file may be different from the line numbers in the
patch file since they shall reflect the approximate locations for the failed hunks in the new file
rather than the old one.

If the type of patch is an ed diff, the implementation may accomplish the patching by invoking
the ed utility.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

1 One or more lines were written to a reject file.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Patches that cannot be correctly placed in the file shall be written to a reject file.

APPLICATION USAGE
The −R option does not work with ed scripts because there is too little information to reconstruct
the reverse operation.

The −p option makes it possible to customize a patch file to local user directory structures
without manually editing the patch file. For example, if the filename in the patch file was:

/curds/whey/src/blurfl/blurfl.c

Setting −p 0 gives the entire pathname unmodified; −p 1 gives:

curds/whey/src/blurfl/blurfl.c

without the leading <slash>, −p 4 gives:

blurfl/blurfl.c

and not specifying −p at all gives:

blurfl.c .

EXAMPLES
None.

RATIONALE
Some of the functionality in historical patch implementations was not specified. The following
documents those features present in historical implementations that have not been specified.

A deleted piece of functionality was the '+' pseudo-option allowing an additional set of options
and a patch file operand to be given. This was seen as being insufficiently useful to standardize.

In historical implementations, if the string "Prereq:" appeared in the header, the patch utility

3242 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109681

109682

109683

109684

109685

109686

109687

109688

109689

109690

109691

109692

109693

109694

109695

109696

109697

109698

109699

109700

109701

109702

109703

109704

109705

109706

109707

109708

109709

109710

109711

109712

109713

109714

109715

109716

109717

109718

109719

109720

109721

109722

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities patch

would search for the corresponding version information (the string specified in the header,
delimited by <blank> characters or the beginning or end of a line or the file) anywhere in the
original file. This was deleted as too simplistic and insufficiently trustworthy a mechanism to
standardize. For example, if:

Prereq: 1.2

were in the header, the presence of a delimited 1.2 anywhere in the file would satisfy the
prerequisite.

The following options were dropped from historical implementations of patch as insufficiently
useful to standardize:

−b The −b option historically provided a method for changing the name extension of
the backup file from the default .orig. This option has been modified and retained
in this volume of POSIX.1-2024.

−F The −F option specified the number of lines of a context diff to ignore when
searching for a place to install a patch.

−f The −f option historically caused patch not to request additional information from
the user.

−r The −r option historically provided a method of overriding the extension of the
reject file from the default .rej.

−s The −s option historically caused patch to work silently unless an error occurred.

−x The −x option historically set internal debugging flags.

In some file system implementations, the saving of a .orig file may produce unwanted results. In
the case of 12, 13, or 14-character filenames (on file systems supporting 14-character maximum
filenames), the .orig file overwrites the new file. The reject file may also exceed this filename
limit. It was suggested, due to some historical practice, that a <tilde> ('~') suffix be used
instead of .orig and some other character instead of the .rej suffix. This was rejected because it is
not obvious to the user which file is which. The suffixes .orig and .rej are clearer and more
understandable.

The −b option has the opposite sense in some historical implementations—do not save the .orig
file. The default case here is not to save the files, making patch behave more consistently with the
other standard utilities.

The −w option in early proposals was changed to −l to match historical practice.

The −N option was included because without it, a non-interactive application cannot reject
previously applied patches. For example, if a user is piping the output of diff into the patch
utility, and the user only wants to patch a file to a newer version non-interactively, the −N option
is required.

Changes to the −l option description were proposed to allow matching across <newline>
characters in addition to just <blank> characters. Since this is not historical practice, and since
some ambiguities could result, it is suggested that future developments in this area utilize
another option letter, such as −L.

The −u option of GNU patch has been added, along with support for unified context formats.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3243

109723

109724

109725

109726

109727

109728

109729

109730

109731

109732

109733

109734

109735

109736

109737

109738

109739

109740

109741

109742

109743

109744

109745

109746

109747

109748

109749

109750

109751

109752

109753

109754

109755

109756

109757

109758

109759

109760

109761

109762

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

patch Utilities

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
diff , ed

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The description of the −D option and the steps in Filename Determination (on page 3241) are
changed to match historical practice as defined in the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/34 is applied, clarifying the way that the
patch utility performs ifdef selection for the −D option.

Issue 7
The patch utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the −u option.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES and LC_CTYPE environment variables and adding the LC_COLLATE
environment variable.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3244 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109763

109764

109765

109766

109767

109768

109769

109770

109771

109772

109773

109774

109775

109776

109777

109778

109779

109780

109781

109782

109783

109784

109785

109786

109787

109788

109789

109790

109791

109792

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pathchk

NAME
pathchk — check pathnames

SYNOPSIS
pathchk [-p] [-P] pathname...

DESCRIPTION
The pathchk utility shall check that one or more pathnames are valid (that is, they could be used
to access or create a file without causing syntax errors) and portable (that is, no filename
truncation results). More extensive portability checks are provided by the −p and −P options.

By default, the pathchk utility shall check each component of each pathname operand based on the
underlying file system. A diagnostic shall be written for each pathname operand that:

• Is longer than {PATH_MAX} bytes (see Pathname Variable Values in XBD <limits.h>)

• Contains any component longer than {NAME_MAX} bytes in its containing directory

• Contains any component in a directory that is not searchable

• Contains any byte sequence that is not valid in its containing directory

The format of the diagnostic message is not specified, but shall indicate the error detected and
the corresponding pathname operand.

It shall not be considered an error if one or more components of a pathname operand do not exist
as long as a file matching the pathname specified by the missing components could be created
that does not violate any of the checks specified above.

OPTIONS
The pathchk utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−p Instead of performing checks based on the underlying file system, write a
diagnostic for each pathname operand that:

• Is longer than {_POSIX_PATH_MAX} bytes (see Minimum Values in XBD
<limits.h>)

• Contains any component longer than {_POSIX_NAME_MAX} bytes

• Contains any character in any component that is not in the portable filename
character set

−P Write a diagnostic for each pathname operand that:

• Contains a component whose first character is the <hyphen-minus>
character

• Is empty

OPERANDS
The following operand shall be supported:

pathname A pathname to be checked.

STDIN
Not used.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3245

109793

109794

109795

109796

109797

109798

109799

109800

109801

109802

109803

109804

109805

109806

109807

109808

109809

109810

109811

109812

109813

109814

109815

109816

109817

109818

109819

109820

109821

109822

109823

109824

109825

109826

109827

109828

109829

109830

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pathchk Utilities

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pathchk:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All pathname operands passed all of the checks.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The test utility can be used to determine whether a given pathname names an existing file; it
does not, however, give any indication of whether or not any component of the pathname was
truncated in a directory where the _POSIX_NO_TRUNC feature is not in effect. The pathchk
utility does not check for file existence; it performs checks to determine whether a pathname
does exist or could be created with no pathname component truncation.

The noclobber option in the shell (see the set special built-in) can be used to atomically create a
file. As with all file creation semantics in the System Interfaces volume of POSIX.1-2024, it
guarantees atomic creation, but still depends on applications to agree on conventions and
cooperate on the use of files after they have been created.

To verify that a pathname meets the requirements of filename portability, applications should

3246 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109831

109832

109833

109834

109835

109836

109837

109838

109839

109840

109841

109842

109843

109844

109845

109846

109847

109848

109849

109850

109851

109852

109853

109854

109855

109856

109857

109858

109859

109860

109861

109862

109863

109864

109865

109866

109867

109868

109869

109870

109871

109872

109873

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pathchk

use both the −p and −P options together.

EXAMPLES
To verify that all pathnames in an imported data interchange archive are legitimate and
unambiguous on the current system:

This example assumes that no pathnames in the archive
contain <newline> characters.
pax -f archive | sed -e 's/[^[:alnum:]]/\\&/g' | xargs pathchk --
if [$? -eq 0]
then

pax -r -f archive
else

echo Investigate problems before importing files.
exit 1

fi

To verify that all files in the current directory hierarchy could be moved to any system
conforming to the System Interfaces volume of POSIX.1-2024 that also supports the pax utility:

find . -exec pathchk -p -P {} +
if [$? -eq 0]
then

pax -w -f ../archive .
else

echo Portable archive cannot be created.
exit 1

fi

To verify that a user-supplied pathname names a readable file and that the application can create
a file extending the given path without truncation and without overwriting any existing file:

case $- in
C) reset="";;
*) reset="set +C"

set -C;;
esac
test -r "$path" && pathchk "$path.out" &&

rm "$path.out" > "$path.out"
if [$? -ne 0]; then

printf "%s: %s not found or %s.out fails \
creation checks.\n" $0 "$path" "$path"

$reset # Reset the noclobber option in case a trap
on EXIT depends on it.

exit 1
fi
$reset
PROCESSING < "$path" > "$path.out"

The following assumptions are made in this example:

1. PROCESSING represents the code that is used by the application to use $path once it is
verified that $path.out works as intended.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3247

109874

109875

109876

109877

109878

109879

109880

109881

109882

109883

109884

109885

109886

109887

109888

109889

109890

109891

109892

109893

109894

109895

109896

109897

109898

109899

109900

109901

109902

109903

109904

109905

109906

109907

109908

109909

109910

109911

109912

109913

109914

109915

109916

109917

109918

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pathchk Utilities

2. The state of the noclobber option is unknown when this code is invoked and should be set
on exit to the state it was in when this code was invoked. (The reset variable is used in
this example to restore the initial state.)

3. Note the usage of:

rm "$path.out" > "$path.out"

a. The pathchk command has already verified, at this point, that $path.out is not
truncated.

b. With the noclobber option set, the shell verifies that $path.out does not already exist
before invoking rm.

c. If the shell succeeded in creating $path.out, rm removes it so that the application
can create the file again in the PROCESSING step.

d. If the PROCESSING step wants the file to exist already when it is invoked, the:

rm "$path.out" > "$path.out"

should be replaced with:

> "$path.out"

which verifies that the file did not already exist, but leaves $path.out in place for
use by PROCESSING.

RATIONALE
The pathchk utility was new for the ISO POSIX-2: 1993 standard. It, along with the set
−C(noclobber) option added to the shell, replaces the mktemp, validfnam, and create utilities that
appeared in early proposals. All of these utilities were attempts to solve several common
problems:

• Verify the validity (for several different definitions of ``valid’’) of a pathname supplied by a
user, generated by an application, or imported from an external source.

• Atomically create a file.

• Perform various string handling functions to generate a temporary filename.

The create utility, included in an early proposal, provided checking and atomic creation in a
single invocation of the utility; these are orthogonal issues and need not be grouped into a single
utility. Note that the noclobber option also provides a way of creating a lock for process
synchronization; since it provides an atomic create, there is no race between a test for existence
and the following creation if it did not exist.

Having a function like tmpnam() in the ISO C standard is important in many high-level
languages. The shell programming language, however, has built-in string manipulation
facilities, making it very easy to construct temporary filenames. The names needed obviously
depend on the application, but are frequently of a form similar to:

$TMPDIR/application_abbreviation$$.suffix

In cases where there is likely to be contention for a given suffix, a simple shell for or while loop
can be used with the shell noclobber option to create a file without risk of collisions, as long as
applications trying to use the same filename name space are cooperating on the use of files after
they have been created.

For historical purposes, −p does not check for the use of the <hyphen-minus> character as the
first character in a component of the pathname, or for an empty pathname operand.

3248 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109919

109920

109921

109922

109923

109924

109925

109926

109927

109928

109929

109930

109931

109932

109933

109934

109935

109936

109937

109938

109939

109940

109941

109942

109943

109944

109945

109946

109947

109948

109949

109950

109951

109952

109953

109954

109955

109956

109957

109958

109959

109960

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pathchk

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 2493), set (on page 2553), test

XBD Chapter 8 (on page 167), Section 12.2 (on page 215), <limits.h>

CHANGE HISTORY
First released in Issue 4.

Issue 7
Austin Group Interpretations 1003.1-2001 #039, #040, and #094 are applied.

SD5-XCU-ERN-121 is applied, updating the EXAMPLES section.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0127 [291] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0150 [584] and XCU/TC2-2008/0151
[584] are applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3249

109961

109962

109963

109964

109965

109966

109967

109968

109969

109970

109971

109972

109973

109974

109975

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

NAME
pax — portable archive interchange

SYNOPSIS
pax [-dv] [-c|-n] [-H|-L] [-o options] [-f archive] [-s replstr]...

[pattern...]

pax -r[-c|-n] [-dikuv] [-H|-L] [-f archive] [-o options]... [-p string]...
[-s replstr]... [pattern...]

pax -w [-dituvX] [-H|-L] [-b blocksize] [[-a] [-f archive]] [-o options]...
[-s replstr]... [-x format] [file...]

pax -r -w [-dikltuvX] [-H|-L] [-o options]... [-p string]...
[-s replstr]... [file...] directory

DESCRIPTION
The pax utility shall read, write, and write lists of the members of archive files and copy
directory hierarchies. A variety of archive formats shall be supported; see the −x format option.

The action to be taken depends on the presence of the −r and −w options. The four combinations
of −r and −w are referred to as the four modes of operation: list, read, write, and copy modes,
corresponding respectively to the four forms shown in the SYNOPSIS section.

list In list mode (when neither −r nor −w are specified), pax shall write the names of
the members of the archive file read from the standard input, with pathnames
matching the specified patterns, to standard output. If a named file is of type
directory, the file hierarchy rooted at that file shall be listed as well.

read In read mode (when −r is specified, but −w is not), pax shall extract the members of
the archive file read from the standard input, with pathnames matching the
specified patterns. If an extracted file is of type directory, the file hierarchy rooted
at that file shall be extracted as well. The extracted files shall be created performing
pathname resolution with the directory in which pax was invoked as the current
working directory.

If an attempt is made to extract a directory when the directory already exists, this
shall not be considered an error. If an attempt is made to extract a FIFO when the
FIFO already exists, this shall not be considered an error.

The ownership, access, and modification times, and file mode of the restored files
are discussed under the −p option.

write In write mode (when −w is specified, but −r is not), pax shall write the contents of
the file operands to the standard output in an archive format. If no file operands are
specified, a list of files to copy, one per line, shall be read from the standard input
and each entry in this list shall be processed as if it had been a file operand on the
command line. A file of type directory shall include all of the files in the file
hierarchy rooted at the file.

copy In copy mode (when both −r and −w are specified), pax shall copy the file operands
to the destination directory.

If no file operands are specified, a list of files to copy, one per line, shall be read
from the standard input. A file of type directory shall include all of the files in the
file hierarchy rooted at the file.

The effect of the copy shall be as if the copied files were written to a pax format
archive file and then subsequently extracted, except that copying of sockets may be

3250 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109976

109977

109978

109979

109980

109981

109982

109983

109984

109985

109986

109987

109988

109989

109990

109991

109992

109993

109994

109995

109996

109997

109998

109999

110000

110001

110002

110003

110004

110005

110006

110007

110008

110009

110010

110011

110012

110013

110014

110015

110016

110017

110018

110019

110020

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

supported even if archiving them in write mode is not supported, and that there
may be hard links between the original and the copied files. If the destination
directory is a subdirectory of one of the files to be copied, the results are
unspecified. If the destination directory is a file of a type not defined by the System
Interfaces volume of POSIX.1-2024, the results are implementation-defined;
otherwise, it shall be an error for the file named by the directory operand not to
exist, not be writable by the user, or not be a file of type directory.

In read or copy modes, if intermediate directories are necessary to extract an archive member,
pax shall perform actions equivalent to the mkdir() function defined in the System Interfaces
volume of POSIX.1-2024, called with the following arguments:

• The intermediate directory used as the path argument

• The value of the bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO as the mode
argument

If any specified pattern or file operands are not matched by at least one file or archive member,
pax shall write a diagnostic message to standard error for each one that did not match and exit
with a non-zero exit status.

The archive formats described in the EXTENDED DESCRIPTION section shall be automatically
detected on input. The default output archive format shall be implementation-defined.

A single archive can span multiple files. The pax utility shall determine, in an implementation-
defined manner, what file to read or write as the next file.

If the selected archive format supports the specification of linked files, it shall be an error if these
files cannot be linked when the archive is extracted. For archive formats that do not store file
contents with each name that causes a hard link, if the file that contains the data is not extracted
during this pax session, either the data shall be restored from the original file, or a diagnostic
message shall be displayed with the name of a file that can be used to extract the data. In
traversing directories, pax shall detect infinite loops; that is, entering a previously visited
directory that is an ancestor of the last file visited. When it detects an infinite loop, pax shall
write a diagnostic message to standard error and shall terminate.

OPTIONS
The pax utility shall conform to XBD Section 12.2 (on page 215), except that the order of
presentation of the −o, −p, and −s options is significant.

The following options shall be supported:

−r Read an archive file from standard input.

−w Write files to the standard output in the specified archive format.

−a Append files to the end of the archive. It is implementation-defined which devices
on the system support appending. Additional file formats unspecified by this
volume of POSIX.1-2024 may impose restrictions on appending.

−b blocksize Block the output at a positive decimal integer number of bytes per write to the
archive file. Devices and archive formats may impose restrictions on blocking.
Blocking shall be automatically determined on input. Conforming applications
shall not specify a blocksize value larger than 32 256. Default blocking when
creating archives depends on the archive format. (See the −x option below.)

−c Match all file or archive members except those specified by the pattern or file
operands.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3251

110021

110022

110023

110024

110025

110026

110027

110028

110029

110030

110031

110032

110033

110034

110035

110036

110037

110038

110039

110040

110041

110042

110043

110044

110045

110046

110047

110048

110049

110050

110051

110052

110053

110054

110055

110056

110057

110058

110059

110060

110061

110062

110063

110064

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

−d Cause files of type directory being copied or archived or archive members of type
directory being extracted or listed to match only the file or archive member itself
and not the file hierarchy rooted at the file.

−f archive Specify the pathname of the input or output archive, overriding the default
standard input (in list or read modes) or standard output (write mode).

−H If a symbolic link referencing a file of type directory is specified on the command
line, pax shall archive the file hierarchy rooted in the file referenced by the link,
using the name of the link as the root of the file hierarchy. Otherwise, if a symbolic
link referencing a file of any other file type which pax can normally archive is
specified on the command line, then pax shall archive the file referenced by the
link, using the name of the link. The default behavior, when neither −H or −L are
specified, shall be to archive the symbolic link itself.

−i Interactively rename files or archive members. For each archive member matching
a pattern operand or file matching a file operand, a prompt shall be written to the
file /dev/tty. The prompt shall contain the name of the file or archive member, but
the format is otherwise unspecified. A line shall then be read from /dev/tty. If this
line is blank, the file or archive member shall be skipped. If this line consists of a
single period, the file or archive member shall be processed with no modification
to its name. Otherwise, its name shall be replaced with the contents of the line. The
pax utility shall immediately exit with a non-zero exit status if end-of-file is
encountered when reading a response or if /dev/tty cannot be opened for reading
and writing.

The results of extracting a hard link to a file that has been renamed during
extraction are unspecified.

−k Prevent the overwriting of existing files.

−l (The letter ell.) In copy mode, hard links shall be made between the source and
destination file hierarchies whenever possible. If specified in conjunction with −H
or −L, when a symbolic link is encountered, the hard link created in the destination
file hierarchy shall be to the file referenced by the symbolic link. If specified when
neither −H nor −L is specified, when a symbolic link is encountered, the
implementation shall create a hard link to the symbolic link in the source file
hierarchy or copy the symbolic link to the destination.

−L If a symbolic link referencing a file of type directory is specified on the command
line or encountered during the traversal of a file hierarchy, pax shall archive the file
hierarchy rooted in the file referenced by the link, using the name of the link as the
root of the file hierarchy. Otherwise, if a symbolic link referencing a file of any
other file type which pax can normally archive is specified on the command line or
encountered during the traversal of a file hierarchy, pax shall archive the file
referenced by the link, using the name of the link. The default behavior, when
neither −H or −L are specified, shall be to archive the symbolic link itself.

−n Select the first archive member that matches each pattern operand. No more than
one archive member shall be matched for each pattern (although members of type
directory shall still match the file hierarchy rooted at that file).

−o options Provide information to the implementation to modify the algorithm for extracting
or writing files. The value of options shall consist of one or more
<comma>-separated keywords of the form:

keyword[[:]=value][,keyword[[:]=value], ...]

3252 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110065

110066

110067

110068

110069

110070

110071

110072

110073

110074

110075

110076

110077

110078

110079

110080

110081

110082

110083

110084

110085

110086

110087

110088

110089

110090

110091

110092

110093

110094

110095

110096

110097

110098

110099

110100

110101

110102

110103

110104

110105

110106

110107

110108

110109

110110

110111

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

Some keywords apply only to certain file formats, as indicated with each
description. Use of keywords that are inapplicable to the file format being
processed produces undefined results.

Keywords in the options argument shall be a string that would be a valid portable
filename as described in XBD Section 3.265 (on page 70).

Note: Keywords are not expected to be filenames, merely to follow the same character
composition rules as portable filenames.

Keywords can be preceded with white space. The value field shall consist of zero or
more characters; within value, the application shall precede any literal <comma>
with a <backslash>, which shall be ignored, but preserves the <comma> as part of
value. A <comma> as the final character, or a <comma> followed solely by white
space as the final characters, in options shall be ignored. Multiple −o options can be
specified; if keywords given to these multiple −o options conflict, the keywords
and values appearing later in command line sequence shall take precedence and
the earlier shall be silently ignored. The following keyword values of options shall
be supported for the file formats as indicated:

delete=pattern
(Applicable only to the −x pax format.) When used in write or copy mode, pax
shall omit from extended header records that it produces any keywords
matching the string pattern. When used in read or list mode, pax shall ignore
any keywords matching the string pattern in the extended header records. In
both cases, matching shall be performed using the pattern matching notation
described in Section 2.14.1 (on page 2523) and Section 2.14.2 (on page 2524).
For example:

-o delete=security.*

would suppress security-related information. See pax Extended Header (on
page 3264) for extended header record keyword usage.

When multiple −odelete=pattern options are specified, the patterns shall be
additive; all keywords matching the specified string patterns shall be omitted
from extended header records that pax produces.

exthdr.name=string
(Applicable only to the −x pax format.) This keyword allows user control over
the name that is written into the ustar header blocks for the extended header
produced under the circumstances described in pax Header Block (on page
3263). The name shall be the contents of string, after the following character
substitutions have been made:

string
Includes: Replaced by:
%d The directory name of the file, equivalent to the result of the

dirname utility on the translated pathname.
%f The filename of the file, equivalent to the result of the

basename utility on the translated pathname.
%p The process ID of the pax process.
%% A '%' character.

Any other '%' characters in string produce undefined results.

If no −o exthdr.name=string is specified, pax shall use the following default

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3253

110112

110113

110114

110115

110116

110117

110118

110119

110120

110121

110122

110123

110124

110125

110126

110127

110128

110129

110130

110131

110132

110133

110134

110135

110136

110137

110138

110139

110140

110141

110142

110143

110144

110145

110146

110147

110148

110149

110150

110151

110152

110153

110154

110155

110156

110157

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

value:

%d/PaxHeaders.%p/%f

globexthdr.name=string
(Applicable only to the −x pax format.) When used in write or copy mode
with the appropriate options, pax shall create global extended header records
with ustar header blocks that are treated as regular files by previous versions
of pax. This keyword allows user control over the name that is written into the
ustar header blocks for global extended header records. The name shall be the
contents of string, after the following character substitutions have been made:

string
Includes: Replaced by:
%n An integer that represents the sequence number of the global

extended header record in the archive, starting at 1.
%p The process ID of the pax process.
%% A '%' character.

Any other '%' characters in string produce undefined results.

If no −o globexthdr.name=string is specified, pax shall use the following
default value:

$TMPDIR/GlobalHead.%p.%n

where $TMPDIR represents the value of the TMPDIR environment variable. If
TMPDIR is not set, pax shall use /tmp.

invalid=action
(Applicable only to the −x pax format.) This keyword allows user control over
the action pax takes upon encountering values in an extended header record
that, in read or copy mode, are invalid in the destination hierarchy or, in list
mode, cannot be written in the codeset and current locale of the
implementation. The following are invalid values that shall be recognized by
pax:

— In read or copy mode, a filename or link name that contains character
encodings invalid in the destination hierarchy. (For example, the name
may contain embedded NULs.)

— In read or copy mode, a filename or link name that is longer than the
maximum allowed in the destination hierarchy (for either a pathname
component or the entire pathname).

— In list mode, any character string value (filename, link name, user name,
and so on) that cannot be written in the codeset and current locale of the
implementation.

The following mutually-exclusive values of the action argument are supported:

binary In write mode, pax shall generate a hdrcharset=BINARY
extended header record for each file with a filename, link name,
group name, owner name, or any other field in an extended
header record that cannot be translated to the UTF-8 codeset,
allowing the archive to contain the files with unencoded
extended header record values. In read or copy mode, pax shall
use the values specified in the header without translation,

3254 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110158

110159

110160

110161

110162

110163

110164

110165

110166

110167

110168

110169

110170

110171

110172

110173

110174

110175

110176

110177

110178

110179

110180

110181

110182

110183

110184

110185

110186

110187

110188

110189

110190

110191

110192

110193

110194

110195

110196

110197

110198

110199

110200

110201

110202

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

regardless of whether this may overwrite an existing file with a
valid name. In list mode, pax shall behave identically to the
bypass action.

bypass In read or copy mode, pax shall bypass the file, causing no
change to the destination hierarchy. In list mode, pax shall write
all requested valid values for the file, but its method for writing
invalid values is unspecified.

rename In read or copy mode, pax shall act as if the −i option were in
effect for each file with invalid filename or link name values,
allowing the user to provide a replacement name interactively.
In list mode, pax shall behave identically to the bypass action.

UTF-8 When used in read, copy, or list mode and a filename, link
name, owner name, or any other field in an extended header
record cannot be translated from the pax UTF-8 codeset format
to the codeset and current locale of the implementation, pax shall
use the actual UTF-8 encoding for the name. If a hdrcharset
extended header record is in effect for this file, the character set
specified by that record shall be used instead of UTF-8. If a
hdrcharset=BINARY extended header record is in effect for this
file, no translation shall be performed.

write In read or copy mode, pax shall write the file, translating the
name, regardless of whether this may overwrite an existing file
with a valid name. In list mode, pax shall behave identically to
the bypass action.

If no −o invalid=option is specified, pax shall act as if −oinvalid=bypass were
specified. Any overwriting of existing files that may be allowed by the
−oinvalid= actions shall be subject to permission (−p) and modification time
(−u) restrictions, and shall be suppressed if the −k option is also specified.

linkdata
(Applicable only to the −x pax format.) In write mode, pax shall write the
contents of a file to the archive even when that file is merely a hard link to a
file whose contents have already been written to the archive.

listopt=format
This keyword specifies the output format of the table of contents produced
when the −v option is specified in list mode. See List Mode Format
Specifications (on page 3258). To avoid ambiguity, the listopt=format shall be
the only or final keyword=value pair in a −o option-argument; all characters
in the remainder of the option-argument shall be considered part of the format
string. When multiple −olistopt=format options are specified, the format
strings shall be considered a single, concatenated string, evaluated in
command line order.

times
(Applicable only to the −x pax format.) When used in write or copy mode, pax
shall include atime and mtime extended header records for each file. See pax
Extended Header File Times (on page 3267).

In addition to these keywords, if the −x pax format is specified, any of the
keywords and values defined in pax Extended Header (on page 3264), including

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3255

110203

110204

110205

110206

110207

110208

110209

110210

110211

110212

110213

110214

110215

110216

110217

110218

110219

110220

110221

110222

110223

110224

110225

110226

110227

110228

110229

110230

110231

110232

110233

110234

110235

110236

110237

110238

110239

110240

110241

110242

110243

110244

110245

110246

110247

110248

110249

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

implementation extensions, can be used in −o option-arguments, in either of two
modes:

keyword=value
When used in write or copy mode, these keyword/value pairs shall be
included at the beginning of the archive as typeflag g global extended header
records. When used in read or list mode, these keyword/value pairs shall act
as if they had been at the beginning of the archive as typeflag g global
extended header records.

keyword:=value
When used in write or copy mode, these keyword/value pairs shall be
included as records at the beginning of a typeflag x extended header for each
file. (This shall be equivalent to the <equals-sign> form except that it creates
no typeflag g global extended header records.) When used in read or list
mode, these keyword/value pairs shall act as if they were included as records
at the end of each extended header; thus, they shall override any global or file-
specific extended header record keywords of the same names. For example, in
the command:

pax -r -o "
gname:=mygroup,
" <archive

the group name is forced to a new value for all files read from the archive.

The precedence of −o keywords over various fields in the archive is described in
pax Extended Header Keyword Precedence (on page 3267). If the −o
delete=pattern, −o keyword=value, or −o keyword:=value options are used to
override or remove any extended header data needed to find files in an archive
(e.g., -o delete=size for a file whose size cannot be represented in a ustar
header or -o size=100 for a file whose size is not 100 bytes), the behavior is
undefined.

−p string Specify one or more file characteristic options (privileges). The string option-
argument shall be a string specifying file characteristics to be retained or discarded
on extraction. The string shall consist of the specification characters a, e, m, o, and
p. Other implementation-defined characters can be included. Multiple
characteristics can be concatenated within the same string and multiple −p options
can be specified. The meaning of the specification characters are as follows:

a Do not preserve file access times.

e Preserve the user ID, group ID, file mode bits (see XBD Section 3.145, on page
52), access time, modification time, and any other implementation-defined file
characteristics.

m Do not preserve file modification times.

o Preserve the user ID and group ID.

p Preserve the file mode bits. Other implementation-defined file mode attributes
may be preserved.

In the preceding list, ``preserve’’ indicates that an attribute stored in the archive
shall be given to the extracted file, subject to the permissions of the invoking
process. The access and modification times of the file shall be preserved unless
otherwise specified with the −p option or not stored in the archive. All attributes

3256 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110250

110251

110252

110253

110254

110255

110256

110257

110258

110259

110260

110261

110262

110263

110264

110265

110266

110267

110268

110269

110270

110271

110272

110273

110274

110275

110276

110277

110278

110279

110280

110281

110282

110283

110284

110285

110286

110287

110288

110289

110290

110291

110292

110293

110294

110295

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

that are not preserved shall be determined as part of the normal file creation action
(see Section 1.1.1.4, on page 2454).

If neither the e nor the o specification character is specified, or the user ID and
group ID are not preserved for any reason, pax shall not set the S_ISUID and
S_ISGID bits of the file mode.

If the preservation of any of these items fails for any reason, pax shall write a
diagnostic message to standard error. Failure to preserve these items shall affect
the final exit status, but shall not cause the extracted file to be deleted.

If file characteristic letters in any of the string option-arguments are duplicated or
conflict with each other, the ones given last shall take precedence. For example, if
−p eme is specified, file modification times are preserved.

−s replstr Modify file or archive member names named by pattern or file operands according
to the substitution expression replstr, using the syntax of the ed utility. The concepts
of ``address’’ and ``line’’ are meaningless in the context of the pax utility, and shall
not be supplied. The format shall be:

-s /old/new/[gpsS]

where as in ed, old is a basic regular expression and new can contain an
<ampersand>, '\n' (where n is a digit) back-references, or subexpression
matching. The old string shall also be permitted to contain <newline> characters.

Any non-null character can be used as a delimiter ('/' shown here). Multiple −s
expressions can be specified; the expressions shall be applied in the order
specified, terminating with the first successful substitution. The optional trailing
'g' is as defined in the ed utility. The optional trailing 'p' shall cause successful
substitutions to be written to standard error. The optional trailing 's' and 'S'
control whether the substitutions are applied to symbolic link contents: 's' shall
cause them not to be applied; 'S' shall cause them to be applied. If neither is
present, it is unspecified which is the default. If both are present, the behavior is
unspecified. File or archive member names that substitute to the empty string shall
be ignored when reading and writing archives. Symbolic link contents that
substitute to the empty string shall not be treated specially.

−t When reading files from the file system, and if the user has the permissions
required by futimens() to do so, set the access time of each file read to the access
time that it had before being read by pax.

−u Ignore files that are older (having a less recent file modification time) than a pre-
existing file or archive member with the same name. In read mode, an archive
member with the same name as a file in the file system shall be extracted if the
archive member is newer than the file. In write mode, an archive file member with
the same name as a file in the file system shall be superseded if the file is newer
than the archive member. If −a is also specified, this is accomplished by appending
to the archive; otherwise, it is unspecified whether this is accomplished by actual
replacement in the archive or by appending to the archive. In copy mode, the file
in the destination hierarchy shall be replaced if the file in the source hierarchy is
newer.

−v In list mode, produce a verbose table of contents (see the STDOUT section).
Otherwise, write archive member pathnames to standard error (see the STDERR
section).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3257

110296

110297

110298

110299

110300

110301

110302

110303

110304

110305

110306

110307

110308

110309

110310

110311

110312

110313

110314

110315

110316

110317

110318

110319

110320

110321

110322

110323

110324

110325

110326

110327

110328

110329

110330

110331

110332

110333

110334

110335

110336

110337

110338

110339

110340

110341

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

−x format Specify the output archive format. The pax utility shall support the following
formats:

cpio The cpio interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 5 120. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

pax The pax interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 5 120. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

ustar The tar interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 10 240. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

Implementation-defined formats shall specify a default block size as well as any
other block sizes supported for character special archive files.

Any attempt to append to an archive file in a format different from the existing
archive format shall cause pax to exit immediately with a non-zero exit status.

−X When traversing the file hierarchy specified by a pathname, pax shall not descend
below directories that have a different device ID (st_dev; see XSH fstatat()) than the
specified pathname; that is, when a directory with a different device ID is
encountered, pax shall process (archive or copy) the directory itself but shall not
process any files below the directory.

Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
an error and the last option specified shall determine the behavior of the utility.

The options that operate on the names of files or archive members (−c, −i, −n, −s, −u, and −v)
shall interact as follows. In read mode, the archive members shall be selected based on the user-
specified pattern operands as modified by the −c, −n, and −u options. Then, any −s and −i
options shall modify, in that order, the names of the selected files. The −v option shall write
names resulting from these modifications.

In write mode, the files shall be selected based on the user-specified pathnames as modified by
the −u option. Then, any −s and −i options shall modify, in that order, the names of these
selected files. The −v option shall write names resulting from these modifications.

If both the −u and −n options are specified, pax shall not consider a file selected unless it is
newer than the file to which it is compared.

List Mode Format Specifications

In list mode with the −o listopt=format option, the format argument shall be applied for each
selected file. The pax utility shall append a <newline> to the listopt output for each selected file.
The format argument shall be used as the format string described in XBD Chapter 5 (on page 113),
with the exceptions 1. through 6. defined in the EXTENDED DESCRIPTION section of printf,
plus the following exceptions:

7. The sequence (keyword) can occur before a format conversion specifier. The conversion
argument is defined by the value of keyword. The implementation shall support the
following keywords:

3258 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110342

110343

110344

110345

110346

110347

110348

110349

110350

110351

110352

110353

110354

110355

110356

110357

110358

110359

110360

110361

110362

110363

110364

110365

110366

110367

110368

110369

110370

110371

110372

110373

110374

110375

110376

110377

110378

110379

110380

110381

110382

110383

110384

110385

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

— Any of the Field Name entries in Table 3-15 (on page 3268) and Table 3-17 (on page
3272). The implementation may support the cpio keywords without the leading c_ in
addition to the form required by Table 3-17 (on page 3272).

— Any keyword defined for the extended header in pax Extended Header (on page
3264).

— Any keyword provided as an implementation-defined extension within the extended
header defined in pax Extended Header (on page 3264).

For example, the sequence "%(charset)s" is the string value of the name of the character
set in the extended header.

The result of the keyword conversion argument shall be the value from the applicable
header field or extended header, without any trailing NULs.

All keyword values used as conversion arguments shall be translated from the UTF-8
encoding (or alternative encoding specified by any hdrcharset extended header record) to
the character set appropriate for the local file system, user database, and so on, as
applicable.

8. An additional conversion specifier character, T, shall be used to specify time formats. The T
conversion specifier character can be preceded by the sequence (keyword=subformat), where
subformat is a date format as defined by date operands. The default keyword shall be mtime
and the default subformat shall be:

%b %e %H:%M %Y

9. An additional conversion specifier character, M, shall be used to specify the file mode string
as defined in ls Standard Output. If (keyword) is omitted, the mode keyword shall be used.
For example, %.1M writes the single character corresponding to the <entry type> field of the
ls −l command.

10. An additional conversion specifier character, D, shall be used to specify the device for block
or special files, if applicable, in an implementation-defined format. If not applicable, and
(keyword) is specified, then this conversion shall be equivalent to %(keyword)u. If not
applicable, and (keyword) is omitted, then this conversion shall be equivalent to <space>.

11. An additional conversion specifier character, F, shall be used to specify a pathname. The F
conversion character can be preceded by a sequence of <comma>-separated keywords:

(keyword[,keyword] ...)

The values for all the keywords that are non-null shall be concatenated together, each
separated by a '/'. The default shall be (path) if the keyword path is defined; otherwise,
the default shall be (prefix,name).

12. An additional conversion specifier character, L, shall be used to specify a symbolic link
expansion. If the current file is a symbolic link, then %L shall expand to:

"%s -> %s", <value of keyword>, <contents of link>

Otherwise, the %L conversion specification shall be the equivalent of %F.

OPERANDS
The following operands shall be supported:

directory The destination directory pathname for copy mode.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3259

110386

110387

110388

110389

110390

110391

110392

110393

110394

110395

110396

110397

110398

110399

110400

110401

110402

110403

110404

110405

110406

110407

110408

110409

110410

110411

110412

110413

110414

110415

110416

110417

110418

110419

110420

110421

110422

110423

110424

110425

110426

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

file A pathname of a file to be copied or archived.

pattern A pattern matching one or more pathnames of archive members. A pattern needs
to be given in the name-generating notation of the pattern matching notation in
Section 2.14 (on page 2523), including the filename expansion rules in Section
2.14.3 (on page 2525). The default, if no pattern is specified, is to select all members
in the archive.

STDIN
In write mode, the standard input shall be used only if no file operands are specified. It shall be a
file containing a list of pathnames, each terminated by a <newline> character.

In list and read modes, if −f is not specified, the standard input shall be an archive file.

Otherwise, the standard input shall not be used.

INPUT FILES
The input file named by the archive option-argument, or standard input when the archive is read
from there, shall be a file formatted according to one of the specifications in the EXTENDED
DESCRIPTION section or some other implementation-defined format.

The file /dev/tty shall be used to write prompts and read responses.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pax:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the pattern matching expressions for the
pattern operand and the basic regular expression for the −s option.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and the behavior of character classes used in the
pattern matching expressions for the pattern operand and the basic regular
expression for the −s option.

LC_MESSAGES
Determine the locale used to affect the format and contents of diagnostic messages
and prompts written to standard error.

LC_TIME Determine the format and contents of date and time strings when the −v option is
specified.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TMPDIR Determine the pathname that provides part of the default global extended header
record file, as described for the −o globexthdr= keyword in the OPTIONS section.

TZ Determine the timezone used to calculate date and time strings when the −v option
is specified. If TZ is unset or null, an unspecified default timezone shall be used.

3260 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110427

110428

110429

110430

110431

110432

110433

110434

110435

110436

110437

110438

110439

110440

110441

110442

110443

110444

110445

110446

110447

110448

110449

110450

110451

110452

110453

110454

110455

110456

110457

110458

110459

110460

110461

110462

110463

110464

110465

110466

110467

110468

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

ASYNCHRONOUS EVENTS
Default.

STDOUT
In write mode, if −f is not specified, the standard output shall be the archive formatted
according to one of the specifications in the EXTENDED DESCRIPTION section, or some other
implementation-defined format (see −x format).

In list mode, when the −olistopt=format has been specified, the selected archive members shall
be written to standard output using the format described under List Mode Format Specifications
(on page 3258). In list mode without the −olistopt=format option, the table of contents of the
selected archive members shall be written to standard output using the following format:

"%s\n", <pathname>

If the −v option is specified in list mode, the table of contents of the selected archive members
shall be written to standard output using the following formats.

For pathnames representing hard links to previous members of the archive:

"%sΔ==Δ%s\n", <ls -l listing>, <linkname>

For all other pathnames:

"%s\n", <ls -l listing>

where <ls −l listing> shall be the format specified by the ls utility with the −l option. When
writing pathnames in this format, it is unspecified what is written for fields for which the
underlying archive format does not have the correct information, although the correct number of
<blank>-separated fields shall be written.

In list mode, standard output shall not be buffered more than a pathname (plus any associated
information and a <newline> terminator) at a time.

STDERR
If −v is specified in read, write, or copy modes, pax shall write the pathnames it processes to the
standard error output using the following format:

"%s\n", <pathname>

These pathnames shall be written as soon as processing is begun on the file or archive member,
and shall be flushed to standard error. The trailing <newline>, which shall not be buffered, is
written when the file has been read or written.

If the −s option is specified, and the replacement string has a trailing 'p', substitutions shall be
written to standard error in the following format:

"%sΔ>>Δ%s\n", <original pathname>, <new pathname>

In all operating modes of pax, optional messages of unspecified format concerning the input
archive format and volume number, the number of files, blocks, volumes, and media parts as
well as other diagnostic messages may be written to standard error.

In all formats, for both standard output and standard error, it is unspecified how non-printable
characters in pathnames or link names are written.

When using the −xpax archive format, if a filename, link name, group name, owner name, or any
other field in an extended header record cannot be translated between the codeset in use for that
extended header record and the character set of the current locale, pax shall write a diagnostic
message to standard error, shall process the file as described for the −o invalid= option, and then
shall continue processing with the next file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3261

110469

110470

110471

110472

110473

110474

110475

110476

110477

110478

110479

110480

110481

110482

110483

110484

110485

110486

110487

110488

110489

110490

110491

110492

110493

110494

110495

110496

110497

110498

110499

110500

110501

110502

110503

110504

110505

110506

110507

110508

110509

110510

110511

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

OUTPUT FILES
In read mode, the extracted output files shall be of the archived file type. In copy mode, the
copied output files shall be the type of the file being copied. In either mode, existing files in the
destination hierarchy shall be overwritten only when all permission (−p), modification time (−u),
and invalid-value (−oinvalid=) tests allow it.

In write mode, the output file named by the −f option-argument shall be a file formatted
according to one of the specifications in the EXTENDED DESCRIPTION section, or some other
implementation-defined format.

EXTENDED DESCRIPTION

pax Interchange Format

A pax archive tape or file produced in the −xpax format shall contain a series of blocks. The
physical layout of the archive shall be identical to the ustar format described in ustar
Interchange Format (on page 3268). Each file archived shall be represented by the following
sequence:

• An optional header block with extended header records. This header block is of the form
described in pax Header Block (on page 3263), with a typeflag value of x or g. The
extended header records, described in pax Extended Header (on page 3264), shall be
included as the data for this header block.

• A header block that describes the file. Any fields in the preceding optional extended
header shall override the associated fields in this header block for this file.

• Zero or more blocks that contain the contents of the file.

At the end of the archive file there shall be two 512-byte blocks filled with binary zeros,
interpreted as an end-of-archive indicator.

A schematic of an example archive with global extended header records and two actual files is
shown in Figure 3-1 (on page 3263). In the example, the second file in the archive has no
extended header preceding it, presumably because it has no need for extended attributes.

3262 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110512

110513

110514

110515

110516

110517

110518

110519

110520

110521

110522

110523

110524

110525

110526

110527

110528

110529

110530

110531

110532

110533

110534

110535

110536

110537

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

ustar Header [typeflag=g]

Global Extended Header Data

ustar Header [typeflag=x]

Extended Header Data

ustar Header [typeflag=0]

Data for File 1

ustar Header [typeflag=0]

Data for File 2

Block of binary zeros

Block of binary zeros

Global Extended Header

File 1: Extended Header is
included

File 2: No Extended Header is
included

End of Archive Indicator

}

}
}
}

Figure 3-1 pax Format Archive Example

pax Header Block

The pax header block shall be identical to the ustar header block described in ustar Interchange
Format (on page 3268), except that two additional typeflag values are defined:

x Represents extended header records for the following file in the archive (which shall have
its own ustar header block). The format of these extended header records shall be as
described in pax Extended Header (on page 3264).

g Represents global extended header records for the following files in the archive. The format
of these extended header records shall be as described in pax Extended Header (on page
3264). Each value shall affect all subsequent files that do not override that value in their
own extended header record and until another global extended header record is reached
that provides another value for the same field. The typeflag g global headers should not be
used with interchange media that could suffer partial data loss in transporting the archive.

For both of these types, the size field shall be the size of the extended header records in octets.
The other fields in the header block are not meaningful to this version of the pax utility.
However, if this archive is read by a pax utility conforming to the ISO POSIX-2: 1993 standard,
the header block fields are used to create a regular file that contains the extended header records
as data. Therefore, header block field values should be selected to provide reasonable file access
to this regular file.

A further difference from the ustar header block is that data blocks for files of typeflag 1 (the digit
one) (hard link) may be included, which means that the size field may be greater than zero.
Archives created by pax −o linkdata shall include these data blocks with the hard links.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3263

110538

110539

110540

110541

110542

110543

110544

110545

110546

110547

110548

110549

110550

110551

110552

110553

110554

110555

110556

110557

110558

110559

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

pax Extended Header

A pax extended header contains values that are inappropriate for the ustar header block because
of limitations in that format: fields requiring a character encoding other than that described in
the ISO/IEC 646: 1991 standard, fields representing file attributes not described in the ustar
header, and fields whose format or length do not fit the requirements of the ustar header. The
values in an extended header add attributes to the following file (or files; see the description of
the typeflag g header block) or override values in the following header block(s), as indicated in
the following list of keywords.

An extended header shall consist of one or more records, each constructed as follows:

"%d %s=%s\n", <length>, <keyword>, <value>

The extended header records shall be encoded according to the ISO/IEC 10646: 2020 standard
UTF-8 encoding. The <length> field, <blank>, <equals-sign>, and <newline> shown shall be
limited to the portable character set, as encoded in UTF-8. The <keyword> fields can be any
UTF-8 characters. The <length> field shall be the decimal length of the extended header record
in octets, including the trailing <newline>. If there is a hdrcharset extended header in effect for
a file, the value field for any gname, linkpath, path, and uname extended header records shall be
encoded using the character set specified by the hdrcharset extended header record; otherwise,
the value field shall be encoded using UTF-8. The value field for all other keywords specified by
POSIX.1-2024 shall be encoded using UTF-8.

The <keyword> field shall be one of the entries from the following list or a keyword provided as
an implementation extension. Keywords consisting entirely of lowercase letters, digits, and
periods are reserved for future standardization. A keyword shall not include an <equals-sign>.
(In the following list, the notations ``file(s)’’ or ``block(s)’’ is used to acknowledge that a keyword
affects the following single file after a typeflag x extended header, but possibly multiple files after
typeflag g. Any requirements in the list for pax to include a record when in write or copy mode
shall apply only when such a record has not already been provided through the use of the −o
option. When used in copy mode, pax shall behave as if an archive had been created with
applicable extended header records and then extracted.)

atime The file access time for the following file(s), equivalent to the value of the st_atim
member of the stat structure for a file, as described by the stat() function. The
access time shall be restored if the process has appropriate privileges required to
do so. The format of the <value> shall be as described in pax Extended Header File
Times (on page 3267).

charset The name of the character set used to encode the data in the following file(s). The
entries in the following table are defined to refer to known standards; additional
names may be agreed on between the originator and recipient.

3264 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110560

110561

110562

110563

110564

110565

110566

110567

110568

110569

110570

110571

110572

110573

110574

110575

110576

110577

110578

110579

110580

110581

110582

110583

110584

110585

110586

110587

110588

110589

110590

110591

110592

110593

110594

110595

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

<value> Formal Standard
ISO-IRΔ646Δ1990 ISO/IEC 646: 1990
ISO-IRΔ8859Δ1Δ1998 ISO/IEC 8859-1: 1998
ISO-IRΔ8859Δ2Δ1999 ISO/IEC 8859-2: 1999
ISO-IRΔ8859Δ3Δ1999 ISO/IEC 8859-3: 1999
ISO-IRΔ8859Δ4Δ1998 ISO/IEC 8859-4: 1998
ISO-IRΔ8859Δ5Δ1999 ISO/IEC 8859-5: 1999
ISO-IRΔ8859Δ6Δ1999 ISO/IEC 8859-6: 1999
ISO-IRΔ8859Δ7Δ1987 ISO/IEC 8859-7: 1987
ISO-IRΔ8859Δ8Δ1999 ISO/IEC 8859-8: 1999
ISO-IRΔ8859Δ9Δ1999 ISO/IEC 8859-9: 1999
ISO-IRΔ8859Δ10Δ1998 ISO/IEC 8859-10: 1998
ISO-IRΔ8859Δ13Δ1998 ISO/IEC 8859-13: 1998
ISO-IRΔ8859Δ14Δ1998 ISO/IEC 8859-14: 1998
ISO-IRΔ8859Δ15Δ1999 ISO/IEC 8859-15: 1999
ISO-IRΔ10646Δ2000 ISO/IEC 10646: 2000
ISO-IRΔ10646Δ2000ΔUTF-8 ISO/IEC 10646, UTF-8 encoding
BINARY None.

The encoding is included in an extended header for information only; when pax is
used as described in POSIX.1-2024, it shall not translate the file data into any other
encoding. The BINARY entry indicates unencoded binary data.

When used in write or copy mode, it is implementation-defined whether pax
includes a charset extended header record for a file.

comment A series of characters used as a comment. All characters in the <value> field shall
be ignored by pax.

gid The group ID of the group that owns the file, expressed as a decimal number using
digits from the ISO/IEC 646: 1991 standard. This record shall override the gid field
in the following header block(s). When used in write or copy mode, pax shall
include a gid extended header record for each file whose group ID is greater than
2 097 151 (octal 7 777 777).

gname The group of the file(s), formatted as a group name in the group database. This
record shall override the gid and gname fields in the following header block(s), and
any gid extended header record. When used in read, copy, or list mode, pax shall
translate the name from the encoding in the header record to the character set
appropriate for the group database on the receiving system. If any of the characters
cannot be translated, and if neither the −oinvalid=UTF-8 option nor the
−oinvalid=binary option is specified, the results are implementation-defined.
When used in write or copy mode, pax shall include a gname extended header
record for each file whose group name cannot be represented entirely with the
letters and digits of the portable character set.

hdrcharset The name of the character set used to encode the value field of the gname,
linkpath, path, and uname pax extended header records. The entries in the
following table are defined to refer to known standards; additional names may be
agreed between the originator and the recipient.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3265

110596

110597

110598

110599

110600

110601

110602

110603

110604

110605

110606

110607

110608

110609

110610

110611

110612

110613

110614

110615

110616

110617

110618

110619

110620

110621

110622

110623

110624

110625

110626

110627

110628

110629

110630

110631

110632

110633

110634

110635

110636

110637

110638

110639

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

<value> Formal Standard
ISO-IRΔ10646Δ2000ΔUTF-8 ISO/IEC 10646, UTF-8 encoding
BINARY None.

If no hdrcharset extended header record is specified, the default character set used
to encode all values in extended header records shall be the ISO/IEC 10646: 2020
standard UTF-8 encoding.

The BINARY entry indicates that all values recorded in extended headers for
affected files are unencoded binary data from the underlying system.

linkpath The pathname of a link being created to another file, of any type, previously
archived. This record shall override the linkname field in the following ustar header
block(s). The following ustar header block shall determine the type of link created.
If typeflag of the following header block is 1, it shall be a hard link. If typeflag is 2, it
shall be a symbolic link and the linkpath value shall be the contents of the
symbolic link. The pax utility shall translate the name of the link (contents of the
symbolic link) from the encoding in the header to the character set appropriate for
the local file system. When used in write or copy mode, pax shall include a
linkpath extended header record for each link whose pathname cannot be
represented entirely with the members of the portable character set other than
NUL.

mtime The file modification time of the following file(s), equivalent to the value of the
st_mtim member of the stat structure for a file, as described in the stat() function.
This record shall override the mtime field in the following header block(s). The
modification time shall be restored if the process has appropriate privileges
required to do so. The format of the <value> shall be as described in pax Extended
Header File Times (on page 3267).

path The pathname of the following file(s). This record shall override the name and
prefix fields in the following header block(s). The pax utility shall translate the
pathname of the file from the encoding in the header to the character set
appropriate for the local file system.

When used in write or copy mode, pax shall include a path extended header record
for each file whose pathname cannot be represented entirely with the members of
the portable character set other than NUL.

realtime.any The keywords prefixed by ``realtime.’’ are reserved for future standardization.

security.any The keywords prefixed by ``security.’’ are reserved for future standardization.

size The size of the file in octets, expressed as a decimal number using digits from the
ISO/IEC 646: 1991 standard. This record shall override the size field in the
following header block(s). When used in write or copy mode, pax shall include a
size extended header record for each file with a size value greater than 8 589 934 591
(octal 77 777 777 777).

uid The user ID of the file owner, expressed as a decimal number using digits from the
ISO/IEC 646: 1991 standard. This record shall override the uid field in the
following header block(s). When used in write or copy mode, pax shall include a
uid extended header record for each file whose owner ID is greater than 2 097 151
(octal 7 777 777).

3266 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110640

110641

110642

110643

110644

110645

110646

110647

110648

110649

110650

110651

110652

110653

110654

110655

110656

110657

110658

110659

110660

110661

110662

110663

110664

110665

110666

110667

110668

110669

110670

110671

110672

110673

110674

110675

110676

110677

110678

110679

110680

110681

110682

110683

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

uname The owner of the following file(s), formatted as a user name in the user database.
This record shall override the uid and uname fields in the following header block(s),
and any uid extended header record. When used in read, copy, or list mode, pax
shall translate the name from the encoding in the header record to the character set
appropriate for the user database on the receiving system. If any of the characters
cannot be translated, and if neither the −oinvalid=UTF-8 option nor the
−oinvalid=binary option is specified, the results are implementation-defined.
When used in write or copy mode, pax shall include a uname extended header
record for each file whose user name cannot be represented entirely with the letters
and digits of the portable character set.

If the <value> field is zero length, it shall delete any header block field, previously entered
extended header value, or global extended header value of the same name.

If a keyword in an extended header record (or in a −o option-argument) overrides or deletes a
corresponding field in the ustar header block, pax shall ignore the contents of that header block
field.

Unlike the ustar header block fields, NULs shall not delimit <value>s; all characters within the
<value> field shall be considered data for the field. None of the length limitations of the ustar
header block fields in Table 3-15 (on page 3268) shall apply to the extended header records.

pax Extended Header Keyword Precedence

This section describes the precedence in which the various header records and fields and
command line options are selected to apply to a file in the archive. When pax is used in read or
list modes, it shall determine a file attribute in the following sequence:

1. If −odelete=keyword-prefix is used, the affected attributes shall be determined from step
7., if applicable, or ignored otherwise.

2. If −okeyword:= is used, the affected attributes shall be ignored.

3. If −okeyword:=value is used, the affected attribute shall be assigned the value.

4. If there is a typeflag x extended header record, the affected attribute shall be assigned the
<value>. When extended header records conflict, the last one given in the header shall
take precedence.

5. If −okeyword=value is used, the affected attribute shall be assigned the value.

6. If there is a typeflag g global extended header record, the affected attribute shall be
assigned the <value>. When global extended header records conflict, the last one given in
the global header shall take precedence.

7. Otherwise, the attribute shall be determined from the ustar header block.

pax Extended Header File Times

The pax utility shall write an mtime record for each file in write or copy modes if the file’s
modification time cannot be represented exactly in the ustar header logical record described in
ustar Interchange Format (on page 3268). This can occur if the time is out of ustar range, or if
the file system of the underlying implementation supports non-integer time granularities and
the time is not an integer. All of these time records shall be formatted as a decimal representation
of the time in seconds since the Epoch. If a <period> ('.') decimal point character is present,
the digits to the right of the point shall represent the units of a subsecond timing granularity,
where the first digit is tenths of a second and each subsequent digit is a tenth of the previous
digit. In read or copy mode, the pax utility shall truncate the time of a file to the greatest value

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3267

110684

110685

110686

110687

110688

110689

110690

110691

110692

110693

110694

110695

110696

110697

110698

110699

110700

110701

110702

110703

110704

110705

110706

110707

110708

110709

110710

110711

110712

110713

110714

110715

110716

110717

110718

110719

110720

110721

110722

110723

110724

110725

110726

110727

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

that is not greater than the input header file time. In write or copy mode, the pax utility shall
output a time exactly if it can be represented exactly as a decimal number, and otherwise shall
generate only enough digits so that the same time shall be recovered if the file is extracted on a
system whose underlying implementation supports the same time granularity.

ustar Interchange Format

A ustar archive tape or file shall contain a series of logical records. Each logical record shall be a
fixed-size logical record of 512 octets (see below). Although this format may be thought of as
being stored on 9-track industry-standard 12.7 mm (0.5 in) magnetic tape, other types of
transportable media are not excluded. Each file archived shall be represented by a header logical
record that describes the file, followed by zero or more logical records that give the contents of
the file. At the end of the archive file there shall be two 512-octet logical records filled with
binary zeros, interpreted as an end-of-archive indicator.

The logical records may be grouped for physical I/O operations, as described under the
−bblocksize and −x ustar options. Each group of logical records may be written with a single
operation equivalent to the write() function. On magnetic tape, the result of this write shall be a
single tape physical block. The last physical block shall always be the full size, so logical records
after the two zero logical records may contain undefined data.

The header logical record shall be structured as shown in the following table. All lengths and
offsets are in decimal.

Table 3-15 ustar Header Block

Field Name Octet Offset Length (in Octets)
name 0 100
mode 100 8
uid 108 8
gid 116 8
size 124 12
mtime 136 12
chksum 148 8
typeflag 156 1
linkname 157 100
magic 257 6
version 263 2
uname 265 32
gname 297 32
devmajor 329 8
devminor 337 8
prefix 345 155

All characters in the header logical record shall be represented in the coded character set of the
ISO/IEC 646: 1991 standard. For maximum portability between implementations, names should
be selected from characters represented by the portable filename character set as octets with the
most significant bit zero. If an implementation supports the use of characters outside of <slash>
and the portable filename character set in names for files, users, and groups, one or more
implementation-defined encodings of these characters shall be provided for interchange
purposes.

However, the pax utility shall never create filenames on the local system that cannot be accessed

3268 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110728

110729

110730

110731

110732

110733

110734

110735

110736

110737

110738

110739

110740

110741

110742

110743

110744

110745

110746

110747

110748

110749

110750

110751

110752

110753

110754

110755

110756

110757

110758

110759

110760

110761

110762

110763

110764

110765

110766

110767

110768

110769

110770

110771

110772

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

via the procedures described in POSIX.1-2024. If a filename is found on the medium that would
create an invalid filename, it is implementation-defined whether the data from the file is stored
on the file hierarchy and under what name it is stored. The pax utility may choose to ignore these
files as long as it produces an error indicating that the file is being ignored.

Each field within the header logical record is contiguous; that is, there is no padding used. Each
character on the archive medium shall be stored contiguously.

The fields magic, uname, and gname are character strings each terminated by a NUL character.
The fields name, linkname, and prefix are NUL-terminated character strings except when all
characters in the array contain non-NUL characters including the last character. The version field
is two octets containing the characters "00" (zero-zero). The typeflag contains a single character.
All other fields are leading zero-filled octal numbers using digits from the ISO/IEC 646: 1991
standard IRV. Each numeric field is terminated by one or more <space> or NUL characters.

The name and the prefix fields shall produce the pathname of the file. A new pathname shall be
formed, if prefix is not an empty string (its first character is not NUL), by concatenating prefix (up
to the first NUL character), a <slash> character, and name; otherwise, name is used alone. In
either case, name is terminated at the first NUL character. If prefix begins with a NUL character, it
shall be ignored. In this manner, pathnames of at most 256 characters can be supported. If a
pathname does not fit in the space provided, pax shall notify the user of the error, and shall not
store any part of the file—header or data—on the medium.

The linkname field, described below, shall not use the prefix to produce a pathname. As such, a
linkname is limited to 100 characters. If the name does not fit in the space provided, pax shall
notify the user of the error, and shall not attempt to store the link on the medium.

The mode field provides 12 bits encoded in the ISO/IEC 646: 1991 standard octal digit
representation. The encoded bits shall represent the following values:

Table 3-16 ustar mode Field

Bit Value POSIX.1-2024 Bit Description
04 000 S_ISUID Set UID on execution.
02 000 S_ISGID Set GID on execution.
01 000 <reserved> Reserved for future standardization.
00 400 S_IRUSR Read permission for file owner class.
00 200 S_IWUSR Write permission for file owner class.
00 100 S_IXUSR Execute/search permission for file owner class.
00 040 S_IRGRP Read permission for file group class.
00 020 S_IWGRP Write permission for file group class.
00 010 S_IXGRP Execute/search permission for file group class.
00 004 S_IROTH Read permission for file other class.
00 002 S_IWOTH Write permission for file other class.
00 001 S_IXOTH Execute/search permission for file other class.

When appropriate privileges are required to set one of these mode bits, and the user restoring
the files from the archive does not have appropriate privileges, the mode bits for which the user
does not have appropriate privileges shall be ignored. Some of the mode bits in the archive
format are not mentioned elsewhere in this volume of POSIX.1-2024. If the implementation does
not support those bits, they may be ignored.

The uid and gid fields are the user and group ID of the owner and group of the file, respectively.

The size field is the size of the file in octets. If the typeflag field is set to specify a file to be of type
1 (a hard link) or 2 (a symbolic link), the size field shall be specified as zero. If the typeflag field is

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3269

110773

110774

110775

110776

110777

110778

110779

110780

110781

110782

110783

110784

110785

110786

110787

110788

110789

110790

110791

110792

110793

110794

110795

110796

110797

110798

110799

110800

110801

110802

110803

110804

110805

110806

110807

110808

110809

110810

110811

110812

110813

110814

110815

110816

110817

110818

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

set to specify a file of type 5 (directory), the size field shall be interpreted as described under the
definition of that record type. No data logical records are stored for types 1, 2, or 5. If the typeflag
field is set to 3 (character special file), 4 (block special file), or 6 (FIFO), the meaning of the size
field is unspecified by this volume of POSIX.1-2024, and no data logical records shall be stored
on the medium. Additionally, for type 6, the size field shall be ignored when reading. If the
typeflag field is set to any other value, the number of logical records written following the header
shall be (size+511)/512, ignoring any fraction in the result of the division.

The mtime field shall be the modification time of the file at the time it was archived. It is the
ISO/IEC 646: 1991 standard representation of the octal value of the modification time obtained
from the stat() function.

The chksum field shall be the ISO/IEC 646: 1991 standard IRV representation of the octal value of
the simple sum of all octets in the header logical record. Each octet in the header shall be treated
as an unsigned value. These values shall be added to an unsigned integer, initialized to zero, the
precision of which is not less than 17 bits. When calculating the checksum, the chksum field is
treated as if it were all <space> characters.

The typeflag field specifies the type of file archived. If a particular implementation does not
recognize the type, or the user does not have appropriate privileges to create that type, the file
shall be extracted as if it were a regular file if the file type is defined to have a meaning for the
size field that could cause data logical records to be written on the medium (see the previous
description for size). If conversion to a regular file occurs, the pax utility shall produce an error
indicating that the conversion took place. All of the typeflag fields shall be coded in the
ISO/IEC 646: 1991 standard IRV:

0 Represents a regular file. For backwards-compatibility, a typeflag value of binary zero
('\0') should be recognized as meaning a regular file when extracting files from the
archive. Archives written with this version of the archive file format create regular files
with a typeflag value of the ISO/IEC 646: 1991 standard IRV '0'.

1 Represents a file linked to another file, of any type, previously archived. Such files are
identified by having the same device and file serial numbers, and pathnames that refer
to different directory entries. All such files shall be archived as linked files. The linked-
to name is specified in the linkname field with a NUL-character terminator if it is less
than 100 octets in length.

2 Represents a symbolic link. The contents of the symbolic link shall be stored in the
linkname field.

3,4 Represent character special files and block special files respectively. In this case the
devmajor and devminor fields shall contain information defining the device, the format
of which is unspecified by this volume of POSIX.1-2024. Implementations may map the
device specifications to their own local specification or may ignore the entry.

5 Specifies a directory or subdirectory. On systems where disk allocation is performed on
a directory basis, the size field shall contain the maximum number of octets (which may
be rounded to the nearest disk block allocation unit) that the directory may hold. A size
field of zero indicates no such limiting. Systems that do not support limiting in this
manner should ignore the size field.

6 Specifies a FIFO special file. Note that the archiving of a FIFO file archives the existence
of this file and not its contents.

7 Reserved to represent a file to which an implementation has associated some high-
performance attribute. Implementations without such extensions should treat this file
as a regular file (type 0).

3270 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110819

110820

110821

110822

110823

110824

110825

110826

110827

110828

110829

110830

110831

110832

110833

110834

110835

110836

110837

110838

110839

110840

110841

110842

110843

110844

110845

110846

110847

110848

110849

110850

110851

110852

110853

110854

110855

110856

110857

110858

110859

110860

110861

110862

110863

110864

110865

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

A-Z The letters 'A' to 'Z', inclusive, are reserved for custom implementations. All other
values are reserved for future versions of this standard.

It is unspecified whether files with pathnames that refer to the same directory entry are archived
as linked files or as separate files. If they are archived as linked files, this means that attempting
to extract both pathnames from the resulting archive always causes an error (unless the −u
option is used) because the link cannot be created.

It is unspecified whether files with the same device and file serial numbers being appended to
an archive are treated as linked files to members that were in the archive before the append.

Attempts to archive a socket shall produce a diagnostic message when ustar interchange format
is used, but may be allowed when pax interchange format is used. Handling of other file types is
implementation-defined.

The magic field is the specification that this archive was output in this archive format. If this field
contains ustar (the five characters from the ISO/IEC 646: 1991 standard IRV shown followed by
NUL), the uname and gname fields shall contain the ISO/IEC 646: 1991 standard IRV
representation of the owner and group of the file, respectively (truncated to fit, if necessary).
When the file is restored by a privileged, protection-preserving version of the utility, the user
and group databases shall be scanned for these names. If found, the user and group IDs
contained within these files shall be used rather than the values contained within the uid and gid
fields.

cpio Interchange Format

The octet-oriented cpio archive format shall be a series of entries, each comprising a header that
describes the file, the name of the file, and then the contents of the file.

An archive may be recorded as a series of fixed-size blocks of octets. This blocking shall be used
only to make physical I/O more efficient. The last group of blocks shall always be at the full
size.

For the octet-oriented cpio archive format, the individual entry information shall be in the order
indicated and described by the following table; see also the <cpio.h> header.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3271

110866

110867

110868

110869

110870

110871

110872

110873

110874

110875

110876

110877

110878

110879

110880

110881

110882

110883

110884

110885

110886

110887

110888

110889

110890

110891

110892

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

Table 3-17 Octet-Oriented cpio Archive Entry

Header Field Name Length (in Octets) Interpreted as
c_magic 6 Octal number
c_dev 6 Octal number
c_ino 6 Octal number
c_mode 6 Octal number
c_uid 6 Octal number
c_gid 6 Octal number
c_nlink 6 Octal number
c_rdev 6 Octal number
c_mtime 11 Octal number
c_namesize 6 Octal number
c_filesize 11 Octal number
Filename Field Name Length Interpreted as
c_name c_namesize Pathname string
File Data Field Name Length Interpreted as
c_filedata c_filesize Data

cpio Header

For each file in the archive, a header as defined previously shall be written. The information in
the header fields is written as streams of the ISO/IEC 646: 1991 standard characters interpreted
as octal numbers. The octal numbers shall be extended to the necessary length by appending the
ISO/IEC 646: 1991 standard IRV zeros at the most-significant-digit end of the number; the result
is written to the most-significant digit of the stream of octets first. The fields shall be interpreted
as follows:

c_magic Identify the archive as being a transportable archive by containing the identifying
value "070707".

c_dev, c_ino Contains values that uniquely identify the file within the archive (that is, no files
contain the same pair of c_dev and c_ino values unless they are links to the same
file). The values shall be determined in an unspecified manner.

c_mode Contains the file type and access permissions as defined in the following table.

3272 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110893

110894

110895

110896

110897

110898

110899

110900

110901

110902

110903

110904

110905

110906

110907

110908

110909

110910

110911

110912

110913

110914

110915

110916

110917

110918

110919

110920

110921

110922

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

Table 3-18 Values for cpio c_mode Field

File Permissions Name Value Indicates
C_IRUSR 000 400 Read by owner
C_IWUSR 000 200 Write by owner
C_IXUSR 000 100 Execute by owner
C_IRGRP 000 040 Read by group
C_IWGRP 000 020 Write by group
C_IXGRP 000 010 Execute by group
C_IROTH 000 004 Read by others
C_IWOTH 000 002 Write by others
C_IXOTH 000 001 Execute by others
C_ISUID 004 000 Set uid
C_ISGID 002 000 Set gid
C_ISVTX 001 000 Reserved

File Type Name Value Indicates
C_ISDIR 040 000 Directory
C_ISFIFO 010 000 FIFO
C_ISREG 0100 000 Regular file
C_ISLNK 0120 000 Symbolic link

C_ISBLK 060 000 Block special file
C_ISCHR 020 000 Character special file
C_ISSOCK 0140 000 Socket

C_ISCTG 0110 000 Reserved

Directories, FIFOs, symbolic links, and regular files shall be supported on a system
conforming to this volume of POSIX.1-2024; additional values defined previously
are reserved for compatibility with existing systems. Additional file types may be
supported; however, such files should not be written to archives intended to be
transported to other systems.

c_uid Contains the user ID of the owner.

c_gid Contains the group ID of the group.

c_nlink Contains a number greater than or equal to the number of links in the archive
referencing the file. If the −a option is used to append to a cpio archive, then the pax
utility need not account for the files in the existing part of the archive when
calculating the c_nlink values for the appended part of the archive, and need not
alter the c_nlink values in the existing part of the archive if additional files with the
same c_dev and c_ino values are appended to the archive.

c_rdev Contains implementation-defined information for character or block special files.

c_mtime Contains the latest time of modification of the file at the time the archive was
created.

c_namesize Contains the length of the pathname, including the terminating NUL character.

c_filesize Contains the length in octets of the data section following the header structure.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3273

110923

110924

110925

110926

110927

110928

110929

110930

110931

110932

110933

110934

110935

110936

110937

110938

110939

110940

110941

110942

110943

110944

110945

110946

110947

110948

110949

110950

110951

110952

110953

110954

110955

110956

110957

110958

110959

110960

110961

110962

110963

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

cpio Filename

The c_name field shall contain the pathname of the file. The length of this field in octets is the
value of c_namesize.

If a filename is found on the medium that would create an invalid pathname, it is
implementation-defined whether the data from the file is stored on the file hierarchy and under
what name it is stored.

All characters shall be represented in the ISO/IEC 646: 1991 standard IRV. For maximum
portability between implementations, names should be selected from characters represented by
the portable filename character set as octets with the most significant bit zero. If an
implementation supports the use of characters outside the portable filename character set in
names for files, users, and groups, one or more implementation-defined encodings of these
characters shall be provided for interchange purposes. However, the pax utility shall never create
filenames on the local system that cannot be accessed via the procedures described previously in
this volume of POSIX.1-2024. If a filename is found on the medium that would create an invalid
filename, it is implementation-defined whether the data from the file is stored on the local file
system and under what name it is stored. The pax utility may choose to ignore these files as long
as it produces an error indicating that the file is being ignored.

cpio File Data

Following c_name, there shall be c_filesize octets of data. Interpretation of such data occurs in a
manner dependent on the file. For regular files, the data shall consist of the contents of the file.
For symbolic links, the data shall consist of the contents of the symbolic link. If c_filesize is zero,
no data shall be contained in c_filedata.

When restoring from an archive:

• If the user does not have appropriate privileges to create a file of the specified type, pax
shall ignore the entry and write an error message to standard error.

• Only regular files and symbolic links have data to be restored. Presuming a regular file
meets any selection criteria that might be imposed on the format-reading utility by the
user, such data shall be restored.

• If a user does not have appropriate privileges to set a particular mode flag, the flag shall be
ignored. Some of the mode flags in the archive format are not mentioned elsewhere in this
volume of POSIX.1-2024. If the implementation does not support those flags, they may be
ignored.

cpio Special Entries

FIFO special files, directories, and the trailer shall be recorded with c_filesize equal to zero.
Symbolic links shall be recorded with c_filesize equal to the length of the contents of the symbolic
link. For other special files, c_filesize is unspecified by this volume of POSIX.1-2024. The header
for the next file entry in the archive shall be written directly after the last octet of the file entry
preceding it. A header denoting the filename TRAILER!!! shall indicate the end of the archive;
the contents of octets in the last block of the archive following such a header are undefined.

EXIT STATUS
The following exit values shall be returned:

0 All files were processed successfully.

3274 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110964

110965

110966

110967

110968

110969

110970

110971

110972

110973

110974

110975

110976

110977

110978

110979

110980

110981

110982

110983

110984

110985

110986

110987

110988

110989

110990

110991

110992

110993

110994

110995

110996

110997

110998

110999

111000

111001

111002

111003

111004

111005

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

>0 An error occurred.

CONSEQUENCES OF ERRORS
If pax cannot create a file or a link when reading an archive or cannot find a file when writing an
archive, or cannot preserve the user ID, group ID, or file mode when the −p option is specified, a
diagnostic message shall be written to standard error and a non-zero exit status shall be
returned, but processing shall continue. In the case where pax cannot create a hard link to a file,
pax shall not, by default, create a second copy of the file.

If the extraction of a file from an archive is prematurely terminated by a signal or error, pax may
have only partially extracted the file or (if the −n option was not specified) may have extracted a
file of the same name as that specified by the user, but which is not the file the user wanted.
Additionally, the file modes of extracted directories may have additional bits from the S_IRWXU
mask set as well as incorrect modification and access times.

APPLICATION USAGE
Caution is advised when using the −a option to append to a cpio format archive. If any of the
files being appended happen to be given the same c_dev and c_ino values as a file in the existing
part of the archive, then they may be treated as links to that file on extraction. Thus, it is risky to
use −a with cpio format except when it is done on the same system that the original archive was
created on, and with the same pax utility, and in the knowledge that there has been little or no
file system activity since the original archive was created that could lead to any of the files
appended being given the same c_dev and c_ino values as an unrelated file in the existing part of
the archive. Also, when (intentionally) appending additional links to a file in the existing part of
the archive, the c_nlink values in the modified archive can be smaller than the number of links to
the file in the archive, which may mean that the links are not preserved on extraction.

The −p (privileges) option was invented to reconcile differences between historical tar and cpio
implementations. In particular, the two utilities use −m in diametrically opposed ways. The −p
option also provides a consistent means of extending the ways in which future file attributes can
be addressed, such as for enhanced security systems or high-performance files. Although it may
seem complex, there are really two modes that are most commonly used:

−p e ``Preserve everything’’. This would be used by the historical superuser, someone with
all appropriate privileges, to preserve all aspects of the files as they are recorded in the
archive. The e flag is the sum of o and p, and other implementation-defined attributes.

−p p ``Preserve’’ the file mode bits. This would be used by the user with regular privileges
who wished to preserve aspects of the file other than the ownership. The file times are
preserved by default, but two other flags are offered to disable these and use the time
of extraction.

The one pathname per line format of standard input precludes pathnames containing <newline>
characters. Although such pathnames violate the portable filename guidelines, they may exist
and their presence may inhibit usage of pax within shell scripts. This problem is inherited from
historical archive programs. The problem can be avoided by listing filename arguments on the
command line instead of on standard input.

It is almost certain that appropriate privileges are required for pax to accomplish parts of this
volume of POSIX.1-2024. Specifically, creating files of type block special or character special,
restoring file access times unless the files are owned by the user (the −t option), or preserving file
owner, group, and mode (the −p option) all probably require appropriate privileges.

In read mode, implementations are permitted to overwrite files when the archive has multiple
members with the same name. This may fail if permissions on the first version of the file do not
permit it to be overwritten.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3275

111006

111007

111008

111009

111010

111011

111012

111013

111014

111015

111016

111017

111018

111019

111020

111021

111022

111023

111024

111025

111026

111027

111028

111029

111030

111031

111032

111033

111034

111035

111036

111037

111038

111039

111040

111041

111042

111043

111044

111045

111046

111047

111048

111049

111050

111051

111052

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

The cpio and ustar formats can only support files up to 8 589 934 592 bytes (8 ∗ 2ˆ30) in size.

When archives containing binary header information are listed , the filenames printed may
cause strange behavior on some terminals.

When all of the following are true:

1. A file of type directory is being placed into an archive.

2. The ustar archive format is being used.

3. The pathname of the directory is less than or equal to 155 bytes long (it will fit in the prefix
field in the ustar header block).

4. The last component of the pathname of the directory is longer than 100 bytes long (it will
not fit in the name field in the ustar header block).

some implementations of the pax utility will place the entire directory pathname in the prefix
field, set the name field to an empty string, and place the directory in the archive. Other
implementations of the pax utility will give an error under these conditions because the name
field is not large enough to hold the last component of the directory name. This standard allows
either behavior. However, when extracting a directory from a ustar format archive, this standard
requires that all implementations be able to extract a directory even if the name field contains an
empty string as long as the prefix field does not also contain an empty string.

When restricting file hierarchy traversal to one file system, it can sometimes be desirable for the
crossing points themselves to be processed (archived or copied) and sometimes for them not to
be processed. (Crossing points are mount points and, if the −L option is specified, symbolic links
to directories on other file systems.) With the −X option pax processes them, but there is no
standard way to have pax not process them. However, this can be achieved by using find to do
the hierarchy traversal and piping the output of find to pax (with the −d option); see the
APPLICATION USAGE for find .

EXAMPLES
The following command:

pax -w -f /dev/rmt/1m .

copies the contents of the current directory to tape drive 1, medium density (assuming historical
System V device naming procedures—the historical BSD device name would be /dev/rmt9).

The following commands:

mkdir newdir
pax -rw olddir newdir

copy the olddir directory hierarchy to newdir.

pax -r -s ',^//*usr//*,,' -f a.pax

reads the archive a.pax, with all files rooted in /usr in the archive extracted relative to the current
directory.

Using the option:

-o listopt="%M %(atime)T %(size)D %(name)s"

overrides the default output description in Standard Output and instead writes:

-rw-rw--- Jan 12 15:53 2003 1492 /usr/foo/bar

Using the options:

3276 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111053

111054

111055

111056

111057

111058

111059

111060

111061

111062

111063

111064

111065

111066

111067

111068

111069

111070

111071

111072

111073

111074

111075

111076

111077

111078

111079

111080

111081

111082

111083

111084

111085

111086

111087

111088

111089

111090

111091

111092

111093

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

-o listopt='%L\t%(size)D\n%.7' \
-o listopt='(name)s\n%(atime)T\n%T'

overrides the default output description in Standard Output and instead writes:

/usr/foo/bar -> /tmp 1492
/usr/fo
Jan 12 15:53 1991
Jan 31 15:53 2003

RATIONALE
The pax utility was new for the ISO POSIX-2: 1993 standard. It represents a peaceful compromise
between advocates of the historical tar and cpio utilities.

A fundamental difference between cpio and tar was in the way directories were treated. The cpio
utility did not treat directories differently from other files, and to select a directory and its
contents required that each file in the hierarchy be explicitly specified. For tar, a directory
matched every file in the file hierarchy it rooted.

The pax utility offers both interfaces; by default, directories map into the file hierarchy they root.
The −d option causes pax to skip any file not explicitly referenced, as cpio historically did. The tar
−style behavior was chosen as the default because it was believed that this was the more
common usage and because tar is the more commonly available interface, as it was historically
provided on both System V and BSD implementations.

The data interchange format specification in this volume of POSIX.1-2024 requires that processes
with ``appropriate privileges’’ shall always restore the ownership and permissions of extracted
files exactly as archived. If viewed from the historic equivalence between superuser and
``appropriate privileges’’, there are two problems with this requirement. First, users running as
superusers may unknowingly set dangerous permissions on extracted files. Second, it is
needlessly limiting, in that superusers cannot extract files and own them as superuser unless the
archive was created by the superuser. (It should be noted that restoration of ownerships and
permissions for the superuser, by default, is historical practice in cpio, but not in tar.) In order to
avoid these two problems, the pax specification has an additional ``privilege’’ mechanism, the −p
option. Only a pax invocation with the privileges needed, and which has the −p option set using
the e specification character, has appropriate privileges to restore full ownership and permission
information.

Note also that this volume of POSIX.1-2024 requires that the file ownership and access
permissions shall be set, on extraction, in the same fashion as the creat() function when provided
with the mode stored in the archive. This means that the file creation mask of the user is applied
to the file permissions.

Users should note that directories may be created by pax while extracting files with permissions
that are different from those that existed at the time the archive was created. When extracting
sensitive information into a directory hierarchy that no longer exists, users are encouraged to set
their file creation mask appropriately to protect these files during extraction.

The table of contents output is written to standard output to facilitate pipeline processing.

An early proposal had hard links displaying for all pathnames. This was removed because it
complicates the output of the case where −v is not specified and does not match historical cpio
usage. The hard-link information is available in the −v display.

The description of the −l option allows implementations to make hard links to symbolic links.
Earlier versions of this standard did not specify any way to create a hard link to a symbolic link,
but many implementations provided this capability as an extension. If there are hard links to

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3277

111094

111095

111096

111097

111098

111099

111100

111101

111102

111103

111104

111105

111106

111107

111108

111109

111110

111111

111112

111113

111114

111115

111116

111117

111118

111119

111120

111121

111122

111123

111124

111125

111126

111127

111128

111129

111130

111131

111132

111133

111134

111135

111136

111137

111138

111139

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

symbolic links when an archive is created, the implementation is required to archive the hard
link in the archive (unless −H or −L is specified). When in read mode and in copy mode,
implementations supporting hard links to symbolic links should use them when appropriate.

The archive formats inherited from the POSIX.1-1990 standard have certain restrictions that have
been brought along from historical usage. For example, there are restrictions on the length of
pathnames stored in the archive. When pax is used in copy(−rw) mode (copying directory
hierarchies), the ability to use extensions from the −xpax format overcomes these restrictions.

The default blocksize value of 5 120 bytes for cpio was selected because it is one of the standard
block-size values for cpio, set when the −B option is specified. (The other default block-size value
for cpio is 512 bytes, and this was considered to be too small.) The default block value of 10 240
bytes for tar was selected because that is the standard block-size value for BSD tar. The
maximum block size of 32 256 bytes (215−512 bytes) is the largest multiple of 512 bytes that fits
into a signed 16-bit tape controller transfer register. There are known limitations in some
historical systems that would prevent larger blocks from being accepted. Historical values were
chosen to improve compatibility with historical scripts using dd or similar utilities to manipulate
archives. Also, default block sizes for any file type other than character special file has been
deleted from this volume of POSIX.1-2024 as unimportant and not likely to affect the structure of
the resulting archive.

Implementations are permitted to modify the block-size value based on the archive format or the
device to which the archive is being written. This is to provide implementations with the
opportunity to take advantage of special types of devices, and it should not be used without a
great deal of consideration as it almost certainly decreases archive portability.

The intended use of the −n option was to permit extraction of one or more files from the archive
without processing the entire archive. This was viewed by the standard developers as offering
significant performance advantages over historical implementations. The −n option in early
proposals had three effects; the first was to cause special characters in patterns to not be treated
specially. The second was to cause only the first file that matched a pattern to be extracted. The
third was to cause pax to write a diagnostic message to standard error when no file was found
matching a specified pattern. Only the second behavior is retained by this volume of
POSIX.1-2024, for many reasons. First, it is in general not acceptable for a single option to have
multiple effects. Second, the ability to make pattern matching characters act as normal characters
is useful for parts of pax other than file extraction. Third, a finer degree of control over the
special characters is useful because users may wish to normalize only a single special character
in a single filename. Fourth, given a more general escape mechanism, the previous behavior of
the −n option can be easily obtained using the −s option or a sed script. Finally, writing a
diagnostic message when a pattern specified by the user is unmatched by any file is useful
behavior in all cases.

In this version, the −n was removed from the copy mode synopsis of pax; it is inapplicable
because there are no pattern operands specified in this mode.

There is another method than pax for copying subtrees in POSIX.1-2024 described as part of the
cp utility. Both methods are historical practice: cp provides a simpler, more intuitive interface,
while pax offers a finer granularity of control. Each provides additional functionality to the
other; in particular, pax maintains the hard-link structure of the hierarchy while cp does not. It is
the intention of the standard developers that the results be similar (using appropriate option
combinations in both utilities). The results are not required to be identical; there seemed
insufficient gain to applications to balance the difficulty of implementations having to guarantee
that the results would be exactly identical.

A single archive may span more than one file. It is suggested that implementations provide

3278 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111140

111141

111142

111143

111144

111145

111146

111147

111148

111149

111150

111151

111152

111153

111154

111155

111156

111157

111158

111159

111160

111161

111162

111163

111164

111165

111166

111167

111168

111169

111170

111171

111172

111173

111174

111175

111176

111177

111178

111179

111180

111181

111182

111183

111184

111185

111186

111187

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

informative messages to the user on standard error whenever the archive file is changed.

The −d option (do not create intermediate directories not listed in the archive) found in early
proposals was originally provided as a complement to the historic −d option of cpio. It has been
deleted.

The −s option in early proposals specified a subset of the substitution command from the ed
utility. As there was no reason for only a subset to be supported, the −s option is now compatible
with the current ed specification. Since the delimiter can be any non-null character, the following
usage with single <space> characters is valid:

pax -s " foo bar " ...

The −t description is worded so as to note that this may cause the access time update caused by
some other activity (which occurs while the file is being read) to be overwritten.

The default behavior of pax with regard to file modification times is the same as historical
implementations of tar. It is not the historical behavior of cpio.

Because the −i option uses /dev/tty, utilities without a controlling terminal are not able to use
this option.

The −y option, found in early proposals, has been deleted because a line containing a single
<period> for the −i option has equivalent functionality. The special lines for the −i option (a
single <period> and the empty line) are historical practice in cpio.

In early drafts, a −echarmap option was included to increase portability of files between systems
using different coded character sets. This option was omitted because it was apparent that
consensus could not be formed for it. In this version, the use of UTF-8 should be an adequate
substitute.

The ISO POSIX-2: 1993 standard and ISO POSIX-1 standard requirements for pax, however,
made it very difficult to create a single archive containing files created using extended characters
provided by different locales. This version adds the hdrcharset keyword to make it possible to
archive files in these cases without dropping files due to translation errors.

Translating filenames and other attributes from a locale’s encoding to UTF-8 and then back again
can lose information, as the resulting filename might not be byte-for-byte equivalent to the
original. To avoid this problem, users can specify the −o hdrcharset=binary option, which will
cause the resulting archive to use binary format for all names and attributes. Such archives are
not portable among hosts that use different native encodings (e.g., EBCDIC versus ASCII-based
encodings), but they will allow interchange among the vast majority of POSIX file systems in
practical use. Also, the −o hdrcharset=binary option will cause pax in copy mode to behave
more like other standard utilities such as cp.

If the values specified by the −o exthdr.name=value, −o globexthdr.name=value, or by
$TMPDIR (if −o globexthdr.name is not specified) require a character encoding other than that
described in the ISO/IEC 646: 1991 standard, a path extended header record will have to be
created for the file. If a hdrcharset extended header record is active for such headers, it will
determine the codeset used for the value field in these extended path header records. These path
extended header records always need to be created when writing an archive even if
hdrcharset=binary has been specified and would contain the same (binary) data that appears in
the ustar header record prefix and name fields. (In other words, an extended header path record
is always required to be generated if the prefix or name fields contain non-ASCII characters even
when hdrcharset=binary is also in effect for that file.)

The −k option was added to address international concerns about the dangers involved in the
character set transformations of −e (if the target character set were different from the source, the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3279

111188

111189

111190

111191

111192

111193

111194

111195

111196

111197

111198

111199

111200

111201

111202

111203

111204

111205

111206

111207

111208

111209

111210

111211

111212

111213

111214

111215

111216

111217

111218

111219

111220

111221

111222

111223

111224

111225

111226

111227

111228

111229

111230

111231

111232

111233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

filenames might be transformed into names matching existing files) and also was made more
general to protect files transferred between file systems with different {NAME_MAX} values
(truncating a filename on a smaller system might also inadvertently overwrite existing files). As
stated, it prevents any overwriting, even if the target file is older than the source. This version
adds more granularity of options to solve this problem by introducing the −oinvalid=option—
specifically the UTF-8 and binary actions. (Note that an existing file is still subject to overwriting
in this case. The −k option closes that loophole.)

Some of the file characteristics referenced in this volume of POSIX.1-2024 might not be
supported by some archive formats. For example, neither the tar nor cpio formats contain the
file access time. For this reason, the e specification character has been provided, intended to
cause all file characteristics specified in the archive to be retained.

It is required that extracted directories, by default, have their access and modification times and
permissions set to the values specified in the archive. This has obvious problems in that the
directories are almost certainly modified after being extracted and that directory permissions
may not permit file creation. One possible solution is to create directories with the mode
specified in the archive, as modified by the umask of the user, with sufficient permissions to
allow file creation. After all files have been extracted, pax would then reset the access and
modification times and permissions as necessary.

The list-mode formatting description borrows heavily from the one defined by the printf utility.
However, since there is no separate operand list to get conversion arguments, the format was
extended to allow specifying the name of the conversion argument as part of the conversion
specification.

The T conversion specifier allows time fields to be displayed in any of the date formats. Unlike
the ls utility, pax does not adjust the format when the date is less than six months in the past.
This makes parsing the output more predictable.

The D conversion specifier handles the ability to display the major/minor or file size, as with ls,
by using %−8(size)D.

The L conversion specifier handles the ls display for symbolic links.

Conversion specifiers were added to generate existing known types used for ls.

pax Interchange Format

The new POSIX data interchange format was developed primarily to satisfy international
concerns that the ustar and cpio formats did not provide for file, user, and group names encoded
in characters outside a subset of the ISO/IEC 646: 1991 standard. The standard developers
realized that this new POSIX data interchange format should be very extensible because there
were other requirements they foresaw in the near future:

• Support international character encodings and locale information

• Support security information (ACLs, and so on)

• Support future file types, such as realtime or contiguous files

• Include data areas for implementation use

• Support systems with words larger than 32 bits and timers with subsecond granularity

The following were not goals for this format because these are better handled by separate
utilities or are inappropriate for a portable format:

3280 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111234

111235

111236

111237

111238

111239

111240

111241

111242

111243

111244

111245

111246

111247

111248

111249

111250

111251

111252

111253

111254

111255

111256

111257

111258

111259

111260

111261

111262

111263

111264

111265

111266

111267

111268

111269

111270

111271

111272

111273

111274

111275

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

• Encryption

• Compression

• Data translation between locales and codesets

• inode storage

The format chosen to support the goals is an extension of the ustar format. Of the two formats
previously available, only the ustar format was selected for extensions because:

• It was easier to extend in an upwards-compatible way. It offered version flags and header
block type fields with room for future standardization. The cpio format, while possessing a
more flexible file naming methodology, could not be extended without breaking some
theoretical implementation or using a dummy filename that could be a legitimate filename.

• Industry experience since the original ``tar wars’’ fought in developing the ISO POSIX-1
standard has clearly been in favor of the ustar format, which is generally the default
output format selected for pax implementations on new systems.

The new format was designed with one additional goal in mind: reasonable behavior when an
older tar or pax utility happened to read an archive. Since the POSIX.1-1990 standard mandated
that a ``format-reading utility’’ had to treat unrecognized typeflag values as regular files, this
allowed the format to include all the extended information in a pseudo-regular file that
preceded each real file. An option is given that allows the archive creator to set up reasonable
names for these files on the older systems. Also, the normative text suggests that reasonable file
access values be used for this ustar header block. Making these header files inaccessible for
convenient reading and deleting would not be reasonable. File permissions of 600 or 700 are
suggested.

The ustar typeflag field was used to accommodate the additional functionality of the new format
rather than magic or version because the POSIX.1-1990 standard (and, by reference, the previous
version of pax), mandated the behavior of the format-reading utility when it encountered an
unknown typeflag, but was silent about the other two fields.

Early proposals for the first version of this standard contained a proposed archive format that
was based on compatibility with the standard for tape files (ISO 1001, similar to the format used
historically on many mainframes and minicomputers). This format was overly complex and
required considerable overhead in volume and header records. Furthermore, the standard
developers felt that it would not be acceptable to the community of POSIX developers, so it was
later changed to be a format more closely related to historical practice on POSIX systems.

The prefix and name split of pathnames in ustar was replaced by the single path extended
header record for simplicity.

The concept of a global extended header (typeflagg) was controversial. If this were applied to an
archive being recorded on magnetic tape, a few unreadable blocks at the beginning of the tape
could be a serious problem; a utility attempting to extract as many files as possible from a
damaged archive could lose a large percentage of file header information in this case. However,
if the archive were on a reliable medium, such as a CD-ROM, the global extended header offers
considerable potential size reductions by eliminating redundant information. Thus, the text
warns against using the global method for unreliable media and provides a method for
implanting global information in the extended header for each file, rather than in the typeflag g
records.

No facility for data translation or filtering on a per-file basis is included because the standard
developers could not invent an interface that would allow this in an efficient manner. If a filter,
such as encryption or compression, is to be applied to all the files, it is more efficient to apply the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3281

111276

111277

111278

111279

111280

111281

111282

111283

111284

111285

111286

111287

111288

111289

111290

111291

111292

111293

111294

111295

111296

111297

111298

111299

111300

111301

111302

111303

111304

111305

111306

111307

111308

111309

111310

111311

111312

111313

111314

111315

111316

111317

111318

111319

111320

111321

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

filter to the entire archive as a single file. The standard developers considered interfaces that
would invoke a shell script for each file going into or out of the archive, but the system overhead
in this approach was considered to be too high.

One such approach would be to have filter= records that give a pathname for an executable.
When the program is invoked, the file and archive would be open for standard input/output
and all the header fields would be available as environment variables or command-line
arguments. The standard developers did discuss such schemes, but they were omitted from
POSIX.1-2024 due to concerns about excessive overhead. Also, the program itself would need to
be in the archive if it were to be used portably.

There is currently no portable means of identifying the character set(s) used for a file in the file
system. Therefore, pax has not been given a mechanism to generate charset records
automatically. The only portable means of doing this is for the user to write the archive using the
−ocharset=string command line option. This assumes that all of the files in the archive use the
same encoding. The ``implementation-defined’’ text is included to allow for a system that can
identify the encodings used for each of its files.

The table of standards that accompanies the charset record description is acknowledged to be
very limited. Only a limited number of character set standards is reasonable for maximal
interchange. Any character set is, of course, possible by prior agreement. It was suggested that
EBCDIC be listed, but it was omitted because it is not defined by a formal standard. Formal
standards, and then only those with reasonably large followings, can be included here, simply as
a matter of practicality. The <value>s represent names of officially registered character sets in the
format required by the ISO 2375: 1985 standard.

The normal <comma> or <blank>-separated list rules are not followed in the case of keyword
options to allow ease of argument parsing for getopts.

Further information on character encodings is in pax Archive Character Set Encoding/Decoding
(on page 3284).

The standard developers have reserved keyword name space for vendor extensions. It is
suggested that the format to be used is:

VENDOR.keyword

where VENDOR is the name of the vendor or organization in all uppercase letters. It is further
suggested that the keyword following the <period> be named differently than any of the
standard keywords so that it could be used for future standardization, if appropriate, by
omitting the VENDOR prefix.

The <length> field in the extended header record was included to make it simpler to step
through the records, even if a record contains an unknown format (to a particular pax) with
complex interactions of special characters. It also provides a minor integrity checkpoint within
the records to aid a program attempting to recover files from a damaged archive.

There are no extended header versions of the devmajor and devminor fields because the
unspecified format ustar header field should be sufficient. If they are not, vendor-specific
extended keywords (such as VENDOR.devmajor) should be used.

Device and i-number labeling of files was not adopted from cpio; files are interchanged strictly
on a symbolic name basis, as in ustar.

Just as with the ustar format descriptions, the new format makes no special arrangements for
multi-volume archives. Each of the pax archive types is assumed to be inside a single POSIX file
and splitting that file over multiple volumes (diskettes, tape cartridges, and so on), processing
their labels, and mounting each in the proper sequence are considered to be implementation

3282 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111322

111323

111324

111325

111326

111327

111328

111329

111330

111331

111332

111333

111334

111335

111336

111337

111338

111339

111340

111341

111342

111343

111344

111345

111346

111347

111348

111349

111350

111351

111352

111353

111354

111355

111356

111357

111358

111359

111360

111361

111362

111363

111364

111365

111366

111367

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

details that cannot be described portably.

The pax format is intended for interchange, not only for backup on a single (family of) systems.
It is not as densely packed as might be possible for backup:

• It contains information as coded characters that could be coded in binary.

• It identifies extended records with name fields that could be omitted in favor of a fixed-
field layout.

• It translates names into a portable character set and identifies locale-related information,
both of which are probably unnecessary for backup.

The requirements on restoring from an archive are slightly different from the historical wording,
allowing for non-monolithic privilege to bring forward as much as possible. In particular,
attributes such as ``high performance file’’ might be broadly but not universally granted while
set-user-ID or chown() might be much more restricted. There is no implication in POSIX.1-2024
that the security information be honored after it is restored to the file hierarchy, in spite of what
might be improperly inferred by the silence on that topic. That is a topic for another standard.

Hard links are recorded in the fashion described here because a hard link can be to any file type.
It is desirable in general to be able to restore part of an archive selectively and restore all of those
files completely. If the data is not associated with each hard link, it is not possible to do this.
However, the data associated with a file can be large, and when selective restoration is not
needed, this can be a significant burden. The archive is structured so that files that have no
associated data can always be restored by the name of any link name of any hard link, and the
user can choose whether data is recorded with each instance of a file that contains data. The
format permits mixing of hard links with data and hard links without data in a single archive;
this can be done for special needs, and pax is expected to interpret such archives on input
properly, despite the fact that there is no pax option that would force this mixed case on output.
(When −o linkdata is used, the output must contain the duplicate data, but the implementation
is free to include it or omit it when −o linkdata is not used.)

The time values are included as extended header records for those implementations needing
more than the eleven octal digits allowed by the ustar format. Portable file timestamps cannot be
negative. If pax encounters a file with a negative timestamp in copy or write mode, it can reject
the file, substitute a non-negative timestamp, or generate a non-portable timestamp with a
leading '−'. Even though some implementations can support finer file-time granularities than
seconds, the normative text requires support only for seconds since the Epoch because the
ISO POSIX-1 standard states them that way. The ustar format includes only mtime; the new
format adds atime and ctime for symmetry. The atime access time restored to the file system will
be affected by the −p a and −p e options. The ctime creation time (actually inode modification
time) is described with appropriate privileges so that it can be ignored when writing to the file
system. POSIX does not provide a portable means to change file creation time. Nothing is
intended to prevent a non-portable implementation of pax from restoring the value.

The gid, size, and uid extended header records were included to allow expansion beyond the
sizes specified in the regular tar header. New file system architectures are emerging that will
exhaust the 12-digit size field. There are probably not many systems requiring more than 8 digits
for user and group IDs, but the extended header values were included for completeness,
allowing overrides for all of the decimal values in the tar header.

The standard developers intended to describe the effective results of pax with regard to file
ownerships and permissions; implementations are not restricted in timing or sequencing the
restoration of such, provided the results are as specified.

Much of the text describing the extended headers refers to use in ``write or copy modes’’. The

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3283

111368

111369

111370

111371

111372

111373

111374

111375

111376

111377

111378

111379

111380

111381

111382

111383

111384

111385

111386

111387

111388

111389

111390

111391

111392

111393

111394

111395

111396

111397

111398

111399

111400

111401

111402

111403

111404

111405

111406

111407

111408

111409

111410

111411

111412

111413

111414

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

copy mode references are due to the normative text: ``The effect of the copy shall be as if the
copied files were written to an archive file and then subsequently extracted . . .’’. There is
certainly no way to test whether pax is actually generating the extended headers in copy mode,
but the effects must be as if it had.

pax Archive Character Set Encoding/Decoding

There is a need to exchange archives of files between systems of different native codesets.
Filenames, group names, and user names must be preserved to the fullest extent possible when
an archive is read on the receiving platform. Translation of the contents of files is not within the
scope of the pax utility.

There will also be the need to represent characters that are not available on the receiving
platform. These unsupported characters cannot be automatically folded to the local set of
characters due to the chance of collisions. This could result in overwriting previous extracted
files from the archive or pre-existing files on the system.

For these reasons, the codeset used to represent characters within the extended header records of
the pax archive must be sufficiently rich to handle all commonly used character sets. The fields
requiring translation include, at a minimum, filenames, user names, group names, and link
pathnames. Implementations may wish to have localized extended keywords that use non-
portable characters.

The standard developers considered the following options:

• The archive creator specifies the well-defined name of the source codeset. The receiver
must then recognize the codeset name and perform the appropriate translations to the
destination codeset.

• The archive creator includes within the archive the character mapping table for the source
codeset used to encode extended header records. The receiver must then read the
character mapping table and perform the appropriate translations to the destination
codeset.

• The archive creator translates the extended header records in the source codeset into a
canonical form. The receiver must then perform the appropriate translations to the
destination codeset.

The approach that incorporates the name of the source codeset poses the problem of codeset
name registration, and makes the archive useless to pax archive decoders that do not recognize
that codeset.

Because parts of an archive may be corrupted, the standard developers felt that including the
character map of the source codeset was too fragile. The loss of this one key component could
result in making the entire archive useless. (The difference between this and the global extended
header decision was that the latter has a workaround—duplicating extended header records on
unreliable media—but this would be too burdensome for large character set maps.)

Both of the above approaches also put an undue burden on the pax archive receiver to handle the
cross-product of all source and destination codesets.

To simplify the translation from the source codeset to the canonical form and from the canonical
form to the destination codeset, the standard developers decided that the internal representation
should be a stateless encoding. A stateless encoding is one where each codepoint has the same
meaning, without regard to the decoder being in a specific state. An example of a stateful
encoding would be the Japanese Shift-JIS; an example of a stateless encoding would be the
ISO/IEC 646: 1991 standard (equivalent to 7-bit ASCII).

3284 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111415

111416

111417

111418

111419

111420

111421

111422

111423

111424

111425

111426

111427

111428

111429

111430

111431

111432

111433

111434

111435

111436

111437

111438

111439

111440

111441

111442

111443

111444

111445

111446

111447

111448

111449

111450

111451

111452

111453

111454

111455

111456

111457

111458

111459

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

For these reasons, the standard developers decided to adopt a canonical format for the
representation of file information strings. The obvious, well-endorsed candidate is the
ISO/IEC 10646: 2020 standard (based in part on Unicode), which can be used to represent the
characters of virtually all standardized character sets. The standard developers initially agreed
upon using UCS2 (16-bit Unicode) as the internal representation. This repertoire of characters
provides a sufficiently rich set to represent all commonly-used codesets.

However, the standard developers found that the 16-bit Unicode representation had some
problems. It forced the issue of standardizing byte ordering. The 2-byte length of each character
made the extended header records twice as long for the case of strings coded entirely from
historical 7-bit ASCII. For these reasons, the standard developers chose the UTF-8 defined in the
ISO/IEC 10646: 2020 standard. This multi-byte representation encodes UCS2 or UCS4 characters
reliably and deterministically, eliminating the need for a canonical byte ordering. In addition,
NUL octets and other characters possibly confusing to POSIX file systems do not appear, except
to represent themselves. It was realized that certain national codesets take up more space after
the encoding, due to their placement within the UCS range; it was felt that the usefulness of the
encoding of the names outweighs the disadvantage of size increase for file, user, and group
names.

The encoding of UTF-8 is as follows:

UCS4 Hex Encoding UTF-8 Binary Encoding

00000000-0000007F 0xxxxxxx
00000080-000007FF 110xxxxx 10xxxxxx
00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

where each 'x' represents a bit value from the character being translated.

ustar Interchange Format

The description of the ustar format reflects numerous enhancements over pre-1988 versions of
the historical tar utility. The goal of these changes was not only to provide the functional
enhancements desired, but also to retain compatibility between new and old versions. This
compatibility has been retained. Archives written using the old archive format are compatible
with the new format.

Implementors should be aware that the previous file format did not include a mechanism to
archive directory type files. For this reason, the convention of using a filename ending with
<slash> was adopted to specify a directory on the archive.

The total size of the name and prefix fields have been set to meet the minimum requirements for
{PATH_MAX}. If a pathname will fit within the name field, it is recommended that the pathname
be stored there without the use of the prefix field. Although the name field is known to be too
small to contain {PATH_MAX} characters, the value was not changed in this version of the
archive file format to retain backwards-compatibility, and instead the prefix was introduced.
Also, because of the earlier version of the format, there is no way to remove the restriction on the
linkname field being limited in size to just that of the name field.

The size field is required to be meaningful in all implementation extensions, although it could be
zero. This is required so that the data blocks can always be properly counted.

It is suggested that if device special files need to be represented that cannot be represented in the
standard format, that one of the extension types (A-Z) be used, and that the additional

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3285

111460

111461

111462

111463

111464

111465

111466

111467

111468

111469

111470

111471

111472

111473

111474

111475

111476

111477

111478

111479

111480

111481

111482

111483

111484

111485

111486

111487

111488

111489

111490

111491

111492

111493

111494

111495

111496

111497

111498

111499

111500

111501

111502

111503

111504

111505

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

information for the special file be represented as data and be reflected in the size field.

Attempting to restore a special file type, where it is converted to ordinary data and conflicts with
an existing filename, need not be specially detected by the utility. If run as an ordinary user, pax
should not be able to overwrite the entries in, for example, /dev in any case (whether the file is
converted to another type or not). If run as a privileged user, it should be able to do so, and it
would be considered a bug if it did not. The same is true of ordinary data files and similarly
named special files; it is impossible to anticipate the needs of the user (who could really intend
to overwrite the file), so the behavior should be predictable (and thus regular) and rely on the
protection system as required.

The value 7 in the typeflag field is intended to define how contiguous files can be stored in a
ustar archive. POSIX.1-2024 does not require the contiguous file extension, but does define a
standard way of archiving such files so that all conforming systems can interpret these file types
in a meaningful and consistent manner. On a system that does not support extended file types,
the pax utility should do the best it can with the file and go on to the next.

The file protection modes are those conventionally used by the ls utility. This is extended beyond
the usage in the ISO POSIX-2 standard to support the ``shared text’’ or ``sticky’’ bit. It is intended
that the conformance document should not document anything beyond the existence of and
support of such a mode. Further extensions are expected to these bits, particularly with
overloading the set-user-ID and set-group-ID flags.

cpio Interchange Format

The reference to appropriate privileges in the cpio format refers to an error on standard output;
the ustar format does not make comparable statements.

The model for this format was the historical System V cpio−c data interchange format. This
model documents the portable version of the cpio format and not the binary version. It has the
flexibility to transfer data of any type described within POSIX.1-2024, yet is extensible to transfer
data types specific to extensions beyond POSIX.1-2024 (for example, contiguous files). Because it
describes existing practice, there is no question of maintaining upwards-compatibility.

cpio Header

There has been some concern that the size of the c_ino field of the header is too small to handle
those systems that have very large inode numbers. However, the c_ino field in the header is used
strictly as a hard-link resolution mechanism for archives. It is not necessarily the same value as
the inode number of the file in the location from which that file is extracted.

The name c_magic is based on historical usage.

cpio Filename

For most historical implementations of the cpio utility, {PA TH_MAX} octets can be used to
describe the pathname without the addition of any other header fields (the NUL character
would be included in this count). {PATH_MAX} is the minimum value for pathname size,
documented as 256 bytes. However, an implementation may use c_namesize to determine the
exact length of the pathname. With the current description of the <cpio.h> header, this
pathname size can be as large as a number that is described in six octal digits.

Two values are documented under the c_mode field values to provide for extensibility for known
file types:

3286 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111506

111507

111508

111509

111510

111511

111512

111513

111514

111515

111516

111517

111518

111519

111520

111521

111522

111523

111524

111525

111526

111527

111528

111529

111530

111531

111532

111533

111534

111535

111536

111537

111538

111539

111540

111541

111542

111543

111544

111545

111546

111547

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

0110 000 Reserved for contiguous files. The implementation may treat the rest of the
information for this archive like a regular file. If this file type is undefined, the
implementation may create the file as a regular file.

This provides for extensibility of the cpio format while allowing for the ability to read old
archives. Files of an unknown type may be read as ``regular files’’ on some implementations. On
a system that does not support extended file types, the pax utility should do the best it can with
the file and go on to the next.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
Chapter 2 (on page 2472), cp , ed , getopts , ls , printf

XBD Section 3.145 (on page 52), Chapter 5 (on page 113), Chapter 8 (on page 167), Section 12.2
(on page 215), <cpio.h>, <tar.h>

XSH chown(), creat(), fstatat(), futimens(), mkdir(), mkfifo(), write()

CHANGE HISTORY
First released in Issue 4.

Issue 5
A note is added to the APPLICATION USAGE indicating that the cpio and tar formats can only
support files up to 8 gigabytes in size.

Issue 6
The pax utility is aligned with the IEEE P1003.2b draft standard:

• Support has been added for symbolic links in the options and interchange formats.

• A new format has been devised, based on extensions to ustar.

• References to the ``extended’’ tar and cpio formats derived from the POSIX.1-1990
standard have been changed to remove the ``extended’’ adjective because this could cause
confusion with the extended tar header added in this version. (All references to tar are
actually to ustar.)

The TZ entry is added to the ENVIRONMENT VARIABLES section.

IEEE PASC Interpretation 1003.2 #168 is applied, clarifying that mkdir() and mkfifo() calls can
ignore an [EEXIST] error when extracting an archive.

IEEE PASC Interpretation 1003.2 #180 is applied, clarifying how extracted files are created when
in read mode.

IEEE PASC Interpretation 1003.2 #181 is applied, clarifying the description of the −t option.

IEEE PASC Interpretation 1003.2 #195 is applied.

IEEE PASC Interpretation 1003.2 #206 is applied, clarifying the handling of links for the −H, −L,
and −l options.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3287

111548

111549

111550

111551

111552

111553

111554

111555

111556

111557

111558

111559

111560

111561

111562

111563

111564

111565

111566

111567

111568

111569

111570

111571

111572

111573

111574

111575

111576

111577

111578

111579

111580

111581

111582

111583

111584

111585

111586

111587

111588

111589

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pax Utilities

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/35 is applied, adding the process ID of
the pax process into certain fields. This change provides a method for the implementation to
ensure that different instances of pax extracting a file named /a/b/foo will not collide when
processing the extended header information associated with foo.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/36 is applied, changing −x B to −x pax in
the OPTIONS section.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/20 is applied, updating the SYNOPSIS to
be consistent with the normative text.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/21 is applied, updating the
DESCRIPTION to describe the behavior when files to be linked are symbolic links and the
system is not capable of making hard links to symbolic links.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/22 is applied, updating the OPTIONS
section to describe the behavior for how multiple −odelete=pattern options are to be handled.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/23 is applied, updating the write option
within the OPTIONS section.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/24 is applied, adding a paragraph into
the OPTIONS section that states that specifying more than one of the mutually-exclusive options
(−H and −L) is not considered an error and that the last option specified will determine the
behavior of the utility.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/25 is applied, removing the ctime
paragraph within the EXTENDED DESCRIPTION. There is a contradiction in the definition of
the ctime keyword for the pax extended header, in that the st_ctime member of the stat structure
does not refer to a file creation time. No field in the standard stat structure from <sys/stat.h>
includes a file creation time.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/26 is applied, making it clear that typeflag
1 (ustar Interchange Format) applies not only to files that are hard-linked, but also to files that
are aliased via symbolic links.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/27 is applied, clarifying the cpio c_nlink
field.

Issue 7
Austin Group Interpretations 1003.1-2001 #011, #036, #086, and #109 are applied.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

SD5-XCU-ERN-2 is applied, making −c and −n mutually-exclusive in the SYNOPSIS.

SD5-XCU-ERN-3 is applied, revising the default behavior of −H and −L.

SD5-XCU-ERN-5, SD5-XCU-ERN-6, SD5-XCU-ERN-7, SD5-XCU-ERN-60 are applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The pax utility is no longer allowed to create separate identical symbolic links when extracting
linked symbolic links from an archive.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0128 [260], XCU/TC1-2008/0129
[261], XCU/TC1-2008/0130 [261], XCU/TC1-2008/0131 [313], and XCU/TC1-2008/0132 [233]
are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0152 [886], XCU/TC2-2008/0153

3288 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111590

111591

111592

111593

111594

111595

111596

111597

111598

111599

111600

111601

111602

111603

111604

111605

111606

111607

111608

111609

111610

111611

111612

111613

111614

111615

111616

111617

111618

111619

111620

111621

111622

111623

111624

111625

111626

111627

111628

111629

111630

111631

111632

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pax

[814], XCU/TC2-2008/0154 [886], and XCU/TC2-2008/0155 [707] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to behave as follows:

a. Report an error if a utility is directed to display a pathname that contains any bytes that
have the encoded value of a <newline> character when <newline> is a terminator or
separator in the output format being used.

b. Disallow the creation of filenames containing any bytes that have the encoded value of a
<newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1133 is applied, clarifying the −X option and adding a paragraph to the
APPLICATION USAGE section.

Austin Group Defect 1270 is applied, removing the −n option from the copy mode SYNOPSIS
line.

Austin Group Defect 1278 is applied, removing mention of the −n option in connection with
write mode.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

Austin Group Defect 1331 is applied, changing ``st_atime’’ to ``st_atim’’ and ``st_mtime’’ to
``st_mtim’’.

Austin Group Defect 1379 is applied, changing the ENVIRONMENT VARIABLES section.

Austin Group Defect 1380 is applied, changing text using the term ``link’’ in line with its
updated definition and changing the description of the −u option.

Austin Group Defect 1618 is applied, adding optional trailing 's' and 'S' characters to the
option-argument of the −s option.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3289

111633

111634

111635

111636

111637

111638

111639

111640

111641

111642

111643

111644

111645

111646

111647

111648

111649

111650

111651

111652

111653

111654

111655

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pr Utilities

NAME
pr — print files

SYNOPSIS
XSI pr [+page] [-column] [-adfFmprt] [-e[char][gap]] [-h header]

[-i[char][gap]] [-l lines] [-n[char][width]] [-o offset] [-s[char]]
[-w width] [file...]

DESCRIPTION
The pr utility is a printing and pagination filter. If multiple input files are specified, each shall be
read, formatted, and written to standard output. By default, the input shall be separated into
66-line pages, each with:

• A 5-line header that includes the page number, date, time, and the pathname of the file

• A 5-line trailer consisting of blank lines

If standard output is associated with a terminal, diagnostic messages shall be deferred until the
pr utility has completed processing.

When options specifying multi-column output are specified, output text columns shall be of
equal width; input lines that do not fit into a text column shall be truncated. By default, text
columns shall be separated with at least one <blank>.

OPTIONS
The pr utility shall conform to XBD Section 12.2 (on page 215), except that: the page option has a
'+' delimiter; page and column can be multi-digit numbers; some of the option-arguments are
optional; and some of the option-arguments cannot be specified as separate arguments from the
preceding option letter. In particular, the −s option does not allow the option letter to be
separated from its argument, and the options −e, −i, and −n require that both arguments, if
present, not be separated from the option letter.

The following options shall be supported. In the following option descriptions, column, lines,
offset, page, and width are positive decimal integers; gap is a non-negative decimal integer.

+page Begin output at page number page of the formatted input.

−column Produce multi-column output that is arranged in column columns (the default shall
be 1) and is written down each column in the order in which the text is received
from the input file. This option should not be used with −m. The options −e and −i
shall be assumed for multiple text-column output. Whether or not text columns are
produced with identical vertical lengths is unspecified, but a text column shall
never exceed the length of the page (see the −l option). When used with −t, use the
minimum number of lines to write the output.

−a Modify the effect of the −column option so that the columns are filled across the
page in a round-robin order (for example, when column is 2, the first input line
heads column 1, the second heads column 2, the third is the second line in column
1, and so on).

−d Produce output that is double-spaced; append an extra <newline> following every
<newline> found in the input.

−e[char][gap]
Expand each input <tab> to the next greater column position specified by the
formula n*gap+1, where n is an integer > 0. If gap is zero or is omitted, it shall
default to 8. All <tab> characters in the input shall be expanded into the
appropriate number of <space> characters. If any non-digit character, char, is
specified, it shall be used as the input <tab>. If the first character of the −e option-

3290 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111656

111657

111658

111659

111660

111661

111662

111663

111664

111665

111666

111667

111668

111669

111670

111671

111672

111673

111674

111675

111676

111677

111678

111679

111680

111681

111682

111683

111684

111685

111686

111687

111688

111689

111690

111691

111692

111693

111694

111695

111696

111697

111698

111699

111700

111701

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pr

argument is a digit, the entire option-argument shall be assumed to be gap.

XSI −f Use a <form-feed> for new pages, instead of the default behavior that uses a
sequence of <newline> characters. Pause before beginning the first page if the
standard output is associated with a terminal.

−F Use a <form-feed> for new pages, instead of the default behavior that uses a
sequence of <newline> characters.

−h header Use the string header to replace the contents of the file operand in the page header.

−i[char][gap] In output, replace <space> characters with <tab> characters wherever one or more
adjacent <space> characters reach column positions gap+1, 2* gap+1, 3* gap+1, and
so on. If gap is zero or is omitted, default tab settings at every eighth column
position shall be assumed. If any non-digit character, char, is specified, it shall be
used as the output <tab>. If the first character of the −i option-argument is a digit,
the entire option-argument shall be assumed to be gap.

−l lines Override the 66-line default and reset the page length to lines. If lines is not greater
than the sum of both the header and trailer depths (in lines), the pr utility shall
suppress both the header and trailer, as if the −t option were in effect.

−m Merge files. Standard output shall be formatted so the pr utility writes one line
from each file specified by a file operand, side by side into text columns of equal
fixed widths, in terms of the number of column positions. Implementations shall
support merging of at least nine file operands.

−n[char][width]
Provide width-digit line numbering (default for width shall be 5). The number shall
occupy the first width column positions of each text column of default output or
each line of −m output. If char (any non-digit character) is given, it shall be
appended to the line number to separate it from whatever follows (default for char
is a <tab>).

−o offset Each line of output shall be preceded by offset <space> characters. If the −o option
is not specified, the default offset shall be zero. The space taken is in addition to the
output line width (see the −w option below).

−p Pause before beginning each page if the standard output is directed to a terminal;
pr shall write an <alert> to standard error and wait for a <newline> to be read on
/dev/tty.

−r Write no diagnostic reports on failure to open files.

−s[char] Separate text columns by the single character char instead of by the appropriate
number of <space> characters (default for char shall be <tab>).

−t Write neither the five-line identifying header nor the five-line trailer usually
supplied for each page. Quit writing after the last line of each file without spacing
to the end of the page.

−w width Set the width of the line to width column positions for multiple text-column output
only. If the −w option is not specified and the −s option is not specified, the default
width shall be 72. If the −w option is not specified and the −s option is specified,
the default width shall be 512.

For single column output, input lines shall not be truncated.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3291

111702

111703

111704

111705

111706

111707

111708

111709

111710

111711

111712

111713

111714

111715

111716

111717

111718

111719

111720

111721

111722

111723

111724

111725

111726

111727

111728

111729

111730

111731

111732

111733

111734

111735

111736

111737

111738

111739

111740

111741

111742

111743

111744

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pr Utilities

OPERANDS
The following operand shall be supported:

file A pathname of a file to be written. If no file operands are specified, or if a file
operand is '−', the standard input shall be used.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is '−'.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files. If the −m option is not specified, an empty input file may, but
should not, be treated as an error.

The file /dev/tty shall be used to read responses required by the −p option.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pr:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and which characters are defined as printable (character
class print). Non-printable characters are still written to standard output, but are
not counted for the purpose for column-width and line-length calculations.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the format of the date and time for use in writing header lines.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone used to calculate date and time strings written in header
lines. If TZ is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
If pr receives an interrupt while writing to a terminal, it shall flush all accumulated error
messages to the screen before terminating.

STDOUT
If the −m option is not specified, the pr utility output shall be as follows:

• If an input file is empty and the implementation does not treat this as an error, no output
shall be written for that file and this shall be considered to be successful completion of the
processing for that file.

• For each non-empty input file, the output shall be a paginated version of the original file.

If the −m option is specified, the pr utility output shall be a paginated version of the merged file
contents, as described in OPTIONS.

In both cases, the pagination shall be accomplished using either <form-feed> characters or a

3292 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111745

111746

111747

111748

111749

111750

111751

111752

111753

111754

111755

111756

111757

111758

111759

111760

111761

111762

111763

111764

111765

111766

111767

111768

111769

111770

111771

111772

111773

111774

111775

111776

111777

111778

111779

111780

111781

111782

111783

111784

111785

111786

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pr

XSI sequence of <newline> characters, as controlled by the −F or −f option. Page headers shall be
generated unless the −t option is specified, the −l option is specified with too small a value (see
OPTIONS), or the −m option is specified and all of the input files are empty. The page headers
shall be of the form:

"\n\n%s %s Page %d\n\n\n", <output of date>, <file>, <page number>

In the POSIX locale, the <output of date> field shall be equivalent to the output of the following
command:

date "+%b %e %H:%M %Y"

without the trailing <newline>, as it would appear if executed at the current time if the −m
option is specified, or at the following time otherwise:

• The current time on pages being written from standard input.

• The modification time of the file named by the corresponding file operand on pages not
being written from standard input.

When the LC_TIME locale category is not set to the POSIX locale, a different format and order of
presentation of this field may be used.

If the −h option is specified, the <file> field shall be replaced by the header argument. Otherwise:

• If the −m option is specified, the <file> field shall be replaced by a null string on all pages.

• If the −m option is not specified, the <file> field shall be replaced by a null string on pages
containing output that was read from standard input.

STDERR
The standard error shall be used for diagnostic messages and for alerting the terminal when −p
is specified.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
A conforming application must protect its first operand, if it starts with a <plus-sign>, by
preceding it with the "--" argument that denotes the end of the options. For example, pr+x
could be interpreted as an invalid page number or a file operand.

If a file operand contains <newline>, <form-feed>, or <vertical-tab> characters, or is overly long,
and the pr utility is instructed to include the pathname of that file in the header, pagination may
not be handled correctly. Applications can guard against this by using the −h option (for
example, passing a sanitized, truncated form of the pathname with −h).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3293

111787

111788

111789

111790

111791

111792

111793

111794

111795

111796

111797

111798

111799

111800

111801

111802

111803

111804

111805

111806

111807

111808

111809

111810

111811

111812

111813

111814

111815

111816

111817

111818

111819

111820

111821

111822

111823

111824

111825

111826

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pr Utilities

EXAMPLES

1. Print a numbered list of all files in the current directory:

ls -a | pr -n -h "Files in $(pwd)."

2. Print file1 and file2 as a double-spaced, three-column listing headed by ``file list’’:

pr -3d -h "file list" file1 file2

3. Write file1 on file2, expanding tabs to columns 10, 19, 28, . . .:

pr -e9 -t <file1 >file2

RATIONALE
This utility is one of those that does not follow the Utility Syntax Guidelines because of its
historical origins. The standard developers could have added new options that obeyed the
guidelines (and marked the old options obsolescent) or devised an entirely new utility; there are
examples of both actions in this volume of POSIX.1-2024. Because of its widespread use by
historical applications, the standard developers decided to exempt this version of pr from many
of the guidelines.

Implementations are required to accept option-arguments to the −h, −l, −o, and −w options
whether presented as part of the same argument or as a separate argument to pr, as suggested by
the Utility Syntax Guidelines. The −n and −s options, however, are specified as in historical
practice because they are frequently specified without their optional arguments. If a <blank>
were allowed before the option-argument in these cases, a file operand could mistakenly be
interpreted as an option-argument in historical applications.

The text about the minimum number of lines in multi-column output was included to ensure
that a best effort is made in balancing the length of the columns. There are known historical
implementations in which, for example, 60-line files are listed by pr −2 as one column of 56 lines
and a second of 4. Although this is not a problem when a full page with headers and trailers is
produced, it would be relatively useless when used with −t.

Historical implementations of the pr utility have differed in the action taken for the −f option.
BSD uses it as described here for the −F option; System V uses it to change trailing <newline>
characters on each page to a <form-feed> and, if standard output is a TTY device, sends an
<alert> to standard error and reads a line from /dev/tty before the first page. There were strong
arguments from both sides of this issue concerning historical practice and as a result the −F
option was added. XSI-conformant systems support the System V historical actions for the −f
option.

The <output of date> field in the −l format is specified only for the POSIX locale. As noted, the
format can be different in other locales. No mechanism for defining this is present in this volume
of POSIX.1-2024, as the appropriate vehicle is a message catalog; that is, the format should be
specified as a ``message’’.

Some implementations of pr treat an empty file as an error when −m is not specified, but not
when −m is specified (even if there is only one input file). Implementations are encouraged to
eliminate this inconsistency by never treating an empty file as an error.

FUTURE DIRECTIONS
A future version of this standard may require that an empty file is never treated as an error.

3294 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111827

111828

111829

111830

111831

111832

111833

111834

111835

111836

111837

111838

111839

111840

111841

111842

111843

111844

111845

111846

111847

111848

111849

111850

111851

111852

111853

111854

111855

111856

111857

111858

111859

111860

111861

111862

111863

111864

111865

111866

111867

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pr

SEE ALSO
expand , lp

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −p option is added.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
PASC Interpretation 1003.2-92 #151 (SD5-XCU-ERN-44) is applied.

Austin Group Interpretation 1003.1-2001 #093 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, adding a paragraph about problematic pathnames to the
APPLICATION USAGE section.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1433 is applied, changing <carriage-return> to <newline> in the
description of the −p option.

Austin Group Defect 1434 is applied, combining the two option groups in the SYNOPSIS into
one.

Austin Group Defect 1590 is applied, clarifying the requirements when an input file is empty
and changing the STDOUT section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3295

111868

111869

111870

111871

111872

111873

111874

111875

111876

111877

111878

111879

111880

111881

111882

111883

111884

111885

111886

111887

111888

111889

111890

111891

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

printf Utilities

NAME
printf — write formatted output

SYNOPSIS
printf format [argument...]

DESCRIPTION
The printf utility shall write formatted operands to the standard output. The argument operands
shall be formatted under control of the format operand.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

format A character string describing the format to use to write the remaining operands.
See the EXTENDED DESCRIPTION section.

argument The values to be written to standard output, under the control of format. See the
EXTENDED DESCRIPTION section.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of printf:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the locale for numeric formatting. It shall affect the format of numbers
written using the e, E, f, g, and G conversion specifier characters (if supported).

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the EXTENDED DESCRIPTION section.

3296 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111892

111893

111894

111895

111896

111897

111898

111899

111900

111901

111902

111903

111904

111905

111906

111907

111908

111909

111910

111911

111912

111913

111914

111915

111916

111917

111918

111919

111920

111921

111922

111923

111924

111925

111926

111927

111928

111929

111930

111931

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities printf

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The application shall ensure that the format operand is a character string, beginning and ending
in its initial shift state, if any. The format operand shall be used as the format string described in
XBD Chapter 5 (on page 113) with the following exceptions:

1. A <space> in the format string, in any context other than a flag of a conversion
specification, shall be treated as an ordinary character that is copied to the output.

2. A 'Δ' character in the format string shall be treated as a 'Δ' character, not as a <space>.

3. In addition to the escape sequences shown in XBD Chapter 5 (on page 113) ('\\', '\a',
'\b', '\f', '\n', '\r', '\t', '\v'), "\ddd", where ddd is a one, two, or three-digit
octal number, shall be written as a byte with the numeric value specified by the octal
number.

4. The implementation shall not precede or follow output from the d or u conversion
specifiers with <blank> characters not specified by the format operand.

5. The implementation shall not precede output from the o conversion specifier with zeros
not specified by the format operand.

6. The a, A, e, E, f, F, g, and G conversion specifiers need not be supported.

7. An additional conversion specifier character, b, shall be supported as follows. The
argument shall be taken to be a string that can contain <backslash>-escape sequences.
The following <backslash>-escape sequences shall be supported:

— The escape sequences listed in XBD Chapter 5 (on page 113) ('\\', '\a', '\b',
'\f', '\n', '\r', '\t', '\v'), which shall be converted to the characters they
represent.

— "\0ddd", where ddd is a zero, one, two, or three-digit octal number that shall be
converted to a byte with the numeric value specified by the octal number.

— '\c', which shall not be written and shall cause printf to ignore any remaining
characters in the string operand containing it, any remaining string operands, and
any additional characters in the format operand. If a precision is specified and the
argument contains a '\c' after the point at which the number of bytes indicated by
the precision specification have been written, it is unspecified whether the '\c'
takes effect.

The interpretation of a <backslash> followed by any other sequence of characters is
unspecified.

Bytes from the converted string shall be written until the end of the string or the number
of bytes indicated by the precision specification is reached. If the precision is omitted, it
shall be taken to be infinite, so all bytes up to the end of the converted string shall be
written.

8. Conversions can be applied to the nth argument operand rather than to the next argument
operand. In this case, the conversion specifier character '%' is replaced by the sequence
"%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}], giving the argument
operand number. This feature provides for the definition of format strings that select

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3297

111932

111933

111934

111935

111936

111937

111938

111939

111940

111941

111942

111943

111944

111945

111946

111947

111948

111949

111950

111951

111952

111953

111954

111955

111956

111957

111958

111959

111960

111961

111962

111963

111964

111965

111966

111967

111968

111969

111970

111971

111972

111973

111974

111975

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

printf Utilities

arguments in an order appropriate to specific languages.

The format can contain either numbered argument conversion specifications (that is, ones
beginning with "%n$"), or unnumbered argument conversion specifications, but not
both. The only exception to this is that "%%" can be mixed with the "%n$" form. The
results of mixing numbered and unnumbered argument specifications that consume an
argument are unspecified.

9. For each conversion specification that consumes an argument, an argument operand shall
be evaluated and converted to the appropriate type for the conversion as specified below.
The operand to be evaluated shall be determined as follows:

• If the conversion specification begins with a "%n$" sequence, the nth argument
operand shall be evaluated.

• Otherwise, the evaluated operand shall be the next argument operand after the one
evaluated by the previous conversion specification that consumed an argument; if
there is no such previous conversion specification the first argument operand shall
be evaluated.

If the format operand contains no conversion specifications that consume an argument
and there are argument operands present, the results are unspecified.

10. The format operand shall be reused as often as necessary to satisfy the argument operands.
If conversion specifications beginning with a "%n$" sequence are used, on format reuse
the value of n shall refer to the nth argument operand following the highest numbered
argument operand consumed by the previous use of the format operand.

11. If an argument operand to be consumed by a conversion specification does not exist:

• If it is a numbered argument conversion specification, printf should write a
diagnostic message to standard error and exit with non-zero status, but may behave
as for an unnumbered argument conversion specification.

• If it is an unnumbered argument conversion specification, any extra b, c, or s
conversion specifiers shall be evaluated as if a null string argument were supplied
and any other extra conversion specifiers shall be evaluated as if a zero argument
were supplied.

12. If a character sequence in the format operand begins with a '%' character, but does not
form a valid conversion specification, the behavior is unspecified.

13. The argument to the c conversion specifier can be a string containing zero or more bytes.
If it contains one or more bytes, the first byte shall be written and any additional bytes
shall be ignored. If the argument is an empty string, it is unspecified whether nothing is
written or a null byte is written.

The argument operands shall be treated as strings if the corresponding conversion specifier is b,
c, or s, and shall be evaluated as if by the strtod() function if the corresponding conversion
specifier is a, A, e, E, f, F, g, or G. Otherwise, they shall be evaluated as unsuffixed C integer
constants, as described by the ISO C standard, with the following extensions:

• A leading <plus-sign> or <hyphen-minus> shall be allowed.

• If the leading character is a single-quote or double-quote, the value shall be the numeric
value in the underlying codeset of the character following the single-quote or double-
quote.

3298 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111976

111977

111978

111979

111980

111981

111982

111983

111984

111985

111986

111987

111988

111989

111990

111991

111992

111993

111994

111995

111996

111997

111998

111999

112000

112001

112002

112003

112004

112005

112006

112007

112008

112009

112010

112011

112012

112013

112014

112015

112016

112017

112018

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities printf

• Suffixed integer constants may be allowed.

If an argument operand cannot be completely converted into an internal value appropriate to the
corresponding conversion specification, a diagnostic message shall be written to standard error
and the utility shall not exit with a zero exit status, but shall continue processing any remaining
operands and shall write the value accumulated at the time the error was detected to standard
output.

It shall not be considered an error if an argument operand is not completely used for a b, c, or s
conversion.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The floating-point formatting conversion specifications of printf() are not required because all
arithmetic in the shell is integer arithmetic. The awk utility performs floating-point calculations
and provides its own printf function. The bc utility can perform arbitrary-precision floating-
point arithmetic, but does not provide extensive formatting capabilities. (This printf utility
cannot really be used to format bc output; it does not support arbitrary precision.)
Implementations are encouraged to support the floating-point conversions as an extension.

Note that this printf utility, like the printf() function defined in the System Interfaces volume of
POSIX.1-2024 on which it is based, makes no special provision for dealing with multi-byte
characters when using the %c conversion specification or when a precision is specified in a %b or
%s conversion specification. Applications should be extremely cautious using either of these
features when there are multi-byte characters in the character set.

No provision is made in this volume of POSIX.1-2024 which allows field widths and precisions
to be specified as '*' since the '*' can be replaced directly in the format operand using shell
variable substitution. Implementations can also provide this feature as an extension if they so
choose.

Hexadecimal character constants as defined in the ISO C standard are not recognized in the
format operand because there is no consistent way to detect the end of the constant. Octal
character constants are limited to, at most, three octal digits, but hexadecimal character constants
are only terminated by a non-hex-digit character. In the ISO C standard, string literal
concatenation can be used to terminate a constant and follow it with a hexadecimal character to
be written. In the shell, similar concatenation can be done using $'...' so that the shell
converts the hexadecimal sequence before it executes printf.

The %b conversion specification is not part of the ISO C standard; it has been added here as a
portable way to process <backslash>-escapes expanded in string operands as provided by the
echo utility. See also the APPLICATION USAGE section of echo (on page 2811) for ways to use
printf as a replacement for all of the traditional versions of the echo utility.

If an argument cannot be parsed correctly for the corresponding conversion specification, the
printf utility is required to report an error. Thus, overflow and extraneous characters at the end
of an argument being used for a numeric conversion shall be reported as errors.

Unlike the printf() function, when numbered conversion specifications are used, specifying the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3299

112019

112020

112021

112022

112023

112024

112025

112026

112027

112028

112029

112030

112031

112032

112033

112034

112035

112036

112037

112038

112039

112040

112041

112042

112043

112044

112045

112046

112047

112048

112049

112050

112051

112052

112053

112054

112055

112056

112057

112058

112059

112060

112061

112062

112063

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

printf Utilities

Nth argument does not require that all the leading arguments, from the first to the (N−1)th, are
specified in the format string. For example, "%3$s %1$d\n" is an acceptable format operand
which evaluates the first and third argument operands but not the second.

EXAMPLES
To alert the user and then print and read a series of prompts:

printf "\aPlease fill in the following: \nName: "
read name
printf "Phone number: "
read phone

To read out a list of right and wrong answers from a file, calculate the percentage correctly, and
print them out. The numbers are right-justified and separated by a single <tab>. The percentage
is written to one decimal place of accuracy:

while read right wrong ; do
percent=$(echo "scale=1;($right*100)/($right+$wrong)" | bc)
printf "%2d right\t%2d wrong\t(%s%%)\n" \

$right $wrong $percent
done < database_file

The command:

printf "%5d%4d\n" 1 21 321 4321 54321

produces:

1 21
3214321

54321 0

Note that the format operand is used three times to print all of the given strings and that a '0'
was supplied by printf to satisfy the last %4d conversion specification.

The command:

printf '%d\n' 10 010 0x10

produces:

Output Line Explanation
10 Decimal representation of the numeric value of decimal integer constant

10
8 Decimal representation of the numeric value of octal integer constant 010
16 Decimal representation of the numeric value of hexadecimal integer

constant 0x10

If the implementation supports floating-point conversions, the command:

LC_ALL=C printf '%.2f\n' 10 010 0x10 10.1e2 010.1e2 0x10.1p2

produces:

3300 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112064

112065

112066

112067

112068

112069

112070

112071

112072

112073

112074

112075

112076

112077

112078

112079

112080

112081

112082

112083

112084

112085

112086

112087

112088

112089

112090

112091

112092

112093

112094

112095

112096

112097

112098

112099

112100

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities printf

Output Line Explanation
10.00 The string "10" interpreted as a decimal value, with 2 digits of precision
10.00 The string "010" interpreted as a decimal (not octal) value, with 2 digits

of precision
16.00 The string "0x10" interpreted as a hexadecimal value, with 2 digits of

precision
1010.00 The string "10.1e2" interpreted as a decimal floating-point value, with

2 digits of precision
1010.00 The string "010.1e2" interpreted as a decimal (not octal) floating-point

value, with 2 digits of precision
64.25 The string "0x10.1p2" interpreted as a hexadecimal floating-point

value, with 2 digits of precision

The printf utility is required to notify the user when conversion errors are detected while
producing numeric output; thus, the following results would be expected on an implementation
with 32-bit two’s-complement integers when %d is specified as the format operand:

Standard
Argument Output Diagnostic Output

5a 5 printf: "5a" not completely converted
9999999999 2147483647 printf: "9999999999" arithmetic overflow
−9999999999 −2147483648 printf: "−9999999999" arithmetic overflow
ABC 0 printf: "ABC" expected numeric value

The diagnostic message format is not specified, but these examples convey the type of
information that should be reported. Note that the value shown on standard output is what
would be expected as the return value from the strtol() function as defined in the System
Interfaces volume of POSIX.1-2024. A similar correspondence exists between %u and strtoul()
and %e, %f, and %g (if the implementation supports floating-point conversions) and strtod().

In a locale that uses a codeset based on the ISO/IEC 646: 1991 standard, the command:

printf "%d\n" 3 +3 -3 \'3 \"+3 "'-3"

produces:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3301

112101

112102

112103

112104

112105

112106

112107

112108

112109

112110

112111

112112

112113

112114

112115

112116

112117

112118

112119

112120

112121

112122

112123

112124

112125

112126

112127

112128

112129

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

printf Utilities

Output Line Explanation
3 Decimal representation of the numeric value 3
3 Decimal representation of the numeric value +3
-3 Decimal representation of the numeric value -3
51 Decimal representation of the numeric value of the character '3' in the

ISO/IEC 646: 1991 standard codeset
43 Decimal representation of the numeric value of the character '+' in the

ISO/IEC 646: 1991 standard codeset
45 Decimal representation of the numeric value of the character '-' in the

ISO/IEC 646: 1991 standard codeset

Since the last two arguments contain more characters than used for the conversion, a diagnostic
message is generated and the exit status is non-zero. Note that in a locale with multi-byte
characters, the value of a character is intended to be the value of the equivalent of the wchar_t
representation of the character as described in the System Interfaces volume of POSIX.1-2024.

RATIONALE
The printf utility was added to provide functionality that has historically been provided by echo.
However, due to irreconcilable differences in the various versions of echo extant, the version has
few special features, leaving those to this new printf utility, which is based on one in the Ninth
Edition system.

The format strings for the printf utility are handled differently than for the printf() function in
several respects. Notable differences include:

• Reuse of the format until all arguments have been consumed.

• No provision for obtaining field width and precision from argument values.

• No requirement to support floating-point conversion specifiers.

• An additional b conversion specifier.

• Special handling of leading single-quote or double-quote for integer conversion specifiers.

• Hexadecimal character constants are not recognized in the format.

• Formats that use numbered argument conversion specifications can have gaps in the
argument numbers.

Although printf implementations have no difficulty handling formats with mixed numbered and
unnumbered conversion specifications (unlike the printf() function where it is undefined
behavior), existing implementations differ in behavior. Given the format operand
"%2$d %d\n", with some implementations the "%d" evaluates the first argument and with
others it evaluates the third. Consequently this standard leaves the behavior unspecified (as
opposed to undefined).

Earlier versions of this standard specified that arguments for all conversions other than b, c, and
s were evaluated in the same way (as C constants, but with stated exceptions). For
implementations supporting the floating-point conversions it was not clear whether integer
conversions need only accept integer constants and floating-point conversions need only accept
floating-point constants, or whether both types of conversions should accept both types of
constants. Also by not distinguishing between them, the requirement relating to a leading
single-quote or double-quote applied to floating-point conversions even though this provided
no useful functionality to applications that was not already available through the integer
conversions. The current standard clarifies the situation by specifying that the arguments for
floating-point conversions are evaluated as if by strtod(), and the arguments for integer
conversions are evaluated as C integer constants, with the special treatment of leading single-

3302 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112130

112131

112132

112133

112134

112135

112136

112137

112138

112139

112140

112141

112142

112143

112144

112145

112146

112147

112148

112149

112150

112151

112152

112153

112154

112155

112156

112157

112158

112159

112160

112161

112162

112163

112164

112165

112166

112167

112168

112169

112170

112171

112172

112173

112174

112175

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities printf

quote and double-quote applying only to integer conversions.

FUTURE DIRECTIONS
A future version of this standard may require that a missing argument operand to be consumed
by a numbered argument conversion specification is treated as an error.

A future version of this standard is expected to add a %b conversion to the printf() function for
binary conversion of integers, in alignment with the next version of the ISO C standard. This
will result in an inconsistency between the printf utility and printf() function for format strings
containing %b. Implementors are encouraged to collaborate on a way to address this which
could then be adopted in a future version of this standard. For example, the printf utility could
add a −C option to make the format string behave in the same way, as far as possible, as the
printf() function.

A future version of this standard may add a %q conversion to convert a string argument to a
quoted output format that can be reused as shell input.

SEE ALSO
awk , bc , echo

XBD Chapter 5 (on page 113), Chapter 8 (on page 167)

XSH fprintf(), strtod()

CHANGE HISTORY
First released in Issue 4.

Issue 7
Austin Group Interpretations 1003.1-2001 #175 and #177 are applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0156 [727], XCU/TC2-2008/0157
[727,932], XCU/TC2-2008/0158 [584], and XCU/TC2-2008/0159 [727] are applied.

Issue 8
Austin Group Defect 1108 is applied, changing ``twos’’ to ``two’s’’.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1202 is applied, changing the description of how '\c' is handled by the b
conversion specifier.

Austin Group Defects 1209 and 1476 are applied, changing the EXAMPLES section.

Austin Group Defect 1413 is applied, changing the APPLICATION USAGE section.

Austin Group Defect 1562 is applied, clarifying that it is the application’s responsibility to
ensure that the format is a character string, beginning and ending in its initial shift state, if any.

Austin Group Defect 1592 is applied, adding support for numbered conversion specifications.

Austin Group Defect 1771 is applied, changing the FUTURE DIRECTIONS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3303

112176

112177

112178

112179

112180

112181

112182

112183

112184

112185

112186

112187

112188

112189

112190

112191

112192

112193

112194

112195

112196

112197

112198

112199

112200

112201

112202

112203

112204

112205

112206

112207

112208

112209

112210

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

prs Utilities

NAME
prs — print an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI prs [-a] [-d dataspec] [-r[SID]] file...

prs [-e|-l] -c cutoff [-d dataspec] file...

prs [-e|-l] -r[SID] [-d dataspec] file...

DESCRIPTION
The prs utility shall write to standard output parts or all of an SCCS file in a user-supplied
format.

OPTIONS
The prs utility shall conform to XBD Section 12.2 (on page 215), except that the −r option has an
optional option-argument. This optional option-argument cannot be presented as a separate
argument. The following options shall be supported:

−d dataspec Specify the output data specification. The dataspec shall be a string consisting of
SCCS file data keywords (see Data Keywords, on page 3305) interspersed with
optional user-supplied text.

−r[SID] Specify the SCCS identification string (SID) of a delta for which information is
desired. If no SID option-argument is specified, the SID of the most recently
created delta shall be assumed.

−e Request information for all deltas created earlier than and including the delta
designated via the −r option or the date-time given by the −c option.

−l Request information for all deltas created later than and including the delta
designated via the −r option or the date-time given by the −c option.

−c cutoff Indicate the cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

For the YY component, values in the range [69,99] shall refer to years 1969 to 1999
inclusive, and values in the range [00,68] shall refer to years 2000 to 2068 inclusive.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

No changes (deltas) to the SCCS file that were created after the specified cutoff
date-time shall be included in the output. Units omitted from the date-time default
to their maximum possible values; for example, −c 7502 is equivalent to
−c 750228235959.

−a Request writing of information for both removed—that is, delta type=R (see
rmdel)—and existing—that is, delta type=D,—deltas. If the −a option is not
specified, information for existing deltas only shall be provided.

OPERANDS
The following operand shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the prs
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

3304 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112211

112212

112213

112214

112215

112216

112217

112218

112219

112220

112221

112222

112223

112224

112225

112226

112227

112228

112229

112230

112231

112232

112233

112234

112235

112236

112237

112238

112239

112240

112241

112242

112243

112244

112245

112246

112247

112248

112249

112250

112251

112252

112253

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities prs

If exactly one file operand appears, and it is '−', the standard input shall be read;
each line of the standard input shall be taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only when the file operand is specified as '−'. Each
line of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
Any SCCS files displayed are files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of prs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be a text file whose format is dependent on the data keywords
specified with the −d option.

Data Keywords

Data keywords specify which parts of an SCCS file shall be retrieved and output. All parts of an
SCCS file have an associated data keyword. A data keyword may appear in a dataspec multiple
times.

The information written by prs shall consist of:

1. The user-supplied text

2. Appropriate values (extracted from the SCCS file) substituted for the recognized data
keywords in the order of appearance in the dataspec

The format of a data keyword value shall either be simple ('S'), in which keyword substitution
is direct, or multi-line ('M').

User-supplied text shall be any text other than recognized data keywords. A <tab> shall be
specified by '\t' and <newline> by '\n'. When the −r option is not specified, the default
dataspec shall be:

:PN::\n\n

and the following dataspec shall be used for each selected delta:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3305

112254

112255

112256

112257

112258

112259

112260

112261

112262

112263

112264

112265

112266

112267

112268

112269

112270

112271

112272

112273

112274

112275

112276

112277

112278

112279

112280

112281

112282

112283

112284

112285

112286

112287

112288

112289

112290

112291

112292

112293

112294

112295

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

prs Utilities

:Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:

SCCS File Data Keywords
Keyword Data Item File Section Value Format
:Dt: Delta information Delta Table See below* S
:DL: Delta line statistics " :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta " nnnnn*** S
:Ld: Lines deleted by Delta " nnnnn*** S
:Lu: Lines unchanged by Delta " nnnnn*** S
:DT: Delta type " D or R S
:I: SCCS ID string (SID) " See below** S
:R: Release number " nnnn S
:L: Level number " nnnn S
:B: Branch number " nnnn S
:S: Sequence number " nnnn S
:D: Date delta created " :Dy:/:Dm:/:Dd: S
:Dy: Year delta created " nn S
:Dm: Month delta created " nn S
:Dd: Day delta created " nn S
:T: Time delta created " :Th:::Tm:::Ts: S
:Th: Hour delta created " nn S
:Tm: Minutes delta created " nn S
:Ts: Seconds delta created " nn S
:P: Programmer who created Delta " logname S
:DS: Delta sequence number " nnnn S
:DP: Predecessor Delta sequence " nnnn S

number
:DI: Sequence number of deltas " :Dn:/:Dx:/:Dg: S

included, excluded, or ignored
:Dn: Deltas included (sequence #) " :DS: :DS: . . . S
:Dx: Deltas excluded (sequence #) " :DS: :DS: . . . S
:Dg: Deltas ignored (sequence #) " :DS: :DS: . . . S
:MR: MR numbers for delta " text M
:C: Comments for delta " text M
:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag " text S
:MF: MR validation flag " yes or no S
:MP: MR validation program name " text S
:KF: Keyword error, warning flag " yes or no S
:BF: Branch flag " yes or no S
:J: Joint edit flag " yes or no S
:LK: Locked releases " :R: . . . S
:Q: User-defined keyword " text S
:M: Module name " text S
:FB: Floor boundary " :R: S
:CB: Ceiling boundary " :R: S
:Ds: Default SID " :I: S
:ND: Null delta flag " yes or no S
:FD: File descriptive text Comments text M

3306 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112296

112297

112298

112299

112300

112301

112302

112303

112304

112305

112306

112307

112308

112309

112310

112311

112312

112313

112314

112315

112316

112317

112318

112319

112320

112321

112322

112323

112324

112325

112326

112327

112328

112329

112330

112331

112332

112333

112334

112335

112336

112337

112338

112339

112340

112341

112342

112343

112344

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities prs

SCCS File Data Keywords
Keyword Data Item File Section Value Format
:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of what string N/A :Z::M:\t:I: S
:A: A form of what string N/A :Z::Y: :M: :I::Z: S
:Z: what string delimiter N/A @(#) S
:F: SCCS filename N/A text S
:PN: SCCS file pathname N/A text S

* :Dt:=:DT: :I: :D: :T: :P: :DS: :DP:

** :R:.:L:.:B:.:S: if the delta is a branch delta (:BF:==yes)
:R:.:L: if the delta is not a branch delta (:BF:==no)

*** The line statistics are capped at 99 999. For example, if 100 000 lines were unchanged in a
certain revision, :Lu: shall produce the value 99 999.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES

1. The following example:

prs -d "User Names for :F: are:\n:UN:" s.file

might write to standard output:

User Names for s.file are:
xyz
131
abc

2. The following example:

prs -d "Delta for pgm :M:: :I: - :D: By :P:" -r s.file

might write to standard output:

Delta for pgm main.c: 3.7 - 77/12/01 By cas

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3307

112345

112346

112347

112348

112349

112350

112351

112352

112353

112354

112355

112356

112357

112358

112359

112360

112361

112362

112363

112364

112365

112366

112367

112368

112369

112370

112371

112372

112373

112374

112375

112376

112377

112378

112379

112380

112381

112382

112383

112384

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

prs Utilities

3. As a special case:

prs s.file

might write to standard output:

s.file:
<blank line>
D 1.1 77/12/01 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta
<blank line>

for each delta table entry of the D type. The only option allowed to be used with this
special case is the −a option.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
admin , delta , get , what

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The phrase ``in which keyword substitution is followed by a <newline>’’ is deleted from the end
of the second paragraph of Data Keywords (on page 3305).

The interpretation of the YY component of the −c cutoff argument is noted.

Issue 6
The normative text is reworded to emphasize the term ``shall’’ for implementation requirements.

The Open Group Base Resolution bwg2001-007 is applied, updating the table in STDOUT with a
note that line statistics are capped at 99 999 for the :Li:, :Ld:, :Lu:, and :DL: keywords.

The Open Group Interpretation PIN4C.00009 is applied.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3308 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112385

112386

112387

112388

112389

112390

112391

112392

112393

112394

112395

112396

112397

112398

112399

112400

112401

112402

112403

112404

112405

112406

112407

112408

112409

112410

112411

112412

112413

112414

112415

112416

112417

112418

112419

112420

112421

112422

112423

112424

112425

112426

112427

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities prs

Austin Group Defect 1452 is applied, deleting :KV: from the list of keywords.

Austin Group Defect 1570 is applied, removing extra spacing in "==".

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3309

112428

112429

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ps Utilities

NAME
ps — report process status

SYNOPSIS
XSI ps [-aAw] [-defl] [-g grouplist] [-G grouplist]

[-n namelist] [-o format]... [-p proclist] [-t termlist]
[-u userlist] [-U userlist]

DESCRIPTION
The ps utility shall write information about processes, subject to having appropriate privileges to
obtain information about those processes.

By default, ps shall select all processes with the same effective user ID as the current user and the
same controlling terminal as the invoker.

OPTIONS
The ps utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Write information for all processes associated with terminals. Implementations
may omit session leaders from this list.

−A Write information for all processes.

XSI −d Write information for all processes, except session leaders.

XSI −e Write information for all processes. (Equivalent to −A.)

XSI −f Generate a full listing. (See the STDOUT section for the contents of a full listing.)

XSI −g grouplist Write information for processes whose session leaders are given in grouplist. The
application shall ensure that the grouplist is a single argument in the form of a
<blank> or <comma>-separated list.

−G grouplist Write information for processes whose real group ID numbers are given in
grouplist. The application shall ensure that the grouplist is a single argument in the
form of a <blank> or <comma>-separated list.

XSI −l Generate a long listing. (See STDOUT for the contents of a long listing.)

XSI −n namelist Specify the name of an alternative system namelist file in place of the default. The
name of the default file and the format of a namelist file are unspecified.

−o format Write information according to the format specification given in format. This is
fully described in the STDOUT section. Multiple −o options can be specified; the
format specification shall be interpreted as the <space>-separated concatenation of
all the format option-arguments.

−p proclist Write information for processes whose process ID numbers are given in proclist.
The application shall ensure that the proclist is a single argument in the form of a
<blank> or <comma>-separated list.

−t termlist Write information for processes associated with terminals given in termlist. The
application shall ensure that the termlist is a single argument in the form of a
<blank> or <comma>-separated list. Terminal identifiers shall be given in an

XSI implementation-defined format. On XSI-conformant systems, they shall be given
in one of two forms: the device’s filename (for example, tty04) or, if the device’s
filename starts with tty, just the identifier following the characters tty (for example,
"04").

3310 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112430

112431

112432

112433

112434

112435

112436

112437

112438

112439

112440

112441

112442

112443

112444

112445

112446

112447

112448

112449

112450

112451

112452

112453

112454

112455

112456

112457

112458

112459

112460

112461

112462

112463

112464

112465

112466

112467

112468

112469

112470

112471

112472

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ps

XSI −u userlist Write information for processes whose user ID numbers or login names are given
in userlist. The application shall ensure that the userlist is a single argument in the
form of a <blank> or <comma>-separated list. In the listing, the numerical user ID
shall be written unless the −f option is used, in which case the login name shall be
written.

−U userlist Write information for processes whose real user ID numbers or login names are
given in userlist. The application shall ensure that the userlist is a single argument
in the form of a <blank> or <comma>-separated list.

−w Behave as if the COLUMNS environment variable had a value of at least 132. If the
−w option is not specified or is specified exactly once, all output lines shall contain
no more than the greater of {LINE_MAX} and COLUMNS bytes provided that no
format name is specified multiple times.

XSI With the exception of −f, −l, −n namelist, and −o format, all of the options shown are used to
select processes. If any are specified, the default list shall be ignored and ps shall select the
processes represented by the inclusive OR of all the selection-criteria options.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ps:

COLUMNS Override the system-selected horizontal display line size, used to determine the
number of text columns to display. See XBD Chapter 8 (on page 167) for valid
values and results when it is unset or null.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the format and contents of the date and time strings displayed.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone used to calculate date and time strings displayed. If TZ is
unset or null, an unspecified default timezone shall be used.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3311

112473

112474

112475

112476

112477

112478

112479

112480

112481

112482

112483

112484

112485

112486

112487

112488

112489

112490

112491

112492

112493

112494

112495

112496

112497

112498

112499

112500

112501

112502

112503

112504

112505

112506

112507

112508

112509

112510

112511

112512

112513

112514

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ps Utilities

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −o option is not specified, the standard output format is unspecified.

XSI On XSI-conformant systems, the output format shall be as follows. The column headings and
descriptions of the columns in a ps listing are given below. The precise meanings of these fields
are implementation-defined. The letters 'f' and 'l' (below) indicate the option (full or long)
that shall cause the corresponding heading to appear; all means that the heading always
appears. Note that these two options determine only what information is provided for a process;
they do not determine which processes are listed.

F (l) Flags (octal and additive) associated with the process.
S (l) The state of the process.
UID (f,l) The user ID number of the process owner; the login name is printed

under the −f option.
PID (all) The process ID of the process; it is possible to kill a process if this

datum is known.
PPID (f,l) The process ID of the parent process.
C (f,l) Processor utilization for scheduling.
PRI (l) The priority of the process; higher numbers mean lower priority.
NI (l) Nice value; used in priority computation.
ADDR (l) The address of the process.
SZ (l) The size in pages of the total memory requirements of the process,

including text, data, stack, mapped memory and other resources.
WCHAN (l) The event for which the process is waiting or sleeping; if blank, the

process is running.
STIME (f) Starting time of the process.
TTY (all) The controlling terminal for the process.
TIME (all) The cumulative execution time for the process.
CMD (all) The command name; the full command name and its arguments are

written under the −f option.

A process that has exited and has a parent, but has not yet been waited for by the parent, shall be
marked defunct.

Under the option −f, ps tries to determine the command name and arguments given when the
process was created by examining memory or the swap area. Failing this, the command name, as
it would appear without the option −f, is written in square brackets.

The −o option allows the output format to be specified under user control.

The application shall ensure that the format specification is a list of names presented as a single
argument, <blank> or <comma>-separated. Each variable has a default header. The default
header can be overridden by appending an <equals-sign> and the new text of the header. The
rest of the characters in the argument shall be used as the header text. The fields specified shall
be written in the order specified on the command line, and should be arranged in columns in the
output. The field widths shall be selected by the system to be at least as wide as the header text
(default or overridden value). If the header text is null, such as −o user=, the field width shall be
at least as wide as the default header text. If all header text fields are null, no header line shall
be written.

The following names are recognized in the POSIX locale:

3312 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112515

112516

112517

112518

112519

112520

112521

112522

112523

112524

112525

112526

112527

112528

112529

112530

112531

112532

112533

112534

112535

112536

112537

112538

112539

112540

112541

112542

112543

112544

112545

112546

112547

112548

112549

112550

112551

112552

112553

112554

112555

112556

112557

112558

112559

112560

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ps

ruser The real user ID of the process. This shall be the textual user ID, if it can be obtained
and the field width permits, or a decimal representation otherwise.

user The effective user ID of the process. This shall be the textual user ID, if it can be
obtained and the field width permits, or a decimal representation otherwise.

rgroup The real group ID of the process. This shall be the textual group ID, if it can be obtained
and the field width permits, or a decimal representation otherwise.

group The effective group ID of the process. This shall be the textual group ID, if it can be
obtained and the field width permits, or a decimal representation otherwise.

pid The decimal value of the process ID.

ppid The decimal value of the parent process ID.

pgid The decimal value of the process group ID.

pcpu The ratio of CPU time used recently to CPU time available in the same period,
expressed as a percentage. The meaning of ``recently’’ in this context is unspecified. The
CPU time available is determined in an unspecified manner.

vsz The size of the process in (virtual) memory in 1 024 byte units as a decimal integer.

nice The decimal value of the nice value of the process; see nice.

etime In the POSIX locale, the elapsed time since the process was started, in the form:

[[dd-]hh:]mm:ss

where dd shall represent the number of days, hh the number of hours, mm the number
of minutes, and ss the number of seconds. The dd field shall be a decimal integer. The
hh, mm, and ss fields shall be two-digit decimal integers padded on the left with zeros.

time In the POSIX locale, the cumulative CPU time of the process in the form:

[dd-]hh:mm:ss

The dd, hh, mm, and ss fields shall be as described in the etime specifier.

tty The name of the controlling terminal of the process (if any) in the same format used by
the who utility.

comm The name of the command being executed (argv[0] value) as a string.

args The command with all its arguments as a string. The implementation may truncate this
value to the field width; it is implementation-defined whether any further truncation
occurs. It is unspecified whether the string represented is a version of the argument list
as it was passed to the command when it started, or is a version of the arguments as
they may have been modified by the application. Applications cannot depend on being
able to modify their argument list and having that modification be reflected in the
output of ps.

Any field need not be meaningful in all implementations. In such a case a <hyphen-minus>
('−') should be output in place of the field value.

Only comm and args shall be allowed to contain <blank> characters; all others shall not. Any
implementation-defined variables shall be specified in the system documentation along with the
default header and indicating whether the field may contain <blank> characters.

The following table specifies the default header to be used in the POSIX locale corresponding to
each format specifier.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3313

112561

112562

112563

112564

112565

112566

112567

112568

112569

112570

112571

112572

112573

112574

112575

112576

112577

112578

112579

112580

112581

112582

112583

112584

112585

112586

112587

112588

112589

112590

112591

112592

112593

112594

112595

112596

112597

112598

112599

112600

112601

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ps Utilities

Table 3-19 Variable Names and Default Headers in ps

Format Specifier Default Header Format Specifier Default Header
args COMMAND ppid PPID
comm COMMAND rgroup RGROUP
etime ELAPSED ruser RUSER
group GROUP time TIME
nice NI tty TT
pcpu %CPU user USER
pgid PGID vsz VSZ
pid PID

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Things can change while ps is running; the snapshot it gives is only true for an instant, and
might not be accurate by the time it is displayed.

The args format specifier is allowed to produce a truncated version of the command arguments.
In some implementations, this information is no longer available when the ps utility is executed.

If the field width is too narrow to display a textual ID, the system may use a numeric version.
Normally, the system would be expected to choose large enough field widths, but if a large
number of fields were selected to write, it might squeeze fields to their minimum sizes to fit on
one line. One way to ensure adequate width for the textual IDs is to override the default header
for a field to make it larger than most or all user or group names.

Portable applications should not set COLUMNS to a value greater than {LINE_MAX} and should
not specify the −w option more than once if the output will be used as input for a utility that
requires a text file as input because lines containing more than {LINE_MAX} bytes may cause
undefined behavior in some implementations of the utility.

There is no special quoting mechanism for header text. The header text is the rest of the
argument. If multiple header changes are needed, multiple −o options can be used, such as:

ps -o "user=User Name" -o pid=Process\ ID

On some implementations, especially multi-level secure systems, ps may be severely restricted
and produce information only about child processes owned by the user.

3314 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112602

112603

112604

112605

112606

112607

112608

112609

112610

112611

112612

112613

112614

112615

112616

112617

112618

112619

112620

112621

112622

112623

112624

112625

112626

112627

112628

112629

112630

112631

112632

112633

112634

112635

112636

112637

112638

112639

112640

112641

112642

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ps

EXAMPLES
The command:

ps -o user,pid,ppid=MOM -o args

writes at least the following in the POSIX locale:

USER PID MOM COMMAND
helene 34 12 ps -o user,pid,ppid=MOM -o args

The contents of the COMMAND field need not be the same in all implementations, due to
possible truncation.

RATIONALE
There is very little commonality between BSD and System V implementations of ps. Many
options conflict or have subtly different usages. The standard developers attempted to select a
set of options for the base standard that were useful on a wide range of systems and selected
options that either can be implemented on both BSD and System V-based systems without
breaking the current implementations or where the options are sufficiently similar that any
changes would not be unduly problematic for users or implementors.

It is recognized that on some implementations, especially multi-level secure systems, ps may be
nearly useless. The default output has therefore been chosen such that it does not break
historical implementations and also is likely to provide at least some useful information on most
systems.

The major change is the addition of the format specification capability. The motivation for this
invention is to provide a mechanism for users to access a wider range of system information, if
the system permits it, in a portable manner. The fields chosen to appear in this volume of
POSIX.1-2024 were arrived at after considering what concepts were likely to be both reasonably
useful to the ``average’’ user and had a reasonable chance of being implemented on a wide range
of systems. Again it is recognized that not all systems are able to provide all the information
and, conversely, some may wish to provide more. It is hoped that the approach adopted will be
sufficiently flexible and extensible to accommodate most systems. Implementations may be
expected to introduce new format specifiers.

The default output should consist of a short listing containing the process ID, terminal name,
cumulative execution time, and command name of each process.

The preference of the standard developers would have been to make the format specification an
operand of the ps command. Unfortunately, BSD usage precluded this.

At one time a format was included to display the environment array of the process. This was
deleted because there is no portable way to display it.

The −A option is equivalent to the BSD −g and the SVID −e. Because the two systems differed, a
mnemonic compromise was selected.

The −a option is described with some optional behavior because the SVID omits session leaders,
but BSD does not.

In an early proposal, format specifiers appeared for priority and start time. The former was not
defined adequately in this volume of POSIX.1-2024 and was removed in deference to the defined
nice value; the latter because elapsed time was considered to be more useful.

In a new BSD version of ps, a −O option can be used to write all of the default information,
followed by additional format specifiers. This was not adopted because the default output is
implementation-defined. Nevertheless, this is a useful option that should be reserved for that
purpose. In the −o option for the POSIX Shell and Utilities ps, the format is the concatenation of

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3315

112643

112644

112645

112646

112647

112648

112649

112650

112651

112652

112653

112654

112655

112656

112657

112658

112659

112660

112661

112662

112663

112664

112665

112666

112667

112668

112669

112670

112671

112672

112673

112674

112675

112676

112677

112678

112679

112680

112681

112682

112683

112684

112685

112686

112687

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ps Utilities

each −o. Therefore, the user can have an alias or function that defines the beginning of their
desired format and add more fields to the end of the output in certain cases where that would be
useful.

The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
require that they all use the same format.

The pcpu field indicates that the CPU time available is determined in an unspecified manner.
This is because it is difficult to express an algorithm that is useful across all possible machine
architectures. Historical counterparts to this value have attempted to show percentage of use in
the recent past, such as the preceding minute. Frequently, these values for all processes did not
add up to 100%. Implementations are encouraged to provide data in this field to users that will
help them identify processes currently affecting the performance of the system.

FUTURE DIRECTIONS
None.

SEE ALSO
kill , nice , renice

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-148 is applied, updating the OPTIONS section.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0160 [584] is applied.

Issue 8
Austin Group Defect 905 is applied, adding the −w option.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1141 is applied, changing the description of SZ in the STDOUT section.

Austin Group Defect 1175 is applied, changing ``uid’’ to ``user ’’ in the EXAMPLES section.

3316 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112688

112689

112690

112691

112692

112693

112694

112695

112696

112697

112698

112699

112700

112701

112702

112703

112704

112705

112706

112707

112708

112709

112710

112711

112712

112713

112714

112715

112716

112717

112718

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pwd

NAME
pwd — return working directory name

SYNOPSIS
pwd [-L|-P]

DESCRIPTION
The pwd utility shall write to standard output an absolute pathname of the current working
directory, which does not contain the filenames dot or dot-dot.

OPTIONS
The pwd utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−L If the PWD environment variable contains an absolute pathname of the current
directory and the pathname does not contain any components that are dot or dot-
dot, pwd shall write this pathname to standard output, except that if the PWD
environment variable is longer than {PATH_MAX} bytes including the terminating
null, it is unspecified whether pwd writes this pathname to standard output or
behaves as if the −P option had been specified. Otherwise, the −L option shall
behave as the −P option.

−P The pathname written to standard output shall not contain any components that
refer to files of type symbolic link. If there are multiple pathnames that the pwd
utility could write to standard output, one beginning with a single <slash>
character and one or more beginning with two <slash> characters, then it shall
write the pathname beginning with a single <slash> character. The pathname shall
not contain any unnecessary <slash> characters after the leading one or two
<slash> characters.

If both −L and −P are specified, the last one shall apply. If neither −L nor −P is specified, the pwd
utility shall behave as if −L had been specified.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pwd:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3317

112719

112720

112721

112722

112723

112724

112725

112726

112727

112728

112729

112730

112731

112732

112733

112734

112735

112736

112737

112738

112739

112740

112741

112742

112743

112744

112745

112746

112747

112748

112749

112750

112751

112752

112753

112754

112755

112756

112757

112758

112759

112760

112761

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

pwd Utilities

PWD An absolute pathname of the current working directory. If an application sets or
unsets the value of PWD, the behavior of pwd is unspecified.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The pwd utility output is an absolute pathname of the current working directory:

"%s\n", <directory pathname>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If an error is detected other than a write error when writing to standard output, no output shall
be written to standard output, a diagnostic message shall be written to standard error, and the
exit status shall be non-zero.

APPLICATION USAGE
If the pathname obtained from pwd is longer than {PATH_MAX} bytes, it could produce an error
if passed to cd. Therefore, in order to return to that directory it may be necessary to break the
pathname into sections shorter than {PATH_MAX} and call cd on each section in turn (the first
section being an absolute pathname and subsequent sections being relative pathnames).

EXAMPLES
None.

RATIONALE
Some implementations have historically provided pwd as a shell special built-in command.

In most utilities, if an error occurs, partial output may be written to standard output. This does
not happen in historical implementations of pwd (unless an error condition causes a partial
write). Because pwd is frequently used in historical shell scripts without checking the exit status,
it is important that the historical behavior is required here; therefore, the CONSEQUENCES OF
ERRORS section specifically disallows any partial output being written to standard output,
except when a write error occurs when writing to standard output.

An earlier version of this standard stated that the PWD environment variable was affected when
the −P option was in effect. This was incorrect; conforming implementations do not do this.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

3318 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112762

112763

112764

112765

112766

112767

112768

112769

112770

112771

112772

112773

112774

112775

112776

112777

112778

112779

112780

112781

112782

112783

112784

112785

112786

112787

112788

112789

112790

112791

112792

112793

112794

112795

112796

112797

112798

112799

112800

112801

112802

112803

112804

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities pwd

SEE ALSO
cd

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH getcwd()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The −P and −L options are added to describe actions relating to symbolic links as specified in the
IEEE P1003.2b draft standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #097 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Changes to the pwd utility and PWD environment variable have been made to match the
changes to the getcwd() function made for Austin Group Interpretation 1003.1-2001 #140.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0161 [471] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1488 is applied, clarifying the behavior when a write error occurs when
writing to standard output.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3319

112805

112806

112807

112808

112809

112810

112811

112812

112813

112814

112815

112816

112817

112818

112819

112820

112821

112822

112823

112824

112825

112826

112827

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

read Utilities

NAME
read — read from standard input into shell variables

SYNOPSIS
read [-r] [-d delim] var...

DESCRIPTION
The read utility shall read a single logical line from standard input into one or more shell
variables.

If the −r option is not specified, <backslash> shall act as an escape character. An unescaped
<backslash> shall preserve the literal value of a following <backslash> and shall prevent a
following byte (if any) from being used to split fields, with the exception of either <newline> or
the logical line delimiter specified with the −d delim option (if it is used and delim is not
<newline>); it is unspecified which. If this excepted character follows the <backslash>, the read
utility shall interpret this as line continuation. The <backslash> and the excepted character shall
be removed before splitting the input into fields. All other unescaped <backslash> characters
shall be removed after splitting the input into fields.

If standard input is a terminal device and the invoking shell is interactive, read shall prompt for a
continuation line when it reads an input line ending with a <backslash> <newline>, unless the
−r option is specified.

The terminating logical line delimiter (if any) shall be removed from the input. Then, if the shell
variable IFS (see Section 2.5.3, on page 2481) is set, and its value is an empty string, the resulting
data shall be assigned to the variable named by the first var operand, and the variables named
by other var operands (if any) shall be set to the empty string. No other processing shall be
performed in this case.

If IFS is unset, or is set to any non-empty value, then a modified version of the field splitting
algorithm specified in Section 2.6.5 (on page 2491) shall be applied, with the modifications as
follows:

1. The input to the algorithm shall be the logical line (minus terminating delimiter) that was
read from standard input, and shall be considered as a single initial field, all of which
resulted from expansions, with any escaped byte and the preceding <backslash> escape
character treated as if they were the result of a quoted expansion, and all other bytes
treated as if they were the results of unquoted expansions.

2. The loop over the contents of that initial field shall cease when either the input is empty
or n output fields have been generated, where n is one less than the number of var
operands passed to the read utility. Any remaining input in the original field being
processed shall be returned to the read utility ``unsplit’’; that is, unmodified except that
any leading or trailing IFS white space, as defined in Section 2.6.5 (on page 2491), shall be
removed.

The specified var operands shall be processed in the order they appear on the command line,
and the output fields generated by the field splitting algorithm shall be used in the order they
were generated, by repeating the following checks until neither is true:

• If more than one var operand is yet to be processed and one or more output fields are yet to
be used, the variable named by the first unprocessed var operand shall be assigned the
value of the first unused output field.

• If exactly one var operand is yet to be processed and there was some remaining unsplit
input returned from the modified field splitting algorithm, the variable named by the
unprocessed var operand shall be assigned the unsplit input.

3320 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112828

112829

112830

112831

112832

112833

112834

112835

112836

112837

112838

112839

112840

112841

112842

112843

112844

112845

112846

112847

112848

112849

112850

112851

112852

112853

112854

112855

112856

112857

112858

112859

112860

112861

112862

112863

112864

112865

112866

112867

112868

112869

112870

112871

112872

112873

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities read

If there are still one or more unprocessed var operands, each of the variables names by those
operands shall be assigned an empty string.

Note that in the case where just one var operand is given on the read command line, the modified
field splitting algorithm ceases after producing zero output fields and simply returns the
original input field, with any leading and trailing IFS white space removed, as unsplit input.
This unsplit input is assigned to the variable named by the var operand.

The setting of variables specified by the var operands shall affect the current shell execution
environment; see Section 2.13 (on page 2522). An error in setting any variable (such as if a var
has previously been marked readonly) shall be considered an error of read processing, and shall
result in a return value greater than one. Variables named before the one generating the error
shall be set as described above; it is unspecified whether variables named later shall be set as
above, or read simply ceases processing when the error occurs, leaving later named variables
unaltered. If read is called in a subshell or separate utility execution environment, such as one of
the following:

(read foo)
nohup read ...
find . -exec read ... \;

it shall not affect the shell variables in the caller’s environment.

If end-of-file is detected before a terminating logical line delimiter is encountered, the variables
specified by the var operands shall be set as described above and the exit status shall be 1.

OPTIONS
The read utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−d delim If delim consists of one single-byte character, that byte shall be used as the logical
line delimiter. If delim is the null string, the logical line delimiter shall be the null
byte. Otherwise, the behavior is unspecified.

−r Do not treat a <backslash> character in any special way. Consider each
<backslash> to be part of the input line.

OPERANDS
The following operand shall be supported:

var The name of an existing or nonexisting shell variable. If a var operand names the
variable IFS, the behavior is unspecified.

If a var operand names one of the variables LANG, LC_CTYPE, or LC_ALL and the
new value assigned to the variable would change how the bytes in IFS form
characters, or which characters in IFS are considered to be IFS white space (see
Section 2.6.5, on page 2491), it is unspecified what effects, if any, the change has on
how read performs field splitting.

STDIN
If the −d delim option is not specified, or if it is specified and delim is not the null string, the
standard input shall contain zero or more bytes (which need not form valid characters) and shall
not contain any null bytes.

If the −d delim option is specified and delim is the null string, the standard input shall contain
zero or more bytes (which need not form valid characters).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3321

112874

112875

112876

112877

112878

112879

112880

112881

112882

112883

112884

112885

112886

112887

112888

112889

112890

112891

112892

112893

112894

112895

112896

112897

112898

112899

112900

112901

112902

112903

112904

112905

112906

112907

112908

112909

112910

112911

112912

112913

112914

112915

112916

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

read Utilities

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of read:

IFS Determine the internal field separators used to delimit fields; see Section 2.5.3 (on
page 2481).

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PS2 Provide the prompt string that an interactive shell shall write to standard error
when a line ending with a <backslash> <newline> is read and the −r option was
not specified.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic messages and prompts for continued input.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

1 End-of-file was detected.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

3322 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

112917

112918

112919

112920

112921

112922

112923

112924

112925

112926

112927

112928

112929

112930

112931

112932

112933

112934

112935

112936

112937

112938

112939

112940

112941

112942

112943

112944

112945

112946

112947

112948

112949

112950

112951

112952

112953

112954

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities read

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

The −r option is included to enable read to subsume the purpose of the line utility, which is not
included in POSIX.1-2024.

The −d delim option enables reading up to an arbitrary single-byte delimiter. When delim is the
null string, the delimiter is the null byte and this allows read to be used to process null-
terminated lists of pathnames (as produced by the find −print0 primary), with correct handling
of pathnames that contain <newline> characters. Note that in order to specify the null string as
the delimiter, −d and delim need to be specified as two separate arguments. Implementations
differ in their handling of <backslash> for line continuation when −d delim is specified (and
delim is not <newline>); some treat <backslash>delim (or <backslash><NUL> if delim is the null
string) as a line continuation, whereas others still treat <backslash><newline> as a line
continuation. Consequently, portable applications need to specify −r whenever they specify −d
delim (and delim is not <newline>).

When reading a pathname it is inadvisable to use the contents of the first var operand, if non-
empty, when the exit status of read is 1, as it is likely the result of the command used to generate
the list of pathnames (for example find with −print or −print0) being terminated after it has
written a partial pathname, and consequently using it could result in the wrong pathname being
processed.

Since the var operands are processed in the order specified on the command line, if any variable
name is specified more than once as a var operand, the last assignment made is the one that is in
effect when read returns, including when an empty string is assigned because no field data was
available.

EXAMPLES
The following command:

while read -r xx yy
do

printf "%s %s\n" "$yy" "$xx"
done < input_file

prints a file with the first field of each line moved to the end of the line.

RATIONALE
The read utility historically has been a shell built-in. It was separated off into its own utility to
take advantage of the richer description of functionality introduced by this volume of
POSIX.1-2024.

Since read affects the current shell execution environment, it is required to be intrinsic. If it is
called in a subshell or separate utility execution environment, such as one of the following:

(read foo)
nohup read ...
find . -exec read ... \;

it does not affect the shell variables in the environment of the caller.

Earlier versions of this standard required the standard input to be a text file, and therefore the
results were undefined if the input was not empty and end-of-file was detected before a
<newline> character was encountered. However, all of the most popular shell implementations
have been found to have consistent behavior in this case, and so the behavior is now specified
and the requirement for standard input to be a text file has been relaxed to allow non-empty
input that does not end with a <newline>.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3323

112955

112956

112957

112958

112959

112960

112961

112962

112963

112964

112965

112966

112967

112968

112969

112970

112971

112972

112973

112974

112975

112976

112977

112978

112979

112980

112981

112982

112983

112984

112985

112986

112987

112988

112989

112990

112991

112992

112993

112994

112995

112996

112997

112998

112999

113000

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

read Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472)

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #194 is applied, clarifying the handling of the
<backslash> escape character.

SD5-XCU-ERN-126 is applied, clarifying that input lines end with a <newline>.

The description of here-documents is removed from the read reference page.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0162 [958] is applied.

Issue 8
Austin Group Defect 243 is applied, adding the −d option and relaxing the requirement for
standard input to be a text file.

Austin Group Defect 367 is applied, requiring that read distinguishes between detecting end-of-
file and an error occurring, setting its exit status to one and greater than one, respectively.

Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1778 is applied, clarifying how field splitting is performed.

Austin Group Defect 1779 is applied, clarifying how an error in setting any variable affects the
processing of variables named before or after the one generating the error.

3324 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113001

113002

113003

113004

113005

113006

113007

113008

113009

113010

113011

113012

113013

113014

113015

113016

113017

113018

113019

113020

113021

113022

113023

113024

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities readlink

NAME
readlink — display the contents of a symbolic link

SYNOPSIS
readlink [-n] file

DESCRIPTION
If the file operand names a symbolic link, the readlink utility shall not follow the symbolic link
when resolving file and shall write the contents of the symbolic link to standard output. If the −n
option is not specified, the output to standard output shall be followed by a <newline>
character.

If file does not name a symbolic link, readlink shall write a diagnostic message to standard error
and exit with non-zero status.

OPTIONS
The readlink utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−n Do not output a trailing <newline> character.

OPERANDS
The following operand shall be supported:

file A pathname of a symbolic link to be read.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of readlink:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See DESCRIPTION.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3325

113025

113026

113027

113028

113029

113030

113031

113032

113033

113034

113035

113036

113037

113038

113039

113040

113041

113042

113043

113044

113045

113046

113047

113048

113049

113050

113051

113052

113053

113054

113055

113056

113057

113058

113059

113060

113061

113062

113063

113064

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

readlink Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The readlink utility was added because using ls −l to obtain the contents of a symbolic link is
difficult if the output includes more than one occurrence of the string " -> ".

The −f option found in many implementations was not included, as the realpath utility provides
equivalent functionality with a choice of behaviors.

FUTURE DIRECTIONS
None.

SEE ALSO
ln , ls , realpath

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH readlink()

CHANGE HISTORY
First released in Issue 8.

3326 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113065

113066

113067

113068

113069

113070

113071

113072

113073

113074

113075

113076

113077

113078

113079

113080

113081

113082

113083

113084

113085

113086

113087

113088

113089

113090

113091

113092

113093

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities realpath

NAME
realpath — resolve a pathname

SYNOPSIS
realpath [-E|-e] file

DESCRIPTION
The realpath utility shall canonicalize the pathname specified by the file operand as follows:

If a call to the realpath() function with the specified pathname as its first argument would
succeed, the canonicalized pathname shall be the pathname that would be returned by that
realpath() call. Otherwise:

• If the −e option is specified, the canonicalization shall fail.

• If the −E option is specified, then if a call to the realpath() function with the specified
pathname as its first argument would encounter an error condition other than [ENOENT],
the canonicalization shall fail; if the call would encounter an [ENOENT] error, realpath shall
expand all symbolic links that would be encountered in an attempt to resolve the specified
pathname using the algorithm specified in XBD Section 4.16 (on page 105), except that any
trailing <slash> characters that are not also leading <slash> characters shall be ignored. If
this expansion succeeds and the path prefix of the expanded pathname resolves to an
existing directory, the canonicalized pathname shall be the expanded pathname. In all
other cases, the canonicalization shall fail. If the expanded pathname is not empty, does not
begin with a <slash>, and has exactly one pathname component, it shall be treated as if it
had a path prefix of "./".

• If no options are specified, realpath shall canonicalize the specified pathname in an
unspecified manner such that the resulting absolute pathname does not contain any
components that refer to files of type symbolic link and does not contain any components
that are dot or dot-dot.

Upon successful canonicalization, realpath shall write the canonicalized pathname, followed by a
<newline> character, to standard output.

If canonicalization fails, or the canonicalized pathname is empty, nothing shall be written to
standard output, a diagnostic message shall be written to standard error, and realpath shall exit
with non-zero status.

OPTIONS
The realpath utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−E Do not treat it as an error if attempting to resolve the last component of the
canonicalized form of the file operand results in an [ENOENT] error condition.

−e Tr eat it as an error if attempting to resolve the last component of the canonicalized
form of the file operand results in an [ENOENT] error condition.

Specifying more than one of the mutually-exclusive options −E and −e shall not be considered an
error. The last option specified shall determine the behavior of the utility.

OPERANDS
The following operand shall be supported:

file A pathname to be canonicalized.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3327

113094

113095

113096

113097

113098

113099

113100

113101

113102

113103

113104

113105

113106

113107

113108

113109

113110

113111

113112

113113

113114

113115

113116

113117

113118

113119

113120

113121

113122

113123

113124

113125

113126

113127

113128

113129

113130

113131

113132

113133

113134

113135

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

realpath Utilities

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of realpath:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

3328 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113136

113137

113138

113139

113140

113141

113142

113143

113144

113145

113146

113147

113148

113149

113150

113151

113152

113153

113154

113155

113156

113157

113158

113159

113160

113161

113162

113163

113164

113165

113166

113167

113168

113169

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities realpath

APPLICATION USAGE
If neither the −e nor the −E option is specified, some implementations behave as if −e had been
specified and others as if −E had been specified, but there are also implementations where the
behavior differs from both of these. For example, the mksh shell has an internal implementation
of realpath that canonicalizes /dir/regular_file/.. to /dir, whereas the realpath() function would
return an [ENOTDIR] error in this case. Portable applications should always specify either −e or
−E.

EXAMPLES
None.

RATIONALE
The realpath utility was added in preference to a −f option found in some implementations of the
readlink utility because it allows the application to specify whether or not a missing final
component is to be treated as an error.

The behavior with the −E option when file does not resolve (with symbolic links followed) to an
existing file is not the same as simply calling realpath() with the path prefix of the file operand
and writing the resulting pathname, a <slash>, and the last component of file to standard output.
For example, if /tmp/nofile does not exist, and file is A/B where A is an existing directory and B
is a symbolic link to /tmp/nofile, realpath with −E will output /tmp/nofile, but if B is a symbolic
link to /tmp/nofile/foo, realpath with −E will treat this as an error. In both cases
realpath("A/B") would fail with errno set to [ENOENT]. Even though realpath("A")
would succeed, in neither case is anything ending /B the result.

Trailing <slash> characters (that follow a non-<slash>) are handled differently with −E than with
−e. With −e they are handled as for the realpath() function. With −E they are sometimes
effectively ignored, and they are never included in the output. For example, if /tmp/nofile does
not exist and /tmp/regfile is an existing regular file:

$ realpath -E /tmp/nofile/
/tmp/nofile
$ realpath -E /tmp/regfile/
realpath: /tmp/regfile/: Not a directory

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
ln , ls , pwd , readlink

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH Section 2.3 (on page 507), realpath()

CHANGE HISTORY
First released in Issue 8.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3329

113170

113171

113172

113173

113174

113175

113176

113177

113178

113179

113180

113181

113182

113183

113184

113185

113186

113187

113188

113189

113190

113191

113192

113193

113194

113195

113196

113197

113198

113199

113200

113201

113202

113203

113204

113205

113206

113207

113208

113209

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

renice Utilities

NAME
renice — set nice values of running processes

SYNOPSIS
renice [-g|-p|-u] -n increment ID...

DESCRIPTION
The renice utility shall request that the nice values (see XBD Section 3.225, on page 64) of one or
more running processes be changed. By default, the applicable processes are specified by their
process IDs. When a process group is specified (see −g), the request shall apply to all processes
in the process group.

The nice value shall be bounded in an implementation-defined manner. If the requested
increment would raise or lower the nice value of the executed utility beyond implementation-
defined limits, then the limit whose value was exceeded shall be used.

When a user is reniced, the request applies to all processes whose saved set-user-ID matches the
user ID corresponding to the user.

Regardless of which options are supplied or any other factor, renice shall not alter the nice values
of any process unless the user requesting such a change has appropriate privileges to do so for
the specified process. If the user lacks appropriate privileges to perform the requested action, the
utility shall return an error status.

The saved set-user-ID of the user’s process shall be checked instead of its effective user ID when
renice attempts to determine the user ID of the process in order to determine whether the user
has appropriate privileges.

OPTIONS
The renice utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

−g Interpret the following operands as unsigned decimal integer process group IDs.

−n increment Specify how the nice value of the specified process or processes is to be adjusted.
The increment option-argument is a positive or negative decimal integer that shall
be used to modify the nice value of the specified process or processes. Negative
increment values may require appropriate privileges.

−p Interpret the following operands as unsigned decimal integer process IDs. The −p
option is the default if no options are specified.

−u Interpret the following operands as users. If a user exists with a user name equal to
the operand, then the user ID of that user is used in further processing. Otherwise,
if the operand represents an unsigned decimal integer, it shall be used as the
numeric user ID of the user.

OPERANDS
The following operands shall be supported:

ID A process ID, process group ID, or user name/user ID, depending on the option
selected.

STDIN
Not used.

3330 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113210

113211

113212

113213

113214

113215

113216

113217

113218

113219

113220

113221

113222

113223

113224

113225

113226

113227

113228

113229

113230

113231

113232

113233

113234

113235

113236

113237

113238

113239

113240

113241

113242

113243

113244

113245

113246

113247

113248

113249

113250

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities renice

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of renice:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES

1. Adjust the nice value so that process IDs 987 and 32 would have a lower nice value:

renice -n 5 -p 987 32

2. Adjust the nice value so that group IDs 324 and 76 would have a higher nice value, if the
user has appropriate privileges to do so:

renice -n -4 -g 324 76

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3331

113251

113252

113253

113254

113255

113256

113257

113258

113259

113260

113261

113262

113263

113264

113265

113266

113267

113268

113269

113270

113271

113272

113273

113274

113275

113276

113277

113278

113279

113280

113281

113282

113283

113284

113285

113286

113287

113288

113289

113290

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

renice Utilities

3. Adjust the nice value so that numeric user ID 8 and user sas would have a lower nice
value:

renice -n 4 -u 8 sas

Useful nice value increments on historical systems include 19 or 20 (the affected processes run
only when nothing else in the system attempts to run) and any negative number (to make
processes run faster).

RATIONALE
The gid, pid, and user specifications do not fit either the definition of operand or option-
argument. However, for clarity, they have been included in the OPTIONS section, rather than
the OPERANDS section.

The definition of nice value is not intended to suggest that all processes in a system have
priorities that are comparable. Scheduling policy extensions such as the realtime priorities in the
System Interfaces volume of POSIX.1-2024 make the notion of a single underlying priority for all
scheduling policies problematic. Some implementations may implement the nice-related features
to affect all processes on the system, others to affect just the general time-sharing activities
implied by this volume of POSIX.1-2024, and others may have no effect at all. Because of the use
of ``implementation-defined’’ in nice and renice, a wide range of implementation strategies are
possible.

Originally, this utility was written in the historical manner, using the term ``nice value’’. This
was always a point of concern with users because it was never intuitively obvious what this
meant. With a newer version of renice, which used the term ``system scheduling priority’’, it was
hoped that novice users could better understand what this utility was meant to do. Also, it
would be easier to document what the utility was meant to do. Unfortunately, the addition of
the POSIX realtime scheduling capabilities introduced the concepts of process and thread
scheduling priorities that were totally unaffected by the nice/renice utilities or the
nice()/setpriority() functions. Continuing to use the term ``system scheduling priority’’ would
have incorrectly suggested that these utilities and functions were indeed affecting these realtime
priorities. It was decided to revert to the historical term ``nice value’’ to reference this unrelated
process attribute.

Although this utility has use by system administrators (and in fact appears in the system
administration portion of the BSD documentation), the standard developers considered that it
was very useful for individual end users to control their own processes.

Earlier versions of this standard allowed the following forms in the SYNOPSIS:

renice nice_value[-p] pid...[-g gid...][-p pid...][-u user...]
renice nice_value -g gid...[-g gid...]-p pid...][-u user...]
renice nice_value -u user...[-g gid...]-p pid...][-u user...]

These forms are no longer specified by POSIX.1-2024 but may be present in some
implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
nice

XBD Section 3.225 (on page 64), Chapter 8 (on page 167), Section 12.2 (on page 215)

3332 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113291

113292

113293

113294

113295

113296

113297

113298

113299

113300

113301

113302

113303

113304

113305

113306

113307

113308

113309

113310

113311

113312

113313

113314

113315

113316

113317

113318

113319

113320

113321

113322

113323

113324

113325

113326

113327

113328

113329

113330

113331

113332

113333

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities renice

CHANGE HISTORY
First released in Issue 4.

Issue 5
In the SYNOPSIS, an ellipsis is added to the −u option in all three obsolescent forms.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent forms of the SYNOPSIS are removed.

Text previously conditional on POSIX_SAVED_IDS is mandatory in this version. This is a FIPS
requirement.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline 9 of the Utility
Syntax Guidelines does not apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The renice utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1286 is applied, changing the description of the −n option.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3333

113334

113335

113336

113337

113338

113339

113340

113341

113342

113343

113344

113345

113346

113347

113348

113349

113350

113351

113352

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rm Utilities

NAME
rm — remove directory entries

SYNOPSIS
rm [-diRrv] file...

rm -f [-diRrv] [file...]

DESCRIPTION
The rm utility shall remove the directory entry specified by each file argument.

If either of the files dot or dot-dot are specified as the basename portion of an operand (that is,
the final pathname component) or if an operand resolves to the root directory, rm shall write a
diagnostic message to standard error and do nothing more with such operands.

For each file the following steps shall be taken:

1. If the file does not exist:

a. If the −f option is not specified, rm shall write a diagnostic message to standard
error.

b. Go on to any remaining files.

2. If file is of type directory, the following steps shall be taken:

a. If neither the −R option nor the −r option is specified, but −d is specified, rm shall
proceed with step 3 for the current file. If none of −r, −R, or −d is specified, rm shall
write a diagnostic message to standard error, do nothing more with file, and go on
to any remaining files.

b. If file is an empty directory, rm may skip to step 2d. If the −f option is not specified,
and either the permissions of file do not permit writing and the standard input is a
terminal or the −i option is specified, rm shall write a prompt to standard error and
read a line from the standard input. If the response is not affirmative, rm shall do
nothing more with the current file and go on to any remaining files.

c. For each entry contained in file, other than dot or dot-dot, the four steps listed here
(1 to 4) shall be taken with the entry as if it were a file operand. The rm utility shall
not traverse directories by following symbolic links into other parts of the
hierarchy, but shall remove the links themselves.

d. If the −i option is specified, rm shall write a prompt to standard error and read a
line from the standard input. If the response is not affirmative, rm shall do nothing
more with the current file, and go on to any remaining files.

e. rm shall proceed with step 4 for the current file.

3. If the −f option is not specified, and either the permissions of file do not permit writing
and the standard input is a terminal or the −i option is specified, rm shall write a prompt
to the standard error and read a line from the standard input. If the response is not
affirmative, rm shall do nothing more with the current file and go on to any remaining
files.

4. rm shall perform actions equivalent to the remove() function defined in the System
Interfaces volume of POSIX.1-2024 called with a pathname of the current file used as the
path argument.

If rm successfully performed the above actions on the current file, and the −v option is
specified, rm shall write a message containing the pathname of the current file to the
standard output. If the actions fail for any reason, rm shall write a diagnostic message to

3334 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113353

113354

113355

113356

113357

113358

113359

113360

113361

113362

113363

113364

113365

113366

113367

113368

113369

113370

113371

113372

113373

113374

113375

113376

113377

113378

113379

113380

113381

113382

113383

113384

113385

113386

113387

113388

113389

113390

113391

113392

113393

113394

113395

113396

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities rm

standard error, do nothing more with the current file, and go on to any remaining files.

The rm utility shall be able to descend to arbitrary depths in a file hierarchy, and shall not fail
due to path length limitations (unless an operand specified by the user exceeds system
limitations).

OPTIONS
The rm utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−d Remove empty directories. See the DESCRIPTION.

−f Do not prompt for confirmation. Do not write diagnostic messages or modify the
exit status in the case of no file operands, or in the case of operands that do not
exist. Any previous occurrences of the −i option shall be ignored.

−i Prompt for confirmation as described previously. Any previous occurrences of the
−f option shall be ignored.

−R Remove file hierarchies. See the DESCRIPTION.

−r Equivalent to −R.

−v After each file has been removed, write a message to standard output indicating
that it has been removed.

OPERANDS
The following operand shall be supported:

file A pathname of a directory entry to be removed.

STDIN
The standard input shall be used to read an input line in response to each prompt specified in
the STDOUT section. Otherwise, the standard input shall not be used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of rm:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments) and the behavior of character classes within regular expressions used
in the extended regular expression defined for the yesexpr locale keyword in the
LC_MESSAGES category.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3335

113397

113398

113399

113400

113401

113402

113403

113404

113405

113406

113407

113408

113409

113410

113411

113412

113413

113414

113415

113416

113417

113418

113419

113420

113421

113422

113423

113424

113425

113426

113427

113428

113429

113430

113431

113432

113433

113434

113435

113436

113437

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rm Utilities

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −v option is specified, information about each removed file shall be written to standard
output in an unspecified format.

STDERR
Prompts shall be written to standard error under the conditions specified in the DESCRIPTION
and OPTIONS sections. The prompts shall contain the file pathname, but their format is
otherwise unspecified. The standard error also shall be used for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All requested directory entries (excluding directory entries where a non-affirmative
response was given to a request for confirmation) were successfully deleted. In addition, if
the −v option is specified, information about each removed directory entry was successfully
written to standard output.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The rm utility is forbidden to remove the names dot and dot-dot in order to avoid the
consequences of inadvertently doing something like:

rm -r .*

Some implementations do not permit the removal of the last hard link to an executable binary
file that is being executed; see the [EBUSY] error in the unlink() function defined in the System
Interfaces volume of POSIX.1-2024. Thus, the rm utility can fail to remove such files.

The −i option causes rm to prompt and read the standard input even if the standard input is not
a terminal, but in the absence of −i the mode prompting is not done when the standard input is
not a terminal.

EXAMPLES

1. The following command:

rm a.out core

removes the directory entries: a.out and core, or issues an error if either directory entry is
itself a directory or does not exist.

3336 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113438

113439

113440

113441

113442

113443

113444

113445

113446

113447

113448

113449

113450

113451

113452

113453

113454

113455

113456

113457

113458

113459

113460

113461

113462

113463

113464

113465

113466

113467

113468

113469

113470

113471

113472

113473

113474

113475

113476

113477

113478

113479

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities rm

2. The following command:

rm -Rf junk

removes the directory junk and all its contents, without prompting.

3. The following command:

rm -d name

behaves like

rmdir name

if name is a directory (including failing if name is not empty), as if by the rmdir()
function; and behaves like

rm name

if name is not a directory, as if by the unlink() function.

RATIONALE
For absolute clarity, paragraphs (2b) and (3) in the DESCRIPTION of rm describing the behavior
when prompting for confirmation, should be interpreted in the following manner:

if ((NOT f_option) AND
((not_writable AND input_is_terminal) OR i_option))

The exact format of the interactive prompts is unspecified. Only the general nature of the
contents of prompts are specified because implementations may desire more descriptive
prompts than those used on historical implementations. Therefore, an application not using the
−f option, or using the −i option, relies on the system to provide the most suitable dialog directly
with the user, based on the behavior specified.

The −r option is historical practice on all known systems. The synonym −R option is provided
for consistency with the other utilities in this volume of POSIX.1-2024 that provide options
requesting recursive descent through the file hierarchy.

The behavior of the −f option in historical versions of rm is inconsistent. In general, along with
``forcing’’ the unlink without prompting for permission, it always causes diagnostic messages to
be suppressed and the exit status to be unmodified for nonexistent operands and files that
cannot be unlinked. In some versions, however, the −f option suppresses usage messages and
system errors as well. Suppressing such messages is not a service to either shell scripts or users.

It is less clear that error messages regarding files that cannot be unlinked (removed) should be
suppressed. Although this is historical practice, this volume of POSIX.1-2024 does not permit the
−f option to suppress such messages.

When given the −r and −i options, historical versions of rm prompt the user twice for each
directory, once before removing its contents and once before actually attempting to delete the
directory entry that names it. This allows the user to ``prune’’ the file hierarchy walk. Historical
versions of rm were inconsistent in that some did not do the former prompt for directories
named on the command line and others had obscure prompting behavior when the −i option
was specified and the permissions of the file did not permit writing. The POSIX Shell and
Utilities rm differs little from historic practice, but does require that prompts be consistent.
Historical versions of rm were also inconsistent in that prompts were done to both standard
output and standard error. This volume of POSIX.1-2024 requires that prompts be done to
standard error, for consistency with cp and mv, and to allow historical extensions to rm that
provide an option to list deleted files on standard output.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3337

113480

113481

113482

113483

113484

113485

113486

113487

113488

113489

113490

113491

113492

113493

113494

113495

113496

113497

113498

113499

113500

113501

113502

113503

113504

113505

113506

113507

113508

113509

113510

113511

113512

113513

113514

113515

113516

113517

113518

113519

113520

113521

113522

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rm Utilities

The rm utility is required to descend to arbitrary depths so that any file hierarchy may be
deleted. This means, for example, that the rm utility cannot run out of file descriptors during its
descent (that is, if the number of file descriptors is limited, rm cannot be implemented in the
historical fashion where one file descriptor is used per directory level). Also, rm is not permitted
to fail because of path length restrictions, unless an operand specified by the user is longer than
{PATH_MAX}.

The rm utility removes symbolic links themselves, not the files they refer to, as a consequence of
the dependence on the unlink() functionality, per the DESCRIPTION. When removing
hierarchies with −r or −R, the prohibition on following symbolic links has to be made explicit.

The addition of the −d option allows the use of rm to delete either a file or an empty directory
without the risk of recursion into a non-empty directory, and without the inherent race between
determining a file’s type and deciding what action to attempt on that file. If either the −r or −R
option is specified, the use of recursion takes precedence.

The addition of the −v option allows a user of rm to see which files have been deleted.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
rmdir

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH remove(), rmdir(), unlink()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
Text is added to clarify actions relating to symbolic links as specified in the IEEE P1003.2b draft
standard.

Issue 7
Austin Group Interpretations 1003.1-2001 #019 and #091 are applied.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0163 [542], XCU/TC2-2008/0164
[819], and XCU/TC2-2008/0165 [542] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 802 is applied, adding the −d option.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3338 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113523

113524

113525

113526

113527

113528

113529

113530

113531

113532

113533

113534

113535

113536

113537

113538

113539

113540

113541

113542

113543

113544

113545

113546

113547

113548

113549

113550

113551

113552

113553

113554

113555

113556

113557

113558

113559

113560

113561

113562

113563

113564

113565

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities rm

Austin Group Defects 1154, 1365, and 1487 are applied, adding the −v option.

Austin Group Defect 1380 is applied, changing ``last link’’ to ``last hard link’’.

Austin Group Defect 1732 is applied, changing the EXIT STATUS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3339

113566

113567

113568

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rmdel Utilities

NAME
rmdel — remove a delta from an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI rmdel -r SID file...

DESCRIPTION
The rmdel utility shall remove the delta specified by the SID from each named SCCS file. The
delta to be removed shall be the most recent delta in its branch in the delta chain of each named
SCCS file. In addition, the application shall ensure that the SID specified is not that of a version
being edited for the purpose of making a delta; that is, if a p-file (see get) exists for the named
SCCS file, the SID specified shall not appear in any entry of the p-file.

Removal of a delta shall be restricted to:

1. The user who made the delta

2. The owner of the SCCS file

3. The owner of the directory containing the SCCS file

OPTIONS
The rmdel utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−r SID Specify the SCCS identification string (SID) of the delta to be deleted.

OPERANDS
The following operand shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the rmdel
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is '−', the standard input shall be read;
each line of the standard input is taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only when the file operand is specified as '−'. Each
line of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
The SCCS files shall be files of unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of rmdel:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

3340 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113569

113570

113571

113572

113573

113574

113575

113576

113577

113578

113579

113580

113581

113582

113583

113584

113585

113586

113587

113588

113589

113590

113591

113592

113593

113594

113595

113596

113597

113598

113599

113600

113601

113602

113603

113604

113605

113606

113607

113608

113609

113610

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities rmdel

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The SCCS files shall be files of unspecified format. During processing of a file, a temporary x-file,
as described in admin , may be created and deleted; a locking z-file, as described in get , may be
created and deleted.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
admin , delta , get , prs

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3341

113611

113612

113613

113614

113615

113616

113617

113618

113619

113620

113621

113622

113623

113624

113625

113626

113627

113628

113629

113630

113631

113632

113633

113634

113635

113636

113637

113638

113639

113640

113641

113642

113643

113644

113645

113646

113647

113648

113649

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rmdel Utilities

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3342 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113650

113651

113652

113653

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities rmdir

NAME
rmdir — remove directories

SYNOPSIS
rmdir [-p] dir...

DESCRIPTION
The rmdir utility shall remove the directory entry specified by each dir operand.

For each dir operand, the rmdir utility shall perform actions equivalent to the rmdir() function
called with the dir operand as its only argument.

Directories shall be processed in the order specified. If a directory and a subdirectory of that
directory are specified in a single invocation of the rmdir utility, the application shall specify the
subdirectory before the parent directory so that the parent directory is empty when the rmdir
utility tries to remove it.

OPTIONS
The rmdir utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−p Remove all directories in a pathname. For each dir operand:

1. The directory entry it names shall be removed.

2. If the dir operand includes more than one pathname component, effects
equivalent to the following command shall occur:

rmdir -p $(dirname dir)

OPERANDS
The following operand shall be supported:

dir A pathname of an empty directory to be removed.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of rmdir:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3343

113654

113655

113656

113657

113658

113659

113660

113661

113662

113663

113664

113665

113666

113667

113668

113669

113670

113671

113672

113673

113674

113675

113676

113677

113678

113679

113680

113681

113682

113683

113684

113685

113686

113687

113688

113689

113690

113691

113692

113693

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

rmdir Utilities

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Each directory entry specified by a dir operand was removed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The definition of an empty directory is one that contains, at most, directory entries for dot and
dot-dot.

EXAMPLES
If a directory a in the current directory is empty except it contains a directory b and a/b is empty
except it contains a directory c:

rmdir -p a/b/c

removes all three directories.

RATIONALE
On historical System V systems, the −p option also caused a message to be written to the
standard output. The message indicated whether the whole path was removed or whether part
of the path remained for some reason. The STDERR section requires this diagnostic when the
entire path specified by a dir operand is not removed, but does not allow the status message
reporting success to be written as a diagnostic.

The rmdir utility on System V also included a −s option that suppressed the informational
message output by the −p option. This option has been omitted because the informational
message is not specified by this volume of POSIX.1-2024.

FUTURE DIRECTIONS
None.

SEE ALSO
rm

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH remove(), rmdir(), unlink()

3344 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113694

113695

113696

113697

113698

113699

113700

113701

113702

113703

113704

113705

113706

113707

113708

113709

113710

113711

113712

113713

113714

113715

113716

113717

113718

113719

113720

113721

113722

113723

113724

113725

113726

113727

113728

113729

113730

113731

113732

113733

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities rmdir

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3345

113734

113735

113736

113737

113738

113739

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sact Utilities

NAME
sact — print current SCCS file-editing activity (DEVELOPMENT)

SYNOPSIS
XSI sact file...

DESCRIPTION
The sact utility shall inform the user of any impending deltas to a named SCCS file by writing a
list to standard output. This situation occurs when get −e has been executed previously without
a subsequent execution of delta, unget, or sccs unedit.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the sact
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is '−', the standard input shall be read;
each line of the standard input shall be taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only when the file operand is specified as '−'. Each
line of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
Any SCCS files interrogated are files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sact:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

3346 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113740

113741

113742

113743

113744

113745

113746

113747

113748

113749

113750

113751

113752

113753

113754

113755

113756

113757

113758

113759

113760

113761

113762

113763

113764

113765

113766

113767

113768

113769

113770

113771

113772

113773

113774

113775

113776

113777

113778

113779

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sact

STDOUT
The output for each named file shall consist of a line in the following format:

"%sΔ%sΔ%sΔ%sΔ%s\n", <SID>, <new SID>, <login>, <date>, <time>

<SID> Specifies the SID of a delta that currently exists in the SCCS file to which changes
are made to make the new delta.

<new SID> Specifies the SID for the new delta to be created.

<login> Contains the login name of the user who makes the delta (that is, who executed a
get for editing).

<date> Contains the date that get −e was executed, in the format used by the prs :D: data
keyword.

<time> Contains the time that get −e was executed, in the format used by the prs :T: data
keyword.

If there is more than one named file or if a directory or standard input is named, each pathname
shall be written before each of the preceding lines:

"\n%s:\n", <pathname>

STDERR
The standard error shall be used only for optional informative messages concerning SCCS files
with no impending deltas, and for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3347

113780

113781

113782

113783

113784

113785

113786

113787

113788

113789

113790

113791

113792

113793

113794

113795

113796

113797

113798

113799

113800

113801

113802

113803

113804

113805

113806

113807

113808

113809

113810

113811

113812

113813

113814

113815

113816

113817

113818

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sact Utilities

SEE ALSO
delta , get , sccs , unget

XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 2.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3348 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113819

113820

113821

113822

113823

113824

113825

113826

113827

113828

113829

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sccs

NAME
sccs — front end for the SCCS subsystem (DEVELOPMENT)

SYNOPSIS
XSI sccs [-r] [-d path] [-p path] command [options...] [operands...]

DESCRIPTION
The sccs utility is a front end to the SCCS programs. It also includes the capability to run set-
user-id to another user to provide additional protection.

The sccs utility shall invoke the specified command with the specified options and operands. By
default, each of the operands shall be modified by prefixing it with the string "SCCS/s.".

The command can be the name of one of the SCCS utilities in this volume of POSIX.1-2024 (admin,
delta, get, prs, rmdel, sact, unget, val, or what) or one of the pseudo-utilities listed in the
EXTENDED DESCRIPTION section.

OPTIONS
The sccs utility shall conform to XBD Section 12.2 (on page 215), except that options operands are
actually options to be passed to the utility named by command. When the portion of the
command:

command [options ...] [operands ...]

is considered, all of the pseudo-utilities used as command shall support the Utility Syntax
Guidelines. Any of the other SCCS utilities that can be invoked in this manner support the
Guidelines to the extent indicated by their individual OPTIONS sections.

The following options shall be supported preceding the command operand:

−d path A pathname of a directory to be used as a root directory for the SCCS files. The
default shall be the current directory. The −d option shall take precedence over the
PROJECTDIR variable. See −p.

−p path A pathname of a directory in which the SCCS files are located. The default shall be
the SCCS directory.

The −p option differs from the −d option in that the −d option-argument shall be
prefixed to the entire pathname and the −p option-argument shall be inserted
before the final component of the pathname. For example:

sccs -d /x -p y get a/b

converts to:

get /x/a/y/s.b

This allows the creation of aliases such as:

alias syssccs="sccs -d /usr/src"

which is used as:

syssccs get cmd/who.c

−r Invoke command with the real user ID of the process, not any effective user ID that
the sccs utility is set to. Certain commands (admin, check, clean, diffs, info, rmdel,
and tell) cannot be run set-user-ID by all users, since this would allow anyone to
change the authorizations. These commands are always run as the real user.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3349

113830

113831

113832

113833

113834

113835

113836

113837

113838

113839

113840

113841

113842

113843

113844

113845

113846

113847

113848

113849

113850

113851

113852

113853

113854

113855

113856

113857

113858

113859

113860

113861

113862

113863

113864

113865

113866

113867

113868

113869

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sccs Utilities

OPERANDS
The following operands shall be supported:

command An SCCS utility name or the name of one of the pseudo-utilities listed in the
EXTENDED DESCRIPTION section.

options An option or option-argument to be passed to command.

operands An operand to be passed to command.

STDIN
See the utility description for the specified command.

INPUT FILES
See the utility description for the specified command.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sccs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

PROJECTDIR
Provide a default value for the −d path option. If the value of PROJECTDIR begins
with a <slash>, it shall be considered an absolute pathname; otherwise, the value
of PROJECTDIR is treated as a user name and that user’s initial working directory
shall be examined for a subdirectory src or source. If such a directory is found, it
shall be used. Otherwise, the value shall be used as a relative pathname.

Additional environment variable effects may be found in the utility description for the specified
command.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the utility description for the specified command.

STDERR
See the utility description for the specified command.

OUTPUT FILES
See the utility description for the specified command.

3350 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113870

113871

113872

113873

113874

113875

113876

113877

113878

113879

113880

113881

113882

113883

113884

113885

113886

113887

113888

113889

113890

113891

113892

113893

113894

113895

113896

113897

113898

113899

113900

113901

113902

113903

113904

113905

113906

113907

113908

113909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sccs

EXTENDED DESCRIPTION
The following pseudo-utilities shall be supported as command operands. All options referred to
in the following list are values given in the options operands following command.

check Equivalent to info, except that nothing shall be printed if nothing is being edited, and a
non-zero exit status shall be returned if anything is being edited. The intent is to have
this included in an ``install’’ entry in a makefile to ensure that everything is included
into the SCCS file before a version is installed.

clean Remove everything from the current directory that can be recreated from SCCS files,
but do not remove any files being edited. If the −b option is given, branches shall be
ignored in the determination of whether they are being edited; this is dangerous if
branches are kept in the same directory.

create Create an SCCS file, taking the initial contents from the file of the same name. Any
options to admin are accepted. If the creation is successful, the original files shall be
renamed by prefixing the basenames with a comma. These renamed files should be
removed after it has been verified that the SCCS files have been created successfully.

delget Perform a delta on the named files and then get new versions. The new versions shall
have ID keywords expanded and shall not be editable. Any −m, −p, −r, −s, and −y
options shall be passed to delta, and any −b, −c, −e, −i, −k, −l, −s, and −x options shall be
passed to get.

deledit Equivalent to delget, except that the get phase shall include the −e option. This option is
useful for making a checkpoint of the current editing phase. The same options shall be
passed to delta as described above, and all the options listed for get above except −e
shall be passed to edit.

diffs Write a difference listing between the current version of the files checked out for editing
and the versions in SCCS format. Any −r, −c, −i, −x, and −t options shall be passed to
get; any −l, −s, −e, −f, −h, and −b options shall be passed to diff. A −C option shall be
passed to diff as −c.

edit Equivalent to get −e.

fix Remove the named delta, but leave a copy of the delta with the changes that were in it.
It is useful for fixing small compiler bugs, and so on. The application shall ensure that it
is followed by a −r SID option. Since fix does not leave audit trails, it should be used
carefully.

info Write a listing of all files being edited. If the −b option is given, branches (that is, SIDs
with two or fewer components) shall be ignored. If a −u user option is given, then only
files being edited by the named user shall be listed. A −U option shall be equivalent to
−u<current user>.

print Write out verbose information about the named files, equivalent to sccs prs.

tell Write a <newline>-separated list of the files being edited to standard output. Takes the
−b, −u, and −U options like info and check.

unedit This is the opposite of an edit or a get −e. It should be used with caution, since any
changes made since the get are lost.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3351

113910

113911

113912

113913

113914

113915

113916

113917

113918

113919

113920

113921

113922

113923

113924

113925

113926

113927

113928

113929

113930

113931

113932

113933

113934

113935

113936

113937

113938

113939

113940

113941

113942

113943

113944

113945

113946

113947

113948

113949

113950

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sccs Utilities

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Many of the SCCS utilities take directory names as operands as well as specific filenames. The
pseudo-utilities supported by sccs are not described as having this capability, but are not
prohibited from doing so.

EXAMPLES

1. To get a file for editing, edit it and produce a new delta:

sccs get -e file.c
ex file.c
sccs delta file.c

2. To get a file from another directory:

sccs -p /usr/src/sccs/s. get cc.c

or:

sccs get /usr/src/sccs/s.cc.c

3. To make a delta of a large number of files in the current directory:

sccs delta *.c

4. To get a list of files being edited that are not on branches:

sccs info -b

5. To delta everything being edited by the current user:

sccs delta $(sccs tell -U)

6. In a makefile, to get source files from an SCCS file if it does not already exist:

SRCS = <list of source files>
$(SRCS):

sccs get $(REL) $@

RATIONALE
sccs and its associated utilities are part of the XSI Development Utilities option within the XSI
option.

SCCS is an abbreviation for Source Code Control System. It is a maintenance and enhancement
tracking tool. When a file is put under SCCS, the source code control system maintains the file
and, when changes are made, identifies and stores them in the file with the original source code
and/or documentation. As other changes are made, they too are identified and retained in the
file.

Retrieval of the original and any set of changes is possible. Any version of the file as it develops
can be reconstructed for inspection or additional modification. History data can be stored with
each version, documenting why the changes were made, who made them, and when they were
made.

3352 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

113951

113952

113953

113954

113955

113956

113957

113958

113959

113960

113961

113962

113963

113964

113965

113966

113967

113968

113969

113970

113971

113972

113973

113974

113975

113976

113977

113978

113979

113980

113981

113982

113983

113984

113985

113986

113987

113988

113989

113990

113991

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sccs

FUTURE DIRECTIONS
None.

SEE ALSO
admin , delta , get , make , prs , rmdel , sact , unget , val , what

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
In the ENVIRONMENT VARIABLES section, the PROJECTDIR description is updated from
``otherwise, the home directory of a user of that name is examined’’ to ``otherwise, the value of
PROJECTDIR is treated as a user name and that user’s initial working directory is examined’’.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3353

113992

113993

113994

113995

113996

113997

113998

113999

114000

114001

114002

114003

114004

114005

114006

114007

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sed Utilities

NAME
sed — stream editor

SYNOPSIS
sed [-En] script [file...]

sed [-En] -e script [-e script]... [-f script_file]... [file...]

sed [-En] [-e script]... -f script_file [-f script_file]... [file...]

DESCRIPTION
The sed utility is a stream editor that shall read one or more text files, make editing changes
according to a script of editing commands, and write the results to standard output. The script
shall be obtained from either the script operand string or a combination of the option-arguments
from the −e script and −f script_file options.

OPTIONS
The sed utility shall conform to XBD Section 12.2 (on page 215), except that the order of
presentation of the −e and −f options is significant.

The following options shall be supported:

−E Match using extended regular expressions. Treat each pattern specified as an ERE,
as described in XBD Section 9.4 (on page 187).

−e script Add the editing commands specified by the script option-argument to the end of
the script of editing commands.

−f script_file Add the editing commands in the file script_file to the end of the script of editing
commands.

−n Suppress the default output (in which each line, after it is examined for editing, is
written to standard output). Only lines explicitly selected for output are written.

If any −e or −f options are specified, the script of editing commands shall initially be empty. The
commands specified by each −e or −f option shall be added to the script in the order specified.
When each addition is made, if the previous addition (if any) was from a −e option, a <newline>
shall be inserted before the new addition. The resulting script shall have the same properties as
the script operand, described in the OPERANDS section.

OPERANDS
The following operands shall be supported:

file A pathname of a file whose contents are read and edited. If multiple file operands
are specified, the named files shall be read in the order specified and the
concatenation shall be edited. If no file operands are specified, the standard input
shall be used.

script A string to be used as the script of editing commands. The application shall not
present a script that violates the restrictions of a text file except that the final
character need not be a <newline>.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

3354 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114008

114009

114010

114011

114012

114013

114014

114015

114016

114017

114018

114019

114020

114021

114022

114023

114024

114025

114026

114027

114028

114029

114030

114031

114032

114033

114034

114035

114036

114037

114038

114039

114040

114041

114042

114043

114044

114045

114046

114047

114048

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sed

INPUT FILES
The input files shall be text files. The script_files named by the −f option shall consist of editing
commands.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sed:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The input files shall be written to standard output, with the editing commands specified in the
script applied. If the −n option is specified, only those input lines selected by the script shall be
written to standard output.

STDERR
The standard error shall be used only for diagnostic and warning messages.

OUTPUT FILES
The output files shall be text files whose formats are dependent on the editing commands given.

EXTENDED DESCRIPTION
The script shall consist of editing commands of the following form:

[address[,address]]function

where function represents a single-character command verb from the list in Editing Commands
in sed (on page 3357), followed by any applicable arguments.

The command can be preceded by <blank> characters and/or <semicolon> characters. The
function can be preceded by <blank> characters. These optional characters shall have no effect.

In default operation, sed cyclically shall append a line of input, less its terminating <newline>
character, into the pattern space. Reading from input shall be skipped if a <newline> was in the
pattern space prior to a D command ending the previous cycle. The sed utility shall then apply in
sequence all commands whose addresses select that pattern space, until a command starts the
next cycle or quits. If no commands explicitly started a new cycle, then at the end of the script
the pattern space shall be copied to standard output (except when −n is specified) and the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3355

114049

114050

114051

114052

114053

114054

114055

114056

114057

114058

114059

114060

114061

114062

114063

114064

114065

114066

114067

114068

114069

114070

114071

114072

114073

114074

114075

114076

114077

114078

114079

114080

114081

114082

114083

114084

114085

114086

114087

114088

114089

114090

114091

114092

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sed Utilities

pattern space shall be deleted. Whenever the pattern space is written to standard output or a
named file, sed shall immediately follow it with a <newline>.

Some of the editing commands use a hold space to save all or part of the pattern space for
subsequent retrieval. The pattern and hold spaces shall each be able to hold at least 8 192 bytes.

Addresses in sed

An address is either a decimal number that counts input lines cumulatively across files, a '$'
character that addresses the last line of input, or a context address. A context address has either
the form "/RE/" or "\cREc", where RE is a regular expression as described in Regular
Expressions in sed, and c is any character other than <backslash> or <newline>. In a sed context
address, the BRE and ERE syntax shall be extended to support escaping occurrences of the
<slash> or c delimiter within the RE by means of an escape sequence (see XBD Section 9.1, on
page 179). For the "\cREc" form, if the character designated by c is not listed as a special BRE
character (if the −E option is not specified) or a special ERE character (if −E is specified) in XBD
Section 9.3.3 (on page 182) or XBD Section 9.4.3 (on page 188), respectively, the escape sequence
<backslash>c shall be treated as that literal character; otherwise, it is unspecified whether the
escape sequence <backslash>c is treated as the literal character or the special character. In either
case, the escape sequence <backslash>c shall not terminate the RE. For example, in the context
address "/abc\/def/", the second <slash> stands for itself, so that the RE is "abc/def", and
in "\xabc\xdefx", the second 'x' stands for itself, so that the RE is "abcxdef".

An editing command with no addresses shall select every pattern space.

An editing command with one address shall select each pattern space that matches the address.

An editing command with two addresses shall select the inclusive range from the first pattern
space that matches the first address through the next pattern space that matches the second. (If
the second address is a number less than or equal to the line number first selected, only one line
shall be selected.) Starting at the first line following the selected range, sed shall look again for
the first address. Thereafter, the process shall be repeated. Omitting either or both of the address
components in the following form produces undefined results:

[address[,address]]

Regular Expressions in sed

The sed utility shall support the REs described in XBD Chapter 9 (on page 179); by default it shall
use BREs as described in XBD Section 9.3 (on page 181), but if the −E option is used, it shall use
EREs as described in XBD Section 9.4 (on page 187). In sed, the BRE and ERE syntax shall be
extended as follows:

• The delimiter character that precedes and follows the RE shall not terminate the RE when
it appears within a bracket expression, and shall have its normal meaning in the bracket
expression. For example, the context address "\%[%]%" is equivalent to "/[%]/", and the
command "s-[0-9]--g" is equivalent to "s/[0-9]//g".

• The escape sequence '\n' shall match a <newline> embedded in the pattern space. A
literal <newline> shall not be used in the RE of a context address or in the substitute
function.

• If an RE is empty (that is, no pattern is specified) sed shall behave as if the last RE used in
the last command applied (either as an address or as part of a substitute command) was
specified.

3356 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114093

114094

114095

114096

114097

114098

114099

114100

114101

114102

114103

114104

114105

114106

114107

114108

114109

114110

114111

114112

114113

114114

114115

114116

114117

114118

114119

114120

114121

114122

114123

114124

114125

114126

114127

114128

114129

114130

114131

114132

114133

114134

114135

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sed

Editing Commands in sed

In the following list of editing commands, the maximum number of permissible addresses for
each function is indicated by [0addr], [1addr], or [2addr], representing zero, one, or two
addresses.

The argument text shall consist of one or more lines. A <backslash> in the text can be escaped
with another <backslash>. The application shall ensure that each embedded <newline> (that is,
those other than the terminating <newline> of the last line) in the text is preceded by an
unescaped <backslash>. The behavior is unspecified if an unescaped <backslash> is
immediately followed by any character other than <backslash> or <newline>, or by the end of a
script.

The r and w command verbs, and the w flag to the s command, take an rfile (or wfile) parameter,
separated from the command verb letter or flag by one or more <blank> characters;
implementations may allow zero separation as an extension.

The argument rfile or the argument wfile shall terminate the editing command. Each wfile shall be
created before processing begins. Implementations shall support at least ten wfile arguments in
the script; the actual number (greater than or equal to 10) that is supported by the
implementation is unspecified. The use of the wfile parameter shall cause that file to be initially
created, if it does not exist, or shall replace the contents of an existing file.

The b, r, s, t, w, y, and : command verbs shall accept additional arguments. The following
synopses indicate which arguments shall be separated from the command verbs by a single
<space>.

The a and r commands schedule text for later output. The text specified for the a command, and
the contents of the file specified for the r command, shall be written to standard output just
before the next attempt to fetch a line of input when executing the c, D, d, N, or n commands,
just before executing the q command, or when reaching the end of the script. If written when
reaching the end of the script, and the −n option was not specified, the text shall be written after
copying the pattern space to standard output. The contents of the file specified for the r
command shall be as of the time the output is written, not the time the r command is applied.
The text shall be output in the order in which the a and r commands were applied to the input.

Editing commands other than a, b, c, i, r, t, w, :, and # can be followed by a <semicolon>,
optional <blank> characters, and another editing command. However, when an s editing
command is used with the w flag, following it with another command in this manner produces
undefined results.

A function can be preceded by a '!' character, in which case the function shall be applied if the
addresses do not select the pattern space. Zero or more <blank> characters shall be accepted
before the '!' character. It is unspecified whether <blank> characters can follow the '!'
character, and conforming applications shall not follow the '!' character with <blank>
characters.

If a label argument (to a b, t, or : command) contains characters outside of the portable filename
character set, or if a label is longer than 8 bytes, the behavior is unspecified. The implementation
shall support label arguments recognized as unique up to at least 8 bytes; the actual length
(greater than or equal to 8) supported by the implementation is unspecified. It is unspecified
whether exceeding the maximum supported label length causes an error or a silent truncation.

[2addr] {editing command
editing command

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3357

114136

114137

114138

114139

114140

114141

114142

114143

114144

114145

114146

114147

114148

114149

114150

114151

114152

114153

114154

114155

114156

114157

114158

114159

114160

114161

114162

114163

114164

114165

114166

114167

114168

114169

114170

114171

114172

114173

114174

114175

114176

114177

114178

114179

114180

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sed Utilities

. . .
} Execute a list of sed editing commands only when the pattern space is selected. The

list of sed editing commands shall be surrounded by braces. The braces can be
preceded or followed by <blank> characters. The <right-brace> shall be preceded
by a <newline> or <semicolon> (before any optional <blank> characters preceding
the <right-brace>).

Each command in the list of commands shall be terminated by a <newline>
character, or by a <semicolon> character if permitted when the command is used
outside the braces. The editing commands can be preceded by <blank> characters,
but shall not be followed by <blank> characters.

[1addr]a\
text Write text to standard output as described previously.

[2addr]b [label]
Branch to the : command verb bearing the label argument. If label is not specified,
branch to the end of the script.

[2addr]c\
text Delete the pattern space. With a 0 or 1 address or at the end of a 2-address range,

place text on the output. Start the next cycle.

[2addr]d Delete the pattern space and start the next cycle.

[2addr]D If the pattern space contains no <newline>, delete the pattern space and start a
normal new cycle as if the d command was issued. Otherwise, delete the initial
segment of the pattern space through the first <newline>, and start the next cycle
with the resultant pattern space and without reading any new input.

[2addr]g Replace the contents of the pattern space by the contents of the hold space.

[2addr]G Append to the pattern space a <newline> followed by the contents of the hold
space.

[2addr]h Replace the contents of the hold space with the contents of the pattern space.

[2addr]H Append to the hold space a <newline> followed by the contents of the pattern
space.

[1addr]i\
text Write text to standard output.

[2addr]l (The letter ell.) Write the pattern space to standard output in a visually
unambiguous form. The characters listed in XBD Table 5-1 (on page 113) ('\\',
'\a', '\b', '\f', '\r', '\t', '\v') shall be written as the corresponding
escape sequence; the '\n' in that table is not applicable. Non-printable characters
not in that table shall be written as one three-digit octal number (with a preceding
<backslash>) for each byte in the character (most significant byte first).

Long lines shall be folded, with the point of folding indicated by writing a
<backslash> followed by a <newline>; the length at which folding occurs is
unspecified, but should be appropriate for the output device. The end of each line
shall be marked with a '$'.

[2addr]n Write the pattern space to standard output if the default output has not been
suppressed, and replace the pattern space with the next line of input, less its
terminating <newline>.

3358 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114181

114182

114183

114184

114185

114186

114187

114188

114189

114190

114191

114192

114193

114194

114195

114196

114197

114198

114199

114200

114201

114202

114203

114204

114205

114206

114207

114208

114209

114210

114211

114212

114213

114214

114215

114216

114217

114218

114219

114220

114221

114222

114223

114224

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sed

If no next line of input is available, the n command verb shall branch to the end of
the script and quit without starting a new cycle.

[2addr]N Append the next line of input, less its terminating <newline>, to the pattern space,
using an embedded <newline> to separate the appended material from the
original material. Note that the current line number changes.

If no next line of input is available, the N command verb shall branch to the end of
the script and quit without starting a new cycle or copying the pattern space to
standard output.

[2addr]p Write the pattern space to standard output.

[2addr]P Write the pattern space, up to the first <newline>, to standard output.

[1addr]q Branch to the end of the script and quit without starting a new cycle.

[1addr]r rfile Copy the contents of rfile to standard output as described previously. If rfile does
not exist or cannot be read, it shall be treated as if it were an empty file, causing no
error condition.

[2addr]s/RE/replacement/flags
Substitute the replacement string for instances of the RE in the pattern space. Any
character other than <backslash> or <newline> can be used instead of a <slash> to
delimit the RE and the replacement. Within the RE (as a sed extension to the BRE
and ERE syntax) and the replacement, the delimiter shall not terminate the RE or
replacement if it is the second character of an escape sequence (see XBD Section
9.1, on page 179). If the delimiter character is not listed as a special BRE character
(if the −E option is not specified) or a special ERE character (if −E is specified) in
XBD Section 9.3.3 (on page 182) or XBD Section 9.4.3 (on page 188), respectively,
the escaped delimiter shall be treated as that literal character in the RE; otherwise,
it is unspecified whether the escaped delimiter is treated as the literal character or
the special character. Likewise, if the delimiter character is not <ampersand>
('&'), the escaped delimiter shall be treated as that literal character in the
replacement; if it is <ampersand>, it is unspecified whether the escaped delimiter
is treated as the literal character or the special character (see below).

The replacement string shall be scanned from beginning to end. An <ampersand>
('&') appearing in the replacement shall be replaced by the string matching the
RE. The special meaning of '&' in this context can be suppressed by preceding it
by a <backslash>. The characters "\n", where n is a digit, shall be replaced by the
text matched by the corresponding back-reference expression. If the corresponding
back-reference expression does not match, then the characters "\n" shall be
replaced by the empty string. The special meaning of "\n" where n is a digit in
this context, can be suppressed by preceding it by a <backslash>. For each other
<backslash> encountered, the following character shall lose its special meaning (if
any).

A line can be split by substituting a <newline> into it. The application shall escape
the <newline> in the replacement by preceding it by a <backslash>.

The meaning of an unescaped <backslash> immediately followed by any character
other than '&', <backslash>, a digit, <newline>, or the delimiter character used for
this command, is unspecified.

Any <backslash> used to alter the default meaning of a subsequent character shall
be discarded from the resulting replacement string. A substitution shall be

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3359

114225

114226

114227

114228

114229

114230

114231

114232

114233

114234

114235

114236

114237

114238

114239

114240

114241

114242

114243

114244

114245

114246

114247

114248

114249

114250

114251

114252

114253

114254

114255

114256

114257

114258

114259

114260

114261

114262

114263

114264

114265

114266

114267

114268

114269

114270

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sed Utilities

considered to have been performed even if the resulting replacement string is
identical to the string that it replaces.

The value of flags shall be zero or more of:

n Substitute for the nth occurrence only of the RE found within the
pattern space.

g Globally substitute for all non-overlapping instances of the RE rather
than just the first one. If both g and n are specified, the results are
unspecified.

i Match the regular expression in a case-insensitive way.

p Write the pattern space to standard output if a replacement was
made.

w wfile Write. Append the pattern space to wfile if a replacement was made.
A conforming application shall precede the wfile argument with one
or more <blank> characters. If the w flag is not the last flag value
given in a concatenation of multiple flag values, the results are
undefined.

[2addr]t [label]
Test. Branch to the : command verb bearing the label if any substitutions have been
made since the most recent reading of an input line or execution of a t. If label is
not specified, branch to the end of the script.

[2addr]w wfile
Append (write) the pattern space to wfile.

[2addr]x Exchange the contents of the pattern and hold spaces.

[2addr]y/string1/string2/
Replace all occurrences of characters in string1 with the corresponding characters
in string2. If a <backslash> followed by an 'n' appear in string1 or string2, the two
characters shall be handled as a single <newline>. If (after resolving any escape
sequences) the numbers of characters in string1 and string2 are not equal, or if any
of the characters in string1 appear more than once, the results are undefined. Any
character other than <backslash> or <newline> can be used instead of <slash> to
delimit the strings. If the delimiter is not 'n', within string1 and string2, the
delimiter itself can be used as a literal character if it is preceded by an unescaped
<backslash>. If a <backslash> character is escaped by an immediately preceding
unescaped <backslash> character in string1 or string2, the two <backslash>
characters shall be treated as a single literal <backslash> character. The meaning of
an unescaped <backslash> followed by any character that is not 'n', a
<backslash>, or the delimiter character is undefined.

[0addr]:label Do nothing. This command bears a label to which the b and t commands branch.

[1addr]= Write the following to standard output:

"%d\n", <current line number>

[0addr] Ignore this empty command.

[0addr]# Ignore the '#' and the remainder of the line (treat them as a comment), with the
single exception that if the first two characters in the script are "#n", the default
output shall be suppressed; this shall be the equivalent of specifying −n on the

3360 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114271

114272

114273

114274

114275

114276

114277

114278

114279

114280

114281

114282

114283

114284

114285

114286

114287

114288

114289

114290

114291

114292

114293

114294

114295

114296

114297

114298

114299

114300

114301

114302

114303

114304

114305

114306

114307

114308

114309

114310

114311

114312

114313

114314

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sed

command line.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Regular expressions match entire strings, not just individual lines, but a <newline> is matched
by '\n' in a sed RE; a <newline> is not allowed by the general definition of regular expression
in POSIX.1-2024. Also note that '\n' cannot be used to match a <newline> at the end of an
arbitrary input line; <newline> characters appear in the pattern space as a result of the N editing
command.

Applications that use a special RE character as a delimiter (for example, '.' or '*') and need to
use the delimiter as a literal character in the RE should put it inside a bracket expression, as
implementations differ regarding whether escaping it with a <backslash> removes its special
meaning. For example, for the context address "/\.[0-9]/" to be written with '.' as
delimiter, the form "\.[.][0-9]." needs to be used; "\.\.[0-9]." cannot be used portably
for this purpose, as it is unspecified whether this would be equivalent to "/\.[0-9]/" or
"/.[0-9]/". Portable applications cannot use a special RE character as a delimiter if that
character needs to have its special meaning in the RE, as escaping it may remove its special
meaning.

When using sed to process pathnames, it is recommended that LC_ALL, or at least LC_CTYPE
and LC_COLLATE, are set to POSIX or C in the environment, since pathnames can contain byte
sequences that do not form valid characters in some locales, in which case the utility’s behavior
would be undefined. In the POSIX locale each byte is a valid single-byte character, and therefore
this problem is avoided.

Note that some implementations of sed also support an I flag for the s command as an alias for
the lower case i flag.

Some implementations of sed, when executed in a non-conforming environment, handle
<backslash> escapes in regular expressions in a similar way to how awk handles them in the
lexical token ERE (processing "\t" as a tab character, etc.). This is a compatible extension except
that it conflicts with the requirements of this standard when <backslash> appears inside a
bracket expression. A future version of this standard may allow this behavior, and therefore
applications should use two <backslash> characters in bracket expressions instead of one in
order to ensure future portability. On implementations conforming to the current standard, the
second <backslash> is redundant. In the future (and in current non-conforming environments)
the first <backslash> may escape the second.

EXAMPLES
This sed script simulates the BSD cat −s command, squeezing excess empty lines from standard
input.

sed -n '
Write non-empty lines.
/./ {

p
d

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3361

114315

114316

114317

114318

114319

114320

114321

114322

114323

114324

114325

114326

114327

114328

114329

114330

114331

114332

114333

114334

114335

114336

114337

114338

114339

114340

114341

114342

114343

114344

114345

114346

114347

114348

114349

114350

114351

114352

114353

114354

114355

114356

114357

114358

114359

114360

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sed Utilities

}
Write a single empty line, then look for more empty lines.
/^$/ p
Get next line, discard the held <newline> (empty line),
and look for more empty lines.
:Empty
/^$/ {

N
s/.//
b Empty
}

Write the non-empty line before going back to search
for the first in a set of empty lines.

p
'

The following sed command is a much simpler method of squeezing empty lines, although it is
not quite the same as cat −s since it removes any initial empty lines:

sed -n '/./,/^$/p'

RATIONALE
This volume of POSIX.1-2024 requires implementations to support at least ten distinct wfiles,
matching historical practice on many implementations. Implementations are encouraged to
support more, but conforming applications should not exceed this limit.

The exit status codes specified here are different from those in System V. System V returns 2 for
garbled sed commands, but returns zero with its usage message or if the input file could not be
opened. The standard developers considered this to be a bug.

The manner in which the l command writes non-printable characters was changed to avoid the
historical backspace-overstrike method, and other requirements to achieve unambiguous output
were added. See the RATIONALE for ed for details of the format chosen, which is the same as
that chosen for sed.

This volume of POSIX.1-2024 requires implementations to provide pattern and hold spaces of at
least 8 192 bytes, larger than the 4 000 bytes spaces used by some historical implementations, but
less than the 20 480 bytes limit used in an early proposal. Implementations are encouraged to
allocate dynamically larger pattern and hold spaces as needed.

The requirements for acceptance of <blank> and <space> characters in command lines has been
made more explicit than in early proposals to describe clearly the historical practice and to
remove confusion about the phrase ``protect initial blanks [sic] and tabs from the stripping that is
done on every script line’’ that appears in much of the historical documentation of the sed utility
description of text. (Not all implementations are known to have stripped <blank> characters
from text lines, although they all have allowed leading <blank> characters preceding the address
on a command line.)

The treatment of '#' comments differs from the SVID which only allows a comment as the first
line of the script, but matches BSD-derived implementations. The comment character is treated
as a command, and it has the same properties in terms of being accepted with leading <blank>
characters; the BSD implementation has historically supported this.

Early proposals required that a script_file have at least one non-comment line. Some historical
implementations have behaved in unexpected ways if this were not the case. The standard
developers considered that this was incorrect behavior and that application developers should

3362 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114361

114362

114363

114364

114365

114366

114367

114368

114369

114370

114371

114372

114373

114374

114375

114376

114377

114378

114379

114380

114381

114382

114383

114384

114385

114386

114387

114388

114389

114390

114391

114392

114393

114394

114395

114396

114397

114398

114399

114400

114401

114402

114403

114404

114405

114406

114407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sed

not have to avoid this feature. A correct implementation of this volume of POSIX.1-2024 shall
permit script_files that consist only of comment lines.

Early proposals indicated that if −e and −f options were intermixed, all −e options were
processed before any −f options. This has been changed to process them in the order presented
because it matches historical practice and is more intuitive.

The characters <backslash> and <newline> cannot be used as RE delimiter characters, as they
can never be recognized as the ending delimiter:

• <backslash> does not work, because if it appears unescaped later in the RE, it either
escapes the following character, which can then never be the ending delimiter, or it is part
of a bracket expression, inside which the ending delimiter for the RE cannot be located.

• <newline> does not work, because if not escaped, it terminates the command, meaning it
cannot be the ending delimiter.

Some historical sed implementations did not support escaping '(', ')', '{', and '}' when
used as a BRE delimiter, as the sequences "\(" and so on were still treated as special, usually
resulting in an error. This standard requires that these sequences are treated as the literal
character. This is for consistency with extensions. For example, some implementations treat
"\s" in a BRE as matching white-space characters, as an extension. This cannot have its special
meaning when 's' is used as a BRE delimiter in order to ensure portability of sed commands
that have 's' as a delimiter and escape it. If "\s" were allowed to keep its special meaning,
then the potential for further extensions would mean portable applications would not be able to
escape any delimiter character other than <slash>.

The treatment of the p flag to the s command differs between System V and BSD-based systems
when the default output is suppressed. In the two examples:

echo a | sed 's/a/A/p'
echo a | sed -n 's/a/A/p'

this volume of POSIX.1-2024, BSD, System V documentation, and the SVID indicate that the first
example should write two lines with A, whereas the second should write one. Some System V
systems write the A only once in both examples because the p flag is ignored if the −n option is
not specified.

This is a case of a diametrical difference between systems that could not be reconciled through
the compromise of declaring the behavior to be unspecified. The SVID/BSD/System V
documentation behavior was adopted for this volume of POSIX.1-2024 because:

• No known documentation for any historic system describes the interaction between the p
flag and the −n option.

• The selected behavior is more correct as there is no technical justification for any
interaction between the p flag and the −n option. A relationship between −n and the p flag
might imply that they are only used together, but this ignores valid scripts that interrupt
the cyclical nature of the processing through the use of the D, d, q, or branching
commands. Such scripts rely on the p suffix to write the pattern space because they do not
make use of the default output at the ``bottom’’ of the script.

• Because the −n option makes the p flag unnecessary, any interaction would only be useful
if sed scripts were written to run both with and without the −n option. This is believed to
be unlikely. It is even more unlikely that programmers have coded the p flag expecting it to
be unnecessary. Because the interaction was not documented, the likelihood of a
programmer discovering the interaction and depending on it is further decreased.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3363

114408

114409

114410

114411

114412

114413

114414

114415

114416

114417

114418

114419

114420

114421

114422

114423

114424

114425

114426

114427

114428

114429

114430

114431

114432

114433

114434

114435

114436

114437

114438

114439

114440

114441

114442

114443

114444

114445

114446

114447

114448

114449

114450

114451

114452

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sed Utilities

• Finally, scripts that break under the specified behavior produce too much output instead of
too little, which is easier to diagnose and correct.

The form of the substitute command that uses the n suffix was limited to the first 512 matches in
an early proposal. This limit has been removed because there is no reason an editor processing
lines of {LINE_MAX} length should have this restriction. The command s/a/A/2047 should be
able to substitute the 2 047th occurrence of a on a line.

The b, t, and : commands are documented to ignore leading white space, but no mention is
made of trailing white space. Historical implementations of sed assigned different locations to
the labels 'x' and "x ". This is not useful, and leads to subtle programming errors, but it is
historical practice, and changing it could theoretically break working scripts. Implementors are
encouraged to provide warning messages about labels that are never referenced by a b or t
command, jumps to labels that do not exist, and label arguments that are subject to truncation.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
A future version of this standard may allow sed to handle <backslash> escapes in regular
expressions in a similar way to how awk handles them in the lexical token ERE. (``Similar ’’
rather than ``the same’’ because sed can use BREs or EREs whereas awk uses only EREs.)

SEE ALSO
awk , ed , grep

XBD Table 5-1 (on page 113), Chapter 8 (on page 167), Section 9.3 (on page 181), Section 12.2 (on
page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• Implementations are required to support at least ten wfile arguments in an editing
command.

The EXTENDED DESCRIPTION is changed to align with the IEEE P1003.2b draft standard.

IEEE PASC Interpretation 1003.2 #190 is applied.

IEEE PASC Interpretation 1003.2 #203 is applied, clarifying the meaning of the
<backslash>-escape sequences in a replacement string for a BRE.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/28 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/29 is applied, making an editorial
correction within the Editing Commands in sed section.

Issue 7
Austin Group Interpretations 1003.1-2001 #006, #036, and #092 are applied.

SD5-XCU-ERN-97 and SD5-XCU-ERN-123 are applied, updating the SYNOPSIS.

A second example is added.

3364 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114453

114454

114455

114456

114457

114458

114459

114460

114461

114462

114463

114464

114465

114466

114467

114468

114469

114470

114471

114472

114473

114474

114475

114476

114477

114478

114479

114480

114481

114482

114483

114484

114485

114486

114487

114488

114489

114490

114491

114492

114493

114494

114495

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sed

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0133 [262], XCU/TC1-2008/0134
[282,431], XCU/TC1-2008/0135 [269], and XCU/TC1-2008/0136 [282,431] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0166 [945], XCU/TC2-2008/0167
[944], XCU/TC2-2008/0168 [945], XCU/TC2-2008/0169 [944], XCU/TC2-2008/0170 [945],
XCU/TC2-2008/0171 [533], XCU/TC2-2008/0172 [663], XCU/TC2-2008/0173 [945], and
XCU/TC2-2008/0174 [944] are applied.

Issue 8
Austin Group Defect 528 is applied, adding support for selecting the use of EREs instead of
BREs, by specifying the −E option.

Austin Group Defect 779 is applied, adding the i flag to the s command.

Austin Group Defect 961 is applied, requiring that {...} can be followed by a <semicolon>,
optional <blank> characters, and another editing command.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1231 is applied, clarifying the handling of <backslash> in text arguments.

Austin Group Defect 1233 is applied, changing the APPLICATION USAGE and FUTURE
DIRECTIONS sections.

Austin Group Defect 1319 is applied, changing when the text specified for the a command and
the contents of the file specified for the r command are written.

Austin Group Defect 1550 is applied, clarifying requirements relating to delimiters in context
addresses and in s and y commands.

Austin Group Defect 1578 is applied, clarifying the description of the y command.

Austin Group Defect 1767 is applied, clarifying that a c command starts the next cycle on every
line that its address range matches.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3365

114496

114497

114498

114499

114500

114501

114502

114503

114504

114505

114506

114507

114508

114509

114510

114511

114512

114513

114514

114515

114516

114517

114518

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

NAME
sh — shell, the standard command language interpreter

SYNOPSIS
OB sh [-abCefhimnuvx] [-o option]... [+abCefhimnuvx] [+o option]...

[command_file [argument...]]

OB sh -c [-abCefhimnuvx] [-o option]... [+abCefhimnuvx] [+o option]...
command_string [command_name [argument...]]

OB sh -s [-abCefhimnuvx] [-o option]... [+abCefhimnuvx] [+o option]...
[argument...]

DESCRIPTION
The sh utility is a command language interpreter that shall execute commands read from a
command line string, the standard input, or a specified file. The application shall ensure that the
commands to be executed are expressed in the language described in Chapter 2 (on page 2472).

Pathname expansion shall not fail due to the size of a file.

Shell input and output redirections have an implementation-defined offset maximum that is
established in the open file description.

OPTIONS
The sh utility shall conform to XBD Section 12.2 (on page 215), with an extension for support of a
leading <plus-sign> ('+') as noted below.

The −a, −b, −C, −e, −f, −h, −m, −n, −o option, −u, −v, and −x options are described as part of the
set utility in Section 2.15 (on page 2526). The option letters derived from the set special built-in
shall also be accepted with a leading <plus-sign> ('+') instead of a leading <hyphen-minus>
(meaning the reverse case of the option as described in this volume of POSIX.1-2024). If the −o
or +o option is specified without an option-argument, the behavior is unspecified.

The following additional options shall be supported:

−c Read commands from the command_string operand. Set the value of special
parameter 0 (see Section 2.5.2, on page 2479) from the value of the command_name
operand and the positional parameters ($1, $2, and so on) in sequence from the
remaining argument operands. No commands shall be read from the standard
input.

−i Specify that the shell is interactive; see below. An implementation may treat
specifying the −i option as an error if the real user ID of the calling process does
not equal the effective user ID or if the real group ID does not equal the effective
group ID.

−s Read commands from the standard input.

If there are no operands and the −c option is not specified, the −s option shall be assumed.

If the −i option is present, or if the shell reads commands from the standard input and the shell’s
standard input and standard error are attached to a terminal, the shell is considered to be
interactive.

OPERANDS
The following operands shall be supported:

− A single <hyphen-minus> shall be treated as the first operand and then ignored. If
both '−' and "--" are given as arguments, or if other operands precede the single
<hyphen-minus>, the results are undefined.

3366 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114519

114520

114521

114522

114523

114524

114525

114526

114527

114528

114529

114530

114531

114532

114533

114534

114535

114536

114537

114538

114539

114540

114541

114542

114543

114544

114545

114546

114547

114548

114549

114550

114551

114552

114553

114554

114555

114556

114557

114558

114559

114560

114561

114562

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

argument The positional parameters ($1, $2, and so on) shall be set to arguments, if any.

command_file The pathname of a file containing commands. If the pathname contains one or
more <slash> characters, the implementation attempts to read that file; the file
need not be executable. If the pathname does not contain a <slash> character:

• The implementation shall attempt to read that file from the current working
directory; the file need not be executable.

• If the file is not in the current working directory, the implementation may
perform a search for an executable file using the value of PA TH, as described
in Section 2.9.1.4 (on page 2502).

Special parameter 0 (see Section 2.5.2, on page 2479) shall be set to the value of
command_file. If sh is called using a synopsis form that omits command_file, special
parameter 0 shall be set to the value of the first argument passed to sh from its
parent (for example, argv[0] for a C program), which is normally a pathname used
to execute the sh utility.

command_name
A string assigned to special parameter 0 when executing the commands in
command_string. If command_name is not specified, special parameter 0 shall be set
to the value of the first argument passed to sh from its parent (for example, argv[0]
for a C program), which is normally a pathname used to execute the sh utility.

command_string
A string that shall be interpreted by the shell as one or more commands, as if the
string were the argument to the system() function defined in the System Interfaces
volume of POSIX.1-2024. If the command_string operand is an empty string, sh shall
exit with a zero exit status.

STDIN
The standard input shall be used only if one of the following is true:

• The −s option is specified.

• The −c option is not specified and no operands are specified.

• The script executes one or more commands that require input from standard input (such as
a read command that does not redirect its input).

See the INPUT FILES section.

When the shell is using standard input and it invokes a command that also uses standard input,
the shell shall ensure that the standard input file pointer points directly after the command it has
read when the command begins execution. It shall not read ahead in such a manner that any
characters intended to be read by the invoked command are consumed by the shell (whether
interpreted by the shell or not) or that characters that are not read by the invoked command are
not seen by the shell. When the command expecting to read standard input is started
asynchronously by an interactive shell, it is unspecified whether characters are read by the
command or interpreted by the shell.

If the standard input to sh is a FIFO or terminal device and is set to non-blocking reads, then sh
shall enable blocking reads on standard input. This shall remain in effect when the command
completes.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3367

114563

114564

114565

114566

114567

114568

114569

114570

114571

114572

114573

114574

114575

114576

114577

114578

114579

114580

114581

114582

114583

114584

114585

114586

114587

114588

114589

114590

114591

114592

114593

114594

114595

114596

114597

114598

114599

114600

114601

114602

114603

114604

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

INPUT FILES
The input file can be of any type, but the initial portion of the file intended to be parsed
according to the shell grammar (see Section 2.10.2, on page 2513) shall consist of characters and
shall not contain the NUL character. The shell shall not enforce any line length limits. If the
input file consists solely of zero or more blank lines and comments, sh shall exit with a zero exit
status.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sh:

UP ENV This variable, when and only when an interactive shell is invoked, shall be
subjected to parameter expansion (see Section 2.6.2, on page 2485) by the shell, and
the resulting value shall be used as a pathname of a file containing shell
commands to execute in the current environment. The file need not be executable.
If the expanded value of ENV is not an absolute pathname, the results are
unspecified. ENV shall be ignored if the real and effective user IDs or real and
effective group IDs of the process are different. The file specified by ENV need not
be processed if the file can be written by any user other than the user identified by
the real (and effective) user ID of the shell process.

UP FCEDIT This variable, when expanded by the shell, shall determine the default value for
the −e editor option’s editor option-argument. If FCEDIT is null or unset, ed shall be
used as the editor.

UP HISTFILE Determine a pathname naming a command history file. If the HISTFILE variable is
not set, the shell may attempt to access or create a file .sh_history in the directory
referred to by the HOME environment variable. If the shell cannot obtain both read
and write access to, or create, the history file, it shall use an unspecified
mechanism that allows the history to operate properly. (References to history
``file’’ in this section shall be understood to mean this unspecified mechanism in
such cases.) An implementation may choose to access this variable only when
initializing the history file; this initialization shall occur when fc or sh first attempt
to retrieve entries from, or add entries to, the file, as the result of commands issued
by the user, the file named by the ENV variable, or implementation-defined system
start-up files. Implementations may choose to disable the history list mechanism
for users with appropriate privileges who do not set HISTFILE; the specific
circumstances under which this occurs are implementation-defined. If more than
one instance of the shell is using the same history file, it is unspecified how
updates to the history file from those shells interact. As entries are deleted from the
history file, they shall be deleted oldest first. It is unspecified when history file
entries are physically removed from the history file.

UP HISTSIZE Determine a decimal number representing the limit to the number of previous
commands that are accessible. If this variable is unset, an unspecified default
greater than or equal to 128 shall be used. The maximum number of commands in
the history list is unspecified, but shall be at least 128. An implementation may
choose to access this variable only when initializing the history file, as described
under HISTFILE. Therefore, it is unspecified whether changes made to HISTSIZE
after the history file has been initialized are effective.

HOME Determine the pathname of the user’s home directory. The contents of HOME are
used in tilde expansion as described in Section 2.6.1 (on page 2485).

3368 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114605

114606

114607

114608

114609

114610

114611

114612

114613

114614

114615

114616

114617

114618

114619

114620

114621

114622

114623

114624

114625

114626

114627

114628

114629

114630

114631

114632

114633

114634

114635

114636

114637

114638

114639

114640

114641

114642

114643

114644

114645

114646

114647

114648

114649

114650

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the behavior of range expressions, equivalence classes, and multi-
character collating elements within pattern matching.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), which characters are defined as letters (character class
alpha), and the behavior of character classes within pattern matching.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

UP MAIL Determine a pathname of the user’s mailbox file for purposes of incoming mail
notification. If this variable is set, the shell shall inform the user if the file named
by the variable is created or if its modification time has changed. Informing the
user shall be accomplished by writing a string of unspecified format to standard
error prior to the writing of the next primary prompt string. Such check shall be
performed only after the completion of the interval defined by the MAILCHECK
variable after the last such check. The user shall be informed only if MAIL is set
and MAILPATH is not set.

UP MAILCHECK
Establish a decimal integer value that specifies how often (in seconds) the shell
shall check for the arrival of mail in the files specified by the MAILPATH or MAIL
variables. The default value shall be 600 seconds. If set to zero, the shell shall check
before issuing each primary prompt.

UP MAILPATH Provide a list of pathnames and optional messages separated by <colon>
characters. If this variable is set, the shell shall inform the user if any of the files
named by the variable are created or if any of their modification times change. (See
the preceding entry for MAIL for descriptions of mail arrival and user informing.)
Each pathname can be followed by '%' and a string that shall be subjected to
parameter expansion and written to standard error when the modification time
changes. If a '%' character in the pathname is preceded by a <backslash>, it shall
be treated as a literal '%' in the pathname. The default message is unspecified.

The MAILPATH environment variable takes precedence over the MAIL variable.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Establish a string formatted as described in XBD Chapter 8 (on page 167), used to
effect command interpretation; see Section 2.9.1.4 (on page 2502).

PWD This variable shall represent an absolute pathname of the current working
directory. Assignments to this variable may be ignored.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3369

114651

114652

114653

114654

114655

114656

114657

114658

114659

114660

114661

114662

114663

114664

114665

114666

114667

114668

114669

114670

114671

114672

114673

114674

114675

114676

114677

114678

114679

114680

114681

114682

114683

114684

114685

114686

114687

114688

114689

114690

114691

114692

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

ASYNCHRONOUS EVENTS
The sh utility shall take the standard action for all signals (see Section 1.4, on page 2462) with the
following exceptions.

If the shell is interactive, SIGINT signals received during command line editing shall be handled
as described in the EXTENDED DESCRIPTION, and SIGINT signals received at other times
shall be caught but no action performed.

If the shell is interactive:

• SIGQUIT and SIGTERM signals shall be ignored.

• If the −m option is in effect, SIGTTIN, SIGTTOU, and SIGTSTP signals shall be ignored.

• If the −m option is not in effect, it is unspecified whether SIGTTIN, SIGTTOU, and
SIGTSTP signals are ignored, set to the default action, or caught. If they are caught, the
shell shall, in the signal-catching function, set the signal to the default action and raise the
signal (after taking any appropriate steps, such as restoring terminal settings).

The standard actions, and the actions described above for interactive shells, can be overridden
by use of the trap special built-in utility (see trap (on page 2565) and Section 2.12, on page 2521).

STDOUT
See the STDERR section.

STDERR
Except as otherwise stated (by the descriptions of any invoked utilities or in interactive mode),
standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
UP See Chapter 2. The functionality described in the rest of the EXTENDED DESCRIPTION section

shall be provided on implementations that support the User Portability Utilities option (and the
rest of this section is not further shaded for this option).

Command History List

When the sh utility is being used interactively, it shall maintain a list of commands previously
entered from the terminal in the file named by the HISTFILE environment variable. The type,
size, and internal format of this file are unspecified. Multiple sh processes can share access to the
file for a user, if file access permissions allow this; see the description of the HISTFILE
environment variable.

Command Line Editing

When sh is being used interactively from a terminal, the current command and the command
history (see fc) can be edited using vi-mode command line editing. This mode uses commands,
described below, similar to a subset of those described in the vi utility. Implementations may
offer other command line editing modes corresponding to other editing utilities.

The command set −o vi shall enable vi-mode editing and place sh into vi insert mode (see
Command Line Editing (vi-mode), on page 3371). This command also shall disable any other
editing mode that the implementation may provide. The command set +o vi disables vi-mode
editing.

Certain block-mode terminals may be unable to support shell command line editing. If a
terminal is unable to provide either edit mode, it need not be possible to set −o vi when using the

3370 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114693

114694

114695

114696

114697

114698

114699

114700

114701

114702

114703

114704

114705

114706

114707

114708

114709

114710

114711

114712

114713

114714

114715

114716

114717

114718

114719

114720

114721

114722

114723

114724

114725

114726

114727

114728

114729

114730

114731

114732

114733

114734

114735

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

shell on this terminal.

In the following sections, the characters erase, interrupt, kill, and end-of-file are those set by the
stty utility.

Command Line Editing (vi-mode)

In vi editing mode, there shall be a distinguished line, the edit line. All the editing operations
which modify a line affect the edit line. The edit line is always the newest line in the command
history buffer.

With vi-mode enabled, sh can be switched between insert mode and command mode.

When in insert mode, an entered character shall be inserted into the command line, except as
noted in vi Line Editing Insert Mode. Upon entering sh and after termination of the previous
command, sh shall be in insert mode.

Typing an escape character shall switch sh into command mode (see vi Line Editing Command
Mode, on page 3372). In command mode, an entered character shall either invoke a defined
operation, be used as part of a multi-character operation, or be treated as an error. A character
that is not recognized as part of an editing command shall terminate any specific editing
command and shall alert the terminal. If sh receives a SIGINT signal in command mode
(whether generated by typing the interrupt character or by other means), it shall terminate
command line editing on the current command line, reissue the prompt on the next line of the
terminal, and reset the command history (see fc) so that the most recently executed command is
the previous command (that is, the command that was being edited when it was interrupted is
not re-entered into the history).

In the following sections, the phrase ``move the cursor to the beginning of the word’’ shall mean
``move the cursor to the first character of the current word’’ and the phrase ``move the cursor to
the end of the word’’ shall mean ``move the cursor to the last character of the current word’’. The
phrase ``beginning of the command line’’ indicates the point between the end of the prompt
string issued by the shell (or the beginning of the terminal line, if there is no prompt string) and
the first character of the command text.

vi Line Editing Insert Mode

While in insert mode, any character typed shall be inserted in the current command line, unless
it is from the following set.

<newline> Execute the current command line. If the current command line is not empty, this
line shall be entered into the command history (see fc).

erase Delete the character previous to the current cursor position and move the current
cursor position back one character. In insert mode, characters shall be erased from
both the screen and the buffer when backspacing.

interrupt If sh receives a SIGINT signal in insert mode (whether generated by typing the
interrupt character or by other means), it shall terminate command line editing
with the same effects as described for interrupting command mode; see Command
Line Editing (vi-mode).

kill Clear all the characters from the input line.

<control>-V Insert the next character input, even if the character is otherwise a special insert
mode character.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3371

114736

114737

114738

114739

114740

114741

114742

114743

114744

114745

114746

114747

114748

114749

114750

114751

114752

114753

114754

114755

114756

114757

114758

114759

114760

114761

114762

114763

114764

114765

114766

114767

114768

114769

114770

114771

114772

114773

114774

114775

114776

114777

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

<control>-W Delete the characters from the one preceding the cursor to the preceding word
boundary. The word boundary in this case is the closer to the cursor of either the
beginning of the line or a character that is in neither the blank nor punct character
classification of the current locale.

end-of-file Interpreted as the end of input in sh. This interpretation shall occur only at the
beginning of an input line. If end-of-file is entered other than at the beginning of the
line, the results are unspecified.

<ESC> Place sh into command mode.

vi Line Editing Command Mode

In command mode for the command line editing feature, decimal digits not beginning with 0
that precede a command letter shall be remembered. Some commands use these decimal digits
as a count number that affects the operation.

The term motion command represents one of the commands:

<space> 0 b F l W ^ $; E f T w | , B e h t

If the current line is not the edit line, any command that modifies the current line shall cause the
content of the current line to replace the content of the edit line, and the current line shall
become the edit line. This replacement cannot be undone (see the u and U commands below).
The modification requested shall then be performed to the edit line. When the current line is the
edit line, the modification shall be done directly to the edit line.

Any command that is preceded by count shall take a count (the numeric value of any preceding
decimal digits). Unless otherwise noted, this count shall cause the specified operation to repeat
by the number of times specified by the count. Also unless otherwise noted, a count that is out
of range is considered an error condition and shall alert the terminal, but neither the cursor
position, nor the command line, shall change.

The terms word and bigword are used as defined in the vi description. The term save buffer
corresponds to the term unnamed buffer in vi.

The following commands shall be recognized in command mode:

<newline> Execute the current command line. If the current command line is not empty, this
line shall be entered into the command history (see fc).

<control>-L Redraw the current command line. Position the cursor at the same location on the
redrawn line.

Insert the character '#' at the beginning of the current command line and treat the
resulting edit line as a comment. This line shall be entered into the command
history; see fc .

= Display the possible shell word expansions (see Section 2.6, on page 2483) of the
bigword at the current command line position.

Note: This does not modify the content of the current line, and therefore does not cause
the current line to become the edit line.

These expansions shall be displayed on subsequent terminal lines. If the bigword
contains none of the characters '?', '*', or '[', an <asterisk> ('*') shall be
implicitly assumed at the end. If any directories are matched, these expansions
shall have a '/' character appended. After the expansion, the line shall be
redrawn, the cursor repositioned at the current cursor position, and sh shall be
placed in command mode.

3372 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114778

114779

114780

114781

114782

114783

114784

114785

114786

114787

114788

114789

114790

114791

114792

114793

114794

114795

114796

114797

114798

114799

114800

114801

114802

114803

114804

114805

114806

114807

114808

114809

114810

114811

114812

114813

114814

114815

114816

114817

114818

114819

114820

114821

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

\ Perform pathname expansion (see Section 2.6.6, on page 2493) on the current
bigword, up to the largest set of characters that can be matched uniquely. If the
bigword contains none of the characters '?', '*', or '[', an <asterisk> ('*')
shall be implicitly assumed at the end. This maximal expansion then shall replace
the original bigword in the command line, and the cursor shall be placed after this
expansion. If the resulting bigword completely and uniquely matches a directory, a
'/' character shall be inserted directly after the bigword. If some other file is
completely matched, a single <space> shall be inserted after the bigword. After
this operation, sh shall be placed in insert mode.

* Perform pathname expansion on the current bigword and insert all expansions
into the command to replace the current bigword, with each expansion separated
by a single <space>. If at the end of the line, the current cursor position shall be
moved to the first column position following the expansions and sh shall be placed
in insert mode. Otherwise, the current cursor position shall be the last column
position of the first character after the expansions and sh shall be placed in insert
mode. If the current bigword contains none of the characters '?', '*', or '[',
before the operation, an <asterisk> ('*') shall be implicitly assumed at the end.

@letter Insert the value of the alias named _letter. The symbol letter represents a single
alphabetic character from the portable character set; implementations may support
additional characters as an extension. If the alias _letter contains other editing
commands, these commands shall be performed as part of the insertion. If no alias
_letter is enabled, this command shall have no effect.

[count]˜ Convert, if the current character is a lowercase letter, to the equivalent uppercase
letter and vice versa, as prescribed by the current locale. The current cursor position
then shall be advanced by one character. If the cursor was positioned on the last
character of the line, the case conversion shall occur, but the cursor shall not
advance. If the '~' command is preceded by a count, that number of characters
shall be converted, and the cursor shall be advanced to the character position after
the last character converted. If the count is larger than the number of characters
after the cursor, this shall not be considered an error; the cursor shall advance to
the last character on the line.

[count]. Repeat the most recent non-motion command, even if it was executed on an earlier
command line. If the previous command was preceded by a count, and no count is
given on the '.' command, the count from the previous command shall be
included as part of the repeated command. If the '.' command is preceded by a
count, this shall override any count argument to the previous command. The count
specified in the '.' command shall become the count for subsequent '.'
commands issued without a count.

[number]v Invoke the vi editor to edit the current command line in a temporary file. When the
editor exits, the commands in the temporary file shall be executed and placed in
the command history. If a number is included, it specifies the command number in
the command history to be edited, rather than the current command line.

[count]l (ell)
[count]<space>

Move the current cursor position to the next character position. If the cursor was
positioned on the last character of the line, the terminal shall be alerted and the
cursor shall not be advanced. If the count is larger than the number of characters
after the cursor, this shall not be considered an error; the cursor shall advance to
the last character on the line.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3373

114822

114823

114824

114825

114826

114827

114828

114829

114830

114831

114832

114833

114834

114835

114836

114837

114838

114839

114840

114841

114842

114843

114844

114845

114846

114847

114848

114849

114850

114851

114852

114853

114854

114855

114856

114857

114858

114859

114860

114861

114862

114863

114864

114865

114866

114867

114868

114869

114870

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

[count]h Move the current cursor position to the countth (default 1) previous character
position. If the cursor was positioned on the first character of the line, the terminal
shall be alerted and the cursor shall not be moved. If the count is larger than the
number of characters before the cursor, this shall not be considered an error; the
cursor shall move to the first character on the line.

[count]w Move to the start of the next word. If the cursor was positioned on the last
character of the line, the terminal shall be alerted and the cursor shall not be
advanced. If the count is larger than the number of words after the cursor, this shall
not be considered an error; the cursor shall advance to the last character on the
line.

[count]W Move to the start of the next bigword. If the cursor was positioned on the last
character of the line, the terminal shall be alerted and the cursor shall not be
advanced. If the count is larger than the number of bigwords after the cursor, this
shall not be considered an error; the cursor shall advance to the last character on
the line.

[count]e Move to the end of the current word. If at the end of a word, move to the end of
the next word. If the cursor was positioned on the last character of the line, the
terminal shall be alerted and the cursor shall not be advanced. If the count is larger
than the number of words after the cursor, this shall not be considered an error; the
cursor shall advance to the last character on the line.

[count]E Move to the end of the current bigword. If at the end of a bigword, move to the
end of the next bigword. If the cursor was positioned on the last character of the
line, the terminal shall be alerted and the cursor shall not be advanced. If the count
is larger than the number of bigwords after the cursor, this shall not be considered
an error; the cursor shall advance to the last character on the line.

[count]b Move to the beginning of the current word. If at the beginning of a word, move to
the beginning of the previous word. If the cursor was positioned on the first
character of the line, the terminal shall be alerted and the cursor shall not be
moved. If the count is larger than the number of words preceding the cursor, this
shall not be considered an error; the cursor shall return to the first character on the
line.

[count]B Move to the beginning of the current bigword. If at the beginning of a bigword,
move to the beginning of the previous bigword. If the cursor was positioned on the
first character of the line, the terminal shall be alerted and the cursor shall not be
moved. If the count is larger than the number of bigwords preceding the cursor,
this shall not be considered an error; the cursor shall return to the first character on
the line.

ˆ Move the current cursor position to the first character on the input line that is not a
<blank>.

$ Move to the last character position on the current command line.

0 (Zero.) Move to the first character position on the current command line.

[count] | Move to the countth character position on the current command line. If no number
is specified, move to the first position. The first character position shall be
numbered 1. If the count is larger than the number of characters on the line, this
shall not be considered an error; the cursor shall be placed on the last character on
the line.

3374 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114871

114872

114873

114874

114875

114876

114877

114878

114879

114880

114881

114882

114883

114884

114885

114886

114887

114888

114889

114890

114891

114892

114893

114894

114895

114896

114897

114898

114899

114900

114901

114902

114903

114904

114905

114906

114907

114908

114909

114910

114911

114912

114913

114914

114915

114916

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

[count]fc Move to the first occurrence of the character 'c' that occurs after the current
cursor position. If the cursor was positioned on the last character of the line, the
terminal shall be alerted and the cursor shall not be advanced. If the character 'c'
does not occur in the line after the current cursor position, the terminal shall be
alerted and the cursor shall not be moved.

[count]Fc Move to the first occurrence of the character 'c' that occurs before the current
cursor position. If the cursor was positioned on the first character of the line, the
terminal shall be alerted and the cursor shall not be moved. If the character 'c'
does not occur in the line before the current cursor position, the terminal shall be
alerted and the cursor shall not be moved.

[count]tc Move to the character before the first occurrence of the character 'c' that occurs
after the current cursor position. If the cursor was positioned on the last character
of the line, the terminal shall be alerted and the cursor shall not be advanced. If the
character 'c' does not occur in the line after the current cursor position, the
terminal shall be alerted and the cursor shall not be moved.

[count]Tc Move to the character after the first occurrence of the character 'c' that occurs
before the current cursor position. If the cursor was positioned on the first
character of the line, the terminal shall be alerted and the cursor shall not be
moved. If the character 'c' does not occur in the line before the current cursor
position, the terminal shall be alerted and the cursor shall not be moved.

[count]; Repeat the most recent f, F, t, or T command. Any number argument on that
previous command shall be ignored. Errors are those described for the repeated
command.

[count], Repeat the most recent f, F, t, or T command. Any number argument on that
previous command shall be ignored. However, reverse the direction of that
command.

a Enter insert mode after the current cursor position. Characters that are entered
shall be inserted before the next character.

A Enter insert mode after the end of the current command line.

i Enter insert mode at the current cursor position. Characters that are entered shall
be inserted before the current character.

I Enter insert mode at the beginning of the current command line.

R Enter insert mode, replacing characters from the command line beginning at the
current cursor position.

[count]cmotion
Delete the characters between the current cursor position and the cursor position
that would result from the specified motion command. Then enter insert mode
before the first character following any deleted characters. If count is specified, it
shall be applied to the motion command. A count shall be ignored for the following
motion commands:

0 ^ $ c

If the motion command is the character 'c', the current command line shall be
cleared and insert mode shall be entered. If the motion command would move the
current cursor position toward the beginning of the command line, the character
under the current cursor position shall not be deleted. If the motion command

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3375

114917

114918

114919

114920

114921

114922

114923

114924

114925

114926

114927

114928

114929

114930

114931

114932

114933

114934

114935

114936

114937

114938

114939

114940

114941

114942

114943

114944

114945

114946

114947

114948

114949

114950

114951

114952

114953

114954

114955

114956

114957

114958

114959

114960

114961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

would move the current cursor position toward the end of the command line, the
character under the current cursor position shall be deleted. If the count is larger
than the number of characters between the current cursor position and the end of
the command line toward which the motion command would move the cursor, this
shall not be considered an error; all of the remaining characters in the
aforementioned range shall be deleted and insert mode shall be entered. If the
motion command is invalid, the terminal shall be alerted, the cursor shall not be
moved, and no text shall be deleted.

C Delete from the current character to the end of the line and enter insert mode at the
new end-of-line.

S Clear the entire edit line and enter insert mode.

[count]rc Replace the current character with the character 'c'. With a number count,
replace the current and the following count−1 characters. After this command, the
current cursor position shall be on the last character that was changed. If the count
is larger than the number of characters after the cursor, this shall not be considered
an error; all of the remaining characters shall be changed.

[count]_ Append a <space> after the current character position and then append the last
bigword in the previous input line after the <space>. Then enter insert mode after
the last character just appended. With a number count, append the countth bigword
in the previous line.

[count]x Delete the character at the current cursor position and place the deleted characters
in the save buffer. If the cursor was positioned on the last character of the line, the
character shall be deleted and the cursor position shall be moved to the previous
character (the new last character). If the count is larger than the number of
characters after the cursor, this shall not be considered an error; all the characters
from the cursor to the end of the line shall be deleted.

[count]X Delete the character before the current cursor position and place the deleted
characters in the save buffer. The character under the current cursor position shall
not change. If the cursor was positioned on the first character of the line, the
terminal shall be alerted, and the X command shall have no effect. If the line
contained a single character, the X command shall have no effect. If the line
contained no characters, the terminal shall be alerted and the cursor shall not be
moved. If the count is larger than the number of characters before the cursor, this
shall not be considered an error; all the characters from before the cursor to the
beginning of the line shall be deleted.

[count]dmotion
Delete the characters between the current cursor position and the character
position that would result from the motion command. A number count repeats the
motion command count times. If the motion command would move toward the
beginning of the command line, the character under the current cursor position
shall not be deleted. If the motion command is d, the entire current command line
shall be cleared. If the count is larger than the number of characters between the
current cursor position and the end of the command line toward which the motion
command would move the cursor, this shall not be considered an error; all of the
remaining characters in the aforementioned range shall be deleted. The deleted
characters shall be placed in the save buffer.

3376 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

114962

114963

114964

114965

114966

114967

114968

114969

114970

114971

114972

114973

114974

114975

114976

114977

114978

114979

114980

114981

114982

114983

114984

114985

114986

114987

114988

114989

114990

114991

114992

114993

114994

114995

114996

114997

114998

114999

115000

115001

115002

115003

115004

115005

115006

115007

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

D Delete all characters from the current cursor position to the end of the line. The
deleted characters shall be placed in the save buffer.

[count]ymotion
Yank (that is, copy) the characters from the current cursor position to the position
resulting from the motion command into the save buffer. A number count shall be
applied to the motion command. If the motion command would move toward the
beginning of the command line, the character under the current cursor position
shall not be included in the set of yanked characters. If the motion command is y,
the entire current command line shall be yanked into the save buffer. The current
cursor position shall be unchanged. If the count is larger than the number of
characters between the current cursor position and the end of the command line
toward which the motion command would move the cursor, this shall not be
considered an error; all of the remaining characters in the aforementioned range
shall be yanked.

Y Yank the characters from the current cursor position to the end of the line into the
save buffer. The current character position shall be unchanged.

[count]p Put a copy of the current contents of the save buffer after the current cursor
position. The current cursor position shall be advanced to the last character put
from the save buffer. A count shall indicate how many copies of the save buffer
shall be put.

[count]P Put a copy of the current contents of the save buffer before the current cursor
position. The current cursor position shall be moved to the last character put from
the save buffer. A count shall indicate how many copies of the save buffer shall be
put.

u Undo the last command that changed the edit line. This operation shall not undo
the copy of any command line to the edit line.

U Undo all changes made to the edit line. This operation shall not undo the copy of
any command line to the edit line.

[count]k
[count]− Set the current command line to be the countth previous command line in the shell

command history. If count is not specified, it shall default to 1. The cursor shall be
positioned on the first character of the new command. If a k or − command would
retreat past the maximum number of commands in effect for this shell (affected by
the HISTSIZE environment variable), the terminal shall be alerted, and the
command shall have no effect.

[count]j
[count]+ Set the current command line to be the countth next command line in the shell

command history. If count is not specified, it shall default to 1. The cursor shall be
positioned on the first character of the new command. If a j or + command
advances past the edit line, the current command line shall be restored to the edit
line and the terminal shall be alerted.

[number]G Set the current command line to be the oldest command line stored in the shell
command history. With a number number, set the current command line to be the
command line number in the history. If command line number does not exist, the
terminal shall be alerted and the command line shall not be changed.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3377

115008

115009

115010

115011

115012

115013

115014

115015

115016

115017

115018

115019

115020

115021

115022

115023

115024

115025

115026

115027

115028

115029

115030

115031

115032

115033

115034

115035

115036

115037

115038

115039

115040

115041

115042

115043

115044

115045

115046

115047

115048

115049

115050

115051

115052

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

/pattern<newline>
Move backwards through the command history, searching for the specified
pattern, beginning with the previous command line. Patterns use the pattern
matching notation described in Section 2.14 (on page 2523), except that the '^'
character shall have special meaning when it appears as the first character of
pattern. In this case, the '^' is discarded and the characters after the '^' shall be
matched only at the beginning of a line. Commands in the command history shall
be treated as strings, not as filenames. If the pattern is not found, the current
command line shall be unchanged and the terminal shall be alerted. If it is found in
a previous line, the current command line shall be set to that line and the cursor
shall be set to the first character of the new command line.

If pattern is empty, the last non-empty pattern provided to / or ? shall be used. If
there is no previous non-empty pattern, the terminal shall be alerted and the
current command line shall remain unchanged.

?pattern<newline>
Move forwards through the command history, searching for the specified pattern,
beginning with the next command line. Patterns use the pattern matching notation
described in Section 2.14 (on page 2523), except that the '^' character shall have
special meaning when it appears as the first character of pattern. In this case, the
'^' is discarded and the characters after the '^' shall be matched only at the
beginning of a line. Commands in the command history shall be treated as strings,
not as filenames. If the pattern is not found, the current command line shall be
unchanged and the terminal shall be alerted. If it is found in a following line, the
current command line shall be set to that line and the cursor shall be set to the fist
character of the new command line.

If pattern is empty, the last non-empty pattern provided to / or ? shall be used. If
there is no previous non-empty pattern, the terminal shall be alerted and the
current command line shall remain unchanged.

n Repeat the most recent / or ? command. If there is no previous / or ?, the terminal
shall be alerted and the current command line shall remain unchanged.

N Repeat the most recent / or ? command, reversing the direction of the search. If
there is no previous / or ?, the terminal shall be alerted and the current command
line shall remain unchanged.

EXIT STATUS
The following exit values shall be returned:

0 The script to be executed consisted solely of zero or more blank lines or comments, or
both.

1-125 A non-interactive shell detected an error other than command_file not found,
command_file not executable, or an unrecoverable read error while reading commands
(except from the file operand of the dot special built-in); including but not limited to
syntax, redirection, or variable assignment errors.

126 A specified command_file could not be executed due to an [ENOEXEC] error (see Section
2.9.1.4 (on page 2502), item 2).

127 A specified command_file could not be found by a non-interactive shell.

3378 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115053

115054

115055

115056

115057

115058

115059

115060

115061

115062

115063

115064

115065

115066

115067

115068

115069

115070

115071

115072

115073

115074

115075

115076

115077

115078

115079

115080

115081

115082

115083

115084

115085

115086

115087

115088

115089

115090

115091

115092

115093

115094

115095

115096

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

128 An unrecoverable read error was detected while reading commands, except from the
file operand of the dot special built-in.

Otherwise, the shell shall terminate in the same manner as for an exit command with no
operands, unless the last command the shell invoked was executed without forking, in which
case the wait status seen by the parent process of the shell shall be the wait status of the last
command the shell invoked. See the exit utility in Section 2.15 (on page 2526).

CONSEQUENCES OF ERRORS
See Section 2.8.1 (on page 2497).

APPLICATION USAGE
Standard input and standard error are the files that determine whether a shell is interactive
when −i is not specified. For example:

sh > file

and:

sh 2> file

create interactive and non-interactive shells, respectively. Although both accept terminal input,
the results of error conditions are different, as described in Section 2.8.1 (on page 2497); in the
second example a redirection error encountered by a special built-in utility aborts the shell.

sh −n can be used to check for many syntax errors without waiting for complete_commands to be
executed, but may be fooled into declaring false positives or missing actual errors that would
occur when the shell actually evaluates eval commands present in the script, or if there are alias
(or unalias) commands in the script that would alter the syntax of commands that use the
affected aliases.

A conforming application must protect its first operand, if it starts with a <plus-sign>, by
preceding it with the "--" argument that denotes the end of the options.

Applications should note that the standard PA TH to the shell cannot be assumed to be either
/bin/sh or /usr/bin/sh, and should be determined by interrogation of the PA TH returned by
getconf PATH, ensuring that the returned pathname is an absolute pathname and not a shell
built-in.

For example, to determine the location of the standard sh utility:

command -v sh

On some implementations this might return:

/usr/xpg4/bin/sh

Furthermore, on systems that support executable scripts (the "#!" construct), it is
recommended that applications using executable scripts install them using getconf PATH to
determine the shell pathname and update the "#!" script appropriately as it is being installed
(for example, with sed). For example:

#
Installation time script to install correct POSIX shell pathname
#
Get list of paths to check
#
Sifs=$IFS
Sifs_set=${IFS+y}
IFS=:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3379

115097

115098

115099

115100

115101

115102

115103

115104

115105

115106

115107

115108

115109

115110

115111

115112

115113

115114

115115

115116

115117

115118

115119

115120

115121

115122

115123

115124

115125

115126

115127

115128

115129

115130

115131

115132

115133

115134

115135

115136

115137

115138

115139

115140

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

set -- $(getconf PATH)
if ["$Sifs_set" = y]
then

IFS=$Sifs
else

unset IFS
fi
#
Check each path for 'sh'
#
for i
do

if [-x "${i}"/sh]
then

Pshell=${i}/sh
fi

done
#
This is the list of scripts to update. They should be of the
form '${name}.source' and will be transformed to '${name}'.
Each script should begin:
#
#!INSTALLSHELLPATH
#
scripts="a b c"
#
Transform each script
#
for i in ${scripts}
do

sed -e "s|INSTALLSHELLPATH|${Pshell}|" < ${i}.source > ${i}
done

EXAMPLES

1. Execute a shell command from a string:

sh -c "cat myfile"

2. Execute a shell script from a file in the current directory:

sh my_shell_cmds

RATIONALE
The sh utility and the set special built-in utility share a common set of options.

The name IFS was originally an abbreviation of ``Input Field Separators’’; however, this name is
misleading as the IFS characters are actually used as field terminators. One justification for
ignoring the contents of IFS upon entry to the script, beyond security considerations, is to assist
possible future shell compilers. Allowing IFS to be imported from the environment prevents
many optimizations that might otherwise be performed via dataflow analysis of the script itself.

The text in the STDIN section about non-blocking reads concerns an instance of sh that has been
invoked, probably by a C-language program, with standard input that has been opened using
the O_NONBLOCK flag; see open() in the System Interfaces volume of POSIX.1-2024. If the shell
did not reset this flag, it would immediately terminate because no input data would be available

3380 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115141

115142

115143

115144

115145

115146

115147

115148

115149

115150

115151

115152

115153

115154

115155

115156

115157

115158

115159

115160

115161

115162

115163

115164

115165

115166

115167

115168

115169

115170

115171

115172

115173

115174

115175

115176

115177

115178

115179

115180

115181

115182

115183

115184

115185

115186

115187

115188

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

yet and that would be considered the same as end-of-file.

The options associated with a restricted shell (command name rsh and the −r option) were
excluded because the standard developers considered that the implied level of security could
not be achieved and they did not want to raise false expectations.

On systems that support set-user-ID scripts, a historical trapdoor has been to link a script to the
name −i. When it is called by a sequence such as:

sh -

or by:

#! usr/bin/sh -

the historical systems have assumed that no option letters follow. Thus, this volume of
POSIX.1-2024 allows the single <hyphen-minus> to mark the end of the options, in addition to
the use of the regular "--" argument, because it was considered that the older practice was so
pervasive. An alternative approach is taken by the KornShell, where real and effective
user/group IDs must match for an interactive shell; this behavior is specifically allowed by this
volume of POSIX.1-2024.

Note: There are other problems with set-user-ID scripts that the two approaches described here do not
resolve.

The initialization process for the history file can be dependent on the system start-up files, in
that they may contain commands that effectively preempt the user’s settings of HISTFILE and
HISTSIZE. In some historical shells, the history file is initialized just after the ENV file has been
processed. Therefore, it is implementation-defined whether changes made to HISTFILE after the
history file has been initialized are effective.

The default messages for the various MAIL-related messages are unspecified because they vary
across implementations. Typical messages are:

"you have mail\n"

or:

"you have new mail\n"

It is important that the descriptions of command line editing refer to the same shell as that in
POSIX.1-2024 so that interactive users can also be application programmers without having to
deal with programmatic differences in their two environments. It is also essential that the utility
name sh be specified because this explicit utility name is too firmly rooted in historical practice
of application programs for it to change.

Consideration was given to mandating a diagnostic message when attempting to set vi-mode on
terminals that do not support command line editing. However, it is not historical practice for the
shell to be cognizant of all terminal types and thus be able to detect inappropriate terminals in
all cases. Implementations are encouraged to supply diagnostics in this case whenever possible,
rather than leaving the user in a state where editing commands work incorrectly.

In early proposals, the KornShell-derived emacs mode of command line editing was included,
even though the emacs editor itself was not. The community of emacs proponents was adamant
that the full emacs editor not be standardized because they were concerned that an attempt to
standardize this very powerful environment would encourage vendors to ship strictly
conforming versions lacking the extensibility required by the community. The author of the
original emacs program also expressed his desire to omit the program. Furthermore, there were a
number of historical systems that did not include emacs, or included it without supporting it, but
there were very few that did not include and support vi. The shell emacs command line editing

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3381

115189

115190

115191

115192

115193

115194

115195

115196

115197

115198

115199

115200

115201

115202

115203

115204

115205

115206

115207

115208

115209

115210

115211

115212

115213

115214

115215

115216

115217

115218

115219

115220

115221

115222

115223

115224

115225

115226

115227

115228

115229

115230

115231

115232

115233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

mode was finally omitted because it became apparent that the KornShell version and the editor
being distributed with the GNU system had diverged in some respects. The author of emacs
requested that the POSIX emacs mode either be deleted or have a significant number of
unspecified conditions. Although the KornShell author agreed to consider changes to bring the
shell into alignment, the standard developers decided to defer specification at that time. At the
time, it was assumed that convergence on an acceptable definition would occur for a subsequent
draft, but that has not happened, and there appears to be no impetus to do so. In any case,
implementations are free to offer additional command line editing modes based on the exact
models of editors their users are most comfortable with.

Early proposals had the following list entry in vi Line Editing Insert Mode (on page 3371):

\ If followed by the erase or kill character, that character shall be inserted into the input line.
Otherwise, the <backslash> itself shall be inserted into the input line.

However, this is not actually a feature of sh command line editing insert mode, but one of some
historical terminal line drivers. Some conforming implementations continue to do this when the
stty iexten flag is set.

In interactive shells, SIGTERM is ignored so that kill 0 does not kill the shell, and SIGINT is
caught so that wait is interruptible. If the shell does not ignore SIGTTIN, SIGTTOU, and
SIGTSTP signals when it is interactive and the −m option is not in effect, these signals suspend
the shell if it is not a session leader. If it is a session leader, the signals are discarded if they
would stop the process, as required by XSH Section 2.4.3 (on page 516) for orphaned process
groups.

Earlier versions of this standard required that input files to the shell be text files except that line
lengths were unlimited. However, that was overly restrictive in relation to the fact that shells can
parse a script without a trailing newline, and in relation to a common practice of concatenating a
shell script ending with an exit or exec $command with a binary data payload to form a
single-file self-extracting archive.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
Section 2.9.1.4 (on page 2502), Chapter 2 (on page 2472), cd , echo , exit , fc , pwd , invalid, set , stty ,
test , trap , umask , vi

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH dup(), exec , exit(), fork(), getrlimit(), open(), pipe(), signal(), system(), umask(), wait()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Text is added to the DESCRIPTION for the Large File Summit proposal.

Issue 6
The Open Group Corrigendum U029/2 is applied, correcting the second SYNOPSIS.

The Open Group Corrigendum U027/3 is applied, correcting a typographical error.

The following new requirements on POSIX implementations derive from alignment with the

3382 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115234

115235

115236

115237

115238

115239

115240

115241

115242

115243

115244

115245

115246

115247

115248

115249

115250

115251

115252

115253

115254

115255

115256

115257

115258

115259

115260

115261

115262

115263

115264

115265

115266

115267

115268

115269

115270

115271

115272

115273

115274

115275

115276

115277

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sh

Single UNIX Specification:

• The option letters derived from the set special built-in are also accepted with a leading
<plus-sign> ('+').

• Large file extensions are added:

— Pathname expansion does not fail due to the size of a file.

— Shell input and output redirections have an implementation-defined offset maximum
that is established in the open file description.

In the ENVIRONMENT VARIABLES section, the text ``user ’s home directory’’ is updated to
``directory referred to by the HOME environment variable’’.

Descriptions for the ENV and PWD environment variables are included to align with the
IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #098 is applied, changing the definition of IFS.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Changes to the pwd utility and PWD environment variable have been made to match the
changes to the getcwd() function made for Austin Group Interpretation 1003.1-2001 #140.

Minor editorial changes are made to the User Portability Utilities option shading. No normative
changes are implied.

Minor changes are made to the install script example in the APPLICATION USAGE section.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0137 [152], XCU/TC1-2008/0138
[347], XCU/TC1-2008/0139 [347], XCU/TC1-2008/0140 [347], XCU/TC1-2008/0141 [299], and
XCU/TC1-2008/0142 [347] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0175 [584], XCU/TC2-2008/0176
[584], XCU/TC2-2008/0177 [718], XCU/TC2-2008/0178 [884], XCU/TC2-2008/0179 [809],
XCU/TC2-2008/0180 [884], and XCU/TC2-2008/0181 [584] are applied.

Issue 8
Austin Group Defect 51 is applied, changing the EXIT STATUS section.

Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 981 is applied, removing a reference to the set −o nolog option from the
RATIONALE section.

Austin Group Defect 1006 is applied, changing the description of the ENV environment variable.

Austin Group Defect 1055 is applied, adding a paragraph about the −n option to the
APPLICATION USAGE section.

Austin Group Defect 1063 is applied, adding OB shading to the −h option and adding it to the
list of options that are described as part of the set utility.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1250 is applied, changing the INPUT FILES section.

Austin Group Defect 1266 is applied, clarifying the circumstances under which the shell is

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3383

115278

115279

115280

115281

115282

115283

115284

115285

115286

115287

115288

115289

115290

115291

115292

115293

115294

115295

115296

115297

115298

115299

115300

115301

115302

115303

115304

115305

115306

115307

115308

115309

115310

115311

115312

115313

115314

115315

115316

115317

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sh Utilities

considered to be interactive.

Austin Group Defect 1267 is applied, changing the ENVIRONMENT VARIABLES section to
remove the UP shading from HOME and add it to HISTSIZE.

Austin Group Defect 1519 is applied, making the behavior explicitly unspecified if the −o or +o
option is specified without an option-argument.

Austin Group Defect 1629 is applied, changing the EXIT STATUS section.

3384 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115318

115319

115320

115321

115322

115323

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sleep

NAME
sleep — suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
The sleep utility shall suspend execution for at least the integral number of seconds specified by
the time operand.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

time A non-negative decimal integer specifying the number of seconds for which to
suspend execution.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sleep:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
If the sleep utility receives a SIGALRM signal, one of the following actions shall be taken:

1. Terminate normally with a zero exit status.

2. Effectively ignore the signal.

3. Provide the default behavior for signals described in the ASYNCHRONOUS EVENTS
section of Section 1.4 (on page 2462). This could include terminating with a non-zero exit
status.

The sleep utility shall take the standard action for all other signals.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3385

115324

115325

115326

115327

115328

115329

115330

115331

115332

115333

115334

115335

115336

115337

115338

115339

115340

115341

115342

115343

115344

115345

115346

115347

115348

115349

115350

115351

115352

115353

115354

115355

115356

115357

115358

115359

115360

115361

115362

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sleep Utilities

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The execution was successfully suspended for at least time seconds, or a SIGALRM signal
was received. See the ASYNCHRONOUS EVENTS section.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
The sleep utility can be used to execute a command after a certain amount of time, as in:

(sleep 105; command) &

or to execute a command every so often, as in:

while true
do

command
sleep 37

done

RATIONALE
The exit status is allowed to be zero when sleep is interrupted by the SIGALRM signal because
most implementations of this utility rely on the arrival of that signal to notify them that the
requested finishing time has been successfully attained. Such implementations thus do not
distinguish this situation from the successful completion case. Other implementations are
allowed to catch the signal and go back to sleep until the requested time expires or to provide
the normal signal termination procedures.

As with all other utilities that take integral operands and do not specify subranges of allowed
values, sleep is required by this volume of POSIX.1-2024 to deal with time requests of up to
2 147 483 647 seconds. This may mean that some implementations have to make multiple calls to
the delay mechanism of the underlying operating system if its argument range is less than this.

FUTURE DIRECTIONS
None.

SEE ALSO
wait

XBD Chapter 8 (on page 167)

XSH alarm(), sleep()

3386 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115363

115364

115365

115366

115367

115368

115369

115370

115371

115372

115373

115374

115375

115376

115377

115378

115379

115380

115381

115382

115383

115384

115385

115386

115387

115388

115389

115390

115391

115392

115393

115394

115395

115396

115397

115398

115399

115400

115401

115402

115403

115404

115405

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sleep

CHANGE HISTORY
First released in Issue 2.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3387

115406

115407

115408

115409

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sort Utilities

NAME
sort — sort, merge, or sequence check text files

SYNOPSIS
sort [-m] [-o output] [-bdfinru] [-t char] [-k keydef]... [file...]

sort [-c|-C] [-bdfinru] [-t char] [-k keydef] [file]

DESCRIPTION
The sort utility shall perform one of the following functions:

1. Sort lines of all the named files together and write the result to the specified output.

2. Merge lines of all the named (presorted) files together and write the result to the specified
output.

3. Check that a single input file is correctly presorted.

Comparisons shall be based on one or more sort keys extracted from each line of input (or, if no
sort keys are specified, the entire line up to, but not including, the terminating <newline>), and
shall be performed using the collating sequence of the current locale. If this collating sequence
does not have a total ordering of all characters (see XBD Section 7.3.2, on page 139), any lines of
input that collate equally shall be further compared byte-by-byte using the collating sequence
for the POSIX locale.

OPTIONS
The sort utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9, and the
−k keydef option should follow the −b, −d, −f, −i, −n, and −r options. In addition, '+' may be
recognized as an option delimiter as well as '−'.

The following options shall be supported:

−c Check that the single input file is ordered as specified by the arguments and the
collating sequence of the current locale. Output shall not be sent to standard
output. The exit code shall indicate whether or not disorder was detected or an
error occurred. If disorder (or, with −u, a duplicate key) is detected, a warning
message shall be sent to standard error indicating where the disorder or duplicate
key was found.

−C Same as −c, except that a warning message shall not be sent to standard error if
disorder or, with −u, a duplicate key is detected.

−m Merge only; the input file shall be assumed to be already sorted.

−o output Specify the name of an output file to be used instead of the standard output. This
file can be the same as one of the input files.

−u Unique: suppress all but one in each set of lines having equal keys. If used with
the −c option, check that there are no lines with duplicate keys, in addition to
checking that the input file is sorted.

The following options shall override the default ordering rules. When ordering options appear
independent of any key field specifications, the requested field ordering rules shall be applied
globally to all sort keys. When attached to a specific key (see −k), the specified ordering options
shall override all global ordering options for that key.

−d Specify that only <blank> characters and alphanumeric characters, according to
the current setting of LC_CTYPE, shall be significant in comparisons. The behavior
is undefined for a sort key to which −i or −n also applies.

3388 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115410

115411

115412

115413

115414

115415

115416

115417

115418

115419

115420

115421

115422

115423

115424

115425

115426

115427

115428

115429

115430

115431

115432

115433

115434

115435

115436

115437

115438

115439

115440

115441

115442

115443

115444

115445

115446

115447

115448

115449

115450

115451

115452

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sort

−f Consider all lowercase characters that have uppercase equivalents, according to
the current setting of LC_CTYPE, to be the uppercase equivalent for the purposes
of comparison.

−i Ignore all characters that are non-printable, according to the current setting of
LC_CTYPE. The behavior is undefined for a sort key for which −n also applies.

−n Restrict the sort key to an initial numeric string, consisting of optional <blank>
characters, optional <hyphen-minus> character, and zero or more digits with an
optional radix character and thousands separators (as defined in the current
locale), which shall be sorted by arithmetic value. An empty digit string shall be
treated as zero. Leading zeros and signs on zeros shall not affect ordering.

−r Reverse the sense of comparisons.

The treatment of field separators can be altered using the options:

−b Ignore leading <blank> characters when determining the starting and ending
positions of a restricted sort key. If the −b option is specified before the first −k
option, it shall be applied to all −k options. Otherwise, the −b option can be
attached independently to each −k field_start or field_end option-argument (see
below).

−t char Use char as the field separator character; char shall not be considered to be part of a
field (although it can be included in a sort key). Each occurrence of char shall be
significant (for example, <char><char> delimits an empty field). If −t is not
specified, <blank> characters shall be used as default field separators; each
maximal non-empty sequence of <blank> characters that follows a non-<blank>
shall be a field separator.

Sort keys can be specified using the options:

−k keydef The keydef argument is a restricted sort key field definition. The format of this
definition is:

field_start[type][,field_end[type]]

where field_start and field_end define a key field restricted to a portion of the line
(see the EXTENDED DESCRIPTION section), and type is one or more modifiers
from the list of characters 'b', 'd', 'f', 'i', 'n', 'r'. The 'b' modifier shall
behave like the −b option, but shall apply only to the field_start or field_end to
which it is attached. The other modifiers shall behave like the corresponding
options, but shall apply only to the key field to which they are attached; they shall
have this effect if specified with field_start, field_end, or both. If any modifier is
attached to a field_start or to a field_end, no option shall apply to either.
Implementations shall support at least nine occurrences of the −k option, which
shall be significant in command line order. If no −k option is specified, a default
sort key of the entire line shall be used.

When there are multiple key fields, later keys shall be compared only after all
earlier keys compare equal. Except when the −u option is specified, lines that
otherwise compare equal shall be ordered as if none of the options −d, −f, −i, −n, or
−k were present (but with −r still in effect, if it was specified) and with all bytes in
the lines significant to the comparison. The order in which lines that still compare
equal are written is unspecified.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3389

115453

115454

115455

115456

115457

115458

115459

115460

115461

115462

115463

115464

115465

115466

115467

115468

115469

115470

115471

115472

115473

115474

115475

115476

115477

115478

115479

115480

115481

115482

115483

115484

115485

115486

115487

115488

115489

115490

115491

115492

115493

115494

115495

115496

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sort Utilities

OPERANDS
The following operand shall be supported:

file A pathname of a file to be sorted, merged, or checked. If no file operands are
specified, or if a file operand is '−', the standard input shall be used. If sort
encounters an error when opening or reading a file operand, it may exit without
writing any output to standard output or processing later operands.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is '−'.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files, except that the sort utility shall add a <newline> to the end of a
file ending with an incomplete last line.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sort:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for ordering rules.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classification for the −b,
−d, −f, −i, and −n options.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the locale for the definition of the radix character and thousands
separator for the −n option.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TMPDIR Provide a pathname that shall override the default directory for temporary files, if
any.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Unless the −o or −c options are in effect, the standard output shall contain the sorted input.

STDERR
The standard error shall be used for diagnostic messages. When −c is specified, if disorder is
detected (or if −u is also specified and a duplicate key is detected), a message shall be written to
the standard error which identifies the input line at which disorder (or a duplicate key) was
detected. A warning message about correcting an incomplete last line of an input file may be
generated, but need not affect the final exit status.

3390 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115497

115498

115499

115500

115501

115502

115503

115504

115505

115506

115507

115508

115509

115510

115511

115512

115513

115514

115515

115516

115517

115518

115519

115520

115521

115522

115523

115524

115525

115526

115527

115528

115529

115530

115531

115532

115533

115534

115535

115536

115537

115538

115539

115540

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sort

OUTPUT FILES
If the −o option is in effect, the sorted input shall be written to the file output.

EXTENDED DESCRIPTION
The notation:

-k field_start[type][,field_end[type]]

shall define a key field that begins at field_start and ends at field_end inclusive, unless field_start
falls beyond the end of the line or after field_end, in which case the key field is empty. A missing
field_end shall mean the last character of the line.

A field comprises a maximal sequence of non-separating characters and, in the absence of option
−t, any preceding field separator.

The field_start portion of the keydef option-argument shall have the form:

field_number[.first_character]

Fields and characters within fields shall be numbered starting with 1. The field_number and
first_character pieces, interpreted as positive decimal integers, shall specify the first character to
be used as part of a sort key. If .first_character is omitted, it shall refer to the first character of the
field.

The field_end portion of the keydef option-argument shall have the form:

field_number[.last_character]

The field_number shall be as described above for field_start. The last_character piece, interpreted
as a non-negative decimal integer, shall specify the last character to be used as part of the sort
key. If last_character evaluates to zero or .last_character is omitted, it shall refer to the last
character of the field specified by field_number.

If the −b option or b type modifier is in effect, characters within a field shall be counted from the
first non-<blank> in the field. (This shall apply separately to first_character and last_character.)

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully, or −c was specified and the input file was correctly
sorted.

1 Under the −c option, the file was not ordered as specified, or if the −c and −u options were
both specified, two input lines were found with equal keys.

>1 An error occurred.

CONSEQUENCES OF ERRORS
The default requirements shall apply, except that if sort encounters an error when opening or
reading a file operand, it may exit without writing any output to standard output or processing
later operands.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3391

115541

115542

115543

115544

115545

115546

115547

115548

115549

115550

115551

115552

115553

115554

115555

115556

115557

115558

115559

115560

115561

115562

115563

115564

115565

115566

115567

115568

115569

115570

115571

115572

115573

115574

115575

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sort Utilities

APPLICATION USAGE
The default value for −t, <blank>, has different properties from, for example, −t"<space>". If a
line contains:

<space><space>foo

the following treatment would occur with default separation as opposed to specifically selecting
a <space>:

Field Default −t "<space>"
1 <space><space>foo empty
2 empty empty
3 empty foo

The leading field separator itself is included in a field when −t is not used. For example, this
command returns an exit status of zero, meaning the input was already sorted:

sort -c -k 2 <<eof
y<tab>b
x<space>a
eof

(assuming that a <tab> precedes the <space> in the current collating sequence). The field
separator is not included in a field when it is explicitly set via −t. This is historical practice and
allows usage such as:

sort -t "|" -k 2n <<eof
Atlanta|425022|Georgia
Birmingham|284413|Alabama
Columbia|100385|South Carolina
eof

where the second field can be correctly sorted numerically without regard to the non-numeric
field separator.

The wording in the OPTIONS section clarifies that the −b, −d, −f, −i, −n, and −r options have to
come before the first sort key specified if they are intended to apply to all specified keys. The
way it is described in this volume of POSIX.1-2024 matches historical practice, not historical
documentation. The results are unspecified if these options are specified after a −k option.

The −f option might not work as expected in locales where there is not a one-to-one mapping
between an uppercase and a lowercase letter.

When using sort to process pathnames, it is recommended that LC_ALL, or at least LC_CTYPE
and LC_COLLATE, are set to POSIX or C in the environment, since pathnames can contain byte
sequences that do not form valid characters in some locales, in which case the utility’s behavior
would be undefined. In the POSIX locale each byte is a valid single-byte character, and therefore
this problem is avoided.

If the collating sequence of the current locale does not have a total ordering of all characters,
since sort −u suppresses lines with duplicate keys, it suppresses lines that collate equally but are
not identical.

EXAMPLES

1. The following command sorts the contents of infile with the second field as the sort key:

sort -k 2,2 infile

3392 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115576

115577

115578

115579

115580

115581

115582

115583

115584

115585

115586

115587

115588

115589

115590

115591

115592

115593

115594

115595

115596

115597

115598

115599

115600

115601

115602

115603

115604

115605

115606

115607

115608

115609

115610

115611

115612

115613

115614

115615

115616

115617

115618

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sort

2. The following command sorts, in reverse order, the contents of infile1 and infile2,
placing the output in outfile and using the second character of the second field as the sort
key (assuming that the first character of the second field is the field separator):

sort -r -o outfile -k 2.2,2.2 infile1 infile2

3. The following command sorts the contents of infile1 and infile2 using the second
non-<blank> of the second field as the sort key:

sort -k 2.2b,2.2b infile1 infile2

4. The following command prints the System V password file (user database) sorted by the
numeric user ID (the third <colon>-separated field):

sort -t : -k 3,3n /etc/passwd

5. The following command prints the lines of the already sorted file infile, suppressing all
but one occurrence of lines having the same third field:

sort -um -k 3.1,3.0 infile

RATIONALE
Examples in some historical documentation state that options −um with one input file keep the
first in each set of lines with equal keys. This behavior was deemed to be an implementation
artifact and was not standardized.

The −z option was omitted; it is not standard practice on most systems and is inconsistent with
using sort to sort several files individually and then merge them together. The text concerning −z
in historical documentation appeared to require implementations to determine the proper buffer
length during the sort phase of operation, but not during the merge.

The −y option was omitted because of non-portability. The −M option, present in System V, was
omitted because of non-portability in international usage.

An undocumented −T option exists in some implementations. It is used to specify a directory for
intermediate files. Implementations are encouraged to support the use of the TMPDIR
environment variable instead of adding an option to support this functionality.

The −k option was added to satisfy two objections. First, the zero-based counting used by sort is
not consistent with other utility conventions. Second, it did not meet syntax guideline
requirements.

Historical documentation indicates that ``setting −n implies −b’’. The description of −n already
states that optional leading <blank>s are tolerated in doing the comparison. If −b is enabled,
rather than implied, by −n, this has unusual side-effects. When a character offset is used in a
column of numbers (for example, to sort modulo 100), that offset is measured relative to the
most significant digit, not to the column. Based upon a recommendation from the author of the
original sort utility, the −b implication has been omitted from this volume of POSIX.1-2024, and
an application wishing to achieve the previously mentioned side-effects has to code the −b flag
explicitly.

Earlier versions of this standard allowed the −o option to appear after operands. Historical
practice allowed all options to be interspersed with operands. This version of the standard
allows implementations to accept options after operands but conforming applications should
not use this form.

Earlier versions of this standard also allowed the −number and +number options. These options
are no longer specified by POSIX.1-2024 but may be present in some implementations.

Historical implementations produced a message on standard error when −c was specified and

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3393

115619

115620

115621

115622

115623

115624

115625

115626

115627

115628

115629

115630

115631

115632

115633

115634

115635

115636

115637

115638

115639

115640

115641

115642

115643

115644

115645

115646

115647

115648

115649

115650

115651

115652

115653

115654

115655

115656

115657

115658

115659

115660

115661

115662

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

sort Utilities

disorder was detected, and when −c and −u were specified and a duplicate key was detected. An
earlier version of this standard contained wording that did not make it clear that this message
was allowed and some implementations removed this message to be sure that they conformed
to the standard’s requirements. Confronted with this difference in behavior, interactive users
that wanted to be sure that they got visual feedback instead of just exit code 1 could have used a
command like:

sort -c file || echo disorder

whether or not the sort utility provided a message in this case. But, it was not easy for a user to
find where the disorder or duplicate key occurred on implementations that do not produce a
message, especially when some parts of the input line were not part of the key and when one or
more of the −b, −d, −f, −i, −n, or −r options or keydef type modifiers were in use. POSIX.1-2024
requires a message to be produced in this case. POSIX.1-2024 also contains the −C option giving
users the ability to choose either behavior.

When a disorder or duplicate is found when the −c option is specified, some implementations
print a message containing the first line that is out of order or contains a duplicate key; others
print a message specifying the line number of the offending line. This standard allows either
type of message.

The required further byte-by-byte comparison of lines that collate equally may have an impact
on efficiency, but this can be mitigated by only performing the additional comparison if the
current locale’s collating sequence does not have a total ordering of all characters (if the
implementation provides a way to query this) or by only performing the additional comparison
if the locale name associated with the LC_COLLATE category has an '@' modifier in the name
(since implementation-supplied locales without an '@' modifier have a total ordering of all
characters — see XBD Section 7.3.2 (on page 139) — and localedef users are warned to follow the
same convention). Note that if the implementation provides a stable sort option as an extension
(usually −s), the additional comparison should not be performed when this option has been
specified.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
comm , join , uniq

XBD Section 7.3.2 (on page 139), Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH toupper()

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE PASC Interpretation 1003.2 #174 is applied, updating the DESCRIPTION of comparisons.

IEEE PASC Interpretation 1003.2 #168 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline 9 of the Utility
Syntax Guidelines does not apply and noting that '+' may be recognized as an option delimiter.

Austin Group Interpretation 1003.1-2001 #120 is applied, clarifying the use of the −c option and
introducing the −C option.

3394 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115663

115664

115665

115666

115667

115668

115669

115670

115671

115672

115673

115674

115675

115676

115677

115678

115679

115680

115681

115682

115683

115684

115685

115686

115687

115688

115689

115690

115691

115692

115693

115694

115695

115696

115697

115698

115699

115700

115701

115702

115703

115704

115705

115706

115707

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities sort

XCU-ERN-81 is applied, modifying the description of the −i option.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0182 [963], XCU/TC2-2008/0183
[584], XCU/TC2-2008/0184 [510], XCU/TC2-2008/0185 [962], XCU/TC2-2008/0186 [663], and
XCU/TC2-2008/0187 [963] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 862 is applied, adding TMPDIR to the ENVIRONMENT VARIABLES
section.

Austin Group Defect 1070 is applied, requiring that any lines of input that collate equally when
comparing them as whole lines are further compared byte-by-byte using the collating sequence
for the POSIX locale.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3395

115708

115709

115710

115711

115712

115713

115714

115715

115716

115717

115718

115719

115720

115721

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

split Utilities

NAME
split — split a file into pieces

SYNOPSIS
split [-l line_count] [-a suffix_length] [file [name]]

split -b n[k|m] [-a suffix_length] [file [name]]

DESCRIPTION
The split utility shall read an input file and write zero or more output files. The default size of
each output file shall be 1 000 lines. The size of the output files can be modified by specification
of the −b or −l options. Each output file shall be created with a unique suffix. The suffix shall
consist of exactly suffix_length lowercase letters from the POSIX locale. The letters of the suffix
shall be used as if they were a base-26 digit system, with the first suffix to be created consisting
of all 'a' characters, the second with a 'b' replacing the last 'a', and so on, until a name of all
'z' characters is created. By default, the names of the output files shall be 'x', followed by a
two-character suffix from the character set as described above, starting with "aa", "ab", "ac",
and so on, and continuing until the suffix "zz", for a maximum of 676 files.

If the number of files required exceeds the maximum allowed by the suffix length provided,
such that the last allowable file would be larger than the requested size, the split utility shall fail
after creating the last file with a valid suffix; split shall not delete the files it created with valid
suffixes. If the file limit is not exceeded, the last file created shall contain the remainder of the
input file, and may be smaller than the requested size. If the input is an empty file, no output file
shall be created and this shall not be considered to be an error.

OPTIONS
The split utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a suffix_length
Use suffix_length letters to form the suffix portion of the filenames of the split file. If
−a is not specified, the default suffix length shall be two. If the sum of the name
operand and the suffix_length option-argument would create a filename exceeding
{NAME_MAX} bytes, an error shall result; split shall exit with a diagnostic message
and no files shall be created.

−b n Split a file into pieces n bytes in size.

−b nk Split a file into pieces n*1 024 bytes in size.

−b nm Split a file into pieces n*1 048 576 bytes in size.

−l line_count Specify the number of lines in each resulting file piece. The line_count argument is
an unsigned decimal integer. The default is 1 000. If the input does not end with a
<newline>, the partial line shall be included in the last output file.

OPERANDS
The following operands shall be supported:

file The pathname of the ordinary file to be split. If no input file is given or file is '−',
the standard input shall be used.

name The prefix to be used for each of the files resulting from the split operation. If no
name argument is given, 'x' shall be used as the prefix of the output files. The
combined length of the basename of prefix and suffix_length cannot exceed
{NAME_MAX} bytes. See the OPTIONS section.

3396 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115722

115723

115724

115725

115726

115727

115728

115729

115730

115731

115732

115733

115734

115735

115736

115737

115738

115739

115740

115741

115742

115743

115744

115745

115746

115747

115748

115749

115750

115751

115752

115753

115754

115755

115756

115757

115758

115759

115760

115761

115762

115763

115764

115765

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities split

STDIN
See the INPUT FILES section.

INPUT FILES
Any file can be used as input.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of split:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files contain portions of the original input file; otherwise, unchanged.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3397

115766

115767

115768

115769

115770

115771

115772

115773

115774

115775

115776

115777

115778

115779

115780

115781

115782

115783

115784

115785

115786

115787

115788

115789

115790

115791

115792

115793

115794

115795

115796

115797

115798

115799

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

split Utilities

APPLICATION USAGE
None.

EXAMPLES
In the following examples foo is a text file that contains 5 000 lines.

1. Create five files, xaa, xab, xac, xad, and xae:

split foo

2. Create five files, but the suffixed portion of the created files consists of three letters, xaaa,
xaab, xaac, xaad, and xaae:

split -a 3 foo

3. Create three files with four-letter suffixes and a supplied prefix, bar_aaaa, bar_aaab, and
bar_aaac:

split -a 4 -l 2000 foo bar_

4. Create as many files as are necessary to contain at most 20*1 024 bytes, each with the
default prefix of x and a five-letter suffix:

split -a 5 -b 20k foo

RATIONALE
The −b option was added to provide a mechanism for splitting files other than by lines. While
most uses of the −b option are for transmitting files over networks, some believed it would have
additional uses.

The −a option was added to overcome the limitation of being able to create only 676 files.

Consideration was given to deleting this utility, using the rationale that the functionality
provided by this utility is available via the csplit utility (see csplit). Upon reconsideration of the
purpose of the User Portability Utilities option, it was decided to retain both this utility and the
csplit utility because users use both utilities and have historical expectations of their behavior.
Furthermore, the splitting on byte boundaries in split cannot be duplicated with the historical
csplit.

The text ``split shall not delete the files it created with valid suffixes’’ would normally be
assumed, but since the related utility, csplit, does delete files under some circumstances, the
historical behavior of split is made explicit to avoid misinterpretation.

Earlier versions of this standard allowed a −line_count option. This form is no longer specified by
POSIX.1-2024 but may be present in some implementations.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
csplit

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

3398 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115800

115801

115802

115803

115804

115805

115806

115807

115808

115809

115810

115811

115812

115813

115814

115815

115816

115817

115818

115819

115820

115821

115822

115823

115824

115825

115826

115827

115828

115829

115830

115831

115832

115833

115834

115835

115836

115837

115838

115839

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities split

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent SYNOPSIS is removed.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied.

The split utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0188 [731] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3399

115840

115841

115842

115843

115844

115845

115846

115847

115848

115849

115850

115851

115852

115853

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strings Utilities

NAME
strings — find printable strings in files

SYNOPSIS
strings [-a] [-t format] [-n number] [file...]

DESCRIPTION
The strings utility shall look for printable strings in regular files and shall write those strings to
standard output. A printable string is any sequence of four (by default) or more printable
characters terminated by a <newline> or NUL character. Additional implementation-defined
strings may be written; see localedef.

If any argument is '−', the results are unspecified.

OPTIONS
The strings utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified
usage of '−'.

The following options shall be supported:

−a Scan files in their entirety. If −a is not specified, it is implementation-defined what
portion of each file is scanned for strings.

−n number Specify the minimum string length, where the number argument is a positive
decimal integer. The default shall be 4.

−t format Write each string preceded by its byte offset from the start of the file. The format
shall be dependent on the single character used as the format option-argument:

d The offset shall be written in decimal.

o The offset shall be written in octal.

x The offset shall be written in hexadecimal.

OPERANDS
The following operand shall be supported:

file A pathname of a regular file to be used as input. If no file operand is specified, the
strings utility shall read from the standard input.

STDIN
See the INPUT FILES section.

INPUT FILES
The input files named by the utility arguments or the standard input shall be regular files of any
format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of strings:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and to identify printable strings.

3400 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115854

115855

115856

115857

115858

115859

115860

115861

115862

115863

115864

115865

115866

115867

115868

115869

115870

115871

115872

115873

115874

115875

115876

115877

115878

115879

115880

115881

115882

115883

115884

115885

115886

115887

115888

115889

115890

115891

115892

115893

115894

115895

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities strings

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Strings found shall be written to the standard output, one per line.

When the −t option is not specified, the format of the output shall be:

"%s", <string>

With the −t o option, the format of the output shall be:

"%o %s", <byte offset>, <string>

With the −t x option, the format of the output shall be:

"%x %s", <byte offset>, <string>

With the −t d option, the format of the output shall be:

"%d %s", <byte offset>, <string>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
By default the data area (as opposed to the text, ``bss’’, or header areas) of a binary executable
file is scanned. Implementations document which areas are scanned.

Some historical implementations do not require NUL or <newline> terminators for strings to
permit those languages that do not use NUL as a string terminator to have their strings written.

EXAMPLES
None.

RATIONALE
Apart from rationalizing the option syntax and slight difficulties with object and executable
binary files, strings is specified to match historical practice closely. The −a and −n options were
introduced to replace the non-conforming − and −number options. These options are no longer
specified by POSIX.1-2024 but may be present in some implementations.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3401

115896

115897

115898

115899

115900

115901

115902

115903

115904

115905

115906

115907

115908

115909

115910

115911

115912

115913

115914

115915

115916

115917

115918

115919

115920

115921

115922

115923

115924

115925

115926

115927

115928

115929

115930

115931

115932

115933

115934

115935

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strings Utilities

The −o option historically means different things on different implementations. Some use it to
mean ``offset in decimal’’, while others use it as ``offset in octal’’. Instead of trying to decide which
way would be least objectionable, the −t option was added. It was originally named −O to mean
``offset’’, but was changed to −t to be consistent with od.

The ISO C standard function isprint() is restricted to a domain of unsigned char. This volume of
POSIX.1-2024 requires implementations to write strings as defined by the current locale.

FUTURE DIRECTIONS
None.

SEE ALSO
localedef , nm

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if the first
argument is '−'.

The strings utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1599 is applied, making the behavior unspecified when any argument is
'−'.

3402 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

115936

115937

115938

115939

115940

115941

115942

115943

115944

115945

115946

115947

115948

115949

115950

115951

115952

115953

115954

115955

115956

115957

115958

115959

115960

115961

115962

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities strip

NAME
strip — remove unnecessary information from strippable files (DEVELOPMENT)

SYNOPSIS
SD strip file...

DESCRIPTION
XSI A strippable file is defined as a relocatable, object, or executable file. On XSI-conformant

systems, a strippable file can also be an archive of object or relocatable files.

The strip utility shall remove from strippable files named by the file operands any information
the implementor deems unnecessary for execution of those files. The nature of that information
is unspecified. The effect of strip on object and executable files shall be similar to the use of the

XSI −s option to c17. The effect of strip on an archive of object files shall be similar to the use of the
−s option to c17 for each object file in the archive.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

file A pathname referring to a strippable file.

STDIN
Not used.

INPUT FILES
The input files shall be in the form of strippable files successfully produced by any compiler

XSI defined by this volume of POSIX.1-2024 or produced by creating or updating an archive of such
files using the ar utility.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of strip:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3403

115963

115964

115965

115966

115967

115968

115969

115970

115971

115972

115973

115974

115975

115976

115977

115978

115979

115980

115981

115982

115983

115984

115985

115986

115987

115988

115989

115990

115991

115992

115993

115994

115995

115996

115997

115998

115999

116000

116001

116002

116003

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

strip Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The strip utility shall produce strippable files of unspecified format.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
Historically, this utility has been used to remove the symbol table from a strippable file. It was
included since it is known that the amount of symbolic information can amount to several
megabytes; the ability to remove it in a portable manner was deemed important, especially for
smaller systems.

The behavior of strip on object and executable files is said to be the same as the −s option to a
compiler. While the end result is essentially the same, it is not required to be identical.

XSI-conformant systems support use of strip on archive files containing object files or relocatable
files.

FUTURE DIRECTIONS
None.

SEE ALSO
ar , c17

XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the Software Development Utilities option.

Issue 7
Austin Group Interpretation 1003.1-2001 #103 is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1330 is applied, removing obsolescent interfaces.

3404 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116004

116005

116006

116007

116008

116009

116010

116011

116012

116013

116014

116015

116016

116017

116018

116019

116020

116021

116022

116023

116024

116025

116026

116027

116028

116029

116030

116031

116032

116033

116034

116035

116036

116037

116038

116039

116040

116041

116042

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities stty

NAME
stty — set the options for a terminal

SYNOPSIS
stty [-a|-g]

stty operand...

DESCRIPTION
The stty utility shall set or report on terminal I/O characteristics for the device that is its
standard input. Without options or operands specified, it shall report the settings of certain
characteristics, usually those that differ from implementation-defined defaults. Otherwise, it
shall modify the terminal state according to the specified operands. Detailed information about
the modes listed in the first five groups below are described in XBD Chapter 11 (on page 199).
Operands in the Combination Modes group (see Combination Modes, on page 3410) are
implemented using operands in the previous groups. Some combinations of operands are
mutually-exclusive on some terminal types; the results of using such combinations are
unspecified.

Typical implementations of this utility require a communications line configured to use the
termios interface defined in the System Interfaces volume of POSIX.1-2024. On systems where
none of these lines are available, and on lines not currently configured to support the termios
interface, some of the operands need not affect terminal characteristics.

OPTIONS
The stty utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Write to standard output all the current settings for the terminal.

−g Write to standard output all the current settings, optionally excluding the terminal
window size, in an unspecified form that, when stripped of trailing <newline>
characters, and used as the one and only argument to another invocation of the stty
utility on the same system, attempts to apply those settings to the terminal. The
form used shall not contain any sequence that would form an Informational Query,
and shall consist of one line of text consisting of only printable characters from the
portable character set, excluding white-space characters (other than the
terminating <newline>) and these characters that could be altered by pathname
expansion performed by the shell: '*', '?', and '['.

OPERANDS
The following operands shall be supported.

Control Modes

parenb (−parenb) Enable (disable) parity generation and detection. This shall have the effect of
setting (not setting) PARENB in the termios c_cflag field, as defined in XBD
Chapter 11 (on page 199).

parodd (−parodd)
Select odd (even) parity. This shall have the effect of setting (not setting)
PARODD in the termios c_cflag field, as defined in XBD Chapter 11 (on page
199).

cs5 cs6 cs7 cs8 Select character size, if possible. This shall have the effect of setting CS5, CS6,
CS7, and CS8, respectively, in the termios c_cflag field, as defined in XBD
Chapter 11 (on page 199).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3405

116043

116044

116045

116046

116047

116048

116049

116050

116051

116052

116053

116054

116055

116056

116057

116058

116059

116060

116061

116062

116063

116064

116065

116066

116067

116068

116069

116070

116071

116072

116073

116074

116075

116076

116077

116078

116079

116080

116081

116082

116083

116084

116085

116086

116087

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

stty Utilities

number Set terminal baud rate to the number given, if possible. If the baud rate is set
to zero, the modem control lines shall no longer be asserted. This shall have
the effect of setting the input and output termios baud rate values as defined
in XBD Chapter 11 (on page 199).

ispeed number Set terminal input baud rate to the number given, if possible. If the input baud
rate is set to zero, the input baud rate shall be specified by the value of the
output baud rate. This shall have the effect of setting the input termios baud
rate value as defined in XBD Chapter 11 (on page 199).

ospeed number Set terminal output baud rate to the number given, if possible. If the output
baud rate is set to zero, the modem control lines shall no longer be asserted.
This shall have the effect of setting the output termios baud rate value as
defined in XBD Chapter 11 (on page 199).

hupcl (−hupcl) Stop asserting modem control lines (do not stop asserting modem control
lines) on last close. This shall have the effect of setting (not setting) HUPCL in
the termios c_cflag field, as defined in XBD Chapter 11 (on page 199).

hup (−hup) Equivalent to hupcl(−hupcl).

cstopb (−cstopb) Use two (one) stop bits per character. This shall have the effect of setting (not
setting) CSTOPB in the termios c_cflag field, as defined in XBD Chapter 11 (on
page 199).

cread (−cread) Enable (disable) the receiver. This shall have the effect of setting (not setting)
CREAD in the termios c_cflag field, as defined in XBD Chapter 11 (on page
199).

clocal (−clocal) Assume a line without (with) modem control. This shall have the effect of
setting (not setting) CLOCAL in the termios c_cflag field, as defined in XBD
Chapter 11 (on page 199).

It is unspecified whether stty shall report an error if an attempt to set a Control Mode fails.

Input Modes

ignbrk (−ignbrk) Ignore (do not ignore) break on input. This shall have the effect of setting (not
setting) IGNBRK in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

brkint (−brkint) Signal (do not signal) INTR on break. This shall have the effect of setting (not
setting) BRKINT in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

ignpar (−ignpar) Ignore (do not ignore) bytes with parity errors. This shall have the effect of
setting (not setting) IGNPAR in the termios c_iflag field, as defined in XBD
Chapter 11 (on page 199).

parmrk (−parmrk)
Mark (do not mark) parity errors. This shall have the effect of setting (not
setting) PARMRK in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

inpck (−inpck) Enable (disable) input parity checking. This shall have the effect of setting (not
setting) INPCK in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

3406 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116088

116089

116090

116091

116092

116093

116094

116095

116096

116097

116098

116099

116100

116101

116102

116103

116104

116105

116106

116107

116108

116109

116110

116111

116112

116113

116114

116115

116116

116117

116118

116119

116120

116121

116122

116123

116124

116125

116126

116127

116128

116129

116130

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities stty

istrip (−istrip) Strip (do not strip) input characters to seven bits. This shall have the effect of
setting (not setting) ISTRIP in the termios c_iflag field, as defined in XBD
Chapter 11 (on page 199).

inlcr (−inlcr) Map (do not map) NL to CR on input. This shall have the effect of setting (not
setting) INLCR in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

igncr (−igncr) Ignore (do not ignore) CR on input. This shall have the effect of setting (not
setting) IGNCR in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

icrnl (−icrnl) Map (do not map) CR to NL on input. This shall have the effect of setting (not
setting) ICRNL in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

ixon (−ixon) Enable (disable) START/STOP output control. Output from the system is
stopped when the system receives STOP and started when the system receives
START. This shall have the effect of setting (not setting) IXON in the termios
c_iflag field, as defined in XBD Chapter 11 (on page 199).

ixany (−ixany) Allow any character to restart output. This shall have the effect of setting (not
setting) IXANY in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

ixoff (−ixoff) Request that the system send (not send) STOP characters when the input
queue is nearly full and START characters to resume data transmission. This
shall have the effect of setting (not setting) IXOFF in the termios c_iflag field,
as defined in XBD Chapter 11 (on page 199).

Output Modes

opost (−opost) Post-process output (do not post-process output; ignore all other output
modes). This shall have the effect of setting (not setting) OPOST in the termios
c_oflag field, as defined in XBD Chapter 11 (on page 199).

XSI onlcr (−onlcr) Map (do not map) NL to CR-NL on output. This shall have the effect of setting
(not setting) ONLCR in the termios c_oflag field, as defined in XBD Chapter 11
(on page 199).

XSI ocrnl (−ocrnl) Map (do not map) CR to NL on output. This shall have the effect of setting
(not setting) OCRNL in the termios c_oflag field, as defined in XBD Chapter 11
(on page 199).

XSI onocr (−onocr) Do not (do) output CR at column zero. This shall have the effect of setting (not
setting) ONOCR in the termios c_oflag field, as defined in XBD Chapter 11 (on
page 199).

XSI onlret (−onlret) The terminal newline key performs (does not perform) the CR function. This
shall have the effect of setting (not setting) ONLRET in the termios c_oflag
field, as defined in XBD Chapter 11 (on page 199).

XSI ofill (−ofill) Use fill characters (use timing) for delays. This shall have the effect of setting
(not setting) OFILL in the termios c_oflag field, as defined in XBD Chapter 11
(on page 199).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3407

116131

116132

116133

116134

116135

116136

116137

116138

116139

116140

116141

116142

116143

116144

116145

116146

116147

116148

116149

116150

116151

116152

116153

116154

116155

116156

116157

116158

116159

116160

116161

116162

116163

116164

116165

116166

116167

116168

116169

116170

116171

116172

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

stty Utilities

XSI ofdel (−ofdel) Fill characters are DELs (NULs). This shall have the effect of setting (not
setting) OFDEL in the termios c_oflag field, as defined in XBD Chapter 11 (on
page 199).

XSI cr0 cr1 cr2 cr3 Select the style of delay for CRs. This shall have the effect of setting CRDLY to
CR0, CR1, CR2, or CR3, respectively, in the termios c_oflag field, as defined in
XBD Chapter 11 (on page 199).

XSI nl0 nl1 Select the style of delay for NL. This shall have the effect of setting NLDLY to
NL0 or NL1, respectively, in the termios c_oflag field, as defined in XBD
Chapter 11 (on page 199).

XSI tab0 tab1 tab2 tab3
Select the style of delay for horizontal tabs. This shall have the effect of setting
TABDLY to TAB0, TAB1, TAB2, or TAB3, respectively, in the termios c_oflag
field, as defined in XBD Chapter 11 (on page 199). Note that TAB3 has the
effect of expanding <tab> characters to <space> characters.

XSI tabs (−tabs) Synonym for tab0 (tab3).

XSI bs0 bs1 Select the style of delay for <backspace> characters. This shall have the effect
of setting BSDLY to BS0 or BS1, respectively, in the termios c_oflag field, as
defined in XBD Chapter 11 (on page 199).

XSI ff0 ff1 Select the style of delay for <form-feed> characters. This shall have the effect
of setting FFDLY to FF0 or FF1, respectively, in the termios c_oflag field, as
defined in XBD Chapter 11 (on page 199).

XSI vt0 vt1 Select the style of delay for <vertical-tab> characters. This shall have the effect
of setting VTDLY to VT0 or VT1, respectively, in the termios c_oflag field, as
defined in XBD Chapter 11 (on page 199).

Local Modes

isig (−isig) Enable (disable) the checking of characters against the special control
characters INTR, QUIT, and SUSP. This shall have the effect of setting (not
setting) ISIG in the termios c_lflag field, as defined in XBD Chapter 11 (on
page 199).

icanon (−icanon) Enable (disable) canonical input (ERASE and KILL processing). This shall
have the effect of setting (not setting) ICANON in the termios c_lflag field, as
defined in XBD Chapter 11 (on page 199).

iexten (−iexten) Enable (disable) any implementation-defined special control characters not
currently controlled by icanon, isig, ixon, or ixoff. This shall have the effect of
setting (not setting) IEXTEN in the termios c_lflag field, as defined in XBD
Chapter 11 (on page 199).

echo (−echo) Echo back (do not echo back) every character typed. This shall have the effect
of setting (not setting) ECHO in the termios c_lflag field, as defined in XBD
Chapter 11 (on page 199).

echoe (−echoe) The ERASE character visually erases (does not erase) the last character in the
current line from the display, if possible. This shall have the effect of setting
(not setting) ECHOE in the termios c_lflag field, as defined in XBD Chapter 11
(on page 199).

3408 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116173

116174

116175

116176

116177

116178

116179

116180

116181

116182

116183

116184

116185

116186

116187

116188

116189

116190

116191

116192

116193

116194

116195

116196

116197

116198

116199

116200

116201

116202

116203

116204

116205

116206

116207

116208

116209

116210

116211

116212

116213

116214

116215

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities stty

echok (−echok) Echo (do not echo) NL after KILL character. This shall have the effect of setting
(not setting) ECHOK in the termios c_lflag field, as defined in XBD Chapter 11
(on page 199).

echonl (−echonl) Echo (do not echo) NL, even if echo is disabled. This shall have the effect of
setting (not setting) ECHONL in the termios c_lflag field, as defined in XBD
Chapter 11 (on page 199).

noflsh (−noflsh) Disable (enable) flush after INTR, QUIT, SUSP. This shall have the effect of
setting (not setting) NOFLSH in the termios c_lflag field, as defined in XBD
Chapter 11 (on page 199).

tostop (−tostop) Send SIGTTOU for background output. This shall have the effect of setting
(not setting) TOSTOP in the termios c_lflag field, as defined in XBD Chapter 11
(on page 199).

Special Control Character Assignments

<control>-character string
Set <control>-character to string. If <control>-character is one of the character sequences in the
first column of the following table, the corresponding XBD Chapter 11 (on page 199) control
character from the second column shall be recognized. This has the effect of setting the
corresponding element of the termios c_cc array (see XBD Chapter 14 (on page 221),
<termios.h>).

Table 3-20 Control Character Names in stty

Control Character c_cc Subscript Description
eof VEOF EOF character
eol VEOL EOL character
erase VERASE ERASE character
intr VINTR INTR character
kill VKILL KILL character
quit VQUIT QUIT character
susp VSUSP SUSP character
start VSTART START character
stop VSTOP STOP character

If string is a single character, the control character shall be set to that character. If string is the
two-character sequence "^-" or the string undef , the control character shall be set to
_POSIX_VDISABLE , if it is in effect for the device; if _POSIX_VDISABLE is not in effect for
the device, it shall be treated as an error. In the POSIX locale, if string is a two-character
sequence beginning with <circumflex> ('^'), and the second character is one of those listed
in the "^c" column of the following table, the control character shall be set to the
corresponding character value in the Value column of the table.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3409

116216

116217

116218

116219

116220

116221

116222

116223

116224

116225

116226

116227

116228

116229

116230

116231

116232

116233

116234

116235

116236

116237

116238

116239

116240

116241

116242

116243

116244

116245

116246

116247

116248

116249

116250

116251

116252

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

stty Utilities

Table 3-21 Circumflex Control Characters in stty

ˆc Value ˆc Value ˆc Value
a, A <SOH> l, L <FF> w, W <ETB>
b, B <STX> m, M <CR> x, X <CAN>
c, C <ETX> n, N <SO> y, Y
d, D <EOT> o, O <SI> z, Z <SUB>
e, E <ENQ> p, P <DLE> [<ESC>
f, F <ACK> q, Q <DC1> \ <FS>
g, G <BEL> r, R <DC2>] <GS>
h, H <BS> s, S <DC3> ˆ <RS>
i, I <HT> t, T <DC4> _ <US>
j, J <LF> u, U <NAK> ?
k, K <VT> v, V <SYN>

min number
Set the value of MIN to number. MIN is used in non-canonical mode input processing
(−icanon).

time number
Set the value of TIME to number. TIME is used in non-canonical mode input processing
(−icanon).

Combination Modes

saved settings
Set the current terminal characteristics to the saved settings produced by the −g option.

evenp or parity
Enable parenb and cs7; disable parodd.

oddp
Enable parenb, cs7, and parodd.

−parity, −evenp, or −oddp
Disable parenb, and set cs8.

XSI raw (−raw or cooked)
Enable (disable) raw input and output. Raw mode shall be equivalent to setting:

stty cs8 erase ^- kill ^- intr ^- \
quit ^- eof ^- eol ^- -post -inpck

nl (−nl)
Disable (enable) icrnl. In addition, −nl unsets inlcr and igncr.

ek Reset ERASE and KILL characters back to system defaults.

sane
Reset all modes to some reasonable, unspecified, values.

3410 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116253

116254

116255

116256

116257

116258

116259

116260

116261

116262

116263

116264

116265

116266

116267

116268

116269

116270

116271

116272

116273

116274

116275

116276

116277

116278

116279

116280

116281

116282

116283

116284

116285

116286

116287

116288

116289

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities stty

Terminal Window Size

rows number
Set the number of rows in the terminal window size to the number given.

cols number
Set the number of columns in the terminal window size to the number given.

The terminal window size shall be updated as if the stty utility calls tcgetwinsize() to populate a
winsize structure, updates one or both of the ws_row and ws_col members according to the rows
and cols numbers specified, and then calls tcsetwinsize() with the updated structure (see XSH
tcgetwinsize() and tcsetwinsize()).

Informational Queries

size
Write the current terminal window size to standard output.

STDIN
Although no input is read from standard input, standard input shall be used to get the current
terminal I/O characteristics and to set new terminal I/O characteristics.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of stty:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE This variable determines the locale for the interpretation of sequences of bytes of
text data as characters (for example, single-byte as opposed to multi-byte
characters in arguments) and which characters are in the class print.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If operands are specified and they do not include any Informational Queries, no output shall be
produced.

If the size operand is specified, stty shall write to standard output the terminal window size as
follows:

"%1dΔ%1d\n", <rows>, <columns>

where <rows> and <columns> are the number of rows and columns in the terminal window size,
respectively.

If the −g option is specified, stty shall write to standard output the current settings in a form that

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3411

116290

116291

116292

116293

116294

116295

116296

116297

116298

116299

116300

116301

116302

116303

116304

116305

116306

116307

116308

116309

116310

116311

116312

116313

116314

116315

116316

116317

116318

116319

116320

116321

116322

116323

116324

116325

116326

116327

116328

116329

116330

116331

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

stty Utilities

can be used as arguments to another instance of stty on the same system.

If the −a option is specified, all of the information as described in the OPERANDS section shall
be written to standard output. Unless otherwise specified, this information shall be written as
<space>-separated tokens in an unspecified format, on one or more lines, with an unspecified
number of tokens per line. Additional information may be written.

If no options or operands are specified, an unspecified subset of the information written for the
−a option shall be written.

If speed information is written as part of the default output, or if the −a option is specified and if
the terminal input speed and output speed are the same, the speed information shall be written
as follows:

"speed %d baud;", <speed>

Otherwise, speeds shall be written as:

"ispeed %d baud; ospeed %d baud;", <ispeed>, <ospeed>

In locales other than the POSIX locale, the word baud may be changed to something more
appropriate in those locales.

If control characters are written as part of the default output, or if the −a option is specified,
control characters shall be written as:

"%s = %s;", <control-character name>, <value>

where <value> is either the character, or some visual representation of the character if it is non-
printable, or the string "<undef>" if the character is disabled.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The −g flag is designed to facilitate the saving and restoring of terminal state from the shell level.
For example, a program may:

saveterm=$(stty -g) # save terminal state
restoresize=$(

printf "stty rows %d cols %d" $(stty size)
) # save terminal size
stty new settings # set new state
...
[-n "$saveterm"] && stty "$saveterm" # restore terminal state

3412 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116332

116333

116334

116335

116336

116337

116338

116339

116340

116341

116342

116343

116344

116345

116346

116347

116348

116349

116350

116351

116352

116353

116354

116355

116356

116357

116358

116359

116360

116361

116362

116363

116364

116365

116366

116367

116368

116369

116370

116371

116372

116373

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities stty

eval "$restoresize" # restore terminal size

Since the format is unspecified, the saved value is not portable across systems.

Since the −a format is so loosely specified, scripts that save and restore terminal settings should
use the −g option.

EXAMPLES
None.

RATIONALE
The original stty description was taken directly from System V and reflected the System V
terminal driver termio. It has been modified to correspond to the terminal driver termios.

Output modes are specified only for XSI-conformant systems. All implementations are expected
to provide stty operands corresponding to all of the output modes they support.

The stty utility is primarily used to tailor the user interface of the terminal, such as selecting the
preferred ERASE and KILL characters. As an application programming utility, stty can be used
within shell scripts to alter the terminal settings for the duration of the script.

The termios section states that individual disabling of control characters is possible through the
option _POSIX_VDISABLE. If enabled, two conventions currently exist for specifying this:
System V uses "^-", and BSD uses undef . Both are accepted by stty in this volume of
POSIX.1-2024. The other BSD convention of using the letter 'u' was rejected because it conflicts
with the actual letter 'u', which is an acceptable value for a control character.

Early proposals did not specify the mapping of "^c" to control characters because the control
characters were not specified in the POSIX locale character set description file requirements. The
control character set is now specified in XBD Chapter 3 (on page 31), so the historical mapping is
specified. Note that although the mapping corresponds to control-character key assignments on
many terminals that use the ISO/IEC 646: 1991 standard (or ASCII) character encodings, the
mapping specified here is to the control characters, not their keyboard encodings.

Since termios supports separate speeds for input and output, two new options were added to
specify each distinctly.

Some historical implementations use standard input to get and set terminal characteristics;
others use standard output. Since input from a login TTY is usually restricted to the owner while
output to a TTY is frequently open to anyone, using standard input provides fewer chances of
accidentally (or maliciously) altering the terminal settings of other users. Using standard input
also allows stty −a and stty −g output to be redirected for later use. Therefore, usage of standard
input is required by this volume of POSIX.1-2024.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472)

XBD Chapter 8 (on page 167), Chapter 11 (on page 199), Section 12.2 (on page 215), <termios.h>

CHANGE HISTORY
First released in Issue 2.

Issue 5
The description of tabs is clarified.

The FUTURE DIRECTIONS section is added.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3413

116374

116375

116376

116377

116378

116379

116380

116381

116382

116383

116384

116385

116386

116387

116388

116389

116390

116391

116392

116393

116394

116395

116396

116397

116398

116399

116400

116401

116402

116403

116404

116405

116406

116407

116408

116409

116410

116411

116412

116413

116414

116415

116416

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

stty Utilities

Issue 6
The LEGACY items iuclc (−iuclc), xcase (−xcase), olcuc (−olcuc), lcase (−lcase), and LCASE
(−LCASE) are removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/37 is applied, applying IEEE PASC
Interpretation 1003.2 #133, fixing an error in the OPERANDS section for the Combination Modes
nl (−nl).

Issue 7
Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality relating to the
IXANY symbol from the XSI option to the Base.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0189 [908] is applied.

Issue 8
Austin Group Defects 1053, 1532, and 1687 are applied, changing the −g option and adding the
rows number, cols number, and size operands.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1508 is applied, changing the EXIT STATUS section.

Austin Group Defect 1604 is applied, changing undef to "<undef>" in the STDOUT section, and
changing icanon to −icanon in the descriptions of min and time.

3414 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116417

116418

116419

116420

116421

116422

116423

116424

116425

116426

116427

116428

116429

116430

116431

116432

116433

116434

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tabs

NAME
tabs — set terminal tabs

SYNOPSIS
XSI tabs [-n|-a|-a2|-c|-c2|-c3|-f|-p|-s|-u] [-T type]

tabs [-T type] n[[sep[+]n]...]

DESCRIPTION
The tabs utility shall display a series of characters that first clears the hardware terminal tab

XSI settings and then initializes the tab stops at the specified positions and optionally adjusts the
margin.

The phrase ``tab-stop position N’’ shall be taken to mean that, from the start of a line of output,
tabbing to position N shall cause the next character output to be in the (N+1)th column position
on that line. The maximum number of tab stops allowed is terminal-dependent.

It need not be possible to implement tabs on certain terminals. If the terminal type obtained from
the TERM environment variable or −T option represents such a terminal, an appropriate
diagnostic message shall be written to standard error and tabs shall exit with a status greater
than zero.

OPTIONS
XSI The tabs utility shall conform to XBD Section 12.2 (on page 215), except for various extensions:

the options −a2, −c2, and −c3 are multi-character.

The following options shall be supported:

−n Specify repetitive tab stops separated by a uniform number of column positions, n,
where n is a single-digit decimal number. The default usage of tabs with no
arguments shall be equivalent to tabs −8. When −0 is used, the tab stops shall be
cleared and no new ones set.

XSI −a 1,10,16,36,72
Assembler, applicable to some mainframes.

XSI −a2 1,10,16,40,72
Assembler, applicable to some mainframes.

XSI −c 1,8,12,16,20,55
COBOL, normal format.

XSI −c2 1,6,10,14,49
COBOL, compact format (columns 1 to 6 omitted).

XSI −c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1 to 6 omitted), with more tabs than −c2.

XSI −f 1,7,11,15,19,23
FORTRAN

XSI −p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/1

XSI −s 1,10,55
SNOBOL

XSI −u 1,12,20,44
Assembler, applicable to some mainframes.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3415

116435

116436

116437

116438

116439

116440

116441

116442

116443

116444

116445

116446

116447

116448

116449

116450

116451

116452

116453

116454

116455

116456

116457

116458

116459

116460

116461

116462

116463

116464

116465

116466

116467

116468

116469

116470

116471

116472

116473

116474

116475

116476

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tabs Utilities

−T type Indicate the type of terminal. If this option is not supplied and the TERM variable
is unset or null, an unspecified default terminal type shall be used. The setting of
type shall take precedence over the value in TERM.

OPERANDS
The following operand shall be supported:

n[[sep[+]n]...] A single command line argument that consists of one or more tab-stop values (n)
separated by a separator character (sep) which is either a <comma> or a <blank>
character. The application shall ensure that the tab-stop values are positive decimal
integers in strictly ascending order. If any tab-stop value (except the first one) is
preceded by a <plus-sign>, it is taken as an increment to be added to the previous
value. For example, the tab lists 1,10,20,30 and "1 10 +10 +10" are considered
to be identical.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tabs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TERM Determine the terminal type. If this variable is unset or null, and if the −T option is
not specified, an unspecified default terminal type shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If standard output is a terminal, the appropriate sequence to clear and set the tab stops may be
written to standard output in an unspecified format. If standard output is not a terminal,
undefined results occur.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

3416 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116477

116478

116479

116480

116481

116482

116483

116484

116485

116486

116487

116488

116489

116490

116491

116492

116493

116494

116495

116496

116497

116498

116499

116500

116501

116502

116503

116504

116505

116506

116507

116508

116509

116510

116511

116512

116513

116514

116515

116516

116517

116518

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tabs

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility makes use of the terminal’s hardware tabs and the stty tabs option.

This utility is not recommended for application use.

Some integrated display units might not have escape sequences to set tab stops, but may be set
by internal system calls. On these terminals, tabs works if standard output is directed to the
terminal; if output is directed to another file, however, tabs fails.

EXAMPLES
None.

RATIONALE
Consideration was given to having the tput utility handle all of the functions described in tabs.
However, the separate tabs utility was retained because it seems more intuitive to use a
command named tabs than tput with a new option. The tput utility does not support setting or
clearing tabs, and no known historical version of tabs supports the capability of setting arbitrary
tab stops.

The System V tabs interface is very complex; the version in this volume of POSIX.1-2024 has a
reduced feature list, but many of the features omitted were restored as part of the XSI option
even though the supported languages and coding styles are primarily historical.

There was considerable sentiment for specifying only a means of resetting the tabs back to a
known state—presumably the ``standard’’ of tabs every eight positions. The following features
were omitted:

• Setting tab stops via the first line in a file, using − −file. Since even the SVID has no
complete explanation of this feature, it is doubtful that it is in widespread use.

In an early proposal, a −t tablist option was added for consistency with expand; this was later
removed when inconsistencies with the historical list of tabs were identified.

Consideration was given to adding a −p option that would output the current tab settings so
that they could be saved and then later restored. This was not accepted because querying the tab
stops of the terminal is not a capability in historical terminfo or termcap facilities and might not be
supported on a wide range of terminals.

FUTURE DIRECTIONS
None.

SEE ALSO
expand , stty , tput , unexpand

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3417

116519

116520

116521

116522

116523

116524

116525

116526

116527

116528

116529

116530

116531

116532

116533

116534

116535

116536

116537

116538

116539

116540

116541

116542

116543

116544

116545

116546

116547

116548

116549

116550

116551

116552

116553

116554

116555

116556

116557

116558

116559

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tabs Utilities

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
The tabs utility is removed from the User Portability Utilities option. User Portability Utilities is
now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The SYNOPSIS and OPERANDS sections are updated.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3418 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116560

116561

116562

116563

116564

116565

116566

116567

116568

116569

116570

116571

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tail

NAME
tail — copy the last part of a file

SYNOPSIS
tail [-f] [-c number|-n number] [file]

tail -r [-n number] [file]

DESCRIPTION
The tail utility shall copy its input file to the standard output beginning at a designated place.

Copying shall begin at the point in the file indicated by the −c number or −n number options. The
option-argument number shall be counted in units of lines or bytes, according to the options −n
and −c. Both line and byte counts start from 1.

Tails relative to the end of the file may be saved in an internal buffer, and thus may be limited in
length. Such a buffer, if any, shall be no smaller than {LINE_MAX}*10 bytes.

OPTIONS
The tail utility shall conform to XBD Section 12.2 (on page 215), except that '+' may be
recognized as an option delimiter as well as '−'.

The following options shall be supported:

−c number The application shall ensure that the number option-argument is a decimal integer,
optionally including a sign. The sign shall affect the location in the file, measured
in bytes, to begin the copying:

Sign Copying Starts
+ Relative to the beginning of the file.
− Relative to the end of the file.

none Relative to the end of the file.

The application shall ensure that if the sign of the number option-argument is '+',
the number option-argument is a non-zero decimal integer.

The origin for counting shall be 1; that is, −c +1 represents the first byte of the file,
−c −1 the last.

−f If the input file is a regular file or if the file operand specifies a FIFO, do not
terminate after the last line of the input file has been copied, but read and copy
further bytes from the input file when they become available. If no file operand is
specified and standard input is a pipe or FIFO, the −f option shall be ignored. If the
input file is not a FIFO, pipe, or regular file, it is unspecified whether or not the −f
option shall be ignored.

−n number If −r is not specified, this option shall be equivalent to −c number, except the
starting location in the file shall be measured in lines instead of bytes. The origin
for counting shall be 1; that is, −n +1 represents the first line of the file, −n −1 the
last.

If −r is specified, number shall specify the number of lines to read (in reverse) from
the end of the input file. The application shall ensure that number does not have a
sign.

−r Copy the lines in reverse order (last line first). If −n is specified, that many lines of
the file, starting with the last line, shall be copied. If −n is not specified, every line
of the input file shall be copied.

If none of the −c, −n or −r options is specified, −n 10 shall be assumed.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3419

116572

116573

116574

116575

116576

116577

116578

116579

116580

116581

116582

116583

116584

116585

116586

116587

116588

116589

116590

116591

116592

116593

116594

116595

116596

116597

116598

116599

116600

116601

116602

116603

116604

116605

116606

116607

116608

116609

116610

116611

116612

116613

116614

116615

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tail Utilities

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operand is specified, the standard input shall
be used.

STDIN
The standard input shall be used if no file operand is specified, and shall be used if the file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
If the −c option is specified, the input file can contain arbitrary data; otherwise, the input file
shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tail:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The designated portion of the input file shall be written to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

3420 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116616

116617

116618

116619

116620

116621

116622

116623

116624

116625

116626

116627

116628

116629

116630

116631

116632

116633

116634

116635

116636

116637

116638

116639

116640

116641

116642

116643

116644

116645

116646

116647

116648

116649

116650

116651

116652

116653

116654

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tail

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The −c option should be used with caution when the input is a text file containing multi-byte
characters; it may produce output that does not start on a character boundary.

Although the input file to tail can be any type, the results might not be what would be expected
on some character special device files or on file types not described by the System Interfaces
volume of POSIX.1-2024. Since this volume of POSIX.1-2024 does not specify the block size used
when doing input, tail need not read all of the data from devices that only perform block
transfers.

When using tail to process pathnames, and the −c option is not specified, it is recommended that
LC_ALL, or at least LC_CTYPE and LC_COLLATE, are set to POSIX or C in the environment,
since pathnames can contain byte sequences that do not form valid characters in some locales, in
which case the utility’s behavior would be undefined. In the POSIX locale each byte is a valid
single-byte character, and therefore this problem is avoided.

EXAMPLES
The −f option can be used to monitor the growth of a file that is being written by some other
process. For example, the command:

tail -f fred

prints the last ten lines of the file fred, followed by any lines that are appended to fred between
the time tail is initiated and killed. As another example, the command:

tail -f -c 15 fred

prints the last 15 bytes of the file fred, followed by any bytes that are appended to fred between
the time tail is initiated and killed.

RATIONALE
This version of tail was created to allow conformance to the Utility Syntax Guidelines. The
historical −b option was omitted because of the general non-portability of block-sized units of
text. The −c option historically meant ``characters’’, but this volume of POSIX.1-2024 indicates
that it means ``bytes’’. This was selected to allow reasonable implementations when multi-byte
characters are possible; it was not named −b to avoid confusion with the historical −b.

The origin of counting both lines and bytes is 1, matching all widespread historical
implementations. Hence tail −n +0 is not conforming usage because it attempts to output line
zero; but note that tail −n 0 does conform, and outputs nothing.

Earlier versions of this standard allowed the following forms in the SYNOPSIS:

tail -[number][b|c|l][f] [file]
tail +[number][b|c|l][f] [file]

These forms are no longer specified by POSIX.1-2024, but may be present in some
implementations.

The restriction on the internal buffer is a compromise between the historical System V
implementation of 4 096 bytes and the BSD 32 768 bytes.

The −f option has been implemented as a loop that sleeps for 1 second and copies any bytes that
are available. This is sufficient, but if more efficient methods of determining when new data are
available are developed, implementations are encouraged to use them.

Historical documentation indicates that tail ignores the −f option if the input file is a pipe (pipe

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3421

116655

116656

116657

116658

116659

116660

116661

116662

116663

116664

116665

116666

116667

116668

116669

116670

116671

116672

116673

116674

116675

116676

116677

116678

116679

116680

116681

116682

116683

116684

116685

116686

116687

116688

116689

116690

116691

116692

116693

116694

116695

116696

116697

116698

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tail Utilities

and FIFO on systems that support FIFOs). On BSD-based systems, this has been true; on System
V-based systems, this was true when input was taken from standard input, but it did not ignore
the −f flag if a FIFO was named as the file operand. Since the −f option is not useful on pipes and
all historical implementations ignore −f if no file operand is specified and standard input is a
pipe, this volume of POSIX.1-2024 requires this behavior. However, since the −f option is useful
on a FIFO, this volume of POSIX.1-2024 also requires that if a FIFO is named, the −f option shall
not be ignored. Earlier versions of this standard did not state any requirement for the case where
no file operand is specified and standard input is a FIFO. The standard has been updated to
reflect current practice which is to treat this case the same as a pipe on standard input. Although
historical behavior does not ignore the −f option for other file types, this is unspecified so that
implementations are allowed to ignore the −f option if it is known that the file cannot be
extended.

The functionality made available by tail −r has been historically provided on some systems by a
separate utility (tac), although tac traditionally lacked support for −n to limit the output. While
both tail -n$n | tac and tac | head -n$n can be used to output a fixed length of
reversed line output, the standard developers decided that it was preferable to have a single
utility tail -r -n$n for the same purpose. Furthermore, in deciding whether to standardize
tac rather than tail −r, it was determined that more implementations that have achieved POSIX
certification had already implemented tail −r as an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
head

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent SYNOPSIS lines and associated text are removed.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that '+' may be recognized
as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied.

Austin Group Interpretation 1003.1-2001 #100 is applied, adding the requirement on applications
that if the sign of the option-argument number is '+', the number option-argument is a non-zero
decimal integer.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-114 is applied, updating the OPTIONS section (the −f option).

SD5-XCU-ERN-149 is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0190 [663] is applied.

Issue 8
Austin Group Defect 877 is applied, adding the −r option.

3422 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116699

116700

116701

116702

116703

116704

116705

116706

116707

116708

116709

116710

116711

116712

116713

116714

116715

116716

116717

116718

116719

116720

116721

116722

116723

116724

116725

116726

116727

116728

116729

116730

116731

116732

116733

116734

116735

116736

116737

116738

116739

116740

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tail

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3423

116741

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

talk Utilities

NAME
talk — talk to another user

SYNOPSIS
UP talk address [terminal]

DESCRIPTION
The talk utility is a two-way, screen-oriented communication program.

When first invoked, talk shall send a message similar to:

Message from <unspecified string>
talk: connection requested by your_address
talk: respond with: talk your_address

to the specified address. At this point, the recipient of the message can reply by typing:

talk your_address

Once communication is established, the two parties can type simultaneously, with their output
displayed in separate regions of the screen. Characters shall be processed as follows:

• Typing the <alert> character shall alert the recipient’s terminal.

• Typing <control>-L shall cause the sender’s screen regions to be refreshed.

• Typing the erase and kill characters shall affect the sender’s terminal in the manner
described by the termios interface in XBD Chapter 11 (on page 199).

• Typing the interrupt or end-of-file characters shall terminate the local talk utility. Once the
talk session has been terminated on one side, the other side of the talk session shall be
notified that the talk session has been terminated and shall be able to do nothing except
exit.

• Typing characters from LC_CTYPE classifications print or space shall cause those
characters to be sent to the recipient’s terminal.

• When and only when the stty iexten local mode is enabled, the existence and processing of
additional special control characters and multi-byte or single-byte functions shall be
implementation-defined.

• Typing other non-printable characters shall cause implementation-defined sequences of
printable characters to be sent to the recipient’s terminal.

Permission to be a recipient of a talk message can be denied or granted by use of the mesg utility.
However, a user ’s privilege may further constrain the domain of accessibility of other users’
terminals. The talk utility shall fail when the user lacks appropriate privileges to perform the
requested action.

Certain block-mode terminals do not have all the capabilities necessary to support the
simultaneous exchange of messages required for talk. When this type of exchange cannot be
supported on such terminals, the implementation may support an exchange with reduced levels
of simultaneous interaction or it may report an error describing the terminal-related deficiency.

OPTIONS
None.

3424 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116742

116743

116744

116745

116746

116747

116748

116749

116750

116751

116752

116753

116754

116755

116756

116757

116758

116759

116760

116761

116762

116763

116764

116765

116766

116767

116768

116769

116770

116771

116772

116773

116774

116775

116776

116777

116778

116779

116780

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities talk

OPERANDS
The following operands shall be supported:

address The recipient of the talk session. One form of address is the <user name>, as returned
by the who utility. Other address formats and how they are handled are
unspecified.

terminal If the recipient is logged in more than once, the terminal argument can be used to
indicate the appropriate terminal name. If terminal is not specified, the talk message
shall be displayed on one or more accessible terminals in use by the recipient. The
format of terminal shall be the same as that returned by the who utility.

STDIN
Characters read from standard input shall be copied to the recipient’s terminal in an unspecified
manner. If standard input is not a terminal, talk shall write a diagnostic message and exit with a
non-zero status.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of talk:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files). If the recipient’s locale does not use an LC_CTYPE
equivalent to the sender’s, the results are undefined.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TERM Determine the name of the invoker’s terminal type. If this variable is unset or null,
an unspecified default terminal type shall be used.

ASYNCHRONOUS EVENTS
When the talk utility receives a SIGINT signal, the utility shall terminate and exit with a zero
status. It shall take the standard action for all other signals.

STDOUT
If standard output is a terminal, characters copied from the recipient’s standard input may be
written to standard output. Standard output also may be used for diagnostic messages. If
standard output is not a terminal, talk shall exit with a non-zero status.

STDERR
None.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3425

116781

116782

116783

116784

116785

116786

116787

116788

116789

116790

116791

116792

116793

116794

116795

116796

116797

116798

116799

116800

116801

116802

116803

116804

116805

116806

116807

116808

116809

116810

116811

116812

116813

116814

116815

116816

116817

116818

116819

116820

116821

116822

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

talk Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred or talk was invoked on a terminal incapable of supporting it.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Because the handling of non-printable, non-<space> characters is tied to the stty description of
iexten, implementation extensions within the terminal driver can be accessed. For example,
some implementations provide line editing functions with certain control character sequences.

EXAMPLES
None.

RATIONALE
The write utility was included in this volume of POSIX.1-2024 since it can be implemented on all
terminal types. The talk utility, which cannot be implemented on certain terminals, was
considered to be a ``better ’’ communications interface. Both of these programs are in widespread
use on historical implementations. Therefore, both utilities have been specified.

All references to networking abilities (talking to a user on another system) were removed as
being outside the scope of this volume of POSIX.1-2024.

Historical BSD and System V versions of talk terminate both of the conversations when either
user breaks out of the session. This can lead to adverse consequences if a user unwittingly
continues to enter text that is interpreted by the shell when the other terminates the session.
Therefore, the version of talk specified by this volume of POSIX.1-2024 requires both users to
terminate their end of the session explicitly.

Only messages sent to the terminal of the invoking user can be internationalized in any way:

• The original ``Message from <unspecified string> . . .’’ message sent to the terminal of the
recipient cannot be internationalized because the environment of the recipient is as yet
inaccessible to the talk utility. The environment of the invoking party is irrelevant.

• Subsequent communication between the two parties cannot be internationalized because
the two parties may specify different languages in their environment (and non-portable
characters cannot be mapped from one language to another).

• Neither party can be required to communicate in a language other than C and/or the one
specified by their environment because unavailable terminal hardware support (for
example, fonts) may be required.

The text in the STDOUT section reflects the usage of the verb ``display’’ in this section; some talk
implementations actually use standard output to write to the terminal, but this volume of
POSIX.1-2024 does not require that to be the case.

The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
require that they all use or accept the same format.

3426 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116823

116824

116825

116826

116827

116828

116829

116830

116831

116832

116833

116834

116835

116836

116837

116838

116839

116840

116841

116842

116843

116844

116845

116846

116847

116848

116849

116850

116851

116852

116853

116854

116855

116856

116857

116858

116859

116860

116861

116862

116863

116864

116865

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities talk

The handling of non-printable characters is partially implementation-defined because the details
of mapping them to printable sequences is not needed by the user. Historical implementations,
for security reasons, disallow the transmission of non-printable characters that may send
commands to the other terminal.

FUTURE DIRECTIONS
None.

SEE ALSO
mesg , stty , who , write

XBD Chapter 8 (on page 167), Chapter 11 (on page 199)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3427

116866

116867

116868

116869

116870

116871

116872

116873

116874

116875

116876

116877

116878

116879

116880

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tee Utilities

NAME
tee — duplicate standard input

SYNOPSIS
tee [-ai] [file...]

DESCRIPTION
The tee utility shall copy standard input to standard output, making a copy in zero or more files.
The tee utility shall not buffer output.

If the −a option is not specified, output files shall be written (see Section 1.1.1.4, on page 2454).

OPTIONS
The tee utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Append the output to the files.

−i Ignore the SIGINT signal.

OPERANDS
The following operands shall be supported:

file A pathname of an output file. If a file operand is '−', it shall refer to a file named
−; implementations shall not treat it as meaning standard output. Processing of at
least 13 file operands shall be supported.

STDIN
The standard input can be of any type.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tee:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default, except that if the −i option was specified, SIGINT shall be ignored.

STDOUT
The standard output shall be a copy of the standard input.

3428 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116881

116882

116883

116884

116885

116886

116887

116888

116889

116890

116891

116892

116893

116894

116895

116896

116897

116898

116899

116900

116901

116902

116903

116904

116905

116906

116907

116908

116909

116910

116911

116912

116913

116914

116915

116916

116917

116918

116919

116920

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tee

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
If any file operands are specified, the standard input shall be copied to each named file.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The standard input was successfully copied to all output files.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If a write to any successfully opened file operand fails, writes to other successfully opened file
operands and standard output shall continue, but the exit status shall be non-zero. Otherwise,
the default actions specified in Section 1.4 (on page 2462) apply.

APPLICATION USAGE
The tee utility is usually used in a pipeline, to make a copy of the output of some utility.

The file operand is technically optional, but tee is no more useful than cat when none is specified.

EXAMPLES
Save an unsorted intermediate form of the data in a pipeline:

... | tee unsorted | sort > sorted

RATIONALE
The buffering requirement means that tee is not allowed to use ISO C standard fully buffered or
line-buffered writes. It does not mean that tee has to do 1-byte reads followed by 1-byte writes.

It should be noted that early versions of BSD ignore any invalid options and accept a single '−'
as an alternative to −i. They also print a message if unable to open a file:

"tee: cannot access %s\n", <pathname>

Historical implementations ignore write errors. This is explicitly not permitted by this volume of
POSIX.1-2024.

Some historical implementations use O_APPEND when providing append mode; others use the
lseek() function to seek to the end-of-file after opening the file without O_APPEND. This volume
of POSIX.1-2024 requires functionality equivalent to using O_APPEND; see Section 1.1.1.4 (on
page 2454).

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
Chapter 1 (on page 2453), cat

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH lseek()

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3429

116921

116922

116923

116924

116925

116926

116927

116928

116929

116930

116931

116932

116933

116934

116935

116936

116937

116938

116939

116940

116941

116942

116943

116944

116945

116946

116947

116948

116949

116950

116951

116952

116953

116954

116955

116956

116957

116958

116959

116960

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tee Utilities

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE PASC Interpretation 1003.2 #168 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1494 is applied, inserting a missing closing parenthesis.

3430 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116961

116962

116963

116964

116965

116966

116967

116968

116969

116970

116971

116972

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities test

NAME
test — evaluate expression

SYNOPSIS
test [expression]

[[expression]]

DESCRIPTION
The test utility shall evaluate the expression and indicate the result of the evaluation by its exit
status. An exit status of zero indicates that the expression evaluated as true and an exit status of
1 indicates that the expression evaluated as false.

In the second form of the utility, where the utility name used is [rather than test, the application
shall ensure that the closing square bracket is a separate argument. The test and [utilities may be
implemented as a single linked utility which examines the basename of the zeroth command
line argument to determine whether to behave as the test or [variant. Applications using the exec
family of functions to execute these utilities shall ensure that the argument passed in arg0 or
argv[0] is '[' when executing the [utility and has a basename of "test" when executing the
test utility.

OPTIONS
The test utility shall not recognize the "--" argument in the manner specified by Guideline 10 in
XBD Section 12.2 (on page 215). In addition, when the utility name used is [the utility does not
conform to Guidelines 1 and 2.

No options shall be supported.

OPERANDS
The application shall ensure that all operators and elements of primaries are presented as
separate arguments to the test utility.

The following primaries can be used to construct expression:

−b pathname Tr ue if pathname resolves to an existing directory entry for a block special file. False
if pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a block special file.

−c pathname Tr ue if pathname resolves to an existing directory entry for a character special file.
False if pathname cannot be resolved, or if pathname resolves to an existing directory
entry for a file that is not a character special file.

−d pathname Tr ue if pathname resolves to an existing directory entry for a directory. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a directory.

−e pathname Tr ue if pathname resolves to an existing directory entry. False if pathname cannot be
resolved.

pathname1 −ef pathname2
Tr ue if pathname1 and pathname2 resolve to existing directory entries for the same
file; otherwise, false.

−f pathname Tr ue if pathname resolves to an existing directory entry for a regular file. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a regular file.

−g pathname Tr ue if pathname resolves to an existing directory entry for a file that has its set-
group-ID flag set. False if pathname cannot be resolved, or if pathname resolves to an
existing directory entry for a file that does not have its set-group-ID flag set.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3431

116973

116974

116975

116976

116977

116978

116979

116980

116981

116982

116983

116984

116985

116986

116987

116988

116989

116990

116991

116992

116993

116994

116995

116996

116997

116998

116999

117000

117001

117002

117003

117004

117005

117006

117007

117008

117009

117010

117011

117012

117013

117014

117015

117016

117017

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

test Utilities

−h pathname Tr ue if pathname resolves to an existing directory entry for a symbolic link. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a symbolic link. If the final component of pathname is a
symbolic link, that symbolic link is not followed.

−L pathname Tr ue if pathname resolves to an existing directory entry for a symbolic link. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a symbolic link. If the final component of pathname is a
symbolic link, that symbolic link is not followed.

−n string Tr ue if the length of string is non-zero; otherwise, false.

pathname1 −nt pathname2
Tr ue if pathname1 resolves to an existing file and pathname2 cannot be resolved, or if
both resolve to existing files and pathname1 is newer than pathname2 according to
their last data modification timestamps; otherwise, false.

pathname1 −ot pathname2
Tr ue if pathname2 resolves to an existing file and pathname1 cannot be resolved, or if
both resolve to existing files and pathname1 is older than pathname2 according to
their last data modification timestamps; otherwise, false.

−p pathname Tr ue if pathname resolves to an existing directory entry for a FIFO. False if pathname
cannot be resolved, or if pathname resolves to an existing directory entry for a file
that is not a FIFO.

−r pathname Tr ue if pathname resolves to an existing directory entry for a file for which
permission to read from the file is granted, as defined in Section 1.1.1.4 (on page
2454). False if pathname cannot be resolved, or if pathname resolves to an existing
directory entry for a file for which permission to read from the file is not granted.

−S pathname Tr ue if pathname resolves to an existing directory entry for a socket. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a socket.

−s pathname Tr ue if pathname resolves to an existing directory entry for a file that has a size
greater than zero. False if pathname cannot be resolved, or if pathname resolves to an
existing directory entry for a file that does not have a size greater than zero.

−t file_descriptor
Tr ue if file descriptor number file_descriptor is open and is associated with a
terminal. False if file_descriptor is not a valid file descriptor number, or if file
descriptor number file_descriptor is not open, or if it is open but is not associated
with a terminal.

−u pathname Tr ue if pathname resolves to an existing directory entry for a file that has its set-
user-ID flag set. False if pathname cannot be resolved, or if pathname resolves to an
existing directory entry for a file that does not have its set-user-ID flag set.

−w pathname Tr ue if pathname resolves to an existing directory entry for a file for which
permission to write to the file is granted, as defined in Section 1.1.1.4 (on page
2454). False if pathname cannot be resolved, or if pathname resolves to an existing
directory entry for a file for which permission to write to the file is not granted.

−x pathname Tr ue if pathname resolves to an existing directory entry for a file for which
permission to execute the file (or search it, if it is a directory) is granted, as defined
in Section 1.1.1.4 (on page 2454). False if pathname cannot be resolved, or if
pathname resolves to an existing directory entry for a file for which permission to

3432 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117018

117019

117020

117021

117022

117023

117024

117025

117026

117027

117028

117029

117030

117031

117032

117033

117034

117035

117036

117037

117038

117039

117040

117041

117042

117043

117044

117045

117046

117047

117048

117049

117050

117051

117052

117053

117054

117055

117056

117057

117058

117059

117060

117061

117062

117063

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities test

execute (or search) the file is not granted.

−z string Tr ue if the length of string string is zero; otherwise, false.

string Tr ue if the string string is not the null string; otherwise, false.

s1 = s2 Tr ue if the strings s1 and s2 are identical; otherwise, false.

s1 != s2 Tr ue if the strings s1 and s2 are not identical; otherwise, false.

s1 > s2 Tr ue if s1 collates after s2 in the current locale; otherwise, false.

s1 < s2 Tr ue if s1 collates before s2 in the current locale; otherwise, false.

n1 −eq n2 Tr ue if the integers n1 and n2 are algebraically equal; otherwise, false.

n1 −ne n2 Tr ue if the integers n1 and n2 are not algebraically equal; otherwise, false.

n1 −gt n2 Tr ue if the integer n1 is algebraically greater than the integer n2; otherwise, false.

n1 −ge n2 Tr ue if the integer n1 is algebraically greater than or equal to the integer n2;
otherwise, false.

n1 −lt n2 Tr ue if the integer n1 is algebraically less than the integer n2; otherwise, false.

n1 −le n2 Tr ue if the integer n1 is algebraically less than or equal to the integer n2; otherwise,
false.

With the exception of the −h pathname and −L pathname primaries, if a pathname, pathname1, or
pathname2 argument is a symbolic link, test shall evaluate the expression by resolving the
symbolic link and using the file referenced by the link.

These primaries can be combined with the following operator:

! expression Tr ue if expression is false. False if expression is true.

The primaries with two elements of the form:

-primary_operator primary_operand

are known as unary primaries. The primaries with three elements in either of the two forms:

primary_operand -primary_operator primary_operand

primary_operand primary_operator primary_operand

are known as binary primaries. Additional implementation-defined operators and
primary_operators may be provided by implementations. They shall be of the form −operator
where the first character of operator is not a digit.

The algorithm for determining the precedence of the operators and the return value that shall be
generated is based on the number of arguments presented to test. (However, when using the
"[...]" form, the <right-square-bracket> final argument shall not be counted in this
algorithm.)

In the following list, $1, $2, $3, and $4 represent the arguments presented to test:

0 arguments: Exit false (1).

1 argument: Exit true (0) if $1 is not null; otherwise, exit false.

2 arguments: • If $1 is '!', exit true if $2 is null, false if $2 is not null.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3433

117064

117065

117066

117067

117068

117069

117070

117071

117072

117073

117074

117075

117076

117077

117078

117079

117080

117081

117082

117083

117084

117085

117086

117087

117088

117089

117090

117091

117092

117093

117094

117095

117096

117097

117098

117099

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

test Utilities

• If $1 is a unary primary, exit true if the unary test is true, false if the
unary test is false.

• Otherwise, produce unspecified results.

3 arguments: • If $2 is a binary primary, perform the binary test of $1 and $3.

• If $1 is '!', negate the two-argument test of $2 and $3.

• Otherwise, produce unspecified results.

4 arguments: • If $1 is '!', negate the three-argument test of $2, $3, and $4.

• Otherwise, the results are unspecified.

>4 arguments: The results are unspecified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of test:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of the > and < string comparison operators.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

3434 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117100

117101

117102

117103

117104

117105

117106

117107

117108

117109

117110

117111

117112

117113

117114

117115

117116

117117

117118

117119

117120

117121

117122

117123

117124

117125

117126

117127

117128

117129

117130

117131

117132

117133

117134

117135

117136

117137

117138

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities test

EXIT STATUS
The following exit values shall be returned:

0 expression evaluated to true.

1 expression evaluated to false or expression was missing.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since '>' and '<' are operators in the shell language, applications need to quote them when
passing them as arguments to test from a shell.

The −a and −o binary primaries and the '(' and ')' operators have been removed. (Many
expressions using them were ambiguously defined by the grammar depending on the specific
expressions being evaluated.) Scripts using these expressions should be converted to the forms
given below. Even though many implementations will continue to support these forms, scripts
should be extremely careful when dealing with user-supplied input that could be confused with
these and other primaries and operators. Unless the application developer knows all the cases
that produce input to the script, invocations like:

test "$1" -a "$2"

should be written as:

test "$1" && test "$2"

to avoid problems if a user supplied values such as $1 set to '!' and $2 set to the null string.
That is, replace:

test expr1 -a expr2

with:

test expr1 && test expr2

and replace:

test expr1 -o expr2

with:

test expr1 || test expr2

but note that, in test, −a was specified as having higher precedence than −o while "&&" and
"||" have equal precedence in the shell.

Parentheses or braces can be used in the shell command language to effect grouping.

The two commands:

test "$1"
test ! "$1"

could not be used reliably on some historical systems. Unexpected results would occur if such a
string expression were used and $1 expanded to '!', '(', or a known unary primary. Better
constructs are:

test -n "$1"
test -z "$1"

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3435

117139

117140

117141

117142

117143

117144

117145

117146

117147

117148

117149

117150

117151

117152

117153

117154

117155

117156

117157

117158

117159

117160

117161

117162

117163

117164

117165

117166

117167

117168

117169

117170

117171

117172

117173

117174

117175

117176

117177

117178

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

test Utilities

respectively.

Historical systems have also been unreliable given the common construct:

test "$response" = "expected string"

One of the following is a more reliable form:

test "X$response" = "Xexpected string"
test "expected string" = "$response"

Note that the second form assumes that expected string could not be confused with any unary
primary. If expected string starts with '−', '(', '!', or even '=', the first form should be used
instead. Using the preceding rules, any of the three comparison forms is reliable, given any
input. (However, note that the strings are quoted in all cases.)

Historically, the string comparison binary primaries, '=' and "!=", had a higher precedence
than any unary primary in the greater than 4 argument case, and consequently unexpected
results could occur if arguments were not properly prepared. For example, in:

test -d "$1" -o -d "$2"

If $1 evaluates to a possible directory name of '=', the first three arguments are considered a
string comparison, which causes a syntax error when the second −d is encountered. The
following form prevents this:

test -d "$1" || test -d "$2"

Also in the greater than 4 argument case:

test "$1" = "bat" -a "$2" = "ball"

syntax errors would occur if $1 evaluates to '(' or '!'. One of the following forms prevents
this; the second is preferred:

test "$1" = "bat" && test "$2" = "ball"
test "X$1" = "Xbat" && test "X$2" = "Xball"

Note that none of the following examples are permitted by the syntax described:

[-f file]
[-f file]
[-f file]
[-f file
test -f file]

In the first two cases, if a utility named [-f exists, that utility would be invoked, and not test. In
the remaining cases, the brackets are mismatched, and the behavior is unspecified. However:

test !]

does have a defined meaning, and must exit with status 1. Similarly:

test]

must exit with status 0.

EXAMPLES

1. Exit if there are not two or three arguments (two variations):

if [$# -ne 2] && [$# -ne 3]; then exit 1; fi
if [$# -lt 2] || [$# -gt 3]; then exit 1; fi

3436 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117179

117180

117181

117182

117183

117184

117185

117186

117187

117188

117189

117190

117191

117192

117193

117194

117195

117196

117197

117198

117199

117200

117201

117202

117203

117204

117205

117206

117207

117208

117209

117210

117211

117212

117213

117214

117215

117216

117217

117218

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities test

2. Perform a mkdir if a directory does not exist:

test ! -d tempdir && mkdir tempdir

3. Wait for a file to become non-readable:

while test -r thefile
do

sleep 30
done
echo '"thefile" is no longer readable'

4. Perform a command if the argument is one of three strings (two variations):

if ["$1" = "pear"] || ["$1" = "grape"] || ["$1" = "apple"]
then

command
fi

case "$1" in
pear|grape|apple) command ;;

esac

RATIONALE
The KornShell-derived conditional command (double bracket [[]]) was removed from the shell
command language description in an early proposal. Objections were raised that the real
problem is misuse of the test command ([), and putting it into the shell is the wrong way to fix
the problem. Instead, proper documentation and a new shell reserved word (!) are sufficient. A
later proposal to add [[]] in Issue 8 was also rejected because existing implementations of it were
found to be error-prone in a similar way to historical versions of test, and there was also too
much variation in behavior between shells that support it.

Tests that require multiple test operations can be done at the shell level using individual
invocations of the test command and shell logicals, rather than using the error-prone historical
−a and −o operators of test.

The BSD and System V versions of −f were not the same. The BSD definition was:

−f file Tr ue if file exists and is not a directory.

The SVID version (true if the file exists and is a regular file) was chosen for this volume of
POSIX.1-2024 because its use is consistent with the −b, −c, −d, and −p operands (file exists and is
a specific file type).

The −e primary, possessing similar functionality to that provided by the C shell, was added
because it provides the only way for a shell script to find out if a file exists without trying to
open the file. Since implementations are allowed to add additional file types, a portable script
cannot use:

test -b foo || test -c foo || test -d foo || test -f foo || test -p foo

to find out if foo is an existing file. On historical BSD systems, the existence of a file could be
determined by:

test -f foo || test -d foo

but there was no easy way to determine that an existing file was a regular file. An early proposal
used the KornShell −a primary (with the same meaning), but this was changed to −e because
there were concerns about the high probability of humans confusing the −a primary with the
historical −a binary operator.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3437

117219

117220

117221

117222

117223

117224

117225

117226

117227

117228

117229

117230

117231

117232

117233

117234

117235

117236

117237

117238

117239

117240

117241

117242

117243

117244

117245

117246

117247

117248

117249

117250

117251

117252

117253

117254

117255

117256

117257

117258

117259

117260

117261

117262

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

test Utilities

The following options were not included in this volume of POSIX.1-2024, although they are
provided by some implementations. These operands should not be used by new
implementations for other purposes:

−k file Tr ue if file exists and its sticky bit is set.

−C file Tr ue if file is a contiguous file.

−V file Tr ue if file is a version file.

The following option was not included because it was undocumented in most implementations,
has been removed from some implementations (including System V), and the functionality is
provided by the shell (see Section 2.6.2 (on page 2485).

−l string The length of the string string.

The −b, −c, −g, −p, −u, and −x operands are derived from the SVID; historical BSD does not
provide them. The −k operand is derived from System V; historical BSD does not provide it.

On historical BSD systems, test −w directory always returned false because test tried to open the
directory for writing, which always fails.

Some additional primaries newly invented or from the KornShell appeared in an early proposal
as part of the conditional command ([[]]): s1 > s2, s1 < s2, f1 −nt f2, f1 −ot f2, and f1 −ef f2. They
were not carried forward into the test utility when the conditional command was removed from
the shell because they had not been included in the test utility built into historical
implementations of the sh utility. However, they were later added to this standard once support
for them became widespread.

The −t file_descriptor primary is shown with a mandatory argument because the grammar is
ambiguous if it can be omitted. Historical implementations have allowed it to be omitted,
providing a default of 1.

It is noted that '[' is not part of the portable filename character set; however, since it is required
to be encoded by a single byte, and is part of the portable character set, the name of this utility
forms a character string across all supported locales.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.1.1.4 (on page 2454), find

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The −h operand is added for symbolic links, and access permission requirements are clarified for
the −r, −w, and −x operands to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The −L and −S operands are added for symbolic links and sockets.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/38 is applied, adding XSI margin
marking and shading to a line in the OPERANDS section referring to the use of parentheses as

3438 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117263

117264

117265

117266

117267

117268

117269

117270

117271

117272

117273

117274

117275

117276

117277

117278

117279

117280

117281

117282

117283

117284

117285

117286

117287

117288

117289

117290

117291

117292

117293

117294

117295

117296

117297

117298

117299

117300

117301

117302

117303

117304

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities test

arguments to the test utility.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/30 is applied, rewording the existence
primaries for the test utility.

Issue 7
Austin Group Interpretation 1003.1-2001 #107 is applied.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0143 [291] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0191 [898], XCU/TC2-2008/0192
[730], and XCU/TC2-2008/0193 [898] are applied.

Issue 8
Austin Group Defect 375 is applied, adding the pathname1 −ef pathname2,
pathname1 −nt pathname2, pathname1 −ot pathname2, s1 > s2, and s1 < s2 primaries.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1330 is applied, removing the obsolescent (and optional) −a and −o binary
primaries, and '(' and ')' operators.

Austin Group Defect 1348 is applied, removing ``()’’ from ``the exec() family of functions’’.

Austin Group Defect 1373 is applied, clarifying that when the utility name used is [the utility
does not conform to Guidelines 1 and 2.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3439

117305

117306

117307

117308

117309

117310

117311

117312

117313

117314

117315

117316

117317

117318

117319

117320

117321

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

time Utilities

NAME
time — time a simple command

SYNOPSIS
time [-p] utility [argument...]

DESCRIPTION
The time utility shall invoke the utility named by the utility operand with arguments supplied as
the argument operands and write a message to standard error that lists timing statistics for the
utility. The message shall include the following information:

• The elapsed (real) time between invocation of utility and its termination.

• The User CPU time, equivalent to the sum of the tms_utime and tms_cutime fields returned
by the times() function defined in the System Interfaces volume of POSIX.1-2024 for the
process in which utility is executed.

• The System CPU time, equivalent to the sum of the tms_stime and tms_cstime fields
returned by the times() function for the process in which utility is executed.

The precision of the timing shall be no less than the granularity defined for the size of the clock
tick unit on the system, but the results shall be reported in terms of standard time units (for
example, 0.02 seconds, 00:00:00.02, 1m33.75s, 365.21 seconds), not numbers of clock ticks.

When time is used in any of the following circumstances, via a simple command for which the
word time is the command name (see Section 2.9.1.1, on page 2500), and none of the characters
in the word time is quoted, the results (including parsing of later words) are unspecified:

• The simple command for which the word time is the command name includes one or more
redirections (see Section 2.7, on page 2493) or is (directly) part of a pipeline (see Section
2.9.2, on page 2504).

• The next word that follows time would, if the word time were not present, be recognized
as a reserved word (see Section 2.4, on page 2478) or a control operator (see XBD Section
3.85, on page 44).

Since these limitations only apply when time is executed via a simple command for which the
word time is the command name and none of the characters in the word time is quoted, they
can be avoided by quoting all or part of the word time, by arranging for the command name not
to be time (for example, by having the command name be a word expansion), or by executing
time via another utility such as command or env.

The limitations on redirections and pipelines can also be overcome by embedding the simple
command within a compound command—most commonly a grouping command (see Section
2.9.4.1, on page 2508)—and applying the redirections or piping to the compound command
instead.

Note that in no circumstances where the results are specified is it possible to apply different
redirections to the time utility than are applied to the utility it invokes.

The following examples (where a and b are assumed to be the names of utilities found by
searching PA TH) show unspecified usages:

time a arg1 arg2 | b # part of a pipeline
a | time -p b # part of a pipeline
time a >/dev/null # output redirection
</dev/null time a # input redirection
time while anything... # reserved word after time
time (cmd) # control operator after time

3440 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117322

117323

117324

117325

117326

117327

117328

117329

117330

117331

117332

117333

117334

117335

117336

117337

117338

117339

117340

117341

117342

117343

117344

117345

117346

117347

117348

117349

117350

117351

117352

117353

117354

117355

117356

117357

117358

117359

117360

117361

117362

117363

117364

117365

117366

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities time

time; # control operator after time
time shift # special built-in utility
time -p cd / # intrinsic utility

The following examples have specified results and can be used as alternatives for the first four of
the above when the time utility as specified here is intended to be invoked:

{ time a arg1 arg2; } | b
t=time; a | $t -p b
command time a >/dev/null
</dev/null \time a

OPTIONS
The time utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−p Write the timing output to standard error in the format shown in the STDERR
section.

OPERANDS
The following operands shall be supported:

utility The name of a utility that is to be invoked. If the utility operand names a special
built-in utility (see Section 2.15, on page 2526), an intrinsic utility (see Section 1.7,
on page 2470), or a function (see Section 2.9.5, on page 2511), the results are
unspecified.

argument Any string to be supplied as an argument when invoking the utility named by the
utility operand.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of time:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic and informative messages written to standard error.

LC_NUMERIC
Determine the locale for numeric formatting.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3441

117367

117368

117369

117370

117371

117372

117373

117374

117375

117376

117377

117378

117379

117380

117381

117382

117383

117384

117385

117386

117387

117388

117389

117390

117391

117392

117393

117394

117395

117396

117397

117398

117399

117400

117401

117402

117403

117404

117405

117406

117407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

time Utilities

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the search path that shall be used to locate the utility to be invoked; see
XBD Chapter 8 (on page 167).

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
If the utility utility is invoked, the standard error shall be used to write the timing statistics and
may be used to write a diagnostic message if the utility terminates abnormally; otherwise, the
standard error shall be used to write diagnostic messages and may also be used to write the
timing statistics.

If −p is specified, the following format shall be used for the timing statistics in the POSIX locale:

"real %f\nuser %f\nsys %f\n", <real seconds>, <user seconds>,
<system seconds>

where each floating-point number shall be expressed in seconds. The precision used may be less
than the default six digits of %f, but shall be sufficiently precise to accommodate the size of the
clock tick on the system (for example, if there were 60 clock ticks per second, at least two digits
shall follow the radix character). The number of digits following the radix character shall be no
less than one, even if this always results in a trailing zero. The implementation may append
white space and additional information following the format shown here. The implementation
may also prepend a single empty line before the format shown here.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If the utility utility is invoked, the exit status of time shall be the exit status of utility; otherwise,
the time utility shall exit with one of the following values:

1-125 An error occurred in the time utility.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit
code 127 if a utility to be invoked cannot be found, so that applications can distinguish ``failure
to find a utility’’ from ``invoked utility exited with an error indication’’. The value 127 was
chosen because it is not commonly used for other meanings; most utilities use small values for
``normal error conditions’’ and the values above 128 can be confused with termination due to
receipt of a signal. The value 126 was chosen in a similar manner to indicate that the utility could
be found, but not invoked. Some scripts produce meaningful error messages differentiating the
126 and 127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice
that uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any

3442 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117408

117409

117410

117411

117412

117413

117414

117415

117416

117417

117418

117419

117420

117421

117422

117423

117424

117425

117426

117427

117428

117429

117430

117431

117432

117433

117434

117435

117436

117437

117438

117439

117440

117441

117442

117443

117444

117445

117446

117447

117448

117449

117450

117451

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities time

attempt to exec the utility fails for any other reason.

EXAMPLES
It is frequently desirable to apply time to pipelines or lists of commands. This can be done by
placing pipelines and command lists in a single file; this file can then be invoked as a utility, and
the time applies to everything in the file.

Alternatively, the following command can be used to apply time to a complex command:

time sh -c -- 'complex-command-line'

RATIONALE
When the time utility was originally proposed to be included in the ISO POSIX-2: 1993 standard,
questions were raised about its suitability for inclusion on the grounds that it was not useful for
conforming applications, specifically:

• The underlying CPU definitions from the System Interfaces volume of POSIX.1-2024 are
vague, so the numeric output could not be compared accurately between systems or even
between invocations.

• The creation of portable benchmark programs was outside the scope this volume of
POSIX.1-2024.

However, time does fit in the scope of user portability. Human judgement can be applied to the
analysis of the output, and it could be very useful in hands-on debugging of applications or in
providing subjective measures of system performance. Hence it has been included in this
volume of POSIX.1-2024.

The default output format has been left unspecified because historical implementations differ
greatly in their style of depicting this numeric output. The −p option was invented to provide
scripts with a common means of obtaining this information.

In the KornShell, time is a shell reserved word that can be used to time an entire pipeline, rather
than just a simple command. The POSIX definition has been worded to allow this
implementation. Consideration was given to invalidating this approach because of the historical
model from the C shell and System V shell. However, since the System V time utility historically
has not produced accurate results in pipeline timing (because the constituent processes are not
all owned by the same parent process, as allowed by POSIX), it did not seem worthwhile to
break historical KornShell usage.

The term utility is used, rather than command, to highlight the fact that shell compound
commands, pipelines, special built-ins, and so on, cannot be used directly. However, utility
includes user application programs and shell scripts, not just the standard utilities.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), sh

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH times()

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3443

117452

117453

117454

117455

117456

117457

117458

117459

117460

117461

117462

117463

117464

117465

117466

117467

117468

117469

117470

117471

117472

117473

117474

117475

117476

117477

117478

117479

117480

117481

117482

117483

117484

117485

117486

117487

117488

117489

117490

117491

117492

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

time Utilities

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
The time utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-115 is applied, updating the example in the DESCRIPTION.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0144 [266] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0194 [723] is applied.

Issue 8
Austin Group Defect 267 is applied, allowing time to be a reserved word.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1530 is applied, changing ``sh -c’’ to ``sh -c --’’.

Austin Group Defect 1586 is applied, adding the timeout utility.

Austin Group Defect 1594 is applied, changing the APPLICATION USAGE section.

3444 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117493

117494

117495

117496

117497

117498

117499

117500

117501

117502

117503

117504

117505

117506

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities timeout

NAME
timeout — execute a utility with a time limit

SYNOPSIS
timeout [-fp] [-k time] [-s signal_name] duration utility [argument...]

DESCRIPTION
The timeout utility shall execute the utility named by the utility operand, with arguments
supplied as the argument operands (if any), in a child process. If the value of the duration
operand is non-zero and the child process has not terminated after the specified time period,
timeout shall send the signal specified by the −s option, or the SIGTERM signal if −s is not given.

If the −f option is specified, the signal shall be sent only to the child process. Otherwise, it is
implementation defined which one of the following methods is used to signal additional
processes:

• The timeout utility ensures it is a process group leader before creating the child process
which executes the utility, in which case it shall send the signal to its process group.

• The timeout utility arranges for any descendants of the child process that are orphaned to
have their parent process changed to the timeout utility, in which case the signal shall be
sent to the child process and all of its descendants.

If the subsequent wait status of the child process shows that it was stopped by a signal, a
SIGCONT signal shall also be sent in the same manner as the first signal; otherwise, a SIGCONT
signal may be sent in the same manner.

If the −k option is specified, and the child process created to execute the utility still has not
terminated after the time period specified by the time option-argument has elapsed since the first
signal was sent, timeout shall send a SIGKILL signal in the same manner as the first signal. If
timeout receives a signal and propagates it to the child process (see ASYNCHRONOUS EVENTS
below), this shall be treated as the first signal.

OPTIONS
The timeout utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f Only time out the utility itself, not its descendants.

−k time Send a SIGKILL signal if the child process created to execute the utility has not
terminated after the time period specified by time has elapsed since the first signal
was sent. The value of time shall be interpreted as specified for the duration
operand (see OPERANDS below).

−p Always preserve (mimic) the wait status of the executed utility, even if the time
limit was reached.

−s signal_name
Specify the signal to send when the time limit is reached, using one of the symbolic
names defined in the <signal.h> header. Values of signal_name shall be recognized
in a case-independent fashion, without the SIG prefix. By default, SIGTERM shall
be sent.

OPERANDS
The following operands shall be supported:

duration The maximum amount of time to allow the utility to run, specified as a decimal
number with an optional decimal fraction and an optional suffix, which can be:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3445

117507

117508

117509

117510

117511

117512

117513

117514

117515

117516

117517

117518

117519

117520

117521

117522

117523

117524

117525

117526

117527

117528

117529

117530

117531

117532

117533

117534

117535

117536

117537

117538

117539

117540

117541

117542

117543

117544

117545

117546

117547

117548

117549

117550

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

timeout Utilities

s seconds

m minutes

h hours

d days

If a decimal fraction is present, the application shall ensure that it is separated from
the units by a <period>. If no suffix is present, the value shall specify seconds.

If the value is zero, timeout shall not enforce a time limit.

utility The name of a utility that is to be executed. If the utility operand names any of the
special built-in utilities in Section 2.15 (on page 2526), the results are undefined.

argument Any string to be supplied as an argument when executing the utility named by the
utility operand.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of timeout:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the search path that is used to locate the utility to be executed. See XBD
Section 8.3 (on page 174).

ASYNCHRONOUS EVENTS
The default behavior specified in Section 1.4 (on page 2462) shall apply, except that:

• The timeout utility shall ignore SIGTTIN and SIGTTOU signals.

• The timeout utility may alter the disposition of SIGALRM if the inherited disposition was
for it to be ignored.

• If the signal specified with the −s option, or any signal whose default action is to terminate
the process, is delivered to the timeout utility, then unless the signal is SIGKILL or
SIGSTOP, the timeout utility shall immediately send the same signal to the process or
processes to which it would send a signal when the time limit is reached. If the delivered
signal is SIGALRM, timeout may behave as if the time limit had been reached instead of
sending SIGALRM.

3446 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117551

117552

117553

117554

117555

117556

117557

117558

117559

117560

117561

117562

117563

117564

117565

117566

117567

117568

117569

117570

117571

117572

117573

117574

117575

117576

117577

117578

117579

117580

117581

117582

117583

117584

117585

117586

117587

117588

117589

117590

117591

117592

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities timeout

• If the −f option is not specified, then if timeout sends a signal to its process group, it shall
briefly change the disposition of that signal to ignored while it sends the signal, so that it
does not receive the signal itself.

With the single exception of the signal specified with the −s option, or SIGTERM if −s is not
used, all signal dispositions inherited by the utility specified by the utility operand shall be the
same as the disposition that timeout inherited.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If the −p option is not specified and the time limit was reached:

• If the −k option was not specified or the utility terminated before the time period specified
by the time option-argument elapsed since the first signal was sent, the exit status shall be
124.

• If the −k option was specified and the SIGKILL signal was sent, it is unspecified whether
the exit status is 124 or the behavior is as if the −p option was specified.

Otherwise, if the executed utility terminated by exiting, the exit status of timeout shall be that of
the utility; if the utility was terminated by a signal, timeout shall terminate itself with the same
signal while ensuring that a core image is not created.

If an error occurs, the following exit values shall be returned:

125 An error other than the two described below occurred.

126 The utility specified by utility was found but could not be executed.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Unlike the kill utility, the −s option of timeout is not required to accept the symbolic name 0 to
represent signal value zero.

When the value of duration is zero, timeout does not time out the utility, but it does still perform
signal propagation (including to descendants of the utility if −f is not specified).

Regardless of locale, the <period> character (the decimal-point character of the POSIX locale) is
the decimal-point character recognized in the duration operand and the time option-argument.

The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit
code 127 if a utility to be invoked cannot be found, so that applications can distinguish ``failure
to find a utility’’ from ``invoked utility exited with an error indication’’. The value 127 was
chosen because it is not commonly used for other meanings; most utilities use small values for
``normal error conditions’’ and the values above 128 can be confused with termination due to
receipt of a signal. The value 126 was chosen in a similar manner to indicate that the utility could

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3447

117593

117594

117595

117596

117597

117598

117599

117600

117601

117602

117603

117604

117605

117606

117607

117608

117609

117610

117611

117612

117613

117614

117615

117616

117617

117618

117619

117620

117621

117622

117623

117624

117625

117626

117627

117628

117629

117630

117631

117632

117633

117634

117635

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

timeout Utilities

be found, but not invoked. Some scripts produce meaningful error messages differentiating the
126 and 127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice
that uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any
attempt to exec the utility fails for any other reason. The timeout utility extends these special exit
codes to 125 and 124, with the meanings described in EXIT STATUS. A timeout exit status below
124 can only result from passing through the exit status of the executed utility.

EXAMPLES
None.

RATIONALE
Some timeout implementations make themselves a process group leader (when −f is not used) in
order to be able to send signals to descendants of the child process. However, using this method
means that any descendants which change their process group do not receive the signal. To
ensure all descendants receive the signal, some implementations instead make use of a feature
whereby descendants that are orphaned have their parent process changed to the timeout
utility—that is, timeout becomes their ``reaper ’’—together with the ability of a reaper to send a
signal to all of its descendants.

Some historical timeout implementations exited with status 128+signal_number when the child
process was terminated by a signal before the time limit was reached (or when −p was used).
This is reasonable when timeout is invoked from a shell which sets $? to 128+signal_number, but
not all shells do that. In particular, the KornShell sets $? to 256+signal_number and so an exit
status of 128+signal_number from timeout would be misleading. In order to avoid any possible
ambiguity, this standard requires that timeout mimics the wait status of the child process by
terminating itself with the same signal. When it does this it needs to ensure that it does not
create a core image, otherwise it could overwrite one created by the invoked utility.

The timeout utility ignores SIGTTIN and SIGTTOU so that if the utility it executes reads from or
writes to the controlling terminal and this generates a SIGTTIN or SIGTTOU for the process
group, timeout will not be stopped by the signal and can still time out the utility.

Some historical timeout implementations always set the disposition for SIGTTIN and SIGTTOU
in the child process to default, even if these signals were inherited as ignored. This could result
in processes being stopped unexpectedly. Likewise, they did not ensure that for signals they
caught, the disposition inherited by the executed utility was the same as the disposition that was
inherited by timeout. This meant that, for example, if timeout was used in a script that was run
with nohup, the utility executed by timeout would unexpectedly not be protected from SIGHUP.
This standard requires that all signal dispositions inherited by the utility specified by the utility
operand are the same as the disposition that timeout inherited, with the single exception of the
signal that timeout sends when the time limit is reached, which needs to be inherited as default
in order for the timeout to take effect (without resorting to SIGKILL if −k is specified).

Some historical timeout implementations only propagated a subset of the signals whose default
action is to terminate the process to the child process if one was delivered to the timeout utility.
Propagating these signals is beneficial, as otherwise termination of the timeout utility by a signal
results in the utility it executed being left running indefinitely (unless it also received the signal,
for example a terminal-generated SIGINT). There is no reason to select a subset of these signals
to be propagated, therefore this standard requires them all to be propagated (except SIGKILL,
which cannot). In the event that a user wants to prevent the utility being timed out, sending
timeout a SIGKILL can be used for this purpose.

3448 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117636

117637

117638

117639

117640

117641

117642

117643

117644

117645

117646

117647

117648

117649

117650

117651

117652

117653

117654

117655

117656

117657

117658

117659

117660

117661

117662

117663

117664

117665

117666

117667

117668

117669

117670

117671

117672

117673

117674

117675

117676

117677

117678

117679

117680

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities timeout

FUTURE DIRECTIONS
None.

SEE ALSO
kill

XBD Chapter 8 (on page 167), Section 12.2 (on page 215), <signal.h> (on page 346)

CHANGE HISTORY
First released in Issue 8.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3449

117681

117682

117683

117684

117685

117686

117687

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

touch Utilities

NAME
touch — change file access and modification times

SYNOPSIS
touch [-acm] [-r ref_file|-t time|-d date_time] file...

DESCRIPTION
The touch utility shall change the last data modification timestamps, the last data access
timestamps, or both.

The time used can be specified by the −t time option-argument, the corresponding time fields of
the file referenced by the −r ref_file option-argument, or the −d date_time option-argument, as
specified in the following sections. If none of these are specified, touch shall use the current time.

For each file operand, touch shall perform actions equivalent to the following functions defined
in the System Interfaces volume of POSIX.1-2024:

1. If file does not exist:

a. The creat() function is called with the following arguments:

— The file operand is used as the path argument.

— The value of the bitwise-inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP,
S_IWGRP, S_IROTH, and S_IWOTH is used as the mode argument.

b. The futimens() function is called with the following arguments:

— The file descriptor opened in step 1a.

— The access time and the modification time, set as described in the OPTIONS
section, are used as the first and second elements of the times array argument,
respectively.

2. If file exists, the utimensat() function is called with the following arguments:

a. The AT_FDCWD special value is used as the fd argument.

b. The file operand is used as the path argument.

c. The access time and the modification time, set as described in the OPTIONS
section, are used as the first and second elements of the times array argument,
respectively.

d. The flag argument is set to zero.

OPTIONS
The touch utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Change the access time of file. Do not change the modification time unless −m is
also specified.

−c Do not create a specified file if it does not exist. Do not write any diagnostic
messages concerning this condition.

−d date_time Use the specified date_time instead of the current time. The option-argument shall
be a string of the form:

YYYY-MM-DDThh:mm:SS[.frac][tz]

or:

3450 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117688

117689

117690

117691

117692

117693

117694

117695

117696

117697

117698

117699

117700

117701

117702

117703

117704

117705

117706

117707

117708

117709

117710

117711

117712

117713

117714

117715

117716

117717

117718

117719

117720

117721

117722

117723

117724

117725

117726

117727

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities touch

YYYY-MM-DDThh:mm:SS[,frac][tz]

where:

• YYYY are at least four decimal digits giving the year.

• MM, DD, hh, mm, and SS are as with −t time.

• T is the time designator, and can be replaced by a single <space>.

• [.frac] and [,frac] are either empty, or a <period> ('.') or a <comma>
(',') respectively, followed by one or more decimal digits, specifying a
fractional second.

• [tz] is either empty, signifying local time, or the letter 'Z', signifying UTC.
If [tz] is empty, the resulting time shall be affected by the value of the TZ
environment variable.

If the resulting time precedes the Epoch, the behavior is implementation-defined. If
the time cannot be represented as the file’s timestamp, touch shall exit immediately
with an error status.

−m Change the modification time of file. Do not change the access time unless −a is
also specified.

−r ref_file Use the corresponding time of the file named by the pathname ref_file instead of
the current time.

−t time Use the specified time instead of the current time. The option-argument shall be a
decimal number of the form:

[[CC]YY]MMDDhhmm[.SS]

where each two digits represents the following:

MM The month of the year [01,12].

DD The day of the month [01,31].

hh The hour of the day [00,23].

mm The minute of the hour [00,59].

CC The first two digits of the year (the century).

YY The second two digits of the year.

SS The second of the minute [00,60].

Both CC and YY shall be optional. If neither is given, the current year shall be
assumed. If YY is specified, but CC is not, CC shall be derived as follows:

If YY is: CC becomes:
[69,99] 19
[00,68] 20

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

The resulting time shall be affected by the value of the TZ environment variable. If
the resulting time value precedes the Epoch, the behavior is implementation-
defined. If the time is out of range for the file’s timestamp, touch shall exit

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3451

117728

117729

117730

117731

117732

117733

117734

117735

117736

117737

117738

117739

117740

117741

117742

117743

117744

117745

117746

117747

117748

117749

117750

117751

117752

117753

117754

117755

117756

117757

117758

117759

117760

117761

117762

117763

117764

117765

117766

117767

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

touch Utilities

immediately with an error status. The range of valid times past the Epoch is
implementation-defined, but it shall extend to at least the time 0 hours, 0 minutes,
0 seconds, January 1, 2038, Coordinated Universal Time. Some implementations
may not be able to represent dates beyond January 18, 2038, because they use
signed int as a time holder.

The range for SS is [00,60] rather than [00,59] because of leap seconds. If SS is 60,
and the resulting time, as affected by the TZ environment variable, does not refer
to a leap second, the resulting time shall be one second after a time where SS is 59.
If SS is not given a value, it is assumed to be zero.

If neither the −a nor −m options were specified, touch shall behave as if both the −a and −m
options were specified.

OPERANDS
The following operands shall be supported:

file A pathname of a file whose times shall be modified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of touch:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone to be used for interpreting the time option-argument. If TZ
is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

3452 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117768

117769

117770

117771

117772

117773

117774

117775

117776

117777

117778

117779

117780

117781

117782

117783

117784

117785

117786

117787

117788

117789

117790

117791

117792

117793

117794

117795

117796

117797

117798

117799

117800

117801

117802

117803

117804

117805

117806

117807

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities touch

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The interpretation of time is taken to be seconds since the Epoch (see XBD Section 4.19, on page
107). It should be noted that implementations conforming to the System Interfaces volume of
POSIX.1-2024 do not take leap seconds into account when computing seconds since the Epoch.
When SS=60 is used, the resulting time always refers to 1 plus seconds since the Epoch for a time
when SS=59.

Although the −t time option-argument specifies values in 1969, the access time and modification
time fields are defined in terms of seconds since the Epoch (00:00:00 on 1 January 1970 UTC).
Therefore, depending on the value of TZ when touch is run, there is never more than a few valid
hours in 1969 and there need not be any valid times in 1969.

If the T time designator is replaced by a <space> for the −d date_time option-argument, the
<space> must be quoted to prevent the shell from splitting the argument.

EXAMPLES
Create or update a file called dwc; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:30 local time:

touch -d 2007-11-12T10:15:30 dwc

Create or update a file called nick; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:30 UTC:

touch -d 2007-11-12T10:15:30Z nick

Create or update a file called gwc; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:30 local time with a fractional second
timestamp of .002 seconds:

touch -d 2007-11-12T10:15:30,002 gwc

Create or update a file called ajosey; the resulting file has both the last data modification and
last data access timestamps set to November 12, 2007 at 10:15:30 UTC with a fractional second
timestamp of .002 seconds:

touch -d "2007-11-12 10:15:30.002Z" ajosey

Create or update a file called cathy; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:00 local time:

touch -t 200711121015 cathy

Create or update a file called drepper; the resulting file has both the last data modification and
last data access timestamps set to November 12, 2007 at 10:15:30 local time:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3453

117808

117809

117810

117811

117812

117813

117814

117815

117816

117817

117818

117819

117820

117821

117822

117823

117824

117825

117826

117827

117828

117829

117830

117831

117832

117833

117834

117835

117836

117837

117838

117839

117840

117841

117842

117843

117844

117845

117846

117847

117848

117849

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

touch Utilities

touch -t 200711121015.30 drepper

Create or update a file called ebb9; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:30 local time:

touch -t 0711121015.30 ebb9

Create or update a file called eggert; the resulting file has the last data access timestamp set to
the corresponding time of the file named mark instead of the current time. If the file exists, the
last data modification time is not changed:

touch -a -r mark eggert

RATIONALE
The functionality of touch is described almost entirely through references to functions in the
System Interfaces volume of POSIX.1-2024. In this way, there is no duplication of effort required
for describing such side-effects as the relationship of user IDs to the user database, permissions,
and so on.

There are some significant differences between the touch utility in this volume of POSIX.1-2024
and those in System V and BSD systems. They are upwards-compatible for historical
applications from both implementations:

1. In System V, an ambiguity exists when a pathname that is a decimal number leads the
operands; it is treated as a time value. In BSD, no time value is allowed; files may only be
touched to the current time. The −t time construct solves these problems for future
conforming applications (note that the −t option is not historical practice).

2. The inclusion of the century digits, CC, is also new. Note that a ten-digit time value is
treated as if YY, and not CC, were specified. The caveat about the range of dates
following the Epoch was included as recognition that some implementations are not able
to represent dates beyond 18 January 2038 because they use signed int as a time holder.

The −r option was added because several comments requested this capability. This option was
named −f in an early proposal, but was changed because the −f option is used in the BSD
version of touch with a different meaning.

At least one historical implementation of touch incremented the exit code if −c was specified and
the file did not exist. This volume of POSIX.1-2024 requires exit status zero if no errors occur.

In previous version of the standard, if at least two operands are specified, and the first operand
is an eight or ten-digit decimal integer, the first operand was assumed to be a date_time operand.
This usage was removed in this version of the standard since it had been marked obsolescent
previously.

The −d date_time format is an ISO 8601-1: 2019 standard complete representation of date and time
extended format with an optional decimal point or <comma> followed by a string of digits
following the seconds portion to specify fractions of a second. It is not necessary to recognize
"[+/-]hh:mm" and "[+/-]hh" to specify timezones other than local time and UTC. The T
time designator in the ISO 8601-1: 2019 standard extended format may be replaced by <space>.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

3454 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117850

117851

117852

117853

117854

117855

117856

117857

117858

117859

117860

117861

117862

117863

117864

117865

117866

117867

117868

117869

117870

117871

117872

117873

117874

117875

117876

117877

117878

117879

117880

117881

117882

117883

117884

117885

117886

117887

117888

117889

117890

117891

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities touch

SEE ALSO
date

XBD Section 4.19 (on page 107), Chapter 8 (on page 167), Section 12.2 (on page 215), <sys/stat.h>

XSH creat(), futimens(), time()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent date_time operand is removed.

The Open Group Corrigendum U027/1 is applied. This extends the range of valid time past the
Epoch to at least the time 0 hours, 0 minutes, 0 seconds, January 1, 2038, Coordinated Universal
Time. This is a new requirement on POSIX implementations.

The range for seconds is changed from [00,61] to [00,60] to align with the ISO/IEC 9899: 1999
standard, and to allow for positive leap seconds.

Issue 7
Austin Group Interpretation 1003.1-2001 #118 is applied.

Austin Group Interpretation 1003.1-2001 #193 is applied, adding support for subsecond
timestamps.

SD5-XCU-ERN-45 is applied, adding a new paragraph to the RATIONALE.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-110 is applied, updating the OPTIONS section.

Changes are made related to support for finegrained timestamps.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0195 [474] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3455

117892

117893

117894

117895

117896

117897

117898

117899

117900

117901

117902

117903

117904

117905

117906

117907

117908

117909

117910

117911

117912

117913

117914

117915

117916

117917

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tput Utilities

NAME
tput — change terminal characteristics

SYNOPSIS
tput [-T type] operand...

DESCRIPTION
The tput utility shall display terminal-dependent information. The manner in which this
information is retrieved is unspecified. The information displayed shall clear the terminal
screen, initialize the user’s terminal, or reset the user’s terminal, depending on the operand
given. The exact consequences of displaying this information are unspecified.

OPTIONS
The tput utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−T type Indicate the type of terminal. If this option is not supplied and the TERM variable
is unset or null, an unspecified default terminal type shall be used. The setting of
type shall take precedence over the value in TERM.

OPERANDS
The following strings shall be supported as operands by the implementation in the POSIX locale:

clear Display the clear-screen sequence.

init Display the sequence that initializes the user’s terminal in an implementation-
defined manner.

reset Display the sequence that resets the user’s terminal in an implementation-defined
manner.

If a terminal does not support any of the operations described by these operands, this shall not
be considered an error condition.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tput:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3456 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117918

117919

117920

117921

117922

117923

117924

117925

117926

117927

117928

117929

117930

117931

117932

117933

117934

117935

117936

117937

117938

117939

117940

117941

117942

117943

117944

117945

117946

117947

117948

117949

117950

117951

117952

117953

117954

117955

117956

117957

117958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tput

XSI NLSPATH Determine the location of messages objects and message catalogs.

TERM Determine the terminal type. If this variable is unset or null, and if the −T option is
not specified, an unspecified default terminal type shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If standard output is a terminal device, it may be used for writing the appropriate sequence to
clear the screen or reset or initialize the terminal. If standard output is not a terminal device,
undefined results occur.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The requested string was written successfully.

1 Unspecified.

2 Usage error.

3 No information is available about the specified terminal type.

4 The specified operand is invalid.

>4 An error occurred.

CONSEQUENCES OF ERRORS
If one of the operands is not available for the terminal, tput continues processing the remaining
operands.

APPLICATION USAGE
The difference between resetting and initializing a terminal is left unspecified, as they vary
greatly based on hardware types. In general, resetting is a more severe action.

Some terminals use control characters to perform the stated functions, and on such terminals it
might make sense to use tput to store the initialization strings in a file or environment variable
for later use. However, because other terminals might rely on system calls to do this work, the
standard output cannot be used in a portable manner, such as the following non-portable
constructs:

ClearVar=`tput clear`
tput reset | mailx -s "Wake Up" ddg

EXAMPLES

1. Initialize the terminal according to the type of terminal in the environmental variable
TERM. This command can be included in a .profile file.

tput init

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3457

117959

117960

117961

117962

117963

117964

117965

117966

117967

117968

117969

117970

117971

117972

117973

117974

117975

117976

117977

117978

117979

117980

117981

117982

117983

117984

117985

117986

117987

117988

117989

117990

117991

117992

117993

117994

117995

117996

117997

117998

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tput Utilities

2. Reset a 450 terminal.

tput -T 450 reset

RATIONALE
The list of operands was reduced to a minimum for the following reasons:

• The only features chosen were those that were likely to be used by human users interacting
with a terminal.

• Specifying the full terminfo set was not considered desirable, but the standard developers
did not want to select among operands.

• This volume of POSIX.1-2024 does not attempt to provide applications with sophisticated
terminal handling capabilities, as that falls outside of its assigned scope and intersects with
the responsibilities of other standards bodies.

The difference between resetting and initializing a terminal is left unspecified as this varies
greatly based on hardware types. In general, resetting is a more severe action.

The exit status of 1 is historically reserved for finding out if a Boolean operand is not set.
Although the operands were reduced to a minimum, the exit status of 1 should still be reserved
for the Boolean operands, for those sites that wish to support them.

FUTURE DIRECTIONS
None.

SEE ALSO
stty , tabs

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
The tput utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3458 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

117999

118000

118001

118002

118003

118004

118005

118006

118007

118008

118009

118010

118011

118012

118013

118014

118015

118016

118017

118018

118019

118020

118021

118022

118023

118024

118025

118026

118027

118028

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tr

NAME
tr — translate characters

SYNOPSIS
tr [-c|-C] [-s] string1 string2

tr -s [-c|-C] string1

tr -d [-c|-C] string1

tr -ds [-c|-C] string1 string2

DESCRIPTION
The tr utility shall copy the standard input to the standard output with substitution or deletion
of selected characters. The options specified and the string1 and string2 operands shall control
translations that occur while copying characters and single-character collating elements.

OPTIONS
The tr utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Complement the set of values specified by string1. See the EXTENDED
DESCRIPTION section.

−C Complement the set of characters specified by string1. See the EXTENDED
DESCRIPTION section.

−d Delete all occurrences of input characters that are specified by string1.

−s Replace instances of repeated characters with a single character, as described in the
EXTENDED DESCRIPTION section.

OPERANDS
The following operands shall be supported:

string1, string2
Translation control strings. Each string shall represent a set of characters to be
converted into an array of characters used for the translation. For a detailed
description of how the strings are interpreted, see the EXTENDED DESCRIPTION
section.

STDIN
The standard input can be any type of file.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tr:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of range expressions and equivalence classes.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3459

118029

118030

118031

118032

118033

118034

118035

118036

118037

118038

118039

118040

118041

118042

118043

118044

118045

118046

118047

118048

118049

118050

118051

118052

118053

118054

118055

118056

118057

118058

118059

118060

118061

118062

118063

118064

118065

118066

118067

118068

118069

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tr Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments) and the behavior of character classes.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The tr output shall be identical to the input, with the exception of the specified transformations.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The operands string1 and string2 (if specified) define two arrays of characters. The constructs in
the following list can be used to specify characters or single-character collating elements. If any
of the constructs result in multi-character collating elements, tr shall exclude, without a
diagnostic, those multi-character elements from the resulting array.

character Any character not described by one of the conventions below shall represent itself.

\octal Octal sequences can be used to represent characters with specific coded values. An
octal sequence shall consist of a <backslash> followed by the longest sequence of
one, two, or three-octal-digit characters (01234567). The sequence shall cause the
value whose encoding is represented by the one, two, or three-digit octal integer to
be placed into the array. Multi-byte characters require multiple, concatenated
escape sequences of this type, including the leading <backslash> for each byte.

\character The <backslash>-escape sequences in XBD Table 5-1 (on page 113) ('\\', '\a',
'\b', '\f', '\n', '\r', '\t', '\v') shall be supported. The results of using any
other character, other than an octal digit, following the <backslash> are
unspecified. Also, if there is no character following the <backslash>, the results are
unspecified.

c−c In the POSIX locale, this construct shall represent the range of collating elements
between the range endpoints (as long as neither endpoint is an octal sequence of
the form \octal), inclusive, as defined by the collation sequence. The characters or
collating elements in the range shall be placed in the array in ascending collation
sequence. If the second endpoint precedes the starting endpoint in the collation
sequence, it is unspecified whether the range of collating elements is empty, or this
construct is treated as invalid. In locales other than the POSIX locale, this construct
has unspecified behavior.

If either or both of the range endpoints are octal sequences of the form \octal, this
shall represent the range of specific coded values between the two range
endpoints, inclusive.

3460 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118070

118071

118072

118073

118074

118075

118076

118077

118078

118079

118080

118081

118082

118083

118084

118085

118086

118087

118088

118089

118090

118091

118092

118093

118094

118095

118096

118097

118098

118099

118100

118101

118102

118103

118104

118105

118106

118107

118108

118109

118110

118111

118112

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tr

[:class:] Represents all characters belonging to the defined character class, as defined by the
current setting of the LC_CTYPE locale category. The following character class
names shall be accepted when specified in string1:

alnum blank digit lower punct upper
alpha cntrl graph print space xdigit

XSI In addition, character class expressions of the form [:name:] shall be recognized in
those locales where the name keyword has been given a charclass definition in the
LC_CTYPE category.

When both the −d and −s options are specified, any of the character class names
shall be accepted in string2. Otherwise, only character class names lower or upper
are valid in string2 and then only if the corresponding character class (upper and
lower, respectively) is specified in the same relative position in string1. Such a
specification shall be interpreted as a request for case conversion. When [:lower:]
appears in string1 and [:upper:] appears in string2, the arrays shall contain the
characters from the toupper mapping in the LC_CTYPE category of the current
locale. When [:upper:] appears in string1 and [:lower:] appears in string2, the arrays
shall contain the characters from the tolower mapping in the LC_CTYPE category
of the current locale. The first character from each mapping pair shall be in the
array for string1 and the second character from each mapping pair shall be in the
array for string2 in the same relative position.

Except for case conversion, the characters specified by a character class expression
shall be placed in the array in an unspecified order.

If the name specified for class does not define a valid character class in the current
locale, the behavior is undefined.

[=equiv=] Represents all characters or collating elements belonging to the same equivalence
class as equiv, as defined by the current setting of the LC_COLLATE locale category.
An equivalence class expression shall be allowed only in string1, or in string2 when
it is being used by the combined −d and −s options. The characters belonging to
the equivalence class shall be placed in the array in an unspecified order.

[x*n] Represents n repeated occurrences of the character x. Because this expression is
used to map multiple characters to one, it is only valid when it occurs in string2. If
n is omitted or is zero, it shall be interpreted as large enough to extend the
string2-based sequence to the length of the string1-based sequence. If n has a
leading zero, it shall be interpreted as an octal value. Otherwise, it shall be
interpreted as a decimal value.

When the −d option is not specified:

• If string2 is present, each input character found in the array specified by string1 shall be
replaced by the character in the same relative position in the array specified by string2. If
the array specified by string2 is shorter that the one specified by string1, or if a character
occurs more than once in string1, the results are unspecified.

• If the −C option is specified, the complements of the characters specified by string1 (the set
of all characters in the current character set, as defined by the current setting of LC_CTYPE,
except for those actually specified in the string1 operand) shall be placed in the array in
ascending collation sequence, as defined by the current setting of LC_COLLATE.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3461

118113

118114

118115

118116

118117

118118

118119

118120

118121

118122

118123

118124

118125

118126

118127

118128

118129

118130

118131

118132

118133

118134

118135

118136

118137

118138

118139

118140

118141

118142

118143

118144

118145

118146

118147

118148

118149

118150

118151

118152

118153

118154

118155

118156

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tr Utilities

• If the −c option is specified, the complement of the values specified by string1 shall be
placed in the array in ascending order by binary value.

• Because the order in which characters specified by character class expressions or
equivalence class expressions is undefined, such expressions should only be used if the
intent is to map several characters into one. An exception is case conversion, as described
previously.

When the −d option is specified:

• Input characters found in the array specified by string1 shall be deleted.

• When the −C option is specified with −d, all characters except those specified by string1
shall be deleted. The contents of string2 are ignored, unless the −s option is also specified.

• When the −c option is specified with −d, all values except those specified by string1 shall
be deleted. The contents of string2 shall be ignored, unless the −s option is also specified.

• The same string cannot be used for both the −d and the −s option; when both options are
specified, both string1 (used for deletion) and string2 (used for squeezing) shall be
required.

When the −s option is specified, after any deletions or translations have taken place, repeated
sequences of the same character shall be replaced by one occurrence of the same character, if the
character is found in the array specified by the last operand. If the last operand contains a
character class, such as the following example:

tr -s '[:space:]'

the last operand’s array shall contain all of the characters in that character class. However, in a
case conversion, as described previously, such as:

tr -s '[:upper:]' '[:lower:]'

the last operand’s array shall contain only those characters defined as the second characters in
each of the toupper or tolower character pairs, as appropriate.

An empty string used for string1 or string2 produces undefined results.

EXIT STATUS
The following exit values shall be returned:

0 All input was processed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If necessary, string1 and string2 can be quoted to avoid pattern matching by the shell.

If an ordinary digit (representing itself) is to follow an octal sequence, the octal sequence must
use the full three digits to avoid ambiguity.

When string2 is shorter than string1, a difference results between historical System V and BSD
systems. A BSD system pads string2 with the last character found in string2. Thus, it is possible
to do the following:

tr 0123456789 d

which would translate all digits to the letter 'd'. Since this area is specifically unspecified in

3462 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118157

118158

118159

118160

118161

118162

118163

118164

118165

118166

118167

118168

118169

118170

118171

118172

118173

118174

118175

118176

118177

118178

118179

118180

118181

118182

118183

118184

118185

118186

118187

118188

118189

118190

118191

118192

118193

118194

118195

118196

118197

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tr

this volume of POSIX.1-2024, both the BSD and System V behaviors are allowed, but a
conforming application cannot rely on the BSD behavior. It would have to code the example in
the following way:

tr 0123456789 '[d*]'

It should be noted that, despite similarities in appearance, the string operands used by tr are not
regular expressions.

Unlike some historical implementations, this definition of the tr utility correctly processes NUL
characters in its input stream. NUL characters can be stripped by using:

tr -d '\000'

EXAMPLES

1. The following example creates a list of all words in file1 one per line in file2, where a
word is taken to be a maximal string of letters.

tr -cs "[:alpha:]" "[\n*]" <file1 >file2

2. The next example translates all lowercase characters in file1 to uppercase and writes the
results to standard output.

tr "[:lower:]" "[:upper:]" <file1

3. This example uses an equivalence class to identify accented variants of the base character
'e' in file1, which are stripped of diacritical marks and written to file2.

tr "[=e=]" "[e*]" <file1 >file2

RATIONALE
In some early proposals, an explicit option −n was added to disable the historical behavior of
stripping NUL characters from the input. It was considered that automatically stripping NUL
characters from the input was not correct functionality. However, the removal of −n in a later
proposal does not remove the requirement that tr correctly process NUL characters in its input
stream. NUL characters can be stripped by using tr −d '\000'.

Historical implementations of tr differ widely in syntax and behavior. For example, the BSD
version has not needed the bracket characters for the repetition sequence. The tr utility syntax is
based more closely on the System V and XPG3 model while attempting to accommodate
historical BSD implementations. In the case of the short string2 padding, the decision was to
unspecify the behavior and preserve System V and XPG3 scripts, which might find difficulty
with the BSD method. The assumption was made that BSD users of tr have to make
accommodations to meet the syntax defined here. Since it is possible to use the repetition
sequence to duplicate the desired behavior, whereas there is no simple way to achieve the
System V method, this was the correct, if not desirable, approach.

The use of octal values to specify control characters, while having historical precedents, is not
portable. The introduction of escape sequences for control characters should provide the
necessary portability. It is recognized that this may cause some historical scripts to break.

An early proposal included support for multi-character collating elements. It was pointed out
that, while tr does employ some syntactical elements from REs, the aim of tr is quite different;
ranges, for example, do not have a similar meaning (``any of the chars in the range matches’’,
versus ``translate each character in the range to the output counterpart’’). As a result, the
previously included support for multi-character collating elements has been removed. What
remains are ranges in current collation order (to support, for example, accented characters),
character classes, and equivalence classes.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3463

118198

118199

118200

118201

118202

118203

118204

118205

118206

118207

118208

118209

118210

118211

118212

118213

118214

118215

118216

118217

118218

118219

118220

118221

118222

118223

118224

118225

118226

118227

118228

118229

118230

118231

118232

118233

118234

118235

118236

118237

118238

118239

118240

118241

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tr Utilities

In XPG3 the [:class:] and [=equiv=] conventions are shown with double brackets, as in RE syntax.
However, tr does not implement RE principles; it just borrows part of the syntax. Consequently,
[:class:] and [=equiv=] should be regarded as syntactical elements on a par with [x*n], which is
not an RE bracket expression.

The standard developers will consider changes to tr that allow it to translate characters between
different character encodings, or they will consider providing a new utility to accomplish this.

On historical System V systems, a range expression requires enclosing square-brackets, such as:

tr '[a-z]' '[A-Z]'

However, BSD-based systems did not require the brackets, and this convention is used here to
avoid breaking large numbers of BSD scripts:

tr a-z A-Z

The preceding System V script will continue to work because the brackets, treated as regular
characters, are translated to themselves. However, any System V script that relied on "a-z"
representing the three characters 'a', '−', and 'z' have to be rewritten as "az-".

The ISO POSIX-2: 1993 standard had a −c option that behaved similarly to the −C option, but did
not supply functionality equivalent to the −c option specified in POSIX.1-2024.

The earlier version also said that octal sequences referred to collating elements and could be
placed adjacent to each other to specify multi-byte characters. However, it was noted that this
caused ambiguities because tr would not be able to tell whether adjacent octal sequences were
intending to specify multi-byte characters or multiple single byte characters. POSIX.1-2024
specifies that octal sequences always refer to single byte binary values when used to specify an
endpoint of a range of collating elements.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
None.

SEE ALSO
sed

XBD Table 5-1 (on page 113), Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The −C operand is added, and the description of the −c operand is changed to align with the
IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/31 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/32 is applied, updating an example in the
EXAMPLES section to avoid using unspecified behavior.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/33 is applied, making a correction to the
RATIONALE.

3464 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118242

118243

118244

118245

118246

118247

118248

118249

118250

118251

118252

118253

118254

118255

118256

118257

118258

118259

118260

118261

118262

118263

118264

118265

118266

118267

118268

118269

118270

118271

118272

118273

118274

118275

118276

118277

118278

118279

118280

118281

118282

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tr

Issue 7
SD5-XCU-ERN-30 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Austin Group Interpretation 1003.1-2001 #132 is applied, adding rationale to the \character
construct.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0145 [325] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0196 [663] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3465

118283

118284

118285

118286

118287

118288

118289

118290

118291

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

true Utilities

NAME
true — return true value

SYNOPSIS
true

DESCRIPTION
The true utility shall return with exit code zero.

OPTIONS
None.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Not used.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
None.

APPLICATION USAGE
This utility is typically used in shell scripts, as shown in the EXAMPLES section.

Although the special built-in utility : (colon) is similar to true, there are some notable differences,
including:

• Whereas colon is required to accept, and do nothing with, any number of arguments, true is
only required to accept, and discard, a first argument of "--". Passing any other
argument(s) to true may cause its behavior to differ from that described in this standard.

• A non-interactive shell exits when a redirection error occurs with colon (unless executed via
command), whereas with true it does not.

• Variable assignments preceding the command name persist after executing colon (unless
executed via command), but not after executing true.

3466 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118292

118293

118294

118295

118296

118297

118298

118299

118300

118301

118302

118303

118304

118305

118306

118307

118308

118309

118310

118311

118312

118313

118314

118315

118316

118317

118318

118319

118320

118321

118322

118323

118324

118325

118326

118327

118328

118329

118330

118331

118332

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities true

• In shell implementations where true is not provided as a built-in, using colon avoids the
overheads associated with executing an external utility.

EXAMPLES
This command is executed forever:

while true
do

command
done

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9 (on page 2499), colon , command , false

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/39 is applied, replacing the terms ``None’’
and ``Default’’ from the STDERR and EXIT STATUS sections, respectively, with terms as defined
in Section 1.4 (on page 2462).

Issue 8
Austin Group Defect 1640 is applied, clarifying the differences between true and : (colon).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3467

118333

118334

118335

118336

118337

118338

118339

118340

118341

118342

118343

118344

118345

118346

118347

118348

118349

118350

118351

118352

118353

118354

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tsort Utilities

NAME
tsort — topological sort

SYNOPSIS
tsort [-w] [file]

DESCRIPTION
The tsort utility shall write to standard output a totally ordered list of items consistent with a
partial ordering of items contained in the input.

The application shall ensure that the input consists of pairs of items (non-empty strings)
separated by one or more <blank> or <newline> characters. It is unspecified whether other
white-space characters can also be used as separators. Pairs of different items shall indicate
ordering. Pairs of identical items shall indicate presence, but not ordering.

If a cycle is found in the input, diagnostic or warning messages shall be written to standard error
reporting that there is a cycle and indicating which nodes are in the cycle(s). If the −w option is
specified, these messages shall be diagnostic messages. If a diagnostic message is written, the
final exit status shall be non-zero.

OPTIONS
The tsort utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−w Set the exit status to the number of cycles found in the input, or to an
implementation-defined maximum if there are more cycles than that maximum. If
no cycles are found, the exit status shall be zero unless another error occurs.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to order. If no file operand is given, the standard input
shall be used.

STDIN
The standard input shall be used if no file operand is specified, and shall be used if the file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input file shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tsort:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3468 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118355

118356

118357

118358

118359

118360

118361

118362

118363

118364

118365

118366

118367

118368

118369

118370

118371

118372

118373

118374

118375

118376

118377

118378

118379

118380

118381

118382

118383

118384

118385

118386

118387

118388

118389

118390

118391

118392

118393

118394

118395

118396

118397

118398

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tsort

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be a text file consisting of the ordered list of items, with one item per
line, produced from the partially ordered input.

STDERR
The standard error shall be used only for diagnostic and warning messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred. If the −w option is specified and one or more cycles were found in the
input, the exit status shall be the number of cycles found, or an implementation-defined
maximum if more cycles than that maximum were found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The LC_COLLATE variable need not affect the actions of tsort. The output ordering is not
lexicographic, but depends on the pairs of items given as input.

EXAMPLES
The command:

tsort <<EOF
a b c c d e
g g
f g e f
h h
EOF

produces the output:

a
b
c
d
e
f
g
h

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3469

118399

118400

118401

118402

118403

118404

118405

118406

118407

118408

118409

118410

118411

118412

118413

118414

118415

118416

118417

118418

118419

118420

118421

118422

118423

118424

118425

118426

118427

118428

118429

118430

118431

118432

118433

118434

118435

118436

118437

118438

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tsort Utilities

RATIONALE
At the time that the −w option was added to this standard, the only known implementation
reported a maximum of 255 cycles via the exit status. This has the drawback that applications
cannot distinguish, from the exit status, errors caused by cycles from other errors or (when tsort
is executed from a shell) termination by a signal. Implementations are urged to set the
implementation-defined maximum number of cycles reported via the exit status to at most 124,
leaving values above that maximum through 125 for other errors, and leaving values 126 and
greater to have the special meanings that the shell assigns to them.

FUTURE DIRECTIONS
A future version of this standard may require that when the −w option is specified, the
maximum number of cycles reported through the exit status of tsort is at most 124 and that exit
status values greater than 126 are not used by tsort.

SEE ALSO
XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

The tsort utility is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0146 [241] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defects 1617 and 1629 are applied, clarifying how tsort handles cycles found in the
input.

Austin Group Defect 1745 is applied, clarifying the input separator characters and the output
format.

3470 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118439

118440

118441

118442

118443

118444

118445

118446

118447

118448

118449

118450

118451

118452

118453

118454

118455

118456

118457

118458

118459

118460

118461

118462

118463

118464

118465

118466

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities tty

NAME
tty — return user’s terminal name

SYNOPSIS
tty

DESCRIPTION
The tty utility shall write to the standard output the name of the terminal that is open as
standard input. The name that is used shall be equivalent to the string that would be returned by
the ttyname() function defined in the System Interfaces volume of POSIX.1-2024.

OPTIONS
The tty utility shall conform to XBD Section 12.2 (on page 215).

OPERANDS
None.

STDIN
While no input is read from standard input, standard input shall be examined to determine
whether or not it is a terminal, and, if so, to determine the name of the terminal.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tty:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If standard input is a terminal device, a pathname of the terminal as specified by the ttyname()
function defined in the System Interfaces volume of POSIX.1-2024 shall be written in the
following format:

"%s\n", <terminal name>

Otherwise, a message shall be written indicating that standard input is not connected to a
terminal. In the POSIX locale, the tty utility shall use the format:

"not a tty\n"

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3471

118467

118468

118469

118470

118471

118472

118473

118474

118475

118476

118477

118478

118479

118480

118481

118482

118483

118484

118485

118486

118487

118488

118489

118490

118491

118492

118493

118494

118495

118496

118497

118498

118499

118500

118501

118502

118503

118504

118505

118506

118507

118508

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

tty Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Standard input is a terminal, and the output specified in STDOUT was successfully written
to standard output.

1 Standard input is not a terminal, and the output specified in STDOUT was successfully
written to standard output.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility checks the status of the file open as standard input against that of an
implementation-defined set of files. It is possible that no match can be found, or that the match
found need not be the same file as that which was opened for standard input (although they are
the same device).

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH isatty(), ttyname()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The SYNOPSIS is changed to indicate two forms of the command, with the second form marked
as obsolete. This is a clarification and does not change the functionality published in previous
issues.

Issue 6
The obsolescent −s option is removed.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1509 is applied, changing the EXIT STATUS section.

3472 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118509

118510

118511

118512

118513

118514

118515

118516

118517

118518

118519

118520

118521

118522

118523

118524

118525

118526

118527

118528

118529

118530

118531

118532

118533

118534

118535

118536

118537

118538

118539

118540

118541

118542

118543

118544

118545

118546

118547

118548

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities type

NAME
type — write a description of command type

SYNOPSIS
XSI type name...

DESCRIPTION
The type utility shall indicate how each argument would be interpreted if used as a command
name.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

name A name to be interpreted.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of type:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the location of name, as described in XBD Chapter 8 (on page 167).

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output of type contains information about each operand in an unspecified format.
The information provided typically identifies the operand as a shell built-in, function, alias, or
keyword, and where applicable, may display the operand’s pathname.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3473

118549

118550

118551

118552

118553

118554

118555

118556

118557

118558

118559

118560

118561

118562

118563

118564

118565

118566

118567

118568

118569

118570

118571

118572

118573

118574

118575

118576

118577

118578

118579

118580

118581

118582

118583

118584

118585

118586

118587

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

type Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Since type must be aware of the contents of the current shell execution environment (such as the
lists of commands, functions, and built-ins processed by hash), it is always provided as a shell
regular built-in. If it is called in a separate utility execution environment, such as one of the
following:

nohup type writer
find . -type f -exec type {} +

it might not produce accurate results.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
command , hash

XBD Chapter 8 (on page 167)

CHANGE HISTORY
First released in Issue 2.

Issue 8
Austin Group Defect 248 is applied, changing a command line in the APPLICATION USAGE
section.

Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

3474 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118588

118589

118590

118591

118592

118593

118594

118595

118596

118597

118598

118599

118600

118601

118602

118603

118604

118605

118606

118607

118608

118609

118610

118611

118612

118613

118614

118615

118616

118617

118618

118619

118620

118621

118622

118623

118624

118625

118626

118627

118628

118629

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities type

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3475

118630

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ulimit Utilities

NAME
ulimit — report or set resource limits

SYNOPSIS
ulimit [-H|-S] -a

XSI ulimit [-H|-S] [-c|-d|-f|-n|-s|-t|-v] [newlimit]

DESCRIPTION
The ulimit utility shall report or set the resource limits in effect in the process in which it is
executed.

Soft limits can be changed by a process to any value that is less than or equal to the hard limit. A
process can (irreversibly) lower its hard limit to any value that is greater than or equal to the soft
limit. Only a process with appropriate privileges can raise a hard limit.

The value unlimited for a resource shall be considered to be larger than any other limit value.
When a resource has this limit value, the implementation shall not enforce limits on that
resource. In locales other than the POSIX locale, ulimit may support additional non-numeric
values with the same meaning as unlimited.

The behavior when resource limits are exceeded shall be as described in the System Interfaces
volume of POSIX.1-2024 for the setrlimit() function.

OPTIONS
The ulimit utility shall conform to XBD Section 12.2 (on page 215), except that:

• The order in which options other than −H, −S, and −a are specified may be significant.

• Conforming applications shall specify each option separately; that is, grouping option
letters (for example, −fH) need not be recognized by all implementations.

The following options shall be supported:

−H Report hard limit(s) or set only a hard limit.

−S Report soft limit(s) or set only a soft limit.

−a Report the limit value for all of the resources named below and for any
implementation-specific additional resources.

−c Report, or set if the newlimit operand is present, the core image size limit(s) in units
of 512 bytes. [RLIMIT_CORE]

−d Report, or set if the newlimit operand is present, the data segment size limit(s) in
units of 1 024 bytes. [RLIMIT_DATA]

−f Report, or set if the newlimit operand is present, the file size limit(s) in units of 512
bytes. [RLIMIT_FSIZE]

−n Report, or set if the newlimit operand is present, the limit(s) on the number of open
file descriptors, given as a number one greater than the maximum value that the
system assigns to a newly-created descriptor. [RLIMIT_NOFILE]

−s Report, or set if the newlimit operand is present, the stack size limit(s) in units of
1 024 bytes. [RLIMIT_STACK]

XSI −t Report, or set if the newlimit operand is present, the per-process CPU time limit(s)
in units of seconds. [RLIMIT_CPU]

3476 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118631

118632

118633

118634

118635

118636

118637

118638

118639

118640

118641

118642

118643

118644

118645

118646

118647

118648

118649

118650

118651

118652

118653

118654

118655

118656

118657

118658

118659

118660

118661

118662

118663

118664

118665

118666

118667

118668

118669

118670

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ulimit

−v Report, or set if the newlimit operand is present, the address space size limit(s) in
units of 1 024 bytes. [RLIMIT_AS]

Where an option description is followed by [RLIMIT_name] it indicates which resource for the
getrlimit() and setrlimit() functions, defined in the System Interfaces volume of POSIX.1-2024,
the option corresponds to.

If neither the −H nor −S option is specified:

• If the newlimit operand is present, it shall be used as the new value for both the hard and
soft limits.

• If the newlimit operand is not present, −S shall be the default.

If no options other than −H or −S are specified, the behavior shall be as if the −f option was
(also) specified.

If any option other than −H or −S is repeated, the behavior is unspecified.

OPERANDS
The following operand shall be supported:

newlimit Either an integer value to use as the new limit(s) for the specified resource, in the
units specified in OPTIONS, or a non-numeric string indicating no limit, as
described in the DESCRIPTION section. Numerals in the range 0 to the maximum
limit value supported by the implementation for any resource shall be syntactically
recognized as numeric values.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ulimit:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3477

118671

118672

118673

118674

118675

118676

118677

118678

118679

118680

118681

118682

118683

118684

118685

118686

118687

118688

118689

118690

118691

118692

118693

118694

118695

118696

118697

118698

118699

118700

118701

118702

118703

118704

118705

118706

118707

118708

118709

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

ulimit Utilities

STDOUT
The standard output shall be used when no newlimit operand is present.

If the −a option is specified, the output written for each resource shall consist of one line that
includes:

• A short phrase identifying the resource (for example ``file size’’).

• An indication of the units used for the resource, if the corresponding option description in
OPTIONS specifies the units to be used.

• The ulimit option used to specify the resource.

• The limit value.

The format used within each line is unspecified, except that the format used for the limit value
shall be as described below for the case where a single limit value is written.

If a single limit value is to be written; that is, the −a option is not specified and at most one
option other than −H or −S is specified:

• If the resource being reported has a numeric limit, the limit value shall be written in the
following format:

"%1d\n", <limit value>

where <limit value> is the value of the limit in the units specified in OPTIONS.

• If the resource being reported does not have a numeric limit, in the POSIX locale the
following format shall be used:

"unlimited\n"

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 A request for a higher limit was rejected or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Since ulimit affects the current shell execution environment, it is always provided as a shell
regular built-in. If it is called with an operand in a separate utility execution environment, such
as one of the following:

nohup ulimit -f 10000
env ulimit -S -c 10000

it does not affect the limit(s) in the caller’s environment.

3478 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118710

118711

118712

118713

118714

118715

118716

118717

118718

118719

118720

118721

118722

118723

118724

118725

118726

118727

118728

118729

118730

118731

118732

118733

118734

118735

118736

118737

118738

118739

118740

118741

118742

118743

118744

118745

118746

118747

118748

118749

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities ulimit

See also the APPLICATION USAGE for getrlimit().

EXAMPLES
Set the hard and soft file size limits to 51 200 bytes:

ulimit -f 100

Save and restore a soft resource limit (where X is an option letter specifying a resource):

saved=$(ulimit -X)

...

ulimit -X -S "$saved"

Execute a utility with a CPU limit of 5 minutes (using an asynchronous subshell to ensure the
limit is set in a child process):

(ulimit -t 300; exec utility_name </dev/null) &
wait $!

RATIONALE
The ulimit utility has no equivalent of the special values RLIM_SAVED_MAX and
RLIM_SAVED_CUR returned by getrlimit(), as ulimit is required to be able to output, and accept
as input, all numeric limit values supported by the system.

Implementations differ in their behavior when the −a option is not specified and more than one
option other than −H or −S is specified. Some write output for all of the specified resources in
the same format as for −a; others write only the value for the last specified option. Both
behaviors are allowed by the standard, since the SYNOPSIS lists the options as mutually
exclusive.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH getrlimit()

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1418 is applied, adding the −H, −S, −a, −c, −d, −n, −s, −t, and −v options,
and relating the −f option to the RLIMIT_FSIZE resource for setrlimit().

Austin Group Defect 1669 is applied, moving the ulimit utility, excluding the −t option, from the
XSI option to the Base.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3479

118750

118751

118752

118753

118754

118755

118756

118757

118758

118759

118760

118761

118762

118763

118764

118765

118766

118767

118768

118769

118770

118771

118772

118773

118774

118775

118776

118777

118778

118779

118780

118781

118782

118783

118784

118785

118786

118787

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

umask Utilities

NAME
umask — get or set the file mode creation mask

SYNOPSIS
umask [-S] [mask]

DESCRIPTION
The umask utility shall set the file mode creation mask of the current shell execution environment
(see Section 2.13, on page 2522) to the value specified by the mask operand. This mask shall affect
the initial value of the file permission bits of subsequently created files. If umask is called in a
subshell or separate utility execution environment, such as one of the following:

(umask 002)
nohup umask ...
find . -exec umask ... \;

it shall not affect the file mode creation mask of the caller’s environment.

If the mask operand is not specified, the umask utility shall write to standard output the value of
the file mode creation mask of the invoking process.

OPTIONS
The umask utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−S Produce symbolic output.

The default output style is unspecified, but shall be recognized on a subsequent invocation of
umask on the same system as a mask operand to restore the previous file mode creation mask.

OPERANDS
The following operand shall be supported:

mask A string specifying the new file mode creation mask. The string is treated in the
same way as the mode operand described in the EXTENDED DESCRIPTION
section for chmod.

For a symbolic_mode value, the new value of the file mode creation mask shall be
the logical complement of the file permission bits portion of the file mode specified
by the symbolic_mode string.

In a symbolic_mode value, the permissions op characters '+' and '−' shall be
interpreted relative to the current file mode creation mask; '+' shall cause the bits
for the indicated permissions to be cleared in the mask; '−' shall cause the bits for
the indicated permissions to be set in the mask.

The interpretation of mode values that specify file mode bits other than the file
permission bits is unspecified.

In the octal integer form of mode, the specified bits are set in the file mode creation
mask.

The file mode creation mask shall be set to the resulting numeric value.

The default output of a prior invocation of umask on the same system with no
operand also shall be recognized as a mask operand.

3480 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118788

118789

118790

118791

118792

118793

118794

118795

118796

118797

118798

118799

118800

118801

118802

118803

118804

118805

118806

118807

118808

118809

118810

118811

118812

118813

118814

118815

118816

118817

118818

118819

118820

118821

118822

118823

118824

118825

118826

118827

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities umask

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of umask:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the mask operand is not specified, the umask utility shall write a message to standard
output that can later be used as a umask mask operand.

If −S is specified, the message shall be in the following format:

"u=%s,g=%s,o=%s\n", <owner permissions>, <group permissions>,
<other permissions>

where the three values shall be combinations of letters from the set {r, w, x}; the presence of a
letter shall indicate that the corresponding bit is clear in the file mode creation mask.

If a mask operand is specified, there shall be no output written to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The file mode creation mask was successfully changed, or no mask operand was supplied.

>0 An error occurred.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3481

118828

118829

118830

118831

118832

118833

118834

118835

118836

118837

118838

118839

118840

118841

118842

118843

118844

118845

118846

118847

118848

118849

118850

118851

118852

118853

118854

118855

118856

118857

118858

118859

118860

118861

118862

118863

118864

118865

118866

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

umask Utilities

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Since umask affects the current shell execution environment, it is generally provided as a shell
regular built-in.

In contrast to the negative permission logic provided by the file mode creation mask and the
octal number form of the mask argument, the symbolic form of the mask argument specifies those
permissions that are left alone.

EXAMPLES
Either of the commands:

umask a=rx,ug+w

umask 002

sets the mode mask so that subsequently created files have their S_IWOTH bit cleared.

After setting the mode mask with either of the above commands, the umask command can be
used to write out the current value of the mode mask:

$ umask
0002

(The output format is unspecified, but historical implementations use the octal integer mode
format.)

$ umask -S
u=rwx,g=rwx,o=rx

Either of these outputs can be used as the mask operand to a subsequent invocation of the umask
utility.

Assuming the mode mask is set as above, the command:

umask g-w

sets the mode mask so that subsequently created files have their S_IWGRP and S_IWOTH bits
cleared.

The command:

umask -- -w

sets the mode mask so that subsequently created files have all their write bits cleared. Note that
mask operands −r, −w, −x or anything beginning with a <hyphen-minus>, must be preceded by
"--" to keep it from being interpreted as an option.

RATIONALE
Since umask affects the current shell execution environment, it is generally provided as a shell
regular built-in. If it is called in a subshell or separate utility execution environment, such as one
of the following:

(umask 002)
nohup umask ...
find . -exec umask ... \;

it does not affect the file mode creation mask of the environment of the caller.

3482 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118867

118868

118869

118870

118871

118872

118873

118874

118875

118876

118877

118878

118879

118880

118881

118882

118883

118884

118885

118886

118887

118888

118889

118890

118891

118892

118893

118894

118895

118896

118897

118898

118899

118900

118901

118902

118903

118904

118905

118906

118907

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities umask

The description of the historical utility was modified to allow it to use the symbolic modes of
chmod. The −s option used in early proposals was changed to −S because −s could be confused
with a symbolic_mode form of mask referring to the S_ISUID and S_ISGID bits.

The default output style is unspecified to permit implementors to provide migration to the new
symbolic style at the time most appropriate to their users. A −o flag to force octal mode output
was omitted because the octal mode may not be sufficient to specify all of the information that
may be present in the file mode creation mask when more secure file access permission checks
are implemented.

It has been suggested that trusted systems developers might appreciate ameliorating the
requirement that the mode mask ``affects’’ the file access permissions, since it seems access
control lists might replace the mode mask to some degree. The wording has been changed to say
that it affects the file permission bits, and it leaves the details of the behavior of how they affect
the file access permissions to the description in the System Interfaces volume of POSIX.1-2024.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), chmod

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH umask()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The octal mode is supported.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/34 is applied, making a correction to the
RATIONALE.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0197 [584] is applied.

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3483

118908

118909

118910

118911

118912

118913

118914

118915

118916

118917

118918

118919

118920

118921

118922

118923

118924

118925

118926

118927

118928

118929

118930

118931

118932

118933

118934

118935

118936

118937

118938

118939

118940

118941

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unalias Utilities

NAME
unalias — remove alias definitions

SYNOPSIS
unalias alias-name...

unalias -a

DESCRIPTION
The unalias utility shall remove the definition for each alias name specified. See Section 2.3.1 (on
page 2477). The aliases shall be removed from the current shell execution environment; see
Section 2.13 (on page 2522).

OPTIONS
The unalias utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−a Remove all alias definitions from the current shell execution environment.

OPERANDS
The following operand shall be supported:

alias-name The name of an alias to be removed.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of unalias:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

3484 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

118942

118943

118944

118945

118946

118947

118948

118949

118950

118951

118952

118953

118954

118955

118956

118957

118958

118959

118960

118961

118962

118963

118964

118965

118966

118967

118968

118969

118970

118971

118972

118973

118974

118975

118976

118977

118978

118979

118980

118981

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities unalias

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 One of the alias-name operands specified did not represent a valid alias definition, or an
error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

Since unalias affects the current shell execution environment, it is generally provided as a shell
regular built-in.

EXAMPLES
None.

RATIONALE
The unalias description is based on that from historical KornShell implementations. Known
differences exist between that and the C shell. The KornShell version was adopted to be
consistent with all the other KornShell features in this volume of POSIX.1-2024, such as
command line editing.

The −a option is the equivalent of the unalias * form of the C shell and is provided to address
security concerns about unknown aliases entering the environment of a user (or application)
through the allowable implementation-defined predefined alias route or as a result of an ENV
file. (Although unalias could be used to simplify the ``secure’’ shell script shown in the command
rationale, it does not obviate the need to quote all command names. An initial call to unalias −a
would have to be quoted in case there was an alias for unalias.)

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), alias

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
The unalias utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3485

118982

118983

118984

118985

118986

118987

118988

118989

118990

118991

118992

118993

118994

118995

118996

118997

118998

118999

119000

119001

119002

119003

119004

119005

119006

119007

119008

119009

119010

119011

119012

119013

119014

119015

119016

119017

119018

119019

119020

119021

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unalias Utilities

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3486 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119022

119023

119024

119025

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uname

NAME
uname — return system name

SYNOPSIS
uname [-amnrsv]

DESCRIPTION
By default, the uname utility shall write the operating system name to standard output. When
options are specified, symbols representing one or more system characteristics shall be written to
the standard output. The format and contents of the symbols are implementation-defined. On
systems conforming to the System Interfaces volume of POSIX.1-2024, the symbols written shall
be those supported by the uname() function as defined in the System Interfaces volume of
POSIX.1-2024.

OPTIONS
The uname utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Behave as though all of the options −mnrsv were specified.

−m Write the name of the hardware type on which the system is running to standard
output.

−n Write the name of this node within an implementation-defined communications
network.

−r Write the current release level of the operating system implementation.

−s Write the name of the implementation of the operating system.

−v Write the current version level of this release of the operating system
implementation.

If no options are specified, the uname utility shall write the operating system name, as if the −s
option had been specified.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uname:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3487

119026

119027

119028

119029

119030

119031

119032

119033

119034

119035

119036

119037

119038

119039

119040

119041

119042

119043

119044

119045

119046

119047

119048

119049

119050

119051

119052

119053

119054

119055

119056

119057

119058

119059

119060

119061

119062

119063

119064

119065

119066

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uname Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
By default, the output shall be a single line of the following form:

"%s\n", <sysname>

If the −a option is specified, the output shall be a single line of the following form:

"%s %s %s %s %s\n", <sysname>, <nodename>, <release>,
<version>, <machine>

Additional implementation-defined symbols may be written; all such symbols shall be written at
the end of the line of output before the <newline>.

If options are specified to select different combinations of the symbols, only those symbols shall
be written, in the order shown above for the −a option. If a symbol is not selected for writing, its
corresponding trailing <blank> characters also shall not be written.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The requested information was successfully written.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Note that any of the symbols could include embedded <space> characters, which may affect
parsing algorithms if multiple options are selected for output.

The node name is typically a name that the system uses to identify itself for inter-system
communication addressing.

EXAMPLES
The following command:

uname -sr

writes the operating system name and release level, separated by one or more <blank>
characters.

3488 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119067

119068

119069

119070

119071

119072

119073

119074

119075

119076

119077

119078

119079

119080

119081

119082

119083

119084

119085

119086

119087

119088

119089

119090

119091

119092

119093

119094

119095

119096

119097

119098

119099

119100

119101

119102

119103

119104

119105

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uname

RATIONALE
It was suggested that this utility cannot be used portably since the format of the symbols is
implementation-defined. The POSIX.1 working group could not achieve consensus on defining
these formats in the underlying uname() function, and there was no expectation that this volume
of POSIX.1-2024 would be any more successful. Some applications may still find this historical
utility of value. For example, the symbols could be used for system log entries or for comparison
with operator or user input.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH uname()

CHANGE HISTORY
First released in Issue 2.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3489

119106

119107

119108

119109

119110

119111

119112

119113

119114

119115

119116

119117

119118

119119

119120

119121

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uncompress Utilities

NAME
uncompress — expand compressed data

SYNOPSIS
XSI uncompress [-cfv] [file...]

DESCRIPTION
Refer to compress .

3490 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119122

119123

119124

119125

119126

119127

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities unexpand

NAME
unexpand — convert spaces to tabs

SYNOPSIS
unexpand [-a|-t tablist] [file...]

DESCRIPTION
The unexpand utility shall copy files or standard input to standard output, converting <blank>
characters at the beginning of each line into the maximum number of <tab> characters followed
by the minimum number of <space> characters needed to fill the same column positions
originally filled by the translated <blank> characters. By default, tabstops shall be set at every
eighth column position. Each <backspace> shall be copied to the output, and shall cause the
column position count for tab calculations to be decremented; the count shall never be
decremented to a value less than one.

OPTIONS
The unexpand utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a In addition to translating <blank> characters at the beginning of each line,
translate all sequences of two or more <blank> characters immediately preceding a
tab stop to the maximum number of <tab> characters followed by the minimum
number of <space> characters needed to fill the same column positions originally
filled by the translated <blank> characters.

−t tablist Specify the tab stops. The application shall ensure that the tablist option-argument
is a single argument consisting of a single positive decimal integer or multiple
positive decimal integers, separated by <blank> or <comma> characters, in
ascending order. If a single number is given, tabs shall be set tablist column
positions apart instead of the default 8. If multiple numbers are given, the tabs
shall be set at those specific column positions.

The application shall ensure that each tab-stop position N is an integer value
greater than zero, and the list shall be in strictly ascending order. This is taken to
mean that, from the start of a line of output, tabbing to position N shall cause the
next character output to be in the (N+1)th column position on that line. When the
−t option is not specified, the default shall be the equivalent of specifying −t 8
(except for the interaction with −a, described below).

No <space>-to-<tab> conversions shall occur for characters at positions beyond
the last of those specified in a multiple tab-stop list.

When −t is specified, the presence or absence of the −a option shall be ignored;
conversion shall not be limited to the processing of leading <blank> characters.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to be used as input.

STDIN
See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3491

119128

119129

119130

119131

119132

119133

119134

119135

119136

119137

119138

119139

119140

119141

119142

119143

119144

119145

119146

119147

119148

119149

119150

119151

119152

119153

119154

119155

119156

119157

119158

119159

119160

119161

119162

119163

119164

119165

119166

119167

119168

119169

119170

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unexpand Utilities

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of unexpand:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the processing of <tab> and <space> characters, and
for the determination of the width in column positions each character would
occupy on an output device.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be equivalent to the input files with the specified <space>-to-<tab>
conversions.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
One non-intuitive aspect of unexpand is its restriction to leading <space> characters when neither
−a nor −t is specified. Users who always want to convert all <space> characters in a file can
easily alias unexpand to use the −a or −t 8 option.

EXAMPLES
None.

RATIONALE
On several occasions, consideration was given to adding a −t option to the unexpand utility to
complement the −t in expand (see expand). The historical intent of unexpand was to translate
multiple <blank> characters into tab stops, where tab stops were a multiple of eight column

3492 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119171

119172

119173

119174

119175

119176

119177

119178

119179

119180

119181

119182

119183

119184

119185

119186

119187

119188

119189

119190

119191

119192

119193

119194

119195

119196

119197

119198

119199

119200

119201

119202

119203

119204

119205

119206

119207

119208

119209

119210

119211

119212

119213

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities unexpand

positions on most UNIX systems. An early proposal omitted −t because it seemed outside the
scope of the User Portability Utilities option; it was not described in any of the base documents
for IEEE Std 1003.2-1992. However, hard-coding tab stops every eight columns was not suitable
for the international community and broke historical precedents for some vendors in the
FORTRAN community, so −t was restored in conjunction with the list of valid extension
categories considered by the standard developers. Thus, unexpand is now the logical converse of
expand.

FUTURE DIRECTIONS
None.

SEE ALSO
expand , tabs

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The definition of the LC_CTYPE environment variable is changed to align with the
IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
The unexpand utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0198 [885] is applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3493

119214

119215

119216

119217

119218

119219

119220

119221

119222

119223

119224

119225

119226

119227

119228

119229

119230

119231

119232

119233

119234

119235

119236

119237

119238

119239

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unget Utilities

NAME
unget — undo a previous get of an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI unget [-ns] [-r SID] file...

DESCRIPTION
The unget utility shall reverse the effect of a get −e done prior to creating the intended new delta.

OPTIONS
The unget utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−r SID Uniquely identify which delta is no longer intended. (This would have been
specified by get as the new delta.) The use of this option is necessary only if two or
more outstanding get commands for editing on the same SCCS file were done by
the same person (login name).

−s Suppress the writing to standard output of the intended delta’s SID.

−n Retain the file that was obtained by get, which would normally be removed from
the current directory.

OPERANDS
The following operands shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the unget
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is '−', the standard input shall be read;
each line of the standard input shall be taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only when the file operand is specified as '−'. Each
line of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
Any SCCS files processed shall be files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of unget:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3494 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119240

119241

119242

119243

119244

119245

119246

119247

119248

119249

119250

119251

119252

119253

119254

119255

119256

119257

119258

119259

119260

119261

119262

119263

119264

119265

119266

119267

119268

119269

119270

119271

119272

119273

119274

119275

119276

119277

119278

119279

119280

119281

119282

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities unget

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall consist of a line for each file, in the following format:

"%s\n", <SID removed from file>

If there is more than one named file or if a directory or standard input is named, each pathname
shall be written before each of the preceding lines:

"\n%s:\n", <pathname>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Any SCCS files updated shall be files of an unspecified format. During processing of a file, a
locking z-file, as described in get, and a q-file (a working copy of the p-file), may be created and
deleted. The p-file and g-file, as described in get, shall be deleted.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
delta , get , sact

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3495

119283

119284

119285

119286

119287

119288

119289

119290

119291

119292

119293

119294

119295

119296

119297

119298

119299

119300

119301

119302

119303

119304

119305

119306

119307

119308

119309

119310

119311

119312

119313

119314

119315

119316

119317

119318

119319

119320

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unget Utilities

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3496 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119321

119322

119323

119324

119325

119326

119327

119328

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uniq

NAME
uniq — report or filter out repeated lines in a file

SYNOPSIS
uniq [-c|-d|-u] [-f fields] [-s char] [input_file [output_file]]

DESCRIPTION
The uniq utility shall read an input file comparing adjacent lines, and write one copy of each
input line on the output. The second and succeeding copies of repeated adjacent input lines shall
not be written. The trailing <newline> of each line in the input shall be ignored when doing
comparisons.

Repeated lines in the input shall not be detected if they are not adjacent.

OPTIONS
The uniq utility shall conform to XBD Section 12.2 (on page 215), except that '+' may be
recognized as an option delimiter as well as '−'.

The following options shall be supported:

−c Precede each output line with a count of the number of times the line occurred in
the input.

−d Suppress the writing of lines that are not repeated in the input.

−f fields Ignore the first fields fields on each input line when doing comparisons, where
fields is a positive decimal integer. A field is the maximal string matched by the
basic regular expression:

[[:blank:]]*[^[:blank:]]*

If the fields option-argument specifies more fields than appear on an input line, a
null string shall be used for comparison.

−s chars Ignore the first chars characters when doing comparisons, where chars shall be a
positive decimal integer. If specified in conjunction with the −f option, the first
chars characters after the first fields fields shall be ignored. If the chars option-
argument specifies more characters than remain on an input line, a null string shall
be used for comparison.

−u Suppress the writing of lines that are repeated in the input.

OPERANDS
The following operands shall be supported:

input_file A pathname of the input file. If the input_file operand is not specified, or if the
input_file is '−', the standard input shall be used.

output_file A pathname of the output file. If the output_file operand is not specified, the
standard output shall be used. The results are unspecified if the file named by
output_file is the file named by input_file.

STDIN
The standard input shall be used only if no input_file operand is specified or if input_file is '−'.
See the INPUT FILES section.

INPUT FILES
The input file shall be a text file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3497

119329

119330

119331

119332

119333

119334

119335

119336

119337

119338

119339

119340

119341

119342

119343

119344

119345

119346

119347

119348

119349

119350

119351

119352

119353

119354

119355

119356

119357

119358

119359

119360

119361

119362

119363

119364

119365

119366

119367

119368

119369

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uniq Utilities

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uniq:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and which characters constitute a <blank> in the
current locale.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be used if no output_file operand is specified, and shall be used if the
output_file operand is '−' and the implementation treats the '−' as meaning standard output.
Otherwise, the standard output shall not be used. See the OUTPUT FILES section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
If the −c option is specified, the output file shall be empty or each line shall be of the form:

"%d %s", <number of duplicates>, <line>

otherwise, the output file shall be empty or each line shall be of the form:

"%s", <line>

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

3498 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119370

119371

119372

119373

119374

119375

119376

119377

119378

119379

119380

119381

119382

119383

119384

119385

119386

119387

119388

119389

119390

119391

119392

119393

119394

119395

119396

119397

119398

119399

119400

119401

119402

119403

119404

119405

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uniq

APPLICATION USAGE
The sort utility can be used to cause repeated lines to be adjacent in the input file.

If the collating sequence of the current locale does not have a total ordering of all characters, the
behavior of sort | uniq differs from sort -u, as uniq treats lines as duplicates only if they
are identical, whereas sort -u treats lines as duplicates if they collate equally.

When using uniq to process pathnames, it is recommended that LC_ALL, or at least LC_CTYPE
and LC_COLLATE, are set to POSIX or C in the environment, since pathnames can contain byte
sequences that do not form valid characters in some locales, in which case the utility’s behavior
would be undefined. In the POSIX locale each byte is a valid single-byte character, and therefore
this problem is avoided.

EXAMPLES
The following input file data (but flushed left) was used for a test series on uniq:

#01 foo0 bar0 foo1 bar1
#02 bar0 foo1 bar1 foo1
#03 foo0 bar0 foo1 bar1
#04
#05 foo0 bar0 foo1 bar1
#06 foo0 bar0 foo1 bar1
#07 bar0 foo1 bar1 foo0

What follows is a series of test invocations of the uniq utility that use a mixture of uniq options
against the input file data. These tests verify the meaning of adjacent. The uniq utility views the
input data as a sequence of strings delimited by '\n'. Accordingly, for the fieldsth member of
the sequence, uniq interprets unique or repeated adjacent lines strictly relative to the fields+1th
member.

1. This first example tests the line counting option, comparing each line of the input file data
starting from the second field:

uniq -c -f 1 uniq_0I.t
1 #01 foo0 bar0 foo1 bar1
1 #02 bar0 foo1 bar1 foo1
1 #03 foo0 bar0 foo1 bar1
1 #04
2 #05 foo0 bar0 foo1 bar1
1 #07 bar0 foo1 bar1 foo0

The number '2', prefixing the fifth line of output, signifies that the uniq utility detected a
pair of repeated lines. Given the input data, this can only be true when uniq is run using
the −f 1 option (which shall cause uniq to ignore the first field on each input line).

2. The second example tests the option to suppress unique lines, comparing each line of the
input file data starting from the second field:

uniq -d -f 1 uniq_0I.t
#05 foo0 bar0 foo1 bar1

3. This test suppresses repeated lines, comparing each line of the input file data starting
from the second field:

uniq -u -f 1 uniq_0I.t
#01 foo0 bar0 foo1 bar1
#02 bar0 foo1 bar1 foo1
#03 foo0 bar0 foo1 bar1

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3499

119406

119407

119408

119409

119410

119411

119412

119413

119414

119415

119416

119417

119418

119419

119420

119421

119422

119423

119424

119425

119426

119427

119428

119429

119430

119431

119432

119433

119434

119435

119436

119437

119438

119439

119440

119441

119442

119443

119444

119445

119446

119447

119448

119449

119450

119451

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uniq Utilities

#04
#07 bar0 foo1 bar1 foo0

4. This suppresses unique lines, comparing each line of the input file data starting from the
third character:

uniq -d -s 2 uniq_0I.t

In the last example, the uniq utility found no input matching the above criteria.

RATIONALE
Some historical implementations have limited lines to be 1 080 bytes in length, which does not
meet the implied {LINE_MAX} limit.

Earlier versions of this standard allowed the −number and +number options. These options are no
longer specified by POSIX.1-2024 but may be present in some implementations.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
comm , sort

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent SYNOPSIS and associated text are removed.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/40 is applied, adding LC_COLLATE to the
ENVIRONMENT VARIABLES section, and changing ``the application shall ensure that’’ in the
OUTPUT FILES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that '+' may be recognized
as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied.

Austin Group Interpretation 1003.1-2001 #133 is applied, clarifying the behavior of the trailing
<newline>.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-141 is applied, updating the EXAMPLES section.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0199 [963] and XCU/TC2-2008/0200
[663] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1070 is applied, changing the APPLICATION USAGE section.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3500 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119452

119453

119454

119455

119456

119457

119458

119459

119460

119461

119462

119463

119464

119465

119466

119467

119468

119469

119470

119471

119472

119473

119474

119475

119476

119477

119478

119479

119480

119481

119482

119483

119484

119485

119486

119487

119488

119489

119490

119491

119492

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uniq

Austin Group Defect 1492 is applied, changing the EXIT STATUS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3501

119493

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

unlink Utilities

NAME
unlink — call the unlink() function

SYNOPSIS
XSI unlink file

DESCRIPTION
The unlink utility shall perform the function call:

unlink(file);

A user may need appropriate privileges to invoke the unlink utility.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

file The pathname of an existing file.

STDIN
Not used.

INPUT FILES
Not used.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of unlink:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

3502 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119494

119495

119496

119497

119498

119499

119500

119501

119502

119503

119504

119505

119506

119507

119508

119509

119510

119511

119512

119513

119514

119515

119516

119517

119518

119519

119520

119521

119522

119523

119524

119525

119526

119527

119528

119529

119530

119531

119532

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities unlink

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
link , rm

XBD Chapter 8 (on page 167)

XSH unlink()

CHANGE HISTORY
First released in Issue 5.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3503

119533

119534

119535

119536

119537

119538

119539

119540

119541

119542

119543

119544

119545

119546

119547

119548

119549

119550

119551

119552

119553

119554

119555

119556

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uucp Utilities

NAME
uucp — system-to-system copy

SYNOPSIS
UU uucp [-cCdfjmr] [-n user] source-file... destination-file

DESCRIPTION
The uucp utility shall copy files named by the source-file argument to the destination-file argument.
The files named can be on local or remote systems.

The uucp utility cannot guarantee support for all character encodings in all circumstances. For
example, transmission data may be restricted to 7 bits by the underlying network, 8-bit data and
filenames need not be portable to non-internationalized systems, and so on. Under these
circumstances, it is recommended that only characters defined in the ISO/IEC 646: 1991
standard International Reference Version (equivalent to ASCII) 7-bit range of characters be used,
and that only characters defined in the portable filename character set be used for naming files.
The protocol for transfer of files is unspecified by POSIX.1-2024.

Typical implementations of this utility require a communications line configured to use XBD
Chapter 11 (on page 199), but other communications means may be used. On systems where
there are no available communications means (either temporarily or permanently), this utility
shall write an error message describing the problem and exit with a non-zero exit status.

OPTIONS
The uucp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Do not copy local file to the spool directory for transfer to the remote machine
(default).

−C Force the copy of local files to the spool directory for transfer.

−d Make all necessary directories for the file copy (default).

−f Do not make intermediate directories for the file copy.

−j Write the job identification string to standard output. This job identification can be
used by uustat to obtain the status or terminate a job.

−m Send mail to the requester when the copy is completed.

−n user Notify user on the remote system that a file was sent.

−r Do not start the file transfer; just queue the job.

OPERANDS
The following operands shall be supported:

destination-file, source-file
A pathname of a file to be copied to, or from, respectively. Either name can be a
pathname on the local machine, or can have the form:

system-name!pathname

where system-name is taken from a list of system names that uucp knows about.
The destination system-name can also be a list of names such as:

system-name!system-name!...!system-name!pathname

in which case, an attempt is made to send the file via the specified route to the

3504 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119557

119558

119559

119560

119561

119562

119563

119564

119565

119566

119567

119568

119569

119570

119571

119572

119573

119574

119575

119576

119577

119578

119579

119580

119581

119582

119583

119584

119585

119586

119587

119588

119589

119590

119591

119592

119593

119594

119595

119596

119597

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uucp

destination. Care should be taken to ensure that intermediate nodes in the route
are willing to forward information.

The shell pattern matching notation characters '?', '*', and "[...]" appearing
in pathname shall be expanded on the appropriate system.

Pathnames can be one of:

1. An absolute pathname.

2. A pathname preceded by ˜user where user is a login name on the specified
system and is replaced by that user’s login directory. Note that if an invalid
login is specified, the default is to the public directory (called PUBDIR; the
actual location of PUBDIR is implementation-defined).

3. A pathname preceded by ˜/destination where destination is appended to
PUBDIR.

Note: This destination is treated as a filename unless more than one file is being
transferred by this request or the destination is already a directory. To
ensure that it is a directory, follow the destination with a '/'. For
example, ˜/dan/ as the destination makes the directory PUBDIR/dan if it
does not exist and puts the requested files in that directory.

4. Anything else shall be prefixed by the current directory.

If the result is an erroneous pathname for the remote system, the copy shall fail. If
the destination-file is a directory, the last part of the source-file name shall be used.

The read, write, and execute permissions given by uucp are implementation-
defined.

STDIN
Not used.

INPUT FILES
The files to be copied are regular files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uucp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within bracketed filename patterns.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within bracketed
filename patterns (for example, "'[[:lower:]]*'").

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3505

119598

119599

119600

119601

119602

119603

119604

119605

119606

119607

119608

119609

119610

119611

119612

119613

119614

119615

119616

119617

119618

119619

119620

119621

119622

119623

119624

119625

119626

119627

119628

119629

119630

119631

119632

119633

119634

119635

119636

119637

119638

119639

119640

119641

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uucp Utilities

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files (which may be on other systems) are copies of the input files.

If −m is used, mail files are modified.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is part of the UUCP Utilities option and need not be supported by all
implementations.

The domain of remotely accessible files can (and for obvious security reasons usually should) be
severely restricted.

Note that the '!' character in addresses has to be escaped when using csh as a command
interpreter because of its history substitution syntax. For ksh and sh the escape is not necessary,
but may be used.

As noted above, shell metacharacters appearing in pathnames are expanded on the appropriate
system. On an internationalized system, this is done under the control of local settings of
LC_COLLATE and LC_CTYPE. Thus, care should be taken when using bracketed filename
patterns, as collation and typing rules may vary from one system to another. Also be aware that
certain types of expression (that is, equivalence classes, character classes, and collating symbols)
need not be supported on non-internationalized systems.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

3506 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119642

119643

119644

119645

119646

119647

119648

119649

119650

119651

119652

119653

119654

119655

119656

119657

119658

119659

119660

119661

119662

119663

119664

119665

119666

119667

119668

119669

119670

119671

119672

119673

119674

119675

119676

119677

119678

119679

119680

119681

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uucp

SEE ALSO
mailx , uuencode , uustat , uux

XBD Chapter 8 (on page 167), Chapter 11 (on page 199), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

The UN margin codes and associated shading are removed from the −C, −f, −j, −n, and −r
options in response to The Open Group Base Resolution bwg2001-003.

Issue 7
SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option Group.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1516 is applied, adding XSI shading to text relating to NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3507

119682

119683

119684

119685

119686

119687

119688

119689

119690

119691

119692

119693

119694

119695

119696

119697

119698

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uudecode Utilities

NAME
uudecode — decode a binary file

SYNOPSIS
uudecode [-o outfile] [file]

DESCRIPTION
The uudecode utility shall read a file, or standard input if no file is specified, that includes data
created by the uuencode utility. The uudecode utility shall scan the input file, searching for data
compatible with one of the formats specified in uuencode, and determine the pathname for the
output file from the −o option if given, otherwise from the input data. If the pathname for the
output file is either of the magic cookies − or /dev/stdout, uudecode shall write the decoded file to
standard output, otherwise it shall attempt to create or overwrite the file named by the
pathname. The file access permission bits and contents for the file to be produced shall be
contained in the input data. The mode bits of the created file (other than standard output) shall
be set from the file access permission bits contained in the data; that is, other attributes of the
mode, including the file mode creation mask (see umask), shall not affect the file being produced.
If either of the op characters '+' and '−' (see chmod) are specified in symbolic mode, the initial
mode on which those operations are based is unspecified.

If the pathname of the file resolves to an existing file and the user does not have write
permission on that file, uudecode shall terminate with an error. If the pathname of the file resolves
to an existing file and the user has write permission on that file, the existing file shall be
overwritten and, if possible, the mode bits of the file (other than standard output) shall be set as
described above; if the mode bits cannot be set, uudecode shall not treat this as an error.

If the input data was produced by uuencode on a system with a different number of bits per byte
than on the target system, the results of uudecode are unspecified.

OPTIONS
The uudecode utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported by the implementation:

−o outfile A pathname of a file that shall be used instead of any pathname contained in the
input data. Specifying an outfile option-argument of − or /dev/stdout shall indicate
standard output.

OPERANDS
The following operand shall be supported:

file The pathname of a file containing the output of uuencode.

STDIN
See the INPUT FILES section.

INPUT FILES
The input files shall be files containing the output of uuencode.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uudecode:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

3508 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119699

119700

119701

119702

119703

119704

119705

119706

119707

119708

119709

119710

119711

119712

119713

119714

119715

119716

119717

119718

119719

119720

119721

119722

119723

119724

119725

119726

119727

119728

119729

119730

119731

119732

119733

119734

119735

119736

119737

119738

119739

119740

119741

119742

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uudecode

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the pathname specified for the output file is − or /dev/stdout, the standard output shall be in
the same format as the file originally encoded by uuencode. Otherwise, the standard output shall
not be used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output file shall be in the same format as the file originally encoded by uuencode.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The user who is invoking uudecode must have write permission on any file being created.

The output of uuencode is essentially an encoded bit stream that is not cognizant of byte
boundaries. It is possible that a 9-bit byte target machine can process input from an 8-bit source,
if it is aware of the requirement, but the reverse is unlikely to be satisfying. Of course, the only
data that is meaningful for such a transfer between architectures is generally character data.

In order to create an output file named −, it needs to be specified using an alternative pathname,
for example, −o ./−, since − alone is considered a magic cookie by uudecode. Likewise, in order to
write to an output file named /dev/stdout it also needs to be specified as, for example, −o
///dev/stdout.

EXAMPLES
None.

RATIONALE
Input files are not necessarily text files, as stated by an early proposal. Although the uuencode
output is a text file, that output could have been wrapped within another file or mail message
that is not a text file.

The −o option is not historical practice, but was added at the request of WG15 so that the user
could override the target pathname without having to edit the input data itself.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3509

119743

119744

119745

119746

119747

119748

119749

119750

119751

119752

119753

119754

119755

119756

119757

119758

119759

119760

119761

119762

119763

119764

119765

119766

119767

119768

119769

119770

119771

119772

119773

119774

119775

119776

119777

119778

119779

119780

119781

119782

119783

119784

119785

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uudecode Utilities

In early drafts, the [−o outfile] option-argument allowed the use of − to mean standard output.
The standard developers did not wish to overload the meaning of − in this manner, resulting in
previous versions only using /dev/stdout for this purpose. POSIX.1-2024 now allows it as most
implementations were already supporting − as an extension. The file /dev/stdout exists as a
special file on most modern systems. However, the /dev/stdout syntax in uudecode does not refer
to a new file. It is just a magic cookie to specify standard output.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
chmod , umask , uuencode

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The −o outfile option is added, as specified in the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/35 is applied, clarifying in the
DESCRIPTION that the initial mode used if either of the op characters is '+' or '−' is
unspecified.

Issue 7
The uudecode utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0201 [635] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1544 is applied, changing the −o option to require that an option-argument
of − is treated as meaning standard output.

3510 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119786

119787

119788

119789

119790

119791

119792

119793

119794

119795

119796

119797

119798

119799

119800

119801

119802

119803

119804

119805

119806

119807

119808

119809

119810

119811

119812

119813

119814

119815

119816

119817

119818

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uuencode

NAME
uuencode — encode a binary file

SYNOPSIS
uuencode [-m] [file] decode_pathname

DESCRIPTION
The uuencode utility shall write an encoded version of the named input file, or standard input if
no file is specified, to standard output. The output shall be encoded using one of the algorithms
described in the STDOUT section and shall include the file access permission bits (in chmod octal
or symbolic notation) of the input file and the decode_pathname, for re-creation of the file on
another system that conforms to this volume of POSIX.1-2024.

OPTIONS
The uuencode utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported by the implementation:

−m Encode the output using the MIME Base64 algorithm described in STDOUT. If −m
is not specified, the historical algorithm described in STDOUT shall be used.

OPERANDS
The following operands shall be supported:

decode_pathname
The pathname of the file into which the uudecode utility shall place the decoded
file. Specifying a decode_pathname operand of − or /dev/stdout shall indicate that
uudecode is to use standard output. If there are characters in decode_pathname that
are not in the portable filename character set the results are unspecified.

file A pathname of the file to be encoded.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files can be files of any type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uuencode:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3511

119819

119820

119821

119822

119823

119824

119825

119826

119827

119828

119829

119830

119831

119832

119833

119834

119835

119836

119837

119838

119839

119840

119841

119842

119843

119844

119845

119846

119847

119848

119849

119850

119851

119852

119853

119854

119855

119856

119857

119858

119859

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uuencode Utilities

ASYNCHRONOUS EVENTS
Default.

STDOUT

uuencode Base64 Algorithm

The standard output shall be a text file (encoded in the character set of the current locale) that
begins with the line:

"begin-base64Δ%sΔ%s\n", <mode>, <decode_pathname>

and ends with the line:

"====\n"

In both cases, the lines shall have no preceding or trailing <blank> characters.

The encoding process represents 24-bit groups of input bits as output strings of four encoded
characters. Proceeding from left to right, a 24-bit input group shall be formed by concatenating
three 8-bit input groups. Each 24-bit input group then shall be treated as four concatenated 6-bit
groups, each of which shall be translated into a single digit in the Base64 alphabet. When
encoding a bit stream via the Base64 encoding, the bit stream shall be presumed to be ordered
with the most-significant bit first. That is, the first bit in the stream shall be the high-order bit in
the first byte, and the eighth bit shall be the low-order bit in the first byte, and so on. Each 6-bit
group is used as an index into an array of 64 printable characters, as shown in Table 3-22.

Table 3-22 uuencode Base64 Values

Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8

10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y

The character referenced by the index shall be placed in the output string.

The output stream (encoded bytes) shall be represented in lines of no more than 76 characters
each. All line breaks or other characters not found in the table shall be ignored by decoding
software (see uudecode).

Special processing shall be performed if fewer than 24 bits are available at the end of a message
or encapsulated part of a message. A full encoding quantum shall always be completed at the

3512 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119860

119861

119862

119863

119864

119865

119866

119867

119868

119869

119870

119871

119872

119873

119874

119875

119876

119877

119878

119879

119880

119881

119882

119883

119884

119885

119886

119887

119888

119889

119890

119891

119892

119893

119894

119895

119896

119897

119898

119899

119900

119901

119902

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uuencode

end of a message. When fewer than 24 input bits are available in an input group, zero bits shall
be added (on the right) to form an integral number of 6-bit groups. Output character positions
that are not required to represent actual input data shall be set to the character '='. Since all
Base64 input is an integral number of octets, only the following cases can arise:

1. The final quantum of encoding input is an integral multiple of 24 bits; here, the final unit
of encoded output shall be an integral multiple of 4 characters with no '=' padding.

2. The final quantum of encoding input is exactly 16 bits; here, the final unit of encoded
output shall be three characters followed by one '=' padding character.

3. The final quantum of encoding input is exactly 8 bits; here, the final unit of encoded
output shall be two characters followed by two '=' padding characters.

A terminating "====" evaluates to nothing and denotes the end of the encoded data.

uuencode Historical Algorithm

The standard output shall be a text file (encoded in the character set of the current locale) that
begins with the line:

"beginΔ%sΔ%s\n" <mode>, <decode_pathname>

and ends with the line:

"end\n"

In both cases, the lines shall have no preceding or trailing <blank> characters.

The algorithm that shall be used for lines in between begin and end takes three octets as input
and writes four characters of output by splitting the input at six-bit intervals into four octets,
containing data in the lower six bits only. These octets shall be converted to characters in the
ISO/IEC 646: 1991 standard encoded character set by adding a value of 0x20 to each octet, so
that each octet is in the range [0x20,0x5f], and then optionally replacing any 0x20 octets with
0x60. If necessary, these characters shall then be translated into the corresponding character
codes for the codeset in use in the current locale. For example, the octet 0x41, representing 'A',
would be translated to 'A' in the current codeset, such as 0xc1 if it were EBCDIC; the octet 0x20,
representing <space>, would optionally be replaced with 0x60, representing '`', and then
translated to either <space> (0x40 if EBCDIC) or '`' (0x79 if EBCDIC), respectively.

Where the bits of two octets are combined, the least significant bits of the first octet shall be
shifted left and combined with the most significant bits of the second octet shifted right. Thus
the three octets A, B, C shall be converted into the four octets:

0x20 + ((A >> 2) & 0x3F)
0x20 + (((A << 4) | ((B >> 4) & 0xF)) & 0x3F)
0x20 + (((B << 2) | ((C >> 6) & 0x3)) & 0x3F)
0x20 + ((C) & 0x3F)

before any replacement of 0x20 with 0x60 and translation into the local character set.

Each encoded line shall contain a length character, equal to the number of characters to be
decoded plus 0x20 translated to the local character set as described above, followed by between
1 and 45, inclusive, encoded characters. The last encoded line, or the begin line if the input is
empty, shall be followed by a line containing only a <space> or '`' character before the
terminating <newline>.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3513

119903

119904

119905

119906

119907

119908

119909

119910

119911

119912

119913

119914

119915

119916

119917

119918

119919

119920

119921

119922

119923

119924

119925

119926

119927

119928

119929

119930

119931

119932

119933

119934

119935

119936

119937

119938

119939

119940

119941

119942

119943

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uuencode Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The file is expanded by 35 percent (each three octets become four, plus control information)
causing it to take longer to transmit.

Since this utility is intended to create files to be used for data interchange between systems with
possibly different codesets, and to represent binary data as a text file, the ISO/IEC 646: 1991
standard was chosen for a midpoint in the algorithm as a known reference point. The output
from uuencode is a text file on the local system. If the output were in the ISO/IEC 646: 1991
standard codeset, it might not be a text file (at least because the <newline> characters might not
match), and the goal of creating a text file would be defeated. If this text file was then carried to
another machine with the same codeset, it would be perfectly compatible with that system’s
uudecode. If it was transmitted over a mail system or sent to a machine with a different codeset,
it is assumed that, as for every other text file, some translation mechanism would convert it (by
the time it reached a user on the other system) into an appropriate codeset. This translation only
makes sense from the local codeset, not if the file has been put into a ISO/IEC 646: 1991 standard
representation first. Similarly, files processed by uuencode can be placed in pax archives,
intermixed with other text files in the same codeset.

Since uudecode treats a decode_pathname of − to mean decode to standard output, in order to
specify that a file named − is to be created, decode_pathname should be specified using an
alternative pathname, for example ./−. Likewise, in order to specify that a file with the
pathname /dev/stdout is to be written, decode_pathname should be specified as, for example,
///dev/stdout.

EXAMPLES
None.

RATIONALE
A new algorithm was added at the request of the international community to parallel work in
RFC 2045 (MIME). As with the historical uuencode format, the Base64 Content-Transfer-Encoding
is designed to represent arbitrary sequences of octets in a form that is not humanly readable. A
65-character subset of the ISO/IEC 646: 1991 standard is used, enabling 6 bits to be represented
per printable character. (The extra 65th character, '=', is used to signify a special processing
function.)

This subset has the important property that it is represented identically in all versions of the
ISO/IEC 646: 1991 standard, including US ASCII, and all characters in the subset are also
represented identically in all versions of EBCDIC. The historical uuencode algorithm does not
share this property, which is the reason that a second algorithm was added to the ISO POSIX-2

3514 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

119944

119945

119946

119947

119948

119949

119950

119951

119952

119953

119954

119955

119956

119957

119958

119959

119960

119961

119962

119963

119964

119965

119966

119967

119968

119969

119970

119971

119972

119973

119974

119975

119976

119977

119978

119979

119980

119981

119982

119983

119984

119985

119986

119987

119988

119989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uuencode

standard.

The string "====" was used for the termination instead of the end used in the original format
because the latter is a string that could be valid encoded input.

In an early draft, the −m option was named −b (for Base64), but it was renamed to reflect its
relationship to the RFC 2045. A −u was also present to invoke the default algorithm, but since
this was not historical practice, it was omitted as being unnecessary.

See the RATIONALE section in uudecode for the derivation of the /dev/stdout symbol.

Historically the encoding used only octets in the range [0x20,0x5f], and thus the encoded lines
could contain trailing spaces, which were at risk of being stripped by whatever transport
method was used to send the file. To avoid this problem some implementations use 0x60
instead of 0x20, resulting in '`' characters instead of spaces in the output, and implementations
are encouraged to do this.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , mailx , uudecode

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The Base64 algorithm and the ability to output to /dev/stdout are added as specified in the
IEEE P1003.2b draft standard.

Issue 7
The uuencode utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1140 is applied, changing the description of the uuencode historical
algorithm.

Austin Group Defect 1544 is applied, changing the OPERANDS and APPLICATION USAGE
sections.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3515

119990

119991

119992

119993

119994

119995

119996

119997

119998

119999

120000

120001

120002

120003

120004

120005

120006

120007

120008

120009

120010

120011

120012

120013

120014

120015

120016

120017

120018

120019

120020

120021

120022

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uustat Utilities

NAME
uustat — uucp status enquiry and job control

SYNOPSIS
UU uustat [-q|-k jobid|-r jobid]

uustat [-s system] [-u user]

DESCRIPTION
The uustat utility shall display the status of, or cancel, previously specified uucp requests, or
provide general status on uucp connections to other systems.

When no options are given, uustat shall write to standard output the status of all uucp requests
issued by the current user.

Typical implementations of this utility require a communications line configured to use XBD
Chapter 11 (on page 199), but other communications means may be used. On systems where
there are no available communications means (either temporarily or permanently), this utility
shall write an error message describing the problem and exit with a non-zero exit status.

OPTIONS
The uustat utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−q Write the jobs queued for each machine.

−k jobid Kill the uucp request whose job identification is jobid. The application shall ensure
that the killed uucp request belongs to the person invoking uustat unless that user
has appropriate privileges.

−r jobid Rejuvenate jobid. The files associated with jobid are touched so that their
modification time is set to the current time. This prevents the cleanup program
from deleting the job until the jobs modification time reaches the limit imposed by
the program.

−s system Write the status of all uucp requests for remote system system.

−u user Write the status of all uucp requests issued by user.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uustat:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

3516 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120023

120024

120025

120026

120027

120028

120029

120030

120031

120032

120033

120034

120035

120036

120037

120038

120039

120040

120041

120042

120043

120044

120045

120046

120047

120048

120049

120050

120051

120052

120053

120054

120055

120056

120057

120058

120059

120060

120061

120062

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uustat

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall consist of information about each job selected, in an unspecified
format. The information shall include at least the job ID, the user ID or name, and the remote
system name.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is part of the UUCP Utilities option and need not be supported by all
implementations.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uucp

XBD Chapter 8 (on page 167), Chapter 11 (on page 199), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3517

120063

120064

120065

120066

120067

120068

120069

120070

120071

120072

120073

120074

120075

120076

120077

120078

120079

120080

120081

120082

120083

120084

120085

120086

120087

120088

120089

120090

120091

120092

120093

120094

120095

120096

120097

120098

120099

120100

120101

120102

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uustat Utilities

Issue 6
The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

The UN margin code and associated shading are removed from the −q option in response to The
Open Group Base Resolution bwg2001-003.

Issue 7
SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option Group.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1516 is applied, adding XSI shading to text relating to NLSPATH.

3518 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120103

120104

120105

120106

120107

120108

120109

120110

120111

120112

120113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uux

NAME
uux — remote command execution

SYNOPSIS
UU uux [-jnp] command-string

DESCRIPTION
The uux utility shall gather zero or more files from various systems, execute a shell pipeline (see
Section 2.9, on page 2499) on a specified system, and then send the standard output of the
command to a file on a specified system. Only the first command of a pipeline can have a system-
name! prefix. All other commands in the pipeline shall be executed on the system of the first
command.

The following restrictions are applicable to the shell pipeline processed by uux:

• In gathering files from different systems, pathname expansion shall not be performed by
uux. Thus, a request such as:

uux "c17 remsys!~/*.c"

would attempt to copy the file named literally *.c to the local system.

• The redirection operators ">>", "<<", ">|", and ">&" shall not be accepted. Any use of
these redirection operators shall cause this utility to write an error message describing the
problem and exit with a non-zero exit status.

• The reserved word ! cannot be used at the head of the pipeline to modify the exit status.
(See the command-string operand description below.)

• Alias substitution shall not be performed.

A filename can be specified as for uucp; it can be an absolute pathname, a pathname preceded by
˜name (which is replaced by the corresponding login directory), a pathname specified as ˜/dest
(dest is prefixed by the public directory called PUBDIR; the actual location of PUBDIR is
implementation-defined), or a simple filename (which is prefixed by uux with the current
directory). See uucp for the details.

The execution of commands on remote systems shall take place in an execution directory known
to the uucp system. All files required for the execution shall be put into this directory unless they
already reside on that machine. Therefore, the application shall ensure that non-local filenames
(without path or machine reference) are unique within the uux request.

The uux utility shall attempt to get all files to the execution system. For files that are output files,
the application shall ensure that the filename is escaped using parentheses.

The remote system shall notify the user by mail if the requested command on the remote system
was disallowed or the files were not accessible. This notification can be turned off by the −n
option.

Typical implementations of this utility require a communications line configured to use XBD
Chapter 11 (on page 199), but other communications means may be used. On systems where
there are no available communications means (either temporarily or permanently), this utility
shall write an error message describing the problem and exit with a non-zero exit status.

The uux utility cannot guarantee support for all character encodings in all circumstances. For
example, transmission data may be restricted to 7 bits by the underlying network, 8-bit data and
filenames need not be portable to non-internationalized systems, and so on. Under these
circumstances, it is recommended that only characters defined in the ISO/IEC 646: 1991
standard International Reference Version (equivalent to ASCII) 7-bit range of characters be used

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3519

120114

120115

120116

120117

120118

120119

120120

120121

120122

120123

120124

120125

120126

120127

120128

120129

120130

120131

120132

120133

120134

120135

120136

120137

120138

120139

120140

120141

120142

120143

120144

120145

120146

120147

120148

120149

120150

120151

120152

120153

120154

120155

120156

120157

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uux Utilities

and that only characters defined in the portable filename character set be used for naming files.

OPTIONS
The uux utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−j Write the job identification string to standard output. This job identification can be
used by uustat to obtain the status or terminate a job.

−n Do not notify the user if the command fails.

−p Make the standard input to uux the standard input to the command-string.

OPERANDS
The following operand shall be supported:

command-string
A string made up of one or more arguments that are similar to normal command
arguments, except that the command and any filenames can be prefixed by system-
name!. A null system-name shall be interpreted as the local system.

STDIN
The standard input shall not be used unless the '−' or −p option is specified; in those cases, the
standard input shall be made the standard input of the command-string.

INPUT FILES
Input files shall be selected according to the contents of command-string.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uux:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall not be used unless the −j option is specified; in that case, the job
identification string shall be written to standard output in the following format:

"%s\n", <jobid>

3520 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120158

120159

120160

120161

120162

120163

120164

120165

120166

120167

120168

120169

120170

120171

120172

120173

120174

120175

120176

120177

120178

120179

120180

120181

120182

120183

120184

120185

120186

120187

120188

120189

120190

120191

120192

120193

120194

120195

120196

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities uux

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Output files shall be created or written, or both, according to the contents of command-string.

If −n is not used, mail files shall be modified following any command or file-access failures on
the remote system.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is part of the UUCP Utilities option and need not be supported by all
implementations.

Note that, for security reasons, many installations limit the list of commands executable on
behalf of an incoming request from uux. Many sites permit little more than the receipt of mail
via uux.

Any characters special to the command interpreter should be quoted either by quoting the entire
command-string or quoting the special characters as individual arguments.

As noted in uucp, shell pattern matching notation characters appearing in pathnames are
expanded on the appropriate local system. This is done under the control of local settings of
LC_COLLATE and LC_CTYPE. Thus, care should be taken when using bracketed filename
patterns, as collation and typing rules may vary from one system to another. Also be aware that
certain types of expression (that is, equivalence classes, character classes, and collating symbols)
need not be supported on non-internationalized systems.

EXAMPLES

1. The following command gets file1 from system a and file2 from system b, executes diff on
the local system, and puts the results in file.diff in the local PUBDIR directory. (PUBDIR
is the uucp public directory on the local system.)

uux "!diff a!/usr/file1 b!/a4/file2 >!~/file.diff"

2. The following command fails because uux places all files copied to a system in the same
working directory. Although the files xyz are from two different systems, their filenames
are the same and conflict.

uux "!diff a!/usr1/xyz b!/usr2/xyz >!~/xyz.diff"

3. The following command succeeds (assuming diff is permitted on system a) because the
file local to system a is not copied to the working directory, and hence does not conflict
with the file from system c.

uux "a!diff a!/usr/xyz c!/usr/xyz >!~/xyz.diff"

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3521

120197

120198

120199

120200

120201

120202

120203

120204

120205

120206

120207

120208

120209

120210

120211

120212

120213

120214

120215

120216

120217

120218

120219

120220

120221

120222

120223

120224

120225

120226

120227

120228

120229

120230

120231

120232

120233

120234

120235

120236

120237

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

uux Utilities

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2472), uucp , uuencode , uustat

XBD Chapter 8 (on page 167), Chapter 11 (on page 199), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent SYNOPSIS is removed.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

The UN margin code and associated shading are removed from the −j option in response to The
Open Group Base Resolution bwg2001-003.

Issue 7
SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option Group.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1516 is applied, adding XSI shading to text relating to NLSPATH.

3522 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120238

120239

120240

120241

120242

120243

120244

120245

120246

120247

120248

120249

120250

120251

120252

120253

120254

120255

120256

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities val

NAME
val — validate SCCS files (DEVELOPMENT)

SYNOPSIS
XSI val -

val [-s] [-m name] [-r SID] [-y type] file...

DESCRIPTION
The val utility shall determine whether the specified file is an SCCS file meeting the
characteristics specified by the options.

OPTIONS
The val utility shall conform to XBD Section 12.2 (on page 215), except that the usage of the '−'
operand is not strictly as intended by the guidelines (that is, reading options and operands from
standard input).

The following options shall be supported:

−m name Specify a name, which is compared with the SCCS %M% keyword in file; see get .

−r SID Specify a SID (SCCS Identification String), an SCCS delta number. A check shall be
made to determine whether the SID is ambiguous (for example, −r 1 is ambiguous
because it physically does not exist but implies 1.1, 1.2, and so on, which may exist)
or invalid (for example, −r 1.0 or −r 1.1.0 are invalid because neither case can exist
as a valid delta number). If the SID is valid and not ambiguous, a check shall be
made to determine whether it actually exists.

−s Silence the diagnostic message normally written to standard output for any error
that is detected while processing each named file on a given command line.

−y type Specify a type, which shall be compared with the SCCS %Y% keyword in file; see
get .

OPERANDS
The following operands shall be supported:

file A pathname of an existing SCCS file. If exactly one file operand appears, and it is
'−', the standard input shall be read: each line shall be independently processed
as if it were a command line argument list. (However, the line is not subjected to
any of the shell word expansions, such as parameter expansion or quote removal.)

STDIN
The standard input shall be a text file used only when the file operand is specified as '−'.

INPUT FILES
Any SCCS files processed shall be files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of val:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3523

120257

120258

120259

120260

120261

120262

120263

120264

120265

120266

120267

120268

120269

120270

120271

120272

120273

120274

120275

120276

120277

120278

120279

120280

120281

120282

120283

120284

120285

120286

120287

120288

120289

120290

120291

120292

120293

120294

120295

120296

120297

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

val Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall consist of informative messages about either:

1. Each file processed

2. Each command line read from standard input

If the standard input is not used, for each file operand yielding a discrepancy, the output line
shall have the following format:

"%s: %s\n", <pathname>, <unspecified string>

If the standard input is used, for each input line yielding a discrepancy, the output shall have the
following format:

"%s\n\n %s: %s\n", <input>, <pathname>, <unspecified string>

where <input> is the input line minus its terminating <newline>.

STDERR
Not used.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The 8-bit code returned by val shall be a disjunction of the possible errors; that is, it can be
interpreted as a bit string where set bits are interpreted as follows:

0x80 = Missing file argument.
0x40 = Unknown or duplicate option.
0x20 = Corrupted SCCS file.
0x10 = Cannot open file or file not SCCS.
0x08 = SID is invalid or ambiguous.
0x04 = SID does not exist.
0x02 = %Y%, −y mismatch.
0x01 = %M%, −m mismatch.

Note that val can process two or more files on a given command line and can process multiple
command lines (when reading the standard input). In these cases an aggregate code shall be
returned: a logical OR of the codes generated for each command line and file processed.

3524 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120298

120299

120300

120301

120302

120303

120304

120305

120306

120307

120308

120309

120310

120311

120312

120313

120314

120315

120316

120317

120318

120319

120320

120321

120322

120323

120324

120325

120326

120327

120328

120329

120330

120331

120332

120333

120334

120335

120336

120337

120338

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities val

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since the val exit status sets the 0x80 bit, shell applications checking "$?" cannot tell if it
terminated due to a missing file argument or receipt of a signal.

EXAMPLES
In a directory with three SCCS files—s.x (of t type ``text’’), s.y, and s.z (a corrupted file)—the
following command could produce the output shown:

val - <<EOF
-y source s.x
-m y s.y
s.z
EOF
-y source s.x

s.x: %Y%, -y mismatch
s.z

s.z: corrupted SCCS file

RATIONALE
None.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
admin , delta , get , prs

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The Open Group Corrigendum U025/4 is applied, correcting a typographical error in the EXIT
STATUS.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0147 [416] and XCU/TC1-2008/0148
[416] are applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3525

120339

120340

120341

120342

120343

120344

120345

120346

120347

120348

120349

120350

120351

120352

120353

120354

120355

120356

120357

120358

120359

120360

120361

120362

120363

120364

120365

120366

120367

120368

120369

120370

120371

120372

120373

120374

120375

120376

120377

120378

120379

120380

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

NAME
vi — screen-oriented (visual) display editor

SYNOPSIS
UP vi [-rR] [-c command] [-t tagstring] [-w size] [file...]

DESCRIPTION
This utility shall be provided on systems that both support the User Portability Utilities option
and define the POSIX2_CHAR_TERM symbol. On other systems it is optional.

The vi (visual) utility is a screen-oriented text editor. Only the open and visual modes of the
editor are described in POSIX.1-2024; see the line editor ex for additional editing capabilities
used in vi. The user can switch back and forth between vi and ex and execute ex commands from
within vi.

This reference page uses the term edit buffer to describe the current working text. No specific
implementation is implied by this term. All editing changes are performed on the edit buffer,
and no changes to it shall affect any file until an editor command writes the file.

When using vi, the terminal screen acts as a window into the editing buffer. Changes made to
the editing buffer shall be reflected in the screen display; the position of the cursor on the screen
shall indicate the position within the editing buffer.

Certain terminals do not have all the capabilities necessary to support the complete vi definition.
When these commands cannot be supported on such terminals, this condition shall not produce
an error message such as ``not an editor command’’ or report a syntax error. The implementation
may either accept the commands and produce results on the screen that are the result of an
unsuccessful attempt to meet the requirements of this volume of POSIX.1-2024 or report an error
describing the terminal-related deficiency.

OPTIONS
The vi utility shall conform to XBD Section 12.2 (on page 215), except that '+' may be
recognized as an option delimiter as well as '−'.

The following options shall be supported:

−c command See the ex command description of the −c option.

−r See the ex command description of the −r option.

−R See the ex command description of the −R option.

−t tagstring See the ex command description of the −t option.

−w size See the ex command description of the −w option.

OPERANDS
See the OPERANDS section of the ex command for a description of the operands supported by
the vi command.

STDIN
If standard input is not a terminal device, the results are undefined. The standard input consists
of a series of commands and input text, as described in the EXTENDED DESCRIPTION section.

If a read from the standard input returns an error, or if the editor detects an end-of-file condition
from the standard input, it shall be equivalent to a SIGHUP asynchronous event.

3526 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120381

120382

120383

120384

120385

120386

120387

120388

120389

120390

120391

120392

120393

120394

120395

120396

120397

120398

120399

120400

120401

120402

120403

120404

120405

120406

120407

120408

120409

120410

120411

120412

120413

120414

120415

120416

120417

120418

120419

120420

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

INPUT FILES
See the INPUT FILES section of the ex command for a description of the input files supported by
the vi command.

ENVIRONMENT VARIABLES
See the ENVIRONMENT VARIABLES section of the ex command for the environment variables
that affect the execution of the vi command.

ASYNCHRONOUS EVENTS
See the ASYNCHRONOUS EVENTS section of the ex for the asynchronous events that affect the
execution of the vi command.

STDOUT
If standard output is not a terminal device, undefined results occur.

Standard output may be used for writing prompts to the user, for informational messages, and
for writing lines from the file.

STDERR
If standard output is not a terminal device, undefined results occur.

The standard error shall be used only for diagnostic messages.

OUTPUT FILES
See the OUTPUT FILES section of the ex command for a description of the output files
supported by the vi command.

EXTENDED DESCRIPTION
If the terminal does not have the capabilities necessary to support an unspecified portion of the
vi definition, implementations shall start initially in ex mode or open mode. Otherwise, after
initialization, vi shall be in command mode; text input mode can be entered by one of several
commands used to insert or change text. In text input mode, <ESC> can be used to return to
command mode; other uses of <ESC> are described later in this section; see Terminate
Command or Input Mode (on page 3536).

Initialization in ex and vi

See Initialization in ex and vi (on page 2842) for a description of ex and vi initialization for the vi
utility.

Command Descriptions in vi

The following symbols are used in this reference page to represent arguments to commands.

buffer See the description of buffer in the EXTENDED DESCRIPTION section of the ex utility;
see Command Descriptions in ex (on page 2852).

In open and visual mode, when a command synopsis shows both [buffer] and [count]
preceding the command name, they can be specified in either order.

count A positive integer used as an optional argument to most commands, either to give a
repeat count or as a size. This argument is optional and shall default to 1 unless
otherwise specified.

The Synopsis lines for the vi commands <control>-G, <control>-L, <control>-R,
<control>-], %, &, ˆ, D, m, M, Q, u, U, and ZZ do not have count as an optional
argument. Regardless, it shall not be an error to specify a count to these commands, and
any specified count shall be ignored.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3527

120421

120422

120423

120424

120425

120426

120427

120428

120429

120430

120431

120432

120433

120434

120435

120436

120437

120438

120439

120440

120441

120442

120443

120444

120445

120446

120447

120448

120449

120450

120451

120452

120453

120454

120455

120456

120457

120458

120459

120460

120461

120462

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

motion An optional trailing argument used by the !, <, >, c, d, and y commands, which is used
to indicate the region of text that shall be affected by the command. The motion can be
either one of the command characters repeated or one of several other vi commands
(listed in the following table). Each of the applicable commands specifies the region of
text matched by repeating the command; each command that can be used as a motion
command specifies the region of text it affects.

Commands that take motion arguments operate on either lines or characters, depending
on the circumstances. When operating on lines, all lines that fall partially or wholly
within the text region specified for the command shall be affected. When operating on
characters, only the exact characters in the specified text region shall be affected. Each
motion command specifies this individually.

When commands that may be motion commands are not used as motion commands,
they shall set the current position to the current line and column as specified.

The following commands shall be valid cursor motion commands:

<apostrophe> (- j H
<carriage-return>) $ k L
<comma> [[% l M
<control>-H]] _ n N
<control>-N { ; t T
<control>-P } ? w W
<grave-accent> ^ b B
<newline> + e E
<space> | f F
<zero> / h G

Any count that is specified to a command that has an associated motion command shall
be applied to the motion command. If a count is applied to both the command and its
associated motion command, the effect shall be multiplicative.

The following symbols are used in this section to specify locations in the edit buffer:

current character
The character that is currently indicated by the cursor.

end of a line
The point located between the last non-<newline> (if any) and the terminating
<newline> of a line. For an empty line, this location coincides with the beginning of the
line.

end of the edit buffer
The location corresponding to the end of the last line in the edit buffer.

The following symbols are used in this section to specify command actions:

bigword In the POSIX locale, vi shall recognize four kinds of bigwords:

1. A maximal sequence of non-<blank> characters preceded and followed by
<blank> characters or the beginning or end of a line or the edit buffer

2. One or more sequential blank lines

3. The first character in the edit buffer

3528 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120463

120464

120465

120466

120467

120468

120469

120470

120471

120472

120473

120474

120475

120476

120477

120478

120479

120480

120481

120482

120483

120484

120485

120486

120487

120488

120489

120490

120491

120492

120493

120494

120495

120496

120497

120498

120499

120500

120501

120502

120503

120504

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

4. The last non-<newline> in the edit buffer

word In the POSIX locale, vi shall recognize five kinds of words:

1. A maximal sequence of letters, digits, and underscores, delimited at both ends
by:

— Characters other than letters, digits, or underscores

— The beginning or end of a line

— The beginning or end of the edit buffer

2. A maximal sequence of characters other than letters, digits, underscores, or
<blank> characters, delimited at both ends by:

— A letter, digit, underscore

— <blank> characters

— The beginning or end of a line

— The beginning or end of the edit buffer

3. One or more sequential blank lines

4. The first character in the edit buffer

5. The last non-<newline> in the edit buffer

section boundary
A section boundary is one of the following:

1. A line whose first character is a <form-feed>

2. A line whose first character is an open curly brace ('{')

3. A line whose first character is a <period> and whose second and third characters
match a two-character pair in the sections edit option (see ex)

4. A line whose first character is a <period> and whose only other character
matches the first character of a two-character pair in the sections edit option,
where the second character of the two-character pair is a <space>

5. The first line of the edit buffer

6. The last line of the edit buffer if the last line of the edit buffer is empty or if it is a
]] or } command; otherwise, the last non-<newline> of the last line of the edit
buffer

paragraph boundary
A paragraph boundary is one of the following:

1. A section boundary

2. A line whose first character is a <period> and whose second and third characters
match a two-character pair in the paragraphs edit option (see ex)

3. A line whose first character is a <period> and whose only other character
matches the first character of a two-character pair in the paragraphs edit option,
where the second character of the two-character pair is a <space>

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3529

120505

120506

120507

120508

120509

120510

120511

120512

120513

120514

120515

120516

120517

120518

120519

120520

120521

120522

120523

120524

120525

120526

120527

120528

120529

120530

120531

120532

120533

120534

120535

120536

120537

120538

120539

120540

120541

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

4. One or more sequential blank lines

remembered search direction
See the description of remembered search direction in ex.

sentence boundary
A sentence boundary is one of the following:

1. A paragraph boundary

2. The first non-<blank> that occurs after a paragraph boundary

3. The first non-<blank> that occurs after a <period> ('.'), <exclamation-mark>
('!'), or <question-mark> ('?'), followed by two <space> characters or the end
of a line; any number of closing parenthesis (')'), closing brackets (']'),
double-quote ('"'), or single-quote (<apostrophe>) characters can appear
between the punctuation mark and the two <space> characters or end-of-line

In the remainder of the description of the vi utility, the term ``buffer line’’ refers to a line in the
edit buffer and the term ``display line’’ refers to the line or lines on the display screen used to
display one buffer line. The term ``current line’’ refers to a specific ``buffer line’’.

If there are display lines on the screen for which there are no corresponding buffer lines because
they correspond to lines that would be after the end of the file, they shall be displayed as a single
<tilde> ('~') character, plus the terminating <newline>.

The last line of the screen shall be used to report errors or display informational messages. It
shall also be used to display the input for ``line-oriented commands’’ (/, ?, :, and !). When a line-
oriented command is executed, the editor shall enter text input mode on the last line on the
screen, using the respective command characters as prompt characters. (In the case of the !
command, the associated motion shall be entered by the user before the editor enters text input
mode.) The line entered by the user shall be terminated by a <newline>, a
non-<control>-V-escaped <carriage-return>, or unescaped <ESC>. It is unspecified if more
characters than require a display width minus one column number of screen columns can be
entered.

If any command is executed that overwrites a portion of the screen other than the last line of the
screen (for example, the ex suspend or ! commands), other than the ex shell command, the user
shall be prompted for a character before the screen is refreshed and the edit session continued.

<tab> characters shall take up the number of columns on the screen set by the tabstop edit
option (see ex), unless there are less than that number of columns before the display margin that
will cause the displayed line to be folded; in this case, they shall only take up the number of
columns up to that boundary.

The cursor shall be placed on the current line and relative to the current column as specified by
each command described in the following sections.

In open mode, if the current line is not already displayed, then it shall be displayed.

In visual mode, if the current line is not displayed, then the lines that are displayed shall be
expanded, scrolled, or redrawn to cause an unspecified portion of the current line to be
displayed. If the screen is redrawn, no more than the number of display lines specified by the
value of the window edit option shall be displayed (unless the current line cannot be completely
displayed in the number of display lines specified by the window edit option) and the current
line shall be positioned as close to the center of the displayed lines as possible (within the
constraints imposed by the distance of the line from the beginning or end of the edit buffer). If
the current line is before the first line in the display and the screen is scrolled, an unspecified

3530 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120542

120543

120544

120545

120546

120547

120548

120549

120550

120551

120552

120553

120554

120555

120556

120557

120558

120559

120560

120561

120562

120563

120564

120565

120566

120567

120568

120569

120570

120571

120572

120573

120574

120575

120576

120577

120578

120579

120580

120581

120582

120583

120584

120585

120586

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

portion of the current line shall be placed on the first line of the display. If the current line is after
the last line in the display and the screen is scrolled, an unspecified portion of the current line
shall be placed on the last line of the display.

In visual mode, if a line from the edit buffer (other than the current line) does not entirely fit into
the lines at the bottom of the display that are available for its presentation, the editor may choose
not to display any portion of the line. The lines of the display that do not contain text from the
edit buffer for this reason shall each consist of a single '@' character.

In visual mode, the editor may choose for unspecified reasons to not update lines in the display
to correspond to the underlying edit buffer text. The lines of the display that do not correctly
correspond to text from the edit buffer for this reason shall consist of a single '@' character (plus
the terminating <newline>), and the <control>-R command shall cause the editor to update the
screen to correctly represent the edit buffer.

Open and visual mode commands that set the current column set it to a column position in the
display, and not a character position in the line. In this case, however, the column position in the
display shall be calculated for an infinite width display; for example, the column related to a
character that is part of a line that has been folded onto additional screen lines is offset from the
display line column where the buffer line begins, not from the beginning of a particular display
line.

The display cursor column in the display is based on the value of the current column, as follows,
with each rule applied in turn:

1. If the current column is after the last display line column used by the displayed line, the
display cursor column shall be set to the last display line column occupied by the last
non-<newline> in the current line; otherwise, the display cursor column shall be set to the
current column.

2. If the character of which some portion is displayed in the display line column specified by
the display cursor column requires more than a single display line column:

a. If in text input mode, the display cursor column shall be adjusted to the first
display line column in which any portion of that character is displayed.

b. Otherwise, the display cursor column shall be adjusted to the last display line
column in which any portion of that character is displayed.

The current column shall not be changed by these adjustments to the display cursor column.

If an error occurs during the parsing or execution of a vi command:

• The terminal shall be alerted. Execution of the vi command shall stop, and the cursor (for
example, the current line and column) shall not be further modified.

• Unless otherwise specified by the following command sections, it is unspecified whether
an informational message shall be displayed.

• Any partially entered vi command shall be discarded.

• If the vi command resulted from a map expansion, all characters from that map expansion
shall be discarded, except as otherwise specified by the map command (see ex).

• If the vi command resulted from the execution of a buffer, no further commands caused by
the execution of the buffer shall be executed.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3531

120587

120588

120589

120590

120591

120592

120593

120594

120595

120596

120597

120598

120599

120600

120601

120602

120603

120604

120605

120606

120607

120608

120609

120610

120611

120612

120613

120614

120615

120616

120617

120618

120619

120620

120621

120622

120623

120624

120625

120626

120627

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Page Backwards

Synopsis: [count] <control>-B

If in open mode, the <control>-B command shall behave identically to the z command.
Otherwise, if the current line is the first line of the edit buffer, it shall be an error.

If the window edit option is less than 3, display a screen where the last line of the display shall
be some portion of:

(current first line) -1

otherwise, display a screen where the first line of the display shall be some portion of:

(current first line) - count x ((window edit option) -2)

If this calculation would result in a line that is before the first line of the edit buffer, the first line
of the display shall display some portion of the first line of the edit buffer.

Current line: If no lines from the previous display remain on the screen, set to the last line of the
display; otherwise, set to (line − the number of new lines displayed on this screen).

Current column: Set to non-<blank>.

Scroll Forward

Synopsis: [count] <control>-D

If the current line is the last line of the edit buffer, it shall be an error.

If no count is specified, count shall default to the count associated with the previous <control>-D
or <control>-U command. If there was no previous <control>-D or <control>-U command, count
shall default to the value of the scroll edit option.

If in open mode, write lines starting with the line after the current line, until count lines or the
last line of the file have been written.

Current line: If the current line + count is past the last line of the edit buffer, set to the last line of
the edit buffer; otherwise, set to the current line + count.

Current column: Set to non-<blank>.

Scroll Forward by Line

Synopsis: [count] <control>-E

Display the line count lines after the last line currently displayed.

If the last line of the edit buffer is displayed, it shall be an error. If there is no line count lines
after the last line currently displayed, the last line of the display shall display some portion of
the last line of the edit buffer.

Current line: Unchanged if the previous current character is displayed; otherwise, set to the first
line displayed.

Current column: Unchanged.

3532 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120628

120629

120630

120631

120632

120633

120634

120635

120636

120637

120638

120639

120640

120641

120642

120643

120644

120645

120646

120647

120648

120649

120650

120651

120652

120653

120654

120655

120656

120657

120658

120659

120660

120661

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Page Forward

Synopsis: [count] <control>-F

If in open mode, the <control>-F command shall behave identically to the z command.
Otherwise, if the current line is the last line of the edit buffer, it shall be an error.

If the window edit option is less than 3, display a screen where the first line of the display shall
be some portion of:

(current last line) +1

otherwise, display a screen where the first line of the display shall be some portion of:

(current first line) + count x ((window edit option) -2)

If this calculation would result in a line that is after the last line of the edit buffer, the last line of
the display shall display some portion of the last line of the edit buffer.

Current line: If no lines from the previous display remain on the screen, set to the first line of the
display; otherwise, set to (line + the number of new lines displayed on this screen).

Current column: Set to non-<blank>.

Display Information

Synopsis: <control>-G

This command shall be equivalent to the ex file command.

Move Cursor Backwards

Synopsis: [count] <control>-H
[count] h
the current erase character (see stty)

If there are no characters before the current character on the current line, it shall be an error. If
there are less than count previous characters on the current line, count shall be adjusted to the
number of previous characters on the line.

If used as a motion command:

1. The text region shall be from the character before the starting cursor up to and including
the countth character before the starting cursor.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to (column − the number of columns occupied by count characters ending
with the previous current column).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3533

120662

120663

120664

120665

120666

120667

120668

120669

120670

120671

120672

120673

120674

120675

120676

120677

120678

120679

120680

120681

120682

120683

120684

120685

120686

120687

120688

120689

120690

120691

120692

120693

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Move Down

Synopsis: [count] <newline>
[count] <control>-J
[count] <control>-M
[count] <control>-N
[count] j
[count] <carriage-return>
[count] +

If there are less than count lines after the current line in the edit buffer, it shall be an error.

If used as a motion command:

1. The text region shall include the starting line and the next count − 1 lines.

2. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to current line+ count.

Current column: Set to non-<blank> for the <carriage-return>, <control>-M, and + commands;
otherwise, unchanged.

Clear and Redisplay

Synopsis: <control>-L

If in open mode, clear the screen and redisplay the current line. Otherwise, clear and redisplay
the screen.

Current line: Unchanged.

Current column: Unchanged.

Move Up

Synopsis: [count] <control>-P
[count] k
[count] -

If there are less than count lines before the current line in the edit buffer, it shall be an error.

If used as a motion command:

1. The text region shall include the starting line and the previous count lines.

2. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to current line − count.

Current column: Set to non-<blank> for the − command; otherwise, unchanged.

3534 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120694

120695

120696

120697

120698

120699

120700

120701

120702

120703

120704

120705

120706

120707

120708

120709

120710

120711

120712

120713

120714

120715

120716

120717

120718

120719

120720

120721

120722

120723

120724

120725

120726

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Redraw Screen

Synopsis: <control>-R

If any lines have been deleted from the display screen and flagged as deleted on the terminal
using the @ convention (see the beginning of the EXTENDED DESCRIPTION section), they shall
be redisplayed to match the contents of the edit buffer.

It is unspecified whether lines flagged with @ because they do not fit on the terminal display
shall be affected.

Current line: Unchanged.

Current column: Unchanged.

Scroll Backward

Synopsis: [count] <control>-U

If the current line is the first line of the edit buffer, it shall be an error.

If no count is specified, count shall default to the count associated with the previous <control>-D
or <control>-U command. If there was no previous <control>-D or <control>-U command, count
shall default to the value of the scroll edit option.

Current line: If count is greater than the current line, set to 1; otherwise, set to the current line −
count.

Current column: Set to non-<blank>.

Scroll Backward by Line

Synopsis: [count] <control>-Y

Display the line count lines before the first line currently displayed.

If the current line is the first line of the edit buffer, it shall be an error. If this calculation would
result in a line that is before the first line of the edit buffer, the first line of the display shall
display some portion of the first line of the edit buffer.

Current line: Unchanged if the previous current character is displayed; otherwise, set to the first
line displayed.

Current column: Unchanged.

Edit the Alternate File

Synopsis: <control>-^

This command shall be equivalent to the ex edit command, with the alternate pathname as its
argument.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3535

120727

120728

120729

120730

120731

120732

120733

120734

120735

120736

120737

120738

120739

120740

120741

120742

120743

120744

120745

120746

120747

120748

120749

120750

120751

120752

120753

120754

120755

120756

120757

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Terminate Command or Input Mode

Synopsis: <ESC>

If a partial vi command (as defined by at least one, non-count character) has been entered,
discard the count and the command character(s).

Otherwise, if no command characters have been entered, and the <ESC> was the result of a map
expansion, the terminal shall be alerted and the <ESC> character shall be discarded, but it shall
not be an error.

Otherwise, it shall be an error.

Current line: Unchanged.

Current column: Unchanged.

Search for tagstring

Synopsis: <control>-]

If the current character is not a word or <blank>, it shall be an error.

This command shall be equivalent to the ex tag command, with the argument to that command
defined as follows.

If the current character is a <blank>:

1. Skip all <blank> characters after the cursor up to the end of the line.

2. If the end of the line is reached, it shall be an error.

Then, the argument to the ex tag command shall be the current character and all subsequent
characters, up to the first non-word character or the end of the line.

Move Cursor Forward

Synopsis: [count] <space>
[count] l (ell)

If there are less than count non-<newline> characters after the cursor on the current line, count
shall be adjusted to the number of non-<newline> characters after the cursor on the line.

If used as a motion command:

1. If the current or countth character after the cursor is the last non-<newline> in the line, the
text region shall be comprised of the current character up to and including the last
non-<newline> in the line. Otherwise, the text region shall be from the current character
up to, but not including, the countth character after the cursor.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

If there are no non-<newline> characters after the current character on the current line, it shall be
an error.

Current line: Unchanged.

Current column: Set to the last column that displays any portion of the countth character after the
current character.

3536 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120758

120759

120760

120761

120762

120763

120764

120765

120766

120767

120768

120769

120770

120771

120772

120773

120774

120775

120776

120777

120778

120779

120780

120781

120782

120783

120784

120785

120786

120787

120788

120789

120790

120791

120792

120793

120794

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Replace Text with Results from Shell Command

Synopsis: [count] ! motion shell-commands <newline>

If the motion command is the ! command repeated:

1. If the edit buffer is empty and no count was supplied, the command shall be the
equivalent of the ex :read ! command, with the text input, and no text shall be copied to
any buffer.

2. Otherwise:

a. If there are less than count −1 lines after the current line in the edit buffer, it shall be
an error.

b. The text region shall be from the current line up to and including the next count −1
lines.

Otherwise, the text region shall be the lines in which any character of the text region specified by
the motion command appear.

Any text copied to a buffer shall be in line mode.

This command shall be equivalent to the ex ! command for the specified lines.

Move Cursor to End-of-Line

Synopsis: [count] $

It shall be an error if there are less than (count −1) lines after the current line in the edit buffer.

If used as a motion command:

1. If count is 1:

a. It shall be an error if the line is empty.

b. Otherwise, the text region shall consist of all characters from the starting cursor to
the last non-<newline> in the line, inclusive, and any text copied to a buffer shall
be in character mode.

2. Otherwise, if the starting cursor position is at or before the first non-<blank> in the line,
the text region shall consist of the current and the next count −1 lines, and any text saved
to a buffer shall be in line mode.

3. Otherwise, the text region shall consist of all characters from the starting cursor to the last
non-<newline> in the line that is count −1 lines forward from the current line, and any text
copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the current line + count−1.

Current column: The current column is set to the last display line column of the last
non-<newline> in the line, or column position 1 if the line is empty.

The current column shall be adjusted to be on the last display line column of the last
non-<newline> of the current line as subsequent commands change the current line, until a
command changes the current column.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3537

120795

120796

120797

120798

120799

120800

120801

120802

120803

120804

120805

120806

120807

120808

120809

120810

120811

120812

120813

120814

120815

120816

120817

120818

120819

120820

120821

120822

120823

120824

120825

120826

120827

120828

120829

120830

120831

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Move to Matching Character

Synopsis: %

If the character at the current position is not a parenthesis, bracket, or curly brace, search
forward in the line to the first one of those characters. If no such character is found, it shall be an
error.

The matching character shall be the parenthesis, bracket, or curly brace matching the
parenthesis, bracket, or curly brace, respectively, that was at the current position or that was
found on the current line.

Matching shall be determined as follows, for an open parenthesis:

1. Set a counter to 1.

2. Search forwards until a parenthesis is found or the end of the edit buffer is reached.

3. If the end of the edit buffer is reached, it shall be an error.

4. If an open parenthesis is found, increment the counter by 1.

5. If a close parenthesis is found, decrement the counter by 1.

6. If the counter is zero, the current character is the matching character.

Matching for a close parenthesis shall be equivalent, except that the search shall be backwards,
from the starting character to the beginning of the buffer, a close parenthesis shall increment the
counter by 1, and an open parenthesis shall decrement the counter by 1.

Matching for brackets and curly braces shall be equivalent, except that searching shall be done
for open and close brackets or open and close curly braces. It is implementation-defined whether
other characters are searched for and matched as well.

If used as a motion command:

1. If the matching cursor was after the starting cursor in the edit buffer, and the starting
cursor position was at or before the first non-<blank> non-<newline> in the starting line,
and the matching cursor position was at or after the last non-<blank> non-<newline> in
the matching line, the text region shall consist of the current line to the matching line,
inclusive, and any text copied to a buffer shall be in line mode.

2. If the matching cursor was before the starting cursor in the edit buffer, and the starting
cursor position was at or after the last non-<blank> non-<newline> in the starting line,
and the matching cursor position was at or before the first non-<blank> non-<newline> in
the matching line, the text region shall consist of the current line to the matching line,
inclusive, and any text copied to a buffer shall be in line mode.

3. Otherwise, the text region shall consist of the starting character to the matching character,
inclusive, and any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line where the matching character is located.

Current column: Set to the last column where any portion of the matching character is displayed.

3538 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120832

120833

120834

120835

120836

120837

120838

120839

120840

120841

120842

120843

120844

120845

120846

120847

120848

120849

120850

120851

120852

120853

120854

120855

120856

120857

120858

120859

120860

120861

120862

120863

120864

120865

120866

120867

120868

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Repeat Substitution

Synopsis: &

Repeat the previous substitution command. This command shall be equivalent to the ex &
command with the current line as its addresses, and without options, count, or flags.

Return to Previous Context at Beginning of Line

Synopsis: ' character

It shall be an error if there is no line in the edit buffer marked by character.

If used as a motion command:

1. If the starting cursor is after the marked cursor, then the locations of the starting cursor
and the marked cursor in the edit buffer shall be logically swapped.

2. The text region shall consist of the starting line up to and including the marked line, and
any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to the line referenced by the mark.

Current column: Set to non-<blank>.

Return to Previous Context

Synopsis: ` character

It shall be an error if the marked line is no longer in the edit buffer. If the marked line no longer
contains a character in the saved numbered character position, it shall be as if the marked
position is the first non-<blank>.

If used as a motion command:

1. It shall be an error if the marked cursor references the same character in the edit buffer as
the starting cursor.

2. If the starting cursor is after the marked cursor, then the locations of the starting cursor
and the marked cursor in the edit buffer shall be logically swapped.

3. If the starting line is empty or the starting cursor is at or before the first non-<blank>
non-<newline> of the starting line, and the marked cursor line is empty or the marked
cursor references the first character of the marked cursor line, the text region shall consist
of all lines containing characters from the starting cursor to the line before the marked
cursor line, inclusive, and any text copied to a buffer shall be in line mode.

4. Otherwise, if the marked cursor line is empty or the marked cursor references a character
at or before the first non-<blank> non-<newline> of the marked cursor line, the region of
text shall be from the starting cursor to the last non-<newline> of the line before the
marked cursor line, inclusive, and any text copied to a buffer shall be in character mode.

5. Otherwise, the region of text shall be from the starting cursor (inclusive), to the marked
cursor (exclusive), and any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line referenced by the mark.

Current column: Set to the last column in which any portion of the character referenced by the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3539

120869

120870

120871

120872

120873

120874

120875

120876

120877

120878

120879

120880

120881

120882

120883

120884

120885

120886

120887

120888

120889

120890

120891

120892

120893

120894

120895

120896

120897

120898

120899

120900

120901

120902

120903

120904

120905

120906

120907

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

mark is displayed.

Return to Previous Section

Synopsis: [count] [[

Move the cursor backward through the edit buffer to the first character of the previous section
boundary, count times.

If used as a motion command:

1. If the starting cursor was at the first character of the starting line or the starting line was
empty, and the first character of the boundary was the first character of the boundary line,
the text region shall consist of the current line up to and including the line where the
countth next boundary starts, and any text copied to a buffer shall be in line mode.

2. If the boundary was the last line of the edit buffer or the last non-<newline> of the last
line of the edit buffer, the text region shall consist of the last character in the edit buffer up
to and including the starting character, and any text saved to a buffer shall be in character
mode.

3. Otherwise, the text region shall consist of the starting character up to but not including
the first character in the countth next boundary, and any text copied to a buffer shall be in
character mode.

If not used as a motion command:

Current line: Set to the line where the countth next boundary in the edit buffer starts.

Current column: Set to the last column in which any portion of the first character of the countth
next boundary is displayed, or column position 1 if the line is empty.

Move to Next Section

Synopsis: [count]]]

Move the cursor forward through the edit buffer to the first character of the next section
boundary, count times.

If used as a motion command:

1. If the starting cursor was at the first character of the starting line or the starting line was
empty, and the first character of the boundary was the first character of the boundary line,
the text region shall consist of the current line up to and including the line where the
countth previous boundary starts, and any text copied to a buffer shall be in line mode.

2. If the boundary was the first line of the edit buffer, the text region shall consist of the first
character in the edit buffer up to but not including the starting character, and any text
copied to a buffer shall be in character mode.

3. Otherwise, the text region shall consist of the first character in the countth previous
section boundary up to but not including the starting character, and any text copied to a
buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line where the countth previous boundary in the edit buffer starts.

Current column: Set to the last column in which any portion of the first character of the countth
previous boundary is displayed, or column position 1 if the line is empty.

3540 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120908

120909

120910

120911

120912

120913

120914

120915

120916

120917

120918

120919

120920

120921

120922

120923

120924

120925

120926

120927

120928

120929

120930

120931

120932

120933

120934

120935

120936

120937

120938

120939

120940

120941

120942

120943

120944

120945

120946

120947

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Move to First Non-<blank> Position on Current Line

Synopsis: ^

If used as a motion command:

1. If the line has no non-<blank> non-<newline> characters, or if the cursor is at the first
non-<blank> non-<newline> of the line, it shall be an error.

2. If the cursor is before the first non-<blank> non-<newline> of the line, the text region
shall be comprised of the current character, up to, but not including, the first non-<blank>
non-<newline> of the line.

3. If the cursor is after the first non-<blank> non-<newline> of the line, the text region shall
be from the character before the starting cursor up to and including the first non-<blank>
non-<newline> of the line.

4. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to non-<blank>.

Current and Line Above

Synopsis: [count] _

If there are less than count −1 lines after the current line in the edit buffer, it shall be an error.

If used as a motion command:

1. If count is less than 2, the text region shall be the current line.

2. Otherwise, the text region shall include the starting line and the next count −1 lines.

3. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to current line + count −1.

Current column: Set to non-<blank>.

Move Back to Beginning of Sentence

Synopsis: [count] (

Move backward to the beginning of a sentence. This command shall be equivalent to the [[
command, with the exception that sentence boundaries shall be used instead of section
boundaries.

Move Forward to Beginning of Sentence

Synopsis: [count])

Move forward to the beginning of a sentence. This command shall be equivalent to the]]
command, with the exception that sentence boundaries shall be used instead of section
boundaries.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3541

120948

120949

120950

120951

120952

120953

120954

120955

120956

120957

120958

120959

120960

120961

120962

120963

120964

120965

120966

120967

120968

120969

120970

120971

120972

120973

120974

120975

120976

120977

120978

120979

120980

120981

120982

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Move Back to Preceding Paragraph

Synopsis: [count] {

Move back to the beginning of the preceding paragraph. This command shall be equivalent to
the [[command, with the exception that paragraph boundaries shall be used instead of section
boundaries.

Move Forward to Next Paragraph

Synopsis: [count] }

Move forward to the beginning of the next paragraph. This command shall be equivalent to the
]] command, with the exception that paragraph boundaries shall be used instead of section
boundaries.

Move to Specific Column Position

Synopsis: [count] |

For the purposes of this command, lines that are too long for the current display and that have
been folded shall be treated as having a single, 1−based, number of columns.

If there are less than count columns in which characters from the current line are displayed on
the screen, count shall be adjusted to be the last column in which any portion of the line is
displayed on the screen.

If used as a motion command:

1. If the line is empty, or the cursor character is the same as the character on the countth
column of the line, it shall be an error.

2. If the cursor is before the countth column of the line, the text region shall be comprised of
the current character, up to but not including the character on the countth column of the
line.

3. If the cursor is after the countth column of the line, the text region shall be from the
character before the starting cursor up to and including the character on the countth
column of the line.

4. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the character that is displayed in
the count column of the line is displayed.

Reverse Find Character

Synopsis: [count] ,

If the last F, f, T, or t command was F, f, T, or t, this command shall be equivalent to an f, F, t, or
T command, respectively, with the specified count and the same search character.

If there was no previous F, f, T, or t command, it shall be an error.

3542 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

120983

120984

120985

120986

120987

120988

120989

120990

120991

120992

120993

120994

120995

120996

120997

120998

120999

121000

121001

121002

121003

121004

121005

121006

121007

121008

121009

121010

121011

121012

121013

121014

121015

121016

121017

121018

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Repeat

Synopsis: [count] .

Repeat the last !, <, >, A, C, D, I, J, O, P, R, S, X, Y, a, c, d, i, o, p, r, s, x, y, or ˜ command. It shall
be an error if none of these commands have been executed. Commands (other than commands
that enter text input mode) executed as a result of map expansions, shall not change the value of
the last repeatable command.

Repeated commands with associated motion commands shall repeat the motion command as
well; however, any specified count shall replace the count(s) that were originally specified to the
repeated command or its associated motion command.

If the motion component of the repeated command is f, F, t, or T, the repeated command shall
not set the remembered search character for the ; and , commands.

If the repeated command is p or P, and the buffer associated with that command was a numeric
buffer named with a number less than 9, the buffer associated with the repeated command shall
be set to be the buffer named by the name of the previous buffer logically incremented by 1.

If the repeated character is a text input command, the input text associated with that command
is repeated literally:

• Input characters are neither macro or abbreviation-expanded.

• Input characters are not interpreted in any special way with the exception that <newline>,
<carriage-return>, and <control>-T behave as described in Input Mode Commands in vi
(on page 3561).

Current line: Set as described for the repeated command.

Current column: Set as described for the repeated command.

Find Regular Expression

Synopsis: /

If the input line contains no non-<newline> characters, it shall be equivalent to a line containing
only the last regular expression encountered. The enhanced regular expressions supported by vi
are described in Regular Expressions in ex (on page 2875).

Otherwise, the line shall be interpreted as one or more regular expressions, optionally followed
by an address offset or a vi z command.

If the regular expression is not the last regular expression on the line, or if a line offset or z
command is specified, the regular expression shall be terminated by an unescaped '/'
character, which shall not be used as part of the regular expression. If the regular expression is
not the first regular expression on the line, it shall be preceded by zero or more <blank>
characters, a <semicolon>, zero or more <blank> characters, and a leading '/' character, which
shall not be interpreted as part of the regular expression. It shall be an error to precede any
regular expression with any characters other than these.

Each search shall begin from the character after the first character of the last match (or, if it is the
first search, after the cursor). If the wrapscan edit option is set, the search shall continue to the
character before the starting cursor character; otherwise, to the end of the edit buffer. It shall be
an error if any search fails to find a match, and an informational message to this effect shall be
displayed.

An optional address offset (see Addressing in ex, on page 2845) can be specified after the last
regular expression by including a trailing '/' character after the regular expression and

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3543

121019

121020

121021

121022

121023

121024

121025

121026

121027

121028

121029

121030

121031

121032

121033

121034

121035

121036

121037

121038

121039

121040

121041

121042

121043

121044

121045

121046

121047

121048

121049

121050

121051

121052

121053

121054

121055

121056

121057

121058

121059

121060

121061

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

specifying the address offset. This offset shall be from the line containing the match for the last
regular expression specified. It shall be an error if the line offset would indicate a line address
less than 1 or greater than the last line in the edit buffer. An address offset of zero shall be
supported. It shall be an error to follow the address offset with any other characters than
<blank> characters.

If not used as a motion command, an optional z command (see Redraw Window, on page 3560)
can be specified after the last regular expression by including a trailing '/' character after the
regular expression, zero or more <blank> characters, a 'z', zero or more <blank> characters, an
optional new window edit option value, zero or more <blank> characters, and a location
character. The effect shall be as if the z command was executed after the / command. It shall be
an error to follow the z command with any other characters than <blank> characters.

The remembered search direction shall be set to forward.

If used as a motion command:

1. It shall be an error if the last match references the same character in the edit buffer as the
starting cursor.

2. If any address offset is specified, the last match shall be adjusted by the specified offset as
described previously.

3. If the starting cursor is after the last match, then the locations of the starting cursor and
the last match in the edit buffer shall be logically swapped.

4. If any address offset is specified, the text region shall consist of all lines containing
characters from the starting cursor to the last match line, inclusive, and any text copied to
a buffer shall be in line mode.

5. Otherwise, if the starting line is empty or the starting cursor is at or before the first
non-<blank> non-<newline> of the starting line, and the last match line is empty or the
last match starts at the first character of the last match line, the text region shall consist of
all lines containing characters from the starting cursor to the line before the last match
line, inclusive, and any text copied to a buffer shall be in line mode.

6. Otherwise, if the last match line is empty or the last match begins at a character at or
before the first non-<blank> non-<newline> of the last match line, the region of text shall
be from the current cursor to the last non-<newline> of the line before the last match line,
inclusive, and any text copied to a buffer shall be in character mode.

7. Otherwise, the region of text shall be from the current cursor (inclusive), to the first
character of the last match (exclusive), and any text copied to a buffer shall be in character
mode.

If not used as a motion command:

Current line: If a match is found, set to the last matched line plus the address offset, if any;
otherwise, unchanged.

Current column: Set to the last column on which any portion of the first character in the last
matched string is displayed, if a match is found; otherwise, unchanged.

3544 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121062

121063

121064

121065

121066

121067

121068

121069

121070

121071

121072

121073

121074

121075

121076

121077

121078

121079

121080

121081

121082

121083

121084

121085

121086

121087

121088

121089

121090

121091

121092

121093

121094

121095

121096

121097

121098

121099

121100

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Move to First Character in Line

Synopsis: 0 (zero)

Move to the first character on the current line. The character '0' shall not be interpreted as a
command if it is immediately preceded by a digit.

If used as a motion command:

1. If the cursor character is the first character in the line, it shall be an error.

2. The text region shall be from the character before the cursor character up to and including
the first character in the line.

3. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: The last column in which any portion of the first character in the line is
displayed, or if the line is empty, unchanged.

Execute an ex Command

Synopsis: :

Execute one or more ex commands.

If any portion of the screen other than the last line of the screen was overwritten by any ex
command (except shell), vi shall display a message indicating that it is waiting for an input from
the user, and shall then read a character. This action may also be taken for other, unspecified
reasons.

If the next character entered is a ':', another ex command shall be accepted and executed. Any
other character shall cause the screen to be refreshed and vi shall return to command mode.

Current line: As specified for the ex command.

Current column: As specified for the ex command.

Repeat Find

Synopsis: [count] ;

This command shall be equivalent to the last F, f, T, or t command, with the specified count, and
with the same search character used for the last F, f, T, or t command. If there was no previous F,
f, T, or t command, it shall be an error.

Shift Left

Synopsis: [count] < motion

If the motion command is the < command repeated:

1. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

2. The text region shall be from the current line, up to and including the next count −1 lines.

Shift any line in the text region specified by the count and motion command one shiftwidth (see
the ex shiftwidth option) toward the start of the line, as described by the ex < command. The
unshifted lines shall be copied to the unnamed buffer in line mode.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3545

121101

121102

121103

121104

121105

121106

121107

121108

121109

121110

121111

121112

121113

121114

121115

121116

121117

121118

121119

121120

121121

121122

121123

121124

121125

121126

121127

121128

121129

121130

121131

121132

121133

121134

121135

121136

121137

121138

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Current line: If the motion was from the current cursor position toward the end of the edit buffer,
unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
specified by the motion command.

Current column: Set to non-<blank>.

Shift Right

Synopsis: [count] > motion

If the motion command is the > command repeated:

1. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

2. The text region shall be from the current line, up to and including the next count −1 lines.

Shift any line with characters in the text region specified by the count and motion command one
shiftwidth (see the ex shiftwidth option) away from the start of the line, as described by the ex >
command. The unshifted lines shall be copied into the unnamed buffer in line mode.

Current line: If the motion was from the current cursor position toward the end of the edit buffer,
unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
specified by the motion command.

Current column: Set to non-<blank>.

Scan Backwards for Regular Expression

Synopsis: ?

Scan backwards; the ? command shall be equivalent to the / command (see Find Regular
Expression, on page 3543) with the following exceptions:

1. The input prompt shall be a '?'.

2. Each search shall begin from the character before the first character of the last match (or, if
it is the first search, the character before the cursor character).

3. The search direction shall be from the cursor toward the beginning of the edit buffer, and
the wrapscan edit option shall affect whether the search wraps to the end of the edit
buffer and continues.

4. The remembered search direction shall be set to backward.

Execute

Synopsis: @buffer

If the buffer is specified as @, the last buffer executed shall be used. If no previous buffer has been
executed, it shall be an error.

Behave as if the contents of the named buffer were entered as standard input. After each line of a
line-mode buffer, and all but the last line of a character mode buffer, behave as if a <newline>
were entered as standard input.

If an error occurs during this process, an error message shall be written, and no more characters
resulting from the execution of this command shall be processed.

If a count is specified, behave as if that count were entered as user input before the characters
from the @ buffer were entered.

3546 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121139

121140

121141

121142

121143

121144

121145

121146

121147

121148

121149

121150

121151

121152

121153

121154

121155

121156

121157

121158

121159

121160

121161

121162

121163

121164

121165

121166

121167

121168

121169

121170

121171

121172

121173

121174

121175

121176

121177

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Current line: As specified for the individual commands.

Current column: As specified for the individual commands.

Reverse Case

Synopsis: [count] ~

Reverse the case of the current character and the next count −1 characters, such that lowercase
characters that have uppercase counterparts shall be changed to uppercase characters, and
uppercase characters that have lowercase counterparts shall be changed to lowercase characters,
as prescribed by the current locale. No other characters shall be affected by this command.

If there are less than count −1 characters after the cursor in the edit buffer, count shall be adjusted
to the number of characters after the cursor in the edit buffer minus 1.

For the purposes of this command, the next character after the last non-<newline> on the line
shall be the next character in the edit buffer.

Current line: Set to the line including the (count−1)th character after the cursor.

Current column: Set to the last column in which any portion of the (count−1)th character after the
cursor is displayed.

Append

Synopsis: [count] a

Enter text input mode after the current cursor position. No characters already in the edit buffer
shall be affected by this command. A count shall cause the input text to be appended count −1
more times to the end of the input.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3561).

Append at End-of-Line

Synopsis: [count] A

This command shall be equivalent to the vi command:

$ [count] a

(see Append).

Move Backward to Preceding Word

Synopsis: [count] b

With the exception that words are used as the delimiter instead of bigwords, this command shall
be equivalent to the B command.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3547

121178

121179

121180

121181

121182

121183

121184

121185

121186

121187

121188

121189

121190

121191

121192

121193

121194

121195

121196

121197

121198

121199

121200

121201

121202

121203

121204

121205

121206

121207

121208

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Move Backward to Preceding Bigword

Synopsis: [count] B

If the edit buffer is empty or the cursor is on the first character of the edit buffer, it shall be an
error. If less than count bigwords begin between the cursor and the start of the edit buffer, count
shall be adjusted to the number of bigword beginnings between the cursor and the start of the
edit buffer.

If used as a motion command:

1. The text region shall be from the first character of the countth previous bigword beginning
up to but not including the cursor character.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line containing the current column.

Current column: Set to the last column upon which any part of the first character of the countth
previous bigword is displayed.

Change

Synopsis: [buffer][count] c motion

If the motion command is the c command repeated:

1. The buffer text shall be in line mode.

2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

3. The text region shall be from the current line up to and including the next count −1 lines.

Otherwise, the buffer text mode and text region shall be as specified by the motion command.

The replaced text shall be copied into buffer, if specified, and into the unnamed buffer. If the text
to be replaced contains characters from more than a single line, or the buffer text is in line mode,
the replaced text shall be copied into the numeric buffers as well.

If the buffer text is in line mode:

1. Any lines that contain characters in the region shall be deleted, and the editor shall enter
text input mode at the beginning of a new line which shall replace the first line deleted.

2. If the autoindent edit option is set, autoindent characters equal to the autoindent
characters on the first line deleted shall be inserted as if entered by the user.

Otherwise, if characters from more than one line are in the region of text:

1. The text shall be deleted.

2. Any text remaining in the last line in the text region shall be appended to the first line in
the region, and the last line in the region shall be deleted.

3. The editor shall enter text input mode after the last character not deleted from the first
line in the text region, if any; otherwise, on the first column of the first line in the region.

3548 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121209

121210

121211

121212

121213

121214

121215

121216

121217

121218

121219

121220

121221

121222

121223

121224

121225

121226

121227

121228

121229

121230

121231

121232

121233

121234

121235

121236

121237

121238

121239

121240

121241

121242

121243

121244

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Otherwise:

1. If the glyph for '$' is smaller than the region, the end of the region shall be marked with
a '$'.

2. The editor shall enter text input mode, overwriting the region of text.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3561).

Change to End-of-Line

Synopsis: [buffer][count] C

This command shall be equivalent to the vi command:

[buffer][count] c$

See the c command.

Delete

Synopsis: [buffer][count] d motion

If the motion command is the d command repeated:

1. The buffer text shall be in line mode.

2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

3. The text region shall be from the current line up to and including the next count −1 lines.

Otherwise, the buffer text mode and text region shall be as specified by the motion command.

If in open mode, and the current line is deleted, and the line remains on the display, an '@'
character shall be displayed as the first glyph of that line.

Delete the region of text into buffer, if specified, and into the unnamed buffer. If the text to be
deleted contains characters from more than a single line, or the buffer text is in line mode, the
deleted text shall be copied into the numeric buffers, as well.

Current line: Set to the first text region line that appears in the edit buffer, unless that line has
been deleted, in which case it shall be set to the last line in the edit buffer, or line 1 if the edit
buffer is empty.

Current column:

1. If the line is empty, set to column position 1.

2. Otherwise, if the buffer text is in line mode or the motion was from the cursor toward the
end of the edit buffer:

a. If a character from the current line is displayed in the current column, set to the
last column that displays any portion of that character.

b. Otherwise, set to the last column in which any portion of any character in the line
is displayed.

3. Otherwise, if a character is displayed in the column that began the text region, set to the
last column that displays any portion of that character.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3549

121245

121246

121247

121248

121249

121250

121251

121252

121253

121254

121255

121256

121257

121258

121259

121260

121261

121262

121263

121264

121265

121266

121267

121268

121269

121270

121271

121272

121273

121274

121275

121276

121277

121278

121279

121280

121281

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

4. Otherwise, set to the last column in which any portion of any character in the line is
displayed.

Delete to End-of-Line

Synopsis: [buffer] D

Delete the text from the current position to the end of the current line; equivalent to the vi
command:

[buffer] d$

Move to End-of-Word

Synopsis: [count] e

With the exception that words are used instead of bigwords as the delimiter, this command shall
be equivalent to the E command.

Move to End-of-Bigword

Synopsis: [count] E

If the edit buffer is empty it shall be an error. If less than count bigwords end between the cursor
and the end of the edit buffer, count shall be adjusted to the number of bigword endings between
the cursor and the end of the edit buffer.

If used as a motion command:

1. The text region shall be from the last character of the countth next bigword up to and
including the cursor character.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line containing the current column.

Current column: Set to the last column upon which any part of the last character of the countth
next bigword is displayed.

Find Character in Current Line (Forward)

Synopsis: [count] f character

It shall be an error if count occurrences of the character do not occur after the cursor in the line.

If used as a motion command:

1. The text range shall be from the cursor character up to and including the countth
occurrence of the specified character after the cursor.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the countth occurrence of the
specified character after the cursor appears in the line.

3550 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121282

121283

121284

121285

121286

121287

121288

121289

121290

121291

121292

121293

121294

121295

121296

121297

121298

121299

121300

121301

121302

121303

121304

121305

121306

121307

121308

121309

121310

121311

121312

121313

121314

121315

121316

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Find Character in Current Line (Reverse)

Synopsis: [count] F character

It shall be an error if count occurrences of the character do not occur before the cursor in the line.

If used as a motion command:

1. The text region shall be from the countth occurrence of the specified character before the
cursor, up to, but not including the cursor character.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the countth occurrence of the
specified character before the cursor appears in the line.

Move to Line

Synopsis: [count] G

If count is not specified, it shall default to the last line of the edit buffer. If count is greater than
the last line of the edit buffer, it shall be an error.

If used as a motion command:

1. The text region shall be from the cursor line up to and including the specified line.

2. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to count if count is specified; otherwise, the last line.

Current column: Set to non-<blank>.

Move to Top of Screen

Synopsis: [count] H

If the beginning of the line count greater than the first line of which any portion appears on the
display does not exist, it shall be an error.

If used as a motion command:

1. If in open mode, the text region shall be the current line.

2. Otherwise, the text region shall be from the starting line up to and including (the first line
of the display + count −1).

3. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

If in open mode, this command shall set the current column to non-<blank> and do nothing else.

Otherwise, it shall set the current line and current column as follows.

Current line: Set to (the first line of the display + count −1).

Current column: Set to non-<blank>.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3551

121317

121318

121319

121320

121321

121322

121323

121324

121325

121326

121327

121328

121329

121330

121331

121332

121333

121334

121335

121336

121337

121338

121339

121340

121341

121342

121343

121344

121345

121346

121347

121348

121349

121350

121351

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Insert Before Cursor

Synopsis: [count] i

Enter text input mode before the current cursor position. No characters already in the edit buffer
shall be affected by this command. A count shall cause the input text to be appended count −1
more times to the end of the input.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3561).

Insert at Beginning of Line

Synopsis: [count] I

This command shall be equivalent to the vi command ˆ[count]i.

Join

Synopsis: [count] J

If the current line is the last line in the edit buffer, it shall be an error.

This command shall be equivalent to the ex join command with no addresses, and an ex
command count value of 1 if count was not specified or if a count of 1 was specified, and an ex
command count value of count −1 for any other value of count, except that the current line and
column shall be set as follows.

Current line: Unchanged.

Current column: The last column in which any portion of the character following the last
character in the initial line is displayed, or the last non-<newline> in the line if no characters
were appended.

Move to Bottom of Screen

Synopsis: [count] L

If the beginning of the line count less than the last line of which any portion appears on the
display does not exist, it shall be an error.

If used as a motion command:

1. If in open mode, the text region shall be the current line.

2. Otherwise, the text region shall include all lines from the starting cursor line to (the last
line of the display −(count −1)).

3. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

1. If in open mode, this command shall set the current column to non-<blank> and do
nothing else.

2. Otherwise, it shall set the current line and current column as follows.

Current line: Set to (the last line of the display −(count −1)).

Current column: Set to non-<blank>.

3552 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121352

121353

121354

121355

121356

121357

121358

121359

121360

121361

121362

121363

121364

121365

121366

121367

121368

121369

121370

121371

121372

121373

121374

121375

121376

121377

121378

121379

121380

121381

121382

121383

121384

121385

121386

121387

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Mark Position

Synopsis: m letter

This command shall be equivalent to the ex mark command with the specified character as an
argument.

Move to Middle of Screen

Synopsis: M

The middle line of the display shall be calculated as follows:

(the top line of the display) + (((number of lines displayed) +1) /2) -1

If used as a motion command:

1. If in open mode, the text region shall be the current line.

2. Otherwise, the text region shall include all lines from the starting cursor line up to and
including the middle line of the display.

3. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

If in open mode, this command shall set the current column to non-<blank> and do nothing else.

Otherwise, it shall set the current line and current column as follows.

Current line: Set to the middle line of the display.

Current column: Set to non-<blank>.

Repeat Regular Expression Find (Forward)

Synopsis: n

If the remembered search direction was forward, the n command shall be equivalent to the vi /
command with no characters entered by the user. Otherwise, it shall be equivalent to the vi ?
command with no characters entered by the user.

If the n command is used as a motion command for the ! command, the editor shall not enter
text input mode on the last line on the screen, and shall behave as if the user entered a single
'!' character as the text input.

Repeat Regular Expression Find (Reverse)

Synopsis: N

Scan for the next match of the last pattern given to / or ?, but in the reverse direction; this is the
reverse of n.

If the remembered search direction was forward, the N command shall be equivalent to the vi ?
command with no characters entered by the user. Otherwise, it shall be equivalent to the vi /
command with no characters entered by the user. If the N command is used as a motion
command for the ! command, the editor shall not enter text input mode on the last line on the
screen, and shall behave as if the user entered a single ! character as the text input.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3553

121388

121389

121390

121391

121392

121393

121394

121395

121396

121397

121398

121399

121400

121401

121402

121403

121404

121405

121406

121407

121408

121409

121410

121411

121412

121413

121414

121415

121416

121417

121418

121419

121420

121421

121422

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Insert Empty Line Below

Synopsis: o

Enter text input mode in a new line appended after the current line. A count shall cause the input
text to be appended count −1 more times to the end of the already added text, each time starting
on a new, appended line.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3561).

Insert Empty Line Above

Synopsis: O

Enter text input mode in a new line inserted before the current line. A count shall cause the input
text to be appended count −1 more times to the end of the already added text, each time starting
on a new, appended line.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3561).

Put from Buffer Following

Synopsis: [buffer] p

If no buffer is specified, the unnamed buffer shall be used.

If the buffer text is in line mode, the text shall be appended below the current line, and each line
of the buffer shall become a new line in the edit buffer. A count shall cause the buffer text to be
appended count −1 more times to the end of the already added text, each time starting on a new,
appended line.

If the buffer text is in character mode, the text shall be appended into the current line after the
cursor, and each line of the buffer other than the first and last shall become a new line in the edit
buffer. A count shall cause the buffer text to be appended count −1 more times to the end of the
already added text, each time starting after the last added character.

Current line: If the buffer text is in line mode, set the line to line +1; otherwise, unchanged.

Current column: If the buffer text is in line mode:

1. If there is a non-<blank> in the first line of the buffer, set to the last column on which any
portion of the first non-<blank> in the line is displayed.

2. If there is no non-<blank> in the first line of the buffer, set to the last column on which
any portion of the last non-<newline> in the first line of the buffer is displayed.

If the buffer text is in character mode:

1. If the text in the buffer is from more than a single line, then set to the last column on
which any portion of the first character from the buffer is displayed.

2. Otherwise, if the buffer is the unnamed buffer, set to the last column on which any
portion of the last character from the buffer is displayed.

3. Otherwise, set to the first column on which any portion of the first character from the
buffer is displayed.

3554 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121423

121424

121425

121426

121427

121428

121429

121430

121431

121432

121433

121434

121435

121436

121437

121438

121439

121440

121441

121442

121443

121444

121445

121446

121447

121448

121449

121450

121451

121452

121453

121454

121455

121456

121457

121458

121459

121460

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Put from Buffer Before

Synopsis: [buffer] P

If no buffer is specified, the unnamed buffer shall be used.

If the buffer text is in line mode, the text shall be inserted above the current line, and each line of
the buffer shall become a new line in the edit buffer. A count shall cause the buffer text to be
appended count −1 more times to the end of the already added text, each time starting on a new,
appended line.

If the buffer text is in character mode, the text shall be inserted into the current line before the
cursor, and each line of the buffer other than the first and last shall become a new line in the edit
buffer. A count shall cause the buffer text to be appended count −1 more times to the end of the
already added text, each time starting after the last added character.

Current line: Unchanged.

Current column: If the buffer text is in line mode:

1. If there is a non-<blank> in the first line of the buffer, set to the last column on which any
portion of that character is displayed.

2. If there is no non-<blank> in the first line of the buffer, set to the last column on which
any portion of the last non-<newline> in the first line of the buffer is displayed.

If the buffer text is in character mode:

1. If the text in the buffer is from more than a single line, then set to the last column on
which any portion of the first character from the buffer is displayed.

2. Otherwise, if the buffer is the unnamed buffer, set to the last column on which any
portion of the last character from the buffer is displayed.

3. Otherwise, set to the first column on which any portion of the first character from the
buffer is displayed.

Enter ex Mode

Synopsis: Q

Leave visual or open mode and enter ex command mode.

Current line: Unchanged.

Current column: Unchanged.

Replace Character

Synopsis: [count] r character

Replace the count characters at and after the cursor with the specified character. If there are less
than count non-<newline> characters at and after the cursor on the line, it shall be an error.

If character is <control>-V, any next character other than the <newline> shall be stripped of any
special meaning and used as a literal character.

If character is <ESC>, no replacement shall be made and the current line and current column
shall be unchanged.

If character is <carriage-return> or <newline>, count new lines shall be appended to the current
line. All but the last of these lines shall be empty. count characters at and after the cursor shall be

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3555

121461

121462

121463

121464

121465

121466

121467

121468

121469

121470

121471

121472

121473

121474

121475

121476

121477

121478

121479

121480

121481

121482

121483

121484

121485

121486

121487

121488

121489

121490

121491

121492

121493

121494

121495

121496

121497

121498

121499

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

discarded, and any remaining characters after the cursor in the current line shall be moved to the
last of the new lines. If the autoindent edit option is set, they shall be preceded by the same
number of autoindent characters found on the line from which the command was executed.

Current line: Unchanged unless the replacement character is a <carriage-return> or <newline>, in
which case it shall be set to line + count.

Current column: Set to the last column position on which a portion of the last replaced character
is displayed, or if the replacement character caused new lines to be created, set to non-<blank>.

Replace Characters

Synopsis: R

Enter text input mode at the current cursor position possibly replacing text on the current line. A
count shall cause the input text to be appended count −1 more times to the end of the input.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3561).

Substitute Character

Synopsis: [buffer][count] s

This command shall be equivalent to the vi command:

[buffer][count] c<space>

Substitute Lines

Synopsis: [buffer][count] S

This command shall be equivalent to the vi command:

[buffer][count] c_

Move Cursor to Before Character (Forward)

Synopsis: [count] t character

It shall be an error if count occurrences of the character do not occur after the cursor in the line.

If used as a motion command:

1. The text region shall be from the cursor up to but not including the countth occurrence of
the specified character after the cursor.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the character before the countth
occurrence of the specified character after the cursor appears in the line.

3556 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121500

121501

121502

121503

121504

121505

121506

121507

121508

121509

121510

121511

121512

121513

121514

121515

121516

121517

121518

121519

121520

121521

121522

121523

121524

121525

121526

121527

121528

121529

121530

121531

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Move Cursor to After Character (Reverse)

Synopsis: [count] T character

It shall be an error if count occurrences of the character do not occur before the cursor in the line.

If used as a motion command:

1. If the character before the cursor is the specified character, it shall be an error.

2. The text region shall be from the character before the cursor up to but not including the
countth occurrence of the specified character before the cursor.

3. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the character after the countth
occurrence of the specified character before the cursor appears in the line.

Undo

Synopsis: u

This command shall be equivalent to the ex undo command except that the current line and
current column shall be set as follows:

Current line: Set to the first line added or changed if any; otherwise, move to the line preceding
any deleted text if one exists; otherwise, move to line 1.

Current column: If undoing an ex command, set to the first non-<blank>.

Otherwise, if undoing a text input command:

1. If the command was a C, c, O, o, R, S, or s command, the current column shall be set to
the value it held when the text input command was entered.

2. Otherwise, set to the last column in which any portion of the first character after the
deleted text is displayed, or, if no non-<newline> characters follow the text deleted from
this line, set to the last column in which any portion of the last non-<newline> in the line
is displayed, or 1 if the line is empty.

Otherwise, if a single line was modified (that is, not added or deleted) by the u command:

1. If text was added or changed, set to the last column in which any portion of the first
character added or changed is displayed.

2. If text was deleted, set to the last column in which any portion of the first character after
the deleted text is displayed, or, if no non-<newline> characters follow the deleted text,
set to the last column in which any portion of the last non-<newline> in the line is
displayed, or 1 if the line is empty.

Otherwise, set to non-<blank>.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3557

121532

121533

121534

121535

121536

121537

121538

121539

121540

121541

121542

121543

121544

121545

121546

121547

121548

121549

121550

121551

121552

121553

121554

121555

121556

121557

121558

121559

121560

121561

121562

121563

121564

121565

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Undo Current Line

Synopsis: U

Restore the current line to its state immediately before the most recent time that it became the
current line.

Current line: Unchanged.

Current column: Set to the first column in the line in which any portion of the first character in
the line is displayed.

Move to Beginning of Word

Synopsis: [count] w

With the exception that words are used as the delimiter instead of bigwords, this command shall
be equivalent to the W command.

Move to Beginning of Bigword

Synopsis: [count] W

If the edit buffer is empty, it shall be an error. If there are less than count bigwords between the
cursor and the end of the edit buffer, count shall be adjusted to move the cursor to the last
bigword in the edit buffer.

If used as a motion command:

1. If the associated command is c, count is 1, and the cursor is on a <blank>, the region of
text shall be the current character and no further action shall be taken.

2. If there are less than count bigwords between the cursor and the end of the edit buffer,
then the command shall succeed, and the region of text shall include the last character of
the edit buffer.

3. If there are <blank> characters or an end-of-line that precede the countth bigword, and the
associated command is c, the region of text shall be up to and including the last character
before the preceding <blank> characters or end-of-line.

4. If there are <blank> characters or an end-of-line that precede the bigword, and the
associated command is d or y, the region of text shall be up to and including the last
<blank> before the start of the bigword or end-of-line.

5. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

1. If the cursor is on the last character of the edit buffer, it shall be an error.

Current line: Set to the line containing the current column.

Current column: Set to the last column in which any part of the first character of the countth next
bigword is displayed.

3558 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121566

121567

121568

121569

121570

121571

121572

121573

121574

121575

121576

121577

121578

121579

121580

121581

121582

121583

121584

121585

121586

121587

121588

121589

121590

121591

121592

121593

121594

121595

121596

121597

121598

121599

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Delete Character at Cursor

Synopsis: [buffer][count] x

Delete the count characters at and after the current character into buffer, if specified, and into the
unnamed buffer.

If the line is empty, it shall be an error. If there are less than count non-<newline> characters at
and after the cursor on the current line, count shall be adjusted to the number of non-<newline>
characters at and after the cursor.

Current line: Unchanged.

Current column: If the line is empty, set to column position 1. Otherwise, if there were count or
less non-<newline> characters at and after the cursor on the current line, set to the last column
that displays any part of the last non-<newline> of the line. Otherwise, unchanged.

Delete Character Before Cursor

Synopsis: [buffer][count] X

Delete the count characters before the current character into buffer, if specified, and into the
unnamed buffer.

If there are no characters before the current character on the current line, it shall be an error. If
there are less than count previous characters on the current line, count shall be adjusted to the
number of previous characters on the line.

Current line: Unchanged.

Current column: Set to (current column − the width of the deleted characters).

Yank

Synopsis: [buffer][count] y motion

Copy (yank) the region of text into buffer, if specified, and into the unnamed buffer.

If the motion command is the y command repeated:

1. The buffer shall be in line mode.

2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

3. The text region shall be from the current line up to and including the next count −1 lines.

Otherwise, the buffer text mode and text region shall be as specified by the motion command.

Current line: If the motion was from the current cursor position toward the end of the edit buffer,
unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
specified by the motion command.

Current column:

1. If the motion was from the current cursor position toward the end of the edit buffer,
unchanged.

2. Otherwise, if the current line is empty, set to column position 1.

3. Otherwise, set to the last column that displays any part of the first character in the file
that is part of the text region specified by the motion command.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3559

121600

121601

121602

121603

121604

121605

121606

121607

121608

121609

121610

121611

121612

121613

121614

121615

121616

121617

121618

121619

121620

121621

121622

121623

121624

121625

121626

121627

121628

121629

121630

121631

121632

121633

121634

121635

121636

121637

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Yank Current Line

Synopsis: [buffer][count] Y

This command shall be equivalent to the vi command:

[buffer][count] y_

Redraw Window

If in open mode, the z command shall have the Synopsis:

Synopsis: [count] z

If count is not specified, it shall default to the window edit option −1. The z command shall be
equivalent to the ex z command, with a type character of = and a count of count −2, except that
the current line and current column shall be set as follows, and the window edit option shall not
be affected. If the calculation for the count argument would result in a negative number, the
count argument to the ex z command shall be zero. A blank line shall be written after the last line
is written.

Current line: Unchanged.

Current column: Unchanged.

If not in open mode, the z command shall have the following Synopsis:

Synopsis: [line] z [count] character

If line is not specified, it shall default to the current line. If line is specified, but is greater than the
number of lines in the edit buffer, it shall default to the number of lines in the edit buffer.

If count is specified, the value of the window edit option shall be set to count (as described in the
ex window command), and the screen shall be redrawn.

line shall be placed as specified by the following characters:

<newline>, <carriage-return>
Place the beginning of the line on the first line of the display.

. Place the beginning of the line in the center of the display. The middle line of the display
shall be calculated as described for the M command.

− Place an unspecified portion of the line on the last line of the display.

+ If line was specified, equivalent to the <newline> case. If line was not specified, display a
screen where the first line of the display shall be (current last line) +1. If there are no lines
after the last line in the display, it shall be an error.

ˆ If line was specified, display a screen where the last line of the display shall contain an
unspecified portion of the first line of a display that had an unspecified portion of the
specified line on the last line of the display. If this calculation results in a line before the
beginning of the edit buffer, display the first screen of the edit buffer.

Otherwise, display a screen where the last line of the display shall contain an unspecified
portion of (current first line −1). If this calculation results in a line before the beginning of
the edit buffer, it shall be an error.

3560 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121638

121639

121640

121641

121642

121643

121644

121645

121646

121647

121648

121649

121650

121651

121652

121653

121654

121655

121656

121657

121658

121659

121660

121661

121662

121663

121664

121665

121666

121667

121668

121669

121670

121671

121672

121673

121674

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Current line: If line and the '^' character were specified:

1. If the first screen was displayed as a result of the command attempting to display lines
before the beginning of the edit buffer: if the first screen was already displayed,
unchanged; otherwise, set to (current first line −1).

2. Otherwise, set to the last line of the display.

If line and the '+' character were specified, set to the first line of the display.

Otherwise, if line was specified, set to line.

Otherwise, unchanged.

Current column: Set to non-<blank>.

Exit

Synopsis: ZZ

This command shall be equivalent to the ex xit command with no addresses, trailing !, or
filename (see the ex xit command).

Input Mode Commands in vi

In text input mode, the current line shall consist of zero or more of the following categories, plus
the terminating <newline>:

1. Characters preceding the text input entry point

Characters in this category shall not be modified during text input mode.

2. autoindent characters

autoindent characters shall be automatically inserted into each line that is created in text
input mode, either as a result of entering a <newline> or <carriage-return> while in text
input mode, or as an effect of the command itself; for example, O or o (see the ex
autoindent command), as if entered by the user.

It shall be possible to erase autoindent characters with the <control>-D command; it is
unspecified whether they can be erased by <control>-H, <control>-U, and <control>-W
characters. Erasing any autoindent character turns the glyph into erase-columns and
deletes the character from the edit buffer, but does not change its representation on the
screen.

3. Text input characters

Text input characters are the characters entered by the user. Erasing any text input
character turns the glyph into erase-columns and deletes the character from the edit
buffer, but does not change its representation on the screen.

Each text input character entered by the user (that does not have a special meaning) shall
be treated as follows:

a. The text input character shall be appended to the last character in the edit buffer
from the first, second, or third categories.

b. If there are no erase-columns on the screen, the text input command was the R
command, and characters in the fifth category from the original line follow the
cursor, the next such character shall be deleted from the edit buffer. If the
slowopen edit option is not set, the corresponding glyph on the screen shall

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3561

121675

121676

121677

121678

121679

121680

121681

121682

121683

121684

121685

121686

121687

121688

121689

121690

121691

121692

121693

121694

121695

121696

121697

121698

121699

121700

121701

121702

121703

121704

121705

121706

121707

121708

121709

121710

121711

121712

121713

121714

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

become erase-columns.

c. If there are erase-columns on the screen, as many columns as they occupy, or as are
necessary, shall be overwritten to display the text input character. (If only part of a
multi-column glyph is overwritten, the remainder shall be left on the screen, and
continue to be treated as erase-columns; it is unspecified whether the remainder of
the glyph is modified in any way.)

d. If additional display line columns are needed to display the text input character:

i. If the slowopen edit option is set, the text input characters shall be
displayed on subsequent display line columns, overwriting any characters
displayed in those columns.

ii. Otherwise, any characters currently displayed on or after the column on the
display line where the text input character is to be displayed shall be
pushed ahead the number of display line columns necessary to display the
rest of the text input character.

4. Erase-columns

Erase-columns are not logically part of the edit buffer, appearing only on the screen, and
may be overwritten on the screen by subsequent text input characters. When text input
mode ends, all erase-columns shall no longer appear on the screen.

Erase-columns are initially the region of text specified by the c command (see Change, on
page 3548); however, erasing autoindent or text input characters causes the glyphs of the
erased characters to be treated as erase-columns.

5. Characters following the text region for the c command, or the text input entry point for
all other commands

Characters in this category shall not be modified during text input mode, except as
specified in category 3.b. for the R text input command, or as <blank> characters deleted
when a <newline> or <carriage-return> is entered.

It is unspecified whether it is an error to attempt to erase past the beginning of a line that was
created by the entry of a <newline> or <carriage-return> during text input mode. If it is not an
error, the editor shall behave as if the erasing character was entered immediately after the last
text input character entered on the previous line, and all of the non-<newline> characters on the
current line shall be treated as erase-columns.

When text input mode is entered, or after a text input mode character is entered (except as
specified for the special characters below), the cursor shall be positioned as follows:

1. On the first column that displays any part of the first erase-column, if one exists

2. Otherwise, if the slowopen edit option is set, on the first display line column after the last
character in the first, second, or third categories, if one exists

3. Otherwise, the first column that displays any part of the first character in the fifth
category, if one exists

4. Otherwise, the display line column after the last character in the first, second, or third
categories, if one exists

5. Otherwise, on column position 1

The characters that are updated on the screen during text input mode are unspecified, other than
that the last text input character shall always be updated, and, if the slowopen edit option is not

3562 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121715

121716

121717

121718

121719

121720

121721

121722

121723

121724

121725

121726

121727

121728

121729

121730

121731

121732

121733

121734

121735

121736

121737

121738

121739

121740

121741

121742

121743

121744

121745

121746

121747

121748

121749

121750

121751

121752

121753

121754

121755

121756

121757

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

set, the current cursor character shall always be updated.

The following specifications are for command characters entered during text input mode.

NUL

Synopsis: NUL

If the first character of the text input is a NUL, the most recently input text shall be input as if
entered by the user, and then text input mode shall be exited. The text shall be input literally;
that is, characters are neither macro or abbreviation expanded, nor are any characters interpreted
in any special manner. It is unspecified whether implementations shall support more than 256
bytes of remembered input text.

<control>-D

Synopsis: <control>-D

The <control>-D character shall have no special meaning when in text input mode for a line-
oriented command (see Command Descriptions in vi, on page 3527).

This command need not be supported on block-mode terminals.

If the cursor does not follow an autoindent character, or an autoindent character and a '0' or
'^' character:

1. If the cursor is in column position 1, the <control>-D character shall be discarded and no
further action taken.

2. Otherwise, the <control>-D character shall have no special meaning.

If the last input character was a '0', the cursor shall be moved to column position 1.

Otherwise, if the last input character was a '^', the cursor shall be moved to column position 1.
In addition, the autoindent level for the next input line shall be derived from the same line from
which the autoindent level for the current input line was derived.

Otherwise, the cursor shall be moved back to the column after the previous shiftwidth (see the
ex shiftwidth command) boundary.

All of the glyphs on columns between the starting cursor position and (inclusively) the ending
cursor position shall become erase-columns as described in Input Mode Commands in vi (on
page 3561).

Current line: Unchanged.

Current column: Set to 1 if the <control>-D was preceded by a '^' or '0'; otherwise, set to
(column −1) −((column −2) % shiftwidth).

<control>-H

Synopsis: <control>-H

If in text input mode for a line-oriented command, and there are no characters to erase, text
input mode shall be terminated, no further action shall be done for this command, and the
current line and column shall be unchanged.

If there are characters other than autoindent characters that have been input on the current line
before the cursor, the cursor shall move back one character.

Otherwise, if there are autoindent characters on the current line before the cursor, it is

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3563

121758

121759

121760

121761

121762

121763

121764

121765

121766

121767

121768

121769

121770

121771

121772

121773

121774

121775

121776

121777

121778

121779

121780

121781

121782

121783

121784

121785

121786

121787

121788

121789

121790

121791

121792

121793

121794

121795

121796

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

implementation-defined whether the <control>-H command is an error or if the cursor moves
back one autoindent character.

Otherwise, if the cursor is in column position 1 and there are previous lines that have been
input, it is implementation-defined whether the <control>-H command is an error or if it is
equivalent to entering <control>-H after the last input character on the previous input line.

Otherwise, it shall be an error.

All of the glyphs on columns between the starting cursor position and (inclusively) the ending
cursor position shall become erase-columns as described in Input Mode Commands in vi (on
page 3561).

The current erase character (see stty) shall cause an equivalent action to the <control>-H
command, unless the previously inserted character was a <backslash>, in which case it shall be
as if the literal current erase character had been inserted instead of the <backslash>.

Current line: Unchanged, unless previously input lines are erased, in which case it shall be set to
line −1.

Current column: Set to the first column that displays any portion of the character backed up over.

<newline>

Synopsis: <newline>
<carriage-return>
<control>-J
<control>-M

If input was part of a line-oriented command, text input mode shall be terminated and the
command shall continue execution with the input provided.

Otherwise, terminate the current line. If there are no characters other than autoindent characters
on the line, all characters on the line shall be discarded. Otherwise, it is unspecified whether the
autoindent characters in the line are modified by entering these characters.

Continue text input mode on a new line appended after the current line. If the slowopen edit
option is set, the lines on the screen below the current line shall not be pushed down, but the
first of them shall be cleared and shall appear to be overwritten. Otherwise, the lines of the
screen below the current line shall be pushed down.

If the autoindent edit option is set, an appropriate number of autoindent characters shall be
added as a prefix to the line as described by the ex autoindent edit option.

All columns after the cursor that are erase-columns (as described in Input Mode Commands in
vi, on page 3561) shall be discarded.

If the autoindent edit option is set, all <blank> characters immediately following the cursor shall
be discarded.

All remaining characters after the cursor shall be transferred to the new line, positioned after
any autoindent characters.

Current line: Set to current line +1.

Current column: Set to the first column that displays any portion of the first character after the
autoindent characters on the new line, if any, or the first column position after the last
autoindent character, if any, or column position 1.

3564 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121797

121798

121799

121800

121801

121802

121803

121804

121805

121806

121807

121808

121809

121810

121811

121812

121813

121814

121815

121816

121817

121818

121819

121820

121821

121822

121823

121824

121825

121826

121827

121828

121829

121830

121831

121832

121833

121834

121835

121836

121837

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

<control>-T

Synopsis: <control>-T

The <control>-T character shall have no special meaning when in text input mode for a line-
oriented command (see Command Descriptions in vi, on page 3527).

This command need not be supported on block-mode terminals.

Behave as if the user entered the minimum number of <blank> characters necessary to move the
cursor forward to the column position after the next shiftwidth (see the ex shiftwidth
command) boundary.

Current line: Unchanged.

Current column: Set to column + shiftwidth − ((column −1) % shiftwidth).

<control>-U

Synopsis: <control>-U

If there are characters other than autoindent characters that have been input on the current line
before the cursor, the cursor shall move to the first character input after the autoindent
characters.

Otherwise, if there are autoindent characters on the current line before the cursor, it is
implementation-defined whether the <control>-U command is an error or if the cursor moves to
the first column position on the line.

Otherwise, if the cursor is in column position 1 and there are previous lines that have been
input, it is implementation-defined whether the <control>-U command is an error or if it is
equivalent to entering <control>-U after the last input character on the previous input line.

Otherwise, it shall be an error.

All of the glyphs on columns between the starting cursor position and (inclusively) the ending
cursor position shall become erase-columns as described in Input Mode Commands in vi (on
page 3561).

The current kill character (see stty) shall cause an equivalent action to the <control>-U command,
unless the previously inserted character was a <backslash>, in which case it shall be as if the
literal current kill character had been inserted instead of the <backslash>.

Current line: Unchanged, unless previously input lines are erased, in which case it shall be set to
line −1.

Current column: Set to the first column that displays any portion of the last character backed up
over.

<control>-V

Synopsis: <control>-V
<control>-Q

Allow the entry of any subsequent character, other than <control>-J or the <newline>, as a literal
character, removing any special meaning that it may have to the editor in text input mode. If a
<control>-V or <control>-Q is entered before a <control>-J or <newline>, the <control>-V or
<control>-Q character shall be discarded, and the <control>-J or <newline> shall behave as
described in the <newline> command character during input mode.

For purposes of the display only, the editor shall behave as if a '^' character was entered, and

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3565

121838

121839

121840

121841

121842

121843

121844

121845

121846

121847

121848

121849

121850

121851

121852

121853

121854

121855

121856

121857

121858

121859

121860

121861

121862

121863

121864

121865

121866

121867

121868

121869

121870

121871

121872

121873

121874

121875

121876

121877

121878

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

the cursor shall be positioned as if overwriting the '^' character. When a subsequent character
is entered, the editor shall behave as if that character was entered instead of the original
<control>-V or <control>-Q character.

Current line: Unchanged.

Current column: Unchanged.

<control>-W

Synopsis: <control>-W

If there are characters other than autoindent characters that have been input on the current line
before the cursor, the cursor shall move back over the last word preceding the cursor (including
any <blank> characters between the end of the last word and the current cursor); the cursor shall
not move to before the first character after the end of any autoindent characters.

Otherwise, if there are autoindent characters on the current line before the cursor, it is
implementation-defined whether the <control>-W command is an error or if the cursor moves to
the first column position on the line.

Otherwise, if the cursor is in column position 1 and there are previous lines that have been
input, it is implementation-defined whether the <control>-W command is an error or if it is
equivalent to entering <control>-W after the last input character on the previous input line.

Otherwise, it shall be an error.

All of the glyphs on columns between the starting cursor position and (inclusively) the ending
cursor position shall become erase-columns as described in Input Mode Commands in vi (on
page 3561).

Current line: Unchanged, unless previously input lines are erased, in which case it shall be set to
line −1.

Current column: Set to the first column that displays any portion of the last character backed up
over.

<ESC>

Synopsis: <ESC>

If input was part of a line-oriented command:

1. If interrupt was entered, text input mode shall be terminated and the editor shall return to
command mode. The terminal shall be alerted.

2. If <ESC> was entered, text input mode shall be terminated and the command shall
continue execution with the input provided.

Otherwise, terminate text input mode and return to command mode.

Any autoindent characters entered on newly created lines that have no other non-<newline>
characters shall be deleted.

Any leading autoindent and <blank> characters on newly created lines shall be rewritten to be
the minimum number of <blank> characters possible.

The screen shall be redisplayed as necessary to match the contents of the edit buffer.

Current line: Unchanged.

3566 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121879

121880

121881

121882

121883

121884

121885

121886

121887

121888

121889

121890

121891

121892

121893

121894

121895

121896

121897

121898

121899

121900

121901

121902

121903

121904

121905

121906

121907

121908

121909

121910

121911

121912

121913

121914

121915

121916

121917

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Current column:

1. If there are text input characters on the current line, the column shall be set to the last
column where any portion of the last text input character is displayed.

2. Otherwise, if a character is displayed in the current column, unchanged.

3. Otherwise, set to column position 1.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When an unrecoverable error is encountered it shall be equivalent to a SIGHUP asynchronous
event.

Otherwise, when an error is encountered, the editor shall behave as specified in Command
Descriptions in vi (on page 3527).

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
See the RATIONALE for ex for more information on vi. Major portions of the vi utility
specification point to ex to avoid inadvertent divergence. While ex and vi have historically been
implemented as a single utility, this is not required by POSIX.1-2024.

It is recognized that portions of vi would be difficult, if not impossible, to implement
satisfactorily on a block-mode terminal, or a terminal without any form of cursor addressing,
thus it is not a mandatory requirement that such features should work on all terminals. It is the
intention, however, that a vi implementation should provide the full set of capabilities on all
terminals capable of supporting them.

Historically, vi exited immediately if the standard input was not a terminal. POSIX.1-2024
permits, but does not require, this behavior. An end-of-file condition is not equivalent to an end-
of-file character. A common end-of-file character, <control>-D, is historically a vi command.

The text in the STDOUT section reflects the usage of the verb display in this section; some
implementations of vi use standard output to write to the terminal, but POSIX.1-2024 does not
require that to be the case.

Historically, implementations reverted to open mode if the terminal was incapable of supporting
full visual mode. POSIX.1-2024 requires this behavior. Historically, the open mode of vi behaved
roughly equivalently to the visual mode, with the exception that only a single line from the edit
buffer (one ``buffer line’’) was kept current at any time. This line was normally displayed on the
next-to-last line of a terminal with cursor addressing (and the last line performed its normal
visual functions for line-oriented commands and messages). In addition, some few commands
behaved differently in open mode than in visual mode. POSIX.1-2024 requires conformance to
historical practice.

Historically, ex and vi implementations have expected text to proceed in the usual
European/Latin order of left to right, top to bottom. There is no requirement in POSIX.1-2024
that this be the case. The specification was deliberately written using words like ``before’’,

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3567

121918

121919

121920

121921

121922

121923

121924

121925

121926

121927

121928

121929

121930

121931

121932

121933

121934

121935

121936

121937

121938

121939

121940

121941

121942

121943

121944

121945

121946

121947

121948

121949

121950

121951

121952

121953

121954

121955

121956

121957

121958

121959

121960

121961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

``after ’’, ``first’’, and ``last’’ in order to permit implementations to support the natural text order
of the language.

Historically, lines past the end of the edit buffer were marked with single <tilde> ('~')
characters; that is, if the one-based display was 20 lines in length, and the last line of the file was
on line one, then lines 2-20 would contain only a single '~' character.

Historically, the vi editor attempted to display only complete lines at the bottom of the screen (it
did display partial lines at the top of the screen). If a line was too long to fit in its entirety at the
bottom of the screen, the screen lines where the line would have been displayed were displayed
as single '@' characters, instead of displaying part of the line. POSIX.1-2024 permits, but does
not require, this behavior. Implementations are encouraged to attempt always to display a
complete line at the bottom of the screen when doing scrolling or screen positioning by buffer
lines.

Historically, lines marked with '@' were also used to minimize output to dumb terminals over
slow lines; that is, changes local to the cursor were updated, but changes to lines on the screen
that were not close to the cursor were simply marked with an '@' sign instead of being updated
to match the current text. POSIX.1-2024 permits, but does not require this feature because it is
used ever less frequently as terminals become smarter and connections are faster.

Initialization in ex and vi

Historically, vi always had a line in the edit buffer, even if the edit buffer was ``empty’’. For
example:

1. The ex command = executed from visual mode wrote ``1’’ when the buffer was empty.

2. Writes from visual mode of an empty edit buffer wrote files of a single character (a
<newline>), while writes from ex mode of an empty edit buffer wrote empty files.

3. Put and read commands into an empty edit buffer left an empty line at the top of the edit
buffer.

For consistency, POSIX.1-2024 does not permit any of these behaviors.

Historically, vi did not always return the terminal to its original modes; for example, ICRNL was
modified if it was not originally set. POSIX.1-2024 does not permit this behavior.

Command Descriptions in vi

Motion commands are among the most complicated aspects of vi to describe. With some
exceptions, the text region and buffer type effect of a motion command on a vi command are
described on a case-by-case basis. The descriptions of text regions in POSIX.1-2024 are not
intended to imply direction; that is, an inclusive region from line n to line n+5 is identical to a
region from line n+5 to line n. This is of more than academic interest—movements to marks can
be in either direction, and, if the wrapscan option is set, so can movements to search points.
Historically, lines are always stored into buffers in text order; that is, from the start of the edit
buffer to the end. POSIX.1-2024 requires conformance to historical practice.

Historically, command counts were applied to any associated motion, and were multiplicative to
any supplied motion count. For example, 2cw is the same as c2w, and 2c3w is the same as c6w.
POSIX.1-2024 requires this behavior. Historically, vi commands that used bigwords, words,
paragraphs, and sentences as objects treated groups of empty lines, or lines that contained only
<blank> characters, inconsistently. Some commands treated them as a single entity, while others
treated each line separately. For example, the w, W, and B commands treated groups of empty
lines as individual words; that is, the command would move the cursor to each new empty line.

3568 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

121962

121963

121964

121965

121966

121967

121968

121969

121970

121971

121972

121973

121974

121975

121976

121977

121978

121979

121980

121981

121982

121983

121984

121985

121986

121987

121988

121989

121990

121991

121992

121993

121994

121995

121996

121997

121998

121999

122000

122001

122002

122003

122004

122005

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

The e and E commands treated groups of empty lines as a single word; that is, the first use
would move past the group of lines. The b command would just beep at the user, or if done from
the start of the line as a motion command, fail in unexpected ways. If the lines contained only (or
ended with) <blank> characters, the w and W commands would just beep at the user, the E and
e commands would treat the group as a single word, and the B and b commands would treat the
lines as individual words. For consistency and simplicity of specification, POSIX.1-2024 requires
that all vi commands treat groups of empty or blank lines as a single entity, and that movement
through lines ending with <blank> characters be consistent with other movements.

Historically, vi documentation indicated that any number of double-quotes were skipped after
punctuation marks at sentence boundaries; however, implementations only skipped single-
quotes. POSIX.1-2024 requires both to be skipped.

Historically, the first and last characters in the edit buffer were word boundaries. This historical
practice is required by POSIX.1-2024.

Historically, vi attempted to update the minimum number of columns on the screen possible,
which could lead to misleading information being displayed. POSIX.1-2024 makes no
requirements other than that the current character being entered is displayed correctly, leaving
all other decisions in this area up to the implementation.

Historically, lines were arbitrarily folded between columns of any characters that required
multiple column positions on the screen, with the exception of tabs, which terminated at the
right-hand margin. POSIX.1-2024 permits the former and requires the latter. Implementations
that do not arbitrarily break lines between columns of characters that occupy multiple column
positions should not permit the cursor to rest on a column that does not contain any part of a
character.

The historical vi had a problem in that all movements were by buffer lines, not by display or
screen lines. This is often the right thing to do; for example, single line movements, such as j or
k, should work on buffer lines. Commands like dj, or j., where . is a change command, only
make sense for buffer lines. It is not, however, the right thing to do for screen motion or scrolling
commands like <control>-D, <control>-F, and H. If the window is fairly small, using buffer lines
in these cases can result in completely random motion; for example, 1<control>-D can result in a
completely changed screen, without any overlap. This is clearly not what the user wanted. The
problem is even worse in the case of the H, L, and M commands—as they position the cursor at
the first non-<blank> of the line, they may all refer to the same location in large lines, and will
result in no movement at all.

In addition, if the line is larger than the screen, using buffer lines can make it impossible to
display parts of the line—there are not any commands that do not display the beginning of the
line in historical vi, and if both the beginning and end of the line cannot be on the screen at the
same time, the user suffers. Finally, the page and half-page scrolling commands historically
moved to the first non-<blank> in the new line. If the line is approximately the same size as the
screen, this is inadequate because the cursor before and after a <control>-D command will refer
to the same location on the screen.

Implementations of ex and vi exist that do not have these problems because the relevant
commands (<control>-B, <control>-D, <control>-F, <control>-U, <control>-Y, <control>-E, H, L,
and M) operate on display (screen) lines, not (edit) buffer lines.

POSIX.1-2024 does not permit this behavior by default because the standard developers believed
that users would find it too confusing. However, historical practice has been relaxed. For
example, ex and vi historically attempted, albeit sometimes unsuccessfully, to never put part of a
line on the last lines of a screen; for example, if a line would not fit in its entirety, no part of the
line was displayed, and the screen lines corresponding to the line contained single '@'

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3569

122006

122007

122008

122009

122010

122011

122012

122013

122014

122015

122016

122017

122018

122019

122020

122021

122022

122023

122024

122025

122026

122027

122028

122029

122030

122031

122032

122033

122034

122035

122036

122037

122038

122039

122040

122041

122042

122043

122044

122045

122046

122047

122048

122049

122050

122051

122052

122053

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

characters. This behavior is permitted, but not required by POSIX.1-2024, so that it is possible for
implementations to support long lines in small screens more reasonably without changing the
commands to be oriented to the display (instead of oriented to the buffer). POSIX.1-2024 also
permits implementations to refuse to edit any edit buffer containing a line that will not fit on the
screen in its entirety.

The display area (for example, the value of the window edit option) has historically been
``grown’’, or expanded, to display new text when local movements are done in displays where
the number of lines displayed is less than the maximum possible. Expansion has historically
been the first choice, when the target line is less than the maximum possible expansion value
away. Scrolling has historically been the next choice, done when the target line is less than half a
display away, and otherwise, the screen was redrawn. There were exceptions, however, in that ex
commands generally always caused the screen to be redrawn. POSIX.1-2024 does not specify a
standard behavior because there may be external issues, such as connection speed, the number
of characters necessary to redraw as opposed to scroll, or terminal capabilities that
implementations will have to accommodate.

The current line in POSIX.1-2024 maps one-to-one to a buffer line in the file. The current column
does not. There are two different column values that are described by POSIX.1-2024. The first is
the current column value as set by many of the vi commands. This value is remembered for the
lifetime of the editor. The second column value is the actual position on the screen where the
cursor rests. The two are not always the same. For example, when the cursor is backed by a
multi-column character, the actual cursor position on the screen has historically been the last
column of the character in command mode, and the first column of the character in input mode.

Commands that set the current line, but that do not set the current cursor value (for example, j
and k) attempt to get as close as possible to the remembered column position, so that the cursor
tends to restrict itself to a vertical column as the user moves around in the edit buffer.
POSIX.1-2024 requires conformance to historical practice, requiring that the display location of
the cursor on the display line be adjusted from the current column value as necessary to support
this historical behavior.

Historically, only a single line (and for some terminals, a single line minus 1 column) of
characters could be entered by the user for the line-oriented commands; that is, :, !, /, or ?.
POSIX.1-2024 permits, but does not require, this limitation.

Historically, ``soft’’ errors in vi caused the terminal to be alerted, but no error message was
displayed. As a general rule, no error message was displayed for errors in command execution
in vi, when the error resulted from the user attempting an invalid or impossible action, or when
a searched-for object was not found. Examples of soft errors included h at the left margin,
<control>-B or [[at the beginning of the file, 2G at the end of the file, and so on. In addition,
errors such as %,]], },), N, n, f, F, t, and T failing to find the searched-for object were soft as well.
Less consistently, / and ? displayed an error message if the pattern was not found, /, ?, N, and n
displayed an error message if no previous regular expression had been specified, and ; did not
display an error message if no previous f, F, t, or T command had occurred. Also, behavior in
this area might reasonably be based on a runtime evaluation of the speed of a network
connection. Finally, some implementations have provided error messages for soft errors in order
to assist naive users, based on the value of a verbose edit option. POSIX.1-2024 does not list
specific errors for which an error message shall be displayed. Implementations should conform
to historical practice in the absence of any strong reason to diverge.

3570 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122054

122055

122056

122057

122058

122059

122060

122061

122062

122063

122064

122065

122066

122067

122068

122069

122070

122071

122072

122073

122074

122075

122076

122077

122078

122079

122080

122081

122082

122083

122084

122085

122086

122087

122088

122089

122090

122091

122092

122093

122094

122095

122096

122097

122098

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Page Backwards

The <control>-B and <control>-F commands historically considered it an error to attempt to
page past the beginning or end of the file, whereas the <control>-D and <control>-U commands
simply moved to the beginning or end of the file. For consistency, POSIX.1-2024 requires the
latter behavior for all four commands. All four commands still consider it an error if the current
line is at the beginning (<control>-B, <control>-U) or end (<control>-F, <control>-D) of the file.
Historically, the <control>-B and <control>-F commands skip two lines in order to include
overlapping lines when a single command is entered. This makes less sense in the presence of a
count, as there will be, by definition, no overlapping lines. The actual calculation used by
historical implementations of the vi editor for <control>-B was:

((current first line) - count x (window edit option)) +2

and for <control>-F was:

((current first line) + count x (window edit option)) -2

This calculation does not work well when intermixing commands with and without counts; for
example, 3<control>-F is not equivalent to entering the <control>-F command three times, and is
not reversible by entering the <control>-B command three times. For consistency with other vi
commands that take counts, POSIX.1-2024 requires a different calculation.

Scroll Forward

The 4BSD and System V implementations of vi differed on the initial value used by the scroll
command. 4BSD used:

((window edit option) +1) /2

while System V used the value of the scroll edit option. The System V version is specified by
POSIX.1-2024 because the standard developers believed that it was more intuitive and permitted
the user a method of setting the scroll value initially without also setting the number of lines that
are displayed.

Scroll Forward by Line

Historically, the <control>-E and <control>-Y commands considered it an error if the last and
first lines, respectively, were already on the screen. POSIX.1-2024 requires conformance to
historical practice. Historically, the <control>-E and <control>-Y commands had no effect in
open mode. For simplicity and consistency of specification, POSIX.1-2024 requires that they
behave as usual, albeit with a single line screen.

Clear and Redisplay

The historical <control>-L command refreshed the screen exactly as it was supposed to be
currently displayed, replacing any '@' characters for lines that had been deleted but not
updated on the screen with refreshed '@' characters. The intent of the <control>-L command is
to refresh when the screen has been accidentally overwritten; for example, by a write command
from another user, or modem noise.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3571

122099

122100

122101

122102

122103

122104

122105

122106

122107

122108

122109

122110

122111

122112

122113

122114

122115

122116

122117

122118

122119

122120

122121

122122

122123

122124

122125

122126

122127

122128

122129

122130

122131

122132

122133

122134

122135

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Redraw Screen

The historical <control>-R command redisplayed only when necessary to update lines that had
been deleted but not updated on the screen and that were flagged with '@' characters. There is
no requirement that the screen be in any way refreshed if no lines of this form are currently
displayed. POSIX.1-2024 permits implementations to extend this command to refresh lines on
the screen flagged with '@' characters because they are too long to be displayed in the current
framework; however, the current line and column need not be modified.

Search for tagstring

Historically, the first non-<blank> at or after the cursor was the first character, and all
subsequent characters that were word characters, up to the end of the line, were included. For
example, with the cursor on the leading <space> or on the '#' character in the text "#bar@",
the tag was "#bar". On the character 'b' it was "bar", and on the 'a' it was "ar".
POSIX.1-2024 requires this behavior.

Replace Text with Results from Shell Command

Historically, the <, >, and ! commands considered most cursor motions other than line-oriented
motions an error; for example, the command >/foo<CR> succeeded, while the command >l
failed, even though the text region described by the two commands might be identical. For
consistency, all three commands only consider entire lines and not partial lines, and the region is
defined as any line that contains a character that was specified by the motion.

Move to Matching Character

Other matching characters have been left implementation-defined in order to allow extensions
such as matching '<' and '>' for searching HTML, or #ifdef, #else, and #endif for searching C
source.

Repeat Substitution

POSIX.1-2024 requires that any c and g flags specified to the previous substitute command be
ignored; however, the r flag may still apply, if supported by the implementation.

Return to Previous (Context or Section)

The [[,]], (,), {, and } commands are all affected by ``section boundaries’’, but in some historical
implementations not all of the commands recognize the same section boundaries. This is a bug,
not a feature, and a unique section-boundary algorithm was not described for each command.
One special case that is preserved is that the sentence command moves to the end of the last line
of the edit buffer while the other commands go to the beginning, in order to preserve the
traditional character cut semantics of the sentence command. Historically, vi section boundaries
at the beginning and end of the edit buffer were the first non-<blank> on the first and last lines
of the edit buffer if one exists; otherwise, the last character of the first and last lines of the edit
buffer if one exists. To increase consistency with other section locations, this has been simplified
by POSIX.1-2024 to the first character of the first and last lines of the edit buffer, or the first and
the last lines of the edit buffer if they are empty.

Sentence boundaries were problematic in the historical vi. They were not only the boundaries as
defined for the section and paragraph commands, but they were the first non-<blank> that
occurred after those boundaries, as well. Historically, the vi section commands were
documented as taking an optional window size as a count preceding the command. This was not
implemented in historical versions, so POSIX.1-2024 requires that the count repeat the command,

3572 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122136

122137

122138

122139

122140

122141

122142

122143

122144

122145

122146

122147

122148

122149

122150

122151

122152

122153

122154

122155

122156

122157

122158

122159

122160

122161

122162

122163

122164

122165

122166

122167

122168

122169

122170

122171

122172

122173

122174

122175

122176

122177

122178

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

for consistency with other vi commands.

Repeat

Historically, mapped commands other than text input commands could not be repeated using
the period command. POSIX.1-2024 requires conformance to historical practice.

The restrictions on the interpretation of special characters (for example, <control>-H) in the
repetition of text input mode commands is intended to match historical practice. For example,
given the input sequence:

iab<control>-H<control>-H<control>-Hdef<escape>

the user should be informed of an error when the sequence is first entered, but not during a
command repetition. The character <control>-T is specifically exempted from this restriction.
Historical implementations of vi ignored <control>-T characters that were input in the original
command during command repetition. POSIX.1-2024 prohibits this behavior.

Find Regular Expression

Historically, commands did not affect the line searched to or from if the motion command was a
search (/, ?, N, n) and the final position was the start/end of the line. There were some special
cases and vi was not consistent. POSIX.1-2024 does not permit this behavior, for consistency.
Historical implementations permitted but were unable to handle searches as motion commands
that wrapped (that is, due to the edit option wrapscan) to the original location. POSIX.1-2024
requires that this behavior be treated as an error.

Historically, the syntax "/RE/0" was used to force the command to cut text in line mode.
POSIX.1-2024 requires conformance to historical practice.

Historically, in open mode, a z specified to a search command redisplayed the current line
instead of displaying the current screen with the current line highlighted. For consistency and
simplicity of specification, POSIX.1-2024 does not permit this behavior.

Historically, trailing z commands were permitted and ignored if entered as part of a search used
as a motion command. For consistency and simplicity of specification, POSIX.1-2024 does not
permit this behavior.

Execute an ex Command

Historically, vi implementations restricted the commands that could be entered on the colon
command line (for example, append and change), and some other commands were known to
cause them to fail catastrophically. For consistency, POSIX.1-2024 does not permit these
restrictions. When executing an ex command by entering :, it is not possible to enter a <newline>
as part of the command because it is considered the end of the command. A different approach
is to enter ex command mode by using the vi Q command (and later resuming visual mode with
the ex vi command). In ex command mode, the single-line limitation does not exist. So, for
example, the following is valid:

Q
s/break here/break\
here/
vi

POSIX.1-2024 requires that, if the ex command overwrites any part of the screen that would be
erased by a refresh, vi pauses for a character from the user. Historically, this character could be
any character; for example, a character input by the user before the message appeared, or even a

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3573

122179

122180

122181

122182

122183

122184

122185

122186

122187

122188

122189

122190

122191

122192

122193

122194

122195

122196

122197

122198

122199

122200

122201

122202

122203

122204

122205

122206

122207

122208

122209

122210

122211

122212

122213

122214

122215

122216

122217

122218

122219

122220

122221

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

mapped character. This is probably a bug, but implementations that have tried to be more
rigorous by requiring that the user enter a specific character, or that the user enter a character
after the message was displayed, have been forced by user indignation back into historical
behavior. POSIX.1-2024 requires conformance to historical practice.

Shift Left (Right)

Refer to the Rationale for the ! and / commands. Historically, the < and > commands sometimes
moved the cursor to the first non-<blank> (for example if the command was repeated or with _
as the motion command), and sometimes left it unchanged. POSIX.1-2024 does not permit this
inconsistency, requiring instead that the cursor always move to the first non-<blank>.
Historically, the < and > commands did not support buffer arguments, although some
implementations allow the specification of an optional buffer. This behavior is neither required
nor disallowed by POSIX.1-2024.

Execute

Historically, buffers could execute other buffers, and loops, infinite and otherwise, were
possible. POSIX.1-2024 requires conformance to historical practice. The *buffer syntax of ex is not
required in vi, because it is not historical practice and has been used in some vi implementations
to support additional scripting languages.

Reverse Case

Historically, the ˜ command ignored any associated count, and acted only on the characters in the
current line. For consistency with other vi commands, POSIX.1-2024 requires that an associated
count act on the next count characters, and that the command move to subsequent lines if
warranted by count, to make it possible to modify large pieces of text in a reasonably efficient
manner. There exist vi implementations that optionally require an associated motion command
for the ˜ command. Implementations supporting this functionality are encouraged to base it on
the tildedop edit option and handle the text regions and cursor positioning identically to the
yank command.

Append

Historically, counts specified to the A, a, I, and i commands repeated the input of the first line
count times, and did not repeat the subsequent lines of the input text. POSIX.1-2024 requires that
the entire text input be repeated count times.

Move Backward to Preceding Word

Historically, vi became confused if word commands were used as motion commands in empty
files. POSIX.1-2024 requires that this be an error. Historical implementations of vi had a large
number of bugs in the word movement commands, and they varied greatly in behavior in the
presence of empty lines, ``words’’ made up of a single character, and lines containing only
<blank> characters. For consistency and simplicity of specification, POSIX.1-2024 does not
permit this behavior.

3574 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122222

122223

122224

122225

122226

122227

122228

122229

122230

122231

122232

122233

122234

122235

122236

122237

122238

122239

122240

122241

122242

122243

122244

122245

122246

122247

122248

122249

122250

122251

122252

122253

122254

122255

122256

122257

122258

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Change to End-of-Line

Some historical implementations of the C command did not behave as described by
POSIX.1-2024 when the $ key was remapped because they were implemented by pushing the $
key onto the input queue and reprocessing it. POSIX.1-2024 does not permit this behavior.
Historically, the C, S, and s commands did not copy replaced text into the numeric buffers. For
consistency and simplicity of specification, POSIX.1-2024 requires that they behave like their
respective c commands in all respects.

Delete

Historically, lines in open mode that were deleted were scrolled up, and an @ glyph written over
the beginning of the line. In the case of terminals that are incapable of the necessary cursor
motions, the editor erased the deleted line from the screen. POSIX.1-2024 requires conformance
to historical practice; that is, if the terminal cannot display the '@' character, the line cannot
remain on the screen.

Delete to End-of-Line

Some historical implementations of the D command did not behave as described by
POSIX.1-2024 when the $ key was remapped because they were implemented by pushing the $
key onto the input queue and reprocessing it. POSIX.1-2024 does not permit this behavior.

Join

An historical oddity of vi is that the commands J, 1J, and 2J are all equivalent. POSIX.1-2024
requires conformance to historical practice. The vi J command is specified in terms of the ex join
command with an ex command count value. The address correction for a count that is past the
end of the edit buffer is necessary for historical compatibility for both ex and vi.

Mark Position

Historical practice is that only lowercase letters, plus backquote and single-quote, could be used
to mark a cursor position. POSIX.1-2024 requires conformance to historical practice, but
encourages implementations to support other characters as marks as well.

Repeat Regular Expression Find (Forward and Reverse)

Historically, the N and n commands could not be used as motion components for the c
command. With the exception of the cN command, which worked if the search crossed a line
boundary, the text region would be discarded, and the user would not be in text input mode. For
consistency and simplicity of specification, POSIX.1-2024 does not permit this behavior.

Insert Empty Line (Below and Above)

Historically, counts to the O and o commands were used as the number of physical lines to
open, if the terminal was dumb and the slowopen option was not set. This was intended to
minimize traffic over slow connections and repainting for dumb terminals. POSIX.1-2024 does
not permit this behavior, requiring that a count to the open command behave as for other text
input commands. This change to historical practice was made for consistency, and because a
superset of the functionality is provided by the slowopen edit option.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3575

122259

122260

122261

122262

122263

122264

122265

122266

122267

122268

122269

122270

122271

122272

122273

122274

122275

122276

122277

122278

122279

122280

122281

122282

122283

122284

122285

122286

122287

122288

122289

122290

122291

122292

122293

122294

122295

122296

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Put from Buffer (Following and Before)

Historically, counts to the p and P commands were ignored if the buffer was a line mode buffer,
but were (mostly) implemented as described in POSIX.1-2024 if the buffer was a character mode
buffer. Because implementations exist that do not have this limitation, and because pasting lines
multiple times is generally useful, POSIX.1-2024 requires that count be supported for all p and P
commands.

Historical implementations of vi were widely known to have major problems in the p and P
commands, particularly when unusual regions of text were copied into the edit buffer. The
standard developers viewed these as bugs, and they are not permitted for consistency and
simplicity of specification.

Historically, a P or p command (or an ex put command executed from open or visual mode)
executed in an empty file, left an empty line as the first line of the file. For consistency and
simplicity of specification, POSIX.1-2024 does not permit this behavior.

Replace Character

Historically, the r command did not correctly handle the erase and word erase characters as
arguments, nor did it handle an associated count greater than 1 with a <carriage-return>
argument, for which it replaced count characters with a single <newline>. POSIX.1-2024 does
not permit these inconsistencies.

Historically, the r command permitted the <control>-V escaping of entered characters, such as
<ESC> and the <carriage-return>; however, it required two leading <control>-V characters
instead of one. POSIX.1-2024 requires that this be changed for consistency with the other text
input commands of vi.

Historically, it is an error to enter the r command if there are less than count characters at or after
the cursor in the line. While a reasonable and unambiguous extension would be to permit the r
command on empty lines, it would require that too large a count be adjusted to match the
number of characters at or after the cursor for consistency, which is sufficiently different from
historical practice to be avoided. POSIX.1-2024 requires conformance to historical practice.

Replace Characters

Historically, if there were autoindent characters in the line on which the R command was run,
and autoindent was set, the first <newline> would be properly indented and no characters
would be replaced by the <newline>. Each additional <newline> would replace n characters,
where n was the number of characters that were needed to indent the rest of the line to the
proper indentation level. This behavior is a bug and is not permitted by POSIX.1-2024.

Undo

Historical practice for cursor positioning after undoing commands was mixed. In most cases,
when undoing commands that affected a single line, the cursor was moved to the start of added
or changed text, or immediately after deleted text. However, if the user had moved from the line
being changed, the column was either set to the first non-<blank>, returned to the origin of the
command, or remained unchanged. When undoing commands that affected multiple lines or
entire lines, the cursor was moved to the first character in the first line restored. As an example
of how inconsistent this was, a search, followed by an o text input command, followed by an
undo would return the cursor to the location where the o command was entered, but a cw
command followed by an o command followed by an undo would return the cursor to the first
non-<blank> of the line. POSIX.1-2024 requires the most useful of these behaviors, and discards
the least useful, in the interest of consistency and simplicity of specification.

3576 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122297

122298

122299

122300

122301

122302

122303

122304

122305

122306

122307

122308

122309

122310

122311

122312

122313

122314

122315

122316

122317

122318

122319

122320

122321

122322

122323

122324

122325

122326

122327

122328

122329

122330

122331

122332

122333

122334

122335

122336

122337

122338

122339

122340

122341

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

Yank

Historically, the yank command did not move to the end of the motion if the motion was in the
forward direction. It moved to the end of the motion if the motion was in the backward
direction, except for the _ command, or for the G and ' commands when the end of the motion
was on the current line. This was further complicated by the fact that for a number of motion
commands, the yank command moved the cursor but did not update the screen; for example, a
subsequent command would move the cursor from the end of the motion, even though the
cursor on the screen had not reflected the cursor movement for the yank command.
POSIX.1-2024 requires that all yank commands associated with backward motions move the
cursor to the end of the motion for consistency, and specifically, to make ' commands as motions
consistent with search patterns as motions.

Yank Current Line

Some historical implementations of the Y command did not behave as described by
POSIX.1-2024 when the '_' key was remapped because they were implemented by pushing the
'_' key onto the input queue and reprocessing it. POSIX.1-2024 does not permit this behavior.

Redraw Window

Historically, the z command always redrew the screen. This is permitted but not required by
POSIX.1-2024, because of the frequent use of the z command in macros such as map n nz. for
screen positioning, instead of its use to change the screen size. The standard developers
believed that expanding or scrolling the screen offered a better interface for users. The ability to
redraw the screen is preserved if the optional new window size is specified, and in the
<control>-L and <control>-R commands.

The semantics of zˆ are confusing at best. Historical practice is that the screen before the screen
that ended with the specified line is displayed. POSIX.1-2024 requires conformance to historical
practice.

Historically, the z command would not display a partial line at the top or bottom of the screen. If
the partial line would normally have been displayed at the bottom of the screen, the command
worked, but the partial line was replaced with '@' characters. If the partial line would normally
have been displayed at the top of the screen, the command would fail. For consistency and
simplicity of specification, POSIX.1-2024 does not permit this behavior.

Historically, the z command with a line specification of 1 ignored the command. For consistency
and simplicity of specification, POSIX.1-2024 does not permit this behavior.

Historically, the z command did not set the cursor column to the first non-<blank> for the
character if the first screen was to be displayed, and was already displayed. For consistency and
simplicity of specification, POSIX.1-2024 does not permit this behavior.

Input Mode Commands in vi

Historical implementations of vi did not permit the user to erase more than a single line of input,
or to use normal erase characters such as line erase, worderase, and erase to erase autoindent
characters. As there exist implementations of vi that do not have these limitations, both
behaviors are permitted, but only historical practice is required. In the case of these extensions,
vi is required to pause at the autoindent and previous line boundaries.

Historical implementations of vi updated only the portion of the screen where the current cursor
character was displayed. For example, consider the vi input keystrokes:

iabcd<escape>0C<tab>

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3577

122342

122343

122344

122345

122346

122347

122348

122349

122350

122351

122352

122353

122354

122355

122356

122357

122358

122359

122360

122361

122362

122363

122364

122365

122366

122367

122368

122369

122370

122371

122372

122373

122374

122375

122376

122377

122378

122379

122380

122381

122382

122383

122384

122385

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Historically, the <tab> would overwrite the characters "abcd" when it was displayed. Other
implementations replace only the 'a' character with the <tab>, and then push the rest of the
characters ahead of the cursor. Both implementations have problems. The historical
implementation is probably visually nicer for the above example; however, for the keystrokes:

iabcd<ESC>0R<tab><ESC>

the historical implementation results in the string "bcd" disappearing and then magically
reappearing when the <ESC> character is entered. POSIX.1-2024 requires the former behavior
when overwriting erase-columns—that is, overwriting characters that are no longer logically
part of the edit buffer—and the latter behavior otherwise.

Historical implementations of vi discarded the <control>-D and <control>-T characters when
they were entered at places where their command functionality was not appropriate.
POSIX.1-2024 requires that the <control>-T functionality always be available, and that
<control>-D be treated as any other key when not operating on autoindent characters.

NUL

Some historical implementations of vi limited the number of characters entered using the NUL
input character to 256 bytes. POSIX.1-2024 permits this limitation; however, implementations are
encouraged to remove this limit.

<control>-D

See also Rationale for the input mode command <newline>. The hidden assumptions in the
<control>-D command (and in the vi autoindent specification in general) is that <space>
characters take up a single column on the screen and that <tab> characters are comprised of an
integral number of <space> characters.

<newline>

Implementations are permitted to rewrite autoindent characters in the line when <newline>,
<carriage-return>, <control>-D, and <control>-T are entered, or when the shift commands are
used, because historical implementations have both done so and found it necessary to do so. For
example, a <control>-D when the cursor is preceded by a single <tab>, with tabstop set to 8, and
shiftwidth set to 3, will result in the <tab> being replaced by several <space> characters.

<control>-T

See also the Rationale for the input mode command <newline>. Historically, <control>-T only
worked if no non-<blank> characters had yet been input in the current input line. In addition,
the characters inserted by <control>-T were treated as autoindent characters, and could not be
erased using normal user erase characters. Because implementations exist that do not have
these limitations, and as moving to a column boundary is generally useful, POSIX.1-2024
requires that both limitations be removed.

3578 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122386

122387

122388

122389

122390

122391

122392

122393

122394

122395

122396

122397

122398

122399

122400

122401

122402

122403

122404

122405

122406

122407

122408

122409

122410

122411

122412

122413

122414

122415

122416

122417

122418

122419

122420

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities vi

<control>-V

Historically, vi used ˆV, regardless of the value of the literal-next character of the terminal.
POSIX.1-2024 requires conformance to historical practice.

The uses described for <control>-V can also be accomplished with <control>-Q, which is useful
on terminals that use <control>-V for the down-arrow function. However, most historical
implementations use <control>-Q for the termios START character, so the editor will generally
not receive the <control>-Q unless stty ixon mode is set to off. (In addition, some historical
implementations of vi explicitly set ixon mode to on, so it was difficult for the user to set it to
off.) Any of the command characters described in POSIX.1-2024 can be made ineffective by their
selection as termios control characters, using the stty utility or other methods described in the
System Interfaces volume of POSIX.1-2024.

<ESC>

Historically, SIGINT alerted the terminal when used to end input mode. This behavior is
permitted, but not required, by POSIX.1-2024.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
ed , ex , stty

XBD Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent SYNOPSIS is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The reindent command description is added.

The vi utility has been extensively rewritten for alignment with the IEEE P1003.2b draft
standard.

IEEE PASC Interpretations 1003.2 #57, #62, #63, #64, #78, and #188 are applied.

IEEE PASC Interpretation 1003.2 #207 is applied, clarifying the description of the R command in
a manner similar to the descriptions of other text input mode commands such as i, o, and O.

The −l option is removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/41 is applied, adding [count] to the
Synopsis for [[.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/42 is applied, adding [count] to the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3579

122421

122422

122423

122424

122425

122426

122427

122428

122429

122430

122431

122432

122433

122434

122435

122436

122437

122438

122439

122440

122441

122442

122443

122444

122445

122446

122447

122448

122449

122450

122451

122452

122453

122454

122455

122456

122457

122458

122459

122460

122461

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

vi Utilities

Synopsis for]].

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that '+' may be recognized
as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #087 is applied, updating the Put from Buffer Before (P)
command description to address multi-line requirements.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0202 [812] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1310 is applied, changing the CONSEQUENCES OF ERRORS section.

Austin Group Defect 1676 is applied, changing the typeface of some bold text in the
RATIONALE section.

3580 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122462

122463

122464

122465

122466

122467

122468

122469

122470

122471

122472

122473

122474

122475

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities wait

NAME
wait — await process completion

SYNOPSIS
wait [pid...]

DESCRIPTION
The wait utility shall wait for one or more child processes whose process IDs are known in the
current shell execution environment (see Section 2.13, on page 2522) to terminate.

If the wait utility is invoked with no operands, it shall wait until all process IDs known to the
invoking shell have terminated and exit with a zero exit status.

If one or more pid operands are specified that represent known process IDs, the wait utility shall
wait until all of them have terminated. If one or more pid operands are specified that represent
unknown process IDs, wait shall treat them as if they were known process IDs that exited with
exit status 127. The exit status returned by the wait utility shall be the exit status of the process
requested by the last pid operand.

Once a process ID that is known in the current shell execution environment (see Section 2.13, on
page 2522) has been successfully waited for, it shall be removed from the list of process IDs that
are known in the current shell execution environment. If the process ID is associated with a
background job, the corresponding job shall also be removed from the list of background jobs.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

pid One of the following:

1. The unsigned decimal integer process ID of a child process whose
termination the utility is to wait for.

2. A job ID (see XBD Section 3.182, on page 57) that identifies a process group
in the case of a job-control background job, or a process ID in the case of a
non-job-control background job (if supported), to be waited for. The job ID
notation is applicable only for invocations of wait in the current shell
execution environment; see Section 2.13 (on page 2522). The exit status of
wait shall be determined by the exit status of the last pipeline to be executed.

Note: The job ID type of pid is only available on systems supporting the User
Portability Utilities option or supporting non-job-control background
jobs.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of wait:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3581

122476

122477

122478

122479

122480

122481

122482

122483

122484

122485

122486

122487

122488

122489

122490

122491

122492

122493

122494

122495

122496

122497

122498

122499

122500

122501

122502

122503

122504

122505

122506

122507

122508

122509

122510

122511

122512

122513

122514

122515

122516

122517

122518

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wait Utilities

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If one or more operands were specified, all of them have terminated or were not known in the
invoking shell execution environment, and the status of the last operand specified is known,
then the exit status of wait shall be the status of the last operand specified. If the process
terminated abnormally due to the receipt of a signal, the exit status shall be greater than 128 and
shall be distinct from the exit status generated by other signals, but the exact value is
unspecified. (See the kill −l option.) Otherwise, the wait utility shall exit with one of the
following values:

0 The wait utility was invoked with no operands and all process IDs known by the
invoking shell have terminated.

1-126 The wait utility detected an error.

127 The process ID specified by the last pid operand specified is not known in the invoking
shell execution environment.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2470) for details.

On most implementations, wait is a shell built-in. If it is called in a subshell or separate utility
execution environment, such as one of the following:

(wait)
nohup wait ...
find . -exec wait ... \;

it returns immediately because there are no known process IDs to wait for in those
environments.

3582 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122519

122520

122521

122522

122523

122524

122525

122526

122527

122528

122529

122530

122531

122532

122533

122534

122535

122536

122537

122538

122539

122540

122541

122542

122543

122544

122545

122546

122547

122548

122549

122550

122551

122552

122553

122554

122555

122556

122557

122558

122559

122560

122561

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities wait

The use of job ID notation is not dependent on job control being enabled. When job control has
been disabled using set +m, wait can still be used to wait for the process group associated with a
job-control background job, or the process ID associated with a non-control background job (if
supported), using

wait %<background job number>

See also the RATIONALE for jobs and kill.

The shell is allowed to discard the status of any process if it determines that the application
cannot get the process ID for that process from the shell. It is also required to remember only
{CHILD_MAX} number of processes in this way. Since the only way to get the process ID from
the shell is by using the '!' shell parameter, the shell is allowed to discard the status of an
asynchronous AND-OR list if "$!" was not referenced before another asynchronous AND-OR
list was started. (This means that the shell only has to keep the status of the last asynchronous
AND-OR list started if the application did not reference "$!". If the implementation of the shell
is smart enough to determine that a reference to "$!" was not saved anywhere that the
application can retrieve it later, it can use this information to trim the list of saved information.
Note also that a successful call to wait with no operands discards the exit status of all
asynchronous AND-OR lists.)

If the exit status of wait is greater than 128, there is no way for the application to know if the
waited-for process exited with that value or was killed by a signal. Since most utilities exit with
small values, there is seldom any ambiguity. Even in the ambiguous cases, most applications just
need to know that the asynchronous job failed; it does not matter whether it detected an error
and failed or was killed and did not complete its job normally.

Some historical shells returned from wait when a process stops instead of only when it
terminates. This standard does not allow wait to return when a process stops for two reasons:

1. The vast majority, if not all, shell scripts that use wait (without using an extension) expect
it not to return until the process terminates.

2. It is not possible to write a portable shell script that can correctly handle wait returning
when a process stops, because an exit status indicating a process was stopped by a signal
cannot be distinguished from one indicating that the process called exit() with the same
value.

The standard developers considered allowing interactive shells to return from wait when a
process stops, since the interactive user would see a message which would allow them to tell
whether the process stopped or terminated. However, they decided that it would be inadvisable
to introduce an inconsistency between interactive and non-interactive shells, particularly as the
most likely use of wait in an interactive shell is to try out commands before putting them in a
shell script. Implementations can provide an extension that could be used to request that wait
returns when a process stops. It is recommended that any such extension uses a different
method of returning information about the wait status of the process so that the information can
be unambiguous. One suitable method would be an option that takes a variable name as an
option-argument. The named variable would be set to a numeric value and the exit status of
wait would indicate whether this value is an exit value or a signal number, and whether the
signal terminated the process or stopped it. Such an extension would also provide a way for
shell scripts to obtain the full exit value (as would be returned by waitid()).

EXAMPLES
Although the exact value used when a process is terminated by a signal is unspecified, if it is
known that a signal terminated a process, a script can still reliably determine which signal by
using kill as shown by the following script:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3583

122562

122563

122564

122565

122566

122567

122568

122569

122570

122571

122572

122573

122574

122575

122576

122577

122578

122579

122580

122581

122582

122583

122584

122585

122586

122587

122588

122589

122590

122591

122592

122593

122594

122595

122596

122597

122598

122599

122600

122601

122602

122603

122604

122605

122606

122607

122608

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wait Utilities

sleep 1000&
pid=$!
kill -kill $pid
wait $pid
echo $pid was terminated by a SIG$(kill -l $?) signal.

If the following sequence of commands is run in less than 31 seconds:

sleep 257 | sleep 31 &
jobs -l %%

either of the following commands returns the exit status of the second sleep in the pipeline:

wait <pid of sleep 31>
wait %%

RATIONALE
The description of wait does not refer to the waitpid() function from the System Interfaces
volume of POSIX.1-2024 because that would needlessly overspecify this interface. However, the
wording means that wait is required to wait for an explicit process when it is given an argument
so that the status information of other processes is not consumed. Historical implementations
use the wait() function defined in the System Interfaces volume of POSIX.1-2024 until wait()
returns the requested process ID or finds that the requested process does not exist. Because this
means that a shell script could not reliably get the status of all background children if a second
background job was ever started before the first job finished, it is recommended that the wait
utility use a method such as the functionality provided by the waitpid() function.

The ability to wait for multiple pid operands was adopted from the KornShell.

This new functionality was added because it is needed to determine the exit status of any
asynchronous AND-OR list accurately. The only compatibility problem that this change creates
is for a script like

while sleep 60 do
job& echo Job started $(date) as $! done

which causes the shell to monitor all of the jobs started until the script terminates or runs out of
memory. This would not be a problem if the loop did not reference "$!" or if the script would
occasionally wait for jobs it started.

FUTURE DIRECTIONS
A future version of this standard may add an option which takes a variable name as an option-
argument, allowing wait to return information about the wait status of a process in an
unambiguous way.

SEE ALSO
Chapter 2 (on page 2472), kill , sh

XBD Section 3.182 (on page 57), Chapter 8 (on page 167)

XSH wait()

CHANGE HISTORY
First released in Issue 2.

Issue 8
Austin Group Defect 854 is applied, adding a note to the APPLICATION USAGE section that
this utility is required to be intrinsic.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3584 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122609

122610

122611

122612

122613

122614

122615

122616

122617

122618

122619

122620

122621

122622

122623

122624

122625

122626

122627

122628

122629

122630

122631

122632

122633

122634

122635

122636

122637

122638

122639

122640

122641

122642

122643

122644

122645

122646

122647

122648

122649

122650

122651

122652

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities wait

Austin Group Defect 1254 is applied, updating various requirements for the jobs utility to
account for the addition of Section 2.11 (on page 2518).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3585

122653

122654

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wc Utilities

NAME
wc — word, line, and byte or character count

SYNOPSIS
wc [-c|-m] [-lw] [file...]

DESCRIPTION
The wc utility shall read one or more input files and, by default, write the number of <newline>
characters, words, and bytes contained in each input file to the standard output.

The utility also shall write a total count for all named files, if more than one input file is
specified.

The wc utility shall consider a word to be a non-zero-length string of characters delimited by
white space.

OPTIONS
The wc utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Write to the standard output the number of bytes in each input file.

−l Write to the standard output the number of <newline> characters in each input
file.

−m Write to the standard output the number of characters in each input file.

−w Write to the standard output the number of words in each input file.

When any option is specified, wc shall report only the information requested by the specified
options.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, the standard input
shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is '−' and the implementation treats the '−' as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files may be of any type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of wc:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and which characters are defined as white-space
characters.

3586 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122655

122656

122657

122658

122659

122660

122661

122662

122663

122664

122665

122666

122667

122668

122669

122670

122671

122672

122673

122674

122675

122676

122677

122678

122679

122680

122681

122682

122683

122684

122685

122686

122687

122688

122689

122690

122691

122692

122693

122694

122695

122696

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities wc

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
By default, the standard output shall contain an entry for each input file of the form:

"%d %d %d %s\n", <newlines>, <words>, <bytes>, <file>

If the −m option is specified, the number of characters shall replace the <bytes> field in this
format.

If any options are specified and the −l option is not specified, the number of <newline>
characters shall not be written.

If any options are specified and the −w option is not specified, the number of words shall not be
written.

If any options are specified and neither −c nor −m is specified, the number of bytes or characters
shall not be written.

If no input file operands are specified, no name shall be written and no <blank> characters
preceding the pathname shall be written.

If more than one input file operand is specified, an additional line shall be written, of the same
format as the other lines, except that the word total (in the POSIX locale) shall be written instead
of a pathname and the total of each column shall be written as appropriate. Such an additional
line, if any, is written at the end of the output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3587

122697

122698

122699

122700

122701

122702

122703

122704

122705

122706

122707

122708

122709

122710

122711

122712

122713

122714

122715

122716

122717

122718

122719

122720

122721

122722

122723

122724

122725

122726

122727

122728

122729

122730

122731

122732

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

wc Utilities

APPLICATION USAGE
The −m option is not a switch, but an option at the same level as −c. Thus, to produce the full
default output with character counts instead of bytes, the command required is:

wc -mlw

EXAMPLES
None.

RATIONALE
The output file format pseudo-printf() string differs from the System V version of wc:

"%7d%7d%7d %s\n"

which produces possibly ambiguous and unparsable results for very large files, as it assumes no
number shall exceed six digits.

Some historical implementations use only <space>, <tab>, and <newline> as word separators.
The equivalent of the ISO C standard isspace() function is more appropriate.

The −c option stands for ``character ’’ count, even though it counts bytes. This stems from the
sometimes erroneous historical view that bytes and characters are the same size. Due to
international requirements, the −m option (reminiscent of ``multi-byte’’) was added to obtain
actual character counts.

Early proposals only specified the results when input files were text files. The current
specification more closely matches historical practice. (Bytes, words, and <newline> characters
are counted separately and the results are written when an end-of-file is detected.)

Historical implementations of the wc utility only accepted one argument to specify the options
−c, −l, and −w. Some of them also had multiple occurrences of an option cause the
corresponding count to be written multiple times and had the order of specification of the
options affect the order of the fields on output, but did not document either of these. Because
common usage either specifies no options or only one option, and because none of this was
documented, the changes required by this volume of POSIX.1-2024 should not break many
historical applications (and do not break any historical conforming applications).

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
cksum

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3588 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122733

122734

122735

122736

122737

122738

122739

122740

122741

122742

122743

122744

122745

122746

122747

122748

122749

122750

122751

122752

122753

122754

122755

122756

122757

122758

122759

122760

122761

122762

122763

122764

122765

122766

122767

122768

122769

122770

122771

122772

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities wc

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3589

122773

122774

122775

122776

122777

122778

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

what Utilities

NAME
what — identify SCCS files (DEVELOPMENT)

SYNOPSIS
XSI what [-s] file...

DESCRIPTION
The what utility shall search the given files for all occurrences of the pattern that get (see get)
substitutes for the %Z% keyword ("@(#)"). The what utility shall write to standard output the
identification string that follows up to, but not including, the first occurrence of one of the
following: <double-quote> ('"'), <greater-than-sign> ('>'), <newline>, <backslash> ('\\'),
<NUL> ('\0'), or an end-of-file condition on the input file. If not at end-of-file, the what utility
shall then look for the next occurrence of "@(#)" after one of those characters.

OPTIONS
The what utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−s Write at most one identification string for each file. After locating and writing to
standard output the identification string following the first pattern (if any) in a file,
no further data shall be read from that file and the search shall recommence from
the beginning of the next file, if any.

OPERANDS
The following operands shall be supported:

file A pathname of a file to search.

STDIN
Not used.

INPUT FILES
The input files shall be of any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of what:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

3590 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122779

122780

122781

122782

122783

122784

122785

122786

122787

122788

122789

122790

122791

122792

122793

122794

122795

122796

122797

122798

122799

122800

122801

122802

122803

122804

122805

122806

122807

122808

122809

122810

122811

122812

122813

122814

122815

122816

122817

122818

122819

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities what

STDOUT
For each file operand, the standard output shall consist of:

"%s:\n", <pathname>

followed by zero or more of:

"\t%s\n", <identification string>

one for each identification string located.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 One or more matches were found and the output specified in STDOUT was successfully
written to standard output.

1 No matches were found or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The what utility is intended to be used in conjunction with the SCCS command get, which
automatically inserts identifying information, but it can also be used where the information is
inserted by any other means.

When the string "@(#)" is included in a library routine in a shared library, it might not be found
in an a.out file using that library routine.

EXAMPLES
If the C-language program in file f.c contains:

char ident[] = "@(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command:

what f.c f.o a.out

writes:

f.c:
identification information
...

f.o:
identification information
...

a.out:
identification information
...

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3591

122820

122821

122822

122823

122824

122825

122826

122827

122828

122829

122830

122831

122832

122833

122834

122835

122836

122837

122838

122839

122840

122841

122842

122843

122844

122845

122846

122847

122848

122849

122850

122851

122852

122853

122854

122855

122856

122857

122858

122859

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

what Utilities

RATIONALE
This standard requires that when the −s option is used, what does not continue reading from the
current file after writing the first identification string. This might seem an unimportant detail,
but applications would experience different behavior if a file operand named a FIFO special file
and what waited for an end-of-file condition rather than closing the file straight away.

FUTURE DIRECTIONS
If this utility is directed to display a pathname that contains any bytes that have the encoded
value of a <newline> character when <newline> is a terminator or separator in the output
format being used, implementations are encouraged to treat this as an error. A future version of
this standard may require implementations to treat this as an error.

SEE ALSO
get

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to report an error if a utility is
directed to display a pathname that contains any bytes that have the encoded value of a
<newline> character when <newline> is a terminator or separator in the output format being
used.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1512 is applied, changing the EXIT STATUS section.

Austin Group Defect 1538 is applied, clarifying the −s option.

Austin Group Defect 1563 is applied, clarifying the output format when the what utility finds
multiple identification strings in one file.

3592 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122860

122861

122862

122863

122864

122865

122866

122867

122868

122869

122870

122871

122872

122873

122874

122875

122876

122877

122878

122879

122880

122881

122882

122883

122884

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities who

NAME
who — display who is on the system

SYNOPSIS
XSI who [-mTu] [-abdHlprt] [file]

XSI who [-mu] -s [-bHlprt] [file]

who -q [file]

who am i

who am I

DESCRIPTION
The who utility shall list various pieces of information about accessible users. The domain of
accessibility is implementation-defined.

XSI Based on the options given, who can also list the user’s name, terminal line, login time, elapsed
time since activity occurred on the line, and the process ID of the command interpreter for each
current system user.

OPTIONS
The who utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported. The metavariables, such as <line>, refer to fields
described in the STDOUT section.

XSI −a Process the implementation-defined database or named file with the −b, −d, −l, −p,
−r, −t, −T and −u options turned on.

XSI −b Write the time and date of the last system reboot. The system reboot time is the
time at which the implementation is able to commence running processes.

XSI −d Write a list of all processes that have expired and not been respawned by the init
system process. The <exit> field shall appear for dead processes and contain the
termination and exit values of the dead process. This can be useful in determining
why a process terminated.

XSI −H Write column headings above the regular output.

XSI −l (The letter ell.) List only those lines on which the system is waiting for someone to
login. The <name> field shall be LOGIN in such cases. Other fields shall be the
same as for user entries except that the <state> field does not exist.

−m Output only information about the current terminal.

XSI −p List any other process that is currently active and has been previously spawned by
init.

XSI −q (Quick.) List only the names and the number of users currently logged on. When
this option is used, all other options shall be ignored.

XSI −r Write the current run-level of the init process.

XSI −s List only the <name>, <line>, and <time> fields. This is the default case.

XSI −t Indicate the last change to the system clock.

−T Show the state of each terminal, as described in the STDOUT section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3593

122885

122886

122887

122888

122889

122890

122891

122892

122893

122894

122895

122896

122897

122898

122899

122900

122901

122902

122903

122904

122905

122906

122907

122908

122909

122910

122911

122912

122913

122914

122915

122916

122917

122918

122919

122920

122921

122922

122923

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

who Utilities

−u Write ``idle time’’ for each displayed user in addition to any other information. The
idle time is the time since any activity occurred on the user’s terminal. The method

XSI of determining this is unspecified. This option shall list only those users who are
currently logged in. The <name> is the user’s login name. The <line> is the name
of the line as found in the directory /dev. The <time> is the time that the user
logged in. The <activity> is the number of hours and minutes since activity last
occurred on that particular line. A dot indicates that the terminal has seen activity
in the last minute and is therefore ``current’’. If more than twenty-four hours have
elapsed or the line has not been used since boot time, the entry shall be marked
<old>. This field is useful when trying to determine whether a person is working at
the terminal or not. The <pid> is the process ID of the user’s login process.

OPERANDS
XSI The following operands shall be supported:

am i, am I In the POSIX locale, limit the output to describing the invoking user, equivalent to
the −m option. The am and i or I need to be separate arguments.

file Specify a pathname of a file to substitute for the implementation-defined database
of logged-on users that who uses by default.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of who:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the locale used for the format and contents of the date and time strings.

XSI NLSPATH Determine the location of messages objects and message catalogs.

TZ Determine the timezone used when writing date and time information. If TZ is
unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The who utility shall write its default format to the standard output in an implementation-
defined format, subject only to the requirement of containing the information described above.

3594 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

122924

122925

122926

122927

122928

122929

122930

122931

122932

122933

122934

122935

122936

122937

122938

122939

122940

122941

122942

122943

122944

122945

122946

122947

122948

122949

122950

122951

122952

122953

122954

122955

122956

122957

122958

122959

122960

122961

122962

122963

122964

122965

122966

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities who

XSI OF XSI-conformant systems shall write the default information to the standard output in the
following general format:

<name>[<state>]<line><time>[<activity>][<pid>][<comment>][<exit>]

For the −b option, <line> shall be "system boot". The <name> is unspecified.

The following format shall be used for the −T option:

"%s %c %s %s\n" <name>, <terminal state>, <terminal name>,
<time of login>

where <terminal state> is one of the following characters:

+ The terminal allows write access to other users.

− The terminal denies write access to other users.

? The terminal write-access state cannot be determined.

<space> This entry is not associated with a terminal.

In the POSIX locale, the <time of login> shall be equivalent in format to the output of:

date +"%b %e %H:%M"

If the −u option is used with −T, the idle time shall be added to the end of the previous format in
an unspecified format.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The name init used for the system process is the most commonly used on historical systems, but
it may vary.

The ``domain of accessibility’’ referred to is a broad concept that permits interpretation either on
a very secure basis or even to allow a network-wide implementation like the historical rwho.

EXAMPLES
None.

RATIONALE
Due to differences between historical implementations, the base options provided were a
compromise to allow users to work with those functions. The standard developers also
considered removing all the options, but felt that these options offered users valuable
functionality. Additional options to match historical systems are available on XSI-conformant

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3595

122967

122968

122969

122970

122971

122972

122973

122974

122975

122976

122977

122978

122979

122980

122981

122982

122983

122984

122985

122986

122987

122988

122989

122990

122991

122992

122993

122994

122995

122996

122997

122998

122999

123000

123001

123002

123003

123004

123005

123006

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

who Utilities

systems.

It is recognized that the who command may be of limited usefulness, especially in a multi-level
secure environment. The standard developers considered, however, that having some standard
method of determining the ``accessibility’’ of other users would aid user portability.

No format was specified for the default who output for systems not supporting the XSI option. In
such a user-oriented command, designed only for human use, this was not considered to be a
deficiency.

The format of the terminal name is unspecified, but the descriptions of ps, talk, and write require
that they use the same format.

It is acceptable for an implementation to produce no output for an invocation of who mil.

FUTURE DIRECTIONS
None.

SEE ALSO
mesg

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

Issue 7
SD5-XCU-ERN-58 is applied, clarifying the −b option.

The who utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

3596 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123007

123008

123009

123010

123011

123012

123013

123014

123015

123016

123017

123018

123019

123020

123021

123022

123023

123024

123025

123026

123027

123028

123029

123030

123031

123032

123033

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities write

NAME
write — write to another user

SYNOPSIS
write user_name [terminal]

DESCRIPTION
The write utility shall read lines from the standard input and write them to the terminal of the
specified user. When first invoked, it shall write the message:

Message from sender-login-id (sending-terminal) [date]...

to user_name. When it has successfully completed the connection, the sender’s terminal shall be
alerted twice to indicate that what the sender is typing is being written to the recipient’s
terminal.

If the recipient wants to reply, this can be accomplished by typing:

write sender-login-id [sending-terminal]

upon receipt of the initial message. Whenever a line of input as delimited by an NL, EOF, or
EOL special character (see XBD Chapter 11, on page 199) is accumulated while in canonical
input mode, the accumulated data shall be written on the other user’s terminal. Characters shall
be processed as follows:

• Typing <alert> shall write the <alert> character to the recipient’s terminal.

• Typing the erase and kill characters shall affect the sender’s terminal in the manner
described by the termios interface in XBD Chapter 11 (on page 199).

• Typing the interrupt or end-of-file characters shall cause write to write an appropriate
message ("EOT\n" in the POSIX locale) to the recipient’s terminal and exit.

• Typing characters from LC_CTYPE classifications print or space shall cause those
characters to be sent to the recipient’s terminal.

• When and only when the stty iexten local mode is enabled, the existence and processing of
additional special control characters and multi-byte or single-byte functions is
implementation-defined.

• Typing other non-printable characters shall cause implementation-defined sequences of
printable characters to be written to the recipient’s terminal.

To write to a user who is logged in more than once, the terminal argument can be used to
indicate which terminal to write to; otherwise, the recipient’s terminal is selected in an
implementation-defined manner and an informational message is written to the sender’s
standard output, indicating which terminal was chosen.

Permission to be a recipient of a write message can be denied or granted by use of the mesg
utility. However, a user ’s privilege may further constrain the domain of accessibility of other
users’ terminals. The write utility shall fail when the user lacks appropriate privileges to perform
the requested action.

OPTIONS
None.

OPERANDS

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3597

123034

123035

123036

123037

123038

123039

123040

123041

123042

123043

123044

123045

123046

123047

123048

123049

123050

123051

123052

123053

123054

123055

123056

123057

123058

123059

123060

123061

123062

123063

123064

123065

123066

123067

123068

123069

123070

123071

123072

123073

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

write Utilities

The following operands shall be supported:

user_name Login name of the person to whom the message shall be written. The application
shall ensure that this operand is of the form returned by the who utility.

terminal Terminal identification in the same format provided by the who utility.

STDIN
Lines to be copied to the recipient’s terminal are read from standard input.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of write:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files). If the recipient’s locale does not use an LC_CTYPE
equivalent to the sender’s, the results are undefined.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
If an interrupt signal is received, write shall write an appropriate message on the recipient’s
terminal and exit with a status of zero. It shall take the standard action for all other signals.

STDOUT
An informational message shall be written to standard output if a recipient is logged in more
than once.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The recipient’s terminal is used for output.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 The addressed user is not logged on or the addressed user denies permission.

3598 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123074

123075

123076

123077

123078

123079

123080

123081

123082

123083

123084

123085

123086

123087

123088

123089

123090

123091

123092

123093

123094

123095

123096

123097

123098

123099

123100

123101

123102

123103

123104

123105

123106

123107

123108

123109

123110

123111

123112

123113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities write

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The talk utility is considered by some users to be a more usable utility on full-screen terminals.

EXAMPLES
None.

RATIONALE
The write utility was included in this volume of POSIX.1-2024 since it can be implemented on all
terminal types. The standard developers considered the talk utility, which cannot be
implemented on certain terminals, to be a ``better ’’ communications interface. Both of these
programs are in widespread use on historical implementations. Therefore, the standard
developers decided that both utilities should be specified.

The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
require that they all use or accept the same format.

FUTURE DIRECTIONS
None.

SEE ALSO
mesg , talk , who

XBD Chapter 8 (on page 167), Chapter 11 (on page 199)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
The write utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3599

123114

123115

123116

123117

123118

123119

123120

123121

123122

123123

123124

123125

123126

123127

123128

123129

123130

123131

123132

123133

123134

123135

123136

123137

123138

123139

123140

123141

123142

123143

123144

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

xargs Utilities

NAME
xargs — construct argument lists and invoke utility

SYNOPSIS
XSI xargs [-prtx] [-E eofstr|-0] [-I replstr|-L number|-n number]

[-s size] [utility [argument...]]

DESCRIPTION
The xargs utility shall construct a command line consisting of the utility and argument operands
specified followed by as many arguments read in sequence from standard input as fit in length
and number constraints specified by the options. The xargs utility shall then invoke the
constructed command line and wait for its completion. This sequence shall be repeated until one
of the following occurs:

• An end-of-file condition is detected on standard input.

• An argument consisting of just the logical end-of-file string (see the −E eofstr option) is
found on standard input after double-quote processing, <apostrophe> processing, and
<backslash>-escape processing (see next paragraph). All arguments up to but not
including the argument consisting of just the logical end-of-file string shall be used as
arguments in constructed command lines.

• An invocation of a constructed command line returns an exit status of 255.

If the −0 option is not specified, the application shall ensure that arguments in the standard
input are delimited by unquoted <blank> characters, unescaped <blank> characters, or
<newline> characters, and quoting characters shall be interpreted as follows:

• A string of zero or more non-double-quote ('"') non-<newline> characters can be quoted
by enclosing them in double-quotes.

• A string of zero or more non-<apostrophe> ('\'') non-<newline> characters can be
quoted by enclosing them in <apostrophe> characters.

• Any unquoted character can be escaped by preceding it with a <backslash>.

Multiple adjacent delimiter characters shall be treated as a single delimiter. If the standard input
is not empty and does not end with a <newline>, the behavior is undefined (because the
requirement in STDIN that the input is a text file is not met in that case).

If the −0 option is specified, the application shall ensure that arguments in the standard input are
delimited by null bytes. If multiple adjacent null bytes occur in the input, each null byte shall be
treated as a delimiter. If the standard input is not empty and does not end with a null byte, xargs
should ignore the trailing non-null bytes (as this can signal incomplete data) but may use them
as the last argument passed to utility.

The utility named by utility shall be executed zero or more times until the end-of-file is reached
or the logical end-of file string is found. If no arguments are supplied on standard input, the
utility named by utility shall be executed zero times if the −r option is specified and shall be
executed exactly once if the −r option is not specified. The results are unspecified if the utility
named by utility attempts to read from its standard input.

The generated command line length shall be the sum of the size in bytes of the utility name and
each argument treated as strings, including a null byte terminator for each of these strings. The
xargs utility shall limit the command line length such that when the command line is invoked,
the combined argument and environment lists (see the exec family of functions in the System
Interfaces volume of POSIX.1-2024) shall not exceed {ARG_MAX}−2 048 bytes. Within this
constraint, if neither the −n nor the −s option is specified, the default command line length shall
be at least {LINE_MAX}.

3600 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123145

123146

123147

123148

123149

123150

123151

123152

123153

123154

123155

123156

123157

123158

123159

123160

123161

123162

123163

123164

123165

123166

123167

123168

123169

123170

123171

123172

123173

123174

123175

123176

123177

123178

123179

123180

123181

123182

123183

123184

123185

123186

123187

123188

123189

123190

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities xargs

OPTIONS
The xargs utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−E eofstr Use eofstr as the logical end-of-file string. If neither −E nor −0 is specified, it is
unspecified whether the logical end-of-file string is the <underscore> character
('_') or the end-of-file string capability is disabled. When eofstr is the null string,
the logical end-of-file string capability shall be disabled and <underscore>
characters shall be taken literally.

XSI −I replstr Insert mode: invoke utility for each argument from standard input. If −0 is not
specified, arguments in the standard input shall be delimited only by unescaped
<newline> characters, not by <blank> characters, and any unquoted unescaped
<blank> characters at the beginning of each line shall be ignored. The resulting
argument shall be inserted in arguments in place of each occurrence of replstr. At
least five arguments in arguments can each contain one or more instances of replstr.
Each of these constructed arguments cannot grow larger than an implementation-
defined limit greater than or equal to 255 bytes. Option −x shall be forced on.

XSI −L number Invoke utility for each set of number arguments from standard input. The last
invocation of utility shall be with fewer arguments if fewer than number remain. If
the −0 option is not specified, each line in the standard input shall be treated as
containing one argument except that empty lines shall be ignored and a line
ending with a trailing unescaped <blank> shall signal continuation to the next
non-empty line, inclusive; such continuation shall result in removal of all trailing
unescaped <blank> characters and all <newline> characters that immediately
follow them from the argument.

−n number Invoke utility using as many standard input arguments as possible, up to number (a
positive decimal integer) arguments maximum. Fewer arguments shall be used if:

• The command line length accumulated exceeds the size specified by the −s
option (or {LINE_MAX} if there is no −s option).

• The last iteration has fewer than number, but not zero, operands remaining.

−p Prompt mode: the user is asked whether to execute utility at each invocation. Trace
mode (−t) is turned on to write the command instance to be executed, followed by
a prompt to standard error. An affirmative response read from /dev/tty shall
execute the command; otherwise, that particular invocation of utility shall be
skipped.

−r Do not execute the utility named by utility if no arguments are supplied on
standard input.

−s size Invoke utility using as many standard input arguments as possible yielding a
command line length less than size (a positive decimal integer) bytes. Fewer
arguments shall be used if:

• The total number of arguments exceeds that specified by the −n option.

XSI • The total number of arguments exceeds that specified by the −L option.

• End-of-file is encountered on standard input before size bytes are
accumulated.

Values of size up to at least {LINE_MAX} bytes shall be supported, provided that
the constraints specified in the DESCRIPTION are met. It shall not be considered

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3601

123191

123192

123193

123194

123195

123196

123197

123198

123199

123200

123201

123202

123203

123204

123205

123206

123207

123208

123209

123210

123211

123212

123213

123214

123215

123216

123217

123218

123219

123220

123221

123222

123223

123224

123225

123226

123227

123228

123229

123230

123231

123232

123233

123234

123235

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

xargs Utilities

an error if a value larger than that supported by the implementation or exceeding
the constraints specified in the DESCRIPTION is given; xargs shall use the largest
value it supports within the constraints.

−t Enable trace mode. Each generated command line shall be written to standard
error just prior to invocation.

−x Terminate if a constructed command line will not fit in the implied or specified size
(see the −s option above).

−0 Use a null byte as the input argument delimiter and do not treat any other input
bytes as special.

If the mutually exclusive −0 and −E eofstr options are both specified, the behavior is unspecified,
except that if eofstr is the null string the behavior shall be the same as if −0 was specified without
−E eofstr.

OPERANDS
The following operands shall be supported:

utility The name of the utility to be invoked, found by search path using the PA TH
environment variable, described in XBD Chapter 8 (on page 167). If utility is
omitted, the default shall be the echo utility. If the utility operand names any of the
special built-in utilities in Section 2.15 (on page 2526), the results are undefined.

argument An initial option or operand for the invocation of utility.

STDIN
If the −0 option is not specified, the standard input shall be a text file and the results are
unspecified if an end-of-file condition is detected immediately following an escaped <newline>.

If the −0 option is specified, the standard input need not be a text file, and xargs shall process the
input as bytes, not characters.

INPUT FILES
The file /dev/tty shall be used to read responses required by the −p option.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of xargs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes used in the
extended regular expression defined for the yesexpr locale keyword in the
LC_MESSAGES category.

3602 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123236

123237

123238

123239

123240

123241

123242

123243

123244

123245

123246

123247

123248

123249

123250

123251

123252

123253

123254

123255

123256

123257

123258

123259

123260

123261

123262

123263

123264

123265

123266

123267

123268

123269

123270

123271

123272

123273

123274

123275

123276

123277

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities xargs

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

PA TH Determine the location of utility, as described in XBD Chapter 8 (on page 167).

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic messages and the −t and −p options. If the −t
option is specified, the utility and its constructed argument list shall be written to standard error,
as it will be invoked, prior to invocation. If −p is specified, a prompt of the following format
shall be written (in the POSIX locale):

"?..."

at the end of the line of the output from −t.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

1-125 A command line meeting the specified requirements could not be assembled, one or
more of the invocations of utility returned a non-zero exit status, or some other error
occurred.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
If a command line meeting the specified requirements cannot be assembled, the utility cannot be
invoked, an invocation of the utility is terminated by a signal, or an invocation of the utility exits
with exit status 255, the xargs utility shall write a diagnostic message and exit without
processing any remaining input.

APPLICATION USAGE
The 255 exit status allows a utility being used by xargs to tell xargs to terminate if it knows no
further invocations using the current data stream will succeed. Thus, utility should explicitly exit
with an appropriate value to avoid accidentally returning with 255.

Note that since input is parsed as lines (if −0 is not specified), with <blank> characters
separating arguments and <backslash>, <apostrophe>, and double-quote characters used for
quoting, if xargs is used to bundle the output of commands like find dir −print or ls into
commands to be executed, unexpected results are likely if any filenames contain <blank>,
<newline>, or quoting characters. This can be solved by using the −print0 primary of find

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3603

123278

123279

123280

123281

123282

123283

123284

123285

123286

123287

123288

123289

123290

123291

123292

123293

123294

123295

123296

123297

123298

123299

123300

123301

123302

123303

123304

123305

123306

123307

123308

123309

123310

123311

123312

123313

123314

123315

123316

123317

123318

123319

123320

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

xargs Utilities

together with the xargs −0 option, or by using find to call a script that converts each file found
into a quoted string that is then piped to xargs, but in most cases it is preferable just to have find
do the argument aggregation itself by using −exec with a '+' terminator instead of ';'. Note
that the quoting rules used by xargs are not the same as in the shell. They were not made
consistent here because existing applications depend on the current rules. An easy (but
inefficient) method that can be used to transform input consisting of one argument per line into
a quoted form that xargs interprets correctly is to precede each non-<newline> character with a
<backslash>. More efficient alternatives are shown in Example 2 and Example 5 below.

On implementations with a large value for {ARG_MAX}, xargs may produce command lines
longer than {LINE_MAX}. For invocation of utilities, this is not a problem. If xargs is being used
to create a text file, users should explicitly set the maximum command line length with the −s
option.

The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit
code 127 if a utility to be invoked cannot be found, so that applications can distinguish ``failure
to find a utility’’ from ``invoked utility exited with an error indication’’. The value 127 was
chosen because it is not commonly used for other meanings; most utilities use small values for
``normal error conditions’’ and the values above 128 can be confused with termination due to
receipt of a signal. The value 126 was chosen in a similar manner to indicate that the utility could
be found, but not invoked. Some scripts produce meaningful error messages differentiating the
126 and 127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice
that uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any
attempt to exec the utility fails for any other reason.

EXAMPLES

1. The following command combines the output of the parenthesized commands (minus the
<apostrophe> characters) onto one line, which is then appended to the file log. It assumes
that the expansion of "$0 $*" does not include any <apostrophe> or <newline>
characters.

(logname; date; printf "'%s'\n" "$0 $*") | xargs -E "" >>log

2. The following command invokes diff with successive pairs of arguments originally typed
as command line arguments.

printf "%s\0" "$@" | xargs -0 -n 2 -x diff --

3. In the following command, the user is asked which regular files below the current
directory are to be archived.

find . -type f -print0 | xargs -0 -p -L 1 ar -r arch

4. The following command invokes command1 one or more times with multiple arguments,
stopping if an invocation of command1 has a non-zero exit status.

xargs -E "" sh -c 'command1 "$@" || exit 255' sh < xargs_input

RATIONALE
The xargs utility was usually found only in System V-based systems; BSD systems included an
apply utility that provided functionality similar to xargs −n number. The SVID lists xargs as a
software development extension. This volume of POSIX.1-2024 does not share the view that it is
used only for development, and therefore it is not optional.

The classic application of the xargs utility is in conjunction with the find utility to reduce the
number of processes launched by a simplistic use of the find −exec combination. The xargs utility
is also used to enforce an upper limit on memory required to launch a process. With this basis in

3604 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123321

123322

123323

123324

123325

123326

123327

123328

123329

123330

123331

123332

123333

123334

123335

123336

123337

123338

123339

123340

123341

123342

123343

123344

123345

123346

123347

123348

123349

123350

123351

123352

123353

123354

123355

123356

123357

123358

123359

123360

123361

123362

123363

123364

123365

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities xargs

mind, this volume of POSIX.1-2024 selected only the minimal features required.

Although the 255 exit status is mostly an accident of historical implementations, it allows a
utility being used by xargs to tell xargs to terminate if it knows no further invocations using the
current data stream shall succeed. Any non-zero exit status from a utility falls into the 1-125
range when xargs exits. There is no statement of how the various non-zero utility exit status
codes are accumulated by xargs. The value could be the addition of all codes, their highest
value, the last one received, or a single value such as 1. Since no algorithm is arguably better
than the others, and since many of the standard utilities say little more (portably) than
``pass/fail’’, no new algorithm was invented.

Several other xargs options were removed because simple alternatives already exist within this
volume of POSIX.1-2024. For example, the −i replstr option can be just as efficiently performed
using a shell for loop. Since xargs calls an exec function with each input line, the −i option does
not usually exploit the grouping capabilities of xargs.

The requirement that xargs never produces command lines such that invocation of utility is
within 2 048 bytes of hitting the POSIX exec {ARG_MAX} limitations is intended to guarantee
that the invoked utility has room to modify its environment variables and command line
arguments and still be able to invoke another utility. Note that the minimum {ARG_MAX}
allowed by the System Interfaces volume of POSIX.1-2024 is 4 096 bytes and the minimum value
allowed by this volume of POSIX.1-2024 is 2 048 bytes; therefore, the 2 048 bytes difference seems
reasonable. Note, however, that xargs may never be able to invoke a utility if the environment
passed in to xargs comes close to using {ARG_MAX} bytes.

The version of xargs required by this volume of POSIX.1-2024 is required to wait for the
completion of the invoked command before invoking another command. This was done because
historical scripts using xargs assumed sequential execution. Implementations wanting to provide
parallel operation of the invoked utilities are encouraged to add an option enabling parallel
invocation, but should still wait for termination of all of the children before xargs terminates
normally.

The −e option was omitted from the ISO POSIX-2: 1993 standard in the belief that the eofstr
option-argument was recognized only when it was on a line by itself and before quote and
escape processing were performed, and that the logical end-of-file processing was only enabled
if a −e option was specified. In that case, a simple sed script could be used to duplicate the −e
functionality. Further investigation revealed that:

• The logical end-of-file string was checked for after quote and escape processing, making a
sed script that provided equivalent functionality much more difficult to write.

• The default was to perform logical end-of-file processing with an <underscore> as the
logical end-of-file string.

To correct this misunderstanding, the −E eofstr option was adopted from the X/Open Portability
Guide. Users should note that the description of the −E option matches historical documentation
of the −e option (which was not adopted because it did not support the Utility Syntax
Guidelines), by saying that if eofstr is the null string, logical end-of-file processing is disabled.
Historical implementations of xargs actually did not disable logical end-of-file processing; they
treated a null argument found in the input as a logical end-of-file string. (A null string argument
could be generated using single or double-quotes ('' or ""). Since this behavior was not
documented historically, it is considered to be a bug.

The −I, −L, and −n options are mutually-exclusive. Some implementations use the last one
specified if more than one is given on a command line; other implementations treat
combinations of the options in different ways.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3605

123366

123367

123368

123369

123370

123371

123372

123373

123374

123375

123376

123377

123378

123379

123380

123381

123382

123383

123384

123385

123386

123387

123388

123389

123390

123391

123392

123393

123394

123395

123396

123397

123398

123399

123400

123401

123402

123403

123404

123405

123406

123407

123408

123409

123410

123411

123412

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

xargs Utilities

FUTURE DIRECTIONS
A future version of this standard may require that, when the −0 option is specified, if the
standard input is not empty and does not end with a null byte, xargs ignores the trailing non-
null bytes.

SEE ALSO
Chapter 2 (on page 2472), diff , echo , find

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

XSH exec

CHANGE HISTORY
First released in Issue 2.

Issue 5
A second FUTURE DIRECTION is added.

Issue 6
The obsolescent −e, −i, and −l options are removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −p option is added.

• In the INPUT FILES section, the file /dev/tty is used to read responses required by the −p
option.

• The STDERR section is updated to describe the −p option.

The description of the −E option is aligned with the ISO POSIX-2: 1993 standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #123 is applied, changing the description of the xargs −I
option.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

SD5-XCU-ERN-68 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-128 is applied, clarifying the DESCRIPTION of the logical end-of-file string.

SD5-XCU-ERN-132 is applied, updating the EXAMPLES section.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0149 [342] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0203 [499] is applied.

Issue 8
Austin Group Defect 243 is applied, adding the −r and −0 options.

Austin Group Defect 248 is applied, changing the EXAMPLES section.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1586 is applied, adding the timeout utility.

3606 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123413

123414

123415

123416

123417

123418

123419

123420

123421

123422

123423

123424

123425

123426

123427

123428

123429

123430

123431

123432

123433

123434

123435

123436

123437

123438

123439

123440

123441

123442

123443

123444

123445

123446

123447

123448

123449

123450

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities xargs

Austin Group Defect 1594 is applied, changing the APPLICATION USAGE section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3607

123451

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

xgettext Utilities

NAME
xgettext — extract gettext call strings from C-language source files (DEVELOPMENT)

SYNOPSIS
CD xgettext [-j] [-n] [-d default-domain] [-K keyword-spec]...

[-p pathname] file...

xgettext -a [-n] [-d default-domain] [-p pathname]
[-x exclude-file] file...

DESCRIPTION
The xgettext utility shall automate the creation of portable messages object source files (dot-po
files). A dot-po file shall contain copies of string literals that are found in C-language source
code in files specified by file operands. The dot-po file can be used as input to the msgfmt utility,
to produce a messages object file that can be used by applications.

The xgettext utility shall write msgid argument strings that are passed as string literals in
gettext(), gettext_l(), ngettext(), and ngettext_l() calls in C-language source code to the default
output file; this file shall be named messages.po unless it is changed by the −d option. The
xgettext utility shall also write msgid argument strings that are passed as string literals in
dcgettext(), dcgettext_l(), dcngettext(), dcngettext_l(), dgettext(), dgettext_l(), dngettext(), and
dngettext_l() calls either to the default output file or to the output file domainname.po where
domainname is the first parameter to the call; it is implementation-defined which of those output
files is used. A msgid directive shall precede each msgid argument string. For the functions that
have a msgid_plural argument, a msgid_plural directive followed by that argument string shall
also be written directly after the corresponding msgid directive. A msgstr directive or
msgstr[index] directives with an empty string shall be written after the corresponding msgid or
msgid_plural directive, respectively. The function names that xgettext searches for can be
changed using the −K option.

The first directive in each created dot-po file shall be a domain directive giving the associated
domain name, except that this directive is optional in the default output file.

If the −p pathname option is specified, xgettext shall create the dot-po files in the pathname
directory. Otherwise, the dot-po files shall be created in the current working directory.

The msgid values shall be in the same order that the strings are extracted from each file and
subsections with duplicate msgid values shall be written to the dot-po files as comment lines.

OPTIONS
The xgettext utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Extract all strings, not just those found in calls to gettext family functions. Only one
dot-po file shall be created.

−d default-domain
Name the default output file default-domain.po instead of messages.po.

−j Join messages from C-language source files with existing dot-po files. For each
dot-po file that xgettext writes messages to, if the file does not exist, it shall be
created. New messages shall be appended but any subsections with duplicate
msgid values except the first (including msgid values found in an existing dot-po
file) shall either be commented out or omitted in the resulting dot-po file; if
omitted, a warning message may be written to standard error. Domain directives
in the existing dot-po files shall be ignored; the assumption is that all previous

3608 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123452

123453

123454

123455

123456

123457

123458

123459

123460

123461

123462

123463

123464

123465

123466

123467

123468

123469

123470

123471

123472

123473

123474

123475

123476

123477

123478

123479

123480

123481

123482

123483

123484

123485

123486

123487

123488

123489

123490

123491

123492

123493

123494

123495

123496

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities xgettext

msgid values belong to the same domain. The behavior is unspecified if an existing
dot-po file was not created by xgettext or has been modified by another application.

−K keyword-spec
Specify an additional keyword to be looked for:

• If keyword-spec is an empty string, this shall disable the use of default
keywords for the gettext family of functions.

• If keyword-spec is a C identifier, xgettext shall look for strings in the first
argument of each call to the function or macro keyword-spec.

• If keyword-spec is of the form id:argnum then xgettext shall treat the argnum-th
argument of a call to the function or macro id as the msgid argument, where
argnum 1 is the first argument.

• If keyword-spec is of the form id:argnum1,argnum2 then xgettext shall treat
strings in the argnum1-th argument and in the argnum2-th argument of a call
to the function or macro id as the msgid and msgid_plural arguments,
respectively.

For all mentioned forms, the application shall ensure that if argnum2 is given, it is
not equal to argnum1. All numeric values shall be converted as specified in item 6
in XBD Section 12.1 (on page 213).

−n Add comment lines to the output file indicating pathnames and line numbers in
the source files where each extracted string is encountered. These lines shall
appear before each msgid directive. Such comments should have the format:

#: pathname1:linenumber1 [pathname2:linenumber2...]

−p pathname
Create output files in the directory specified by pathname instead of in the current
working directory.

−x exclude-file
Specify a file containing strings that shall not be extracted from the input files. The
format of exclude-file is identical to that of a dot-po file. However, only statements
containing msgid directives in exclude-file shall be used. All other statements shall
be ignored.

OPERANDS
The following operand shall be supported:

file A pathname of an input file containing C-language source code. If '-' is specified
for an instance of file, the standard input shall be used.

STDIN
The standard input shall not be used unless a file operand is specified as '-'.

INPUT FILES
The input files specified as file operands shall be C-language source files. The input file specified
as the option-argument for the −x option shall be a dot-po file in the format specified as input for
the msgfmt utility.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of xgettext:

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3609

123497

123498

123499

123500

123501

123502

123503

123504

123505

123506

123507

123508

123509

123510

123511

123512

123513

123514

123515

123516

123517

123518

123519

123520

123521

123522

123523

123524

123525

123526

123527

123528

123529

123530

123531

123532

123533

123534

123535

123536

123537

123538

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

xgettext Utilities

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

XSI LANGUAGE Determine the location of messages objects if NLSPATH is not set or the evaluation
of NLSPATH did not lead to a suitable messages object being found.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale name used to locate messages objects, and the locale that
should be used to affect the format and contents of diagnostic messages written to
standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall not be used.

STDERR
The standard error shall be used for diagnostic messages and may be used for warning
messages.

OUTPUT FILES
The output files shall be dot-po files in the format specified as input for the msgfmt utility. It is
unspecified whether each output file includes a header (msgid "") before the content derived
from the input C-language source files.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Implementations differ as to whether they write all output to the default output file or split the
output into separate per-domain files. Portable applications can either ensure that each C-
language source file contains calls to gettext family functions for only a single domain, or force
all output to be to the default output file by using the −K option to override the default
keywords.

Some implementations of xgettext are not able to extract cast strings (unless −a is used), for
example casts of literal strings to (const char *). Use of a cast is unnecessary anyway, since the
prototypes in <libintl.h> already specify this type.

3610 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123539

123540

123541

123542

123543

123544

123545

123546

123547

123548

123549

123550

123551

123552

123553

123554

123555

123556

123557

123558

123559

123560

123561

123562

123563

123564

123565

123566

123567

123568

123569

123570

123571

123572

123573

123574

123575

123576

123577

123578

123579

123580

123581

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities xgettext

The xgettext utility is not required to handle C preprocessor directives. Therefore if, for example,
calls to gettext family functions are wrapped by macros, they might not be found unless the −K
option is used to tell xgettext to look for the macro calls.

EXAMPLES
Example 1

The following example shows how −K can be used to force all output to be to the default output
file:

xgettext -K "" -K gettext:1 -K dgettext:2 -K dcgettext:2 \
-K ngettext:1,2 -K dngettext:2,3 -K dcngettext:2,3 source.c

By overriding the default keywords using the −K option as above, the xgettext utility is directed
to ignore the domainname arguments to the dgettext(), dcgettext(), dngettext(), and dcngettext()
functions. Thus, the utility treats the functions as their respective equivalent without the d prefix,
ignoring the domainname argument and writing generated output to the default output file,
messages.po. Additional −K options would be needed for the variants of the functions with an
_l suffix if they are used.

Example 2

If the source uses a macro definition such as:

#define i18n gettext

the use of:

xgettext -K i18n:1 source.c

will pick up msgid values from a line such as:

fprintf(stdout, i18n("The value is %s"), value1);

RATIONALE
The −K option is based on the −k option of GNU xgettext; the only difference is that GNU’s −k
takes an optional option-argument whereas −K in this standard has a mandatory option-
argument in order to comply with the syntax guidelines.

The standard developers considered including functionality equivalent to the −c, −m, and −M
options in existing implementations. However, those letters could not be used as the syntax
differed between implementations. The usual solution of adding an uppercase equivalent of
lowercase options with the standard syntax instead was not possible, for obvious reasons for −m
and −M, and as −C was already in use for another purpose in one implementation.

The −s option is not included as it has been deprecated in at least one implementation because it
has been found to deprive translators of valuable context.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

A future version of this standard may change the description of the −n option to mandate the
given comment format (by using ``shall’’ instead of ``should’’).

SEE ALSO
gettext , msgfmt

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3611

123582

123583

123584

123585

123586

123587

123588

123589

123590

123591

123592

123593

123594

123595

123596

123597

123598

123599

123600

123601

123602

123603

123604

123605

123606

123607

123608

123609

123610

123611

123612

123613

123614

123615

123616

123617

123618

123619

123620

123621

123622

123623

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

xgettext Utilities

XSH gettext

CHANGE HISTORY
First released in Issue 8.

3612 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123624

123625

123626

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

NAME
yacc — yet another compiler compiler (DEVELOPMENT)

SYNOPSIS
CD yacc [-dltv] [-b file_prefix] [-p sym_prefix] grammar

DESCRIPTION
The yacc utility shall read a description of a context-free grammar in grammar and write C source
code, conforming to the ISO C standard, to a code file, and optionally header information into a
header file, in the current directory. The generated source code shall not depend on any
undefined, unspecified, or implementation-defined behavior, except in cases where it is copied
directly from the supplied grammar, or in cases that are documented by the implementation.
The C code shall define a function and related routines and macros for an automaton that
executes a parsing algorithm meeting the requirements in Algorithms (on page 3625).

The form and meaning of the grammar are described in the EXTENDED DESCRIPTION section.

The C source code and header file shall be produced in a form suitable as input for the C
compiler (see c17).

OPTIONS
The yacc utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

−b file_prefix Use file_prefix instead of y as the prefix for all output filenames. The code file
y.tab.c, the header file y.tab.h (created when −d is specified), and the description
file y.output (created when −v is specified), shall be changed to file_prefix.tab.c,
file_prefix.tab.h, and file_prefix.output, respectively.

−d Write the header file; by default only the code file is written. See the OUTPUT
FILES section.

−l Produce a code file that does not contain any #line constructs. If this option is not
present, it is unspecified whether the code file or header file contains #line
directives. This should only be used after the grammar and the associated actions
are fully debugged.

−p sym_prefix
Use sym_prefix instead of yy as the prefix for all external names produced by yacc.
The names affected shall include the functions yyparse(), yylex(), and yyerror(), and
the variables yylval, yychar, and yydebug. (In the remainder of this section, the six
symbols cited are referenced using their default names only as a notational
convenience.) Local names may also be affected by the −p option; however, the −p
option shall not affect #define symbols generated by yacc.

−t Modify conditional compilation directives to permit compilation of debugging
code in the code file. Runtime debugging statements shall always be contained in
the code file, but by default conditional compilation directives prevent their
compilation.

−v Write a file containing a description of the parser and a report of conflicts
generated by ambiguities in the grammar.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3613

123627

123628

123629

123630

123631

123632

123633

123634

123635

123636

123637

123638

123639

123640

123641

123642

123643

123644

123645

123646

123647

123648

123649

123650

123651

123652

123653

123654

123655

123656

123657

123658

123659

123660

123661

123662

123663

123664

123665

123666

123667

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

OPERANDS
The following operand is required:

grammar A pathname of a file containing instructions, hereafter called grammar, for which a
parser is to be created. The format for the grammar is described in the EXTENDED
DESCRIPTION section.

STDIN
Not used.

INPUT FILES
The file grammar shall be a text file formatted as specified in the EXTENDED DESCRIPTION
section.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of yacc:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of messages objects and message catalogs.

The LANG and LC_* variables affect the execution of the yacc utility as stated. The main()
function defined in Yacc Library (on page 3624) shall call:

setlocale(LC_ALL, "")

and thus the program generated by yacc shall also be affected by the contents of these variables
at runtime.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
If shift/reduce or reduce/reduce conflicts are detected in grammar, yacc shall write a report of
those conflicts to the standard error in an unspecified format.

Standard error shall also be used for diagnostic messages.

OUTPUT FILES
The code file, the header file, and the description file shall be text files. All are described in the
following sections.

3614 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123668

123669

123670

123671

123672

123673

123674

123675

123676

123677

123678

123679

123680

123681

123682

123683

123684

123685

123686

123687

123688

123689

123690

123691

123692

123693

123694

123695

123696

123697

123698

123699

123700

123701

123702

123703

123704

123705

123706

123707

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

Code File

This file shall contain the C source code for the yyparse() function. It shall contain code for the
various semantic actions with macro substitution performed on them as described in the
EXTENDED DESCRIPTION section. Preceding this code it shall contain an extern int
yychar declaration or int yychar definition, and #define statements for the following
macros:

YYEMPTY Token number indicating there is no lookahead token. This macro shall expand to
an integer constant with a value less than zero, protected by parentheses.

YYEOF Token number indicating the end of input. This macro shall expand to the value 0.

It also shall contain a copy of the #define statements in the header file, prior to any code copied
from semantic actions in grammar, and the following function prototypes for the yyerror(),
yylex(), and yyparse() functions, after any code copied from within %{ and %} in the declarations
section in grammar and before any code copied from semantic actions in grammar:

void yyerror(const char *);
int yylex(void);
int yyparse(void);

The declarations of yyerror() and yylex() shall be protected by #ifndef or #if preprocessor
statements such that each is only visible if a preprocessor macro with the name yyerror or yylex,
respectively, is not already defined, where the yy in the macro names is replaced by sym_prefix if
the −p sym_prefix option is used.

If a %union declaration is used, the declaration for YYSTYPE and an extern YYSTYPE
yylval declaration or YYSTYPE yylval definition shall also be included in this file.

The code file shall not contain a declaration of the main() function, unless one is present within
%{ and %} in the declarations section in grammar.

Header File

The header file shall contain #define statements that associate the token numbers with the token
names. This allows source files other than the code file to access the token codes. If a %union
declaration is used, the declaration for YYSTYPE and an extern YYSTYPE yylval
declaration shall also be included in this file. The header file may also declare the yyparse()
function, using a function prototype. It shall not declare the yyerror() and yylex() functions.

Description File

The description file shall be a text file containing a description of the state machine
corresponding to the parser, using an unspecified format. Limits for internal tables (see Limits,
on page 3625) shall also be reported, in an implementation-defined manner. (Some
implementations may use dynamic allocation techniques and have no specific limit values to
report.)

EXTENDED DESCRIPTION
The yacc command accepts a language that is used to define a grammar for a target language to
be parsed by the tables and code generated by yacc. The language accepted by yacc as a
grammar for the target language is described below using the yacc input language itself.

The input grammar includes rules describing the input structure of the target language and code
to be invoked when these rules are recognized to provide the associated semantic action. The
code to be executed shall appear as bodies of text that are intended to be C-language code. These
bodies of text shall not contain C-language trigraphs. The C-language inclusions are presumed

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3615

123708

123709

123710

123711

123712

123713

123714

123715

123716

123717

123718

123719

123720

123721

123722

123723

123724

123725

123726

123727

123728

123729

123730

123731

123732

123733

123734

123735

123736

123737

123738

123739

123740

123741

123742

123743

123744

123745

123746

123747

123748

123749

123750

123751

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

to form a correct function when processed by yacc into its output files. The code included in this
way shall be executed during the recognition of the target language.

Given a grammar, the yacc utility generates the files described in the OUTPUT FILES section.
The code file can be compiled and linked using c17. If the declaration and programs sections of
the grammar file did not include definitions of main(), yylex(), and yyerror(), the compiled
output requires linking with externally supplied versions of those functions. Default versions of
main() and yyerror() are supplied in the yacc library and can be linked in by using the −l y
operand to c17. The yacc library interfaces need not support interfaces with other than the
default yy symbol prefix. The application provides the lexical analyzer function, yylex(); the lex
utility is specifically designed to generate such a routine.

Input Language

The application shall ensure that every specification file consists of three sections in order:
declarations, grammar rules, and programs, separated by double <percent-sign> characters ("%%").
The declarations and programs sections can be empty. If the latter is empty, the preceding "%%"
mark separating it from the rules section can be omitted.

The input is free form text following the structure of the grammar defined below.

Lexical Structure of the Grammar

The <blank>, <newline>, and <form-feed> character shall be ignored, except that the application
shall ensure that they do not appear in names or multi-character reserved symbols. Comments
shall be enclosed in "/* ... */", and can appear wherever a name is valid.

Names are of arbitrary length, made up of letters, periods ('.'), underscores ('_'), and non-
initial digits. Uppercase and lowercase letters are distinct. Conforming applications shall not
use names beginning in yy or YY since the yacc parser uses such names. Many of the names
appear in the final output of yacc, and thus they should be chosen to conform with any
additional rules created by the C compiler to be used. In particular they appear in #define
statements.

A literal shall consist of a single character enclosed in single-quote characters. All of the escape
sequences supported for character constants by the ISO C standard shall be supported by yacc.

The relationship with the lexical analyzer is discussed in detail below.

The application shall ensure that the NUL character is not used in grammar rules or literals.

Declarations Section

The declarations section is used to define the symbols used to define the target language and
their relationship with each other. In particular, much of the additional information required to
resolve ambiguities in the context-free grammar for the target language is provided here.

Usually yacc assigns the relationship between the symbolic names it generates and their
underlying numeric value. The declarations section makes it possible to control the assignment
of these values.

It is also possible to keep semantic information associated with the tokens currently on the parse
stack in a user-defined C-language union, if the members of the union are associated with the
various names in the grammar. The declarations section provides for this as well.

The first group of declarators below all take a list of names as arguments. That list can optionally
be preceded by the name of a C union member (called a tag below) appearing within '<' and
'>'. (As an exception to the typographical conventions of the rest of this volume of

3616 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123752

123753

123754

123755

123756

123757

123758

123759

123760

123761

123762

123763

123764

123765

123766

123767

123768

123769

123770

123771

123772

123773

123774

123775

123776

123777

123778

123779

123780

123781

123782

123783

123784

123785

123786

123787

123788

123789

123790

123791

123792

123793

123794

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

POSIX.1-2024, in this case <tag> does not represent a metavariable, but the literal angle bracket
characters surrounding a symbol.) The use of tag specifies that the tokens named on this line
shall be of the same C type as the union member referenced by tag. This is discussed in more
detail below.

For lists used to define tokens, the first appearance of a given token can be followed by a
positive integer (as a string of decimal digits). If this is done, the underlying value assigned to it
for lexical purposes shall be taken to be that number.

The following declares name to be a token:

%token [<tag>] name [number] [name [number]]...

If tag is present, the C type for all tokens on this line shall be declared to be the type referenced
by tag. If a positive integer, number, follows a name, that value shall be assigned to the token.

The following declares name to be a token, and assigns precedence to it:

%left [<tag>] name [number] [name [number]]...
%right [<tag>] name [number] [name [number]]...

One or more lines, each beginning with one of these symbols, can appear in this section. All
tokens on the same line have the same precedence level and associativity; the lines are in order
of increasing precedence or binding strength. %left denotes that the operators on that line are
left associative, and %right similarly denotes right associative operators. If tag is present, it shall
declare a C type for names as described for %token.

The following declares name to be a token, and indicates that this cannot be used associatively:

%nonassoc [<tag>] name [number] [name [number]]...

If the parser encounters associative use of this token it reports an error. If tag is present, it shall
declare a C type for names as described for %token.

The following declares that union member names are non-terminals, and thus it is required to
have a tag field at its beginning:

%type <tag> name...

Because it deals with non-terminals only, assigning a token number or using a literal is also
prohibited. If this construct is present, yacc shall perform type checking; if this construct is not
present, the parse stack shall hold only the int type.

Every name used in grammar not defined by a %token, %left, %right, or %nonassoc declaration
is assumed to represent a non-terminal symbol. The yacc utility shall report an error for any non-
terminal symbol that does not appear on the left side of at least one grammar rule.

Once the type, precedence, or token number of a name is specified, it shall not be changed. If the
first declaration of a token does not assign a token number, yacc shall assign a token number.
Once this assignment is made, the token number shall not be changed by explicit assignment.

The following declarators do not follow the previous pattern.

The following declares the non-terminal name to be the start symbol, which represents the largest,
most general structure described by the grammar rules:

%start name

By default, it is the left-hand side of the first grammar rule; this default can be overridden with
this declaration.

The following declares the yacc value stack to be a union of the various types of values desired.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3617

123795

123796

123797

123798

123799

123800

123801

123802

123803

123804

123805

123806

123807

123808

123809

123810

123811

123812

123813

123814

123815

123816

123817

123818

123819

123820

123821

123822

123823

123824

123825

123826

123827

123828

123829

123830

123831

123832

123833

123834

123835

123836

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

%union { body of union (in C) }

The body of the union shall not contain unbalanced curly brace preprocessing tokens.

By default, the values returned by actions (see below) and the lexical analyzer shall be of type
int. The yacc utility keeps track of types, and it shall insert corresponding union member names
in order to perform strict type checking of the resulting parser.

Alternatively, given that at least one <tag> construct is used, the union can be declared in a
header file (which shall be included in the declarations section by using a #include construct
within %{ and %}), and a typedef used to define the symbol YYSTYPE to represent this union.
The effect of %union is to provide the declaration of YYSTYPE directly from the yacc input.

C-language declarations and definitions can appear in the declarations section, enclosed by the
following marks:

%{ ... %}

These statements shall be copied into the code file, and have global scope within it so that they
can be used in the rules and program sections. The statements shall not contain "%}" outside a
comment, string literal, or multi-character constant.

The application shall ensure that the declarations section is terminated by the token %%.

Grammar Rules in yacc

The rules section defines the context-free grammar to be accepted by the function yacc generates,
and associates with those rules C-language actions and additional precedence information. The
grammar is described below, and a formal definition follows.

The rules section is comprised of one or more grammar rules. A grammar rule has the form:

A : BODY ;

The symbol A represents a non-terminal name, and BODY represents a sequence of zero or
more names, literals, and semantic actions that can then be followed by optional precedence rules.
Only the names and literals participate in the formation of the grammar; the semantic actions
and precedence rules are used in other ways. The <colon> and the <semicolon> are yacc
punctuation. If there are several successive grammar rules with the same left-hand side, the
<vertical-line> ('|') can be used to avoid rewriting the left-hand side; in this case the
<semicolon> appears only after the last rule. The BODY part can be empty (or empty of names
and literals) to indicate that the non-terminal symbol matches the empty string.

The yacc utility assigns a unique number to each rule. Rules using the vertical bar notation are
distinct rules. The number assigned to the rule appears in the description file.

The elements comprising a BODY are:

name, literal These form the rules of the grammar: name is either a token or a non-terminal; literal
stands for itself (less the lexically required quotation marks).

semantic action
With each grammar rule, the user can associate actions to be performed each time
the rule is recognized in the input process. (Note that the word ``action’’ can also
refer to the actions of the parser—shift, reduce, and so on.)

These actions can return values and can obtain the values returned by previous
actions. These values are kept in objects of type YYSTYPE (see %union). The
result value of the action shall be kept on the parse stack with the left-hand side of
the rule, to be accessed by other reductions as part of their right-hand side. By

3618 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123837

123838

123839

123840

123841

123842

123843

123844

123845

123846

123847

123848

123849

123850

123851

123852

123853

123854

123855

123856

123857

123858

123859

123860

123861

123862

123863

123864

123865

123866

123867

123868

123869

123870

123871

123872

123873

123874

123875

123876

123877

123878

123879

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

using the <tag> information provided in the declarations section, the code
generated by yacc can be strictly type checked and contain arbitrary information. In
addition, the lexical analyzer can provide the same kinds of values for tokens, if
desired.

An action is an arbitrary C statement and as such can do input or output, call
subprograms, and alter external variables. An action is one or more C statements
enclosed in curly braces '{' and '}'. The statements shall not contain
unbalanced curly brace preprocessing tokens.

Certain pseudo-variables can be used in the action. These are macros for access to
data structures known internally to yacc.

$$ The value of the action can be set by assigning it to $$. If type
checking is enabled and the type of the value to be assigned cannot
be determined, a diagnostic message may be generated.

$number This refers to the value returned by the component specified by the
token number in the right side of a rule, reading from left to right;
number can be zero or negative. If number is zero or negative, it refers
to the data associated with the name on the parser’s stack preceding
the leftmost symbol of the current rule. (That is, "$0" refers to the
name immediately preceding the leftmost name in the current rule to
be found on the parser’s stack and "$-1" refers to the symbol to its
left.) If number refers to an element past the current point in the rule,
or beyond the bottom of the stack, the result is undefined. If type
checking is enabled and the type of the value to be assigned cannot
be determined, a diagnostic message may be generated.

$<tag>number
These correspond exactly to the corresponding symbols without the
tag inclusion, but allow for strict type checking (and preclude
unwanted type conversions). The effect is that the macro is expanded
to use tag to select an element from the YYSTYPE union (using
dataname.tag). This is particularly useful if number is not positive.

$<tag>$ This imposes on the reference the type of the union member
referenced by tag. This construction is applicable when a reference to
a left context value occurs in the grammar, and provides yacc with a
means for selecting a type.

Actions can occur anywhere in a rule (not just at the end); an action can access
values returned by actions to its left, and in turn the value it returns can be
accessed by actions to its right. An action appearing in the middle of a rule shall be
equivalent to replacing the action with a new non-terminal symbol and adding an
empty rule with that non-terminal symbol on the left-hand side. The semantic
action associated with the new rule shall be equivalent to the original action. The
use of actions within rules might introduce conflicts that would not otherwise
exist.

By default, the value of a rule shall be the value of the first element in it. If the first
element does not have a type (particularly in the case of a literal) and type
checking is turned on by %type, an error message shall result.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3619

123880

123881

123882

123883

123884

123885

123886

123887

123888

123889

123890

123891

123892

123893

123894

123895

123896

123897

123898

123899

123900

123901

123902

123903

123904

123905

123906

123907

123908

123909

123910

123911

123912

123913

123914

123915

123916

123917

123918

123919

123920

123921

123922

123923

123924

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

precedence The keyword %prec can be used to change the precedence level associated with a
particular grammar rule. Examples of this are in cases where a unary and binary
operator have the same symbolic representation, but need to be given different
precedences, or where the handling of an ambiguous if-else construction is
necessary. The reserved symbol %prec can appear immediately after the body of
the grammar rule and can be followed by a token name or a literal. It shall cause
the precedence of the grammar rule to become that of the following token name or
literal. The action for the rule as a whole can follow %prec.

If a program section follows, the application shall ensure that the grammar rules are terminated
by %%.

Programs Section

The programs section can include the definition of the lexical analyzer yylex(), and any other
functions; for example, those used in the actions specified in the grammar rules. It is unspecified
whether the programs section precedes or follows the semantic actions in the output file;
therefore, if the application contains any macro definitions and declarations intended to apply to
the code in the semantic actions, it shall place them within "%{ ... %}" in the declarations
section.

Input Grammar

The following input to yacc yields a parser for the input to yacc. This formal syntax takes
precedence over the preceding text syntax description.

The lexical structure is defined less precisely; Lexical Structure of the Grammar (on page 3616)
defines most terms. The correspondence between the previous terms and the tokens below is as
follows.

IDENTIFIER This corresponds to the concept of name, given previously. It also includes
literals as defined previously.

C_IDENTIFIER This is a name, and additionally it is known to be followed by a <colon>. A
literal cannot yield this token.

NUMBER A string of digits (a non-negative decimal integer).

TYPE, LEFT, MARK, LCURL, RCURL
These correspond directly to %type, %left, %%, %{, and %}.

{ . . . } This indicates C-language source code, with the possible inclusion of '$'
macros as discussed previously.

/* Grammar for the input to yacc. */
/* Basic entries. */
/* The following are recognized by the lexical analyzer. */

%token IDENTIFIER /* Includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal)

followed by a :. */
%token NUMBER /* [0-9][0-9]* */

/* Reserved words : %type=>TYPE %left=>LEFT, and so on */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* The %% mark. */
%token LCURL /* The %{ mark. */

3620 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

123925

123926

123927

123928

123929

123930

123931

123932

123933

123934

123935

123936

123937

123938

123939

123940

123941

123942

123943

123944

123945

123946

123947

123948

123949

123950

123951

123952

123953

123954

123955

123956

123957

123958

123959

123960

123961

123962

123963

123964

123965

123966

123967

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

%token RCURL /* The %} mark. */

/* 8-bit character literals stand for themselves; */
/* tokens have to be defined for multi-byte characters. */

%start spec

%%

spec : defs MARK rules tail
;

tail : MARK
{
/* In this action, set up the rest of the file. */

}
| /* Empty; the second MARK is optional. */
;

defs : /* Empty. */
| defs def
;

def : START IDENTIFIER
| UNION
{
/* Copy union definition to output. */

}
| LCURL
{
/* Copy C code to output file. */

}
RCURL

| rword tag nlist
;

rword : TOKEN
| LEFT
| RIGHT
| NONASSOC
| TYPE
;

tag : /* Empty: union tag ID optional. */
| '<' IDENTIFIER '>'
;

nlist : nmno
| nlist nmno
;

nmno : IDENTIFIER /* Note: literal invalid with % type. */
| IDENTIFIER NUMBER /* Note: invalid with % type. */
;

/* Rule section */

rules : C_IDENTIFIER rbody prec
| rules rule
;

rule : C_IDENTIFIER rbody prec
| '|' rbody prec

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3621

123968

123969

123970

123971

123972

123973

123974

123975

123976

123977

123978

123979

123980

123981

123982

123983

123984

123985

123986

123987

123988

123989

123990

123991

123992

123993

123994

123995

123996

123997

123998

123999

124000

124001

124002

124003

124004

124005

124006

124007

124008

124009

124010

124011

124012

124013

124014

124015

124016

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

;
rbody : /* empty */

| rbody IDENTIFIER
| rbody act
;

act : '{'
{
/* Copy action, translate $$, and so on. */

}
'}'

;
prec : /* Empty */

| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec ';'
;

Conflicts

The parser produced for an input grammar may contain states in which conflicts occur. The
conflicts occur because the grammar is not LALR(1). An ambiguous grammar always contains at
least one LALR(1) conflict. The yacc utility shall resolve all conflicts, using either default rules or
user-specified precedence rules.

Conflicts are either shift/reduce conflicts or reduce/reduce conflicts. A shift/reduce conflict is
where, for a given state and lookahead symbol, both a shift action and a reduce action are
possible. A reduce/reduce conflict is where, for a given state and lookahead symbol, reductions
by two different rules are possible.

The rules below describe how to specify what actions to take when a conflict occurs. Not all
shift/reduce conflicts can be successfully resolved this way because the conflict may be due to
something other than ambiguity, so incautious use of these facilities can cause the language
accepted by the parser to be much different from that which was intended. The description file
shall contain sufficient information to understand the cause of the conflict. Where ambiguity is
the reason either the default or explicit rules should be adequate to produce a working parser.

The declared precedences and associativities (see Declarations Section, on page 3616) are used to
resolve parsing conflicts as follows:

1. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec keyword
is used, it overrides this default. Some grammar rules might not have both precedence
and associativity.

2. If there is a shift/reduce conflict, and both the grammar rule and the input symbol have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and non-associative implies an error in the string being parsed.

3. When there is a shift/reduce conflict that cannot be resolved by rule 2, the shift is done.
Conflicts resolved this way are counted in the diagnostic output described in Error
Handling (on page 3623).

3622 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

124017

124018

124019

124020

124021

124022

124023

124024

124025

124026

124027

124028

124029

124030

124031

124032

124033

124034

124035

124036

124037

124038

124039

124040

124041

124042

124043

124044

124045

124046

124047

124048

124049

124050

124051

124052

124053

124054

124055

124056

124057

124058

124059

124060

124061

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

4. When there is a reduce/reduce conflict, a reduction is done by the grammar rule that
occurs earlier in the input sequence. Conflicts resolved this way are counted in the
diagnostic output described in Error Handling.

Conflicts resolved by precedence or associativity shall not be counted in the shift/reduce and
reduce/reduce conflicts reported by yacc on either standard error or in the description file.

Error Handling

The token error shall be reserved for error handling. The name error can be used in grammar
rules. It indicates places where the parser can recover from a syntax error. The default value of
error shall be 256. Its value can be changed using a %token declaration. The lexical analyzer
should not return the value of error.

The parser shall detect a syntax error when it is in a state where the action associated with the
lookahead symbol is error. A semantic action can cause the parser to initiate error handling by
executing the macro YYERROR. When YYERROR is executed, the semantic action passes control
back to the parser. YYERROR cannot be used outside of semantic actions.

When the parser detects a syntax error, it normally calls yyerror() with the character string
"syntax error" as its argument. The call shall not be made if the parser is still recovering
from a previous error when the error is detected. The parser is considered to be recovering from
a previous error until the parser has shifted over at least three normal input symbols since the
last error was detected or a semantic action has executed the macro yyerrok. The parser shall not
call yyerror() when YYERROR is executed.

The macro function YYRECOVERING shall return 1 if a syntax error has been detected and the
parser has not yet fully recovered from it. Otherwise, zero shall be returned.

When a syntax error is detected by the parser, the parser shall check if a previous syntax error
has been detected. If a previous error was detected, and if no normal input symbols have been
shifted since the preceding error was detected, the parser checks if the lookahead symbol is an
endmarker (see Interface to the Lexical Analyzer, on page 3624). If it is, the parser shall return
with a non-zero value. Otherwise, the lookahead symbol shall be discarded and normal parsing
shall resume.

When YYERROR is executed or when the parser detects a syntax error and no previous error has
been detected, or at least one normal input symbol has been shifted since the previous error was
detected, the parser shall pop back one state at a time until the parse stack is empty or the
current state allows a shift over error. If the parser empties the parse stack, it shall return with a
non-zero value. Otherwise, it shall shift over error and then resume normal parsing. If the parser
reads a lookahead symbol before the error was detected, that symbol shall still be the lookahead
symbol when parsing is resumed.

The macro yyerrok in a semantic action shall cause the parser to act as if it has fully recovered
from any previous errors. The macro yyclearin shall cause the parser to discard the current
lookahead token. If the current lookahead token has not yet been read, yyclearin shall have no
effect.

The macro YYACCEPT shall cause the parser to return with the value zero. The macro
YYABORT shall cause the parser to return with a non-zero value.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3623

124062

124063

124064

124065

124066

124067

124068

124069

124070

124071

124072

124073

124074

124075

124076

124077

124078

124079

124080

124081

124082

124083

124084

124085

124086

124087

124088

124089

124090

124091

124092

124093

124094

124095

124096

124097

124098

124099

124100

124101

124102

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

Interface to the Lexical Analyzer

The application shall ensure that the yylex() function is an integer-valued function that returns a
token number greater than zero representing the kind of token read, or a value less than or equal
to zero when the end of input is reached. When the parser generated by yacc calls yylex(), it shall
assign the returned value, if greater than zero, to the external variable yychar. If there is a value
associated with the returned token (see the discussion of tag above), it shall be assigned to the
external variable yylval. If the return value from yylex() is less than or equal to zero, the parser
shall assign the value YYEOF to yychar.

If the parser and yylex() do not agree on these token numbers, reliable communication between
them cannot occur. For (single-byte character) literals, the token is simply the numeric value of
the character in the current character set. The numbers for other tokens can either be chosen by
yacc, or chosen by the user. In either case, the #define construct of C is used to allow yylex() to
return these numbers symbolically. The #define statements are put into the code file, and the
header file if that file is requested. The set of characters permitted by yacc in an identifier is
larger than that permitted by C. Token names found to contain such characters shall not be
included in the #define declarations.

If the token numbers are chosen by yacc, the tokens other than literals shall be assigned numbers
greater than 256, although no order is implied. A token can be explicitly assigned a number by
following its first appearance in the declarations section with a number. Names and literals not
defined this way retain their default definition. All token numbers assigned by yacc shall be
unique and distinct from the token numbers used for literals and user-assigned tokens. If
duplicate token numbers cause conflicts in parser generation, yacc shall report an error;
otherwise, it is unspecified whether the token assignment is accepted or an error is reported.

When a parser action is executed, yychar shall hold either the token number of the lookahead
token, or YYEMPTY indicating that there is no lookahead token, or YYEOF indicating the end of
input. If yychar holds the token number of the lookahead token, yylval shall hold the value
associated with that token, if any.

The application shall ensure that when the end of input is reached, the yylex() function returns a
value that is zero or negative. The parser shall treat this as the token number YYEOF for a
special token called the endmarker. If the tokens up to, but excluding, the endmarker form a
structure that matches the start symbol, the parser shall accept the input. If the endmarker is
seen in any other context, it shall be considered an error.

Completing the Program

In addition to yyparse() and yylex(), the functions yyerror() and main() are required to make a
complete program. The application can supply main() and yyerror(), or those routines can be
obtained from the yacc library.

Yacc Library

The following functions shall appear only in the yacc library accessible through the −l y operand
to c17; they can therefore be redefined by a conforming application:

int main(void)
This function shall call yyparse() and exit with an unspecified value. Other actions within
this function are unspecified.

void yyerror(const char *s)
This function shall write the NUL-terminated argument to standard error, followed by a
<newline>.

3624 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

124103

124104

124105

124106

124107

124108

124109

124110

124111

124112

124113

124114

124115

124116

124117

124118

124119

124120

124121

124122

124123

124124

124125

124126

124127

124128

124129

124130

124131

124132

124133

124134

124135

124136

124137

124138

124139

124140

124141

124142

124143

124144

124145

124146

124147

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

The order of the −l y and −l l operands given to c17 is significant; the application shall either
provide its own main() function or ensure that −l y precedes −l l.

Debugging the Parser

The parser generated by yacc shall have diagnostic facilities in it that can be optionally enabled
at either compile time or at runtime (if enabled at compile time). The compilation of the runtime
debugging code is under the control of YYDEBUG, a preprocessor symbol. If YYDEBUG has a
non-zero value, the debugging code shall be included. If its value is zero, the code shall not be
included.

In parsers where the debugging code has been included, the external int yydebug can be used to
turn debugging on (with a non-zero value) and off (zero value) at runtime. The initial value of
yydebug shall be zero.

When −t is specified, the code file shall be built such that, if YYDEBUG is not already defined at
compilation time (using the c17 −D YYDEBUG option, for example), YYDEBUG shall be set
explicitly to 1. When −t is not specified, the code file shall be built such that, if YYDEBUG is not
already defined, it shall be set explicitly to zero.

The format of the debugging output is unspecified but includes at least enough information to
determine the shift and reduce actions, and the input symbols. It also provides information
about error recovery.

Algorithms

The parser constructed by yacc implements an LALR(1) parsing algorithm as documented in the
literature. It is unspecified whether the parser is table-driven or direct-coded.

A parser generated by yacc shall never request an input symbol from yylex() while in a state
where the only actions other than the error action are reductions by a single rule.

The literature of parsing theory defines these concepts.

Limits

The yacc utility may have several internal tables. The minimum maximums for these tables are
shown in the following table. The exact meaning of these values is implementation-defined. The
implementation shall define the relationship between these values and between them and any
error messages that the implementation may generate should it run out of space for any internal
structure. An implementation may combine groups of these resources into a single pool as long
as the total available to the user does not fall below the sum of the sizes specified by this section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3625

124148

124149

124150

124151

124152

124153

124154

124155

124156

124157

124158

124159

124160

124161

124162

124163

124164

124165

124166

124167

124168

124169

124170

124171

124172

124173

124174

124175

124176

124177

124178

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

Table 3-23 Internal Limits in yacc

Minimum
Limit Maximum Description

{NTERMS} 126 Number of tokens.
{NNONTERM} 200 Number of non-terminals.
{NPROD} 300 Number of rules.
{NSTATES} 600 Number of states.
{MEMSIZE} 5 200 Length of rules. The total length, in names

(tokens and non-terminals), of all the rules of the
grammar. The left-hand side is counted for each
rule, even if it is not explicitly repeated, as
specified in Grammar Rules in yacc (on page
3618).

{ACTSIZE} 4 000 Number of actions. ``Actions’’ here (and in the
description file) refer to parser actions (shift,
reduce, and so on) not to semantic actions
defined in Grammar Rules in yacc (on page
3618).

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If any errors are encountered, the run is aborted and yacc exits with a non-zero status. Partial
code files and header files may be produced. The summary information in the description file
shall always be produced if the −v flag is present.

APPLICATION USAGE
Historical implementations experience name conflicts on the names yacc.tmp, yacc.acts,
yacc.debug, y.tab.c, y.tab.h, and y.output if more than one copy of yacc is running in a single
directory at one time. The −b option was added to overcome this problem. The related problem
of allowing multiple yacc parsers to be placed in the same file was addressed by adding a −p
option to override the previously hard-coded yy variable prefix.

The description of the −p option specifies the minimal set of function and variable names that
cause conflict when multiple parsers are linked together. YYSTYPE does not need to be changed.
Instead, the programmer can use −b to give the header files for different parsers different names,
and then the file with the yylex() for a given parser can include the header for that parser.
Names such as yyclearerr do not need to be changed because they are used only in the actions;
they do not have linkage. It is possible that an implementation has other names, either internal
ones for implementing things such as yyclearerr, or providing non-standard features that it wants
to change with −p.

Unary operators that are the same token as a binary operator in general need their precedence
adjusted. This is handled by the %prec advisory symbol associated with the particular grammar
rule defining that unary operator. (See Grammar Rules in yacc (on page 3618).) Applications are
not required to use this operator for unary operators, but the grammars that do not require it are
rare.

If yyerror() and yylex() are not defined within %{ and %} in the declarations section as functions
or macros, nor in the programs section as functions, recommended practice is to declare them as

3626 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

124179

124180

124181

124182

124183

124184

124185

124186

124187

124188

124189

124190

124191

124192

124193

124194

124195

124196

124197

124198

124199

124200

124201

124202

124203

124204

124205

124206

124207

124208

124209

124210

124211

124212

124213

124214

124215

124216

124217

124218

124219

124220

124221

124222

124223

124224

124225

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

functions in a separate header file and include that file in the declarations section, followed by
#define yyerror yyerror and #define yylex yylex. This lets the separate header file
be the definitive API for all code defining or using these functions.

EXAMPLES
Access to the yacc library is obtained with library search operands to c17. To use the yacc library
main():

c17 y.tab.c -l y

Both the lex library and the yacc library contain main(). To access the yacc main():

c17 y.tab.c lex.yy.c -l y -l l

This ensures that the yacc library is searched first, so that its main() is used.

The historical yacc libraries have contained two simple functions that are normally coded by the
application programmer. These functions are similar to the following code:

#include <locale.h>
int main(void)
{

extern int yyparse();

setlocale(LC_ALL, "");

/* If the following parser is one created by lex, the
application must be careful to ensure that LC_CTYPE
and LC_COLLATE are set to the POSIX locale. */

(void) yyparse();
return (0);

}

#include <stdio.h>

void yyerror(const char *msg)
{

(void) fprintf(stderr, "%s\n", msg);
return (0);

}

RATIONALE
The references in Referenced Documents may be helpful in constructing the parser generator.
The referenced DeRemer and Pennello article (along with the works it references) describes a
technique to generate parsers that conform to this volume of POSIX.1-2024. Work in this area
continues to be done, so implementors should consult current literature before doing any new
implementations. The original Knuth article is the theoretical basis for this kind of parser, but the
tables it generates are impractically large for reasonable grammars and should not be used. The
``equivalent to’’ wording is intentional to assure that the best tables that are LALR(1) can be
generated.

There has been confusion between the class of grammars, the algorithms needed to generate
parsers, and the algorithms needed to parse the languages. They are all reasonably orthogonal.
In particular, a parser generator that accepts the full range of LR(1) grammars need not generate
a table any more complex than one that accepts SLR(1) (a relatively weak class of LR grammars)
for a grammar that happens to be SLR(1). Such an implementation need not recognize the case,
either; table compression can yield the SLR(1) table (or one even smaller than that) without
recognizing that the grammar is SLR(1). The speed of an LR(1) parser for any class is dependent

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3627

124226

124227

124228

124229

124230

124231

124232

124233

124234

124235

124236

124237

124238

124239

124240

124241

124242

124243

124244

124245

124246

124247

124248

124249

124250

124251

124252

124253

124254

124255

124256

124257

124258

124259

124260

124261

124262

124263

124264

124265

124266

124267

124268

124269

124270

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

more upon the table representation and compression (or the code generation if a direct parser is
generated) than upon the class of grammar that the table generator handles.

The speed of the parser generator is somewhat dependent upon the class of grammar it handles.
However, the original Knuth article algorithms for constructing LR parsers were judged by its
author to be impractically slow at that time. Although full LR is more complex than LALR(1), as
computer speeds and algorithms improve, the difference (in terms of acceptable wall-clock
execution time) is becoming less significant.

Potential authors are cautioned that the referenced DeRemer and Pennello article previously
cited identifies a bug (an over-simplification of the computation of LALR(1) lookahead sets) in
some of the LALR(1) algorithm statements that preceded it to publication. They should take the
time to seek out that paper, as well as current relevant work, particularly Aho’s.

The −b option was added to provide a portable method for permitting yacc to work on multiple
separate parsers in the same directory. If a directory contains more than one yacc grammar, and
both grammars are constructed at the same time (by, for example, a parallel make program),
conflict results. While the solution is not historical practice, it corrects a known deficiency in
historical implementations. Corresponding changes were made to all sections that referenced
the filenames y.tab.c (now ``the code file’’), y.tab.h (now ``the header file’’), and y.output (now
``the description file’’).

The grammar for yacc input is based on System V documentation. The textual description shows
there that the ';' is required at the end of the rule. The grammar and the implementation do
not require this. (The use of C_IDENTIFIER causes a reduce to occur in the right place.)

Also, in that implementation, the constructs such as %token can be terminated by a
<semicolon>, but this is not permitted by the grammar. The keywords such as %token can also
appear in uppercase, which is again not discussed. In most places where '%' is used,
<backslash> can be substituted, and there are alternate spellings for some of the symbols (for
example, %LEFT can be "%<" or even "\<").

Historically, <tag> can contain any characters except '>', including white space, in the
implementation. However, since the tag must reference an ISO C standard union member, in
practice conforming implementations need to support only the set of characters for ISO C
standard identifiers in this context.

Some historical implementations are known to accept actions that are terminated by a period.
Historical implementations often allow '$' in names. A conforming implementation does not
need to support either of these behaviors.

Deciding when to use %prec illustrates the difficulty in specifying the behavior of yacc. There
may be situations in which the grammar is not, strictly speaking, in error, and yet yacc cannot
interpret it unambiguously. The resolution of ambiguities in the grammar can in many instances
be resolved by providing additional information, such as using %type or %union declarations.
It is often easier and it usually yields a smaller parser to take this alternative when it is
appropriate.

The size and execution time of a program produced without the runtime debugging code is
usually smaller and slightly faster in historical implementations.

Statistics messages from several historical implementations include the following types of
information:

n/512 terminals, n/300 non-terminals
n/600 grammar rules, n/1 500 states
n shift/reduce, n reduce/reduce conflicts reported

3628 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

124271

124272

124273

124274

124275

124276

124277

124278

124279

124280

124281

124282

124283

124284

124285

124286

124287

124288

124289

124290

124291

124292

124293

124294

124295

124296

124297

124298

124299

124300

124301

124302

124303

124304

124305

124306

124307

124308

124309

124310

124311

124312

124313

124314

124315

124316

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities yacc

n/350 working sets used
Memory: states, etc. n/15 000, parser n/15 000
n/600 distinct lookahead sets
n extra closures
n shift entries, n exceptions
n goto entries
n entries saved by goto default
Optimizer space used: input n/15 000, output n/15 000
n table entries, n zero
Maximum spread: n, Maximum offset: n

The report of internal tables in the description file is left implementation-defined because all
aspects of these limits are also implementation-defined. Some implementations may use
dynamic allocation techniques and have no specific limit values to report.

The format of the y.output file is not given because specification of the format was not seen to
enhance applications portability. The listing is primarily intended to help human users
understand and debug the parser; use of y.output by a conforming application script would be
unusual. Furthermore, implementations have not produced consistent output and no popular
format was apparent. The format selected by the implementation should be human-readable, in
addition to the requirement that it be a text file.

Standard error reports are not specifically described because they are seldom of use to
conforming applications and there was no reason to restrict implementations.

Some implementations recognize "={" as equivalent to '{' because it appears in historical
documentation. This construction was recognized and documented as obsolete as long ago as
1978, in the referenced Yacc: Yet Another Compiler-Compiler. This volume of POSIX.1-2024 chose to
leave it as obsolete and omit it.

Multi-byte characters should be recognized by the lexical analyzer and returned as tokens. They
should not be returned as multi-byte character literals. The token error that is used for error
recovery is normally assigned the value 256 in the historical implementation. Thus, the token
value 256, which is used in many multi-byte character sets, is not available for use as the value
of a user-defined token.

Earlier versions of this standard did not require the code file created by yacc to contain
declarations of yyerror(), yylex(), and yyparse(). This meant that portable applications that did
not define them had to declare them in the grammar file, to ensure they would not be diagnosed
by the compiler as being called without being declared, but this was not stated in those versions
of the standard either. The standard developers decided it was preferable for yacc to include the
declarations in the code file and this is now a requirement. However, the declarations of
yyerror() and yylex() are only visible if a macro of the same name is not defined, which provides
application writers with a way to suppress the declaration if desired (for example, in order to
provide their own declaration that would conflict with the one written by yacc). These functions
are not declared in the header file because a macro definition in the declaration section would
not be be able to suppress them there.

Earlier versions of this standard were also silent about a declaration of main(). However, the
equivalent solution was not adopted because a declaration of main() would only be needed if it
is called recursively by an application. Although in theory an application could call the yacc
library version of main() from code in a grammar file, it is questionable why any application
(other than a test suite) would do so, in particular because that version of main() does not accept
any arguments and it calls exit()—it does not return—and therefore is of little use recursively.
An application that includes its own definition of main() could call it recursively, but can

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3629

124317

124318

124319

124320

124321

124322

124323

124324

124325

124326

124327

124328

124329

124330

124331

124332

124333

124334

124335

124336

124337

124338

124339

124340

124341

124342

124343

124344

124345

124346

124347

124348

124349

124350

124351

124352

124353

124354

124355

124356

124357

124358

124359

124360

124361

124362

124363

124364

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

yacc Utilities

reasonably be expected to ensure it does not call main() without previously defining or declaring
it. An additional complication is that main() has multiple different allowed prototypes. The
standard developers decided the simplest solution was to disallow yacc from providing a
declaration of main() in the code file.

FUTURE DIRECTIONS
If this utility is directed to create a new directory entry that contains any bytes that have the
encoded value of a <newline> character, implementations are encouraged to treat this as an
error. A future version of this standard may require implementations to treat this as an error.

SEE ALSO
c17 , lex

XBD Chapter 8 (on page 167), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the C-Language Development Utilities option.

Minor changes have been added to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ``must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #177 is applied, changing the comment on RCURL from the }%
token to the %}.

Issue 7
Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the requirements for
generated code to conform to the ISO C standard.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of C-language
trigraphs and curly brace preprocessing tokens.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0204 [977] is applied.

Issue 8
Austin Group Defect 251 is applied, encouraging implementations to disallow the creation of
filenames containing any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1122 is applied, changing the description of NLSPATH.

Austin Group Defect 1269 is applied, changing the required contents of the code file (including
#define statements for YYEMPTY and YYEOF) and adding new requirements for the interface to
the lexical analyzer.

Austin Group Defect 1388 is applied, changing the requirements relating to declarations of
yyerror(), yylex(), yyparse(), and main().

3630 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

124365

124366

124367

124368

124369

124370

124371

124372

124373

124374

124375

124376

124377

124378

124379

124380

124381

124382

124383

124384

124385

124386

124387

124388

124389

124390

124391

124392

124393

124394

124395

124396

124397

124398

124399

124400

124401

124402

124403

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities zcat

NAME
zcat — expand and concatenate data

SYNOPSIS
XSI zcat [file...]

DESCRIPTION
Refer to compress .

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3631

124404

124405

124406

124407

124408

124409

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities

3632 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

The Open Group Standard

Vol. 4:

Rationale (Informative), Issue 8

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3633

124410

124411

124412

124413

124414

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

3634 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale (Informative)

Part A:

Base Definitions

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3635

124415

124416

124417

124418

124419

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

3636 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Appendix A

Rationale for Base Definitions

A.1 Introduction

A.1.1 Scope

POSIX.1-2024 is one of a family of standards known as POSIX. The family of standards extends
to many topics; POSIX.1 consists of both operating system interfaces and shell and utilities.
POSIX.1-2024 is technically identical to The Open Group Base Specifications, Issue 8.

Scope of POSIX.1-2024

The (paraphrased) goals of this development were to revise the single document that is ISO/IEC
9945:2009 Parts 1 through 4 as amended by ISO/IEC 9945:2009/Cor.1:2013 and ISO/IEC
9945:2009/Cor.2:2017, IEEE Std 1003.1-2017, and the appropriate parts of The Open Group
Single UNIX Specification, Version 5. This work has been undertaken by the Austin Group, a
joint working group of IEEE, The Open Group, and ISO/IEC JTC 1/SC 22.

The following are the base documents in this version:

• IEEE Std 1003.1-2017

• IEEE Std 1003.26-2003

• ISO/IEC 9899: 2018, Programming Languages — C

This version has addressed the following areas:

• Issues raised by Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1,
and ISO/IEC defect reports against ISO/IEC 9945

The repository of interpretations can be accessed at www.opengroup.org/austin/interps.

• Issues raised in corrigenda for The Open Group Standards and working group resolutions
from The Open Group

• Changes to make the text self-consistent with the additional material merged

A list of the new interfaces is included in Section B.1.1 (on page 3731).

• Features, marked obsolescent in the base documents, have been considered for removal in
this version

See Section B.1.1 (on page 3731) and Section C.1.1 (on page 3855).

• Alignment with the ISO/IEC 9899: 2018 standard

The following were requirements on POSIX.1-2024:

• Backward-compatibility

For interfaces carried forward, it was agreed that there should be no breakage of
functionality in the existing base documents. All strictly conforming applications will be

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3637

124420

124421

124422

124423

124424

124425

124426

124427

124428

124429

124430

124431

124432

124433

124434

124435

124436

124437

124438

124439

124440

124441

124442

124443

124444

124445

124446

124447

124448

124449

124450

124451

124452

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

http://www.opengroup.org/austin/interps

Introduction Rationale for Base Definitions

conforming but not necessarily strictly conforming to the revised standard. The goal is for
system implementations to be able to support the existing and revised standards
simultaneously.

• Architecture and n-bit-neutral

The common standard should not make any implicit assumptions about the system
architecture or size of data types; for example, previously some 32-bit implicit assumptions
had crept into the standards.

• Extensibility

It should be possible to extend the common standard without breaking backwards-
compatibility; for example, the name space should be reserved and structured to avoid
duplication of names between the standard and extensions to it.

POSIX.1 and the ISO C Standard

The standard developers believed it essential for a programmer to have a single complete
reference place, but recognized that deference to the formal standard has to be addressed for the
duplicate interface definitions between the ISO C standard and POSIX.1-2024.

Where an interface has a version in the ISO C standard, the DESCRIPTION section describes the
relationship to the ISO C standard and markings are included as appropriate to show where the
ISO C standard has been extended in the text.

A block of text is included at the start of each affected reference page stating whether the page is
aligned with the ISO C standard or extended. Each page has been parsed for additions beyond
the ISO C standard (that is, including both POSIX and UNIX extensions), and these extensions
are marked as CX extensions (for C extensions).

FIPS Requirements

The Federal Information Processing Standards (FIPS) are a series of US government
procurement standards managed and maintained on behalf of the US Department of Commerce
by the National Institute of Standards and Technology (NIST).

The following restrictions were integrated into IEEE Std 1003.1-2001. They originally came from
FIPS 151-2 which was withdrawn by NIST on February 25 2000.

• The implementation supports _POSIX_CHOWN_RESTRICTED.

• The limit {NGROUPS_MAX} is greater than or equal to 8.

• The implementation supports the setting of the group ID of a file (when it is created) to
that of the parent directory.

• The implementation supports _POSIX_SAVED_IDS.

• The implementation supports _POSIX_VDISABLE.

• The implementation supports _POSIX_JOB_CONTROL.

• The implementation supports _POSIX_NO_TRUNC.

• The read() function returns the number of bytes read when interrupted by a signal and
does not return −1.

• The write() function returns the number of bytes written when interrupted by a signal and
does not return −1.

3638 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

124453

124454

124455

124456

124457

124458

124459

124460

124461

124462

124463

124464

124465

124466

124467

124468

124469

124470

124471

124472

124473

124474

124475

124476

124477

124478

124479

124480

124481

124482

124483

124484

124485

124486

124487

124488

124489

124490

124491

124492

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Introduction

• In the environment for the login shell, the environment variables LOGNAME and HOME
are defined and have the properties described in POSIX.1-2024.

• The value of {CHILD_MAX} is greater than or equal to 25.

• The value of {OPEN_MAX} is greater than or equal to 20.

• The implementation supports the functionality associated with the symbols CS7, CS8,
CSTOPB, PARODD, and PARENB defined in <termios.h>.

A.1.2 Word Usage

The content of this section is mandated by IEEE and consequently it cannot be combined with
the ``Terminology’’ section.

Note that where the footnotes state that ``must’’ is used only to describe unavoidable situations
and ``will’’ is only used in statements of fact, they are referring to uses of these words in
normative text. In informative text, they are used in other ways with their usual dictionary
meanings.

A.1.3 Conformance

See Section A.2 (on page 3643).

A.1.4 Normative References

There is no additional rationale provided for this section.

A.1.5 Change History

For Issue 7 onwards, in references to Technical Corrigenda, the original Austin Group defect
report numbers that gave rise to the change are included in square brackets after the change
number from the Technical Corrigendum. For more information on Austin Group defect reports
see www.opengroup.org/austin/defectform.html.

A.1.6 Terminology

The meanings specified in POSIX.1-2024 for the words shall, should, and may are mandated by
ISO/IEC directives.

In the Rationale (Informative) volume of POSIX.1-2024, the words shall, should, and may are
sometimes used to illustrate similar usages in POSIX.1-2024. However, the rationale itself does
not specify anything regarding implementations or applications.

conformance document
As a practical matter, the conformance document is effectively part of the system
documentation. Conformance documents are distinguished by POSIX.1-2024 so that they
can be referred to distinctly.

implementation-defined
This definition is analogous to that of the ISO C standard and, together with ``undefined’’
and ``unspecified’’, provides a range of specification of freedom allowed to the interface
implementor.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3639

124493

124494

124495

124496

124497

124498

124499

124500

124501

124502

124503

124504

124505

124506

124507

124508

124509

124510

124511

124512

124513

124514

124515

124516

124517

124518

124519

124520

124521

124522

124523

124524

124525

124526

124527

124528

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

http://www.opengroup.org/austin/defectform.html

Introduction Rationale for Base Definitions

may
The use of may has been limited as much as possible, due both to confusion stemming from
its ordinary English meaning and to objections regarding the desirability of having as few
options as possible and those as clearly specified as possible.

The usage of can and may were selected to contrast optional application behavior (can)
against optional implementation behavior (may).

shall
Declarative sentences are sometimes used in POSIX.1-2024 as if they included the word
shall, and facilities thus specified are no less required. For example, the two statements:

1. The foo() function shall return zero.

2. The foo() function returns zero.

are meant to be exactly equivalent.

should
In POSIX.1-2024, the word should does not usually apply to the implementation, but rather
to the application. Thus, the important words regarding implementations are shall, which
indicates requirements, and may, which indicates options.

obsolescent
The term ``obsolescent’’ means ``do not use this feature in new applications’’. A feature
noted as obsolescent is supported by all implementations, but may be removed in a future
version; new applications should not use these features. The obsolescence concept is not an
ideal solution, but was used as a method of increasing consensus: many more objections
would be heard from the user community if some of these historical features were suddenly
removed without the grace period obsolescence implies. The phrase ``may be removed in a
future version’’ implies that the result of that consideration might in fact keep those features
indefinitely if the predominance of applications do not migrate away from them quickly.

legacy
The term ``legacy’’ was included in earlier versions of this standard but is no longer used in
the current version.

system documentation
The system documentation should normally describe the whole of the implementation,
including any extensions provided by the implementation. Such documents normally
contain information at least as detailed as the specifications in POSIX.1-2024. Few
requirements are made on the system documentation, but the term is needed to avoid a
dangling pointer where the conformance document is permitted to point to the system
documentation.

undefined
See implementation-defined.

unspecified
See implementation-defined.

The definitions for ``unspecified’’ and ``undefined’’ appear nearly identical at first
examination, but are not. The term ``unspecified’’ means that a conforming application may
deal with the unspecified behavior, and it should not care what the outcome is. The term
``undefined’’ says that a conforming application should not do it because no definition is
provided for what it does (and implicitly it would care what the outcome was if it tried it).
It is important to remember, however, that if the syntax permits the statement at all, it must
have some outcome in a real implementation.

3640 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

124529

124530

124531

124532

124533

124534

124535

124536

124537

124538

124539

124540

124541

124542

124543

124544

124545

124546

124547

124548

124549

124550

124551

124552

124553

124554

124555

124556

124557

124558

124559

124560

124561

124562

124563

124564

124565

124566

124567

124568

124569

124570

124571

124572

124573

124574

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Introduction

Thus, the terms ``undefined’’ and ``unspecified’’ apply to the way the application should
think about the feature. In terms of the implementation, it is always ``defined’’—there is
always some result, even if it is an error. The implementation is free to choose the behavior
it prefers.

This also implies that an implementation, or another standard, could specify or define the
result in a useful fashion. The terms apply to POSIX.1-2024 specifically.

The term ``implementation-defined’’ implies requirements for documentation that are not
required for ``undefined’’ (or ``unspecified’’). Where there is no need for a conforming
program to know the definition, the term ``undefined’’ is used, even though
``implementation-defined’’ could also have been used in this context. There could be a
fourth term, specifying ``this standard does not say what this does; it is acceptable to define
it in an implementation, but it does not need to be documented’’, and undefined would
then be used very rarely for the few things for which any definition is not useful. In
particular, implementation-defined is used where it is believed that certain classes of
application will need to know such details to determine whether the application can be
successfully ported to the implementation. Such applications are not always strictly
portable, but nevertheless are common and useful; often the requirements met by the
application cannot be met without dealing with the issues implied by ``implementation-
defined’’. In some places the text refers to facilities supplied by the implementation that are
outside the standard as implementation-supplied or implementation-provided. This is not
intended to imply a requirement for documentation. If it were, the term ``implementation-
defined’’ would have been used.

In many places POSIX.1-2024 is silent about the behavior of some possible construct. For
example, a variable may be defined for a specified range of values and behaviors are
described for those values; nothing is said about what happens if the variable has any other
value. That kind of silence can imply an error in the standard, but it may also imply that the
standard was intentionally silent and that any behavior is permitted. There is a natural
tendency to infer that if the standard is silent, a behavior is prohibited. That is not the intent.
Silence is intended to be equivalent to the term ``unspecified’’.

Three terms used within POSIX.1-2024 overlap in meaning: ``macro’’, ``symbolic name’’, and
``symbolic constant’’.

macro
This usually describes a C preprocessor symbol, the result of the #define operator, with or
without an argument. It may also be used to describe similar mechanisms in editors and
text processors.

symbolic name
In earlier versions of this standard this was also sometimes used to refer to a C preprocessor
symbol (without arguments), but the intention is for all such uses to have been removed. It
is now mainly used to refer to the names for characters in character sets, but is sometimes
used to refer to host names and even filenames.

symbolic constant
This also refers to a C preprocessor symbol, with specific associated requirements. See the
definition in Section 3.363 (on page 84).

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3641

124575

124576

124577

124578

124579

124580

124581

124582

124583

124584

124585

124586

124587

124588

124589

124590

124591

124592

124593

124594

124595

124596

124597

124598

124599

124600

124601

124602

124603

124604

124605

124606

124607

124608

124609

124610

124611

124612

124613

124614

124615

124616

124617

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for Base Definitions

A.1.7 Definitions and Concepts

There is no additional rationale provided for this section.

A.1.8 Portability

To aid the identification of options within POSIX.1-2024, a notation consisting of margin codes
and shading is used. This is based on the notation used in earlier versions of The Open Group
Base specifications.

The benefit of this approach is a reduction in the number of if statements within the running
text, that makes the text easier to read, and also an identification to the programmer that they
need to ensure that their target platforms support the underlying options. For example, if
functionality is marked with RPP in the margin, it will be available on all systems supporting
the Robust Mutex Priority Protection option, but may not be available on some others.

A.1.8.1 Codes

This section includes codes for options defined in XBD Section 2.1.6 (on page 25), and the
following additional codes for other purposes:

CX This margin code is used to denote extensions beyond and, in exceptional cases,
deviations from the ISO C standard. For interfaces that are duplicated between
POSIX.1-2024 and the ISO C standard, a CX introduction block describes the nature of
the duplication, with any extensions or deviations appropriately CX marked and
shaded. Where deviations exist, the reasons for them are explained in the RATIONALE
section of the affected interface. Deviations have become necessary because there is no
longer any formal way for ISO to acknowledge defects in the ISO C standard. For the
original C90 standard and the C99 revision, defect reports (DRs) were issued, but there
is no equivalent mechanism for the current revision. Even if the defect is corrected in a
later revision, without stating deviations POSIX.1-2024 would continue to require the
incorrect behavior described in the version of the ISO C standard that it references.

Where an interface is added to an ISO C standard header, within the header the
interface has an appropriate margin marker and shading (for example, CX, XSI, TSF,
and so on) and the same marking appears on the reference page in the SYNOPSIS
section. This enables a programmer to easily identify that the interface is extending an
ISO C standard header.

Austin Group Defect 1755 is applied, changing the CX code description to include
intentional conflicts (deviations).

MX and MXX
These two margin codes both relate to the IEC 60559 Floating-Point option. The MX
code denotes functionality that is mandated by the ISO C standard for IEC 60559
implementations; the MXX code denotes IEC 60559 functionality that is an extension to
the ISO C standard.

MXC This margin code is used to denote functionality related to the IEC 60559 Complex
Floating-Point option.

OB This margin code is used to denote obsolescent behavior and thus flag a possible future
applications portability warning.

3642 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

124618

124619

124620

124621

124622

124623

124624

124625

124626

124627

124628

124629

124630

124631

124632

124633

124634

124635

124636

124637

124638

124639

124640

124641

124642

124643

124644

124645

124646

124647

124648

124649

124650

124651

124652

124653

124654

124655

124656

124657

124658

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Introduction

OH The Single UNIX Specification has historically tried to reduce the number of headers an
application has had to include when using a particular interface. Sometimes this was
fewer than the base standard, and hence a notation is used to flag which headers are
optional if you are using a system supporting the XSI option.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0001 [591] is applied.

A.1.8.2 Margin Code Notation

Since some features may depend on one or more options, or require more than one option, a
notation is used. Where a feature requires support of a single option, a single margin code will
occur in the margin. If it depends on two options and both are required, then the codes will
appear with a <space> separator. If either of two options are required, then a logical OR is
denoted using the '|' symbol. If more than two codes are used, a special notation is used.

A.2 Conformance
The terms ``profile’’ and ``profiling’’ are used throughout this section.

A profile of a standard or standards is a codified set of option selections, such that by being
conformant to a profile, particular classes of users are specifically supported.

A.2.1 Implementation Conformance

These definitions allow application developers to know what to depend on in an
implementation.

There is no definition of a ``strictly conforming implementation’’; that would be an
implementation that provides only those facilities specified by POSIX.1 with no extensions
whatsoever. This is because no actual operating system implementation can exist without
system administration and initialization facilities that are beyond the scope of POSIX.1.

A.2.1.1 Requirements

The word ``support’’ is used in certain instances, rather than ``provide’’, in order to allow an
implementation that has no resident software development facilities, but that supports the
execution of a Strictly Conforming POSIX.1 Application, to be a conforming implementation.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0002 [810] is applied.

A.2.1.2 Documentation

The conformance documentation is required to use the same numbering scheme as POSIX.1 for
purposes of cross-referencing. All options that an implementation chooses are reflected in
<limits.h> and <unistd.h>.

Note that the use of ``may’’ in terms of where conformance documents record where
implementations may vary, implies that it is not required to describe those features identified as
undefined or unspecified.

Other aspects of systems must be evaluated by purchasers for suitability. Many systems
incorporate buffering facilities, maintaining updated data in volatile storage and transferring
such updates to non-volatile storage asynchronously. Various exception conditions, such as a
power failure or a system crash, can cause this data to be lost. The data may be associated with a

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3643

124659

124660

124661

124662

124663

124664

124665

124666

124667

124668

124669

124670

124671

124672

124673

124674

124675

124676

124677

124678

124679

124680

124681

124682

124683

124684

124685

124686

124687

124688

124689

124690

124691

124692

124693

124694

124695

124696

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Rationale for Base Definitions

file that is still open, with one that has been closed, with a directory, or with any other internal
system data structures associated with permanent storage. This data can be lost, in whole or
part, so that only careful inspection of file contents could determine that an update did not
occur.

Also, interrelated file activities, where multiple files and/or directories are updated, or where
space is allocated or released in the file system structures, can leave inconsistencies in the
relationship between data in the various files and directories, or in the file system itself. Such
inconsistencies can break applications that expect updates to occur in a specific sequence, so that
updates in one place correspond with related updates in another place.

For example, if a user creates a file, places information in the file, and then records this action in
another file, a system or power failure at this point followed by restart may result in a state in
which the record of the action is permanently recorded, but the file created (or some of its
information) has been lost. The consequences of this to the user may be undesirable. For a user
on such a system, the only safe action may be to require the system administrator to have a
policy that requires, after any system or power failure, that the entire file system must be
restored from the most recent backup copy (causing all intervening work to be lost).

The characteristics of each implementation will vary in this respect and may or may not meet
the requirements of a given application or user. Enforcement of such requirements is beyond the
scope of POSIX.1. It is up to the purchaser to determine what facilities are provided in an
implementation that affect the exposure to possible data or sequence loss, and also what
underlying implementation techniques and/or facilities are provided that reduce or limit such
loss or its consequences.

A.2.1.3 POSIX Conformance

This really means conformance to the base standard; however, since this document includes the
core material of the Single UNIX Specification, the standard developers decided that it was
appropriate to segment the conformance requirements into two, the former for the base
standard, and the latter for the Single UNIX Specification (denoted XSI Conformance).

Within POSIX.1 there are some symbolic constants that, if defined to a certain value or range of
values, indicate that a certain option is enabled. Other symbolic constants exist in POSIX.1 for
other reasons.

In this version, some features that were previously optional have been made mandatory. For
backwards compatibility, the symbolic constants associated with the option are still required
now with fixed allowable ranges or values. The following options from previous versions of this
standard are now mandatory:

3644 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

124697

124698

124699

124700

124701

124702

124703

124704

124705

124706

124707

124708

124709

124710

124711

124712

124713

124714

124715

124716

124717

124718

124719

124720

124721

124722

124723

124724

124725

124726

124727

124728

124729

124730

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Conformance

_POSIX_ASYNCHRONOUS_IO
_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION
_POSIX_MONOTONIC_CLOCK
_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SPIN_LOCKS
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS
_POSIX_TIMEOUTS
_POSIX_TIMERS

A POSIX-conformant system may support the XSI option required by the Single UNIX
Specification. This was intentional since the standard developers intend them to be upwards-
compatible, so that a system conforming to the Single UNIX Specification can also conform to
the base standard at the same time.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0003 [637] is applied.

Austin Group Defect 729 is applied, adding _POSIX_DEVICE_CONTROL.

Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

A.2.1.4 XSI Conformance

This section is included to describe the conformance requirements for the base volumes of the
Single UNIX Specification.

XSI conformance can be thought of as a profile, selecting certain options from POSIX.1-2024.

A.2.1.5 Option Groups

The concept of ``Option Groups’’ is included to allow collections of related functions or options
to be grouped together. This has been used as follows: the ``XSI Option Groups’’ have been
created to allow super-options, collections of underlying options and related functions, to be
collectively supported by XSI-conforming systems.

The standard developers considered the matter of subprofiling and decided it was better to
include an enabling mechanism rather than detailed normative requirements. A set of
subprofiling options was developed and included later in this volume of POSIX.1-2024 as an
informative illustration.

Subprofiling Considerations

The goal of not simultaneously fixing maximums and minimums was to allow implementations
of the base standard or standards to support multiple profiles without conflict.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3645

124731

124732

124733

124734

124735

124736

124737

124738

124739

124740

124741

124742

124743

124744

124745

124746

124747

124748

124749

124750

124751

124752

124753

124754

124755

124756

124757

124758

124759

124760

124761

124762

124763

124764

124765

124766

124767

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Rationale for Base Definitions

The following summarizes the rules for the limit types:

Limit Fixed Minimum Maximum
Type Value Acceptable Value Acceptable Value

Standard Xs Ys Zs
Profile Xp == Xs Yp >= Ys Zp <= Zs

(No change) (May increase the limit) (May decrease the limit)

The intent is that ranges specified by limits in profiles be entirely contained within the
corresponding ranges of the base standard or standards being profiled, and that the unlimited
end of a range in a base standard must remain unlimited in any profile of that standard.

Thus, the fixed _POSIX_* limits are constants and must not be changed by a profile. The variable
counterparts (typically without the leading _POSIX_) can be changed but still remain
semantically the same; that is, they still allow implementation values to vary as long as they
meet the requirements for that value (be it a minimum or maximum).

Where a profile does not provide a feature upon which a limit is based, the limit is not relevant.
Applications written to that profile should be written to operate independently of the value of
the limit.

An example which has previously allowed implementations to support both the base standard
and two other profiles in a compatible manner follows:

Base standard (POSIX.1-1996): _POSIX_CHILD_MAX 6
Base standard: CHILD_MAX minimum maximum _POSIX_CHILD_MAX

FIPS profile/SUSv2 CHILD_MAX 25 (minimum maximum)

Another example:

Base standard (POSIX.1-1996): _POSIX_NGROUPS_MAX 0
Base standard: NGROUPS_MAX minimum maximum _POSIX_NGROUP_MAX

FIPS profile/SUSv2 NGROUPS_MAX 8

A profile may lower a minimum maximum below the equivalent _POSIX value:

Base standard: _POSIX_foo_MAX Z
Base standard: foo_MAX _POSIX_foo_MAX

profile standard : foo_MAX X (X can be less than, equal to,
or greater than _POSIX_foo_MAX)

In this case an implementation conforming to the profile may not conform to the base standard,
but an implementation to the base standard will conform to the profile.

XSI Option Groups

Austin Group Defect 1192 is applied, marking the encrypt() and setkey() functions as
obsolescent.

Austin Group Defect 1346 is applied, removing _POSIX_MONOTONIC_CLOCK from the
Advanced Realtime option group.

A.2.1.6 Options

The final subsections within Implementation Conformance list the core options within
POSIX.1-2024. This includes both options for the System Interfaces volume of POSIX.1-2024 and
the Shell and Utilities volume of POSIX.1-2024.

Austin Group Defect 190 is applied, adding man to the list of utilities in the User Portability

3646 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

124768

124769

124770

124771

124772

124773

124774

124775

124776

124777

124778

124779

124780

124781

124782

124783

124784

124785

124786

124787

124788

124789

124790

124791

124792

124793

124794

124795

124796

124797

124798

124799

124800

124801

124802

124803

124804

124805

124806

124807

124808

124809

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Conformance

Utilities option.

A.2.2 Application Conformance

These definitions guide users or adapters of applications in determining on which
implementations an application will run and how much adaptation would be required to make
it run on others. These definitions are modeled after related ones in the ISO C standard.

POSIX.1 occasionally uses the expressions ``portable application’’ or ``conforming application’’.
As they are used, these are synonyms for any of these terms. The differences between the classes
of application conformance relate to the requirements for other standards, the options supported
(such as the XSI option) or, in the case of the Conforming POSIX.1 Application Using Extensions,
to implementation extensions. When one of the less explicit expressions is used, it should be
apparent from the context of the discussion which of the more explicit names is appropriate

A.2.2.1 Strictly Conforming POSIX Application

This definition is analogous to that of an ISO C standard ``conforming program’’.

The major difference between a Strictly Conforming POSIX Application and an ISO C standard
strictly conforming program is that the latter is not allowed to use features of POSIX that are not
in the ISO C standard.

A.2.2.2 Conforming POSIX Application

Examples of <National Bodies> include ANSI, BSI, and AFNOR.

A.2.2.3 Conforming POSIX Application Using Extensions

Due to possible requirements for configuration or implementation characteristics in excess of the
specifications in <limits.h> or related to the hardware (such as array size or file space), not
every Conforming POSIX Application Using Extensions will run on every conforming
implementation.

A.2.2.4 Strictly Conforming XSI Application

This is intended to be upwards-compatible with the definition of a Strictly Conforming POSIX
Application, with the addition of the facilities and functionality included in the XSI option.

A.2.2.5 Conforming XSI Application Using Extensions

Such applications may use extensions beyond the facilities defined by POSIX.1-2024 including
the XSI option, but need to document the additional requirements.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3647

124810

124811

124812

124813

124814

124815

124816

124817

124818

124819

124820

124821

124822

124823

124824

124825

124826

124827

124828

124829

124830

124831

124832

124833

124834

124835

124836

124837

124838

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Conformance Rationale for Base Definitions

A.2.3 Language-Dependent Services for the C Programming Language

POSIX.1 is, for historical reasons, both a specification of an operating system interface, shell and
utilities, and a C binding for that specification. Efforts had been previously undertaken to
generate a language-independent specification; however, that had failed, and the fact that the
ISO C standard is the de facto primary language on POSIX and the UNIX system makes this a
necessary and workable situation.

A.2.4 Other Language-Related Specifications

There is no additional rationale provided for this section.

A.3 Definitions
The definitions in this section are stated so that they can be used as exact substitutes for the
terms in text. They should not contain requirements or cross-references to sections within
POSIX.1-2024; that is accomplished by using an informative note. In addition, the term should
not be included in its own definition. Where requirements or descriptions need to be addressed
but cannot be included in the definitions, due to not meeting the above criteria, these occur in
the General Concepts chapter.

In this version, the definitions have been reworked extensively to meet style requirements and to
include terms from the base documents (see the Scope).

Many of these definitions are necessarily circular, and some of the terms (such as ``process’’) are
variants of basic computing science terms that are inherently hard to define. Where some
definitions are more conceptual and contain requirements, these appear in the General Concepts
chapter. Those listed in this section appear in an alphabetical glossary format of terms.

Some definitions must allow extension to cover terms or facilities that are not explicitly
mentioned in POSIX.1-2024. For example, the definition of ``Extended Security Controls’’
permits implementations beyond those defined in POSIX.1-2024.

Some terms in the following list of notes do not appear in POSIX.1-2024; these are marked
suffixed with an asterisk (*). Many of them have been specifically excluded from POSIX.1-2024
because they concern system administration, implementation, or other issues that are not
specific to the programming interface. Those are marked with a reason, such as
``implementation-defined’’.

Alias Name

Austin Group Defect 1050 is applied, adding '-' to the characters that can be used in an alias
name.

Anonymous Memory Object

Austin Group Defect 850 is applied, adding anonymous memory objects.

3648 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

124839

124840

124841

124842

124843

124844

124845

124846

124847

124848

124849

124850

124851

124852

124853

124854

124855

124856

124857

124858

124859

124860

124861

124862

124863

124864

124865

124866

124867

124868

124869

124870

124871

124872

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

Application

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0004 [937] is applied.

Appropriate Privileges

One of the fundamental security problems with many historical UNIX systems has been that the
privilege mechanism is monolithic—a user has either no privileges or all privileges. Thus, a
successful ``trojan horse’’ attack on a privileged process defeats all security provisions.
Therefore, POSIX.1 allows more granular privilege mechanisms to be defined. For many
historical implementations of the UNIX system, the presence of the term ``appropriate
privileges’’ in POSIX.1 may be understood as a synonym for ``superuser ’’ (UID 0). However,
other systems have emerged where this is not the case and each discrete controllable action has
appropriate privileges associated with it. Because this mechanism is implementation-defined, it
must be described in the conformance document. Although that description affects several parts
of POSIX.1 where the term ``appropriate privilege’’ is used, because the term ``implementation-
defined’’ only appears here, the description of the entire mechanism and its effects on these
other sections belongs in this equivalent section of the conformance document. This is especially
convenient for implementations with a single mechanism that applies in all areas, since it only
needs to be described once.

Async-Signal-Safe Function

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0005 [516] is applied.

Background Job

Austin Group Defect 1254 is applied, changing this definition.

Base Character*

The term ``Base Character’’ has been removed, as it was felt that the use of this term within
POSIX.1-2024 was common usage English.

Basename

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0006 [653] is applied.

Built-In Utility

Austin Group Defect 854 is applied, changing text relating to regular built-in utilities.

Byte

The restriction that a byte is now exactly eight bits was a conscious decision by the standard
developers. It came about due to a combination of factors, primarily the use of the type int8_t
within the networking functions and the alignment with the ISO/IEC 9899: 1999 standard,
where the intN_t types were first defined.

According to the ISO/IEC 9899: 1999 standard:

• The [u]intN_t types must be two’s complement with no padding bits and no illegal values.

• All types (apart from bit fields, which are not relevant here) must occupy an integral
number of bytes.

• If a type with width W occupies B bytes with C bits per byte (C is the value of
{CHAR_BIT}), then it has P padding bits where P+W=B∗C.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3649

124873

124874

124875

124876

124877

124878

124879

124880

124881

124882

124883

124884

124885

124886

124887

124888

124889

124890

124891

124892

124893

124894

124895

124896

124897

124898

124899

124900

124901

124902

124903

124904

124905

124906

124907

124908

124909

124910

124911

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

• Therefore, for int8_t P=0, W=8. Since B≥1, C≥8, the only solution is B=1, C=8.

The standard developers also felt that this was not an undue restriction for the current state-of-
the-art for this version of the standard, but recognize that if industry trends continue, a wider
character type may be required in the future.

Character

The term ``character ’’ is used to mean a sequence of one or more bytes representing a member of
a character set. The deviation in the exact text of the ISO C standard definition for ``byte’’ meets
the intent of the rationale of the ISO C standard also clears up the ambiguity raised by the term
``basic execution character set’’. The octet-minimum requirement is a reflection of the
{CHAR_BIT} value.

Austin Group Defect 1356 is applied, changing the definition of ``character ’’ to match the
definition of the term ``multi-byte character’’ in the ISO C standard.

Child Process

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/3 is applied, adding the vfork() function
to those listed.

Clock Tick

The ISO C standard defines a similar interval for use by the clock() function. There is no
requirement that these intervals be the same. In historical implementations these intervals are
different.

Code Block

Austin Group Defect 613 is applied, adding this definition.

Command

The terms ``command’’ and ``utility’’ are related but have distinct meanings. Command is
defined as ``a directive to a shell to perform a specific task’’. The directive can be in the form of a
single utility name (for example, ls), or the directive can take the form of a compound command
(for example, "ls | grep name | pr"). A utility is a program that can be called by name
from a shell. Issuing only the name of the utility to a shell is the equivalent of a one-word
command. A utility may be invoked as a separate program that executes in a different process
than the command language interpreter, or it may be implemented as a part of the command
language interpreter. For example, the echo command (the directive to perform a specific task)
may be implemented such that the echo utility (the logic that performs the task of echoing) is in a
separate program; therefore, it is executed in a process that is different from the command
language interpreter. Conversely, the logic that performs the echo utility could be built into the
command language interpreter; therefore, it could execute in the same process as the command
language interpreter.

The terms ``tool’’ and ``application’’ can be thought of as being synonymous with ``utility’’ from
the perspective of the operating system kernel. Tools, applications, and utilities historically have
run, typically, in processes above the kernel level. Tools and utilities historically have been a part
of the operating system non-kernel code and have performed system-related functions, such as
listing directory contents, checking file systems, repairing file systems, or extracting system
status information. Applications have not generally been a part of the operating system, and
they perform non-system-related functions, such as word processing, architectural design,
mechanical design, workstation publishing, or financial analysis. Utilities have most frequently
been provided by the operating system distributor, applications by third-party software

3650 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

124912

124913

124914

124915

124916

124917

124918

124919

124920

124921

124922

124923

124924

124925

124926

124927

124928

124929

124930

124931

124932

124933

124934

124935

124936

124937

124938

124939

124940

124941

124942

124943

124944

124945

124946

124947

124948

124949

124950

124951

124952

124953

124954

124955

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

distributors, or by the users themselves. Nevertheless, POSIX.1-2024 does not differentiate
between tools, utilities, and applications when it comes to receiving services from the system, a
shell, or the standard utilities. (For example, the xargs utility invokes another utility; it would be
of fairly limited usefulness if the users could not run their own applications in place of the
standard utilities.) Utilities are not applications in the sense that they are not themselves subject
to the restrictions of POSIX.1-2024 or any other standard—there is no requirement for grep, stty,
or any of the utilities defined here to be any of the classes of conforming applications.

Column Positions

In most 1-byte character sets, such as ASCII, the concept of column positions is identical to
character positions and to bytes. Therefore, it has been historically acceptable for some
implementations to describe line folding or tab stops or table column alignment in terms of
bytes or character positions. Other character sets pose complications, as they can have internal
representations longer than one octet and they can have display characters that have different
widths on the terminal screen or printer.

In POSIX.1-2024 the term ``column positions’’ has been defined to mean character—not byte—
positions in input files. Output files describe the column position in terms of the display width
of the narrowest printable character in the character set, adjusted to fit the characteristics of the
output device. It is very possible that n column positions will not be able to hold n characters in
some character sets, unless all of those characters are of the narrowest width. It is assumed that
the implementation is aware of the width of the various characters, deriving this information
from the value of LC_CTYPE, and thus can determine how many column positions to allot for
each character in those utilities where it is important.

The term ``column position’’ was used instead of the more natural ``column’’ because the latter is
frequently used in the different contexts of columns of figures, columns of table values, and so
on. Wherever confusion might result, these latter types of columns are referred to as ``text
columns’’.

Condition Variable

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Control Operator

Austin Group Defect 449 is applied, adding ;& to the list of control operators.

Controlling Terminal

The question of which of possibly several special files referring to the terminal is meant is not
addressed in POSIX.1. The pathname /dev/tty is a synonym for the controlling terminal
associated with a process.

Core Image

Austin Group Defect 1141 is applied, replacing the core file definition with a core image
definition.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3651

124956

124957

124958

124959

124960

124961

124962

124963

124964

124965

124966

124967

124968

124969

124970

124971

124972

124973

124974

124975

124976

124977

124978

124979

124980

124981

124982

124983

124984

124985

124986

124987

124988

124989

124990

124991

124992

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

CPU Time (Execution Time)

Austin Group Defect 1116 is applied, removing a reference to the Threads option that existed in
earlier versions of this standard.

Decimal-Point Character

Austin Group Defect 1449 is applied, adding this definition.

Declaration Utility

Austin Group Defect 351 is applied, adding this definition.

Device Number*

The concept is handled in stat() as ID of device.

Direct I/O

Historically, direct I/O refers to the system bypassing intermediate buffering, but may be
extended to cover implementation-defined optimizations.

Directory

The format of the directory file is implementation-defined and differs radically between
System V and 4.3 BSD. However, routines (derived from 4.3 BSD) for accessing directories and
certain constraints on the format of the information returned by those routines are described in
the <dirent.h> header.

Directory Entry (or Hard Link)

Austin Group Defect 1380 is applied, changing ``link’’ to ``hard link’’.

Display

The Shell and Utilities volume of POSIX.1-2024 assigns precise requirements for the terms
``display’’ and ``write’’. Some historical systems have chosen to implement certain utilities
without using the traditional file descriptor model. For example, the vi editor might employ
direct screen memory updates on a personal computer, rather than a write() system call. An
instance of user prompting might appear in a dialog box, rather than with standard error. When
the Shell and Utilities volume of POSIX.1-2024 uses the term ``display’’, the method of
outputting to the terminal is unspecified; many historical implementations use termcap or
terminfo, but this is not a requirement. The term ``write’’ is used when the Shell and Utilities
volume of POSIX.1-2024 mandates that a file descriptor be used and that the output can be
redirected. However, it is assumed that when the writing is directly to the terminal (it has not
been redirected elsewhere), there is no practical way for a user or test suite to determine whether
a file descriptor is being used. Therefore, the use of a file descriptor is mandated only for the
redirection case and the implementation is free to use any method when the output is not
redirected. The verb write is used almost exclusively, with the very few exceptions of those
utilities where output redirection need not be supported: tabs, talk, tput, and vi.

3652 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

124993

124994

124995

124996

124997

124998

124999

125000

125001

125002

125003

125004

125005

125006

125007

125008

125009

125010

125011

125012

125013

125014

125015

125016

125017

125018

125019

125020

125021

125022

125023

125024

125025

125026

125027

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

Dot

The symbolic name dot is carefully used in POSIX.1 to distinguish the working directory
filename from a period or a decimal point.

Dot-Dot

Historical implementations permit the use of these filenames without their special meanings.
Such use precludes any meaningful use of these filenames by a Conforming POSIX.1
Application. Therefore, such use is considered an extension, the use of which makes an
implementation non-conforming; see also Section A.4.16 (on page 3683).

Dot-Po File

Austin Group Defect 1122 is applied, adding this definition.

Empty Directory

Austin Group Defect 1380 is applied, changing ``link’’ to ``hard link’’.

Epoch

Historically, the origin of UNIX system time was referred to as ``00:00:00 GMT, January 1, 1970’’.
Greenwich Mean Time is actually not a term acknowledged by the international standards
community; therefore, this term, ``Epoch’’, is used to abbreviate the reference to the actual
standard, Coordinated Universal Time.

FIFO Special File

See Pipe (on page 3663).

File

It is permissible for an implementation-defined file type to be non-readable or non-writable.

File Classes

These classes correspond to the historical sets of permission bits. The classes are general to
allow implementations flexibility in expanding the access mechanism for more stringent security
environments. Note that a process is in one and only one class, so there is no ambiguity.

File Descriptor

Austin Group Defect 1493 is applied, moving some information from XCU Section 2.7 (on page
2493) to this definition.

File Lock

Austin Group Defect 768 is applied, changing this definition.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3653

125028

125029

125030

125031

125032

125033

125034

125035

125036

125037

125038

125039

125040

125041

125042

125043

125044

125045

125046

125047

125048

125049

125050

125051

125052

125053

125054

125055

125056

125057

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

File Mode

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0007 [834] is applied.

Filename

Filenames are sequences of bytes, not sequences of characters. The only bytes that this standard
says cannot appear in any filename are the slash byte and the null byte. This is a side-effect of
the fact that no conforming implementations of the standard currently provide a way to pass
information specifying the locale associated with strings passed between user-level applications
and the kernel. This decision could be revisited if implementations develop a way to associate a
locale with the strings passed between kernel space and user space.

Implementations may add other restrictions to the byte sequences allowed in filenames except
that any filename consisting of no more than {NAME_MAX} bytes from the set of characters in
the portable filename character set must be allowed.

See Pathname (on page 3663).

File System

Historically, the meaning of this term has been overloaded with two meanings: that of the
complete file hierarchy, and that of a mountable subset of that hierarchy; that is, a mounted file
system. POSIX.1 uses the term ``file system’’ in the second sense, except that it is limited to the
scope of a process (and root directory of a process). This usage also clarifies the domain in which
a file serial number is unique.

Foreground Job

Austin Group Defect 1254 is applied, changing this definition.

Graphic Character

This definition is made available for those definitions (in particular, TZ) which must exclude
control characters.

Group Database

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/4 is applied, removing the words ``of
implementation-defined format’’. See User Database (on page 3675).

Group File*

Implementation-defined; see User Database (on page 3675).

Group ID

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0008 [511] is applied.

Group Name

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0009 [584] is applied.

3654 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125058

125059

125060

125061

125062

125063

125064

125065

125066

125067

125068

125069

125070

125071

125072

125073

125074

125075

125076

125077

125078

125079

125080

125081

125082

125083

125084

125085

125086

125087

125088

125089

125090

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

Hard Link

Austin Group Defect 1380 is applied, changing this definition.

Historical Implementations*

This refers to previously existing implementations of programming interfaces and operating
systems that are related to the interface specified by POSIX.1.

Hole

Austin Group Defect 415 is applied, adding this definition.

Hosted Implementation*

This refers to a POSIX.1 implementation that is accomplished through interfaces from the
POSIX.1 services to some alternate form of operating system kernel services. Note that the line
between a hosted implementation and a native implementation is blurred, since most
implementations will provide some services directly from the kernel and others through some
indirect path. (For example, fopen() might use open(); or mkfifo() might use mknod().) There is
no necessary relationship between the type of implementation and its correctness, performance,
and/or reliability.

Implementation*

This term is generally used instead of its synonym, ``system’’, to emphasize the consequences of
decisions to be made by system implementors. Perhaps if no options or extensions to POSIX.1
were allowed, this usage would not have occurred.

The term ``specific implementation’’ is sometimes used as a synonym for ``implementation’’.
This should not be interpreted too narrowly; both terms can represent a relatively broad group
of systems. For example, a hardware vendor could market a very wide selection of systems that
all used the same instruction set, with some systems desktop models and others large multi-user
minicomputers. This wide range would probably share a common POSIX.1 operating system,
allowing an application compiled for one to be used on any of the others; this is a [specific]
implementation. However, such a wide range of machines probably has some differences
between the models. Some may have different clock rates, different file systems, different
resource limits, different network connections, and so on, depending on their sizes or intended
usages. Even on two identical machines, the system administrators may configure them
differently. Each of these different systems is known by the term ``a specific instance of a specific
implementation’’. This term is only used in the portions of POSIX.1 dealing with runtime
queries: sysconf() and pathconf().

Incomplete Pathname*

Absolute pathname has been adequately defined.

Interactive Device

Austin Group Defect 1347 is applied, adding a definition of interactive device.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3655

125091

125092

125093

125094

125095

125096

125097

125098

125099

125100

125101

125102

125103

125104

125105

125106

125107

125108

125109

125110

125111

125112

125113

125114

125115

125116

125117

125118

125119

125120

125121

125122

125123

125124

125125

125126

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

Intrinsic Utility

Austin Group Defect 854 is applied, adding intrinsic utilities.

Job

Austin Group Defect 1254 is applied, changing this definition.

Job Control

In order to understand the job control facilities in POSIX.1 it is useful to understand how they
are used by a job control-cognizant shell to create the user interface effect of job control.

While the job control facilities supplied by POSIX.1 can, in theory, support different types of
interactive job control interfaces supplied by different types of shells, there was historically one
particular interface that was most common when the standard was originally developed
(provided by BSD C Shell).

This discussion describes that interface as a means of illustrating how the POSIX.1 job control
facilities can be used.

Job control allows users to selectively stop (suspend) the execution of processes and continue
(resume) their execution at a later point. The user typically employs this facility via the
interactive interface jointly supplied by the terminal I/O driver and a command interpreter
(shell).

The user can launch jobs (command pipelines) in either the foreground or background. When
launched in the foreground, the shell waits for the job to complete before prompting for
additional commands. When launched in the background, the shell does not wait, but
immediately prompts for new commands.

If the user launches a job in the foreground and subsequently regrets this, the user can type the
suspend character (typically set to <control>-Z), which causes the foreground process group to
stop, and the shell to convert the corresponding foreground job to a suspended job and begin
prompting for new commands. The suspended job can be continued by the user (via special
shell commands) either as a foreground job or as a background job. Background jobs can also be
moved into the foreground via shell commands.

If a background process group attempts to access the login terminal (controlling terminal), it is
stopped by the terminal driver and the shell detects this and, in turn, suspends the
corresponding background job and notifies the user. (Terminal access includes read() and certain
terminal control functions, and conditionally includes write().) The user can continue the
suspended job in the foreground, thus allowing the terminal access to succeed in an orderly
fashion. After the terminal access succeeds, the user can optionally move the job into the
background via the suspend character and shell commands.

Implementing Job Control Shells

The job control features of the POSIX shell (described in Section 2.11, on page 2518) and of other
shells can be implemented using the job control facilities of the System Interfaces volume of
POSIX.1-2024 in the following way.

The key feature necessary to provide job control is a way to group processes into jobs. This
grouping is necessary in order to direct signals to a single job and also to identify which job is in
the foreground. (There is at most one job that is in the foreground on any controlling terminal at
a time.)

The concept of process groups is used to provide this grouping. The shell places the process(es)
it creates for each job in a separate process group via the setpgid() function. To do this, the

3656 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125127

125128

125129

125130

125131

125132

125133

125134

125135

125136

125137

125138

125139

125140

125141

125142

125143

125144

125145

125146

125147

125148

125149

125150

125151

125152

125153

125154

125155

125156

125157

125158

125159

125160

125161

125162

125163

125164

125165

125166

125167

125168

125169

125170

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

setpgid() function is invoked by the shell for each process in the job. It is actually useful to
invoke setpgid() twice for each process: once in the child process, after calling fork() to create the
process, but before calling one of the exec family of functions to begin execution of the program,
and once in the parent shell process, after calling fork() to create the child. The redundant
invocation avoids a race condition by ensuring that the child process is placed into the new
process group before either the parent or the child relies on this being the case. The process
group ID for the job is selected by the shell to be equal to the process ID of one of the processes
in the job. Some shells choose to make one process in the job be the parent of the other processes
in the job (if any). Other shells (for example, the C Shell) choose to make themselves the parent
of all processes in the job. In order to support this latter case, the setpgid() function accepts a
process group ID parameter since the correct process group ID cannot be inherited from the
shell.

The shell also controls which job is currently in the foreground. A foreground and background
job differ in two ways: the shell waits for a foreground command to complete (or stop) before
continuing to read new commands, and the terminal I/O driver inhibits terminal access by
background jobs (causing the processes to stop). Thus, the shell must work cooperatively with
the terminal I/O driver and have a common understanding of which job is currently in the
foreground. It is the user who decides which command should be currently in the foreground,
and the user informs the shell via shell commands. The shell, in turn, informs the terminal I/O
driver via the tcsetpgrp() function. This indicates to the terminal I/O driver the process group ID
of the foreground process group. When the current foreground job is either suspended or
terminated, the shell places its own process group in the foreground via tcsetpgrp() before
prompting for additional commands. Note that when a job is created the new process group
begins as a background process group. It requires an explicit act of the shell via tcsetpgrp() to
move a process group into the foreground.

When a process in a job stops or terminates, its parent (for example, the shell) receives
synchronous notification by calling the waitpid() function with the WUNTRACED flag set.
Asynchronous notification is also provided when the parent establishes a signal handler for
SIGCHLD and does not specify the SA_NOCLDSTOP flag. Usually all processes in a job stop as
a unit since the terminal I/O driver always sends job control stop signals to all processes in the
process group.

To continue a suspended job, the shell sends a SIGCONT signal to the corresponding process
group. In addition, if the job is being continued in the foreground, the shell invokes tcsetpgrp()
to place the process group in the foreground before sending SIGCONT. Otherwise, the shell
leaves itself in the foreground and reads additional commands.

There is additional flexibility in the POSIX.1 job control facilities that allows deviations from the
typical interface. Clearing the TOSTOP terminal flag allows background jobs to perform write()
functions without stopping. The same effect can be achieved on a per-process basis by having a
process set the signal action for SIGTTOU to SIG_IGN.

A login session that is not using the job control facilities can be thought of as a large collection of
processes that are all in the same job. Such a login session may have a partial distinction
between foreground and background processes; that is, the shell waits for some processes before
continuing to read new commands and does not wait for other processes. However, the terminal
I/O driver considers all these processes to be in the foreground since they are all members of the
same process group.

In addition to the basic job control operations already mentioned, a job control-cognizant shell
needs to perform the following actions.

When a foreground (not background) job is suspended, the shell needs to sample and remember
the current terminal settings so that it can restore them later when it continues the suspended

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3657

125171

125172

125173

125174

125175

125176

125177

125178

125179

125180

125181

125182

125183

125184

125185

125186

125187

125188

125189

125190

125191

125192

125193

125194

125195

125196

125197

125198

125199

125200

125201

125202

125203

125204

125205

125206

125207

125208

125209

125210

125211

125212

125213

125214

125215

125216

125217

125218

125219

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

job in the foreground (via the tcgetattr() and tcsetattr() functions).

Because a shell itself can be spawned from a shell, it must take special action to ensure that child
shells interact well with their parent shells. A child shell can be spawned to perform an
interactive function (prompting the terminal for commands) or a non-interactive function
(reading commands from a file). When operating non-interactively, the job control shell will by
default refrain from performing the job control-specific actions described above. It will behave
as a shell that does not support job control. For example, all jobs will be left in the same process
group as the shell, which itself remains in the process group established for it by its parent. This
allows the shell and its children to be treated as a single job by a parent shell, and they can be
affected as a unit by terminal keyboard signals.

An interactive child shell can be spawned from another job control-cognizant shell in either the
foreground or background. (For example, the user can execute an interactive shell in the
background by means of the command "sh &".) Before the child shell activates job control by
calling setpgid() to place itself in its own process group and tcsetpgrp() to place its new process
group in the foreground, it needs to ensure that it has already been placed in the foreground by
its parent. (Otherwise, there could be multiple job control shells that simultaneously attempt to
control mediation of the terminal.) To determine this, the shell retrieves its own process group
via getpgrp() and the process group of the current foreground job via tcgetpgrp(). If these are not
equal, the shell sends SIGTTIN to its own process group, causing itself to stop. When continued
later by its parent, the shell repeats the process group check. When the process groups finally
match, the shell is in the foreground and it can proceed to take control. After this point, the shell
ignores all the job control stop signals so that it does not inadvertently stop itself.

Implementing Job Control Applications

Most applications do not need to be aware of job control signals and operations; the intuitively
correct behavior happens by default. However, sometimes an application can inadvertently
interfere with normal job control processing, or an application may choose to overtly effect job
control in cooperation with normal shell procedures.

An application can inadvertently subvert job control processing by ``blindly’’ altering the
handling of signals. A common application error is to learn how many signals the system
supports and to ignore or catch them all. Such an application makes the assumption that it does
not know what this signal is, but knows the right handling action for it. The system may
initialize the handling of job control stop signals so that they are being ignored. This allows
shells that do not support job control to inherit and propagate these settings and hence to be
immune to stop signals. A job control shell will set the handling to the default action and
propagate this, allowing processes to stop. In doing so, the job control shell is taking
responsibility for restarting the stopped applications. If an application wishes to catch the stop
signals itself, it should first determine their inherited handling states. If a stop signal is being
ignored, the application should continue to ignore it. This is directly analogous to the
recommended handling of SIGINT described in the referenced UNIX Programmer ’s Manual.

If an application is reading the terminal and has disabled the interpretation of special characters
(by clearing the ISIG flag), the terminal I/O driver will not send SIGTSTP when the suspend
character is typed. Such an application can simulate the effect of the suspend character by
recognizing it and sending SIGTSTP to its process group as the terminal driver would have
done. Note that the signal is sent to the process group, not just to the application itself; this
ensures that other processes in the job also stop. (Note also that other processes in the job could
be children, siblings, or even ancestors.) Applications should not assume that the suspend
character is <control>-Z (or any particular value); they should retrieve the current setting at
startup.

3658 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125220

125221

125222

125223

125224

125225

125226

125227

125228

125229

125230

125231

125232

125233

125234

125235

125236

125237

125238

125239

125240

125241

125242

125243

125244

125245

125246

125247

125248

125249

125250

125251

125252

125253

125254

125255

125256

125257

125258

125259

125260

125261

125262

125263

125264

125265

125266

125267

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

Implementing Job Control Systems

The intent in adding 4.2 BSD-style job control functionality was to adopt the necessary 4.2 BSD
programmatic interface with only minimal changes to resolve syntactic or semantic conflicts
with System V or to close recognized security holes. The goal was to maximize the ease of
providing both conforming implementations and Conforming POSIX.1 Applications.

It is only useful for a process to be affected by job control signals if it is the descendant of a job
control shell. Otherwise, there will be nothing that continues the stopped process.

POSIX.1 does not specify how controlling terminal access is affected by a user logging out (that
is, by a controlling process terminating). 4.2 BSD uses the vhangup() function to prevent any
access to the controlling terminal through file descriptors opened prior to logout. System V does
not prevent controlling terminal access through file descriptors opened prior to logout (except
for the case of the special file, /dev/tty). Some implementations choose to make processes
immune from job control after logout (that is, such processes are always treated as if in the
foreground); other implementations continue to enforce foreground/background checks after
logout. Therefore, a Conforming POSIX.1 Application should not attempt to access the
controlling terminal after logout since such access is unreliable. If an implementation chooses to
deny access to a controlling terminal after its controlling process exits, POSIX.1 requires a certain
type of behavior (see Controlling Terminal, on page 3651).

Austin Group Defect 1254 is applied, changing this definition.

Job ID

Austin Group Defect 1254 is applied, changing ``job control job ID’’ to ``job ID’’.

Joinable Thread

Austin Group Defect 792 is applied, adding this definition.

Kernel*

See System Call* (on page 3673).

Library Routine*

See System Call* (on page 3673).

Link

Austin Group Defect 1380 is applied, changing this definition.

Live Process

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0010 [690] is applied.

Live Thread

Austin Group Defect 792 is applied, adding this definition.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3659

125268

125269

125270

125271

125272

125273

125274

125275

125276

125277

125278

125279

125280

125281

125282

125283

125284

125285

125286

125287

125288

125289

125290

125291

125292

125293

125294

125295

125296

125297

125298

125299

125300

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

Logical Device*

Implementation-defined.

Map

The definition of map is included to clarify the usage of mapped pages in the description of the
behavior of process memory locking.

Memory-Resident

The term ``memory-resident’’ is historically understood to mean that the so-called resident pages
are actually present in the physical memory of the computer system and are immune from
swapping, paging, copy-on-write faults, and so on. This is the actual intent of POSIX.1-2024 in
the process memory locking section for implementations where this is logical. But for some
implementations—primarily mainframes—actually locking pages into primary storage is not
advantageous to other system objectives, such as maximizing throughput. For such
implementations, memory locking is a ``hint’’ to the implementation that the application wishes
to avoid situations that would cause long latencies in accessing memory. Furthermore, there are
other implementation-defined issues with minimizing memory access latencies that ``memory
residency’’ does not address—such as MMU reload faults. The definition attempts to
accommodate various implementations while allowing conforming applications to specify to the
implementation that they want or need the best memory access times that the implementation
can provide.

Memory Object*

The term ``memory object’’ usually implies shared memory. If the object is the same as a
filename in the file system name space of the implementation, it is expected that the data written
into the memory object be preserved on disk. A memory object may also apply to a physical
device on an implementation. In this case, writes to the memory object are sent to the controller
for the device and reads result in control registers being returned.

Messages Object

Austin Group Defect 1122 is applied, adding this definition.

Mounted File System*

See File System (on page 3654).

Multi-Threaded Library

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0011 [625] is applied.

Multi-Threaded Process

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0011 [625] is applied.

3660 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125301

125302

125303

125304

125305

125306

125307

125308

125309

125310

125311

125312

125313

125314

125315

125316

125317

125318

125319

125320

125321

125322

125323

125324

125325

125326

125327

125328

125329

125330

125331

125332

125333

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

Multi-Threaded Program

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0011 [625] is applied.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Mutex

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Name

There are no explicit limits in POSIX.1-2024 on the sizes of names, words (see the definition of
word in the Base Definitions volume of POSIX.1-2024), lines, or other objects. However, other
implicit limits do apply: shell script lines produced by many of the standard utilities cannot
exceed {LINE_MAX} and the sum of exported variables comes under the {ARG_MAX} limit.
Historical shells dynamically allocate memory for names and words and parse incoming lines a
character at a time. Lines cannot have an arbitrary {LINE_MAX} limit because of historical
practice, such as makefiles, where make removes the <newline> characters associated with the
commands for a target and presents the shell with one very long line. The text on INPUT FILES
in XCU Section 1.4 (on page 2462) does allow a shell to run out of memory, but it cannot have
arbitrary programming limits.

Native Implementation*

This refers to an implementation of POSIX.1 that interfaces directly to an operating system
kernel; see also hosted implementation. A similar concept is a native UNIX system, which would
be a kernel derived from one of the original UNIX system products.

Negative

Austin Group Defect 1428 is applied, adding this definition.

Nice Value

This definition is not intended to suggest that all processes in a system have priorities that are
comparable. Scheduling policy extensions, such as adding realtime priorities, make the notion of
a single underlying priority for all scheduling policies problematic. Some implementations may
implement the features related to nice to affect all processes on the system, others to affect just
the general time-sharing activities implied by POSIX.1-2024, and others may have no effect at all.
Because of the use of ``implementation-defined’’ in nice and renice, a wide range of
implementation strategies is possible.

Null Pointer

Austin Group Defect 940 is applied, adding a statement that any pointer object whose
representation has all bits set to zero will be interpreted as a null pointer.

Null Terminator

Austin Group Defect 1621 is applied, adding this definition.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3661

125334

125335

125336

125337

125338

125339

125340

125341

125342

125343

125344

125345

125346

125347

125348

125349

125350

125351

125352

125353

125354

125355

125356

125357

125358

125359

125360

125361

125362

125363

125364

125365

125366

125367

125368

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

OFD-Owned File Lock

Austin Group Defect 768 is applied, adding this definition.

Open File Description

An ``open file description’’, as it is currently named, describes how a file is being accessed. What
is currently called a ``file descriptor’’ is actually just an identifier or ``handle’’; it does not
actually describe anything.

The following alternate names were discussed:

• For ``open file description’’:
``open instance’’, ``file access description’’, ``open file information’’, and ``file access
information’’.

• For ``file descriptor’’:
``file handle’’, ``file number’’ (cf., fileno()). Some historical implementations use the term
``file table entry’’.

Option-Argument

Austin Group Defect 1784 is applied, changing this definition.

Orphaned Process Group

Historical implementations have a concept of an orphaned process, which is a process whose
parent process has exited. When job control is in use, it is necessary to prevent processes from
being stopped in response to interactions with the terminal after they no longer are controlled by
a job control-cognizant program. Because signals generated by the terminal are sent to a process
group and not to individual processes, and because a signal may be provoked by a process that
is not orphaned, but sent to another process that is orphaned, it is necessary to define an
orphaned process group. The definition assumes that a process group will be manipulated as a
group and that the job control-cognizant process controlling the group is outside of the group
and is the parent of at least one process in the group (so that state changes may be reported via
waitpid()). Therefore, a group is considered to be controlled as long as at least one process in the
group has a parent that is outside of the process group, but within the session.

This definition of orphaned process groups ensures that a session leader’s process group is
always considered to be orphaned, and thus it is prevented from stopping in response to
terminal signals.

Page

The term ``page’’ is defined to support the description of the behavior of memory mapping for
shared memory and memory mapped files, and the description of the behavior of process
memory locking. It is not intended to imply that shared memory/file mapping and memory
locking are applicable only to ``paged’’ architectures. For the purposes of POSIX.1-2024,
whatever the granularity on which an architecture supports mapping or locking, this is
considered to be a ``page’’ . If an architecture cannot support the memory mapping or locking
functions specified by POSIX.1-2024 on any granularity, then these options will not be
implemented on the architecture.

3662 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125369

125370

125371

125372

125373

125374

125375

125376

125377

125378

125379

125380

125381

125382

125383

125384

125385

125386

125387

125388

125389

125390

125391

125392

125393

125394

125395

125396

125397

125398

125399

125400

125401

125402

125403

125404

125405

125406

125407

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

Pathname

Pathnames historically allowed all bytes except for the <slash> and <NUL> characters. For
compatibility with existing file systems, this usage is maintained throughout the standard by
noting that a pathname need not be a valid character string in all locales. However, the
properties of the portable filename character set are such that a pathname using only those
characters and the <slash> is portable in all locales as a character string.

Austin Group Defect 1073 is applied, making it implementation-defined whether the case of
exactly two leading <slash> characters is treated specially.

Passwd File*

Implementation-defined; see User Database (on page 3675).

Parent Directory

There may be more than one directory entry pointing to a given directory in some
implementations. The wording here identifies that exactly one of those is the parent directory. In
pathname resolution, dot-dot is identified as the way that the unique directory is identified.
(That is, the parent directory is the one to which dot-dot points.) In the case of a remote file
system, if the same file system is mounted several times, it would appear as if they were distinct
file systems (with interesting synchronization properties).

Pattern

Austin Group Defect 1443 is applied, changing this definition to be inclusive of all uses of shell
pattern matching notation.

Pipe

It proved convenient to define a pipe as a special case of a FIFO, even though historically the
latter was not introduced until System III and does not exist at all in 4.3 BSD.

Portable Filename

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0012 [584] is applied.

Portable Filename Character Set

The encoding of this character set is not specified—specifically, ASCII is not required. But the
implementation must provide a unique character code for each of the printable graphics
specified by POSIX.1; see also Section A.4.9 (on page 3678).

Situations where characters beyond the portable filename character set (or historically ASCII or
the ISO/IEC 646: 1991 standard) would be used (in a context where the portable filename
character set or the ISO/IEC 646: 1991 standard is required by POSIX.1) are expected to be
common. Although such a situation renders the use technically non-compliant, mutual
agreement among the users of an extended character set will make such use portable between
those users. Such a mutual agreement could be formalized as an optional extension to POSIX.1.
(Making it required would eliminate too many possible systems, as even those systems using the
ISO/IEC 646: 1991 standard as a base character set extend their character sets for Western
Europe and the rest of the world in different ways.)

Nothing in POSIX.1 is intended to preclude the use of extended characters where interchange is
not required or where mutual agreement is obtained. It has been suggested that in several places
``should’’ be used instead of ``shall’’. Because (in the worst case) use of any character beyond the
portable filename character set would render the program or data not portable to all possible

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3663

125408

125409

125410

125411

125412

125413

125414

125415

125416

125417

125418

125419

125420

125421

125422

125423

125424

125425

125426

125427

125428

125429

125430

125431

125432

125433

125434

125435

125436

125437

125438

125439

125440

125441

125442

125443

125444

125445

125446

125447

125448

125449

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

systems, no extensions are permitted in this context.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0013 [584] is applied.

Portable Messages Object Source File (or Dot-Po File)

Austin Group Defect 1122 is applied, adding this definition.

Positional Parameter

Austin Group Defect 1514 is applied, changing this definition in line with earlier changes to the
cross-reference to which it refers.

Positive

Austin Group Defect 1428 is applied, adding this definition.

Process

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0014 [690] is applied.

Process Lifetime

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/5 is applied, adding fork(), posix_spawn(),
posix_spawnp(), and vfork() to the list of functions.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0014 [690] is applied.

Process Termination

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/6 is applied, rewording the definition to
address the ``passive exit’’ on termination of the last thread or the _Exit() function.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0014 [690] is applied.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Process-Owned File Lock

Austin Group Defect 768 is applied, adding this definition.

Pseudo-Terminal

Austin Group Defect 1466 is applied, changing the terminology used for pseudo-terminal
devices.

Radix Character (or Decimal-Point Character)

Austin Group Defect 1449 is applied, adding ``(or Decimal-Point Character)’’.

Record Lock

Austin Group Defect 768 is applied, adding this definition.

3664 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125450

125451

125452

125453

125454

125455

125456

125457

125458

125459

125460

125461

125462

125463

125464

125465

125466

125467

125468

125469

125470

125471

125472

125473

125474

125475

125476

125477

125478

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

Regular Built-In Utility (or Regular Built-In)

Austin Group Defect 850 is applied, adding this entry as a pointer to the Built-In Utility
definition.

Regular File

POSIX.1 does not intend to preclude the addition of structuring data (for example, record
lengths) in the file, as long as such data is not visible to an application that uses the features
described in POSIX.1.

Root Directory

This definition permits the operation of chroot(), even though that function is not in POSIX.1; see
also Section A.4.8 (on page 3678).

Root File System*

Implementation-defined.

Root of a File System*

Commonly used to refer to a mount point; this standard uses the latter.

Signal

The definition implies a double meaning for the term. Although a signal is an event, common
usage implies that a signal is an identifier of the class of event.

Single-Threaded Process

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0011 [625] is applied.

Single-Threaded Program

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0011 [625] is applied.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Source Code

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0015 [896] is applied.

Sparse File

Austin Group Defect 415 is applied, adding this definition.

Special Built-In Utility (or Special Built-In)

Austin Group Defect 1583 is applied, clarifying that ``special built-in utility’’ and ``special built-
in’’ are equivalent terms.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3665

125479

125480

125481

125482

125483

125484

125485

125486

125487

125488

125489

125490

125491

125492

125493

125494

125495

125496

125497

125498

125499

125500

125501

125502

125503

125504

125505

125506

125507

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

Standard Error

Austin Group Defect 1493 is applied, expanding this definition to cover uses of the term outside
the XSH volume.

Standard Input

Austin Group Defect 1493 is applied, expanding this definition to cover uses of the term outside
the XSH volume.

Standard Output

Austin Group Defect 1493 is applied, expanding this definition to cover uses of the term outside
the XSH volume.

Stream

Austin Group Defect 1371 is applied, updating the stream definition so that it applies to the shell
command language as well as the C language.

Superuser*

This concept, with great historical significance to UNIX system users, has been replaced with the
notion of appropriate privileges.

Supplementary Group ID

The POSIX.1-1990 standard is inconsistent in its treatment of supplementary groups. The
definition of supplementary group ID explicitly permits the effective group ID to be included in
the set, but wording in the description of the setuid() and setgid() functions states: ``Any
supplementary group IDs of the calling process remain unchanged by these function calls’’. In
the case of setgid() this contradicts that definition. In addition, some felt that the unspecified
behavior in the definition of supplementary group IDs adds unnecessary portability problems.
The standard developers considered several solutions to this problem:

1. Reword the description of setgid() to permit it to change the supplementary group IDs to
reflect the new effective group ID. A problem with this is that it adds more ``may’’s to the
wording and does not address the portability problems of this optional behavior.

2. Mandate the inclusion of the effective group ID in the supplementary set (giving
{NGROUPS_MAX} a minimum value of 1). This is the behavior of 4.4 BSD. In that
system, the effective group ID is the first element of the array of supplementary group
IDs (there is no separate copy stored, and changes to the effective group ID are made only
in the supplementary group set). By convention, the initial value of the effective group ID
is duplicated elsewhere in the array so that the initial value is not lost when executing a
set-group-ID program.

3. Change the definition of supplementary group ID to exclude the effective group ID and
specify that the effective group ID does not change the set of supplementary group IDs.
This is the behavior of 4.2 BSD, 4.3 BSD, and System V Release 4.

4. Change the definition of supplementary group ID to exclude the effective group ID, and
require that getgroups() return the union of the effective group ID and the supplementary
group IDs.

5. Change the definition of {NGROUPS_MAX} to be one more than the number of
supplementary group IDs, so it continues to be the number of values returned by
getgroups() and existing applications continue to work. This alternative is effectively the

3666 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125508

125509

125510

125511

125512

125513

125514

125515

125516

125517

125518

125519

125520

125521

125522

125523

125524

125525

125526

125527

125528

125529

125530

125531

125532

125533

125534

125535

125536

125537

125538

125539

125540

125541

125542

125543

125544

125545

125546

125547

125548

125549

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

same as the second (and might actually have the same implementation).

The standard developers decided to permit either 2 or 3. The effective group ID is orthogonal to
the set of supplementary group IDs, and it is implementation-defined whether getgroups()
returns this. If the effective group ID is returned with the set of supplementary group IDs, then
all changes to the effective group ID affect the supplementary group set returned by getgroups().
It is permissible to eliminate duplicates from the list returned by getgroups(). However, if a
group ID is contained in the set of supplementary group IDs, setting the group ID to that value
and then to a different value should not remove that value from the supplementary group IDs.

The definition of supplementary group IDs has been changed to not include the effective group
ID. This simplifies permanent rationale and makes the relevant functions easier to understand.
The getgroups() function has been modified so that it can, on an implementation-defined basis,
return the effective group ID. By making this change, functions that modify the effective group
ID do not need to discuss adding to the supplementary group list; the only view into the
supplementary group list that the application developer has is through the getgroups() function.

Suspended Job

Austin Group Defect 1254 is applied, changing this definition.

Symbolic Constant

Earlier versions of this standard used a variety of terms other than ``macro’’ for many of the
constants defined in headers, and it was not clear in which of these cases they were required to
be macros or not, or to be pre-processor constants (i.e., usable in #if) or not. In cases where the
symbols had a reserved prefix or suffix, there was often inconsistency between whether the
prefix/suffix was reserved only for macros or for any use, and whether the term ``macro’’ or a
different term was used in the descriptions of the symbols. There were also some unintentional
differences from the ISO C standard.

One of the most commonly used terms was ``symbolic constant’’. This has now been designated
as the default term to be used wherever appropriate, and a formal definition of the term has
been added giving the exact requirements for symbols that are described as symbolic constants.

The standard developers have performed a major rationalization of the header descriptions of
symbols with constant values according to the following policy:

• Where symbols are from the ISO C standard, the wording from the ISO C standard (or
equivalent, in cases where the exact wording is not appropriate) is used to describe them.

• For all other constants, the first choice is to use ``symbolic constant’’ when the
requirements for the symbol are a reasonably close fit with those of the term.

The description of the symbol can override individual requirements for symbolic
constants; e.g., to specify a non-integer type, or to add a requirement that the symbol is
usable in #if preprocessor directives.

• When neither of the above apply, the exact requirements are stated in the description.
(Note that macros are not required to be usable in #if, or even to expand to constant
expressions, unless explicitly stated.)

• In cases where there is a reserved prefix or suffix, if the symbol(s) with that prefix/suffix
are from the ISO C standard and are required to be macros, or if the symbol is required to
be usable in #if, then the prefix/suffix is reserved for use only as macros. If the symbol(s)
are ``symbolic constants’’ and not required to be usable in #if, the prefix/suffix is reserved
for any use except in a few special cases.

Where a constant is required to be a macro but is also allowed to be another type of constant

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3667

125550

125551

125552

125553

125554

125555

125556

125557

125558

125559

125560

125561

125562

125563

125564

125565

125566

125567

125568

125569

125570

125571

125572

125573

125574

125575

125576

125577

125578

125579

125580

125581

125582

125583

125584

125585

125586

125587

125588

125589

125590

125591

125592

125593

125594

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

such as an enumeration constant, on implementations which do define it as another type of
constant the macro is typically defined as follows:

#define macro_name macro_name

This allows applications to use #ifdef, etc. to determine whether the macro is defined, but the
macro is not usable in #if preprocessor directives because the preprocessor will treat the
unexpanded word macro_name as having the value zero.

Symbolic Link

Earlier versions of this standard did not require symbolic links to have attributes such as
ownership and a file serial number. This was because the 4.4 BSD implementation did not have
them, and it was expected that other implementations may wish to do the same. However,
experience with 4.4 BSD has shown that symbolic links implemented in this way cause problems
for users and application developers, and later BSD systems have reverted to using inodes to
implement symbolic links. Allowing no-inode symbolic links also caused problems in the
standard. For example, leaving the st_ino value for symbolic links unspecified meant that the
common technique of comparing the st_dev and st_ino values for two pathnames to see if they
refer to the same file could only be used with stat() in conforming applications and not with
lstat(). The standard now requires symbolic links to have meaningful values for the same struct
stat fields as regular files, except for the file mode bits in st_mode. Historically, the file mode bits
were unused (the contents of a symbolic link could always be read), but implementations
differed as to whether the file mode bits (as returned in st_mode or reported by ls −l) were set
according to the umask or just to a fixed value such as 0777. Accordingly, the standard requires
the file mode bits to be ignored by readlink() and when a symbolic link is followed during
pathname resolution, but leaves the corresponding part of the value returned in st_mode
unspecified.

Historical implementations were followed when determining which interfaces should apply to
symbolic links. Interfaces that historically followed symbolic links include chmod(), stat(), and
utime(). Interfaces that historically did not follow symbolic links include lstat(), rename(),
remove(), rmdir(), and unlink(). For chown() and link(), historical implementations differed.
POSIX.1-2024 inherited the lchown() function from the Single UNIX Specification, Version 2, and
therefore requires chown() to follow symbolic links. Earlier versions of this standard required
link() to follow symbolic links, but with the addition of the linkat() function (which has a flag to
indicate whether to follow symbolic links), both behaviors are now allowed for link().

When the final component of a pathname is a symbolic link, the standard requires that a trailing
<slash> causes the link to be followed. This is the behavior of historical implementations. For
example, for /a/b and /a/b/, if /a/b is a symbolic link to a directory, then /a/b refers to the
symbolic link, and /a/b/ refers to the directory to which the symbolic link points.

Because a symbolic link and its referenced object coexist in the file system name space, confusion
can arise in distinguishing between the link itself and the referenced object. Historically, utilities
and system calls have adopted their own link following conventions in a somewhat ad hoc
fashion. Rules for a uniform approach are outlined here, although historical practice has been
adhered to as much as was possible. To promote consistent system use, user-written utilities are
encouraged to follow these same rules.

Symbolic links are handled either by operating on the link itself, or by operating on the object
referenced by the link. In the latter case, an application or system call is said to ``follow’’ the link.
Symbolic links may reference other symbolic links, in which case links are dereferenced until an
object that is not a symbolic link is found, a symbolic link that references a file that does not exist
is found, or a loop is detected. (Current implementations do not detect loops, but have a limit on
the number of symbolic links that they will dereference before declaring it an error.)

3668 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125595

125596

125597

125598

125599

125600

125601

125602

125603

125604

125605

125606

125607

125608

125609

125610

125611

125612

125613

125614

125615

125616

125617

125618

125619

125620

125621

125622

125623

125624

125625

125626

125627

125628

125629

125630

125631

125632

125633

125634

125635

125636

125637

125638

125639

125640

125641

125642

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

There are four domains for which default symbolic link policy is established in a system. In
almost all cases, there are utility options that override this default behavior. The four domains
are as follows:

1. Symbolic links specified to system calls that take pathname arguments

2. Symbolic links specified as command line pathname arguments to utilities that are not
performing a traversal of a file hierarchy

3. Symbolic links referencing files not of type directory, specified to utilities that are
performing a traversal of a file hierarchy

4. Symbolic links referencing files of type directory, specified to utilities that are performing
a traversal of a file hierarchy

First Domain

The first domain is considered in earlier rationale.

Second Domain

The reason this category is restricted to utilities that are not traversing the file hierarchy is that
some standard utilities take an option that specifies a hierarchical traversal, but by default
operate on the arguments themselves. Generally, users specifying the option for a file hierarchy
traversal wish to operate on a single, physical hierarchy, and therefore symbolic links, which
may reference files outside of the hierarchy, are ignored. For example, chown owner file is a
different operation from the same command with the −R option specified. In this example, the
behavior of the command chown owner file is described here, while the behavior of the command
chown −R owner file is described in the third and fourth domains.

The general rule is that the utilities in this category follow symbolic links named as arguments.

Exceptions in the second domain are:

• The mv and rm utilities do not follow symbolic links named as arguments, but respectively
attempt to rename or delete them.

• The ls utility is also an exception to this rule. For compatibility with historical systems,
when the −R option is not specified, the ls utility follows symbolic links named as
arguments if the −L option is specified or if the −F, −d, or −l options are not specified. (If
the −L option is specified, ls always follows symbolic links; it is the only utility where the
−L option affects its behavior even though a tree walk is not being performed.)

All other standard utilities, when not traversing a file hierarchy, always follow symbolic links
named as arguments.

Historical practice is that the −h option is specified if standard utilities are to act upon symbolic
links instead of upon their targets. Examples of commands that have historically had a −h option
for this purpose are the chgrp, chown, file, and test utilities.

Third Domain

The third domain is symbolic links, referencing files not of type directory, specified to utilities
that are performing a traversal of a file hierarchy. (This includes symbolic links specified as
command line pathname arguments or encountered during the traversal.)

The intention of the Shell and Utilities volume of POSIX.1-2024 is that the operation that the
utility is performing is applied to the symbolic link itself, if that operation is applicable to
symbolic links. If the operation is not applicable to symbolic links, the symbolic link should be
ignored. Specifically, by default, no change should be made to the file referenced by the symbolic
link.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3669

125643

125644

125645

125646

125647

125648

125649

125650

125651

125652

125653

125654

125655

125656

125657

125658

125659

125660

125661

125662

125663

125664

125665

125666

125667

125668

125669

125670

125671

125672

125673

125674

125675

125676

125677

125678

125679

125680

125681

125682

125683

125684

125685

125686

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

Fourth Domain

The fourth domain is symbolic links referencing files of type directory, specified to utilities that
are performing a traversal of a file hierarchy. (This includes symbolic links specified as
command line pathname arguments or encountered during the traversal.)

Most standard utilities do not, by default, indirect into the file hierarchy referenced by the
symbolic link. (The Shell and Utilities volume of POSIX.1-2024 uses the informal term ``physical
walk’’ to describe this case. The case where the utility does indirect through the symbolic link is
termed a ``logical walk’’.)

There are three reasons for the default to be a physical walk:

1. With very few exceptions, a physical walk has been the historical default on UNIX
systems supporting symbolic links. Because some utilities (that is, rm) must default to a
physical walk, regardless, changing historical practice in this regard would be confusing
to users and needlessly incompatible.

2. For systems where symbolic links have the historical file attributes (that is, owner, group,
mode), defaulting to a logical traversal would require the addition of a new option to the
commands to modify the attributes of the link itself. This is painful and more complex
than the alternatives.

3. There is a security issue with defaulting to a logical walk. Historically, the command
chown −R user file has been safe for the superuser because setuid and setgid bits were lost
when the ownership of the file was changed. If the walk were logical, changing
ownership would no longer be safe because a user might have inserted a symbolic link
pointing to any file in the tree. Again, this would necessitate the addition of an option to
the commands doing hierarchy traversal to not indirect through the symbolic links, and
historical scripts doing recursive walks would instantly become security problems. While
this is mostly an issue for system administrators, it is preferable to not have different
defaults for different classes of users.

However, the standard developers agreed to leave it unspecified to achieve consensus.

As consistently as possible, users may cause standard utilities performing a file hierarchy
traversal to follow any symbolic links named on the command line, regardless of the type of file
they reference, by specifying the −H (for half logical) option. This option is intended to make the
command line name space look like the logical name space.

As consistently as possible, users may cause standard utilities performing a file hierarchy
traversal to follow any symbolic links named on the command line as well as any symbolic links
encountered during the traversal, regardless of the type of file they reference, by specifying the
−L (for logical) option. This option is intended to make the entire name space look like the
logical name space.

For consistency, implementors are encouraged to use the −P (for ``physical’’) flag to specify the
physical walk in utilities that do logical walks by default for whatever reason.

When one or more of the −H, −L, and −P flags can be specified, the last one specified determines
the behavior of the utility. This permits users to alias commands so that the default behavior is a
logical walk and then override that behavior on the command line.

Exceptions in the Third and Fourth Domains

The ls and rm utilities are exceptions to these rules. The rm utility never follows symbolic links
and does not support the −H, −L, or −P options. Some historical versions of ls always followed
symbolic links given on the command line whether the −L option was specified or not.
Historical versions of ls did not support the −H option. In POSIX.1-2024, unless one of the −H or

3670 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125687

125688

125689

125690

125691

125692

125693

125694

125695

125696

125697

125698

125699

125700

125701

125702

125703

125704

125705

125706

125707

125708

125709

125710

125711

125712

125713

125714

125715

125716

125717

125718

125719

125720

125721

125722

125723

125724

125725

125726

125727

125728

125729

125730

125731

125732

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

−L options is specified, the ls utility only follows symbolic links to directories that are given as
operands. The ls utility does not support the −P option.

The Shell and Utilities volume of POSIX.1-2024 requires that the standard utilities ls, find, and
pax detect infinite loops when doing logical walks; that is, a directory, or more commonly a
symbolic link, that refers to an ancestor in the current file hierarchy. If the file system itself is
corrupted, causing the infinite loop, it may be impossible to recover. Because find and ls are often
used in system administration and security applications, they should attempt to recover and
continue as best as they can. The pax utility should terminate because the archive it was creating
is by definition corrupted. Other, less vital, utilities should probably simply terminate as well.
Implementations are strongly encouraged to detect infinite loops in all utilities.

Historical practice is shown in Table A-1 (on page 3672). The heading SVID3 stands for the
Third Edition of the System V Interface Definition.

Historically, several shells have had built-in versions of the pwd utility. In some of these shells,
pwd reported the physical path, and in others, the logical path. Implementations of the shell
corresponding to POSIX.1-2024 must report the logical path by default.

The cd command is required, by default, to treat the filename dot-dot logically. Implementors are
required to support the −P flag in cd so that users can have their current environment handled
physically. In 4.3 BSD, chgrp during tree traversal changed the group of the symbolic link, not
the target. Symbolic links in 4.4 BSD did not have owner, group, mode, or other standard UNIX
system file attributes.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3671

125733

125734

125735

125736

125737

125738

125739

125740

125741

125742

125743

125744

125745

125746

125747

125748

125749

125750

125751

125752

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

Table A-1 Historical Practice for Symbolic Links

Utility SVID3 4.3 BSD 4.4 BSD POSIX Comments
cd −L Tr eat ".." logically.
cd −P Tr eat ".." physically.
chgrp −H −H Follow command line symlinks.
chgrp −h −L Follow symlinks.
chgrp −h −h Affect the symlink.
chmod Affect the symlink.
chmod −H Follow command line symlinks.
chmod −h Follow symlinks.
chown −H −H Follow command line symlinks.
chown −h −L Follow symlinks.
chown −h −h Affect the symlink.
cp −H −H Follow command line symlinks.
cp −h −L Follow symlinks.
cpio −L −L Follow symlinks.
du −H −H Follow command line symlinks.
du −h −L Follow symlinks.
file −h −h Affect the symlink.
find −H −H Follow command line symlinks.
find −h −L Follow symlinks.
find −follow −follow Follow symlinks.
ln −s −s −s −s Create a symbolic link.
ls −L −L −L −L Follow symlinks.
ls −H Follow command line symlinks.
mv Operates on the symlink.
pax −H −H Follow command line symlinks.
pax −h −L Follow symlinks.
pwd −L Printed path may contain symlinks.
pwd −P Printed path will not contain symlinks.
rm Operates on the symlink.
tar −H Follow command line symlinks.
tar −h −h Follow symlinks.
test −h −h −h Affect the symlink.

Synchronized I/O Data Integrity Completion

Austin Group Defect 672 is applied, clarifying how this definition applies to directories, and that
it does not apply to symbolic links.

Synchronously-Generated Signal

Those signals that may be generated synchronously include SIGABRT, SIGBUS, SIGILL, SIGFPE,
SIGPIPE, and SIGSEGV.

Any signal sent via the raise() function or a kill() function targeting the current process is also
considered synchronous.

3672 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125753

125754

125755

125756

125757

125758

125759

125760

125761

125762

125763

125764

125765

125766

125767

125768

125769

125770

125771

125772

125773

125774

125775

125776

125777

125778

125779

125780

125781

125782

125783

125784

125785

125786

125787

125788

125789

125790

125791

125792

125793

125794

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

System Call*

The distinction between a ``system call’’ and a ``library routine’’ is an implementation detail that
may differ between implementations and has thus been excluded from POSIX.1.

See ``Interface, Not Implementation’’ in the Preface.

System Console

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/7 is applied, changing from ``An
implementation-defined device’’ to ``A device’’.

System Databases

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/9 is applied, rewording the definition to
reference the existing definitions for ``group database’’ and ``user database’’.

System Process

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/8 is applied, rewording the definition to
remove the requirement for an implementation to define the object.

System Reboot

A ``system reboot’’ is an event initiated by an unspecified circumstance that causes all processes
(other than special system processes) to be terminated in an implementation-defined manner,
after which any changes to the state and contents of files created or written to by a Conforming
POSIX.1 Application prior to the event are implementation-defined.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/10 is applied, changing ``An
implementation-defined sequence of events’’ to ``An unspecified sequence of events’’.

Synchronized I/O Data (and File) Integrity Completion

These terms specify that for synchronized read operations, pending writes must be successfully
completed before the read operation can complete. This is motivated by two circumstances.
Firstly, when synchronizing processes can access the same file, but not share common buffers
(such as for a remote file system), this requirement permits the reading process to guarantee that
it can read data written remotely. Secondly, having data written synchronously is insufficient to
guarantee the order with respect to a subsequent write by a reading process, and thus this extra
read semantic is necessary.

Text Domain

Austin Group Defect 1122 is applied, adding this definition.

Text File

The term ``text file’’ does not prevent the inclusion of control or other non-printable characters
(other than NUL). Therefore, standard utilities that list text files as inputs or outputs are either
able to process the special characters or they explicitly describe their limitations within their
individual descriptions. The definition of ``text file’’ has caused controversy. The only difference
between text and binary files is that text files have lines of less than {LINE_MAX} bytes, with no
NUL characters, each terminated by a <newline>. The definition allows a file with a single
<newline>, or a totally empty file, to be called a text file. If a file ends with an incomplete line it
is not strictly a text file by this definition. The <newline> referred to in POSIX.1-2024 is not some
generic line separator, but a single character; files created on systems where they use multiple
characters for ends of lines are not portable to all conforming systems without some translation

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3673

125795

125796

125797

125798

125799

125800

125801

125802

125803

125804

125805

125806

125807

125808

125809

125810

125811

125812

125813

125814

125815

125816

125817

125818

125819

125820

125821

125822

125823

125824

125825

125826

125827

125828

125829

125830

125831

125832

125833

125834

125835

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

process unspecified by POSIX.1-2024.

Thread

POSIX.1-2024 defines a live thread to be a flow of control within a process. Each thread has a
minimal amount of private state; most of the state associated with a process is shared among all
of the threads in the process. While most multi-thread extensions to POSIX have taken this
approach, others have made different decisions.

Note: The choice to put threads within a process does not constrain implementations to implement
threads in that manner. However, all functions have to behave as though threads share the
indicated state information with the process from which they were created.

Threads need to share resources in order to cooperate. Memory has to be widely shared between
threads in order for the threads to cooperate at a fine level of granularity. Threads keep data
structures and the locks protecting those data structures in shared memory. For a data structure
to be usefully shared between threads, such structures should not refer to any data that can only
be interpreted meaningfully by a single thread. Thus, any system resources that might be
referred to in data structures need to be shared between all threads. File descriptors, pathnames,
and pointers to stack variables are all things that programmers want to share between their
threads. Thus, the file descriptor table, the root directory, the current working directory, and the
address space have to be shared.

Library implementations are possible as long as the effective behavior is as if system services
invoked by one thread do not suspend other threads. This may be difficult for some library
implementations on systems that do not provide asynchronous facilities.

See Section B.2.9 (on page 3806) for additional rationale.

Austin Group Defect 792 is applied, changing this definition.

Thread ID

See Section B.2.9.2 (on page 3823) for additional rationale.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Thread Lifetime

Austin Group Defect 792 is applied, adding this definition.

Thread Termination

Austin Group Defect 792 is applied, adding this definition.

Thread-Safe

All functions required by POSIX.1-2024 need to be thread-safe; see Section A.4.22 (on page 3687)
and Section B.2.9.1 (on page 3820) for additional rationale.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

3674 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125836

125837

125838

125839

125840

125841

125842

125843

125844

125845

125846

125847

125848

125849

125850

125851

125852

125853

125854

125855

125856

125857

125858

125859

125860

125861

125862

125863

125864

125865

125866

125867

125868

125869

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Definitions

Thread-Specific Data Key

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

User Database

There are no references in POSIX.1-2024 to a ``passwd file’’ or a ``group file’’, and there is no
requirement that the group or passwd databases be kept in files containing editable text. Many
large timesharing systems use passwd databases that are hashed for speed. Certain security
classifications prohibit certain information in the passwd database from being publicly readable.

The term ``encoded’’ is used instead of ``encrypted’’ in order to avoid the implementation
connotations (such as reversibility or use of a particular algorithm) of the latter term.

The getgrent(), setgrent(), endgrent(), getpwent(), setpwent(), and endpwent() functions are not
included as part of the base standard because they provide a linear database search capability
that is not generally useful (the getpwuid(), getpwnam(), getgrgid(), and getgrnam() functions are
provided for keyed lookup) and because in certain distributed systems, especially those with
different authentication domains, it may not be possible or desirable to provide an application
with the ability to browse the system databases indiscriminately. They are provided on XSI-
conformant systems due to their historical usage by many existing applications.

A change from historical implementations is that the structures used by these functions have
fields of the types gid_t and uid_t, which are required to be defined in the <sys/types.h> header.
POSIX.1-2024 requires implementations to ensure that these types are defined by inclusion of
<grp.h> and <pwd.h>, respectively, without imposing any name space pollution or errors from
redefinition of types.

POSIX.1-2024 is silent about the content of the strings containing user or group names. These
could be digit strings. POSIX.1-2024 is also silent as to whether such digit strings bear any
relationship to the corresponding (numeric) user or group ID.

Database Access

The thread-safe versions of the user and group database access functions return values in user-
supplied buffers instead of possibly using static data areas that may be overwritten by each call.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/11 is applied, removing the words ``of
implementation-defined format’’.

User ID

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0016 [511] is applied.

User Name

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0017 [584] is applied.

Virtual Processor*

The term ``virtual processor ’’ was chosen as a neutral term describing all kernel-level
schedulable entities, such as processes, Mach tasks, or lightweight processes. Implementing
threads using multiple processes as virtual processors, or implementing multiplexed threads
above a virtual processor layer, should be possible, provided some mechanism has also been
implemented for sharing state between processes or virtual processors. Many systems may also
wish to provide implementations of threads on systems providing ``shared processes’’ or
``variable-weight processes’’. It was felt that exposing such implementation details would
severely limit the type of systems upon which the threads interface could be supported and
prevent certain types of valid implementations. It was also determined that a virtual processor

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3675

125870

125871

125872

125873

125874

125875

125876

125877

125878

125879

125880

125881

125882

125883

125884

125885

125886

125887

125888

125889

125890

125891

125892

125893

125894

125895

125896

125897

125898

125899

125900

125901

125902

125903

125904

125905

125906

125907

125908

125909

125910

125911

125912

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Definitions Rationale for Base Definitions

interface was out of the scope of the Rationale (Informative) volume of POSIX.1-2024.

White Space

Austin Group Defect 1163 is applied, clarifying the definition of white space and adding
definitions of white-space byte, white-space character, and white-space wide character.

XSI

This is included to allow POSIX.1-2024 to be adopted as an IEEE standard and a standard of The
Open Group, serving both POSIX and the Single UNIX Specification in a core set of volumes.

When POSIX.1 and the Single UNIX Specification were merged, the term ``XSI’’ had been used
for over 10 years in connection with the XPG series and the first and second versions of the base
volumes of the Single UNIX Specification. The XSI margin code was introduced to denote the
extended or more restrictive semantics beyond POSIX that are applicable to UNIX systems.

Zombie Process

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0018 [690] is applied.

Zombie Thread

Austin Group Defect 792 is applied, adding this definition.

A.4 General Concepts
The general concepts are similar in nature to the definitions section, with the exception that a
term defined in general concepts can contain normative requirements.

A.4.1 Case Insensitive Comparisons

Case-insensitive matching is defined in this standard in terms of a simple algorithm whereby, for
each character in the string to be matched, if the character is uppercase then the lowercase
equivalent (if any) is also checked for a match, and if the character is lowercase then the
uppercase equivalent (if any) is also checked for a match. It is described this way to make the
expected behavior easier to understand; however, implementations may internally use more
sophisticated algorithms to improve efficiency, provided that the result is the same as the simple
algorithm would produce.

Austin Group Defect 1031 is applied, adding case insensitive comparisons.

A.4.2 Concurrent Execution

There is no additional rationale provided for this section.

3676 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125913

125914

125915

125916

125917

125918

125919

125920

125921

125922

125923

125924

125925

125926

125927

125928

125929

125930

125931

125932

125933

125934

125935

125936

125937

125938

125939

125940

125941

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Concepts

A.4.3 Default Initialization

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0019 [934] is applied.

Austin Group Defect 940 is applied, removing text that was conditional on the all-zero bit
pattern of a pointer object being a null pointer, as this is now mandated.

A.4.4 Directory Operations

Earlier versions of this standard did not make clear that directory modifications are performed
atomically and serially, although that is the historical behavior and was always intended.

Austin Group Defect 672 is applied, adding this subsection.

A.4.5 Directory Protection

There is no additional rationale provided for this section.

A.4.6 Extended Security Controls

Allowing an implementation to define extended security controls enables the use of
POSIX.1-2024 in environments that require different or more rigorous security than that
provided in POSIX.1. Extensions are allowed in two areas: privilege and file access permissions.
The semantics of these areas have been defined to permit extensions with reasonable, but not
exact, compatibility with all existing practices. For example, the elimination of the superuser
definition precludes identifying a process as privileged or not by virtue of its effective user ID.

A.4.7 File Access Permissions

A process should not try to anticipate the result of an attempt to access data by a priori use of
these rules. Rather, it should make the attempt to access data and examine the return value (and
possibly errno as well), or use access(). An implementation may include other security
mechanisms in addition to those specified in POSIX.1, and an access attempt may fail because of
those additional mechanisms, even though it would succeed according to the rules given in this
section. (For example, the user’s security level might be lower than that of the object of the
access attempt.) The supplementary group IDs provide another reason for a process to not
attempt to anticipate the result of an access attempt.

Since the current standard does not specify a method for opening a directory for searching, it is
unspecified whether search permission on the fd argument to openat() and related functions is
based on whether the directory was opened with search mode or on the current permissions
allowed by the directory at the time a search is performed. When there is existing practice that
supports opening directories for searching, it is expected that these functions will be modified to
specify that the search permissions will be granted based on the file access modes of the
directory’s file descriptor identified by fd, and not on the mode of the directory at the time the
directory is searched.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3677

125942

125943

125944

125945

125946

125947

125948

125949

125950

125951

125952

125953

125954

125955

125956

125957

125958

125959

125960

125961

125962

125963

125964

125965

125966

125967

125968

125969

125970

125971

125972

125973

125974

125975

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Rationale for Base Definitions

A.4.8 File Hierarchy

Though the file hierarchy is commonly regarded to be a tree, POSIX.1 does not define it as such
for three reasons:

1. Links may join branches.

2. In some network implementations, there may be no single absolute root directory; see
pathname resolution.

3. With symbolic links, the file system need not be a tree or even a directed acyclic graph.

A.4.9 Filenames

Historically, certain filenames and pathnames have been reserved. This list includes core,
/etc/passwd, and so on. Conforming applications should avoid these.

Most historical implementations prohibit case folding in filenames; that is, treating uppercase
and lowercase alphabetic characters as identical. However, some consider case folding desirable:

• For user convenience

• For ease-of-implementation of the POSIX.1 interface as a hosted system on some popular
operating systems

Variants, such as maintaining case distinctions in filenames, but ignoring them in comparisons,
have been suggested. Methods of allowing escaped characters of the case opposite the default
have been proposed.

Many reasons have been expressed for not allowing case folding, including:

• No solid evidence has been produced as to whether case-sensitivity or case-insensitivity is
more convenient for users.

• Making case-insensitivity a POSIX.1 implementation option would be worse than either
having it or not having it, because:

— More confusion would be caused among users.

— Application developers would have to account for both cases in their code.

— POSIX.1 implementors would still have other problems with native file systems, such
as short or otherwise constrained filenames or pathnames, and the lack of
hierarchical directory structure.

• Case folding is not easily defined in many European languages, both because many of
them use characters outside the US ASCII alphabetic set, and because:

— In Spanish, the digraph "ll" is considered to be a single letter, the capitalized form
of which may be either "Ll" or "LL", depending on context.

— In French, the capitalized form of a letter with an accent may or may not retain the
accent, depending on the country in which it is written.

— In German, the sharp ess may be represented as a single character resembling a
Greek beta (β) in lowercase, but as the digraph "SS" in uppercase.

— In Greek, there are several lowercase forms of some letters; the one to use depends on
its position in the word. Arabic has similar rules.

3678 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

125976

125977

125978

125979

125980

125981

125982

125983

125984

125985

125986

125987

125988

125989

125990

125991

125992

125993

125994

125995

125996

125997

125998

125999

126000

126001

126002

126003

126004

126005

126006

126007

126008

126009

126010

126011

126012

126013

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Concepts

• Many East Asian languages, including Japanese, Chinese, and Korean, do not distinguish
case and are sometimes encoded in character sets that use more than one byte per
character.

• Multiple character codes may be used on the same machine simultaneously. There are
several ISO character sets for European alphabets. In Japan, several Japanese character
codes are commonly used together, sometimes even in filenames; this is evidently also the
case in China. To handle case insensitivity, the kernel would have to at least be able to
distinguish for which character sets the concept made sense.

• The file system implementation historically deals only with bytes, not with characters.
Limitations on valid encodings ensure that the byte sequences for the <slash> character,
<period> character, and <NUL> character will not be confused with any other character in
any locale. However, there exist common single-shift encodings where other single-byte
characters from the portable filename character set can also occur as a subset of a multi-
byte character, making case folding of portable filename bytes dependent on the context of
whether a shift-state is active.

• The purpose of POSIX.1 is to standardize the common, existing definition, not to change it.
Mandating case-insensitivity would make all historical implementations non-standard.

• Not only the interface, but also application programs would need to change, counter to the
purpose of having minimal changes to existing application code.

• At least one of the original developers of the UNIX system has expressed objection in the
strongest terms to either requiring case-insensitivity or making it an option, mostly on the
basis that POSIX.1 should not hinder portability of application programs across related
implementations in order to allow compatibility with unrelated operating systems.

Two proposals were entertained regarding case folding in filenames:

1. Remove all wording that previously permitted case folding.

Rationale Case folding is inconsistent with the portable filename character set and
filename definitions (all bytes except <slash> and null). No known
implementations allowing all bytes except <slash> and null also do case
folding.

2. Change ``though this practice is not recommended:’’ to ``although this practice is strongly
discouraged.’’

Rationale If case folding must be included in POSIX.1, the wording should be stronger
to discourage the practice.

The consensus selected the first proposal. Otherwise, a conforming application would have to
assume that case folding would occur when it was not wanted, but that it would not occur when
it was wanted.

A.4.10 Filename Portability

Filenames should be constructed from the portable filename character set because the use of
other characters can be confusing or ambiguous in certain contexts. (For example, the use of a
<colon> (':') in a pathname could cause ambiguity if that pathname were included in a PA TH
definition.)

The constraint on use of the <hyphen-minus> character as the first character of a portable
filename is a constraint on application behavior and not on implementations, since applications
might not work as expected when such a filename is passed as a command line argument.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3679

126014

126015

126016

126017

126018

126019

126020

126021

126022

126023

126024

126025

126026

126027

126028

126029

126030

126031

126032

126033

126034

126035

126036

126037

126038

126039

126040

126041

126042

126043

126044

126045

126046

126047

126048

126049

126050

126051

126052

126053

126054

126055

126056

126057

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Rationale for Base Definitions

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0020 [584] is applied.

A.4.11 File System Cache

Earlier versions of this standard did not specify the behavior of aio_fsync(), fdatasync(), or
fsync() on directories, nor did they specify constraints on the underlying storage in the absence
of calls to aio_fsync(), fdatasync(), or fsync().

Although directory operations are atomic and serializable, they are not necessarily durable. An
application that requires a directory modification to be durable should use fdatasync() or fsync()
(or aio_fsync()) on the directory. However, the intention of the requirements for directory
modifications is that most applications should not need to do this. For example, a common
method of updating a file is to create a new temporary file, call fdatasync() or fsync() to
synchronize the new file, and then use rename() to replace the old file with the new file. If a
crash occurs after the rename(), then the file being updated will have either its old contents or its
new contents on the storage device when the system is rebooted. An application needs to
synchronize the directory only if it wants to be sure the updated file will have its new contents
on the storage device.

Some operations, such as rename(), can affect more than one directory, whereas synchronization
calls such as fsync() can affect at most one directory at a time. Two calls to fsync() may be
needed after a rename() to ensure its durability.

If the file system is inconsistent after a crash it is usually automatically checked and repaired
when the system is rebooted, or can be repaired manually using a utility such as fsck.

If an unrecoverable I/O error occurs when cache is transferred to storage, this standard provides
no way for applications to discover the error reliably. Implementations are encouraged to report
such errors on subsequent reads of the storage.

Austin Group Defect 672 is applied, adding this subsection.

A.4.12 File Times Update

This section reflects the actions of historical implementations. The times are not updated
immediately, but are only marked for update by the functions. An implementation may update
these times immediately.

The accuracy of the time update values is intentionally left unspecified so that systems can
control the bandwidth of a possible covert channel.

The wording was carefully chosen to make it clear that there is no requirement that the
conformance document contain information that might incidentally affect file timestamps. Any
function that performs pathname resolution might update several last data access timestamps.
Functions such as getpwnam() and getgrnam() might update the last data access timestamp of
some specific file or files. It is intended that these are not required to be documented in the
conformance document, but they should appear in the system documentation.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0021 [626] is applied.

3680 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126058

126059

126060

126061

126062

126063

126064

126065

126066

126067

126068

126069

126070

126071

126072

126073

126074

126075

126076

126077

126078

126079

126080

126081

126082

126083

126084

126085

126086

126087

126088

126089

126090

126091

126092

126093

126094

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Concepts

A.4.13 Host and Network Byte Order

There is no additional rationale provided for this section.

A.4.14 Measurement of Execution Time

The methods used to measure the execution time of processes and threads, and the precision of
these measurements, may vary considerably depending on the software architecture of the
implementation, and on the underlying hardware. Implementations can also make tradeoffs
between the scheduling overhead and the precision of the execution time measurements.
POSIX.1-2024 does not impose any requirement on the accuracy of the execution time; it instead
specifies that the measurement mechanism and its precision are implementation-defined.

A.4.15 Memory Ordering and Synchronization

Austin Group Defect 1302 is applied, adding the Memory Ordering subsection, adapted from the
ISO/IEC 9899: 2018 standard.

A.4.15.1 Memory Ordering

There is no additional rationale provided for this section.

A.4.15.2 Memory Synchronization

In older multi-processors, access to memory by the processors was strictly multiplexed. This
meant that a processor executing program code interrogates or modifies memory in the order
specified by the code and that all the memory operation of all the processors in the system
appear to happen in some global order, though the operation histories of different processors are
interleaved arbitrarily. The memory operations of such machines are said to be sequentially
consistent. In this environment, threads can synchronize using ordinary memory operations. For
example, a producer thread and a consumer thread can synchronize access to a circular data
buffer as follows:

int rdptr = 0;
int wrptr = 0;
data_t buf[BUFSIZE];

Thread 1:
while (work_to_do) {

int next;

buf[wrptr] = produce();
next = (wrptr + 1) % BUFSIZE;
while (rdptr == next)

;
wrptr = next;

}

Thread 2:
while (work_to_do) {

while (rdptr == wrptr)
;

consume(buf[rdptr]);

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3681

126095

126096

126097

126098

126099

126100

126101

126102

126103

126104

126105

126106

126107

126108

126109

126110

126111

126112

126113

126114

126115

126116

126117

126118

126119

126120

126121

126122

126123

126124

126125

126126

126127

126128

126129

126130

126131

126132

126133

126134

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Rationale for Base Definitions

rdptr = (rdptr + 1) % BUFSIZE;
}

In modern multi-processors, these conditions are relaxed to achieve greater performance. If one
processor stores values in location A and then location B, then other processors loading data
from location B and then location A may see the new value of B but the old value of A. The
memory operations of such machines are said to be weakly ordered. On these machines, the
circular buffer technique shown in the example will fail because the consumer may see the new
value of wrptr but the old value of the data in the buffer. In such machines, synchronization can
only be achieved through the use of special instructions that enforce an order on memory
operations. Most high-level language compilers only generate ordinary memory operations to
take advantage of the increased performance. They usually cannot determine when memory
operation order is important and generate the special ordering instructions. Instead, they rely on
the programmer to use synchronization primitives correctly to ensure that modifications to a
location in memory are ordered with respect to modifications and/or access to the same location
in other threads. Access to read-only data need not be synchronized. The resulting program is
said to be data race-free.

Synchronization is still important even when accessing a single primitive variable (for example,
an integer). On machines where the integer may not be aligned to the bus data width or be
larger than the data width, a single memory load may require multiple memory cycles. This
means that it may be possible for some parts of the integer to have an old value while other
parts have a newer value. On some processor architectures this cannot happen, but portable
programs cannot rely on this.

In summary, a portable multi-threaded program, or a multi-process program that shares
writable memory between processes, has to use the synchronization primitives to synchronize
data access. It cannot rely on modifications to memory being observed by other threads in the
order written in the application or even on modification of a single variable being seen
atomically.

Conforming applications may only use the functions listed to synchronize threads of control
with respect to memory access. There are many other candidates for functions that might also be
used. Examples are: signal sending and reception, or pipe writing and reading. In general, any
function that allows one thread of control to wait for an action caused by another thread of
control is a candidate. POSIX.1-2024 does not require these additional functions to synchronize
memory access since this would imply the following:

• All these functions would have to be recognized by advanced compilation systems so that
memory operations and calls to these functions are not reordered by optimization.

• All these functions would potentially have to have memory synchronization instructions
added, depending on the particular machine.

• The additional functions complicate the model of how memory is synchronized and make
automatic data race detection techniques impractical.

Formal definitions of the memory model were rejected as unreadable by the vast majority of
programmers. In addition, most of the formal work in the literature has concentrated on the
memory as provided by the hardware as opposed to the application programmer through the
compiler and runtime system. It was believed that a simple statement intuitive to most
programmers would be most effective. POSIX.1-2024 defines functions that can be used to
synchronize access to memory, but it leaves open exactly how one relates those functions to the
semantics of each function as specified elsewhere in POSIX.1-2024. POSIX.1-2024 also does not
make a formal specification of the partial ordering in time that the functions can impose, as that
is implied in the description of the semantics of each function. It simply states that the
programmer has to ensure that modifications do not occur ``simultaneously’’ with other access

3682 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126135

126136

126137

126138

126139

126140

126141

126142

126143

126144

126145

126146

126147

126148

126149

126150

126151

126152

126153

126154

126155

126156

126157

126158

126159

126160

126161

126162

126163

126164

126165

126166

126167

126168

126169

126170

126171

126172

126173

126174

126175

126176

126177

126178

126179

126180

126181

126182

126183

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Concepts

to a memory location.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/4 is applied, adding a new paragraph
beneath the table of functions: ``The pthread_once() function shall synchronize memory for the
first call in each thread for a given pthread_once_t object.’’.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0022 [863] is applied.

Austin Group Defect 1216 is applied, adding pthread_cond_clockwait(), pthread_mutex_clocklock(),
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), and sem_clockwait() to the list of
functions that synchronize memory.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1426 is applied, clarifying under what conditions the functions named in
this section are required to synchronize memory, and adding pthread_mutex_setprioceiling() to the
named functions.

Austin Group Defect 1625 is applied, adding waitid() to the list of functions that synchronize
memory with respect to other threads on all successful calls.

A.4.16 Pathname Resolution

It is necessary to differentiate between the definition of pathname and the concept of pathname
resolution with respect to the handling of trailing <slash> characters. By specifying the behavior
here, it is not possible to provide an implementation that is conforming but extends all interfaces
that handle pathnames to also handle strings that are not legal pathnames (because they have
trailing <slash> characters).

Pathnames that end with one or more trailing <slash> characters must refer to directory paths.
Earlier versions of this standard were not specific about the distinction between trailing <slash>
characters on files and directories, and both were permitted.

Two types of implementation have been prevalent; those that ignored trailing <slash> characters
on all pathnames regardless, and those that permitted them only on existing directories.

An earlier version of this standard required that a pathname with a trailing <slash> character be
treated as if it had a trailing "/." everywhere. This specification was ambiguous. In situations
where the intent was that the application wanted to require the implementation to accept the
pathname only if it named a directory (existing or to be created as a result of the call performing
pathname resolution), literally adding a '.' after the trailing <slash> could be interpreted to
require use of that pathname to fail. Some of the uses that created ambiguous requirements
included mkdir("newdir/") and rmdir("existing-dir/"). POSIX.1-2024 requires that a pathname
with a trailing <slash> be rejected unless it refers to a file that is a directory or to a file that is to
be created as a directory. The rename() function and the mv utility further specify that a trailing
<slash> cannot be used on a pathname naming a file that does not exist when used as the last
argument to rename() or renameat(), or as the last operand to mv.

Note that this change does not break any conforming applications; since there were two different
types of implementation, no application could have portably depended on either behavior. This
change does however require some implementations to be altered to remain compliant.
Substantial discussion over a three-year period has shown that the benefits to application
developers outweighs the disadvantages for some vendors.

On a historical note, some early applications automatically appended a '/' to every path.
Rather than fix the applications, the system implementation was modified to accept this
behavior by ignoring any trailing <slash>.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3683

126184

126185

126186

126187

126188

126189

126190

126191

126192

126193

126194

126195

126196

126197

126198

126199

126200

126201

126202

126203

126204

126205

126206

126207

126208

126209

126210

126211

126212

126213

126214

126215

126216

126217

126218

126219

126220

126221

126222

126223

126224

126225

126226

126227

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Rationale for Base Definitions

Each directory has exactly one parent directory which is represented by the name dot-dot in the
first directory. No other directory, regardless of linkages established by symbolic links, is
considered the parent directory by POSIX.1-2024.

There are two general categories of interfaces involving pathname resolution: those that follow
the symbolic link, and those that do not. There are several exceptions to this rule; for example,
open(path,O_CREAT|O_EXCL) will fail when path names a symbolic link. However, in all other
situations, the open() function will follow the link.

What the filename dot-dot refers to relative to the root directory is implementation-defined. In
Version 7 it refers to the root directory itself; this is the behavior mentioned in POSIX.1-2024. In
some networked systems the construction /. . /hostname/ is used to refer to the root directory of
another host, and POSIX.1 permits this behavior.

Other networked systems use the construct //hostname for the same purpose; that is, a double
initial <slash> is used. There is a potential problem with existing applications that create full
pathnames by taking a trunk and a relative pathname and making them into a single string
separated by '/', because they can accidentally create networked pathnames when the trunk is
'/'. This practice is not prohibited because such applications can be made to conform by
simply changing to use "//" as a separator instead of '/':

• If the trunk is '/', the full pathname will begin with "///" (the initial '/' and the
separator "//"). This is the same as '/', which is what is desired. (This is the general
case of making a relative pathname into an absolute one by prefixing with "///" instead
of '/'.)

• If the trunk is "/A", the result is "/A//..."; since non-leading sequences of two or more
<slash> characters are treated as a single <slash>, this is equivalent to the desired
"/A/...".

• If the trunk is "//A", the implementation-defined semantics will apply. (The multiple
<slash> rule would apply.)

Application developers should avoid generating pathnames that start with "//".
Implementations are strongly encouraged to avoid using this special interpretation since a
number of applications currently do not follow this practice and may inadvertently generate
"//. . .".

The term ``root directory’’ is only defined in POSIX.1 relative to the process. In some
implementations, there may be no absolute root directory. The initialization of the root directory
of a process is implementation-defined.

When the standard says: ``Pathname resolution for a given pathname shall yield the same results
when used by any interface in POSIX.1-2024 as long as there are no changes to any files
evaluated during pathname resolution for the given pathname between resolutions’’, this
applies to absolute pathnames or to relative pathnames from the same current working
directory. Using the same relative pathname from two different working directories may yield
different results.

Earlier versions of this standard were unclear as to whether a pathname was required to be a
character string or just a string. This standard is now clear that filenames are just strings, and
that pathname processing is locale-independent.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0023 [541,649,825] and
XBD/TC2-2008/0024 [825] are applied.

Austin Group Defect 1603 is applied, making a wording improvement related to symbolic links
to directories.

3684 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126228

126229

126230

126231

126232

126233

126234

126235

126236

126237

126238

126239

126240

126241

126242

126243

126244

126245

126246

126247

126248

126249

126250

126251

126252

126253

126254

126255

126256

126257

126258

126259

126260

126261

126262

126263

126264

126265

126266

126267

126268

126269

126270

126271

126272

126273

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Concepts

A.4.17 Process ID Reuse

There is no additional rationale provided for this section.

A.4.18 Scheduling Policy

There is no additional rationale provided for this section.

A.4.19 Seconds Since the Epoch

Coordinated Universal Time (UTC) includes leap seconds. However, in POSIX time (seconds
since the Epoch), leap seconds are ignored (not applied) to provide an easy and compatible
method of computing time differences. Broken-down POSIX time is therefore not necessarily
UTC, despite its appearance.

As of December 2007, 23 leap seconds had been added to UTC since the Epoch, 1 January, 1970.
Historically, one leap second is added every 15 months on average, so this offset can be expected
to grow with time.

Most systems’ notion of ``time’’ is that of a continuously increasing value, so this value should
increase even during leap seconds. However, not only do most systems not keep track of leap
seconds, but most systems are probably not synchronized to any standard time reference.
Therefore, it is inappropriate to require that a time represented as seconds since the Epoch
precisely represent the number of seconds between the referenced time and the Epoch.

It is sufficient to require that applications be allowed to treat this time as if it represented the
number of seconds between the referenced time and the Epoch. It is the responsibility of the
vendor of the system, and the administrator of the system, to ensure that this value represents
the number of seconds between the referenced time and the Epoch as closely as necessary for the
application being run on that system.

It is important that the interpretation of time names and seconds since the Epoch values be
consistent across conforming systems; that is, it is important that all conforming systems
interpret ``536 457 599 seconds since the Epoch’’ as 59 seconds, 59 minutes, 23 hours 31 December
1986, regardless of the accuracy of the system’s idea of the current time. The expression is given
to ensure a consistent interpretation, not to attempt to specify the calendar. The relationship
between tm_yday and the day of week, day of month, and month is in accordance with the
Gregorian calendar, and so is not specified in POSIX.1.

Consistent interpretation of seconds since the Epoch can be critical to certain types of distributed
applications that rely on such timestamps to synchronize events. The accrual of leap seconds in a
time standard is not predictable. The number of leap seconds since the Epoch will likely
increase. POSIX.1 is more concerned about the synchronization of time between applications of
astronomically short duration.

Note that tm_yday is zero-based, not one-based, so the day number in the example above is 364.
Note also that the division is an integer division (discarding remainder) as in the C language.

Note also that the meaning of gmtime(), localtime(), and mktime() is specified in terms of this
expression. However, the ISO C standard computes tm_yday from tm_mday, tm_mon, and tm_year
in mktime(). Because it is stated as a (bidirectional) relationship, not a function, and because the
conversion between month-day-year and day-of-year dates is presumed well known and is also
a relationship, this is not a problem.

The number of seconds since the epoch overflows a signed 32-bit integer in 2038. This standard
requires that time_t is an integer type with a width of at least 64 bits (in conforming

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3685

126274

126275

126276

126277

126278

126279

126280

126281

126282

126283

126284

126285

126286

126287

126288

126289

126290

126291

126292

126293

126294

126295

126296

126297

126298

126299

126300

126301

126302

126303

126304

126305

126306

126307

126308

126309

126310

126311

126312

126313

126314

126315

126316

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Concepts Rationale for Base Definitions

programming environments). The requirement that time_t is an integer type is an additional
constraint beyond the ISO C standard, which allows a real-floating time_t. Implementation
practice has shown that much existing code is unprepared to deal with a floating-point time_t,
and that use of struct timespec is a more uniform way to provide sub-second time manipulation
within applications.

See also Epoch (on page 3653).

The topic of whether seconds since the Epoch should account for leap seconds has been debated
on a number of occasions, and each time consensus was reached (with acknowledged dissent
each time) that the majority of users are best served by treating all days identically. (That is, the
majority of applications were judged to assume a single length—as measured in seconds since
the Epoch—for all days. Thus, leap seconds are not applied to seconds since the Epoch.) Those
applications which do care about leap seconds can determine how to handle them in whatever
way those applications feel is best. This was particularly emphasized because there was
disagreement about what the best way of handling leap seconds might be. It is a practical
impossibility to mandate that a conforming implementation must have a fixed relationship to
any particular official clock (consider isolated systems, or systems performing ``reruns’’ by
setting the clock to some arbitrary time).

Note that as a practical consequence of this, the length of a second as measured by some external
standard is not specified. This unspecified second is nominally equal to an International System
(SI) second in duration. Applications must be matched to a system that provides the particular
handling of external time in the way required by the application.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/12 is applied, making an editorial
correction to the paragraph commencing ``How any changes to the value of seconds ...’’.

Austin Group Defect 1627 is applied, clarifying that the relationship between the actual date and
time in Coordinated Universal Time, as determined by the International Earth Rotation Service,
and the system’s current value for seconds since the Epoch is unspecified.

A.4.20 Semaphore

Austin Group Defect 502 is applied, clarifying the range of values that an XSI semaphore can
have.

Austin Group Defect 1116 is applied, removing a reference to the Semaphores option that existed
in earlier versions of this standard.

A.4.21 Special Device Drivers

POSIX systems interact with their physical environment using a variety of devices (such as
analog-digital converters, digital-analog converters, counters, and video graphic equipment),
which provide a set of services that cannot be fully utilized in terms of read and/or write
semantics. Traditional practice uses a single function, called ioctl(), to encapsulate all the control
operations on the different devices connected to the system, both special or common devices.
The POSIX.1-1988 standard developers decided not to standardize this interface because it was
not type safe, it had a variable number of parameters, and it had behaviors that could not be
specified by the standard because they were driver-dependent. Instead, the POSIX.1-1988
standard defined a device-specific application program interface (API) for a common class of
drivers, Terminals. Later, The Single UNIX Specification, Version 1 included the ioctl() function,
but restricted it to control of STREAMS devices.

Although the POSIX.1-1988 standard’s solution for common classes of devices is the best from

3686 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126317

126318

126319

126320

126321

126322

126323

126324

126325

126326

126327

126328

126329

126330

126331

126332

126333

126334

126335

126336

126337

126338

126339

126340

126341

126342

126343

126344

126345

126346

126347

126348

126349

126350

126351

126352

126353

126354

126355

126356

126357

126358

126359

126360

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Concepts

the point of view of application portability, there is still a need for a way to interact with special,
or even common devices, for which developing a full standard API is not practical. The device
control option standardized in POSIX.26 and now included in this standard is a general method
for interfacing to the widest possible range of devices, through a new service to pass control
information and commands between the application and the device drivers.

A driver for a special device will normally not be portable between POSIX implementations, but
an application that uses such a driver can be made portable if all functions calling the driver are
well defined and standardized. Users and integrators of realtime systems often add drivers for
special devices, and a standardized function format for interfacing with these devices greatly
simplifies this process.

Austin Group Defect 729 is applied, adding this subsection.

A.4.22 Thread-Safety

Where the interface of a function required by POSIX.1-2024 precludes thread-safety, an alternate
thread-safe form is provided. The names of these thread-safe forms are the same as the non-
thread-safe forms with the addition of the suffix ``_r ’’. The suffix ``_r ’’ is historical, where the
'r' stood for ``reentrant’’.

In some cases, thread-safety is provided by restricting the arguments to an existing function.

See also Section B.2.9.1 (on page 3820).

A.4.23 Treatment of Error Conditions for Mathematical Functions

It is intended that undeserved underflow and inexact floating-point exceptions are raised only if
avoiding them would be too costly.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0025 [543] is applied.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

A.4.24 Treatment of NaN Arguments for Mathematical Functions

There is no additional rationale provided for this section.

A.4.25 Utility

There is no additional rationale provided for this section.

A.4.26 Variable Assignment

Austin Group Defect 351 is applied, adding a requirement relating to declaration utilities.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3687

126361

126362

126363

126364

126365

126366

126367

126368

126369

126370

126371

126372

126373

126374

126375

126376

126377

126378

126379

126380

126381

126382

126383

126384

126385

126386

126387

126388

126389

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

File Format Notation Rationale for Base Definitions

A.5 File Format Notation
The notation for spaces allows some flexibility for application output. Note that an empty
character position in format represents one or more <blank> characters on the output (not white
space, which can include <newline> characters). Therefore, another utility that reads that output
as its input must be prepared to parse the data using scanf(), awk, and so on. The 'Δ' character
is used when exactly one <space> is output.

The treatment of integers and spaces is different from the printf() function in that they can be
surrounded with <blank> characters. This was done so that, given a format such as:

"%d\n",<foo>

the implementation could use a printf() call such as:

printf("%6d\n", foo);

and still conform. This notation is thus somewhat like scanf() in addition to printf().

The printf() function was chosen as a model because most of the standard developers were
familiar with it. One difference from the C function printf() is that the l and h conversion
specifier characters are not used. As expressed by the Shell and Utilities volume of
POSIX.1-2024, there is no differentiation between decimal values for type int, type long, or type
short. The conversion specifications %d or %i should be interpreted as an arbitrary length
sequence of digits. Also, no distinction is made between single precision and double precision
numbers (float or double in C). These are simply referred to as floating-point numbers.

Many of the output descriptions in the Shell and Utilities volume of POSIX.1-2024 use the term
``line’’, such as:

"%s", <input line>

Since the definition of line includes the trailing <newline> already, there is no need to include a
'\n' in the format; a double <newline> would otherwise result.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0026 [584] is applied.

Austin Group Defect 1205 is applied, changing the description of the % conversion specifier.

Austin Group Defect 1687 is applied, clarifying the references to <blank> characters to specify
they are from the portable character set.

A.6 Character Set

A.6.1 Portable Character Set

The portable character set is listed in full so there is no dependency on the ISO/IEC 646: 1991
standard (or historically ASCII) encoded character set, although the set is identical to the
characters defined in the International Reference version of the ISO/IEC 646: 1991 standard.

POSIX.1-2024 poses no requirement that multiple character sets or codesets be supported,
leaving this as a marketing differentiation for implementors. Although multiple charmap files
are supported, it is the responsibility of the implementation to provide the file(s); if only one is
provided, only that one will be accessible using the localedef −f option.

The statement about invariance in codesets for the portable character set is worded to avoid

3688 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126390

126391

126392

126393

126394

126395

126396

126397

126398

126399

126400

126401

126402

126403

126404

126405

126406

126407

126408

126409

126410

126411

126412

126413

126414

126415

126416

126417

126418

126419

126420

126421

126422

126423

126424

126425

126426

126427

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Character Set

precluding implementations where multiple incompatible codesets are available (for instance,
ASCII and EBCDIC). The standard utilities cannot be expected to produce predictable results if
they access portable characters that vary on the same implementation.

Not all character sets need include the portable character set, but each locale must include it. For
example, a Japanese-based locale might be supported by a mixture of character sets: JIS X 0201
Roman (a Japanese version of the ISO/IEC 646: 1991 standard), JIS X 0208, and JIS X 0201
Katakana. Not all of these character sets include the portable characters, but at least one does
(JIS X 0201 Roman).

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0027 [584,967] and
XBD/TC2-2008/0028 [745] are applied.

A.6.2 Character Encoding

Encoding mechanisms based on single shifts, such as the EUC encoding used in some Asian and
other countries, can be supported via the current charmap mechanism. With single-shift
encoding, each character is preceded by a shift code (SS2 or SS3). A complete EUC code,
consisting of the portable character set (G0) and up to three additional character sets (G1, G2,
G3), can be described using the current charmap mechanism; the encoding for each character in
additional character sets G2 and G3 must then include their single-shift code. Other mechanisms
to support locales based on encoding mechanisms such as locking shift are not addressed by this
volume of POSIX.1-2024.

The encodings for <slash> and <period> are required to be the same across all locales, in part
because pathname resolution requires recognition of these bytes. It is a fortunate accident that all
common shift-based encodings did not use either <slash> or <period> as a valid second byte in
a multi-byte character.

The encodings for <newline> and <carriage-return> are required to be the same across all
locales since they are special to the general terminal interface and cannot be changed (see XBD
Section 11.1.9, on page 203).

Earlier versions of this standard did not state the requirement that the POSIX locale contains 256
single-byte characters. This was an oversight; the intention was always that the POSIX locale
should have an 8-bit-clean single-byte encoding.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0029 [663,967] and
XBD/TC2-2008/0030 [745] are applied.

A.6.3 C Language Wide-Character Codes

The standard does not specify how wide characters are encoded or provide a method for
defining wide characters in a charmap. It specifies ways of translating between wide characters
and multi-byte characters. The standard does not prevent an extension from providing a method
to define wide characters.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/13 is applied, adding a statement that the
standard has no means of defining a wide-character codeset.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3689

126428

126429

126430

126431

126432

126433

126434

126435

126436

126437

126438

126439

126440

126441

126442

126443

126444

126445

126446

126447

126448

126449

126450

126451

126452

126453

126454

126455

126456

126457

126458

126459

126460

126461

126462

126463

126464

126465

126466

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set Rationale for Base Definitions

A.6.4 Character Set Description File

IEEE PASC Interpretation 1003.2 #196 is applied, removing three lines of text dealing with
ranges of symbolic names using position constant values which had been erroneously included
in the final IEEE P1003.2b draft standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/14 is applied, correcting the example and
adding a statement that the standard provides no means of defining a wide-character codeset.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/15 is applied, allowing the value zero for
the width value of WIDTH and WIDTH_DEFAULT. This is required to cover some existing
locales.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0031 [967] is applied.

A.6.4.1 State-Dependent Character Encodings

A requirement was considered that would force utilities to eliminate any redundant locking
shifts, but this was left as a quality of implementation issue.

This change satisfies the following requirement from the ISO POSIX-2: 1993 standard, Annex
H.1:

The support of state-dependent (shift encoding) character sets should be addressed fully. See
descriptions of these in XBD Section 6.2 (on page 120). If such character encodings are supported,
it is expected that this will impact XBD Section 6.2 (on page 120), Chapter 7 (on page 127),
Chapter 9 (on page 179), and the comm, cut, diff, grep, head, join, paste, and tail utilities.

The character set description file provides:

• The capability to describe character set attributes (such as collation order or character
classes) independent of character set encoding, and using only the characters in the
portable character set. This makes it possible to create generic localedef source files for all
codesets that share the portable character set (such as the ISO 8859 family or IBM Extended
ASCII).

• Standardized symbolic names for all characters in the portable character set, making it
possible to refer to any such character regardless of encoding.

Implementations are free to choose their own symbolic names, as long as the names identified
by the Base Definitions volume of POSIX.1-2024 are also defined; this provides support for
already existing ``character names’’.

The names selected for the members of the portable character set follow the
ISO/IEC 8859-1: 1998 standard and the ISO/IEC 10646: 2020 standard. However, several
commonly used UNIX system names occur as synonyms in the list:

• The historical UNIX system names are used for control characters.

• The word ``slash’’ is given in addition to ``solidus’’.

• The word ``backslash’’ is given in addition to ``reverse-solidus’’.

• The word ``hyphen’’ is given in addition to ``hyphen-minus’’.

• The word ``period’’ is given in addition to ``full-stop’’.

• For digits, the word ``digit’’ is eliminated.

3690 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126467

126468

126469

126470

126471

126472

126473

126474

126475

126476

126477

126478

126479

126480

126481

126482

126483

126484

126485

126486

126487

126488

126489

126490

126491

126492

126493

126494

126495

126496

126497

126498

126499

126500

126501

126502

126503

126504

126505

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Character Set

• For letters, the words ``Latin Capital Letter’’ and ``Latin Small Letter’’ are eliminated.

• The words ``left brace’’ and ``right brace’’ are given in addition to ``left-curly-bracket’’ and
``right-curly-bracket’’.

• The names of the digits are preferred over the numbers to avoid possible confusion
between '0' and 'O', and between '1' and 'l' (one and the letter ell).

The names for the control characters in XBD Chapter 6 (on page 117) were taken from the
ISO/IEC 4873: 1991 standard.

The charmap file was introduced to resolve problems with the portability of, especially, localedef
sources. POSIX.1-2024 assumes that the portable character set is constant across all locales, but
does not prohibit implementations from supporting two incompatible codings, such as both
ASCII and EBCDIC. Such dual-support implementations should have all charmaps and localedef
sources encoded using one portable character set, in effect cross-compiling for the other
environment. Naturally, charmaps (and localedef sources) are only portable without
transformation between systems using the same encodings for the portable character set. They
can, however, be transformed between two sets using only a subset of the actual characters (the
portable character set). However, the particular coded character set used for an application or an
implementation does not necessarily imply different characteristics or collation; on the contrary,
these attributes should in many cases be identical, regardless of codeset. The charmap provides
the capability to define a common locale definition for multiple codesets (the same localedef
source can be used for codesets with different extended characters; the ability in the charmap to
define empty names allows for characters missing in certain codesets).

The <escape_char> declaration was added at the request of the international community to ease
the creation of portable charmap files on terminals not implementing the default
<backslash>-escape. The <comment_char> declaration was added at the request of the
international community to eliminate the potential confusion between the <number-sign> and
the hash sign.

The octal number notation with no leading zero required was selected to match those of awk and
tr and is consistent with that used by localedef. To avoid confusion between an octal constant and
the back-references used in localedef source, the octal, hexadecimal, and decimal constants must
contain at least two digits. As single-digit constants are relatively rare, this should not impose
any significant hardship. Provision is made for more digits to account for systems in which the
byte size is larger than 8 bits. For example, a Unicode (ISO/IEC 10646: 2020 standard) system
that has defined 16-bit bytes may require six octal, four hexadecimal, and five decimal digits.

The decimal notation is supported because some newer international standards define character
values in decimal, rather than in the old column/row notation.

The charmap identifies the coded character sets supported by an implementation. At least one
charmap must be provided, but no implementation is required to provide more than one.
Likewise, implementations can allow users to generate new charmaps (for instance, for a new
version of the ISO 8859 family of coded character sets), but does not have to do so. If users are
allowed to create new charmaps, the system documentation describes the rules that apply (for
instance, ``only coded character sets that are supersets of the ISO/IEC 646: 1991 standard IRV, no
multi-byte characters’’).

This addition of the WIDTH specification satisfies the following requirement from the
ISO POSIX-2: 1993 standard, Annex H.1:

(9) The definition of column position relies on the implementation’s knowledge of the integral
width of the characters. The charmap or LC_CTYPE locale definitions should be enhanced to
allow application specification of these widths.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3691

126506

126507

126508

126509

126510

126511

126512

126513

126514

126515

126516

126517

126518

126519

126520

126521

126522

126523

126524

126525

126526

126527

126528

126529

126530

126531

126532

126533

126534

126535

126536

126537

126538

126539

126540

126541

126542

126543

126544

126545

126546

126547

126548

126549

126550

126551

126552

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Character Set Rationale for Base Definitions

The character ``width’’ information was first considered for inclusion under LC_CTYPE but was
moved because it is more closely associated with the information in the charmap than
information in the locale source (cultural conventions information). Concerns were raised that
formalizing this type of information is moving the locale source definition from the codeset-
independent entity that it was designed to be to a repository of codeset-specific information. A
similar issue occurred with the <code_set_name>, <mb_cur_max>, and <mb_cur_min>
information, which was resolved to reside in the charmap definition.

The width definition was added to the IEEE P1003.2b draft standard with the intent that the
wcswidth() and/or wcwidth() functions (currently specified in the System Interfaces volume of
POSIX.1-2024) be the mechanism to retrieve the character width information.

A.7 Locale

A.7.1 General

The description of locales is based on work performed in the UniForum Technical Committee,
Subcommittee on Internationalization. Wherever appropriate, keywords are taken from the
ISO C standard or the X/Open Portability Guide.

The value used to specify a locale with environment variables is the name specified as the name
operand to the localedef utility when the locale was created. This provides a verifiable method to
create and invoke a locale.

The ``object’’ definitions need not be portable, as long as ``source’’ definitions are. Strictly
speaking, source definitions are portable only between implementations using the same
character set(s). Such source definitions, if they use symbolic names only, easily can be ported
between systems using different codesets, as long as the characters in the portable character set
(see XBD Section 6.1, on page 117) have common values between the codesets; this is frequently
the case in historical implementations. Of source, this requires that the symbolic names used for
characters outside the portable character set be identical between character sets. The definition
of symbolic names for characters is outside the scope of POSIX.1-2024, but is certainly within the
scope of other standards organizations.

Applications can select the desired locale by invoking the setlocale() function (or equivalent)
with the appropriate value. If the function is invoked with an empty string, the value of the
corresponding environment variable is used. If the environment variable is not set or is set to the
empty string, the implementation sets the appropriate environment as defined in XBD Chapter 8
(on page 167).

The locale settings of individual categories cannot be truly independent and still guarantee
correct results. For example, when collating two strings, characters must first be extracted from
each string (governed by LC_CTYPE) before being mapped to collating elements (governed by
LC_COLLATE) for comparison. That is, if LC_CTYPE is causing parsing according to the rules of
a large, multi-byte code set (potentially returning 20 000 or more distinct character codeset
values), but LC_COLLATE is set to handle only an 8-bit codeset with 256 distinct characters,
meaningful results are obviously impossible.

Earlier versions of this standard stated that if different character sets are used by the locale
categories, the results achieved by an application utilizing these categories are undefined. This
was felt to be overly restrictive. For example, when setting:

LANG=en_US.utf8

3692 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126553

126554

126555

126556

126557

126558

126559

126560

126561

126562

126563

126564

126565

126566

126567

126568

126569

126570

126571

126572

126573

126574

126575

126576

126577

126578

126579

126580

126581

126582

126583

126584

126585

126586

126587

126588

126589

126590

126591

126592

126593

126594

126595

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Locale

LC_TIME=POSIX

on a system where the codeset for the POSIX locale is ASCII and the codeset for en_US.utf8 is
UTF-8, all of the characters used in the LC_TIME locale data exist, with the same encoding, in
the codeset used for LC_CTYPE (via LANG), so there is no reason for the behavior to be
undefined in this case. This standard now has more precise requirements in this area.

Austin Group Defect 1122 is applied, adding item 3 to the list of ways to select the locale to be
used by some C-language functions.

Austin Group Defect 1477 is applied, clarifying the behavior when locale categories have
different character sets.

A.7.2 POSIX Locale

On POSIX.1 implementations the POSIX locale is equal to the C locale, even though the
requirements for the POSIX locale are more extensive than the ISO C standard requirements for
the C locale. To avoid being classified as a C-language function, the name has been changed to
the POSIX locale; the environment variable value can be either "POSIX" or, for historical
reasons, "C".

The POSIX definitions mirror the historical UNIX system behavior.

The use of symbolic names for characters in the tables does not imply that the POSIX locale must
be described using symbolic character names, but merely that it may be advantageous to do so.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0032 [796] and XBD/TC2-2008/0033
[663] are applied.

A.7.3 Locale Definition

The decision to separate the file format from the localedef utility description was only partially
editorial. Implementations may provide other interfaces than localedef. Requirements on ``the
utility’’, mostly concerning error messages, are described in this way because they are meant to
affect the other interfaces implementations may provide as well as localedef.

The text about POSIX2_LOCALEDEF does not mean that internationalization is optional; only
that the functionality of the localedef utility is. REs, for instance, must still be able to recognize,
for example, character class expressions such as "[[:alpha:]]". A possible analogy is with
an applications development environment; while all conforming implementations must be
capable of executing applications, not all need to have the development environment installed.
The assumption is that the capability to modify the behavior of utilities (and applications) via
locale settings must be supported. If the localedef utility is not present, then the only choice is to
select an existing (presumably implementation-documented) locale. An implementation could,
for example, choose to support only the POSIX locale, which would in effect limit the amount of
changes from historical implementations quite drastically. The localedef utility is still required,
but would always terminate with an exit code indicating that no locale could be created.
Supported locales must be documented using the syntax defined in this chapter. (This ensures
that users can accurately determine what capabilities are provided. If the implementation
decides to provide additional capabilities to the ones in this chapter, that is already provided
for.)

If the option is present (that is, locales can be created), then the localedef utility must be capable
of creating locales based on the syntax and rules defined in this chapter. This does not mean that
the implementation cannot also provide alternate means for creating locales.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3693

126596

126597

126598

126599

126600

126601

126602

126603

126604

126605

126606

126607

126608

126609

126610

126611

126612

126613

126614

126615

126616

126617

126618

126619

126620

126621

126622

126623

126624

126625

126626

126627

126628

126629

126630

126631

126632

126633

126634

126635

126636

126637

126638

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Rationale for Base Definitions

The octal, decimal, and hexadecimal notations are the same employed by the charmap facility
(see XBD Section 6.4, on page 121). To avoid confusion between an octal constant and a back-
reference, the octal, hexadecimal, and decimal constants must contain at least two digits. As
single-digit constants are relatively rare, this should not impose any significant hardship.
Provision is made for more digits to account for systems in which the byte size is larger than 8
bits. For example, a Unicode (see the ISO/IEC 10646: 2020 standard) system that has defined
16-bit bytes may require six octal, four hexadecimal, and five decimal digits. As with the
charmap file, multi-byte characters are described in the locale definition file using ``big-endian’’
notation for reasons of portability. There is no requirement that the internal representation in the
computer memory be in this same order.

One of the guidelines used for the development of this volume of POSIX.1-2024 is that
characters outside the invariant part of the ISO/IEC 646: 1991 standard should not be used in
portable specifications. The <backslash> character is not in the invariant part; the <number-
sign> is, but with multiple representations: as a <number-sign>, and as a hash sign. As far as
general usage of these symbols, they are covered by the ``grandfather clause’’, but for newly
defined interfaces, the WG15 POSIX working group has requested that POSIX provide alternate
representations. Consequently, while the default escape character remains the <backslash> and
the default comment character is the <number-sign>, implementations are required to recognize
alternative representations, identified in the applicable source file via the <escape_char> and
<comment_char> keywords.

A.7.3.1 LC_CTYPE

The LC_CTYPE category is primarily used to define the encoding-independent aspects of a
character set, such as character classification. In addition, certain encoding-dependent
characteristics are also defined for an application via the LC_CTYPE category. POSIX.1-2024 does
not mandate that the encoding used in the locale is the same as the one used by the application
because an implementation may decide that it is advantageous to define locales in a system-
wide encoding rather than having multiple, logically identical locales in different encodings, and
to convert from the application encoding to the system-wide encoding on usage. Other
implementations could require encoding-dependent locales.

In either case, the LC_CTYPE attributes that are directly dependent on the encoding, such as
<mb_cur_max> and the display width of characters, are not user-specifiable in a locale source
and are consequently not defined as keywords.

Implementations may define additional keywords or extend the LC_CTYPE mechanism to allow
application-defined keywords.

The text ``The ellipsis specification shall only be valid within a single encoded character set’’ is
present because it is possible to have a locale supported by multiple character encodings, as
explained in the rationale for XBD Section 6.1 (on page 117). An example given there is of a
possible Japanese-based locale supported by a mixture of the character sets JIS X 0201 Roman,
JIS X 0208, and JIS X 0201 Katakana. Attempting to express a range of characters across these sets
is not logical and the implementation is free to reject such attempts.

As the LC_CTYPE character classes are based on the ISO C standard character class definition,
the category does not support multi-character elements. For instance, the German character
<sharp-s> is traditionally classified as a lowercase letter. There is no corresponding uppercase
letter; in proper capitalization of German text, the <sharp-s> will be replaced by "SS"; that is, by
two characters. This kind of conversion is outside the scope of the toupper and tolower
keywords.

Where POSIX.1-2024 specifies that only certain characters can be specified, as for the keywords
digit and xdigit, the specified characters must be from the portable character set, as shown. As

3694 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126639

126640

126641

126642

126643

126644

126645

126646

126647

126648

126649

126650

126651

126652

126653

126654

126655

126656

126657

126658

126659

126660

126661

126662

126663

126664

126665

126666

126667

126668

126669

126670

126671

126672

126673

126674

126675

126676

126677

126678

126679

126680

126681

126682

126683

126684

126685

126686

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Locale

an example, only the Arabic digits 0 through 9 are acceptable as digits.

The character classes digit, xdigit, lower, upper, and space have a set of automatically included
characters. These only need to be specified if the character values (that is, encoding) differs from
the implementation default values. It is not possible to define a locale without these
automatically included characters unless some implementation extension is used to prevent
their inclusion. Such a definition would not be a proper superset of the C locale, and thus, it
might not be possible for the standard utilities to be implemented as programs conforming to
the ISO C standard.

The definition of character class digit requires that only ten characters—the ones defining
digits—can be specified; alternate digits (for example, Hindi or Kanji) cannot be specified here.
However, the encoding may vary if an implementation supports more than one encoding.

The definition of character class xdigit requires that the characters included in character class
digit are included here also and allows for different symbols for the hexadecimal digits 10
through 15.

The inclusion of the charclass keyword satisfies the following requirement from the
ISO POSIX-2: 1993 standard, Annex H.1:

(3) The LC_CTYPE (2.5.2.1) locale definition should be enhanced to allow user-specified additional
character classes, similar in concept to the ISO C standard Multibyte Support Extension (MSE)
iswctype () function.

This keyword was previously included in The Open Group specifications and is now mandated
in the Shell and Utilities volume of POSIX.1-2024.

The symbolic constant {CHARCLASS_NAME_MAX} was also adopted from The Open Group
specifications. Applications portability is enhanced by the use of symbolic constants.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0033 [663], XBD/TC2-2008/0034 [663],
XBD/TC2-2008/0035 [584], and XBD/TC2-2008/0036 [584] are applied.

Austin Group Defect 1078 is applied, clarifying that only the specified set of characters can be
included in the digit and xdigit classes in all locales, not just the POSIX locale.

Austin Group Defect 1589 is applied, disallowing some characters from being included in the
blank class.

A.7.3.2 LC_COLLATE

The rules governing collation depend to some extent on the use. At least five different levels of
increasingly complex collation rules can be distinguished:

1. Byte/machine code order: This is the historical collation order in the UNIX system and many
proprietary operating systems. Collation is here performed character by character,
without any regard to context. The primary virtue is that it usually is quite fast and also
completely deterministic; it works well when the native machine collation sequence
matches the user expectations.

2. Character order: On this level, collation is also performed character by character, without
regard to context. The order between characters is, however, not determined by the code
values, but on the expectations by the user of the ``correct’’ order between characters. In
addition, such a (simple) collation order can specify that certain characters collate equally
(for example, uppercase and lowercase letters).

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3695

126687

126688

126689

126690

126691

126692

126693

126694

126695

126696

126697

126698

126699

126700

126701

126702

126703

126704

126705

126706

126707

126708

126709

126710

126711

126712

126713

126714

126715

126716

126717

126718

126719

126720

126721

126722

126723

126724

126725

126726

126727

126728

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Rationale for Base Definitions

3. String ordering: On this level, entire strings are compared based on relatively
straightforward rules. Several ``passes’’ may be required to determine the order between
two strings. Characters may be ignored in some passes, but not in others; the strings may
be compared in different directions; and simple string substitutions may be performed
before strings are compared. This level is best described as ``dictionary’’ ordering; it is
based on the spelling, not the pronunciation, or meaning, of the words.

4. Text search ordering: This is a further refinement of the previous level, best described as
``telephone book ordering’’; some common homonyms (words spelled differently but
with the same pronunciation) are collated together; numbers are collated as if they were
spelled out, and so on.

5. Semantic-level ordering: Words and strings are collated based on their meaning; entire
words (such as ``the’’) are eliminated; the ordering is not deterministic. This usually
requires special software and is highly dependent on the intended use.

While the historical collation order formally is at level 1, for the English language it corresponds
roughly to elements at level 2. The user expects to see the output from the ls utility sorted very
much as it would be in a dictionary. While telephone book ordering would be an optimal goal
for standard collation, this was ruled out as the order would be language-dependent.
Furthermore, a requirement was that the order must be determined solely from the text string
and the collation rules; no external information (for example, ``pronunciation dictionaries’’)
could be required.

As a result, the goal for the collation support is at level 3. This also matches the requirements for
the Canadian collation order, as well as other, known collation requirements for alphabetic
scripts. It specifically rules out collation based on pronunciation rules or based on semantic
analysis of the text.

The syntax for the LC_COLLATE category source meets the requirements for level 3 and has
been verified to produce the correct result with examples based on French, Canadian, and
Danish collation order. Because it supports multi-character collating elements, it is also capable
of supporting collation in codesets where a character is expressed using non-spacing characters
followed by the base character (such as the ISO/IEC 6937: 2001 standard).

The directives that can be specified in an operand to the order_start keyword are based on the
requirements specified in several proposed standards and in customary use. The following is a
rephrasing of rules defined for ``lexical ordering in English and French’’ by the Canadian
Standards Association (the text in square brackets is rephrased):

• Once special characters [punctuation] have been removed from original strings, the
ordering is determined by scanning forwards (left to right) [disregarding case and
diacriticals].

• In case of equivalence, special characters are once again removed from original strings and
the ordering is determined by scanning backwards (starting from the rightmost character
of the string and back), character by character [disregarding case but considering
diacriticals].

• In case of repeated equivalence, special characters are removed again from original strings
and the ordering is determined by scanning forwards, character by character [considering
both case and diacriticals].

• If there is still an ordering equivalence after the first three rules have been applied, then
only special characters and the position they occupy in the string are considered to
determine ordering. The string that has a special character in the lowest position comes
first. If two strings have a special character in the same position, the character [with the
lowest collation value] comes first. In case of equality, the other special characters are

3696 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126729

126730

126731

126732

126733

126734

126735

126736

126737

126738

126739

126740

126741

126742

126743

126744

126745

126746

126747

126748

126749

126750

126751

126752

126753

126754

126755

126756

126757

126758

126759

126760

126761

126762

126763

126764

126765

126766

126767

126768

126769

126770

126771

126772

126773

126774

126775

126776

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Locale

considered until there is a difference or until all special characters have been exhausted.

It is estimated that this part of POSIX.1-2024 covers the requirements for all European
languages, and no particular problems are anticipated with Slavic or Middle East character sets.

The Far East (particularly Japanese/Chinese) collations are often based on contextual
information and pronunciation rules (the same ideogram can have different meanings and
different pronunciations). Such collation, in general, falls outside the desired goal of
POSIX.1-2024. There are, however, several other collation rules (stroke/radical or ``most
common pronunciation’’) that can be supported with the mechanism described here.

The character order is defined by the order in which characters and elements are specified
between the order_start and order_end keywords. Weights assigned to the characters and
elements define the collation sequence; in the absence of weights, the character order is also the
collation sequence.

The position keyword provides the capability to consider, in a compare, the relative position of
characters not subject to IGNORE. As an example, consider the two strings "o-ring" and
"or-ing". Assuming the <hyphen-minus> is subject to IGNORE on the first pass, the two
strings compare equal, and the position of the <hyphen-minus> is immaterial. On second pass,
all characters except the <hyphen-minus> are subject to IGNORE, and in the normal case the
two strings would again compare equal. By taking position into account, the first collates before
the second.

This standard requires that all implementation-provided locales define a collation sequence that
has a total ordering of all characters unless the locale name has an '@' modifier indicating that
it has a special collation sequence. Defining locales in this way eliminates unexpected behavior
when non-identical strings can collate equally (for example, sort -u and sort | uniq are
not equivalent). The exception for locales with a suitable '@' modifier in the name allows
implementations to supply locales which do not have a total ordering of all characters provided
that they draw attention to it in the modifier name. For example, @icase could indicate that
each upper and lowercase character pair collates equally. Even with an '@' modifier, total
ordering is preferred when possible; for example, characters that are ``ignored’’ in dictionary
order need not be completely ignored (by using IGNORE for all collation weights), but can
instead be given a unique weight after one or more IGNORE weights.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0037 [938], XBD/TC2-2008/0038 [663],
and XBD/TC2-2008/0039 [584] are applied.

Austin Group Defect 948 is applied, requiring that all implementation-provided locales define a
collation sequence that has a total ordering of all characters unless the locale name has an '@'
modifier indicating that it has a special collation sequence.

Austin Group Defect 1740 is applied, noting that it is the responsibility of the locale writer to
ensure <NUL> has the lowest primary weight in a collation ordering.

A.7.3.3 LC_MONETARY

The currency symbol does not appear in LC_MONETARY because it is not defined in the C
locale of the ISO C standard.

The ISO C standard limits the size of decimal points and thousands delimiters to single-byte
values. In locales based on multi-byte coded character sets, this cannot be enforced;
POSIX.1-2024 does not prohibit such characters, but makes the behavior unspecified (in the text
``In contexts where other standards ...’’).

The grouping specification is based on, but not identical to, the ISO C standard. The −1 indicates
that no further grouping is performed; the equivalent of {CHAR_MAX} in the ISO C standard.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3697

126777

126778

126779

126780

126781

126782

126783

126784

126785

126786

126787

126788

126789

126790

126791

126792

126793

126794

126795

126796

126797

126798

126799

126800

126801

126802

126803

126804

126805

126806

126807

126808

126809

126810

126811

126812

126813

126814

126815

126816

126817

126818

126819

126820

126821

126822

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Rationale for Base Definitions

The text ``the value is not available in the locale’’ is taken from the ISO C standard and is used
instead of the ``unspecified’’ text in early proposals. There is no implication that omitting these
keywords or assigning them values of "" or −1 produces unspecified results; such omissions or
assignments eliminate the effects described for the keyword or produce zero-length strings, as
appropriate.

The locale definition is an extension of the ISO C standard localeconv() specification. In
particular, rules on how currency_symbol is treated are extended to also cover int_curr_symbol,
and p_set_by_space and n_sep_by_space have been augmented with the value 2, which places
a <space> between the sign and the symbol. This has been updated to match the
ISO/IEC 9899: 1999 standard requirements and is an incompatible change from UNIX 98 and the
ISO POSIX-2 standard and the ISO POSIX-1: 1996 standard requirements. The following table
shows the result of various combinations:

p_sep_by_space
2 1 0

p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($ 1.25) ($1.25)
p_sign_posn = 1 + $1.25 +$ 1.25 +$1.25
p_sign_posn = 2 $1.25 + $ 1.25+ $1.25+
p_sign_posn = 3 + $1.25 +$ 1.25 +$1.25
p_sign_posn = 4 $ +1.25 $+ 1.25 $+1.25

p_cs_precedes = 0 p_sign_posn = 0 (1.25 $) (1.25 $) (1.25$)
p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$
p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+
p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$
p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+

The following is an example of the interpretation of the mon_grouping keyword. Assuming that
the value to be formatted is 123 456 789 and the mon_thousands_sep is <apostrophe>, then the
following table shows the result. The third column shows the equivalent string in the ISO C
standard that would be used by the localeconv() function to accommodate this grouping.

mon_grouping Formatted Value ISO C String
3;−1 123456'789 "\3\177"
3 123'456'789 "\3"
3;2;−1 1234'56'789 "\3\2\177"
3;2 12'34'56'789 "\3\2"
−1 123456789 "\177"

In these examples, the octal value of {CHAR_MAX} is 177.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/6 adds a correction that permits the Euro
currency symbol and addresses extensibility. The correction is stated using the term ``should’’
intentionally, in order to make this a recommendation rather than a restriction on
implementations. This allows for flexibility in implementations on how they handle future
currency symbol additions.

IEEE Std 1003.1-2001/Cor 1-2002, tem XBD/TC1/D6/5 is applied, adding the int_[np]_* values
to the POSIX locale definition of LC_MONETARY.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/16 is applied, updating the descriptions
of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and int_n_sep_by_space to match
the description of these keywords in the ISO C standard and the System Interfaces volume of
POSIX.1-2024, localeconv().

Austin Group Defect 1199 is applied, adding a requirement that localedef does not accept certain

3698 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126823

126824

126825

126826

126827

126828

126829

126830

126831

126832

126833

126834

126835

126836

126837

126838

126839

126840

126841

126842

126843

126844

126845

126846

126847

126848

126849

126850

126851

126852

126853

126854

126855

126856

126857

126858

126859

126860

126861

126862

126863

126864

126865

126866

126867

126868

126869

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Locale

combinations of *_sign_posn, positive_sign, and negative_sign values.

Austin Group Defect 1241 is applied, clarifying the meaning of empty string values.

A.7.3.4 LC_NUMERIC

See the rationale for LC_MONETARY for a description of the behavior of grouping.

Austin Group Defect 1241 is applied, clarifying the meaning of empty string values.

A.7.3.5 LC_TIME

Although certain of the conversion specifications in the POSIX locale (such as the name of the
month) are shown with initial capital letters, this need not be the case in other locales. Programs
using these conversion specifications may need to adjust the capitalization if the output is going
to be used at the beginning of a sentence.

The LC_TIME descriptions of abday, day, mon, and abmon imply a Gregorian style calendar
(7-day weeks, 12-month years, leap years, and so on). Formatting time strings for other types of
calendars is outside the scope of POSIX.1-2024.

While the ISO 8601-1: 2019 standard numbers the weekdays starting with Monday, historical
practice is to use the Sunday as the first day. Rather than change the order and introduce
potential confusion, the days must be specified beginning with Sunday; previous references to
``first day’’ have been removed. Note also that the Shell and Utilities volume of POSIX.1-2024
date utility supports numbering compliant with the ISO 8601-1: 2019 standard.

As specified under date in the Shell and Utilities volume of POSIX.1-2024 and strftime() in the
System Interfaces volume of POSIX.1-2024, the conversion specifications corresponding to the
optional keywords consist of a modifier followed by a traditional conversion specification (for
instance, %Ex). If the optional keywords are not supported by the implementation or are
unspecified for the current locale, these modified conversion specifications are treated as the
traditional conversion specifications. For example, assume the following keywords:

alt_digits "0th";"1st";"2nd";"3rd";"4th";"5th";\
"6th";"7th";"8th";"9th";"10th"

d_fmt "The %Od day of %B in %Y"

On July 4th 1776, the %x conversion specifications would result in "The 4th day of July
in 1776", while on July 14th 1789 it would result in "The 14 day of July in 1789". It
can be noted that the above example is for illustrative purposes only; the %O modifier is
primarily intended to provide for Kanji or Hindi digits in date formats.

The following is an example for Japan that supports the current plus last three Emperors and
reverts to Western style numbering for years prior to the Meiji era. The example also allows for
the custom of using a special name for the first year of an era instead of using 1. (The examples
substitute romaji where kanji should be used.)

era_d_fmt "%EY%mgatsu%dnichi (%a)"

era "+:2:1990/01/01:+*:Heisei:%EC%Eynen";\
"+:1:1989/01/08:1989/12/31:Heisei:%ECgannen";\
"+:2:1927/01/01:1989/01/07:Shouwa:%EC%Eynen";\
"+:1:1926/12/25:1926/12/31:Shouwa:%ECgannen";\
"+:2:1913/01/01:1926/12/24:Taishou:%EC%Eynen";\
"+:1:1912/07/30:1912/12/31:Taishou:%ECgannen";\
"+:2:1869/01/01:1912/07/29:Meiji:%EC%Eynen";\

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3699

126870

126871

126872

126873

126874

126875

126876

126877

126878

126879

126880

126881

126882

126883

126884

126885

126886

126887

126888

126889

126890

126891

126892

126893

126894

126895

126896

126897

126898

126899

126900

126901

126902

126903

126904

126905

126906

126907

126908

126909

126910

126911

126912

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Rationale for Base Definitions

"+:1:1868/09/08:1868/12/31:Meiji:%ECgannen";\
"-:1868:1868/09/07:-*::%Ey"

Assuming that the current date is September 21, 1991, a request to date or strftime() would yield
the following results:

%Ec - Heisei3nen9gatsu21nichi (Sat) 14:39:26
%EC - Heisei
%Ex - Heisei3nen9gatsu21nichi (Sat)
%Ey - 3
%EY - Heisei3nen

Example era definitions for the Republic of China:

era "+:2:1913/01/01:+*:ChungHwaMingGuo:%EC%EyNen";\
"+:1:1912/1/1:1912/12/31:ChungHwaMingGuo:%ECYuenNen";\
"+:1:1911/12/31:-*:MingChien:%EC%EyNen"

Example definitions for the Christian Era:

era "+:1:0001/01/01:+*:AD:%EC %Ey";\
"+:1:-0001/12/31:-*:BC:%Ey %EC"

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0040 [912] is applied.

Austin Group Defects 258 and 1166 are applied, adding the alt_mon and ab_alt_mon locale
keywords.

Austin Group Defect 1307 is applied, changing the am_pm and t_fmt_ampm keywords and the
AM_STR, PM_STR, and T_FMT_AMPM constants in relation to locales that do not support the
12-hour clock format.

A.7.3.6 LC_MESSAGES

The yesstr and nostr locale keywords and the YESSTR and NOSTR langinfo items were formerly
used to match user affirmative and negative responses. In POSIX.1-2024, the yesexpr, noexpr,
YESEXPR, and NOEXPR extended regular expressions have replaced them. Applications
should use the general locale-based messaging facilities to issue prompting messages which
include sample desired responses.

Affirmative responses like:

y
Yes
Yes!

and negative responses like:

N
No
Never
No way!

should all be recognized as affirmative and negative responses, respectively, by the EREs
identified by the yesexpr and noexpr keywords for English language-based locales. There is no
requirement that multi-line responses nor ambiguous responses like:

no or yes
yes or no
maybe

3700 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126913

126914

126915

126916

126917

126918

126919

126920

126921

126922

126923

126924

126925

126926

126927

126928

126929

126930

126931

126932

126933

126934

126935

126936

126937

126938

126939

126940

126941

126942

126943

126944

126945

126946

126947

126948

126949

126950

126951

126952

126953

126954

126955

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Locale

be correctly classified by either of these EREs. Application writers are encouraged to include
locale-specific suggestions for affirmative and negative responses in prompts.

A.7.4 Locale Definition Grammar

There is no additional rationale provided for this section.

A.7.4.1 Locale Lexical Conventions

There is no additional rationale provided for this section.

A.7.4.2 Locale Grammar

Austin Group Defects 258 and 1166 are applied, adding the alt_mon and ab_alt_mon locale
keywords.

A.7.5 Locale Definition Example

The following is an example of a locale definition file that could be used as input to the localedef
utility. It assumes that the utility is executed with the −f option, naming a charmap file with (at
least) the following content:

CHARMAP
<space> \x20
<dollar> \x24
<A> \101
<a> \141
<A-acute> \346
<a-acute> \365
<A-grave> \300
<a-grave> \366
 \142
<C> \103
<c> \143
<c-cedilla> \347
<d> \x64
<H> \110
<h> \150
<eszet> \xb7
<s> \x73
<z> \x7a
END CHARMAP

It should not be taken as complete or to represent any actual locale, but only to illustrate the
syntax.

#
LC_CTYPE
lower <a>;;<c>;<c-cedilla>;<d>;...;<z>
upper A;B;C;Ç;...;Z
space \x20;\x09;\x0a;\x0b;\x0c;\x0d
blank \040;\011

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3701

126956

126957

126958

126959

126960

126961

126962

126963

126964

126965

126966

126967

126968

126969

126970

126971

126972

126973

126974

126975

126976

126977

126978

126979

126980

126981

126982

126983

126984

126985

126986

126987

126988

126989

126990

126991

126992

126993

126994

126995

126996

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Rationale for Base Definitions

toupper (<a>,<A>);(b,B);(c,C);(ç,Ç);(d,D);(z,Z)
END LC_CTYPE
#
LC_COLLATE
#
The following example of collation is based on
Canadian standard Z243.4.1-1998, "Canadian Alphanumeric
Ordering Standard for Character Sets of CSA Z234.4 Standard".
(Other parts of this example locale definition file do not
purport to relate to Canada, or to any other real culture.)
The proposed standard defines a 4-weight collation, such that
in the first pass, characters are compared without regard to
case or accents; in the second pass, backwards-compare without
regard to case; in the third pass, forwards-compare without
regard to diacriticals. In the 3 first passes, non-alphabetic
characters are ignored; in the fourth pass, only special
characters are considered, such that "The string that has a
special character in the lowest position comes first. If two
strings have a special character in the same position, the
collation value of the special character determines ordering.
#
Only a subset of the character set is used here; mostly to
illustrate the set-up.
#
collating-symbol <NULL>
collating-symbol <LOW_VALUE>
collating-symbol <LOWER-CASE>
collating-symbol <SUBSCRIPT-LOWER>
collating-symbol <SUPERSCRIPT-LOWER>
collating-symbol <UPPER-CASE>
collating-symbol <NO-ACCENT>
collating-symbol <PECULIAR>
collating-symbol <LIGATURE>
collating-symbol <ACUTE>
collating-symbol <GRAVE>
Further collating-symbols follow.
#
Properly, the standard does not include any multi-character
collating elements; the one below is added for completeness.
#
collating_element <ch> from "<c><h>"
collating_element <CH> from "<C><H>"
collating_element <Ch> from "<C><h>"
#
order_start forward;backward;forward;forward,position
#
Collating symbols are specified first in the sequence to allocate
basic collation values to them, lower than that of any character.
<NULL>
<LOW_VALUE>
<LOWER-CASE>
<SUBSCRIPT-LOWER>
<SUPERSCRIPT-LOWER>

3702 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

126997

126998

126999

127000

127001

127002

127003

127004

127005

127006

127007

127008

127009

127010

127011

127012

127013

127014

127015

127016

127017

127018

127019

127020

127021

127022

127023

127024

127025

127026

127027

127028

127029

127030

127031

127032

127033

127034

127035

127036

127037

127038

127039

127040

127041

127042

127043

127044

127045

127046

127047

127048

127049

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Locale

<UPPER-CASE>
<NO-ACCENT>
<PECULIAR>
<LIGATURE>
<ACUTE>
<GRAVE>
<RING-ABOVE>
<DIAERESIS>
<TILDE>
Further collating symbols are given a basic collating value here.
#
Here follow special characters.
<space> IGNORE;IGNORE;IGNORE;<space>
Other special characters follow here.
#
Here follow the regular characters.
<a> <a>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<A> <a>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<a-acute> <a>;<ACUTE>;<LOWER-CASE>;IGNORE
<A-acute> <a>;<ACUTE>;<UPPER-CASE>;IGNORE
<a-grave> <a>;<GRAVE>;<LOWER-CASE>;IGNORE
<A-grave> <a>;<GRAVE>;<UPPER-CASE>;IGNORE
<ae> "<a><e>";"<LIGATURE><LIGATURE>";\

"<LOWER-CASE><LOWER-CASE>";IGNORE
<AE> "<a><e>";"<LIGATURE><LIGATURE>";\

"<UPPER-CASE><UPPER-CASE>";IGNORE
 ;<NO-ACCENT>;<LOWER-CASE>;IGNORE
 ;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<c> <c>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<C> <c>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<ch> <ch>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<Ch> <ch>;<NO-ACCENT>;<PECULIAR>;IGNORE
<CH> <ch>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
#
As an example, the strings "Bach" and "bach" could be encoded (for
compare purposes) as:
"Bach" ;<a>;<ch>;<LOW_VALUE>;<NO_ACCENT>;<NO_ACCENT>;\
<NO_ACCENT>;<LOW_VALUE>;<UPPER-CASE>;<LOWER-CASE>;\
<LOWER-CASE>;<NULL>
"bach" ;<a>;<ch>;<LOW_VALUE>;<NO_ACCENT>;<NO_ACCENT>;\
<NO_ACCENT>;<LOW_VALUE>;<LOWER-CASE>;<LOWER-CASE>;\
<LOWER-CASE>;<NULL>
#
The two strings are equal in pass 1 and 2, but differ in pass 3.
#
Further characters follow.
#
UNDEFINED IGNORE;IGNORE;IGNORE;IGNORE
#
order_end
#
END LC_COLLATE
#

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3703

127050

127051

127052

127053

127054

127055

127056

127057

127058

127059

127060

127061

127062

127063

127064

127065

127066

127067

127068

127069

127070

127071

127072

127073

127074

127075

127076

127077

127078

127079

127080

127081

127082

127083

127084

127085

127086

127087

127088

127089

127090

127091

127092

127093

127094

127095

127096

127097

127098

127099

127100

127101

127102

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Locale Rationale for Base Definitions

LC_MONETARY
int_curr_symbol "USD "
currency_symbol "$"
mon_decimal_point "."
mon_grouping 3;0
positive_sign ""
negative_sign "-"
p_cs_precedes 1
n_sign_posn 0
END LC_MONETARY
#
LC_NUMERIC
copy "US_en.ASCII"
END LC_NUMERIC
#
LC_TIME
abday "Sun";"Mon";"Tue";"Wed";"Thu";"Fri";"Sat"
#
day "Sunday";"Monday";"Tuesday";"Wednesday";\

"Thursday";"Friday";"Saturday"
#
abmon "Jan";"Feb";"Mar";"Apr";"May";"Jun";\

"Jul";"Aug";"Sep";"Oct";"Nov";"Dec"
#
mon "January";"February";"March";"April";\

"May";"June";"July";"August";"September";\
"October";"November";"December"

#
d_t_fmt "%a %b %d %T %Z %Y\n"
END LC_TIME
#
LC_MESSAGES
yesexpr "^([yY][[:alpha:]]*)|(OK)"
#
noexpr "^[nN][[:alpha:]]*"
END LC_MESSAGES

A.8 Environment Variables

A.8.1 Environment Variable Definition

The variable environ is not intended to be declared in any header, but rather to be declared by
the user for accessing the array of strings that is the environment. This is the traditional usage of
the symbol. Putting it into a header could break some programs that use the symbol for their
own purposes.

The decision to restrict conforming systems to the use of digits, uppercase letters, and
underscores for environment variable names allows applications to use lowercase letters in their
environment variable names without conflicting with any conforming system.

3704 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127103

127104

127105

127106

127107

127108

127109

127110

127111

127112

127113

127114

127115

127116

127117

127118

127119

127120

127121

127122

127123

127124

127125

127126

127127

127128

127129

127130

127131

127132

127133

127134

127135

127136

127137

127138

127139

127140

127141

127142

127143

127144

127145

127146

127147

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Environment Variables

In addition to the obvious conflict with the shell syntax for positional parameter substitution,
some historical applications (including some shells) exclude names with leading digits from the
environment.

Some historical implementations removed certain environment variables during program
startup when security criteria were not met, instead of just ignoring them at the point of use. The
standard developers decided not to allow this behavior because if a process drops all privileges
and sets its effective user and group IDs to be the same as its real user and group IDs before
executing a program or utility, the behavior should be the same as if the process had originally
met the security criteria.

Austin Group Defect 367 is applied, adding requirements relating to the use of readonly on
environment variables that are manipulated by shell built-in utilities.

Austin Group Defect 922 is applied, allowing implementations to ignore some environment
variables at the point of use for security reasons.

Austin Group Defect 1561 is applied, clarifying that environment variable values can contain
byte sequences that do not form valid characters.

A.8.2 Internationalization Variables

Utilities conforming to the Shell and Utilities volume of POSIX.1-2024 and written in standard C
can access the locale variables by issuing the following call:

setlocale(LC_ALL, "")

If this were omitted, the ISO C standard specifies that the C (or POSIX) locale would be used.

The DESCRIPTION of setlocale() requires that when setting all categories of a locale, if the value
of any of the environment variable searches yields a locale that is not supported (and non-null),
the setlocale() function returns a null pointer and the global locale is unchanged.

For the standard utilities, if any of the environment variables are invalid, it makes sense to
default to an implementation-defined, consistent locale environment. It is more confusing for a
user to have partial settings occur in case of a mistake. All utilities would then behave in one
language/cultural environment. Furthermore, it provides a way of forcing the whole
environment to be the implementation-defined default. Disastrous results could occur if a
pipeline of utilities partially uses the environment variables in different ways. In this case, it
would be appropriate for utilities that use LANG and related variables to exit with an error if
any of the variables are invalid. For example, users typing individual commands at a terminal
might want date to work if LC_MONETARY is invalid as long as LC_TIME is valid. Since these
are conflicting reasonable alternatives, POSIX.1-2024 leaves the results unspecified if the locale
environment variables would not produce a complete locale matching the specification of the
user.

The LC_MESSAGES variable affects the language of messages generated by the standard
utilities.

The description of the environment variable names starting with the characters ``LC_’’
acknowledges the fact that the interfaces presented may be extended as new international
functionality is required. In the ISO C standard, names preceded by ``LC_’’ are reserved in the
name space for future categories.

To avoid name clashes, new categories and environment variables are divided into two
classifications: ``implementation-independent’’ and ``implementation-defined’’.

Implementation-independent names will have the following format:

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3705

127148

127149

127150

127151

127152

127153

127154

127155

127156

127157

127158

127159

127160

127161

127162

127163

127164

127165

127166

127167

127168

127169

127170

127171

127172

127173

127174

127175

127176

127177

127178

127179

127180

127181

127182

127183

127184

127185

127186

127187

127188

127189

127190

127191

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Environment Variables Rationale for Base Definitions

LC_NAME

where NAME is the name of the new category and environment variable. Capital letters must be
used for implementation-independent names.

Implementation-defined names must be in lowercase letters, as below:

LC_name

Austin Group Defect 1122 is applied, adding the LANGUAGE, TEXTDOMAIN, and
TEXTDOMAINDIR environment variables and updating NLSPATH with requirements relating
to the gettext family of functions and the gettext and ngettext utilities.

Austin Group Defect 1477 is applied, moving a paragraph of rationale about incompatible locale
categories to Section A.7.1 (on page 3692).

Austin Group Defect 1571 is applied, simplifying the final item in the precedence order for
internationalization environment variables.

A.8.3 Other Environment Variables

COLUMNS, LINES

The default values for the number of column positions when COLUMNS is unset or null, and
screen height when LINES is unset or null, are unspecified if the terminal window size cannot be
obtained (from tcgetwinsize()) because historical implementations use different methods to
determine the values. Users should not need to set these variables in the environment unless
there is a specific reason to override the default behavior of the implementation, such as to
display data in an area arbitrarily smaller than the terminal or window. Values for these
variables that are not decimal integers greater than zero are implicitly undefined values; it is
unnecessary to enumerate all of the possible values outside of the acceptable set.

Austin Group Defect 1185 is applied, changing the descriptions of the COLUMNS and LINES
environment variables.

LOGNAME

In most implementations, the value of such a variable is easily forged, so security-critical
applications should rely on other means of determining user identity. LOGNAME is required to
be constructed from the portable filename character set for reasons of interchange. No diagnostic
condition is specified for violating this rule, and no requirement for enforcement exists. The
intent of the requirement is that if extended characters are used, the ``guarantee’’ of portability
implied by a standard is void.

PATH

Many historical implementations of the Bourne shell do not interpret a trailing <colon> to
represent the current working directory and are thus non-conforming. The C Shell and the
KornShell conform to POSIX.1-2024 on this point. The usual name of dot may also be used to
refer to the current working directory.

Many implementations historically have used a default value of /bin and /usr/bin for the PA TH
variable. POSIX.1-2024 does not mandate this default path be identical to that retrieved from
getconf PATH because it is likely that the standardized utilities may be provided in another
directory separate from the directories used by some historical applications.

The standard specifies that (when no <slash> character is included in a command pathname)
special built-in utilities and intrinsic utilities are not subject to a search using PA TH. All other

3706 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127192

127193

127194

127195

127196

127197

127198

127199

127200

127201

127202

127203

127204

127205

127206

127207

127208

127209

127210

127211

127212

127213

127214

127215

127216

127217

127218

127219

127220

127221

127222

127223

127224

127225

127226

127227

127228

127229

127230

127231

127232

127233

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Environment Variables

standard utilities, even if implemented as shell built-ins, are required to be found by searching
PA TH. This means that if a shell includes a built-in for a standard utility that is not intrinsic, a
user can write a utility that will override that built-in. The standard also requires that all
standard utilities can be executed by commands like:

find . -type d -exec printf 'Found directory: %s\n' '{}' +

So, other than differences caused by using different shell execution environments, a standard
utility that is implemented as a built-in and the non-built-in version of that standard utility are
both required to behave as the standard specifies. But, if a non-standard utility is found in PA TH
before the standard utility’s location in PA TH, the non-standard utility must be invoked rather
than the built-in. For instance, if the shell includes a built-in printf utility (which most shells do),
PA TH is initialized using:

PATH="$HOME/bin:$(command -p getconf PATH)"

and $HOME/bin/printf is an executable file containing:

command -p printf 'In %s with args:\n' "${0##*/}" >&2
command -p printf '%s\n' "$@" >&2
command -V printf >&2
command -Vp printf >&2
command -p printf "$@"

then the command:

printf '%s %s\n' HOME "$HOME" PATH "$PATH"

should produce output similar to:

In printf with args:
%s %s\n
HOME
/Users/dwc
PATH
/Users/dwc/bin:/usr/bin:/bin:/usr/sbin:/sbin

printf is a tracked alias for /Users/dwc/bin/printf
printf is a shell builtin
HOME /Users/dwc
PATH /Users/dwc/bin:/usr/bin:/bin:/usr/sbin:/sbin

The current version of the Korn shell installs built-ins into the shell using a builtin utility that
allows the built-in to be associated with the pathname of the non-built-in version of that utility.
(Unfortunately, some implementations that use ksh93 as their standard sh utility do not make use
of this feature and install built-ins for standard utilities that are not associated with a PA TH
search. And, most other shells incorrectly always use a built-in utility if one is installed, even
when it should be overridden by a PA TH search that should find the non-standard version of a
utility with the name of that built-in.) Some other shells use a <percent-sign> character in a
directory pathname in PA TH to indicate one or more directories that should be used when
processing PA TH to determine when non-intrinsic standard utilities should be found. The
POSIX.1-2024 revision of the standard allows either of these methods to be used to install built-
ins that meet the requirements stated in XCU Section 2.9.1.4 (on page 2502) by making the
behavior of the built-in path search implementation-defined when a <percent-sign> character is
found in PA TH.

Austin Group Defect 854 is applied, changing how PA TH searching applies to built-in utilities.

Austin Group Defect 1340 is applied, clarifying the description of PA TH.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3707

127234

127235

127236

127237

127238

127239

127240

127241

127242

127243

127244

127245

127246

127247

127248

127249

127250

127251

127252

127253

127254

127255

127256

127257

127258

127259

127260

127261

127262

127263

127264

127265

127266

127267

127268

127269

127270

127271

127272

127273

127274

127275

127276

127277

127278

127279

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Environment Variables Rationale for Base Definitions

SHELL

The SHELL variable names the preferred shell of the user; it is a guide to applications. There is
no direct requirement that that shell conform to POSIX.1-2024; that decision should rest with the
user. It is the intention of the standard developers that alternative shells be permitted, if the user
chooses to develop or acquire one. An operating system that builds its shell into the ``kernel’’ in
such a manner that alternative shells would be impossible does not conform to the spirit of
POSIX.1-2024.

TZ

The quoted form of the timezone variable allows timezone names of the form UTC+1 (or any
name that contains the <plus-sign> ('+'), the <hyphen-minus> ('−'), or digits), which may be
appropriate for countries that do not have an official timezone name. It would be coded as
<UTC+1>+1<UTC+2>, which would cause std to have a value of UTC+1 and dst a value of
UTC+2, each with a length of 5 characters. This does not appear to conflict with any existing
usage. The characters '<' and '>' were chosen for quoting because they are easier to parse
visually than a quoting character that does not provide some sense of bracketing (and in a string
like this, such bracketing is helpful). They were also chosen because they do not need special
treatment when assigning to the TZ variable. Users are often confused by embedding quotes in a
string. Because '<' and '>' are meaningful to the shell, the whole string would have to be
quoted, but that is easily explained. (Parentheses would have presented the same problems.)
Although the '>' symbol could have been permitted in the string by either escaping it or
doubling it, it seemed of little value to require that. This could be provided as an extension if
there was a need. Timezone names of this new form lead to a requirement that the value of
{_POSIX_TZNAME_MAX} change from 3 to 6.

Since the TZ environment variable is usually inherited by all applications started by a user after
the value of the TZ environment variable is changed and since many applications run using the
C or POSIX locale, using characters that are not in the portable character set in the std and dst
fields could cause unexpected results.

Implementations are encouraged to incorporate the IANA timezone database into the timezone
database used for TZ values specifying geographical and special timezones, and to provide a
method to allow it to be updated in accordance with RFC 6557.

The TZ format beginning with <colon> was originally introduced as a way for implementations
to support geographical timezones in the form :Area/Location as an extension, but
implementations started to support them without the leading <colon> (as well as with it) and
their use without the <colon> became the de-facto standard. Consequently when geographical
timezones were added to this standard, it was without the <colon>.

The format of the TZ environment variable is changed in Issue 6 to allow for the quoted form, as
defined in earlier versions of the ISO POSIX-1 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/7 is applied, adding the ctime_r() and
localtime_r() functions to the list of functions that use the TZ environment variable.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0041 [584] is applied.

Austin Group Defect 1030 is applied, making it implementation-defined when the changes to
and from Daylight Saving Time occur if the dst field is specified in TZ and the rule field is not.

Austin Group Defect 1252 is applied, changing the time field to allow the hour to range from
zero to 167 and allowing a leading sign.

Austin Group Defect 1253 is applied, changing ``alternative time’’ to ``Daylight Saving Time’’.

Austin Group Defect 1410 is applied, removing the ctime_r() function.

3708 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127280

127281

127282

127283

127284

127285

127286

127287

127288

127289

127290

127291

127292

127293

127294

127295

127296

127297

127298

127299

127300

127301

127302

127303

127304

127305

127306

127307

127308

127309

127310

127311

127312

127313

127314

127315

127316

127317

127318

127319

127320

127321

127322

127323

127324

127325

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Environment Variables

Austin Group Defect 1619 is applied, adding support for a third TZ format with values
specifying geographical and special timezones.

Austin Group Defects 1638 and 1639 are applied, clarifying the length limits for the std and dst
fields of TZ.

A.9 Regular Expressions
Rather than repeating the description of REs for each utility supporting REs, the standard
developers preferred a common, comprehensive description of regular expressions in one place.
The most common behavior is described here, and exceptions or extensions to this are
documented for the respective utilities, as appropriate.

The BRE corresponds to the ed or historical grep type, and the ERE corresponds to the historical
egrep type (now grep −E).

The text is based on the ed description and substantially modified, primarily to aid developers
and others in the understanding of the capabilities and limitations of REs. Much of this was
influenced by internationalization requirements.

It should be noted that the definitions in this section do not cover the tr utility; the tr syntax does
not employ REs.

The specification of REs is particularly important to internationalization because pattern
matching operations are very basic operations in business and other operations. The syntax and
rules of REs are intended to be as intuitive as possible to make them easy to understand and use.
The historical rules and behavior do not provide that capability to non-English language users,
and do not provide the necessary support for commonly used characters and language
constructs. It was necessary to provide extensions to the historical RE syntax and rules to
accommodate other languages.

As they are limited to bracket expressions, the rationale for these modifications is in XBD Section
9.3.5 (on page 182).

A.9.1 Regular Expression Definitions

It is possible to determine what strings correspond to subexpressions by recursively applying
the leftmost longest rule to each subexpression, but only with the proviso that the overall match
is leftmost longest. For example, matching "\(ac*\)c*d[ac]*\1" against acdacaaa matches
acdacaaa (with \1=a); simply matching the longest match for "\(ac*\)" would yield \1=ac, but
the overall match would be smaller (acdac). Conceptually, the implementation must examine
every possible match and among those that yield the leftmost longest total matches, pick the one
that does the longest match for the leftmost subexpression, and so on. Note that this means that
matching by subexpressions is context-dependent: a subexpression within a larger RE may
match a different string from the one it would match as an independent RE, and two instances of
the same subexpression within the same larger RE may match different lengths even in similar
sequences of characters. For example, in the ERE "(a.*b)(a.*b)", the two identical
subexpressions would match four and six characters, respectively, of accbaccccb.

The definition of single character has been expanded to include also collating elements
consisting of two or more characters; this expansion is applicable only when a bracket
expression is included in the BRE or ERE. An example of such a collating element may be the
Dutch ij, which collates as a 'y'. In some encodings, a ligature ``i with j’’ exists as a character
and would represent a single-character collating element. In another encoding, no such ligature
exists, and the two-character sequence ij is defined as a multi-character collating element.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3709

127326

127327

127328

127329

127330

127331

127332

127333

127334

127335

127336

127337

127338

127339

127340

127341

127342

127343

127344

127345

127346

127347

127348

127349

127350

127351

127352

127353

127354

127355

127356

127357

127358

127359

127360

127361

127362

127363

127364

127365

127366

127367

127368

127369

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Rationale for Base Definitions

Outside brackets, the ij is treated as a two-character RE and matches the same characters in a
string. Historically, a bracket expression only matched a single character. The ISO POSIX-2: 1993
standard required bracket expressions like "[^[:lower:]]" to match multi-character collating
elements such as "ij". However, this requirement led to behavior that many users did not
expect and that could not feasibly be mimicked in user code, and it was rarely if ever
implemented correctly. The current standard leaves it unspecified whether a bracket expression
matches a multi-character collating element, allowing both historical and ISO POSIX-2: 1993
standard implementations to conform.

Also, in the current standard, it is unspecified whether character class expressions like
"[:lower:]" can include multi-character collating elements like "ij"; hence
"[[:lower:]]" can match "ij", and "[^[:lower:]]" can fail to match "ij". Common
practice is for a character class expression to match a collating element if it matches the collating
element’s first character.

Austin Group Defect 1329 is applied, adding a definition of ``leftmost’’ and updating the
definition of ``matched’’ to include an example ERE using the repetition modifier '?'.

Austin Group Defect 1546 is applied, adding a definition of ``escape sequence’’.

A.9.2 Regular Expression General Requirements

The definition of which sequence is matched when several are possible is based on the leftmost-
longest rule historically used by deterministic recognizers. This rule is easier to define and
describe, and arguably more useful, than the first-match rule historically used by non-
deterministic recognizers. It is thought that dependencies on the choice of rule are rare; carefully
contrived examples are needed to demonstrate the difference.

A formal expression of the leftmost-longest rule is:

The search is performed as if all possible suffixes of the string were tested for a prefix
matching the pattern; the longest suffix containing a matching prefix is chosen, and the
longest possible matching prefix of the chosen suffix is identified as the matching
sequence.

EREs can optionally use a leftmost-shortest rule for repetitions (enabled via the REG_MINIMAL
flag or the '?' repetition modifier), in which case the shortest possible matching prefix is
instead identified as the matching sequence for the affected repetition(s).

Historically, most RE implementations only match lines, not strings. However, that is more an
effect of the usage than of an inherent feature of REs themselves. Consequently, POSIX.1-2024
does not regard <newline> characters as special; they are ordinary characters, and both a
<period> and a non-matching list can match them. Those utilities (like grep) that do not allow
<newline> characters to match are responsible for eliminating any <newline> from strings
before matching against the RE. The regcomp() function, however, can provide support for such
processing without violating the rules of this section.

Some implementations of egrep have had very limited flexibility in handling complex EREs.
POSIX.1-2024 does not attempt to define the complexity of a BRE or ERE, but does place a lower
limit on it—any RE must be handled, as long as it can be expressed in 256 bytes or less. (Of
course, this does not place an upper limit on the implementation.) There are historical programs
using a non-deterministic-recognizer implementation that should have no difficulty with this
limit. It is possible that a good approach would be to attempt to use the faster, but more limited,
deterministic recognizer for simple expressions and to fall back on the non-deterministic
recognizer for those expressions requiring it. Non-deterministic implementations must be
careful to observe the rules on which match is chosen; the longest match, not the first match,

3710 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127370

127371

127372

127373

127374

127375

127376

127377

127378

127379

127380

127381

127382

127383

127384

127385

127386

127387

127388

127389

127390

127391

127392

127393

127394

127395

127396

127397

127398

127399

127400

127401

127402

127403

127404

127405

127406

127407

127408

127409

127410

127411

127412

127413

127414

127415

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Regular Expressions

starting at a given character is used.

The term ``invalid’’ highlights a difference between this section and some others: POSIX.1-2024
frequently avoids mandating of errors for syntax violations because they can be used by
implementors to trigger extensions. However, the authors of the internationalization features of
REs wanted to mandate errors for certain conditions to identify usage problems or non-portable
constructs. These are identified within this rationale as appropriate. The remaining syntax
violations have been left implicitly or explicitly undefined. For example, the BRE construct
"\{1,2,3\}" does not comply with the grammar. A conforming application cannot rely on it
producing an error nor matching the literal characters "\{1,2,3\}".

The term ``undefined’’ was used in favor of ``unspecified’’ because many of the situations are
considered errors on some implementations, and the standard developers considered that
consistency throughout the section was preferable to mixing undefined and unspecified.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0042 [554] is applied.

Austin Group Defect 1031 is applied, replacing text relating to case insensitive comparisons with
a reference to XBD Section 4.1 (on page 95).

A.9.3 Basic Regular Expressions

Austin Group Defect 1139 is applied, making minor editorial changes to several subsections of
this section and changing them to require that, when not inside a bracket expression, "\]"
matches ']'.

A.9.3.1 BREs Matching a Single Character or Collating Element

There is no additional rationale provided for this section.

A.9.3.2 BRE Ordinary Characters

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0043 [554] is applied.

Austin Group Defect 1546 is applied, adding optional support for "\?", "\+", and "\|".

A.9.3.3 BRE Special Characters

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0043 [554] is applied.

Austin Group Defect 1546 is applied, adding optional support for "\?", "\+", and "\|".

A.9.3.4 Periods in BREs

There is no additional rationale provided for this section.

A.9.3.5 RE Bracket Expression

Range expressions are, historically, an integral part of REs. However, the requirements of
``natural language behavior’’ and portability do conflict. In the POSIX locale, ranges must be
treated according to the collating sequence and include such characters that fall within the range
based on that collating sequence, regardless of character values. In other locales, ranges have
unspecified behavior.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3711

127416

127417

127418

127419

127420

127421

127422

127423

127424

127425

127426

127427

127428

127429

127430

127431

127432

127433

127434

127435

127436

127437

127438

127439

127440

127441

127442

127443

127444

127445

127446

127447

127448

127449

127450

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Rationale for Base Definitions

Some historical implementations allow range expressions where the ending range point of one
range is also the starting point of the next (for instance, "[a-m-o]"). This behavior should not
be permitted, but to avoid breaking historical implementations, it is now undefined whether it is
a valid expression and how it should be interpreted.

Current practice in awk and lex is to accept escape sequences in bracket expressions as per XBD
Table 5-1 (on page 113), while the normal ERE behavior is to regard such a sequence as
consisting of two characters. Allowing the awk/lex behavior in EREs would change the normal
behavior in an unacceptable way; it is expected that awk and lex will decode escape sequences in
EREs before passing them to regcomp() or comparable routines. Each utility describes the escape
sequences it accepts as an exception to the rules in this section; the list is not the same, for
historical reasons.

As noted previously, the new syntax and rules have been added to accommodate other
languages than English. The remainder of this section describes the rationale for these
modifications.

In the POSIX locale, a regular expression that starts with a range expression matches a set of
strings that are contiguously sorted, but this is not necessarily true in other locales. For example,
a French locale might have the following behavior:

$ ls
alpha Alpha estimé ESTIMÉ été eurêka
$ ls [a-e]*
alpha Alpha estimé eurêka

Such disagreements between matching and contiguous sorting are unavoidable because POSIX
sorting cannot be implemented in terms of a deterministic finite-state automaton (DFA), but
range expressions by design are implementable in terms of DFAs.

Historical implementations used native character order to interpret range expressions. The
ISO POSIX-2: 1993 standard instead required collating element order (CEO): the order that
collating elements were specified between the order_start and order_end keywords in the
LC_COLLATE category of the current locale. CEO had some advantages in portability over the
native character order, but it also had some disadvantages:

• CEO could not feasibly be mimicked in user code, leading to inconsistencies between
POSIX matchers and matchers in popular user programs like Emacs, ksh, and Perl.

• CEO caused range expressions to match accented and capitalized letters contrary to many
users’ expectations. For example, "[a-e]" typically matched both 'E' and 'á' but
neither 'A' nor 'é'.

• CEO was not consistent across implementations. In practice, CEO was often less portable
than native character order. For example, it was common for the CEOs of two
implementation-supplied locales to disagree, even if both locales were named "da_DK".

Because of these problems, some implementations of regular expressions continued to use native
character order. Others used the collation sequence, which is more consistent with sorting than
either CEO or native order, but which departs further from the traditional POSIX semantics
because it generally requires "[a-e]" to match either 'A' or 'E' but not both. As a result of
this kind of implementation variation, programmers who wanted to write portable regular
expressions could not rely on the ISO POSIX-2: 1993 standard guarantees in practice.

While revising the standard, lengthy consideration was given to proposals to attack this problem
by adding an API for querying the CEO to allow user-mode matchers, but none of these
proposals had implementation experience and none achieved consensus. Leaving the standard
alone was also considered, but rejected due to the problems described above.

3712 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127451

127452

127453

127454

127455

127456

127457

127458

127459

127460

127461

127462

127463

127464

127465

127466

127467

127468

127469

127470

127471

127472

127473

127474

127475

127476

127477

127478

127479

127480

127481

127482

127483

127484

127485

127486

127487

127488

127489

127490

127491

127492

127493

127494

127495

127496

127497

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Regular Expressions

The current standard leaves unspecified the behavior of a range expression outside the POSIX
locale. This makes it clearer that conforming applications should avoid range expressions
outside the POSIX locale, and it allows implementations and compatible user-mode matchers to
interpret range expressions using native order, CEO, collation sequence, or other, more
advanced techniques. The concerns which led to this change were raised in IEEE PASC
interpretation 1003.2 #43 and others, and related to ambiguities in the specification of how
multi-character collating elements should be handled in range expressions. These ambiguities
had led to multiple interpretations of the specification, in conflicting ways, which led to varying
implementations. As noted above, efforts were made to resolve the differences, but no solution
has been found that would be specific enough to allow for portable software while not
invalidating existing implementations.

The standard developers recognize that collating elements are important, such elements being
common in several European languages; for example, 'ch' or 'll' in traditional Spanish;
'aa' in several Scandinavian languages. Existing internationalized implementations have
processed, and continue to process, these elements in range expressions. Efforts are expected to
continue in the future to find a way to define the behavior of these elements precisely and
portably.

The ISO POSIX-2: 1993 standard required "[b-a]" to be an invalid expression in the POSIX
locale, but this requirement has been relaxed in this version of the standard so that "[b-a]" can
instead be treated as a valid expression that does not match any string.

The standard specifies three possible behaviors for regular expressions such as "[:alpha:]".
One behavior is the traditional implementation, which behaves like "[:ahlp]". Another, for
alignment with the tr utility, is to treat it like "[[:alpha:]]". And finally, the standard allows
rejecting the regular expression as invalid, as a means of alerting a user to the non-portable
aspect of that regular expression. The set of regular expressions with this undefined behavior is
limited solely to the expressions where the outer '[' and ']' of the bracket expression can be
confused with the missing bracket pair '[' and ']' necessary to form a collating symbol,
equivalence class, or character class; thus "[_:alpha:]" or "[::]" do not trigger the
unspecified behavior.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0044 [938], XBD/TC2-2008/0045 [872],
XBD/TC2-2008/0046 [938], XBD/TC2-2008/0047 [584], and XBD/TC2-2008/0048 [584] are
applied.

Austin Group Defect 948 is applied, requiring that an ordinary character in a matching list only
matches that character.

Austin Group Defect 1190 is applied, clarifying which characters lose their special meaning
inside a bracket expression.

Austin Group Defect 1288 is applied, changing ``rejected as an error ’’ to ``treated as an invalid
bracket expression’’.

A.9.3.6 BREs Matching Multiple Characters

The limit of nine back-references to subexpressions in the RE is based on the use of a single-digit
identifier; increasing this to multiple digits would break historical applications. This does not
imply that only nine subexpressions are allowed in REs. The following is a valid BRE with ten
subexpressions:

\(\(\(ab\)*c\)*d\)\(ef\)*\(gh\)\{2\}\(ij\)*\(kl\)*\(mn\)*\(op\)*\(qr\)*

The standard developers regarded the common historical behavior, which supported "\n*", but
not "\n\{min,max\}", "\(...\)*", or "\(...\)\{min,max\}", as a non-intentional

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3713

127498

127499

127500

127501

127502

127503

127504

127505

127506

127507

127508

127509

127510

127511

127512

127513

127514

127515

127516

127517

127518

127519

127520

127521

127522

127523

127524

127525

127526

127527

127528

127529

127530

127531

127532

127533

127534

127535

127536

127537

127538

127539

127540

127541

127542

127543

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Rationale for Base Definitions

result of a specific implementation, and they supported both duplication and interval
expressions following subexpressions and back-references.

The changes to the processing of the back-reference expression remove an unspecified or
ambiguous behavior in the Shell and Utilities volume of POSIX.1-2024, aligning it with the
requirements specified for the regcomp() expression, and is the result of PASC Interpretation
1003.2-92 #43 submitted for the ISO POSIX-2: 1993 standard.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0049 [595] is applied.

A.9.3.7 BRE Precedence

There is no additional rationale provided for this section.

A.9.3.8 BRE Expression Anchoring

Often, the <dollar-sign> is viewed as matching the ending <newline> in text files. This is not
strictly true; the <newline> is typically eliminated from the strings to be matched, and the
<dollar-sign> matches the terminating null character.

The ability of '^', '$', and '*' to be non-special in certain circumstances may be confusing to
some programmers, but this situation was changed only in a minor way from historical practice
to avoid breaking many historical scripts. Some consideration was given to making the use of
the anchoring characters undefined if not escaped and not at the beginning or end of strings.
This would cause a number of historical BREs, such as "2^10", "$HOME", and "$1.35", that
relied on the characters being treated literally, to become invalid.

However, one relatively uncommon case was changed to allow an extension used on some
implementations. Historically, the BREs "^foo" and "\(^foo\)" did not match the same
string, despite the general rule that subexpressions and entire BREs match the same strings. To
increase consensus, POSIX.1-2024 has allowed an extension on some implementations to treat
these two cases in the same way by declaring that anchoring may occur at the beginning or end
of a subexpression. Therefore, portable BREs that require a literal <circumflex> at the beginning
or a <dollar-sign> at the end of a subexpression must escape them. Note that a BRE such as
"a\(^bc\)" will either match "a^bc" or nothing on different systems under the rules.

ERE anchoring has been different from BRE anchoring in all historical systems. An unescaped
anchor character has never matched its literal counterpart outside a bracket expression. Some
implementations treated "foo$bar" as a valid expression that never matched anything; others
treated it as invalid. POSIX.1-2024 mandates the former, valid unmatched behavior.

Some implementations have extended the BRE syntax to add alternation. For example, the
subexpression "\(foo$\|bar\)" would match either "foo" at the end of the string or "bar"
anywhere. The extension is triggered by the use of the undefined "\|" sequence. Because the
BRE is undefined for portable scripts, the extending system is free to make other assumptions,
such that the '$' represents the end-of-line anchor in the middle of a subexpression. If it were
not for the extension, the '$' would match a literal <dollar-sign> under the rules.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0049 [595] is applied.

Austin Group Defect 1546 is applied, adding optional support for "\?", "\+", and "\|".

Austin Group Defect 1579 is applied, eliminating an inconsistency between the list items relating
to <circumflex> and <dollar-sign>.

3714 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127544

127545

127546

127547

127548

127549

127550

127551

127552

127553

127554

127555

127556

127557

127558

127559

127560

127561

127562

127563

127564

127565

127566

127567

127568

127569

127570

127571

127572

127573

127574

127575

127576

127577

127578

127579

127580

127581

127582

127583

127584

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Regular Expressions

A.9.4 Extended Regular Expressions

As with BREs, the standard developers decided to make the interpretation of escaped ordinary
characters undefined.

The <right-parenthesis> is not listed as an ERE special character because it is only special in the
context of a preceding <left-parenthesis>. If found without a preceding <left-parenthesis>, the
<right-parenthesis> has no special meaning.

The interval expression, "{m,n}", has been added to EREs. Historically, the interval expression
has only been supported in some ERE implementations. The standard developers estimated that
the addition of interval expressions to EREs would not decrease consensus and would also make
BREs more of a subset of EREs than in many historical implementations.

It was suggested that, in addition to interval expressions, back-references ('\n') should also be
added to EREs. This was rejected by the standard developers as likely to decrease consensus.

In historical implementations, multiple duplication symbols are usually interpreted from left to
right and treated as additive. As an example, "a+*b" matches zero or more instances of 'a'
followed by a 'b'. In POSIX.1-2024, multiple duplication symbols are undefined; that is, they
cannot be relied upon for conforming applications. One reason for this is to provide some scope
for future enhancements.

The precedence of operations differs between EREs and those in lex; in lex, for historical reasons,
interval expressions have a lower precedence than concatenation.

Austin Group Defect 1139 is applied, making minor editorial changes to several subsections of
this section and changing them to require that, when not inside a bracket expression, "\]"
matches ']' and "\}" matches '}'.

A.9.4.1 EREs Matching a Single Character or Collating Element

There is no additional rationale provided for this section.

A.9.4.2 ERE Ordinary Characters

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0050 [554] is applied.

A.9.4.3 ERE Special Characters

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0050 [554] is applied.

A.9.4.4 Periods in EREs

There is no additional rationale provided for this section.

A.9.4.5 ERE Bracket Expression

There is no additional rationale provided for this section.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3715

127585

127586

127587

127588

127589

127590

127591

127592

127593

127594

127595

127596

127597

127598

127599

127600

127601

127602

127603

127604

127605

127606

127607

127608

127609

127610

127611

127612

127613

127614

127615

127616

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Regular Expressions Rationale for Base Definitions

A.9.4.6 EREs Matching Multiple Characters

Austin Group Defects 793 and 1329 are applied, adding the repetition modifier '?' and the
REG_MINIMAL flag.

A.9.4.7 ERE Alternation

There is no additional rationale provided for this section.

A.9.4.8 ERE Precedence

There is no additional rationale provided for this section.

A.9.4.9 ERE Expression Anchoring

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0051 [595] is applied.

A.9.5 Regular Expression Grammar

The grammars are intended to represent the range of acceptable syntaxes available to
conforming applications. There are instances in the text where undefined constructs are
described; as explained previously, these allow implementation extensions. There is no intended
requirement that an implementation extension must somehow fit into the grammars shown
here.

The BRE grammar does not permit L_ANCHOR or R_ANCHOR inside "\(" and "\)" (which
implies that '^' and '$' are ordinary characters). This reflects the semantic limits on the
application, as noted in XBD Section 9.3.8 (on page 186). Implementations are permitted to
extend the language to interpret '^' and '$' as anchors in these locations, and as such,
conforming applications cannot use unescaped '^' and '$' in positions inside "\(" and "\)"
that might be interpreted as anchors.

The ERE grammar does not permit several constructs that XBD Section 9.4.2 (on page 187) and
Section 9.4.3 (on page 188) specify as having undefined results:

• ORD_CHAR preceded by <backslash>

• ERE_dupl_symbol(s) appearing first in an ERE, or immediately following '|', '^', or '('

• '{' not part of a valid ERE_dupl_symbol

• '|' appearing first or last in an ERE, or immediately following '|' or '(', or
immediately preceding ')'

Implementations are permitted to extend the language to allow these. Conforming applications
cannot use such constructs.

A.9.5.1 BRE/ERE Grammar Lexical Conventions

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0052 [554] is applied.

Austin Group Defect 1139 is applied, updating QUOTED_CHAR to add \] to the BRE list and
add \] and \} to the ERE list, and changing ``outside bracket expressions’’ to ``except inside
bracket expressions’’.

Austin Group Defect 1546 is applied, adding optional support for \?, \+, and \| in BREs.

3716 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127617

127618

127619

127620

127621

127622

127623

127624

127625

127626

127627

127628

127629

127630

127631

127632

127633

127634

127635

127636

127637

127638

127639

127640

127641

127642

127643

127644

127645

127646

127647

127648

127649

127650

127651

127652

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Regular Expressions

A.9.5.2 RE and Bracket Expression Grammar

The removal of the Back_open_paren Back_close_paren option from the nondupl_RE specification is
the result of PASC Interpretation 1003.2-92 #43 submitted for the ISO POSIX-2: 1993 standard.
Although the grammar required support for null subexpressions, this section does not describe
the meaning of, and historical practice did not support, this construct.

Austin Group Defect 1546 is applied, adding optional support for \?, \+, and \| in BREs.

A.9.5.3 ERE Grammar

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0052 [554] and XBD/TC2-2008/0053
[916] are applied.

A.10 Directory Structure and Devices

A.10.1 Directory Structure and Files

A description of the historical /usr/tmp was omitted, removing any concept of differences in
emphasis between the / and /usr directories. The descriptions of /bin, /usr/bin, /lib, and /usr/lib
were omitted because they are not useful for applications. In an early draft, a distinction was
made between system and application directory usage, but this was not found to be useful.

The directories / and /dev are included because the notion of a hierarchical directory structure is
key to other information presented elsewhere in POSIX.1-2024. In early drafts, it was argued that
special devices and temporary files could conceivably be handled without a directory structure
on some implementations. For example, the system could treat the characters "/tmp" as a
special token that would store files using some non-POSIX file system structure. This notion was
rejected by the standard developers, who required that all the files in this section be
implemented via POSIX file systems.

The /tmp directory is retained in POSIX.1-2024 to accommodate historical applications that
assume its availability. Implementations are encouraged to provide suitable directory names in
the environment variable TMPDIR and applications are encouraged to use the contents of
TMPDIR for creating temporary files.

The standard files /dev/null and /dev/tty are required to be both readable and writable to allow
applications to have the intended historical access to these files.

The standard file /dev/console has been added for alignment with the Single UNIX
Specification.

A.10.2 Output Devices and Terminal Types

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/17 is applied, making it clear that the
requirements for documenting terminal support are in the system documentation.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0054 [967] is applied.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3717

127653

127654

127655

127656

127657

127658

127659

127660

127661

127662

127663

127664

127665

127666

127667

127668

127669

127670

127671

127672

127673

127674

127675

127676

127677

127678

127679

127680

127681

127682

127683

127684

127685

127686

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Rationale for Base Definitions

A.11 General Terminal Interface
If the implementation does not support this interface on any device types, it should behave as if
it were being used on a device that is not a terminal device (in most cases errno will be set to
[ENOTTY] on return from functions defined by this interface). This is based on the fact that
many applications are written to run both interactively and in some non-interactive mode, and
they adapt themselves at runtime. Requiring that they all be modified to test an environment
variable to determine whether they should try to adapt is unnecessary. On a system that
provides no general terminal interface, providing all the entry points as stubs that return
[ENOTTY] (or an equivalent, as appropriate) has the same effect and requires no changes to the
application.

Although the needs of both interface implementors and application developers were addressed
throughout POSIX.1-2024, this section pays more attention to the needs of the latter. This is
because, while many aspects of the programming interface can be hidden from the user by the
application developer, the terminal interface is usually a large part of the user interface.
Although to some extent the application developer can build missing features or work around
inappropriate ones, the difficulties of doing that are greater in the terminal interface than
elsewhere. For example, efficiency prohibits the average program from interpreting every
character passing through it in order to simulate character erase, line kill, and so on. These
functions should usually be done by the operating system, possibly at the interrupt level.

The tc*() functions were introduced as a way of avoiding the problems inherent in the
traditional ioctl() function and in variants of it that were proposed. For example, tcsetattr() is
specified in place of the use of the TCSETA ioctl() command function. This allows specification
of all the arguments in a manner consistent with the ISO C standard unlike the varying third
argument of ioctl(), which is sometimes a pointer (to any of many different types) and
sometimes an int.

The advantages of this new method include:

• It allows strict type checking.

• The direction of transfer of control data is explicit.

• Portable capabilities are clearly identified.

• The need for a general interface routine is avoided.

• Size of the argument is well-defined (there is only one type).

The disadvantages include:

• No historical implementation used the new method.

• There are many small routines instead of one general-purpose one.

• The historical parallel with fcntl() is broken.

The issue of modem control was excluded from POSIX.1-2024 on the grounds that:

• It was concerned with setting and control of hardware timers.

• The appropriate timers and settings vary widely internationally.

• Feedback from European computer manufacturers indicated that this facility was not
consistent with European needs and that specification of such a facility was not a
requirement for portability.

3718 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127687

127688

127689

127690

127691

127692

127693

127694

127695

127696

127697

127698

127699

127700

127701

127702

127703

127704

127705

127706

127707

127708

127709

127710

127711

127712

127713

127714

127715

127716

127717

127718

127719

127720

127721

127722

127723

127724

127725

127726

127727

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Terminal Interface

A.11.1 Interface Characteristics

A.11.1.1 Opening a Terminal Device File

The O_TTY_INIT flag for open() has been added to POSIX.1-2024 to solve a problem
encountered by applications written for earlier versions of this standard which need to open a
modem or similar device and initialize all of the parameter settings. Using the
tcgetattr()-modify-tcsetattr() method mandated by the standard could result in non-conforming
behavior if the device had previously been used with non-conforming parameter settings, on
implementations which do not reset the parameter settings in between the last close of the
device by one application and the first open by another application. To avoid this problem, some
application developers were resorting to using memset() to zero the termios structure before
setting all of the standard parameters, but this risks non-conforming behavior on systems where
some non-standard parameter needs a non-zero value in order for the terminal to behave in a
conforming manner.

On systems which do reset the parameter settings to defaults between uses of a terminal device,
it is expected that either O_TTY_INIT will have the value zero or open(ttypath,
O_RDWR|O_TTY_INIT) will do nothing additional.

The standard developers considered an alternative solution of a special fildes argument for the
tcgetattr() call to obtain default parameters. However, this would not be adequate if a system
supports several different types of terminal device and the default settings need to differ
between the different types. With the O_TTY_INIT open flag, the implementor can determine
which device type is being opened.

The standard developers also considered a special POSIX_TTY_INIT value for the termios
structure used in tcsetattr(), which would reset the values if used immediately after an open()
call. However, it was felt that this would lead to confusion amongst application developers who
wanted to reset the parameters at other points, and implementations might diverge.

Austin Group Defect 1466 is applied, changing the terminology used for pseudo-terminal
devices.

A.11.1.2 Process Groups

There is a potential race when the members of the foreground process group on a terminal leave
that process group, either by exit or by changing process groups. After the last process exits the
process group, but before the foreground process group ID of the terminal is changed (usually
by a job control shell), it would be possible for a new process to be created with its process ID
equal to the terminal’s foreground process group ID. That process might then become the
process group leader and accidentally be placed into the foreground on a terminal that was not
necessarily its controlling terminal. As a result of this problem, the controlling terminal is
defined to not have a foreground process group during this time.

The cases where a controlling terminal has no foreground process group occur when all
processes in the foreground process group either terminate and are waited for or join other
process groups via setpgid() or setsid(). If the process group leader terminates, this is the first
case described; if it leaves the process group via setpgid(), this is the second case described (a
process group leader cannot successfully call setsid()). When one of those cases causes a
controlling terminal to have no foreground process group, it has two visible effects on
applications. The first is the value returned by tcgetpgrp(). The second (which occurs only in the
case where the process group leader terminates) is the sending of signals in response to special

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3719

127728

127729

127730

127731

127732

127733

127734

127735

127736

127737

127738

127739

127740

127741

127742

127743

127744

127745

127746

127747

127748

127749

127750

127751

127752

127753

127754

127755

127756

127757

127758

127759

127760

127761

127762

127763

127764

127765

127766

127767

127768

127769

127770

127771

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Rationale for Base Definitions

input characters. The intent of POSIX.1-2024 is that no process group be wrongly identified as
the foreground process group by tcgetpgrp() or unintentionally receive signals because of
placement into the foreground.

In 4.3 BSD, the old process group ID continues to be used to identify the foreground process
group and is returned by the function equivalent to tcgetpgrp(). In that implementation it is
possible for a newly created process to be assigned the same value as a process ID and then form
a new process group with the same value as a process group ID. The result is that the new
process group would receive signals from this terminal for no apparent reason, and
POSIX.1-2024 precludes this by forbidding a process group from entering the foreground in this
way. It would be more direct to place part of the requirement made by the last sentence under
fork(), but there is no convenient way for that section to refer to the value that tcgetpgrp()
returns, since in this case there is no process group and thus no process group ID.

One possibility for a conforming implementation is to behave similarly to 4.3 BSD, but to
prevent this reuse of the ID, probably in the implementation of fork(), as long as it is in use by
the terminal.

Another possibility is to recognize when the last process stops using the terminal’s foreground
process group ID, which is when the process group lifetime ends, and to change the terminal’s
foreground process group ID to a reserved value that is never used as a process ID or process
group ID. (See the definition of process group lifetime in the definitions section.) The process ID
can then be reserved until the terminal has another foreground process group.

The 4.3 BSD implementation permits the leader (and only member) of the foreground process
group to leave the process group by calling the equivalent of setpgid() and to later return,
expecting to return to the foreground. There are no known application needs for this behavior,
and POSIX.1-2024 neither requires nor forbids it (except that it is forbidden for session leaders)
by leaving it unspecified.

A.11.1.3 The Controlling Terminal

POSIX.1-2024 does not specify a mechanism by which to allocate a controlling terminal. This is
normally done by a system utility (such as getty) and is considered an administrative feature
outside the scope of POSIX.1-2024.

Historical implementations allocate controlling terminals on certain open() calls. Since open() is
part of POSIX.1, its behavior had to be dealt with. The traditional behavior is not required
because it is not very straightforward or flexible for either implementations or applications.
However, because of its prevalence, it was not practical to disallow this behavior either. Thus, a
mechanism was standardized to ensure portable, predictable behavior in open().

Some historical implementations deallocate a controlling terminal on the last system-wide close.
This behavior in neither required nor prohibited. Even on implementations that do provide this
behavior, applications generally cannot depend on it due to its system-wide nature.

A.11.1.4 Terminal Access Control

The access controls described in this section apply only to a process that is accessing its
controlling terminal. A process accessing a terminal that is not its controlling terminal is
effectively treated the same as a member of the foreground process group. While this may seem
unintuitive, note that these controls are for the purpose of job control, not security, and job
control relates only to the controlling terminal of a process. Normal file access permissions
handle security.

If the process calling read() or write() is in a background process group that is orphaned, it is not

3720 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127772

127773

127774

127775

127776

127777

127778

127779

127780

127781

127782

127783

127784

127785

127786

127787

127788

127789

127790

127791

127792

127793

127794

127795

127796

127797

127798

127799

127800

127801

127802

127803

127804

127805

127806

127807

127808

127809

127810

127811

127812

127813

127814

127815

127816

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Terminal Interface

desirable to stop the process group, as it is no longer under the control of a job control shell that
could put it into the foreground again. Accordingly, calls to read() or write() functions by such
processes receive an immediate error return. This is different from 4.2 BSD, which kills orphaned
processes that receive terminal stop signals.

The foreground/background/orphaned process group check performed by the terminal driver
must be repeatedly performed until the calling process moves into the foreground or until the
process group of the calling process becomes orphaned. That is, when the terminal driver
determines that the calling process is in the background and should receive a job control signal,
it sends the appropriate signal (SIGTTIN or SIGTTOU) to every process in the process group of
the calling process and then it allows the calling process to immediately receive the signal. The
latter is typically performed by blocking the process so that the signal is immediately noticed.
Note, however, that after the process finishes receiving the signal and control is returned to the
driver, the terminal driver must re-execute the foreground/background/orphaned process
group check. The process may still be in the background, either because it was continued in the
background by a job control shell, or because it caught the signal and did nothing.

The terminal driver repeatedly performs the foreground/background/orphaned process group
checks whenever a process is about to access the terminal. In the case of write() or the control
tc*() functions, the check is performed at the entry of the function. In the case of read(), the
check is performed not only at the entry of the function, but also after blocking the process to
wait for input characters (if necessary). That is, once the driver has determined that the process
calling the read() function is in the foreground, it attempts to retrieve characters from the input
queue. If the queue is empty, it blocks the process waiting for characters. When characters are
available and control is returned to the driver, the terminal driver must return to the repeated
foreground/background/orphaned process group check again. The process may have moved
from the foreground to the background while it was blocked waiting for input characters.

Austin Group Defect 1151 is applied, adding tcsetwinsize().

A.11.1.5 Input Processing and Reading Data

There is no additional rationale provided for this section.

A.11.1.6 Canonical Mode Input Processing

The term ``character ’’ is intended here. ERASE should erase the last character, not the last byte.
In the case of multi-byte characters, these two may be different.

4.3 BSD has a WERASE character that erases the last ``word’’ typed (but not any preceding
<blank> or <tab> characters). A word is defined as a sequence of non-<blank> characters, with
<tab> characters counted as <blank> characters. Like ERASE, WERASE does not erase beyond
the beginning of the line. This WERASE feature has not been specified in POSIX.1 because it is
difficult to define in the international environment. It is only useful for languages where words
are delimited by <blank> characters. In some ideographic languages, such as Japanese and
Chinese, words are not delimited at all. The WERASE character should presumably go back to
the beginning of a sentence in those cases; practically, this means it would not be used much for
those languages.

It should be noted that there is a possible inherent deadlock if the application and
implementation conflict on the value of {MAX_CANON}. With ICANON set (if IXOFF is
enabled) and more than {MAX_CANON} characters transmitted without a <linefeed>,
transmission will be stopped, the <linefeed> (or <carriage-return> when ICRLF is set) will never
arrive, and the read() will never be satisfied.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3721

127817

127818

127819

127820

127821

127822

127823

127824

127825

127826

127827

127828

127829

127830

127831

127832

127833

127834

127835

127836

127837

127838

127839

127840

127841

127842

127843

127844

127845

127846

127847

127848

127849

127850

127851

127852

127853

127854

127855

127856

127857

127858

127859

127860

127861

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Rationale for Base Definitions

An application should not set IXOFF if it is using canonical mode unless it knows that (even in
the face of a transmission error) the conditions described previously cannot be met or unless it is
prepared to deal with the possible deadlock in some other way, such as timeouts.

It should also be noted that this can be made to happen in non-canonical mode if the trigger
value for sending IXOFF is less than VMIN and VTIME is zero.

A.11.1.7 Non-Canonical Mode Input Processing

Some points to note about MIN and TIME:

1. The interactions of MIN and TIME are not symmetric. For example, when MIN>0 and
TIME=0, TIME has no effect. However, in the opposite case where MIN=0 and TIME>0,
both MIN and TIME play a role in that MIN is satisfied with the receipt of a single
character.

2. Also note that in case A (MIN>0, TIME>0), TIME represents an inter-character timer,
while in case C (MIN=0, TIME>0), TIME represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and B, where
MIN>0, exist to handle burst-mode activity (for example, file transfer programs) where a
program would like to process at least MIN characters at a time. In case A, the inter-character
timer is activated by a user as a safety measure; in case B, it is turned off.

Cases C and D exist to handle single-character timed transfers. These cases are readily adaptable
to screen-based applications that need to know if a character is present in the input queue before
refreshing the screen. In case C, the read is timed; in case D, it is not.

Another important note is that MIN is always just a minimum. It does not denote a record
length. That is, if a program does a read of 20 bytes, MIN is 10, and 25 characters are present, 20
characters are returned to the user. In the special case of MIN=0, this still applies: if more than
one character is available, they all will be returned immediately.

A.11.1.8 Writing Data and Output Processing

There is no additional rationale provided for this section.

A.11.1.9 Special Characters

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0055 [745] is applied.

A.11.1.10 Modem Disconnect

There is no additional rationale provided for this section.

A.11.1.11 Closing a Terminal Device File

POSIX.1-2024 does not specify that a close() on a terminal device file include the equivalent of a
call to tcflow(fd,TCOON).

An implementation that discards output at the time close() is called after reporting the return
value to the write() call that data was written does not conform with POSIX.1-2024. An
application has functions such as tcdrain(), tcflush(), and tcflow() available to obtain the detailed
behavior it requires with respect to flushing of output.

At the time of the last close on a terminal device, an application relinquishes any ability to exert

3722 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127862

127863

127864

127865

127866

127867

127868

127869

127870

127871

127872

127873

127874

127875

127876

127877

127878

127879

127880

127881

127882

127883

127884

127885

127886

127887

127888

127889

127890

127891

127892

127893

127894

127895

127896

127897

127898

127899

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions General Terminal Interface

flow control via tcflow().

A.11.2 Parameters that Can be Set

A.11.2.1 The termios Structure

This structure is part of an interface that, in general, retains the historic grouping of flags.
Although a more optimal structure for implementations may be possible, the degree of change
to applications would be significantly larger.

A.11.2.2 Input Modes

Some historical implementations treated a long break as multiple events, as many as one per
character time. The wording in POSIX.1 explicitly prohibits this.

Although the ISTRIP flag is normally superfluous with today’s terminal hardware and software,
it is historically supported. Therefore, applications may be using ISTRIP, and there is no
technical problem with supporting this flag. Also, applications may wish to receive only 7-bit
input bytes and may not be connected directly to the hardware terminal device (for example,
when a connection traverses a network).

Also, there is no requirement in general that the terminal device ensures that high-order bits
beyond the specified character size are cleared. ISTRIP provides this function for 7-bit
characters, which are common.

In dealing with multi-byte characters, the consequences of a parity error in such a character, or
in an escape sequence affecting the current character set, are beyond the scope of POSIX.1 and
are best dealt with by the application processing the multi-byte characters.

A.11.2.3 Output Modes

POSIX.1 does not describe post-processing of output to a terminal or detailed control of that
from a conforming application. (That is, translation of <newline> to <carriage-return> followed
by <linefeed> or <tab> processing.) There is nothing that a conforming application should do to
its output for a terminal because that would require knowledge of the operation of the terminal.
It is the responsibility of the operating system to provide post-processing appropriate to the
output device, whether it is a terminal or some other type of device.

Extensions to POSIX.1 to control the type of post-processing already exist and are expected to
continue into the future. The control of these features is primarily to adjust the interface between
the system and the terminal device so the output appears on the display correctly. This should
be set up before use by any application.

In general, both the input and output modes should not be set absolutely, but rather modified
from the inherited state.

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3723

127900

127901

127902

127903

127904

127905

127906

127907

127908

127909

127910

127911

127912

127913

127914

127915

127916

127917

127918

127919

127920

127921

127922

127923

127924

127925

127926

127927

127928

127929

127930

127931

127932

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Terminal Interface Rationale for Base Definitions

A.11.2.4 Control Modes

This section could be misread that the symbol ``CSIZE’’ is a title in the termios c_cflag field.
Although it does serve that function, it is also a required symbol, as a literal reading of POSIX.1
(and the caveats about typography) would indicate.

A.11.2.5 Local Modes

Non-canonical mode is provided to allow fast bursts of input to be read efficiently while still
allowing single-character input.

The ECHONL function historically has been in many implementations. Since there seems to be
no technical problem with supporting ECHONL, it is included in POSIX.1 to increase consensus.

The alternate behavior possible when ECHOK or ECHOE are specified with ICANON is
permitted as a compromise depending on what the actual terminal hardware can do. Erasing
characters and lines is preferred, but is not always possible.

A.11.2.6 Special Control Characters

Permitting VMIN and VTIME to overlap with VEOF and VEOL was a compromise for historical
implementations. Only when backwards-compatibility of object code is a serious concern to an
implementor should an implementation continue this practice. Correct applications that work
with the overlap (at the source level) should also work if it is not present, but not the reverse.

A.12 Utility Conventions

A.12.1 Utility Argument Syntax

The standard developers considered that recent trends toward diluting the SYNOPSIS sections
of historical reference pages to the equivalent of:

command [options][operands]

were a disservice to the reader. Therefore, considerable effort was placed into rigorous
definitions of all the command line arguments and their interrelationships. The relationships
depicted in the synopses are normative parts of POSIX.1-2024; this information is sometimes
repeated in textual form, but that is only for clarity within context.

The use of ``undefined’’ for conflicting argument usage and for repeated usage of the same
option is meant to prevent conforming applications from using conflicting arguments or
repeated options unless specifically allowed (as is the case with ls, which allows simultaneous,
repeated use of the −C, −l, and −1 options). Many historical implementations will tolerate this
usage, choosing either the first or the last applicable argument. This tolerance can continue, but
conforming applications cannot rely upon it. (Other implementations may choose to print usage
messages instead.)

The use of ``undefined’’ for conflicting argument usage also allows an implementation to make
reasonable extensions to utilities where the implementor considers mutually-exclusive options
according to POSIX.1-2024 to have a sensible meaning and result.

POSIX.1-2024 does not define the result of a command when an option-argument or operand is
not followed by ellipses and the application specifies more than one of that option-argument or

3724 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

127933

127934

127935

127936

127937

127938

127939

127940

127941

127942

127943

127944

127945

127946

127947

127948

127949

127950

127951

127952

127953

127954

127955

127956

127957

127958

127959

127960

127961

127962

127963

127964

127965

127966

127967

127968

127969

127970

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Utility Conventions

operand. This allows an implementation to define valid (although non-standard) behavior for
the utility when more than one such option or operand is specified.

The requirements for option-arguments are summarized as follows:

SYNOPSIS Shows:
−a arg −c[arg]

Conforming application uses: −a arg −carg or −c
System supports: −a arg and −aarg −carg and −c

Non-conforming applications may use: −aarg N/A

Earlier versions of this standard included obsolescent syntax which showed some options with
(mandatory) adjacent option-arguments in the SYNOPSIS for some utilities. These have since
been removed. For all options with mandatory option-arguments, the SYNOPSIS now shows
<blank> characters between the option and the option-argument; however, historical usage has
not been consistent in this area; therefore, <blank> characters are required to be used by
conforming applications and to be handled by all implementations, but implementations are
also required to handle an adjacent option-argument in order to preserve backwards-
compatibility for old scripts. One of the justifications for selecting the multiple-argument
method was that the single-argument case is inherently ambiguous when the option-argument
can legitimately be a null string.

POSIX.1-2024 explicitly states that digits are permitted as operands and option-arguments. The
lower and upper bounds for the values of the numbers used for operands and option-arguments
were derived from the ISO C standard values for {LONG_MIN} and {LONG_MAX}. The
requirement on the standard utilities is that numbers in the specified range do not cause a
syntax error, although the specification of a number need not be semantically correct for a
particular operand or option-argument of a utility. For example, the specification of:

dd obs=3000000000

would yield undefined behavior for the application and could be a syntax error because the
number 3 000 000 000 is outside of the range −2 147 483 647 to +2 147 483 647. On the other hand:

dd obs=2000000000

may cause some error, such as ``blocksize too large’’, rather than a syntax error.

POSIX.1-2008, Technical Corrigendum 2, XBD/TC2-2008/0056 [584] and XBD/TC2-2008/0057
[813] are applied.

Austin Group Defect 1062 is applied, correcting the spacing in some example SYNOPSIS lines.

A.12.2 Utility Syntax Guidelines

This section is based on the rules listed in the SVID. It was included for two reasons:

1. The individual utility descriptions in XCU Chapter 3 (on page 2573) needed a set of
common (although not universal) actions on which they could anchor their descriptions
of option and operand syntax. Most of the standard utilities actually do use these
guidelines, and many of their historical implementations use the getopt() function for
their parsing. Therefore, it was simpler to cite the rules and merely identify exceptions.

2. Developers of conforming applications need suggested guidelines if the POSIX
community is to avoid the chaos of historical UNIX system command syntax.

It is recommended that all future utilities and applications use these guidelines to enhance ``user

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3725

127971

127972

127973

127974

127975

127976

127977

127978

127979

127980

127981

127982

127983

127984

127985

127986

127987

127988

127989

127990

127991

127992

127993

127994

127995

127996

127997

127998

127999

128000

128001

128002

128003

128004

128005

128006

128007

128008

128009

128010

128011

128012

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Conventions Rationale for Base Definitions

portability’’. The fact that some historical utilities could not be changed (to avoid breaking
historical applications) should not deter this future goal.

The voluntary nature of the guidelines is highlighted by repeated uses of the word should
throughout. This usage should not be misinterpreted to imply that utilities that claim
conformance in their OPTIONS sections do not always conform.

Guidelines 1 and 2 encourage utility writers to use only characters from the portable character
set because use of locale-specific characters may make the utility inaccessible from other locales.
Use of uppercase letters is discouraged due to problems associated with porting utilities to
systems that do not distinguish between uppercase and lowercase characters in filenames. Use
of non-alphanumeric characters is discouraged due to the number of utilities that treat non-
alphanumeric characters in ``special’’ ways depending on context (such as the shell using white-
space characters to delimit arguments, various quote characters for quoting, the <dollar-sign> to
introduce variable expansion, etc.).

In XCU Section 2.9.1 (on page 2500), it is further stated that a command used in the Shell
Command Language cannot be named with a trailing <colon>.

Guideline 3 was changed to allow alphanumeric characters (letters and digits) from the
character set to allow compatibility with historical usage. Historical practice allows the use of
digits wherever practical, and there are no portability issues that would prohibit the use of
digits. In fact, from an internationalization viewpoint, digits (being non-language-dependent)
are preferable over letters (a −2 is intuitively self-explanatory to any user, while in the −f filename
the letter 'f' is a mnemonic aid only to speakers of Latin-based languages where ``filename’’
happens to translate to a word that begins with 'f'. Since Guideline 3 still retains the word
``single’’, multi-digit options are not allowed. Instances of historical utilities that used them have
been marked obsolescent, with the numbers being changed from option names to option-
arguments.

It was difficult to achieve a satisfactory solution to the problem of name space in option
characters. When the standard developers desired to extend the historical cc utility to accept
ISO C standard programs, they found that all of the portable alphabet was already in use by
various vendors. Thus, they had to devise a new name, c89 (subsequently superseded by c99
and now by c17), rather than something like cc −X. There were suggestions that implementors
be restricted to providing extensions through various means (such as using a <plus-sign> as the
option delimiter or using option characters outside the alphanumeric set) that would reserve all
of the remaining alphanumeric characters for future POSIX standards. These approaches were
resisted because they lacked the historical style of UNIX systems. Furthermore, if a vendor-
provided option should become commonly used in the industry, it would be a candidate for
standardization. It would be desirable to standardize such a feature using historical practice for
the syntax (the semantics can be standardized with any syntax). This would not be possible if
the syntax was one reserved for the vendor. However, since the standardization process may
lead to minor changes in the semantics, it may prove to be better for a vendor to use a syntax
that will not be affected by standardization.

Guideline 8 includes the concept of <comma>-separated lists in a single argument. It is up to the
utility to parse such a list itself because getopt() just returns the single string. This situation was
retained so that certain historical utilities would not violate the guidelines. Applications
preparing for international use should be aware of an occasional problem with
<comma>-separated lists: in some locales, the <comma> is used as the radix character. Thus, if
an application is preparing operands for a utility that expects a <comma>-separated list, it
should avoid generating non-integer values through one of the means that is influenced by
setting the LC_NUMERIC variable (such as awk, bc, printf, or printf()).

Unless explicitly stated otherwise in the utility description, Guideline 9 requires applications to

3726 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

128013

128014

128015

128016

128017

128018

128019

128020

128021

128022

128023

128024

128025

128026

128027

128028

128029

128030

128031

128032

128033

128034

128035

128036

128037

128038

128039

128040

128041

128042

128043

128044

128045

128046

128047

128048

128049

128050

128051

128052

128053

128054

128055

128056

128057

128058

128059

128060

128061

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Base Definitions Utility Conventions

put options before operands, and requires utilities to accept any such usage without
misinterpreting operands as options. For example, if an implementation of the printf utility
supports a −e option as an extension, the command:

printf %s -e

must output the string "-e" without interpreting the −e as an option. Similarly, the command:

ls myfile -l

must interpret the −l argument as a second file operand, not as a −l option.

Applications calling any utility with a first operand starting with '−' should usually specify − −,
as indicated by Guideline 10, to mark the end of the options. This is true even if the SYNOPSIS
in the Shell and Utilities volume of POSIX.1-2024 does not specify any options; implementations
may provide options as extensions to the Shell and Utilities volume of POSIX.1-2024. The
standard utilities that do not support Guideline 10 indicate that fact in the OPTIONS section of
the utility description.

Guideline 7 allows any string to be an option-argument; an option-argument can begin with any
character, can be − or − −, and can be an empty string. For example, the commands pr −h −, pr −h
− −, pr −h −d, pr −h +2, and pr −h ’ ’ contain the option-arguments −, − −, −d, +2, and an empty
string, respectively. Conversely, the command pr −h − − −d treats −d as an option, not as an
argument, because the −− is an option-argument here, not a delimiter.

Guideline 11 was modified to clarify that the order of different options should not matter
relative to one another. However, the order of repeated options that also have option-arguments
may be significant; therefore, such options are required to be interpreted in the order that they
are specified. The make utility is an instance of a historical utility that uses repeated options in
which the order is significant. Multiple files are specified by giving multiple instances of the −f
option; for example:

make -f common_header -f specific_rules target

Guideline 13 does not imply that all of the standard utilities automatically accept the operand
'−' to mean standard input or output, nor does it specify the actions of the utility upon
encountering multiple '−' operands. It simply says that, by default, '−' operands are not used
for other purposes in the file reading or writing (but not when using stat(), unlink(), touch, and
so on) utilities. In earlier versions of this standard, all information concerning actual treatment of
the '−' operand is found in the individual utility sections. Many implementations, however,
treated '−' as standard input or output and many applications depended on this behavior even
though it was not standard. This behavior is now implementation-defined. Portable applications
should not use '−' to mean standard input or output unless it is explicitly stated to do so in the
utility description and they should always use './−' if they intend to refer to a file named − in
the current working directory.

Guideline 14 is intended to prohibit implementations that would treat the command ls −l −d as if
it were ls −− −l −d or ls −l −− −d.

The standard permits implementations to have extensions that violate the Utility Syntax
Guidelines so long as when the utility is used in line with the forms defined by the standard it
follows the Utility Syntax Guidelines. Thus, head−42file and ls−−help are permitted extensions.
The intent is to allow extensions so long as the standard form is accepted and follows the
guidelines.

An area of concern was that as implementations mature, implementation-defined utilities and
implementation-defined utility options will result. The idea was expressed that there needed to
be a standard way, say an environment variable or some such mechanism, to identify
implementation-defined utilities separately from standard utilities that may have the same

Part A: Base Definitions Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3727

128062

128063

128064

128065

128066

128067

128068

128069

128070

128071

128072

128073

128074

128075

128076

128077

128078

128079

128080

128081

128082

128083

128084

128085

128086

128087

128088

128089

128090

128091

128092

128093

128094

128095

128096

128097

128098

128099

128100

128101

128102

128103

128104

128105

128106

128107

128108

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utility Conventions Rationale for Base Definitions

name. It was decided that there already exist several ways of dealing with this situation and that
it is outside of the scope to attempt to standardize in the area of non-standard items. A method
that exists on some historical implementations is the use of the so-called /local/bin or
/usr/local/bin directory to separate local or additional copies or versions of utilities. Another
method that is also used is to isolate utilities into completely separate domains. Still another
method to ensure that the desired utility is being used is to request the utility by its full
pathname. There are many approaches to this situation; the examples given above serve to
illustrate that there is more than one.

A.13 Namespace and Future Directions
Austin Group Defect 1071 is applied, adding this chapter.A.14 Headers

A.14.1 Format of Entries

Each header reference page has a common layout of sections describing the interface. This
layout is similar to the manual page or ``man’’ page format shipped with most UNIX systems,
and each header has sections describing the SYNOPSIS and DESCRIPTION. These are the two
sections that relate to conformance.

Additional sections are informative, and add considerable information for the application
developer. APPLICATION USAGE sections provide additional caveats, issues, and
recommendations to the developer. RATIONALE sections give additional information on the
decisions made in defining the interface.

FUTURE DIRECTIONS sections act as pointers to related work that may impact the interface in
the future, and often cautions the developer to architect the code to account for a change in this
area. Note that a future directions statement should not be taken as a commitment to adopt a
feature or interface in the future.

The CHANGE HISTORY section describes when the interface was introduced, and how it has
changed.

Option labels and margin markings in the page can be useful in guiding the application
developer.

A.14.2 Removed Headers in Issue 8

The headers removed in Issue 8 (from the Issue 7 base document) are as follows:

Removed Headers in Issue 8
<stropts.h> <trace.h>
<ulimit.h> <utime.h>

3728 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

128109

128110

128111

128112

128113

128114

128115

128116

128117

128118

128119

128120

128121

128122

128123

128124

128125

128126

128127

128128

128129

128130

128131

128132

128133

128134

128135

128136

128137

128138

128139

128140

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale (Informative)

Part B:

System Interfaces

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3729

128141

128142

128143

128144

128145

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

3730 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Appendix B

Rationale for System Interfaces

B.1 Introduction

B.1.1 Change History

The change history is provided as an informative section, to track changes from earlier versions
of this standard.

The following sections describe changes made to the System Interfaces volume of POSIX.1-2024
since Issue 7 of the base document. The CHANGE HISTORY section for each entry details the
technical changes that have been made in Issue 5 and later. Changes made before Issue 5 are not
included.

Changes from Issue 7 to Issue 8 (POSIX.1-2024)

The following list summarizes the major changes that were made in the System Interfaces
volume of POSIX.1-2024 from Issue 7 to Issue 8:

• The Open Group Standard, 2021, Additional APIs for the Base Specifications Issue 8, Part 1
is incorporated.

• The Open Group Standard, 2022, Additional APIs for the Base Specifications Issue 8, Part 2
is incorporated.

• IEEE Std 1003.26-2003 is incorporated.

• Existing functionality is aligned with the ISO/IEC 9899: 2018 standard.

• New functionality from the ISO/IEC 9899: 2018 standard is incorporated.

• Austin Group defect reports and IEEE Interpretations against IEEE Std 1003.1 are applied.

• The Open Group corrigenda and resolutions are applied.

• Features, marked obsolescent in the base document, have been considered for removal in
this version.

• The Device Control option is added.

• The IEC 60559 Complex Floating-Point option is added.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3731

128146

128147

128148

128149

128150

128151

128152

128153

128154

128155

128156

128157

128158

128159

128160

128161

128162

128163

128164

128165

128166

128167

128168

128169

128170

128171

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for System Interfaces

New Features in Issue 8

The functions first introduced in Issue 8 (over the Issue 7 base document) are as follows:

New Functions in Issue 8
_Fork()
aligned_alloc()
at_quick_exit()
atomic_compare_exchange_strong()
atomic_compare_exchange_strong_explicit()
atomic_compare_exchange_weak()
atomic_compare_exchange_weak_explicit()
atomic_exchange()
atomic_exchange_explicit()
atomic_fetch_add()
atomic_fetch_add_explicit()
atomic_fetch_and()
atomic_fetch_and_explicit()
atomic_fetch_or()
atomic_fetch_or_explicit()
atomic_fetch_sub()
atomic_fetch_sub_explicit()
atomic_fetch_xor()
atomic_fetch_xor_explicit()
atomic_flag_clear()
atomic_flag_clear_explicit()
atomic_flag_test_and_set()
atomic_flag_test_and_set_explicit()
atomic_init()
atomic_is_lock_free()
atomic_load()
atomic_load_explicit()
atomic_signal_fence()
atomic_store()
atomic_store_explicit()
atomic_thread_fence()
bind_textdomain_codeset()
bindtextdomain()
c16rtomb()

c32rtomb()
call_once()
cnd_broadcast()
cnd_destroy()
cnd_init()
cnd_signal()
cnd_timedwait()
cnd_wait()
dcgettext()
dcgettext_l()
dcngettext()
dcngettext_l()
dgettext()
dgettext_l()
dladdr()
dngettext()
dngettext_l()
getentropy()
getlocalename_l()
getresgid()
getresuid()
gettext()
gettext_l()
mbrtoc16()
mbrtoc32()
memmem()
mtx_destroy()
mtx_init()
mtx_lock()
mtx_timedlock()
mtx_trylock()
mtx_unlock()
ngettext()
ngettext_l()

posix_close()
posix_devctl()
posix_getdents()
ppoll()
pthread_cond_clockwait()
pthread_mutex_clocklock()
pthread_rwlock_clockrdlock()
pthread_rwlock_clockwrlock()
qsort_r()
quick_exit()
reallocarray()
sem_clockwait()
setresgid()
setresuid()
sig2str()
str2sig()
strlcat()
strlcpy()
textdomain()
thrd_create()
thrd_current()
thrd_detach()
thrd_equal()
thrd_exit()
thrd_join()
thrd_sleep()
thrd_yield()
timespec_get()
tss_create()
tss_delete()
tss_get()
tss_set()
wcslcat()
wcslcpy()

The following new headers are introduced in Issue 8:

New Headers in Issue 8
<devctl.h>
<libintl.h>
<stdalign.h>

<stdatomic.h>
<stdnoreturn.h>
<threads.h>

<uchar.h>

3732 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128172

128173

128174

128175

128176

128177

128178

128179

128180

128181

128182

128183

128184

128185

128186

128187

128188

128189

128190

128191

128192

128193

128194

128195

128196

128197

128198

128199

128200

128201

128202

128203

128204

128205

128206

128207

128208

128209

128210

128211

128212

128213

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces Introduction

Obsolescent Functions in Issue 8

The base functions moved to obsolescent status in Issue 8 (from the Issue 7 base document) are
as follows:

Obsolescent Base Functions in Issue 8
inet_addr() inet_ntoa()

The XSI functions moved to obsolescent status in Issue 8 (from the Issue 7 base document) are as
follows:

Obsolescent XSI Functions in Issue 8
encrypt() setkey()

Removed Functions in Issue 8

The functions removed in Issue 8 (from the Issue 7 base document) are as follows:

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3733

128214

128215

128216

128217

128218

128219

128220

128221

128222

128223

128224

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for System Interfaces

Removed Functions in Issue 8
_longjmp()
_setjmp()
_tolower()
_toupper()
fattach()
fdetach()
ftw()
getitimer()
getmsg()
getpmsg()
gets()
gettimeofday()
ioctl()
isascii()
isastream()
posix_trace_attr_destroy()
posix_trace_attr_getclockres()
posix_trace_attr_getcreatetime()
posix_trace_attr_getgenversion()
posix_trace_attr_getinherited()
posix_trace_attr_getlogfullpolicy()
posix_trace_attr_getlogsize()
posix_trace_attr_getmaxdatasize()
posix_trace_attr_getmaxsystemeventsize()
posix_trace_attr_getmaxusereventsize()
posix_trace_attr_getname()
posix_trace_attr_getstreamfullpolicy()
posix_trace_attr_getstreamsize()
posix_trace_attr_init()
posix_trace_attr_setinherited()
posix_trace_attr_setlogfullpolicy()
posix_trace_attr_setlogsize()
posix_trace_attr_setmaxdatasize()
posix_trace_attr_setname()
posix_trace_attr_setstreamfullpolicy()
posix_trace_attr_setstreamsize()
posix_trace_clear()
posix_trace_close()
posix_trace_create()
posix_trace_create_withlog()
posix_trace_event()

posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventid_open()
posix_trace_eventset_add()
posix_trace_eventset_del()
posix_trace_eventset_empty()
posix_trace_eventset_fill()
posix_trace_eventset_ismember()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_filter()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_open()
posix_trace_rewind()
posix_trace_set_filter()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_timedgetnext_event()
posix_trace_trid_eventid_open()
posix_trace_trygetnext_event()
pthread_getconcurrency()
pthread_setconcurrency()
putmsg()
putpmsg()
rand_r()
setitimer()
setpgrp()
sighold()
sigignore()
siginterrupt()
sigpause()
sigrelse()
sigset()
tempnam()
toascii()
ulimit()
utime()

3734 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128225

128226

128227

128228

128229

128230

128231

128232

128233

128234

128235

128236

128237

128238

128239

128240

128241

128242

128243

128244

128245

128246

128247

128248

128249

128250

128251

128252

128253

128254

128255

128256

128257

128258

128259

128260

128261

128262

128263

128264

128265

128266

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces Introduction

B.1.2 Relationship to Other Formal Standards

There is no additional rationale provided for this section.

B.1.3 Format of Entries

Each system interface reference page has a common layout of sections describing the interface.
This layout is similar to the manual page or ``man’’ page format shipped with most UNIX
systems, and each header has sections describing the SYNOPSIS, DESCRIPTION, RETURN
VALUE, and ERRORS. These are the four sections that relate to conformance.

Additional sections are informative, and add considerable information for the application
developer. EXAMPLES sections provide example usage. APPLICATION USAGE sections
provide additional caveats, issues, and recommendations to the developer. RATIONALE
sections give additional information on the decisions made in defining the interface.

FUTURE DIRECTIONS sections act as pointers to related work that may impact the interface in
the future, and often cautions the developer to architect the code to account for a change in this
area. Note that a future directions statement should not be taken as a commitment to adopt a
feature or interface in the future.

The CHANGE HISTORY section describes when the interface was introduced, and how it has
changed.

Option labels and margin markings in the page can be useful in guiding the application
developer.

B.2 General Information

B.2.1 Use and Implementation of Interfaces

B.2.1.1 Use and Implementation of Functions

The information concerning the use of functions was adapted from a description in the ISO C
standard. Here is an example of how an application program can protect itself from functions
that may or may not be macros, rather than true functions:

The atoi() function may be used in any of several ways:

• By use of its associated header (possibly generating a macro expansion):

#include <stdlib.h>
/* ... */
i = atoi(str);

• By use of its associated header (assuredly generating a true function call):

#include <stdlib.h>
#undef atoi
/* ... */
i = atoi(str);

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3735

128267

128268

128269

128270

128271

128272

128273

128274

128275

128276

128277

128278

128279

128280

128281

128282

128283

128284

128285

128286

128287

128288

128289

128290

128291

128292

128293

128294

128295

128296

128297

128298

128299

128300

128301

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

or:

#include <stdlib.h>
/* ... */
i = (atoi) (str);

• By explicit declaration:

extern int atoi (const char *);
/* ... */
i = atoi(str);

• By implicit declaration:

/* ... */
i = atoi(str);

(Assuming no function prototype is in scope. This is not allowed by the ISO C standard for
functions with variable arguments; furthermore, parameter type conversion ``widening’’ is
subject to different rules in this case.)

Note that the ISO C standard reserves names starting with '_' for the compiler. Therefore, the
compiler could, for example, implement an intrinsic, built-in function _asm_builtin_atoi(), which
it recognized and expanded into inline assembly code. Then, in <stdlib.h>, there could be the
following:

#define atoi(X) _asm_builtin_atoi(X)

The user’s ``normal’’ call to atoi() would then be expanded inline, but the implementor would
also be required to provide a callable function named atoi() for use when the application
requires it; for example, if its address is to be stored in a function pointer variable.

Implementors should note that since applications can #undef a macro in order to ensure that the
function is used, this means that it is not safe for implementations to use the names of any
standard functions in macro values, since the application could use #undef to ensure that no
macro exists and then use the same name for an identifier with local scope. For example,
historically it was common for a getchar() macro to be defined in <stdio.h> as:

#define getchar() getc(stdin)

This definition does not conform, because an application is allowed to use the identifier getc
with local scope, and the expansion of the getchar() macro would then pick up the local getc.
The following is conforming code, but would not compile with the above definition of getchar():

#include <stdio.h>
#undef getc

int main(void)
{

int getc;

getc = getchar();

return getc;
}

This does not only affect function-like macros. For example, the following definition does not
conform because there could be a local sysconf variable in scope when SIGRTMIN is expanded:

#define SIGRTMIN ((int)sysconf(_SC_SIGRT_MIN))

Implementors can avoid the problem by using aliases for standard functions instead of the

3736 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128302

128303

128304

128305

128306

128307

128308

128309

128310

128311

128312

128313

128314

128315

128316

128317

128318

128319

128320

128321

128322

128323

128324

128325

128326

128327

128328

128329

128330

128331

128332

128333

128334

128335

128336

128337

128338

128339

128340

128341

128342

128343

128344

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

actual function, with names that conforming applications cannot use for local variables. For
example:

#define SIGRTMIN ((int)__sysconf(_SC_SIGRT_MIN))

Austin Group Defect 655 is applied, making the requirement relating to explicit function
declarations apply only to functions from the ISO C standard.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1404 is applied, adding to the examples of invalid values for function
arguments.

B.2.1.2 Use and Implementation of Macros

There is no additional rationale provided for this section.

B.2.2 The Compilation Environment

B.2.2.1 POSIX.1 Symbols

This and the following section address the issue of ``name space pollution’’. The ISO C standard
requires that the name space beyond what it reserves not be altered except by explicit action of
the application developer. This section defines the actions to add the POSIX.1 symbols for those
headers where both the ISO C standard and POSIX.1 need to define symbols, and also where the
XSI option extends the base standard.

When headers are used to provide symbols, there is a potential for introducing symbols that the
application developer cannot predict. Ideally, each header should only contain one set of
symbols, but this is not practical for historical reasons. Thus, the concept of feature test macros is
included. Two feature test macros are explicitly defined by POSIX.1-2024; it is expected that
future versions may add to this.

Note: Feature test macros allow an application to announce to the implementation its desire to have
certain symbols and prototypes exposed. They should not be confused with the version test
macros and constants for options in <unistd.h> which are the implementation’s way of
announcing functionality to the application.

It is further intended that these feature test macros apply only to the headers specified by
POSIX.1-2024. Implementations are expressly permitted to make visible symbols not specified
by POSIX.1-2024, within both POSIX.1 and other headers, under the control of feature test
macros that are not defined by POSIX.1-2024.

The _POSIX_C_SOURCE Feature Test Macro

The POSIX.1-1990 standard specified a macro called _POSIX_SOURCE. This has been
superseded by _POSIX_C_SOURCE. This symbol will allow implementations to support various
versions of this standard simultaneously. For instance, when _POSIX_C_SOURCE is defined as
202405L, the system should make visible the same name space as permitted and required by the
POSIX.1-2024 standard. A special case is the one where the implementation wishes to make
available support for the 1990 version of the POSIX standard, in which instance when either
_POSIX_SOURCE is defined or _POSIX_C_SOURCE is defined as 1, the system should make
visible the same name space as permitted and required by the POSIX.1-1990 standard.

It is expected that C bindings to future POSIX standards will define new values for

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3737

128345

128346

128347

128348

128349

128350

128351

128352

128353

128354

128355

128356

128357

128358

128359

128360

128361

128362

128363

128364

128365

128366

128367

128368

128369

128370

128371

128372

128373

128374

128375

128376

128377

128378

128379

128380

128381

128382

128383

128384

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

_POSIX_C_SOURCE, with each new value reserving the name space for that new standard.

The _XOPEN_SOURCE Feature Test Macro

The feature test macro _XOPEN_SOURCE is provided as the announcement mechanism for the
application that it requires functionality from the Single UNIX Specification. _XOPEN_SOURCE
must be defined to the value 800 before the inclusion of any header to enable the functionality in
the Single UNIX Specification Version 5. Its definition subsumes the use of _POSIX_C_SOURCE.

An extract of code from a conforming application, that appears before any #include statements,
is given below:

#define _XOPEN_SOURCE 800 /* Single UNIX Specification, Version 5 */

#include ...

Note that the definition of _XOPEN_SOURCE with the value 800 makes the definition of
_POSIX_C_SOURCE redundant and it can safely be omitted.

The __STDC_WANT_LIB_EXT1__ Feature Test Macro

The ISO C standard specifies the feature test macro __STDC_WANT_LIB_EXT1__ as the
announcement mechanism for the application that it requires functionality from Annex K. It
specifies that the symbols specified in Annex K (if supported) are made visible when
__STDC_WANT_LIB_EXT1__ is 1 and are not made visible when it is 0, but leaves it unspecified
whether they are made visible when __STDC_WANT_LIB_EXT1__ is undefined. POSIX.1
requires that they are not made visible when the macro is undefined (except for those symbols
that are already explicitly allowed to be visible through the definition of _POSIX_C_SOURCE or
_XOPEN_SOURCE, or both).

POSIX.1 does not include the interfaces specified in Annex K of the ISO C standard, but allows
the symbols to be made visible in headers when requested by the application in order that
applications can use symbols from Annex K and symbols from POSIX.1 in the same translation
unit.

Austin Group Defect 1302 is applied, adding this subsection.

B.2.2.2 The Name Space

The reservation of identifiers is paraphrased from the ISO C standard. The text is included
because it needs to be part of POSIX.1-2024, regardless of possible changes in future versions of
the ISO C standard.

These identifiers may be used by implementations, particularly for feature test macros.
Implementations should not use feature test macro names that might be reasonably used by a
standard.

Including headers more than once is a reasonably common practice, and it should be carried
forward from the ISO C standard. More significantly, having definitions in more than one
header is explicitly permitted. Where the potential declaration is ``benign’’ (the same definition
twice) the declaration can be repeated, if that is permitted by the compiler. (This is usually true
of macros, for example.) In those situations where a repetition is not benign (for example,
typedefs), conditional compilation must be used. The situation actually occurs both within the
ISO C standard and within POSIX.1: time_t should be in <sys/types.h>, and the ISO C standard
mandates that it be in <time.h>.

The area of name space pollution versus additions to structures is difficult because of the macro
structure of C. The following discussion summarizes all the various problems with and

3738 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128385

128386

128387

128388

128389

128390

128391

128392

128393

128394

128395

128396

128397

128398

128399

128400

128401

128402

128403

128404

128405

128406

128407

128408

128409

128410

128411

128412

128413

128414

128415

128416

128417

128418

128419

128420

128421

128422

128423

128424

128425

128426

128427

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

objections to the issue.

Note the phrase ``user-defined macro’’. Users are not permitted to define macro names (or any
other name) beginning with "_[A-Z_]". Thus, the conflict cannot occur for symbols reserved
to the vendor’s name space, and the permission to add fields automatically applies, without
qualification, to those symbols.

1. Data structures (and unions) need to be defined in headers by implementations to meet
certain requirements of POSIX.1 and the ISO C standard.

2. The structures defined by POSIX.1 are typically minimal, and any practical
implementation would wish to add fields to these structures either to hold additional
related information or for backwards-compatibility (or both). Future standards (and de
facto standards) would also wish to add to these structures. Issues of field alignment
make it impractical (at least in the general case) to simply omit fields when they are not
defined by the particular standard involved.

The dirent structure is an example of such a minimal structure (although one could argue
about whether the other fields need visible names). The st_rdev field of most
implementations’ stat structure is a common example where extension is needed and
where a conflict could occur.

3. Fields in structures are in an independent name space, so the addition of such fields
presents no problem to the C language itself in that such names cannot interact with
identically named user symbols because access is qualified by the specific structure name.

4. There is an exception to this: macro processing is done at a lexical level. Thus, symbols
added to a structure might be recognized as user-provided macro names at the location
where the structure is declared. This only can occur if the user-provided name is declared
as a macro before the header declaring the structure is included. The user’s use of the
name after the declaration cannot interfere with the structure because the symbol is
hidden and only accessible through access to the structure. Presumably, the user would
not declare such a macro if there was an intention to use that field name.

5. Macros from the same or a related header might use the additional fields in the structure,
and those field names might also collide with user macros. Although this is a less
frequent occurrence, since macros are expanded at the point of use, no constraint on the
order of use of names can apply.

6. An ``obvious’’ solution of using names in the reserved name space and then redefining
them as macros when they should be visible does not work because this has the effect of
exporting the symbol into the general name space. For example, given a (hypothetical)
system-provided header <h.h>, and two parts of a C program in a.c and b.c, in header
<h.h>:

struct foo {
int __i;

}

#ifdef _FEATURE_TEST
#define i __i;
#endif

In file a.c:

#include h.h
extern int i;
...

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3739

128428

128429

128430

128431

128432

128433

128434

128435

128436

128437

128438

128439

128440

128441

128442

128443

128444

128445

128446

128447

128448

128449

128450

128451

128452

128453

128454

128455

128456

128457

128458

128459

128460

128461

128462

128463

128464

128465

128466

128467

128468

128469

128470

128471

128472

128473

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

In file b.c:

extern int i;
...

The symbol that the user thinks of as i in both files has an external name of _ _i in a.c; the
same symbol i in b.c has an external name i (ignoring any hidden manipulations the
compiler might perform on the names). This would cause a mysterious name resolution
problem when a.o and b.o are linked.

Simply avoiding definition then causes alignment problems in the structure.

A structure of the form:

struct foo {
union {

int __i;
#ifdef _FEATURE_TEST

int i;
#endif

} __ii;
}

does not work because the name of the logical field i is _ _ii.i, and introduction of a macro
to restore the logical name immediately reintroduces the problem discussed previously
(although its manifestation might be more immediate because a syntax error would result
if a recursive macro did not cause it to fail first).

7. A more workable solution would be to declare the structure:

struct foo {
#ifdef _FEATURE_TEST

int i;
#else

int __i;
#endif
}

However, if a macro (particularly one required by a standard) is to be defined that uses
this field, two must be defined: one that uses i, the other that uses _ _i. If more than one
additional field is used in a macro and they are conditional on distinct combinations of
features, the complexity goes up as 2n.

All this leaves a difficult situation: vendors must provide very complex headers to deal with
what is conceptually simple and safe—adding a field to a structure. It is the possibility of user-
provided macros with the same name that makes this difficult.

Several alternatives were proposed that involved constraining the user’s access to part of the
name space available to the user (as specified by the ISO C standard). In some cases, this was
only until all the headers had been included. There were two proposals discussed that failed to
achieve consensus:

1. Limiting it for the whole program.

2. Restricting the use of identifiers containing only uppercase letters until after all system
headers had been included. It was also pointed out that because macros might wish to
access fields of a structure (and macro expansion occurs totally at point of use) restricting
names in this way would not protect the macro expansion, and thus the solution was
inadequate.

3740 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128474

128475

128476

128477

128478

128479

128480

128481

128482

128483

128484

128485

128486

128487

128488

128489

128490

128491

128492

128493

128494

128495

128496

128497

128498

128499

128500

128501

128502

128503

128504

128505

128506

128507

128508

128509

128510

128511

128512

128513

128514

128515

128516

128517

128518

128519

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

It was finally decided that reservation of symbols would occur, but as constrained.

The current wording also allows the addition of fields to a structure, but requires that user
macros of the same name not interfere. This allows vendors to do one of the following:

• Not create the situation (do not extend the structures with user-accessible names or use the
solution in (7) above)

• Extend their compilers to allow some way of adding names to structures and macros safely

There are at least two ways that the compiler might be extended: add new preprocessor
directives that turn off and on macro expansion for certain symbols (without changing the value
of the macro) and a function or lexical operation that suppresses expansion of a word. The latter
seems more flexible, particularly because it addresses the problem in macros as well as in
declarations.

The following seems to be a possible implementation extension to the C language that will do
this: any token that during macro expansion is found to be preceded by three '#' symbols shall
not be further expanded in exactly the same way as described for macros that expand to their
own name as in Section 6.10.3.4 of the ISO C standard. A vendor may also wish to implement
this as an operation that is lexically a function, which might be implemented as:

#define __safe_name(x) ###x

Using a function notation would insulate vendors from changes in standards until such a
functionality is standardized (if ever). Standardization of such a function would be valuable
because it would then permit third parties to take advantage of it portably in software they may
supply.

The symbols that are ``explicitly permitted, but not required by POSIX.1-2024’’ include those
classified below. (That is, the symbols classified below might, but are not required to, be present
when _POSIX_C_SOURCE is defined to have the value 202405L.)

• Symbols in <limits.h> and <unistd.h> that are defined to indicate support for options or
limits that are constant at compile-time

• Symbols in the name space reserved for the implementation by the ISO C standard

• Symbols in a name space reserved for a particular type of extension (for example, type
names ending with _t in <sys/types.h>)

• Additional members of structures or unions whose names do not reduce the name space
reserved for applications

Since both implementations and future versions of this standard and other POSIX standards
may use symbols in the reserved spaces described in these tables, there is a potential for name
space clashes. To avoid future name space clashes when adding symbols, implementations
should not use the posix_, POSIX_, or _POSIX_ prefixes.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/2 is applied, deleting the entries POSIX_,
POSIX, and posix_ from the column of allowed name space prefixes for use by an
implementation in the first table. The presence of these prefixes was contradicting later text
which states that: ``The prefixes posix_, POSIX_, and _POSIX are reserved for use by XCU
Chapter 2 (on page 2472) and other POSIX standards. Implementations may add symbols to the
headers shown in the following table, provided the identifiers . . . do not use the reserved
prefixes posix_, POSIX_, or _POSIX.’’.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/3 is applied, correcting the reserved
macro prefix from: ``PRI[a-z], SCN[a-z]’’ to: ``PRI[Xa-z], SCN[Xa-z]’’ in the second table. The
change was needed since the ISO C standard allows implementations to define macros of the

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3741

128520

128521

128522

128523

128524

128525

128526

128527

128528

128529

128530

128531

128532

128533

128534

128535

128536

128537

128538

128539

128540

128541

128542

128543

128544

128545

128546

128547

128548

128549

128550

128551

128552

128553

128554

128555

128556

128557

128558

128559

128560

128561

128562

128563

128564

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

form PRI or SCN followed by any lowercase letter or 'X' in <inttypes.h>. (The
ISO/IEC 9899: 1999 standard, Subclause 7.26.4.)

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/4 is applied, adding a new section listing
reserved names for the <stdint.h> header. This change is for alignment with the ISO C standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/2 is applied, making it clear that
implementations are permitted to have symbols with the prefix _POSIX_ visible in any header.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/3 is applied, updating the table of
allowed macro prefixes to include the prefix FP_[A-Z] for <math.h>. This text is added for
consistency with the <math.h> reference page in the Base Definitions volume of POSIX.1-2024
which permits additional implementation-defined floating-point classifications.

Austin Group Interpretation 1003.1-2001 #048 is applied, reserving SEEK_ in the name space.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0001 [801], XSH/TC2-2008/0002 [780],
XSH/TC2-2008/0003 [790], XSH/TC2-2008/0004 [780], XSH/TC2-2008/0005 [790],
XSH/TC2-2008/0006 [782], XSH/TC2-2008/0007 [790], and XSH/TC2-2008/0008 [790] are
applied.

Austin Group Defect 162 is applied, adding the <endian.h> header.

Austin Group Defect 697 is applied, reserving DT_ in the name space.

Austin Group Defect 845 is applied, reserving in6addr_ in the name space.

Austin Group Defect 993 is applied, reserving dli_ in the name space.

Austin Group Defect 1003 is applied, correcting a mismatch with the ISO C standard regarding
reservation of each identifier with file scope described in the header section.

Austin Group Defect 1122 is applied, adding <libintl.h>.

Austin Group Defect 1151 is applied, adding ws_ as a reserved prefix for <termios.h>.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1456 is applied, clarifying the reservation of symbolic constants with the
prefix _CS_, _PC_, and _SC_ for <unistd.h>.

B.2.3 Error Numbers

It was the consensus of the standard developers that to allow the conformance document to state
that an error occurs and under what conditions, but to disallow a statement that it never occurs,
does not make sense. It could be implied by the current wording that this is allowed, but to
reduce the possibility of future interpretation requests, it is better to make an explicit statement.

The original ISO C standard just required that errno be a modifiable lvalue. Since the
introduction of threads in 2011, the ISO C standard has instead required that errno be a macro
which expands to a modifiable lvalue that has thread local storage duration.

Checking the value of errno alone is not sufficient to determine the existence or type of an error,
since it is not required that a successful function call clear errno. The variable errno should only
be examined when the return value of a function indicates that the value of errno is meaningful.
In that case, the function is required to set the variable to something other than zero.

The variable errno is never set to zero by any function call; to do so would contradict the ISO C
standard.

POSIX.1 requires (in the ERRORS sections of function descriptions) certain error values to be set

3742 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128565

128566

128567

128568

128569

128570

128571

128572

128573

128574

128575

128576

128577

128578

128579

128580

128581

128582

128583

128584

128585

128586

128587

128588

128589

128590

128591

128592

128593

128594

128595

128596

128597

128598

128599

128600

128601

128602

128603

128604

128605

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

in certain conditions because many existing applications depend on them. Some error numbers,
such as [EFAULT], are entirely implementation-defined and are noted as such in their
description in the ERRORS section. This section otherwise allows wide latitude to the
implementation in handling error reporting.

Some of the ERRORS sections in POSIX.1-2024 have two subsections. The first:

``The function shall fail if:’’

could be called the ``mandatory’’ section.

The second:

``The function may fail if:’’

could be informally known as the ``optional’’ section.

Attempting to infer the quality of an implementation based on whether it detects optional error
conditions is not useful.

Following each one-word symbolic name for an error, there is a description of the error. The
rationale for some of the symbolic names follows:

[ECANCELED] This spelling was chosen as being more common.

[EFAULT] Most historical implementations do not catch an error and set errno when an
invalid address is given to the functions wait(), time(), or times(). Some
implementations cannot reliably detect an invalid address. And most systems
that detect invalid addresses will do so only for a system call, not for a library
routine.

[EFTYPE] This error code was proposed in earlier proposals as ``Inappropriate operation
for file type’’, meaning that the operation requested is not appropriate for the
file specified in the function call. This code was proposed, although the same
idea was covered by [ENOTTY], because the connotations of the name would
be misleading. It was pointed out that the fcntl() function uses the error code
[EINVAL] for this notion, and hence all instances of [EFTYPE] were changed
to this code.

[EINTR] POSIX.1 prohibits conforming implementations from restarting interrupted
system calls of conforming applications unless the SA_RESTART flag is in
effect for the signal. However, it does not require that [EINTR] be returned
when another legitimate value may be substituted; for example, a partial
transfer count when read() or write() are interrupted. This is only given when
the signal-catching function returns normally as opposed to returns by
mechanisms like longjmp() or siglongjmp().

[ELOOP] In specifying conditions under which implementations would generate this
error, the following goals were considered:

• To ensure that actual loops are detected, including loops that result from
symbolic links across distributed file systems.

• To ensure that during pathname resolution an application can rely on
the ability to follow at least {SYMLOOP_MAX} symbolic links in the
absence of a loop.

• To allow implementations to provide the capability of traversing more
than {SYMLOOP_MAX} symbolic links in the absence of a loop.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3743

128606

128607

128608

128609

128610

128611

128612

128613

128614

128615

128616

128617

128618

128619

128620

128621

128622

128623

128624

128625

128626

128627

128628

128629

128630

128631

128632

128633

128634

128635

128636

128637

128638

128639

128640

128641

128642

128643

128644

128645

128646

128647

128648

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

• To allow implementations to detect loops and generate the error prior to
encountering {SYMLOOP_MAX} symbolic links.

[ENAMETOOLONG]
When a symbolic link is encountered during pathname resolution, the
contents of that symbolic link are used to create a new pathname. The
standard developers intended to allow, but not require, that implementations
enforce the restriction of {PATH_MAX} on the result of this pathname
substitution.

Implementations are allowed, but not required, to treat a pathname longer
than {PATH_MAX} passed into the system as an error. Implementations are
required to return a pathname (even if it is longer than {PATH_MAX}) when
the user supplies a buffer with an interface that specifies the buffer size, as
long as the user-supplied buffer is large enough to hold the entire pathname
(see XSH getcwd() for an example of this type of interface). Implementations
are required to treat a request to pass a pathname longer than {PATH_MAX}
from the system to a user-supplied buffer of an unspecified size (usually
assumed to be of size {PATH_MAX}) as an error (see XSH realpath() for an
example of this type of interface).

[ENOMEM] The term ``main memory’’ is not used in POSIX.1 because it is
implementation-defined.

[ENOTSUP] This error code is to be used when an implementation chooses to implement
the required functionality of POSIX.1-2024 but does not support optional
facilities defined by POSIX.1-2024. In some earlier versions of this standard,
the difference between [ENOTSUP] and [ENOSYS] was that [ENOSYS]
indicated that the function was not supported at all. This is no longer the case
as [ENOSYS] can also be used to indicate non-support of optional
functionality for a function that has some required functionality. (See XSH
encrypt().)

[ENOTTY] The symbolic name for this error is derived from a time when device control
was done by ioctl() and that operation was only permitted on a terminal
interface. The term ``TTY’’ is derived from ``teletypewriter ’’, the devices to
which this error originally applied.

[EOVERFLOW] Most of the uses of this error code are related to large file support. Typically,
these cases occur on systems which support multiple programming
environments with different sizes for off_t, but they may also occur in
connection with remote file systems.

In addition, when different programming environments have different widths
for types such as int and uid_t, several functions may encounter a condition
where a value in a particular environment is too wide to be represented. In
that case, this error should be raised. For example, suppose the currently
running process has 64-bit int, and file descriptor 9 223 372 036 854 775 807 is
open and does not have the close-on-exec flag set. If the process then uses
execl() to exec a file compiled in a programming environment with 32-bit int,
the call to execl() can fail with errno set to [EOVERFLOW]. A similar failure
can occur with execl() if any of the user IDs or any of the group IDs to be
assigned to the new process image are out of range for the executed file’s
programming environment.

Note, however, that this condition cannot occur for functions that are
explicitly described as always being successful, such as getpid().

3744 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128649

128650

128651

128652

128653

128654

128655

128656

128657

128658

128659

128660

128661

128662

128663

128664

128665

128666

128667

128668

128669

128670

128671

128672

128673

128674

128675

128676

128677

128678

128679

128680

128681

128682

128683

128684

128685

128686

128687

128688

128689

128690

128691

128692

128693

128694

128695

128696

128697

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

[EPIPE] This condition normally generates the signal SIGPIPE; the error is returned if
the generation of the signal is suppressed or the signal does not terminate the
process.

[EROFS] In historical implementations, attempting to unlink() or rmdir() a mount point
would generate an [EBUSY] error. An implementation could be envisioned
where such an operation could be performed without error. In this case, if
either the directory entry or the actual data structures reside on a read-only file
system, [EROFS] is the appropriate error to generate. (For example, changing
the link count of a file on a read-only file system could not be done, as is
required by unlink(), and thus an error should be reported.)

Three error numbers, [EDOM], [EILSEQ], and [ERANGE], were added to this section primarily
for consistency with the ISO C standard.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0009 [496] and XSH/TC2-2008/0010
[681] are applied.

Austin Group Defect 1067 is applied, adding [ESOCKTNOSUPPORT].

Austin Group Defect 1380 is applied, changing the descriptions of [EMLINK] and [EXDEV].

Austin Group Defect 1669 is applied, changing the description of [EFBIG].

Alternative Solutions for Per-Thread errno

The historical implementation of errno as a single global variable does not work in a multi-
threaded environment. In such an environment, a thread may make a POSIX.1 call and get a −1
error return, but before that thread can check the value of errno, another thread might have
made a second POSIX.1 call that also set errno. This behavior is unacceptable in robust
programs. There were a number of alternatives that were considered for handling the errno
problem:

• Implement errno as a per-thread integer variable.

• Implement errno as a service that can access the per-thread error number.

• Change all POSIX.1 calls to accept an extra status argument and avoid setting errno.

• Change all POSIX.1 calls to raise a language exception.

The first option offers the highest level of compatibility with existing practice but requires
special support in the linker, compiler, and/or virtual memory system to support the new
concept of thread private variables. When compared with current practice, the third and fourth
options are much cleaner, more efficient, and encourage a more robust programming style, but
they require new versions of all of the POSIX.1 functions that might detect an error. The second
option offers compatibility with existing code that uses the <errno.h> header to define the
symbol errno. In this option, errno may be a macro defined:

#define errno (*__errno())
extern int *__errno();

This option may be implemented as a per-thread variable whereby an errno field is allocated in
the user space object representing a thread, and whereby the function __errno() makes a system
call to determine the location of its user space object and returns the address of the errno field of
that object. Another implementation, one that avoids calling the kernel, involves allocating
stacks in chunks. The stack allocator keeps a side table indexed by chunk number containing a
pointer to the thread object that uses that chunk. The __errno() function then looks at the stack
pointer, determines the chunk number, and uses that as an index into the chunk table to find its
thread object and thus its private value of errno. On most architectures, this can be done in four

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3745

128698

128699

128700

128701

128702

128703

128704

128705

128706

128707

128708

128709

128710

128711

128712

128713

128714

128715

128716

128717

128718

128719

128720

128721

128722

128723

128724

128725

128726

128727

128728

128729

128730

128731

128732

128733

128734

128735

128736

128737

128738

128739

128740

128741

128742

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

to five instructions. Some compilers may wish to implement __errno() inline to improve
performance.

Disallowing Return of the [EINTR] Error Code

Many blocking interfaces defined by POSIX.1-2024 may return [EINTR] if interrupted during
their execution by a signal handler. Blocking interfaces introduced under the threads
functionality do not have this property. Instead, they require that the interface appear to be
atomic with respect to interruption. In particular, applications calling blocking interfaces need
not handle any possible [EINTR] return as a special case since it will never occur. In the case of
threads functions in <threads.h>, the requirement is stated in terms of the call not being affected
if the calling thread executes a signal handler during the call, since these functions return errors
in a different way and cannot distinguish an [EINTR] condition from other error conditions. If it
is necessary to restart operations or complete incomplete operations following the execution of a
signal handler, this is handled by the implementation, rather than by the application.

Requiring applications to handle [EINTR] errors on blocking interfaces has been shown to be a
frequent source of often unreproducible bugs, and it adds no compelling value to the available
functionality. Thus, blocking interfaces introduced for use by multi-threaded programs do not
use this paradigm. In particular, in none of the functions flockfile(), pthread_cond_timedwait(),
pthread_cond_wait(), pthread_join(), pthread_mutex_lock(), and sigwait() did providing [EINTR]
returns add value, or even particularly make sense. Thus, these functions do not provide for an
[EINTR] return, even when interrupted by a signal handler. The same arguments can be applied
to sem_wait(), sem_trywait(), sigwaitinfo(), and sigtimedwait(), but implementations are
permitted to return [EINTR] error codes for these functions for compatibility with earlier
versions of this standard. Applications cannot rely on calls to these functions returning [EINTR]
error codes when signals are delivered to the calling thread, but they should allow for the
possibility.

Austin Group Interpretation 1003.1-2001 #050 is applied, allowing [ENOTSUP] and
[EOPNOTSUPP] to be the same values.

B.2.3.1 Additional Error Numbers

The ISO C standard defines the name space for implementations to add additional error
numbers.

B.2.4 Signal Concepts

Historical implementations of signals, using the signal() function, have shortcomings that make
them unreliable for many application uses. Because of this, a new signal mechanism, based very
closely on the one of 4.2 BSD and 4.3 BSD, was added to POSIX.1.

Signal Names

The restriction on the actual type used for sigset_t is intended to guarantee that these objects can
always be assigned, have their address taken, and be passed as parameters by value. It is not
intended that this type be a structure including pointers to other data structures, as that could
impact the portability of applications performing such operations. A reasonable implementation
could be a structure containing an array of some integer type.

The signals described in POSIX.1-2024 must have unique values so that they may be named as
parameters of case statements in the body of a C-language switch clause. However,
implementation-defined signals may have values that overlap with each other or with signals

3746 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128743

128744

128745

128746

128747

128748

128749

128750

128751

128752

128753

128754

128755

128756

128757

128758

128759

128760

128761

128762

128763

128764

128765

128766

128767

128768

128769

128770

128771

128772

128773

128774

128775

128776

128777

128778

128779

128780

128781

128782

128783

128784

128785

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

specified in POSIX.1-2024. An example of this is SIGABRT, which traditionally overlaps some
other signal, such as SIGIOT.

SIGKILL, SIGTERM, SIGUSR1, and SIGUSR2 are ordinarily generated only through the explicit
use of the kill() function, although some implementations generate SIGKILL under
extraordinary circumstances. SIGTERM is traditionally the default signal sent by the kill
command.

The signals SIGBUS, SIGEMT, SIGIOT, SIGTRAP, and SIGSYS were omitted from POSIX.1
because their behavior is implementation-defined and could not be adequately categorized.
Conforming implementations may deliver these signals, but must document the circumstances
under which they are delivered and note any restrictions concerning their delivery. The signals
SIGFPE, SIGILL, and SIGSEGV are similar in that they also generally result only from
programming errors. They were included in POSIX.1 because they do indicate three relatively
well-categorized conditions. They are all defined by the ISO C standard and thus would have to
be defined by any system with an ISO C standard binding, even if not explicitly included in
POSIX.1.

There is very little that a Conforming POSIX.1 Application can do by catching, ignoring, or
masking any of the signals SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGBUS, SIGSEGV, SIGSYS, or
SIGFPE. They will generally be generated by the system only in cases of programming errors.
While it may be desirable for some robust code (for example, a library routine) to be able to
detect and recover from programming errors in other code, these signals are not nearly sufficient
for that purpose. One portable use that does exist for these signals is that a command interpreter
can recognize them as the cause of termination of a process (with wait()) and print an
appropriate message. The mnemonic tags for these signals are derived from their PDP-11 origin.

The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are provided for job control
and are unchanged from 4.2 BSD. The signal SIGCHLD is also typically used by job control
shells to detect children that have terminated or, as in 4.2 BSD, stopped.

Some implementations, including System V, have a signal named SIGCLD, which is similar to
SIGCHLD in 4.2 BSD. POSIX.1 permits implementations to have a single signal with both
names. POSIX.1 carefully specifies ways in which conforming applications can avoid the
semantic differences between the two different implementations. The name SIGCHLD was
chosen for POSIX.1 because most current application usages of it can remain unchanged in
conforming applications. SIGCLD in System V has more cases of semantics that POSIX.1 does
not specify, and thus applications using it are more likely to require changes in addition to the
name change.

The signals SIGUSR1 and SIGUSR2 are commonly used by applications for notification of
exceptional behavior and are described as ``reserved as application-defined’’ so that such use is
not prohibited. Implementations should not generate SIGUSR1 or SIGUSR2, except when
explicitly requested by kill(). It is recommended that libraries not use these two signals, as such
use in libraries could interfere with their use by applications calling the libraries. If such use is
unavoidable, it should be documented. It is prudent for non-portable libraries to use non-
standard signals to avoid conflicts with use of standard signals by portable libraries.

There is no portable way for an application to catch or ignore non-standard signals. Some
implementations define the range of signal numbers, so applications can install signal-catching
functions for all of them. Unfortunately, implementation-defined signals often cause problems
when caught or ignored by applications that do not understand the reason for the signal. While
the desire exists for an application to be more robust by handling all possible signals (even those
only generated by kill()), no existing mechanism was found to be sufficiently portable to include
in POSIX.1. The value of such a mechanism, if included, would be diminished given that
SIGKILL would still not be catchable.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3747

128786

128787

128788

128789

128790

128791

128792

128793

128794

128795

128796

128797

128798

128799

128800

128801

128802

128803

128804

128805

128806

128807

128808

128809

128810

128811

128812

128813

128814

128815

128816

128817

128818

128819

128820

128821

128822

128823

128824

128825

128826

128827

128828

128829

128830

128831

128832

128833

128834

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

A number of new signal numbers are reserved for applications because the two user signals
defined by POSIX.1 are insufficient for many realtime applications. A range of signal numbers is
specified, rather than an enumeration of additional reserved signal names, because different
applications and application profiles will require a different number of application signals. It is
not desirable to burden all application domains and therefore all implementations with the
maximum number of signals required by all possible applications. Note that in this context,
signal numbers are essentially different signal priorities.

The relatively small number of required additional signals, {_POSIX_RTSIG_MAX}, was chosen
so as not to require an unreasonably large signal mask/set. While this number of signals
defined in POSIX.1 will fit in a single 32-bit word signal mask, it is recognized that most existing
implementations define many more signals than are specified in POSIX.1 and, in fact, many
implementations have already exceeded 32 signals (including the ``null signal’’). Support of
{_POSIX_RTSIG_MAX} additional signals may push some implementation over the single 32-bit
word line, but is unlikely to push any implementations that are already over that line beyond
the 64-signal line.

B.2.4.1 Signal Generation and Delivery

The terms defined in this section are not used consistently in documentation of historical
systems. Each signal can be considered to have a lifetime beginning with generation and ending
with delivery or acceptance. The POSIX.1 definition of ``delivery’’ does not exclude ignored
signals; this is considered a more consistent definition. This revised text in several parts of
POSIX.1-2024 clarifies the distinct semantics of asynchronous signal delivery and synchronous
signal acceptance. The previous wording attempted to categorize both under the term
``delivery’’, which led to conflicts over whether the effects of asynchronous signal delivery
applied to synchronous signal acceptance.

Signals generated for a process are delivered to only one thread. Thus, if more than one thread
is eligible to receive a signal, one has to be chosen. The choice of threads is left entirely up to the
implementation both to allow the widest possible range of conforming implementations and to
give implementations the freedom to deliver the signal to the ``easiest possible’’ thread should
there be differences in ease of delivery between different threads.

Note that should multiple delivery among cooperating threads be required by an application,
this can be trivially constructed out of the provided single-delivery semantics. The construction
of a sigwait_multiple() function that accomplishes this goal is presented with the rationale for
sigwaitinfo().

Implementations should deliver unblocked signals as soon after they are generated as possible.
However, it is difficult for POSIX.1 to make specific requirements about this, beyond those in
kill() and sigprocmask(). Even on systems with prompt delivery, scheduling of higher priority
processes is always likely to cause delays.

In general, the interval between the generation and delivery of unblocked signals cannot be
detected by an application. Thus, references to pending signals generally apply to blocked,
pending signals. An implementation registers a signal as pending on the process when no
thread has the signal unblocked and there are no threads blocked in a sigwait() function for that
signal. Thereafter, the implementation delivers the signal to the first thread that unblocks the
signal or calls a sigwait() function on a signal set containing this signal rather than choosing the
recipient thread at the time the signal is sent.

In the 4.3 BSD system, signals that are blocked and set to SIG_IGN are discarded immediately
upon generation. For a signal that is ignored as its default action, if the action is SIG_DFL and
the signal is blocked, a generated signal remains pending. In the 4.1 BSD system and in
System V Release 3 (two other implementations that support a somewhat similar signal

3748 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128835

128836

128837

128838

128839

128840

128841

128842

128843

128844

128845

128846

128847

128848

128849

128850

128851

128852

128853

128854

128855

128856

128857

128858

128859

128860

128861

128862

128863

128864

128865

128866

128867

128868

128869

128870

128871

128872

128873

128874

128875

128876

128877

128878

128879

128880

128881

128882

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

mechanism), all ignored blocked signals remain pending if generated. Because it is not normally
useful for an application to simultaneously ignore and block the same signal, it was unnecessary
for POSIX.1 to specify behavior that would invalidate any of the historical implementations.

There is one case in some historical implementations where an unblocked, pending signal does
not remain pending until it is delivered. In the System V implementation of signal(), pending
signals are discarded when the action is set to SIG_DFL or a signal-catching routine (as well as
to SIG_IGN). Except in the case of setting SIGCHLD to SIG_DFL, implementations that do this
do not conform completely to POSIX.1. Some earlier proposals for POSIX.1 explicitly stated this,
but these statements were redundant due to the requirement that functions defined by POSIX.1
not change attributes of processes defined by POSIX.1 except as explicitly stated.

POSIX.1 specifically states that the order in which multiple, simultaneously pending signals are
delivered is unspecified. This order has not been explicitly specified in historical
implementations, but has remained quite consistent and been known to those familiar with the
implementations. Thus, there have been cases where applications (usually system utilities) have
been written with explicit or implicit dependencies on this order. Implementors and others
porting existing applications may need to be aware of such dependencies.

When there are multiple pending signals that are not blocked, implementations should arrange
for the delivery of all signals at once, if possible. Some implementations stack calls to all pending
signal-catching routines, making it appear that each signal-catcher was interrupted by the next
signal. In this case, the implementation should ensure that this stacking of signals does not
violate the semantics of the signal masks established by sigaction(). Other implementations
process at most one signal when the operating system is entered, with remaining signals saved
for later delivery. Although this practice is widespread, this behavior is neither standardized
nor endorsed. In either case, implementations should attempt to deliver signals associated with
the current state of the process (for example, SIGFPE) before other signals, if possible.

In 4.2 BSD and 4.3 BSD, it is not permissible to ignore or explicitly block SIGCONT, because if
blocking or ignoring this signal prevented it from continuing a stopped process, such a process
could never be continued (only killed by SIGKILL). However, 4.2 BSD and 4.3 BSD do block
SIGCONT during execution of its signal-catching function when it is caught, creating exactly
this problem. A proposal was considered to disallow catching SIGCONT in addition to ignoring
and blocking it, but this limitation led to objections. The consensus was to require that
SIGCONT always continue a stopped process when generated. This removed the need to
disallow ignoring or explicit blocking of the signal; note that SIG_IGN and SIG_DFL are
equivalent for SIGCONT.

B.2.4.2 Realtime Signal Generation and Delivery

The realtime signals functionality is required in this version of the standard for the following
reasons:

• The sigevent structure is used by other POSIX.1 functions that result in asynchronous
event notifications to specify the notification mechanism to use and other information
needed by the notification mechanism. POSIX.1-2024 defines only three symbolic values
for the notification mechanism:

— SIGEV_NONE is used to indicate that no notification is required when the event
occurs. This is useful for applications that use asynchronous I/O with polling for
completion.

— SIGEV_SIGNAL indicates that a signal is generated when the event occurs.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3749

128883

128884

128885

128886

128887

128888

128889

128890

128891

128892

128893

128894

128895

128896

128897

128898

128899

128900

128901

128902

128903

128904

128905

128906

128907

128908

128909

128910

128911

128912

128913

128914

128915

128916

128917

128918

128919

128920

128921

128922

128923

128924

128925

128926

128927

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

— SIGEV_THREAD provides for ``callback functions’’ for asynchronous notifications
done by a function call within the context of a new thread. This provides a multi-
threaded process with a more natural means of notification than signals.

The primary difficulty with previous notification approaches has been to specify the
environment of the notification routine.

— One approach is to limit the notification routine to call only functions permitted in a
signal handler. While the list of permissible functions is clearly stated, this is overly
restrictive.

— A second approach is to define a new list of functions or classes of functions that are
explicitly permitted or not permitted. This would give a programmer more lists to
deal with, which would be awkward.

— The third approach is to define completely the environment for execution of the
notification function. A clear definition of an execution environment for notification
is provided by executing the notification function in the environment of a newly
created thread.

Implementations may support additional notification mechanisms by defining new values
for sigev_notify.

For a notification type of SIGEV_SIGNAL, the other members of the sigevent structure
defined by POSIX.1-2024 specify the realtime signal—that is, the signal number and
application-defined value that differentiates between occurrences of signals with the same
number—that will be generated when the event occurs. The structure is defined in
<signal.h>, even though the structure is not directly used by any of the signal functions,
because it is part of the signals interface used by the POSIX.1b ``client functions’’. When the
client functions include <signal.h> to define the signal names, the sigevent structure will
also be defined.

An application-defined value passed to the signal handler is used to differentiate between
different ``events’’ instead of requiring that the application use different signal numbers for
several reasons:

— Realtime applications potentially handle a very large number of different events.
Requiring that implementations support a correspondingly large number of distinct
signal numbers will adversely impact the performance of signal delivery because the
signal masks to be manipulated on entry and exit to the handlers will become large.

— Event notifications are prioritized by signal number (the rationale for this is
explained in the following paragraphs) and the use of different signal numbers to
differentiate between the different event notifications overloads the signal number
more than has already been done. It also requires that the application developer
make arbitrary assignments of priority to events that are logically of equal priority.

A union is defined for the application-defined value so that either an integer constant or a
pointer can be portably passed to the signal-catching function. On some architectures a
pointer cannot be cast to an int and vice versa.

Use of a structure here with an explicit notification type discriminant rather than explicit
parameters to realtime functions, or embedded in other realtime structures, provides for
future extensions to POSIX.1-2024. Additional, perhaps more efficient, notification
mechanisms can be supported for existing realtime function interfaces, such as timers and
asynchronous I/O, by extending the sigevent structure appropriately. The existing
realtime function interfaces will not have to be modified to use any such new notification
mechanism. The revised text concerning the SIGEV_SIGNAL value makes consistent the

3750 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

128928

128929

128930

128931

128932

128933

128934

128935

128936

128937

128938

128939

128940

128941

128942

128943

128944

128945

128946

128947

128948

128949

128950

128951

128952

128953

128954

128955

128956

128957

128958

128959

128960

128961

128962

128963

128964

128965

128966

128967

128968

128969

128970

128971

128972

128973

128974

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

semantics of the members of the sigevent structure, particularly in the definitions of
lio_listio() and aio_fsync(). For uniformity, other revisions cause this specification to be
referred to rather than inaccurately duplicated in the descriptions of functions and
structures using the sigevent structure. The revised wording does not relax the
requirement that the signal number be in the range SIGRTMIN to SIGRTMAX to guarantee
queuing and passing of the application value, since that requirement is still implied by the
signal names.

• POSIX.1-2024 is intentionally vague on whether ``non-realtime’’ signal-generating
mechanisms can result in a siginfo_t being supplied to the handler on delivery. In one
existing implementation, a siginfo_t is posted on signal generation, even though the
implementation does not support queuing of multiple occurrences of a signal. It is not the
intent of POSIX.1-2024 to preclude this, independent of the mandate to define signals that
do support queuing. Any interpretation that appears to preclude this is a mistake in the
reading or writing of the standard.

• Signals handled by realtime signal handlers might be generated by functions or conditions
that do not allow the specification of an application-defined value and do not queue.
POSIX.1-2024 specifies the si_code member of the siginfo_t structure used in existing
practice and defines additional codes so that applications can detect whether an
application-defined value is present or not. The code SI_USER for kill()-generated signals
is adopted from existing practice.

• The sigaction() sa_flags value SA_SIGINFO tells the implementation that the signal-
catching function expects two additional arguments. When the flag is not set, a single
argument, the signal number, is passed as specified by POSIX.1-2024. Although
POSIX.1-2024 does not explicitly allow the info argument to the handler function to be
NULL, this is existing practice. This provides for compatibility with programs whose
signal-catching functions are not prepared to accept the additional arguments.
POSIX.1-2024 is explicitly unspecified as to whether signals actually queue when
SA_SIGINFO is not set for a signal, as there appear to be no benefits to applications in
specifying one behavior or another. One existing implementation queues a siginfo_t on
each signal generation, unless the signal is already pending, in which case the
implementation discards the new siginfo_t; that is, the queue length is never greater than
one. This implementation only examines SA_SIGINFO on signal delivery, discarding the
queued siginfo_t if its delivery was not requested.

The third argument to the signal-catching function, context, is left undefined by
POSIX.1-2024, but is specified in the interface because it matches existing practice for the
SA_SIGINFO flag. It was considered undesirable to require a separate implementation for
SA_SIGINFO for POSIX conformance on implementations that already support the two
additional parameters.

• The requirement to deliver lower numbered signals in the range SIGRTMIN to SIGRTMAX
first, when multiple unblocked signals are pending, results from several considerations:

— A method is required to prioritize event notifications. The signal number was chosen
instead of, for instance, associating a separate priority with each request, because an
implementation has to check pending signals at various points and select one for
delivery when more than one is pending. Specifying a selection order is the minimal
additional semantic that will achieve prioritized delivery. If a separate priority were
to be associated with queued signals, it would be necessary for an implementation to
search all non-empty, non-blocked signal queues and select from among them the
pending signal with the highest priority. This would significantly increase the cost of
and decrease the determinism of signal delivery.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3751

128975

128976

128977

128978

128979

128980

128981

128982

128983

128984

128985

128986

128987

128988

128989

128990

128991

128992

128993

128994

128995

128996

128997

128998

128999

129000

129001

129002

129003

129004

129005

129006

129007

129008

129009

129010

129011

129012

129013

129014

129015

129016

129017

129018

129019

129020

129021

129022

129023

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

— Given the specified selection of the lowest numeric unblocked pending signal,
preemptive priority signal delivery can be achieved using signal numbers and signal
masks by ensuring that the sa_mask for each signal number blocks all signals with a
higher numeric value.

For realtime applications that want to use only the newly defined realtime signal
numbers without interference from the standard signals, this can be achieved by
blocking all of the standard signals in the thread signal mask and in the sa_mask
installed by the signal action for the realtime signal handlers.

POSIX.1-2024 explicitly leaves unspecified the ordering of signals outside of the range of
realtime signals and the ordering of signals within this range with respect to those outside
the range. It was believed that this would unduly constrain implementations or standards
in the future definition of new signals.

Austin Group Defect 633 is applied, reducing to two the allowed behaviors for the signal mask
of the thread that is created to handle a SIGEV_THREAD notification.

Austin Group Defect 1116 is applied, removing a reference to the Realtime Signals Extension
option that existed in earlier versions of this standard.

B.2.4.3 Signal Actions

Early proposals mentioned SIGCONT as a second exception to the rule that signals are not
delivered to stopped processes until continued. Because POSIX.1-2024 now specifies that
SIGCONT causes the stopped process to continue when it is generated, delivery of SIGCONT is
not prevented because a process is stopped, even without an explicit exception to this rule.

Ignoring a signal by setting the action to SIG_IGN (or SIG_DFL for signals whose default action
is to ignore) is not the same as installing a signal-catching function that simply returns. Invoking
such a function will interrupt certain system functions that block processes (for example, wait(),
sigsuspend(), pause(), read(), write()) while ignoring a signal has no such effect on the process.

Historical implementations discard pending signals when the action is set to SIG_IGN.
However, they do not always do the same when the action is set to SIG_DFL and the default
action is to ignore the signal. POSIX.1-2024 requires this for the sake of consistency and also for
completeness, since the only signal this applies to is SIGCHLD, and POSIX.1-2024 disallows
setting its action to SIG_IGN.

Some implementations (System V, for example) assign different semantics for SIGCLD
depending on whether the action is set to SIG_IGN or SIG_DFL. Since POSIX.1 requires that the
default action for SIGCHLD be to ignore the signal, applications should always set the action to
SIG_DFL in order to avoid SIGCHLD.

Whether or not an implementation allows SIG_IGN as a SIGCHLD disposition to be inherited
across a call to one of the exec family of functions or posix_spawn() is explicitly left as
unspecified. This change was made as a result of IEEE PASC Interpretation 1003.1 #132, and
permits the implementation to decide between the following alternatives:

• Unconditionally leave SIGCHLD set to SIG_IGN, in which case the implementation would
not allow applications that assume inheritance of SIG_DFL to conform to POSIX.1-2024
without change. The implementation would, however, retain an ability to control
applications that create child processes but never call on the wait family of functions,
potentially filling up the process table.

• Unconditionally reset SIGCHLD to SIG_DFL, in which case the implementation would
allow applications that assume inheritance of SIG_DFL to conform. The implementation
would, however, lose an ability to control applications that spawn child processes but

3752 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129024

129025

129026

129027

129028

129029

129030

129031

129032

129033

129034

129035

129036

129037

129038

129039

129040

129041

129042

129043

129044

129045

129046

129047

129048

129049

129050

129051

129052

129053

129054

129055

129056

129057

129058

129059

129060

129061

129062

129063

129064

129065

129066

129067

129068

129069

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

never reap them.

• Provide some mechanism, not specified in POSIX.1-2024, to control inherited SIGCHLD
dispositions.

Some implementations (System V, for example) will deliver a SIGCLD signal immediately when
a process establishes a signal-catching function for SIGCLD when that process has a child that
has already terminated. Other implementations, such as 4.3 BSD, do not generate a new
SIGCHLD signal in this way. In general, a process should not attempt to alter the signal action
for the SIGCHLD signal while it has any outstanding children. However, it is not always
possible for a process to avoid this; for example, shells sometimes start up processes in pipelines
with other processes from the pipeline as children. Processes that cannot ensure that they have
no children when altering the signal action for SIGCHLD thus need to be prepared for, but not
depend on, generation of an immediate SIGCHLD signal.

The default action of the stop signals (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is to stop a
process that is executing. If a stop signal is delivered to a process that is already stopped, it has
no effect. In fact, if a stop signal is generated for a stopped process whose signal mask blocks the
signal, the signal will never be delivered to the process since the process must receive a
SIGCONT, which discards all pending stop signals, in order to continue executing.

The SIGCONT signal continues a stopped process even if SIGCONT is blocked (or ignored).
However, if a signal-catching routine has been established for SIGCONT, it will not be entered
until SIGCONT is unblocked.

If a process in an orphaned process group stops, it is no longer under the control of a job control
shell and hence would not normally ever be continued. Because of this, orphaned processes that
receive terminal-related stop signals (SIGTSTP, SIGTTIN, SIGTTOU, but not SIGSTOP) must not
be allowed to stop. The goal is to prevent stopped processes from languishing forever. (As
SIGSTOP is sent only via kill(), it is assumed that the process or user sending a SIGSTOP can
send a SIGCONT when desired.) Instead, the system must discard the stop signal. As an
extension, it may also deliver another signal in its place. 4.3 BSD sends a SIGKILL, which is
overly effective because SIGKILL is not catchable. Another possible choice is SIGHUP. 4.3 BSD
also does this for orphaned processes (processes whose parent has terminated) rather than for
members of orphaned process groups; this is less desirable because job control shells manage
process groups. POSIX.1 also prevents SIGTTIN and SIGTTOU signals from being generated for
processes in orphaned process groups as a direct result of activity on a terminal, preventing
infinite loops when read() and write() calls generate signals that are discarded; see Section
A.11.1.4 (on page 3720). A similar restriction on the generation of SIGTSTP was considered, but
that would be unnecessary and more difficult to implement due to its asynchronous nature.

Although POSIX.1 requires that signal-catching functions be called with only one argument,
there is nothing to prevent conforming implementations from extending POSIX.1 to pass
additional arguments, as long as Strictly Conforming POSIX.1 Applications continue to compile
and execute correctly. Most historical implementations do, in fact, pass additional, signal-
specific arguments to certain signal-catching routines.

There was a proposal to change the declared type of the signal handler to:

void func (int sig, ...);

The usage of ellipses ("...") is ISO C standard syntax to indicate a variable number of
arguments. Its use was intended to allow the implementation to pass additional information to
the signal handler in a standard manner.

Unfortunately, this construct would require all signal handlers to be defined with this syntax
because the ISO C standard allows implementations to use a different parameter passing
mechanism for variable parameter lists than for non-variable parameter lists. Thus, all existing

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3753

129070

129071

129072

129073

129074

129075

129076

129077

129078

129079

129080

129081

129082

129083

129084

129085

129086

129087

129088

129089

129090

129091

129092

129093

129094

129095

129096

129097

129098

129099

129100

129101

129102

129103

129104

129105

129106

129107

129108

129109

129110

129111

129112

129113

129114

129115

129116

129117

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

signal handlers in all existing applications would have to be changed to use the variable syntax
in order to be standard and portable. This is in conflict with the goal of Minimal Changes to
Existing Application Code.

When terminating a process from a signal-catching function, processes should be aware of any
interpretation that their parent may make of the status returned by wait(), waitid(), or waitpid().
In particular, a signal-catching function should not call exit(0) or _exit(0) unless it wants to
indicate successful termination. A non-zero argument to exit() or _exit() can be used to indicate
unsuccessful termination. Alternatively, the process can use kill() to send itself a fatal signal
(first ensuring that the signal is set to the default action and not blocked). See also the
RATIONALE section of the _exit() function.

The behavior of unsafe functions, as defined by this section, is undefined when they are called
from (or after a longjmp() or siglongjmp() out of) signal-catching functions in certain
circumstances. The behavior of async-signal-safe functions, as defined by this section, is as
specified by POSIX.1, regardless of invocation from a signal-catching function. This is the only
intended meaning of the statement that async-signal-safe functions may be used in signal-
catching functions without restriction. Applications must still consider all effects of such
functions on such things as data structures, files, and process state. In particular, application
developers need to consider the restrictions on interactions when interrupting sleep() (see
sleep()) and interactions among multiple handles for a file description. The fact that any specific
function is listed as async-signal-safe does not necessarily mean that invocation of that function
from a signal-catching function is recommended.

In order to prevent errors arising from interrupting non-async-signal-safe function calls,
applications should protect calls to these functions either by blocking the appropriate signals or
through the use of some programmatic semaphore. POSIX.1 does not address the more general
problem of synchronizing access to shared data structures. Note in particular that even the
``safe’’ functions may modify the global variable errno; the signal-catching function may want to
save and restore its value. The same principles apply to the async-signal-safety of application
routines and asynchronous data access.

Note that although longjmp() and siglongjmp() are in the list of async-signal-safe functions, there
are restrictions on subsequent behavior after the function is called from a signal-catching
function. This is because the code executing after longjmp() or siglongjmp() can call any unsafe
functions with the same danger as calling those unsafe functions directly from the signal
handler. Applications that use longjmp() or siglongjmp() out of signal handlers require rigorous
protection in order to be portable. Many of the other functions that are excluded from the list are
traditionally implemented using either the C language malloc() or free() functions or the ISO C
standard I/O library, both of which traditionally use data structures in a non-async-signal-safe
manner. Because any combination of different functions using a common data structure can
cause async-signal-safety problems, POSIX.1 does not define the behavior when any unsafe
function is called in (or after a longjmp() or siglongjmp() out of) a signal handler that interrupts
any unsafe function or the non-async-signal-safe processing equivalent to exit() that is
performed after return from the initial call to main().

The only realtime extension to signal actions is the addition of the additional parameters to the
signal-catching function. This extension has been explained and motivated in the previous
section. In making this extension, though, developers of POSIX.1b ran into issues relating to
function prototypes. In response to input from the POSIX.1 standard developers, members were
added to the sigaction structure to specify function prototypes for the newer signal-catching
function specified by POSIX.1b. These members follow changes that are being made to POSIX.1.
Note that POSIX.1-2024 explicitly states that these fields may overlap so that a union can be
defined. This enabled existing implementations of POSIX.1 to maintain binary-compatibility
when these extensions were added.

3754 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129118

129119

129120

129121

129122

129123

129124

129125

129126

129127

129128

129129

129130

129131

129132

129133

129134

129135

129136

129137

129138

129139

129140

129141

129142

129143

129144

129145

129146

129147

129148

129149

129150

129151

129152

129153

129154

129155

129156

129157

129158

129159

129160

129161

129162

129163

129164

129165

129166

129167

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

The siginfo_t structure was adopted for passing the application-defined value to match existing
practice, but the existing practice has no provision for an application-defined value, so this was
added. Note that POSIX normally reserves the ``_t’’ type designation for opaque types. The
siginfo_t structure breaks with this convention to follow existing practice and thus promote
portability.

POSIX.1-2024 specifies several values for the si_code member of the siginfo_t structure. Some
were introduced in POSIX.1b; others were XSI functionality in the Single UNIX Specification,
Version 2 and Version 3, that has now become Base functionality. Historically, an si_code value of
less than or equal to zero indicated that the signal was generated by a process via the kill()
function, and values of si_code that provided additional information for implementation-
generated signals, such as SIGFPE or SIGSEGV, were all positive. This functionality is partially
specified for XSI systems in that if si_code is less than or equal to zero, the signal was generated
by a process. However, since POSIX.1b did not specify that SI_USER (or SI_QUEUE) had a value
less than or equal to zero, it is not true that when the signal is generated by a process, the value
of si_code will always be less than or equal to zero. XSI applications should check whether si_code
is SI_USER or SI_QUEUE in addition to checking whether it is less than or equal to zero.
Applications on systems that do not support the XSI option should just check for SI_USER and
SI_QUEUE.

If an implementation chooses to define additional values for si_code, these values have to be
different from the values of the non-signal-specific symbols specified by POSIX.1-2024. This will
allow conforming applications to differentiate between signals generated by standard events
and those generated by other implementation events in a manner compatible with existing
practice.

The unique values of si_code for the POSIX.1b asynchronous events have implications for
implementations of, for example, asynchronous I/O or message passing in user space library
code. Such an implementation will be required to provide a hidden interface to the signal
generation mechanism that allows the library to specify the standard values of si_code.

POSIX.1-2024 also specifies additional members of siginfo_t, beyond those that were in
POSIX.1b. Like the si_code values mentioned above, these were XSI functionality in the Single
UNIX Specification, Version 2 and Version 3, that has now become Base functionality. They
provide additional information when si_code has one of the values that moved from XSI to Base.

Although it is not explicitly visible to applications, there are additional semantics for signal
actions implied by queued signals and their interaction with other POSIX.1b realtime functions.
Specifically:

• It is not necessary to queue signals whose action is SIG_IGN.

• For implementations that support POSIX.1b timers, some interaction with the timer
functions at signal delivery is implied to manage the timer overrun count.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/5 is applied, reordering the RTS shaded
text under the third and fourth paragraphs of the SIG_DFL description. This corrects an earlier
editorial error in this section.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/6 is applied, adding the abort() function
to the list of async-signal-safe functions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/4 is applied, adding the sockatmark()
function to the list of async-signal-safe functions.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0011 [690], XSH/TC2-2008/0012 [516],
XSH/TC2-2008/0013 [692], XSH/TC2-2008/0014 [615], XSH/TC2-2008/0015 [516], and
XSH/TC2-2008/0016 [807] are applied.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3755

129168

129169

129170

129171

129172

129173

129174

129175

129176

129177

129178

129179

129180

129181

129182

129183

129184

129185

129186

129187

129188

129189

129190

129191

129192

129193

129194

129195

129196

129197

129198

129199

129200

129201

129202

129203

129204

129205

129206

129207

129208

129209

129210

129211

129212

129213

129214

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

Austin Group Defect 62 is applied, adding the _Fork() function to, and removing the fork()
function from, the list of async-signal-safe functions.

Austin Group Defect 162 is applied, adding functions from the <endian.h> header to the list of
async-signal-safe functions.

Austin Group Defect 411 is applied, adding accept4(), dup3(), and pipe2() to the list of async-
signal-safe functions.

Austin Group Defect 614 is applied, adding posix_close() to the list of async-signal-safe
functions.

Austin Group Defect 699 is applied, adding setegid(), seteuid(), setregid(), and setreuid() to the
list of async-signal-safe functions.

Austin Group Defect 711 is applied, adding va_arg(), va_copy(), va_end(), and va_start() to the
list of async-signal-safe functions and updating related text to apply to function-like macros.

Austin Group Defect 728 is applied, reducing the set of circumstances in which undefined
behavior results when a signal handler refers to an object with static or thread storage duration.

Austin Group Defect 841 is applied, adding pthread_setcancelstate() to the list of async-signal-safe
functions and making it implementation-defined which additional interfaces are also async-
signal-safe.

Austin Group Defect 986 is applied, adding strlcat(), strlcpy(), wcslcat(), and wcslcpy() to the list
of async-signal-safe functions.

Austin Group Defect 1138 is applied, adding the sig2str() function to the list of async-signal-safe
functions.

Austin Group Defect 1141 is applied, changing ``core file’’ to ``core image’’.

Austin Group Defects 1142, 1455, and 1625 are applied, adding the pread(), pwrite(), readv(),
waitid(), and writev() functions to the list of async-signal-safe functions.

Austin Group Defect 1151 is applied, adding the tcgetwinsize() and tcsetwinsize() functions to the
list of async-signal-safe functions.

Austin Group Defect 1215 is applied, removing XSI shading from text relating to abnormal
process termination with additional actions.

Austin Group Defect 1263 is applied, adding the ppoll() function to the list of async-signal-safe
functions.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1667 is applied, adding getresgid(), getresuid(), setresgid(), and setresuid() to
the list of async-signal-safe functions.

Austin Group Defect 1744 is applied, adding killpg() to the list of async-signal-safe functions.

B.2.4.4 Signal Effects on Other Functions

The most common behavior of an interrupted function after a signal-catching function returns is
for the interrupted function to give an [EINTR] error unless the SA_RESTART flag is in effect for
the signal. However, there are a number of specific exceptions, including sleep() and certain
situations with read() and write().

The historical implementations of many functions defined by POSIX.1-2024 are not interruptible,
but delay delivery of signals generated during their execution until after they complete. This is
never a problem for functions that are guaranteed to complete in a short (imperceptible to a

3756 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129215

129216

129217

129218

129219

129220

129221

129222

129223

129224

129225

129226

129227

129228

129229

129230

129231

129232

129233

129234

129235

129236

129237

129238

129239

129240

129241

129242

129243

129244

129245

129246

129247

129248

129249

129250

129251

129252

129253

129254

129255

129256

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

human) period of time. It is normally those functions that can suspend a process indefinitely or
for long periods of time (for example, wait(), pause(), sigsuspend(), sleep(), or read()/write() on a
slow device like a terminal) that are interruptible. This permits applications to respond to
interactive signals or to set timeouts on calls to most such functions with alarm(). Therefore,
implementations should generally make such functions (including ones defined as extensions)
interruptible.

Functions not mentioned explicitly as interruptible may be so on some implementations,
possibly as an extension where the function gives an [EINTR] error. There are several functions
(for example, getpid(), getuid()) that are specified as never returning an error, which can thus
never be extended in this way.

If a signal-catching function returns while the SA_RESTART flag is in effect, an interrupted
function is restarted at the point it was interrupted. Conforming applications cannot make
assumptions about the internal behavior of interrupted functions, even if the functions are
async-signal-safe. For example, suppose the read() function is interrupted with SA_RESTART in
effect, the signal-catching function closes the file descriptor being read from and returns, and the
read() function is then restarted; in this case the application cannot assume that the read()
function will give an [EBADF] error, since read() might have checked the file descriptor for
validity before being interrupted.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0017 [807] is applied.

B.2.5 Standard I/O Streams

Although the ISO C standard guarantees that, at program start-up, stdin is open for reading and
stdout and stderr are open for writing, this guarantee is contingent (as are all guarantees made by
the ISO C and POSIX standards) on the program being executed in a conforming environment.
Programs executed with file descriptor 0 not open for reading or with file descriptor 1 or 2 not
open for writing are executed in a non-conforming environment. Application writers are warned
(in exec , posix_spawn(), and Section C.2.7, on page 3890) not to execute a standard utility or a
conforming application with file descriptor 0 not open for reading or with file descriptor 1 or 2
not open for writing.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0018 [608] is applied.

Austin Group Defect 689 is applied, clarifying the handling of deadlock situations when locking
a stream.

Austin Group Defect 1144 is applied, clarifying the effect of setvbuf() on memory streams.

Austin Group Defect 1153 is applied, clarifying that the behavior is undefined if a memory
buffer associated with a standard I/O stream overlaps with the destination buffer of a call that
reads from the stream or with the source buffer of a call that writes to the stream.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1347 is applied, clarifying the requirements for how stderr, stdin, and stdout
are opened at program start-up.

B.2.5.1 Interaction of File Descriptors and Standard I/O Streams

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0019 [480] is applied.

Austin Group Defect 1183 is applied, changing ``non-full’’ to ``non-null’’.

Austin Group Defect 1318 is applied, changing the list of functions that close file descriptors.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3757

129257

129258

129259

129260

129261

129262

129263

129264

129265

129266

129267

129268

129269

129270

129271

129272

129273

129274

129275

129276

129277

129278

129279

129280

129281

129282

129283

129284

129285

129286

129287

129288

129289

129290

129291

129292

129293

129294

129295

129296

129297

129298

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

B.2.5.2 Stream Orientation and Encoding Rules

Austin Group Defect 1040 is applied, clarifying that conversion to or from (possibly multi-byte)
characters is not performed by wide character I/O functions when the stream was opened using
open_wmemstream().

B.2.6 File Descriptor Allocation

Functions such as pipe() and socketpair() which allocate two file descriptors are permitted to
perform the two allocations independently. This means that other threads or signal handlers
may perform operations on file descriptors in between the two allocations and this can result in
the two file descriptors not having adjacent values or in the second allocation producing a lower
value than the first.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0032 [835] is applied.

B.2.7 XSI Interprocess Communication

There are two forms of IPC supported as options in POSIX.1-2024. The traditional System V IPC
routines derived from the SVID—that is, the msg*(), sem*(), and shm*() interfaces—are
mandatory on XSI-conformant systems. Thus, all XSI-conformant systems provide the same
mechanisms for manipulating messages, shared memory, and semaphores.

In addition, the POSIX Realtime Extension provides an alternate set of routines for those systems
supporting the appropriate options.

The application developer is presented with a choice: the System V interfaces or the POSIX
interfaces (loosely derived from the Berkeley interfaces). The XSI profile prefers the System V
interfaces, but the POSIX interfaces may be more suitable for realtime or other performance-
sensitive applications.

B.2.7.1 IPC General Description

General information that is shared by all three mechanisms is described in this section. The
common permissions mechanism is briefly introduced, describing the mode bits, and how they
are used to determine whether or not a process has access to read or write/alter the appropriate
instance of one of the IPC mechanisms. All other relevant information is contained in the
reference pages themselves.

The semaphore type of IPC allows processes to communicate through the exchange of
semaphore values. A semaphore is a positive integer. Since many applications require the use of
more than one semaphore, XSI-conformant systems have the ability to create sets or arrays of
semaphores.

Calls to support semaphores include:

semctl(), semget(), semop()

Semaphore sets are created by using the semget() function.

The message type of IPC allows processes to communicate through the exchange of data stored
in buffers. This data is transmitted between processes in discrete portions known as messages.

Calls to support message queues include:

msgctl(), msgget(), msgrcv(), msgsnd()

3758 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129299

129300

129301

129302

129303

129304

129305

129306

129307

129308

129309

129310

129311

129312

129313

129314

129315

129316

129317

129318

129319

129320

129321

129322

129323

129324

129325

129326

129327

129328

129329

129330

129331

129332

129333

129334

129335

129336

129337

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

The shared memory type of IPC allows two or more processes to share memory and
consequently the data contained therein. This is done by allowing processes to set up access to a
common memory address space. This sharing of memory provides a fast means of exchange of
data between processes.

Calls to support shared memory include:

shmctl(), shmdt(), shmget()

The ftok() interface is also provided.

Austin Group Defect 377 is applied, changing the table giving the values for the mode member of
the ipc_perm structure.

B.2.8 Realtime

Advisory Information

POSIX.1b contains an Informative Annex with proposed interfaces for ``realtime files’’. These
interfaces could determine groups of the exact parameters required to do ``direct I/O’’ or
``extents’’. These interfaces were objected to by a significant portion of the balloting group as too
complex. A conforming application had little chance of correctly navigating the large parameter
space to match its desires to the system. In addition, they only applied to a new type of file
(realtime files) and they told the implementation exactly what to do as opposed to advising the
implementation on application behavior and letting it optimize for the system the (portable)
application was running on. For example, it was not clear how a system that had a disk array
should set its parameters.

There seemed to be several overall goals:

• Optimizing sequential access

• Optimizing caching behavior

• Optimizing I/O data transfer

• Preallocation

The advisory interfaces, posix_fadvise() and posix_madvise(), satisfy the first two goals. The
POSIX_FADV_SEQUENTIAL and POSIX_MADV_SEQUENTIAL advice tells the
implementation to expect serial access. Typically the system will prefetch the next several serial
accesses in order to overlap I/O. It may also free previously accessed serial data if memory is
tight. If the application is not doing serial access it can use POSIX_FADV_WILLNEED and
POSIX_MADV_WILLNEED to accomplish I/O overlap, as required. When the application
advises POSIX_FADV_RANDOM or POSIX_MADV_RANDOM behavior, the implementation
usually tries to fetch a minimum amount of data with each request and it does not expect much
locality. POSIX_FADV_DONTNEED and POSIX_MADV_DONTNEED allow the system to free
up caching resources as the data will not be required in the near future.

POSIX_FADV_NOREUSE tells the system that caching the specified data is not optimal. For file
I/O, the transfer should go directly to the user buffer instead of being cached internally by the
implementation. To portably perform direct disk I/O on all systems, the application must
perform its I/O transfers according to the following rules:

1. The user buffer should be aligned according to the {POSIX_REC_XFER_ALIGN}
pathconf() variable.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3759

129338

129339

129340

129341

129342

129343

129344

129345

129346

129347

129348

129349

129350

129351

129352

129353

129354

129355

129356

129357

129358

129359

129360

129361

129362

129363

129364

129365

129366

129367

129368

129369

129370

129371

129372

129373

129374

129375

129376

129377

129378

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

2. The number of bytes transferred in an I/O operation should be a multiple of the
{POSIX_ALLOC_SIZE_MIN} pathconf() variable.

3. The offset into the file at the start of an I/O operation should be a multiple of the
{POSIX_ALLOC_SIZE_MIN} pathconf() variable.

4. The application should ensure that all threads which open a given file specify
POSIX_FADV_NOREUSE to be sure that there is no unexpected interaction between
threads using buffered I/O and threads using direct I/O to the same file.

In some cases, a user buffer must be properly aligned in order to be transferred directly to/from
the device. The {POSIX_REC_XFER_ALIGN} pathconf() variable tells the application the proper
alignment.

The preallocation goal is met by the space control function, posix_fallocate(). The application can
use posix_fallocate() to guarantee no [ENOSPC] errors and to improve performance by prepaying
any overhead required for block allocation.

Implementations may use information conveyed by a previous posix_fadvise() call to influence
the manner in which allocation is performed. For example, if an application did the following
calls:

fd = open("file");
posix_fadvise(fd, offset, len, POSIX_FADV_SEQUENTIAL);
posix_fallocate(fd, len, size);

an implementation might allocate the file contiguously on disk.

Finally, the pathconf() variables {POSIX_REC_MIN_XFER_SIZE},
{POSIX_REC_MAX_XFER_SIZE}, and {POSIX_REC_INCR_XFER_SIZE} tell the application a
range of transfer sizes that are recommended for best I/O performance.

Where bounded response time is required, the vendor can supply the appropriate settings of the
advisories to achieve a guaranteed performance level.

The interfaces meet the goals while allowing applications using regular files to take advantage
of performance optimizations. The interfaces tell the implementation expected application
behavior which the implementation can use to optimize performance on a particular system
with a particular dynamic load.

The posix_memalign() function was added to allow for the allocation of specifically aligned
buffers; for example, for {POSIX_REC_XFER_ALIGN}.

The working group also considered the alternative of adding a function which would return an
aligned pointer to memory within a user-supplied buffer. This was not considered to be the best
method, because it potentially wastes large amounts of memory when buffers need to be aligned
on large alignment boundaries.

Message Passing

This section provides the rationale for the definition of the message passing interface in
POSIX.1-2024. This is presented in terms of the objectives, models, and requirements imposed
upon this interface.

• Objectives

Many applications, including both realtime and database applications, require a means of
passing arbitrary amounts of data between cooperating processes comprising the overall
application on one or more processors. Many conventional interfaces for interprocess
communication are insufficient for realtime applications in that efficient and deterministic

3760 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129379

129380

129381

129382

129383

129384

129385

129386

129387

129388

129389

129390

129391

129392

129393

129394

129395

129396

129397

129398

129399

129400

129401

129402

129403

129404

129405

129406

129407

129408

129409

129410

129411

129412

129413

129414

129415

129416

129417

129418

129419

129420

129421

129422

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

data passing methods cannot be implemented. This has prompted the definition of
message passing interfaces providing these facilities:

— Open a message queue.

— Send a message to a message queue.

— Receive a message from a queue, either synchronously or asynchronously.

— Alter message queue attributes for flow and resource control.

It is assumed that an application may consist of multiple cooperating processes and that
these processes may wish to communicate and coordinate their activities. The message
passing facility described in POSIX.1-2024 allows processes to communicate through
system-wide queues. These message queues are accessed through names that may be
pathnames. A message queue can be opened for use by multiple sending and/or multiple
receiving processes.

• Background on Embedded Applications

Interprocess communication utilizing message passing is a key facility for the construction
of deterministic, high-performance realtime applications. The facility is present in all
realtime systems and is the framework upon which the application is constructed. The
performance of the facility is usually a direct indication of the performance of the resulting
application.

Realtime applications, especially for embedded systems, are typically designed around the
performance constraints imposed by the message passing mechanisms. Applications for
embedded systems are typically very tightly constrained. Application developers expect to
design and control the entire system. In order to minimize system costs, the writer will
attempt to use all resources to their utmost and minimize the requirement to add
additional memory or processors.

The embedded applications usually share address spaces and only a simple message
passing mechanism is required. The application can readily access common data incurring
only mutual-exclusion overheads. The models desired are the simplest possible with the
application building higher-level facilities only when needed.

• Requirements

The following requirements determined the features of the message passing facilities
defined in POSIX.1-2024:

— Naming of Message Queues

The mechanism for gaining access to a message queue is a pathname evaluated in a
context that is allowed to be a file system name space, or it can be independent of
any file system. This is a specific attempt to allow implementations based on either
method in order to address both embedded systems and to also allow
implementation in larger systems.

The interface of mq_open() is defined to allow but not require the access control and
name conflicts resulting from utilizing a file system for name resolution. All required
behavior is specified for the access control case. Yet a conforming implementation,
such as an embedded system kernel, may define that there are no distinctions
between users and may define that all processes have all access privileges.

— Embedded System Naming

Embedded systems need to be able to utilize independent name spaces for accessing
the various system objects. They typically do not have a file system, precluding its

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3761

129423

129424

129425

129426

129427

129428

129429

129430

129431

129432

129433

129434

129435

129436

129437

129438

129439

129440

129441

129442

129443

129444

129445

129446

129447

129448

129449

129450

129451

129452

129453

129454

129455

129456

129457

129458

129459

129460

129461

129462

129463

129464

129465

129466

129467

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

utilization as a common name resolution mechanism. The modularity of an
embedded system limits the connections between separate mechanisms that can be
allowed.

Embedded systems typically do not have any access protection. Since the system
does not support the mixing of applications from different areas, and usually does
not even have the concept of an authorization entity, access control is not useful.

— Large System Naming

On systems with more functionality, the name resolution must support the ability to
use the file system as the name resolution mechanism/object storage medium and to
have control over access to the objects. Utilizing the pathname space can result in
further errors when the names conflict with other objects.

— Fixed Size of Messages

The interfaces impose a fixed upper bound on the size of messages that can be sent to
a specific message queue. The size is set on an individual queue basis and cannot be
changed dynamically.

The purpose of the fixed size is to increase the ability of the system to optimize the
implementation of mq_send() and mq_receive(). With fixed sizes of messages and
fixed numbers of messages, specific message blocks can be pre-allocated. This
eliminates a significant amount of checking for errors and boundary conditions.
Additionally, an implementation can optimize data copying to maximize
performance. Finally, with a restricted range of message sizes, an implementation is
better able to provide deterministic operations.

— Prioritization of Messages

Message prioritization allows the application to determine the order in which
messages are received. Prioritization of messages is a key facility that is provided by
most realtime kernels and is heavily utilized by the applications. The major purpose
of having priorities in message queues is to avoid priority inversions in the message
system, where a high-priority message is delayed behind one or more lower-priority
messages. This allows the applications to be designed so that they do not need to be
interrupted in order to change the flow of control when exceptional conditions occur.
The prioritization does add additional overhead to the message operations, in those
cases it is actually used, but a clever implementation can optimize for the FIFO case
to make that more efficient.

— Asynchronous Notification

The interface supports the ability to have a task asynchronously notified of the
availability of a message on the queue. The purpose of this facility is to allow the task
to perform other functions and yet still be notified that a message has become
available on the queue.

To understand the requirement for this function, it is useful to understand two
models of application design: a single task performing multiple functions and
multiple tasks performing a single function. Each of these models has advantages.

Asynchronous notification is required to build the model of a single task performing
multiple operations. This model typically results from either the expectation that
interruption is less expensive than utilizing a separate task or from the growth of the
application to include additional functions.

3762 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129468

129469

129470

129471

129472

129473

129474

129475

129476

129477

129478

129479

129480

129481

129482

129483

129484

129485

129486

129487

129488

129489

129490

129491

129492

129493

129494

129495

129496

129497

129498

129499

129500

129501

129502

129503

129504

129505

129506

129507

129508

129509

129510

129511

129512

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

Semaphores

Semaphores are a high-performance process synchronization mechanism. Semaphores are
named by null-terminated strings of characters.

A semaphore is created using the sem_init() function or the sem_open() function with the
O_CREAT flag set in oflag.

To use a semaphore, a process has to first initialize the semaphore or inherit an open descriptor
for the semaphore via fork().

A semaphore preserves its state when the last reference is closed. For example, if a semaphore
has a value of 13 when the last reference is closed, it will have a value of 13 when it is next
opened.

When a semaphore is created, an initial state for the semaphore has to be provided. This value is
a non-negative integer. Negative values are not possible since they indicate the presence of
blocked processes. The persistence of any of these objects across a system crash or a system
reboot is undefined. Conforming applications must not depend on any sort of persistence across
a system reboot or a system crash.

• Models and Requirements

A realtime system requires synchronization and communication between the processes
comprising the overall application. An efficient and reliable synchronization mechanism
has to be provided in a realtime system that will allow more than one schedulable process
mutually-exclusive access to the same resource. This synchronization mechanism has to
allow for the optimal implementation of synchronization or systems implementors will
define other, more cost-effective methods.

At issue are the methods whereby multiple processes (tasks) can be designed and
implemented to work together in order to perform a single function. This requires
interprocess communication and synchronization. A semaphore mechanism is the lowest
level of synchronization that can be provided by an operating system.

A semaphore is defined as an object that has an integral value and a set of blocked
processes associated with it. If the value is positive or zero, then the set of blocked
processes is empty; otherwise, the size of the set is equal to the absolute value of the
semaphore value. The value of the semaphore can be incremented or decremented by any
process with access to the semaphore and must be done as an indivisible operation. When
a semaphore value is less than or equal to zero, any process that attempts to lock it again
will block or be informed that it is not possible to perform the operation.

A semaphore may be used to guard access to any resource accessible by more than one
schedulable task in the system. It is a global entity and not associated with any particular
process. As such, a method of obtaining access to the semaphore has to be provided by the
operating system. A process that wants access to a critical resource (section) has to wait on
the semaphore that guards that resource. When the semaphore is locked on behalf of a
process, it knows that it can utilize the resource without interference by any other
cooperating process in the system. When the process finishes its operation on the resource,
leaving it in a well-defined state, it posts the semaphore, indicating that some other
process may now obtain the resource associated with that semaphore.

In this section, mutexes and condition variables are specified as the synchronization
mechanisms between threads.

These primitives are typically used for synchronizing threads that share memory in a
single process. However, this section provides an option allowing the use of these
synchronization interfaces and objects between processes that share memory, regardless of

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3763

129513

129514

129515

129516

129517

129518

129519

129520

129521

129522

129523

129524

129525

129526

129527

129528

129529

129530

129531

129532

129533

129534

129535

129536

129537

129538

129539

129540

129541

129542

129543

129544

129545

129546

129547

129548

129549

129550

129551

129552

129553

129554

129555

129556

129557

129558

129559

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

the method for sharing memory.

Much experience with semaphores shows that there are two distinct uses of
synchronization: locking, which is typically of short duration; and waiting, which is
typically of long or unbounded duration. These distinct usages map directly onto mutexes
and condition variables, respectively.

Semaphores are provided in POSIX.1-2024 primarily to provide a means of
synchronization for processes; these processes may or may not share memory. Mutexes
and condition variables are specified as synchronization mechanisms between threads;
these threads always share (some) memory. Both are synchronization paradigms that have
been in widespread use for a number of years. Each set of primitives is particularly well
matched to certain problems.

With respect to binary semaphores, experience has shown that condition variables and
mutexes are easier to use for many synchronization problems than binary semaphores. The
primary reason for this is the explicit appearance of a Boolean predicate that specifies
when the condition wait is satisfied. This Boolean predicate terminates a loop, including
the call to pthread_cond_wait(). As a result, extra wakeups are benign since the predicate
governs whether the thread will actually proceed past the condition wait. With stateful
primitives, such as binary semaphores, the wakeup in itself typically means that the wait is
satisfied. The burden of ensuring correctness for such waits is thus placed on all signalers
of the semaphore rather than on an explicitly coded Boolean predicate located at the
condition wait. Experience has shown that the latter creates a major improvement in safety
and ease-of-use.

Counting semaphores are well matched to dealing with producer/consumer problems,
including those that might exist between threads of different processes, or between a signal
handler and a thread. In the former case, there may be little or no memory shared by the
processes; in the latter case, one is not communicating between co-equal threads, but
between a thread and an interrupt-like entity. It is for these reasons that POSIX.1-2024
allows semaphores to be used by threads.

Mutexes and condition variables have been effectively used with and without priority
inheritance, priority ceiling, and other attributes to synchronize threads that share
memory. The efficiency of their implementation is comparable to or better than that of
other synchronization primitives that are sometimes harder to use (for example, binary
semaphores). Furthermore, there is at least one known implementation of Ada tasking that
uses these primitives. Mutexes and condition variables together constitute an appropriate,
sufficient, and complete set of inter-thread synchronization primitives.

Efficient multi-threaded applications require high-performance synchronization
primitives. Considerations of efficiency and generality require a small set of primitives
upon which more sophisticated synchronization functions can be built.

• Standardization Issues

It is possible to implement very high-performance semaphores using test-and-set
instructions on shared memory locations. The library routines that implement such a high-
performance interface have to properly ensure that a sem_wait() or sem_trywait() operation
that cannot be performed will issue a blocking semaphore system call or properly report
the condition to the application. The same interface to the application program would be
provided by a high-performance implementation.

3764 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129560

129561

129562

129563

129564

129565

129566

129567

129568

129569

129570

129571

129572

129573

129574

129575

129576

129577

129578

129579

129580

129581

129582

129583

129584

129585

129586

129587

129588

129589

129590

129591

129592

129593

129594

129595

129596

129597

129598

129599

129600

129601

129602

129603

129604

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

B.2.8.1 Realtime Signals

Realtime Signals Extension

This portion of the rationale presents models, requirements, and standardization issues relevant
to the Realtime Signals Extension. This extension provides the capability required to support
reliable, deterministic, asynchronous notification of events. While a new mechanism,
unencumbered by the historical usage and semantics of POSIX.1 signals, might allow for a more
efficient implementation, the application requirements for event notification can be met with a
small number of extensions to signals. Therefore, a minimal set of extensions to signals to
support the application requirements is specified.

The realtime signal extensions specified in this section are used by other realtime functions
requiring asynchronous notification:

• Models

The model supported is one of multiple cooperating processes, each of which handles
multiple asynchronous external events. Events represent occurrences that are generated as
the result of some activity in the system. Examples of occurrences that can constitute an
event include:

— Completion of an asynchronous I/O request

— Expiration of a POSIX.1b timer

— Arrival of an interprocess message

— Generation of a user-defined event

Processing of these events may occur synchronously via polling for event notifications or
asynchronously via a software interrupt mechanism. Existing practice for this model is
well established for traditional proprietary realtime operating systems, realtime
executives, and realtime extended POSIX-like systems.

A contrasting model is that of ``cooperating sequential processes’’ where each process
handles a single priority of events via polling. Each process blocks while waiting for
events, and each process depends on the preemptive, priority-based process scheduling
mechanism to arbitrate between events of different priority that need to be processed
concurrently. Existing practice for this model is also well established for small realtime
executives that typically execute in an unprotected physical address space, but it is just
emerging in the context of a fuller function operating system with multiple virtual address
spaces.

It could be argued that the cooperating sequential process model, and the facilities
supported by the POSIX Threads Extension obviate a software interrupt model. But, even
with the cooperating sequential process model, the need has been recognized for a
software interrupt model to handle exceptional conditions and process aborting, so the
mechanism must be supported in any case. Furthermore, it is not the purview of
POSIX.1-2024 to attempt to convince realtime practitioners that their current application
models based on software interrupts are ``broken’’ and should be replaced by the
cooperating sequential process model. Rather, it is the charter of POSIX.1-2024 to provide
standard extensions to mechanisms that support existing realtime practice.

• Requirements

This section discusses the following realtime application requirements for asynchronous
event notification:

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3765

129605

129606

129607

129608

129609

129610

129611

129612

129613

129614

129615

129616

129617

129618

129619

129620

129621

129622

129623

129624

129625

129626

129627

129628

129629

129630

129631

129632

129633

129634

129635

129636

129637

129638

129639

129640

129641

129642

129643

129644

129645

129646

129647

129648

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

— Reliable delivery of asynchronous event notification

The events notification mechanism guarantees delivery of an event notification.
Asynchronous operations (such as asynchronous I/O and timers) that complete
significantly after they are invoked have to guarantee that delivery of the event
notification can occur at the time of completion.

— Prioritized handling of asynchronous event notifications

The events notification mechanism supports the assigning of a user function as an
event notification handler. Furthermore, the mechanism supports the preemption of
an event handler function by a higher priority event notification and supports the
selection of the highest priority pending event notification when multiple
notifications (of different priority) are pending simultaneously.

The model here is based on hardware interrupts. Asynchronous event handling
allows the application to ensure that time-critical events are immediately processed
when delivered, without the indeterminism of being at a random location within a
polling loop. Use of handler priority allows the specification of how handlers are
interrupted by other higher priority handlers.

— Differentiation between multiple occurrences of event notifications of the same type

The events notification mechanism passes an application-defined value to the event
handler function. This value can be used for a variety of purposes, such as enabling
the application to identify which of several possible events of the same type (for
example, timer expirations) has occurred.

— Polled reception of asynchronous event notifications

The events notification mechanism supports blocking and non-blocking polls for
asynchronous event notification.

The polled mode of operation is often preferred over the interrupt mode by those
practitioners accustomed to this model. Providing support for this model facilitates
the porting of applications based on this model to POSIX.1b conforming systems.

— Deterministic response to asynchronous event notifications

The events notification mechanism does not preclude implementations that provide
deterministic event dispatch latency and minimizes the number of system calls
needed to use the event facilities during realtime processing.

• Rationale for Extension

POSIX.1 signals have many of the characteristics necessary to support the asynchronous
handling of event notifications, and the Realtime Signals Extension addresses the
following deficiencies in the POSIX.1 signal mechanism:

— Signals do not support reliable delivery of event notification. Subsequent
occurrences of a pending signal are not guaranteed to be delivered.

— Signals do not support prioritized delivery of event notifications. The order of signal
delivery when multiple unblocked signals are pending is undefined.

— Signals do not support the differentiation between multiple signals of the same type.

3766 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129649

129650

129651

129652

129653

129654

129655

129656

129657

129658

129659

129660

129661

129662

129663

129664

129665

129666

129667

129668

129669

129670

129671

129672

129673

129674

129675

129676

129677

129678

129679

129680

129681

129682

129683

129684

129685

129686

129687

129688

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

B.2.8.2 Asynchronous I/O

Many applications need to interact with the I/O subsystem in an asynchronous manner. The
asynchronous I/O mechanism provides the ability to overlap application processing and I/O
operations initiated by the application. The asynchronous I/O mechanism allows a single
process to perform I/O simultaneously to a single file multiple times or to multiple files
multiple times.

Overview

Asynchronous I/O operations proceed in logical parallel with the processing done by the
application after the asynchronous I/O has been initiated. Other than this difference,
asynchronous I/O behaves similarly to normal I/O using read(), write(), lseek(), and fsync().
The effect of issuing an asynchronous I/O request is as if a separate thread of execution were to
perform atomically the implied lseek() operation, if any, and then the requested I/O operation
(either read(), write(), or fsync()). There is no seek implied with a call to aio_fsync(). Concurrent
asynchronous operations and synchronous operations applied to the same file update the file as
if the I/O operations had proceeded serially.

When asynchronous I/O completes, a signal can be delivered to the application to indicate the
completion of the I/O. This signal can be used to indicate that buffers and control blocks used
for asynchronous I/O can be reused. Signal delivery is not required for an asynchronous
operation and may be turned off on a per-operation basis by the application. Signals may also be
synchronously polled using aio_suspend(), sigtimedwait(), or sigwaitinfo().

Normal I/O has a return value and an error status associated with it. Asynchronous I/O
returns a value and an error status when the operation is first submitted, but that only relates to
whether the operation was successfully queued up for servicing. The I/O operation itself also
has a return status and an error value. To allow the application to retrieve the return status and
the error value, functions are provided that, given the address of an asynchronous I/O control
block, yield the return and error status associated with the operation. Until an asynchronous I/O
operation is done, its error status is [EINPROGRESS]. Thus, an application can poll for
completion of an asynchronous I/O operation by waiting for the error status to become equal to
a value other than [EINPROGRESS]. The return status of an asynchronous I/O operation is
undefined so long as the error status is equal to [EINPROGRESS].

Storage for asynchronous operation return and error status may be limited. Submission of
asynchronous I/O operations may fail if this storage is exceeded. When an application retrieves
the return status of a given asynchronous operation, therefore, any system-maintained storage
used for this status and the error status may be reclaimed for use by other asynchronous
operations.

Asynchronous I/O can be performed on file descriptors that have been enabled for POSIX.1b
synchronized I/O. In this case, the I/O operation still occurs asynchronously, as defined herein;
however, the asynchronous operation I/O in this case is not completed until the I/O has reached
either the state of synchronized I/O data integrity completion or synchronized I/O file integrity
completion, depending on the sort of synchronized I/O that is enabled on the file descriptor.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3767

129689

129690

129691

129692

129693

129694

129695

129696

129697

129698

129699

129700

129701

129702

129703

129704

129705

129706

129707

129708

129709

129710

129711

129712

129713

129714

129715

129716

129717

129718

129719

129720

129721

129722

129723

129724

129725

129726

129727

129728

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

Models

Three models illustrate the use of asynchronous I/O: a journalization model, a data acquisition
model, and a model of the use of asynchronous I/O in supercomputing applications.

• Journalization Model

Many realtime applications perform low-priority journalizing functions. Journalizing
requires that logging records be queued for output without blocking the initiating process.

• Data Acquisition Model

A data acquisition process may also serve as a model. The process has two or more
channels delivering intermittent data that must be read within a certain time. The process
issues one asynchronous read on each channel. When one of the channels needs data
collection, the process reads the data and posts it through an asynchronous write to
secondary memory for future processing.

• Supercomputing Model

The supercomputing community has used asynchronous I/O much like that specified in
POSIX.1 for many years. This community requires the ability to perform multiple I/O
operations to multiple devices with a minimal number of entries to ``the system’’; each
entry to ``the system’’ provokes a major delay in operations when compared to the normal
progress made by the application. This existing practice motivated the use of combined
lseek() and read() or write() calls, as well as the lio_listio() call. Another common practice is
to disable signal notification for I/O completion, and simply poll for I/O completion at
some interval by which the I/O should be completed. Likewise, interfaces like aio_cancel()
have been in successful commercial use for many years. Note also that an underlying
implementation of asynchronous I/O will require the ability, at least internally, to cancel
outstanding asynchronous I/O, at least when the process exits. (Consider an asynchronous
read from a terminal, when the process intends to exit immediately.)

Requirements

Asynchronous input and output for realtime implementations have these requirements:

• The ability to queue multiple asynchronous read and write operations to a single open
instance. Both sequential and random access should be supported.

• The ability to queue asynchronous read and write operations to multiple open instances.

• The ability to obtain completion status information by polling and/or asynchronous event
notification.

• Asynchronous event notification on asynchronous I/O completion is optional.

• It has to be possible for the application to associate the event with the aiocbp for the
operation that generated the event.

• The ability to cancel queued requests.

• The ability to wait upon asynchronous I/O completion in conjunction with other types of
events.

• The ability to accept an aio_read() and an aio_cancel() for a device that accepts a read(), and
the ability to accept an aio_write() and an aio_cancel() for a device that accepts a write().
This does not imply that the operation is asynchronous.

3768 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129729

129730

129731

129732

129733

129734

129735

129736

129737

129738

129739

129740

129741

129742

129743

129744

129745

129746

129747

129748

129749

129750

129751

129752

129753

129754

129755

129756

129757

129758

129759

129760

129761

129762

129763

129764

129765

129766

129767

129768

129769

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

Standardization Issues

The following issues are addressed by the standardization of asynchronous I/O:

• Rationale for New Interface

Non-blocking I/O does not satisfy the needs of either realtime or high-performance
computing models; these models require that a process overlap program execution and
I/O processing. Realtime applications will often make use of direct I/O to or from the
address space of the process, or require synchronized (unbuffered) I/O; they also require
the ability to overlap this I/O with other computation. In addition, asynchronous I/O
allows an application to keep a device busy at all times, possibly achieving greater
throughput. Supercomputing and database architectures will often have specialized
hardware that can provide true asynchrony underlying the logical asynchrony provided
by this interface. In addition, asynchronous I/O should be supported by all types of files
and devices in the same manner.

• Effect of Buffering

If asynchronous I/O is performed on a file that is buffered prior to being actually written
to the device, it is possible that asynchronous I/O will offer no performance advantage
over normal I/O; the cycles stolen to perform the asynchronous I/O will be taken away
from the running process and the I/O will occur at interrupt time. This potential lack of
gain in performance in no way obviates the need for asynchronous I/O by realtime
applications, which very often will use specialized hardware support, multiple processors,
and/or unbuffered, synchronized I/O.

B.2.8.3 Memory Management

All memory management and shared memory definitions are located in the <sys/mman.h>
header. This is for alignment with historical practice.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/7 is applied, correcting the shading and
margin markers in the introduction to Section 2.8.3.1.

Memory Locking Functions

This portion of the rationale presents models, requirements, and standardization issues relevant
to process memory locking.

• Models

Realtime systems that conform to POSIX.1-2024 are expected (and desired) to be supported
on systems with demand-paged virtual memory management, non-paged swapping
memory management, and physical memory systems with no memory management
hardware. The general case, however, is the demand-paged, virtual memory system with
each POSIX process running in a virtual address space. Note that this includes
architectures where each process resides in its own virtual address space and architectures
where the address space of each process is only a portion of a larger global virtual address
space.

The concept of memory locking is introduced to eliminate the indeterminacy introduced
by paging and swapping, and to support an upper bound on the time required to access
the memory mapped into the address space of a process. Ideally, this upper bound will be
the same as the time required for the processor to access ``main memory’’, including any
address translation and cache miss overheads. But some implementations—primarily on
mainframes—will not actually force locked pages to be loaded and held resident in main
memory. Rather, they will handle locked pages so that accesses to these pages will meet the

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3769

129770

129771

129772

129773

129774

129775

129776

129777

129778

129779

129780

129781

129782

129783

129784

129785

129786

129787

129788

129789

129790

129791

129792

129793

129794

129795

129796

129797

129798

129799

129800

129801

129802

129803

129804

129805

129806

129807

129808

129809

129810

129811

129812

129813

129814

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

performance metrics for locked process memory in the implementation. Also, although it
is not, for example, the intention that this interface, as specified, be used to lock process
memory into ``cache’’, it is conceivable that an implementation could support a large static
RAM memory and define this as ``main memory’’ and use a large[r] dynamic RAM as
``backing store’’. These interfaces could then be interpreted as supporting the locking of
process memory into the static RAM. Support for multiple levels of backing store would
require extensions to these interfaces.

Implementations may also use memory locking to guarantee a fixed translation between
virtual and physical addresses where such is beneficial to improving determinacy for
direct-to/from-process input/output. POSIX.1-2024 does not guarantee to the application
that the virtual-to-physical address translations, if such exist, are fixed, because such
behavior would not be implementable on all architectures on which implementations of
POSIX.1-2024 are expected. But POSIX.1-2024 does mandate that an implementation
define, for the benefit of potential users, whether or not locking guarantees fixed
translations.

Memory locking is defined with respect to the address space of a process. Only the pages
mapped into the address space of a process may be locked by the process, and when the
pages are no longer mapped into the address space—for whatever reason—the locks
established with respect to that address space are removed. Shared memory areas warrant
special mention, as they may be mapped into more than one address space or mapped
more than once into the address space of a process; locks may be established on pages
within these areas with respect to several of these mappings. In such a case, the lock state
of the underlying physical pages is the logical OR of the lock state with respect to each of
the mappings. Only when all such locks have been removed are the shared pages
considered unlocked.

In recognition of the page granularity of Memory Management Units (MMU), and in order
to support locking of ranges of address space, memory locking is defined in terms of
``page’’ granularity. That is, for the interfaces that support an address and size specification
for the region to be locked, the address must be on a page boundary, and all pages mapped
by the specified range are locked, if valid. This means that the length is implicitly rounded
up to a multiple of the page size. The page size is implementation-defined and is available
to applications as a compile-time symbolic constant or at runtime via sysconf().

A ``real memory’’ POSIX.1b implementation that has no MMU could elect not to support
these interfaces, returning [ENOSYS]. But an application could easily interpret this as
meaning that the implementation would unconditionally page or swap the application
when such is not the case. It is the intention of POSIX.1-2024 that such a system could
define these interfaces as ``NO-OPs’’, returning success without actually performing any
function except for mandated argument checking.

• Requirements

For realtime applications, memory locking is generally considered to be required as part of
application initialization. This locking is performed after an application has been loaded
(that is, exec’d) and the program remains locked for its entire lifetime. But to support
applications that undergo major mode changes where, in one mode, locking is required,
but in another it is not, the specified interfaces allow repeated locking and unlocking of
memory within the lifetime of a process.

When a realtime application locks its address space, it should not be necessary for the
application to then ``touch’’ all of the pages in the address space to guarantee that they are
resident or else suffer potential paging delays the first time the page is referenced. Thus,
POSIX.1-2024 requires that the pages locked by the specified interfaces be resident when

3770 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129815

129816

129817

129818

129819

129820

129821

129822

129823

129824

129825

129826

129827

129828

129829

129830

129831

129832

129833

129834

129835

129836

129837

129838

129839

129840

129841

129842

129843

129844

129845

129846

129847

129848

129849

129850

129851

129852

129853

129854

129855

129856

129857

129858

129859

129860

129861

129862

129863

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

the locking functions return successfully.

Many architectures support system-managed stacks that grow automatically when the
current extent of the stack is exceeded. A realtime application has a requirement to be able
to ``preallocate’’ sufficient stack space and lock it down so that it will not suffer page faults
to grow the stack during critical realtime operation. There was no consensus on a portable
way to specify how much stack space is needed, so POSIX.1-2024 supports no specific
interface for preallocating stack space. But an application can portably lock down a specific
amount of stack space by specifying MCL_FUTURE in a call to mlockall() and then calling
a dummy function that declares an automatic array of the desired size.

Memory locking for realtime applications is also generally considered to be an ``all or
nothing’’ proposition. That is, the entire process, or none, is locked down. But, for
applications that have well-defined sections that need to be locked and others that do not,
POSIX.1-2024 supports an optional set of interfaces to lock or unlock a range of process
addresses. Reasons for locking down a specific range include:

— An asynchronous event handler function that must respond to external events in a
deterministic manner such that page faults cannot be tolerated

— An input/output ``buffer ’’ area that is the target for direct-to-process I/O, and the
overhead of implicit locking and unlocking for each I/O call cannot be tolerated

Finally, locking is generally viewed as an ``application-wide’’ function. That is, the
application is globally aware of which regions are locked and which are not over time. This
is in contrast to a function that is used temporarily within a ``third party’’ library routine
whose function is unknown to the application, and therefore must have no ``side-effects’’.
The specified interfaces, therefore, do not support ``lock stacking’’ or ``lock nesting’’ within
a process. But, for pages that are shared between processes or mapped more than once
into a process address space, ``lock stacking’’ is essentially mandated by the requirement
that unlocking of pages that are mapped by more that one process or more than once by
the same process does not affect locks established on the other mappings.

There was some support for ``lock stacking’’ so that locking could be transparently used in
functions or opaque modules. But the consensus was not to burden all implementations
with lock stacking (and reference counting), and an implementation option was proposed.
There were strong objections to the option because applications would have to support
both options in order to remain portable. The consensus was to eliminate lock stacking
altogether, primarily through overwhelming support for the System V ``m[un]lock[all]’’
interface on which POSIX.1-2024 is now based.

Locks are not inherited across fork()s because some implementations implement fork() by
creating new address spaces for the child. In such an implementation, requiring locks to be
inherited would lead to new situations in which a fork would fail due to the inability of
the system to lock sufficient memory to lock both the parent and the child. The consensus
was that there was no benefit to such inheritance. Note that this does not mean that locks
are removed when, for instance, a thread is created in the same address space.

Similarly, locks are not inherited across exec because some implementations implement exec
by unmapping all of the pages in the address space (which, by definition, removes the
locks on these pages), and maps in pages of the exec’d image. In such an implementation,
requiring locks to be inherited would lead to new situations in which exec would fail.
Reporting this failure would be very cumbersome to detect in time to report to the calling
process, and no appropriate mechanism exists for informing the exec’d process of its status.

It was determined that, if the newly loaded application required locking, it was the
responsibility of that application to establish the locks. This is also in keeping with the

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3771

129864

129865

129866

129867

129868

129869

129870

129871

129872

129873

129874

129875

129876

129877

129878

129879

129880

129881

129882

129883

129884

129885

129886

129887

129888

129889

129890

129891

129892

129893

129894

129895

129896

129897

129898

129899

129900

129901

129902

129903

129904

129905

129906

129907

129908

129909

129910

129911

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

general view that it is the responsibility of the application to be aware of all locks that are
established.

There was one request to allow (not mandate) locks to be inherited across fork(), and a
request for a flag, MCL_INHERIT, that would specify inheritance of memory locks across
execs. Given the difficulties raised by this and the general lack of support for the feature in
POSIX.1-2024, it was not added. POSIX.1-2024 does not preclude an implementation from
providing this feature for administrative purposes, such as a ``run’’ command that will
lock down and execute a specified application. Additionally, the rationale for the objection
equated fork() with creating a thread in the address space. POSIX.1-2024 does not mandate
releasing locks when creating additional threads in an existing process.

• Standardization Issues

One goal of POSIX.1-2024 is to define a set of primitives that provide the necessary
functionality for realtime applications, with consideration for the needs of other
application domains where such were identified, which is based to the extent possible on
existing industry practice.

The Memory Locking option is required by many realtime applications to tune
performance. Such a facility is accomplished by placing constraints on the virtual memory
system to limit paging of time of the process or of critical sections of the process. This
facility should not be used by most non-realtime applications.

Optional features provided in POSIX.1-2024 allow applications to lock selected address
ranges with the caveat that the process is responsible for being aware of the page
granularity of locking and the unnested nature of the locks.

Mapped Files Functions

The memory mapped files functionality provides a mechanism that allows a process to access
files by directly incorporating file data into its address space. Once a file is ``mapped’’ into a
process address space, the data can be manipulated by instructions as memory. The use of
mapped files can significantly reduce I/O data movement since file data does not have to be
copied into process data buffers as in read() and write(). If more than one process maps a file, its
contents are shared among them. This provides a low overhead mechanism by which processes
can synchronize and communicate.

• Historical Perspective

Realtime applications have historically been implemented using a collection of cooperating
processes or tasks. In early systems, these processes ran on bare hardware (that is, without
an operating system) with no memory relocation or protection. The application paradigms
that arose from this environment involve the sharing of data between the processes.

When realtime systems were implemented on top of vendor-supplied operating systems,
the paradigm or performance benefits of direct access to data by multiple processes was
still deemed necessary. As a result, operating systems that claim to support realtime
applications must support the shared memory paradigm.

Additionally, a number of realtime systems provide the ability to map specific sections of
the physical address space into the address space of a process. This ability is required if an
application is to obtain direct access to memory locations that have specific properties (for
example, refresh buffers or display devices, dual ported memory locations, DMA target
locations). The use of this ability is common enough to warrant some degree of
standardization of its interface. This ability overlaps the general paradigm of shared
memory in that, in both instances, common global objects are made addressable by
individual processes or tasks.

3772 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

129912

129913

129914

129915

129916

129917

129918

129919

129920

129921

129922

129923

129924

129925

129926

129927

129928

129929

129930

129931

129932

129933

129934

129935

129936

129937

129938

129939

129940

129941

129942

129943

129944

129945

129946

129947

129948

129949

129950

129951

129952

129953

129954

129955

129956

129957

129958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

Finally, a number of systems also provide the ability to map process addresses to files. This
provides both a general means of sharing persistent objects, and using files in a manner
that optimizes memory and swapping space usage.

Simple shared memory is clearly a special case of the more general file mapping capability.
In addition, there is relatively widespread agreement and implementation of the file
mapping interface. In these systems, many different types of objects can be mapped (for
example, files, memory, devices, and so on) using the same mapping interfaces. This
approach both minimizes interface proliferation and maximizes the generality of programs
using the mapping interfaces.

• Memory Mapped Files Usage

A memory object can be concurrently mapped into the address space of one or more
processes. The mmap() and munmap() functions allow a process to manipulate their
address space by mapping portions of memory objects into it and removing them from it.
When multiple processes map the same memory object, they can share access to the
underlying data. Implementations may restrict the size and alignment of mappings to be
on page-size boundaries. The page size, in bytes, is the value of the system-configurable
variable {PAGESIZE}, typically accessed by calling sysconf() with a name argument of
_SC_PAGESIZE. If an implementation has no restrictions on size or alignment, it may
specify a 1-byte page size.

To map memory, a process first opens a memory object. The ftruncate() function can be
used to contract or extend the size of the memory object even when the object is currently
mapped. If the memory object is extended, the contents of the extended areas are zeros.

After opening a memory object, the application maps the object into its address space
using the mmap() function call. Once a mapping has been established, it remains mapped
until unmapped with munmap(), even if the memory object is closed. The mprotect()
function can be used to change the memory protections initially established by mmap().

A close() of the file descriptor, while invalidating the file descriptor itself, does not unmap
any mappings established for the memory object. The address space, including all mapped
regions, is inherited on fork(). The entire address space is unmapped on process
termination or by successful calls to any of the exec family of functions.

The msync() function is used to force mapped file data to permanent storage.

• Effects on Other Functions

With memory mapped files, the operation of the open(), creat(), and unlink() functions are
a natural result of using the file system name space to map the global names for memory
objects.

The ftruncate() function can be used to set the length of a sharable memory object.

The meaning of stat() fields other than the size and protection information is undefined on
implementations where memory objects are not implemented using regular files. When
regular files are used, the times reflect when the implementation updated the file image of
the data, not when a process updated the data in memory.

The operations of fdopen(), write(), read(), and lseek() were made unspecified for objects
opened with shm_open(), so that implementations that did not implement memory objects
as regular files would not have to support the operation of these functions on shared
memory objects.

The behavior of memory objects with respect to close(), dup(), dup2(), dup3(), open(),
close(), fork(), _exit(), and the exec family of functions is the same as the behavior of the

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3773

129959

129960

129961

129962

129963

129964

129965

129966

129967

129968

129969

129970

129971

129972

129973

129974

129975

129976

129977

129978

129979

129980

129981

129982

129983

129984

129985

129986

129987

129988

129989

129990

129991

129992

129993

129994

129995

129996

129997

129998

129999

130000

130001

130002

130003

130004

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

existing practice of the mmap() function.

A memory object can still be referenced after a close. That is, any mappings made to the
file are still in effect, and reads and writes that are made to those mappings are still valid
and are shared with other processes that have the same mapping. Likewise, the memory
object can still be used if any references remain after its name(s) have been deleted. Any
references that remain after a close must not appear to the application as file descriptors.

This is existing practice for mmap() and close(). In addition, there are already mappings
present (text, data, stack) that do not have open file descriptors. The text mapping in
particular is considered a reference to the file containing the text. The desire was to treat all
mappings by the process uniformly. Also, many modern implementations use mmap() to
implement shared libraries, and it would not be desirable to keep file descriptors for each
of the many libraries an application can use. It was felt there were many other existing
programs that used this behavior to free a file descriptor, and thus POSIX.1-2024 could not
forbid it and still claim to be using existing practice.

For implementations that implement memory objects using memory only, memory objects
will retain the memory allocated to the file after the last close and will use that same
memory on the next open. Note that closing the memory object is not the same as deleting
the name, since the memory object is still defined in the memory object name space.

The locks of fcntl() do not block any read or write operation, including read or write access
to shared memory or mapped files. In addition, implementations that only support shared
memory objects should not be required to implement record locks. The reference to fcntl()
is added to make this point explicitly. The other fcntl() commands are useful with shared
memory objects.

The size of pages that mapping hardware may be able to support may be a configurable
value, or it may change based on hardware implementations. The addition of the
_SC_PAGESIZE parameter to the sysconf() function is provided for determining the
mapping page size at runtime.

Shared Memory Functions

Implementations may support the Shared Memory Objects option independently of memory
mapped files. Shared memory objects are named regions of storage that may be independent of
the file system and can be mapped into the address space of one or more processes to allow
them to share the associated memory.

• Requirements

Shared memory is used to share data among several processes, each potentially running at
different priority levels, responding to different inputs, or performing separate tasks.
Shared memory is not just simply providing common access to data, it is providing the
fastest possible communication between the processes. With one memory write operation,
a process can pass information to as many processes as have the memory region mapped.

As a result, shared memory provides a mechanism that can be used for all other
interprocess communication facilities. It may also be used by an application for
implementing more sophisticated mechanisms than semaphores and message queues.

The need for a shared memory interface is obvious for virtual memory systems, where the
operating system is directly preventing processes from accessing each other’s data.
However, in unprotected systems, such as those found in some embedded controllers, a
shared memory interface is needed to provide a portable mechanism to allocate a region of
memory to be shared and then to communicate the address of that region to other
processes.

3774 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130005

130006

130007

130008

130009

130010

130011

130012

130013

130014

130015

130016

130017

130018

130019

130020

130021

130022

130023

130024

130025

130026

130027

130028

130029

130030

130031

130032

130033

130034

130035

130036

130037

130038

130039

130040

130041

130042

130043

130044

130045

130046

130047

130048

130049

130050

130051

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

This, then, provides the minimum functionality that a shared memory interface must have
in order to support realtime applications: to allocate and name an object to be mapped into
memory for potential sharing (open() or shm_open()), and to make the memory object
available within the address space of a process (mmap()). To complete the interface, a
mechanism to release the claim of a process on a shared memory object (munmap()) is also
needed, as well as a mechanism for deleting the name of a sharable object that was
previously created (unlink() or shm_unlink()).

After a mapping has been established, an implementation should not have to provide
services to maintain that mapping. All memory writes into that area will appear
immediately in the memory mapping of that region by any other processes.

Thus, requirements include:

— Support creation of sharable memory objects and the mapping of these objects into
the address space of a process.

— Sharable memory objects should be accessed by global names accessible from all
processes.

— Support the mapping of specific sections of physical address space (such as a
memory mapped device) into the address space of a process. This should not be
done by the process specifying the actual address, but again by an implementation-
defined global name (such as a special device name) dedicated to this purpose.

— Support the mapping of discrete portions of these memory objects.

— Support for minimum hardware configurations that contain no physical media on
which to store shared memory contents permanently.

— The ability to preallocate the entire shared memory region so that minimum
hardware configurations without virtual memory support can guarantee contiguous
space.

— The maximizing of performance by not requiring functionality that would require
implementation interaction above creating the shared memory area and returning
the mapping.

Note that the above requirements do not preclude:

— The sharable memory object from being implemented using actual files on an actual
file system.

— The global name that is accessible from all processes being restricted to a file system
area that is dedicated to handling shared memory.

— An implementation not providing implementation-defined global names for the
purpose of physical address mapping.

• Shared Memory Objects Usage

If the Shared Memory Objects option is supported, a shared memory object may be
created, or opened if it already exists, with the shm_open() function. If the shared memory
object is created, it has a length of zero. The ftruncate() function can be used to set the size
of the shared memory object after creation. The shm_unlink() function removes the name
for a shared memory object created by shm_open().

• Shared Memory Overview

The shared memory facility defined by POSIX.1-2024 usually results in memory locations
being added to the address space of the process. The implementation returns the address

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3775

130052

130053

130054

130055

130056

130057

130058

130059

130060

130061

130062

130063

130064

130065

130066

130067

130068

130069

130070

130071

130072

130073

130074

130075

130076

130077

130078

130079

130080

130081

130082

130083

130084

130085

130086

130087

130088

130089

130090

130091

130092

130093

130094

130095

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

of the new space to the application by means of a pointer. This works well in languages
like C. However, in languages without pointer types it will not work. In the bindings for
such a language, either a special COMMON section will need to be defined (which is
unlikely), or the binding will have to allow existing structures to be mapped. The
implementation will likely have to place restrictions on the size and alignment of such
structures or will have to map a suitable region of the address space of the process into the
memory object, and thus into other processes. These are issues for that particular language
binding. For POSIX.1-2024, however, the practice will not be forbidden, merely undefined.

Two potentially different name spaces are used for naming objects that may be mapped
into process address spaces. When using memory mapped files, files may be accessed via
open(). When the Shared Memory Objects option is supported, sharable memory objects
that might not be files may be accessed via the shm_open() function. These operations are
not mutually-exclusive.

Some implementations supporting the Shared Memory Objects option may choose to
implement the shared memory object name space as part of the file system name space.
There are several reasons for this:

— It allows applications to prevent name conflicts by use of the directory structure.

— It uses an existing mechanism for accessing global objects and prevents the creation
of a new mechanism for naming global objects.

In such implementations, memory objects can be implemented using regular files, if that is
what the implementation chooses. The shm_open() function can be implemented as an
open() call in a fixed directory with the O_CLOEXEC flag set. The shm_unlink() function
can be implemented as an unlink() call.

On the other hand, it is also expected that small embedded systems that support the
Shared Memory Objects option may wish to implement shared memory without having
any file systems present. In this case, the implementations may choose to use a simple
string valued name space for shared memory regions. The shm_open() function permits
either type of implementation.

Some implementations have hardware that supports protection of mapped data from
certain classes of access and some do not. Systems that supply this functionality support
the memory protection functionality.

Some implementations restrict size, alignment, and protections to be on page-size
boundaries. If an implementation has no restrictions on size or alignment, it may specify a
1-byte page size. Applications on implementations that do support larger pages must be
cognizant of the page size since this is the alignment and protection boundary.

Simple embedded implementations may have a 1-byte page size and only support the
Shared Memory Objects option. This provides simple shared memory between processes
without requiring mapping hardware.

POSIX.1-2024 specifically allows a memory object to remain referenced after a close
because that is existing practice for the mmap() function.

3776 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130096

130097

130098

130099

130100

130101

130102

130103

130104

130105

130106

130107

130108

130109

130110

130111

130112

130113

130114

130115

130116

130117

130118

130119

130120

130121

130122

130123

130124

130125

130126

130127

130128

130129

130130

130131

130132

130133

130134

130135

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

Typed Memory Functions

Implementations may support the Typed Memory Objects option without supporting either the
Shared Memory option or memory mapped files. Types memory objects are pools of specialized
storage, different from the main memory resource normally used by a processor to hold code
and data, that can be mapped into the address space of one or more processes.

• Model

Realtime systems conforming to one of the POSIX.13 realtime profiles are expected (and
desired) to be supported on systems with more than one type or pool of memory (for
example, SRAM, DRAM, ROM, EPROM, EEPROM), where each type or pool of memory
may be accessible by one or more processors via one or more buses (ports). Memory
mapped files, shared memory objects, and the language-specific storage allocation
operators (malloc() for the ISO C standard, new for ISO Ada) fail to provide application
program interfaces versatile enough to allow applications to control their utilization of
such diverse memory resources. The typed memory interfaces posix_typed_mem_open(),
posix_mem_offset(), posix_typed_mem_get_info(), mmap(), and munmap() defined herein
support the model of typed memory described below.

For purposes of this model, a system comprises several processors (for example, P
1

and
P

2
), several physical memory pools (for example, M

1
, M

2
, M

2a
, M

2b
, M

3
, M

4
, and M

5
), and

several buses or ``ports’’ (for example, B
1
, B

2
, B

3
, and B

4
) interconnecting the various

processors and memory pools in some system-specific way. Notice that some memory
pools may be contained in others (for example, M

2a
and M

2b
are contained in M

2
).

Figure B-1 shows an example of such a model. In a system like this, an application should
be able to perform the following operations:

Bus Bus

Bus

Bus

All addresses in pool M2 (comprising pools M2a and M2b) accessible via port B1.

Addresses in pool M2b are also accessible via port B2.

Addresses in pool M2a are not accessible via port B2.

B1B1B1 B3

B4

B2 B2 B2 B2

P1

Processor

P2

Processor

M1

Memory

M3

Memory

M4

Memory

M5

Memory
M2a

M2b

Memory

M2

*

*

Figure B-1 Example of a System with Typed Memory

— Typed Memory Allocation

An application should be able to allocate memory dynamically from the desired pool
using the desired bus, and map it into the address space of a process. For example,
processor P

1
can allocate some portion of memory pool M

1
through port B

1
, treating

all unmapped subareas of M
1

as a heap-storage resource from which memory may be
allocated. This portion of memory is mapped into address space of the process, and
subsequently deallocated when unmapped from all processes.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3777

130136

130137

130138

130139

130140

130141

130142

130143

130144

130145

130146

130147

130148

130149

130150

130151

130152

130153

130154

130155

130156

130157

130158

130159

130160

130161

130162

130163

130164

130165

130166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

— Using the Same Storage Region from Different Buses

An application process with a mapped region of storage that is accessed from one
bus should be able to map that same storage area at another address (subject to page
size restrictions detailed in mmap()), to allow it to be accessed from another bus. For
example, processor P

1
may wish to access the same region of memory pool M

2b
both

through ports B
1

and B
2
.

— Sharing Typed Memory Regions

Several application processes running on the same or different processors may wish
to share a particular region of a typed memory pool. Each process or processor may
wish to access this region through different buses. For example, processor P

1
may

want to share a region of memory pool M
4

with processor P
2
, and they may be

required to use buses B
2

and B
3
, respectively, to minimize bus contention. A problem

arises here when a process allocates and maps a portion of fragmented memory and
then wants to share this region of memory with another process, either in the same
processor or different processors. The solution adopted is to allow the first process to
find out the memory map (offsets and lengths) of all the different fragments of
memory that were mapped into its address space, by repeatedly calling
posix_mem_offset(). Then, this process can pass the offsets and lengths obtained to
the second process, which can then map the same memory fragments into its address
space.

— Contiguous Allocation

The problem of finding the memory map of the different fragments of the memory
pool that were mapped into logically contiguous addresses of a given process can be
solved by requesting contiguous allocation. For example, a process in P

1
can allocate

10 Kbytes of physically contiguous memory from M
3
-B

1
, and obtain the offset (within

pool M
3
) of this block of memory. Then, it can pass this offset (and the length) to a

process in P
2

using some interprocess communication mechanism. The second
process can map the same block of memory by using the offset transferred and
specifying M

3
-B

2
.

— Unallocated Mapping

Any subarea of a memory pool that is mapped to a process, either as the result of an
allocation request or an explicit mapping, is normally unavailable for allocation.
Special processes such as debuggers, however, may need to map large areas of a
typed memory pool, yet leave those areas available for allocation.

Typed memory allocation and mapping has to coexist with storage allocation operators
like malloc(), but systems are free to choose how to implement this coexistence. For
example, it may be system configuration-dependent if all available system memory is
made part of one of the typed memory pools or if some part will be restricted to
conventional allocation operators. Equally system configuration-dependent may be the
availability of operators like malloc() to allocate storage from certain typed memory pools.
It is not excluded to configure a system such that a given named pool, P

1
, is in turn split

into non-overlapping named subpools. For example, M
1
-B

1
, M

2
-B

1
, and M

3
-B

1
could also be

accessed as one common pool M
123

-B
1
. A call to malloc() on P

1
could work on such a larger

pool while full optimization of memory usage by P
1

would require typed memory
allocation at the subpool level.

• Existing Practice

OS-9 provides for the naming (numbering) and prioritization of memory types by a system
administrator. It then provides APIs to request memory allocation of typed (colored)

3778 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130167

130168

130169

130170

130171

130172

130173

130174

130175

130176

130177

130178

130179

130180

130181

130182

130183

130184

130185

130186

130187

130188

130189

130190

130191

130192

130193

130194

130195

130196

130197

130198

130199

130200

130201

130202

130203

130204

130205

130206

130207

130208

130209

130210

130211

130212

130213

130214

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

memory by number, and to generate a bus address from a mapped memory address
(translate). When requesting colored memory, the user can specify type 0 to signify
allocation from the first available type in priority order.

HP-RT presents interfaces to map different kinds of storage regions that are visible through
a VME bus, although it does not provide allocation operations. It also provides functions
to perform address translation between VME addresses and virtual addresses. It represents
a VME-bus unique solution to the general problem.

The PSOS approach is similar (that is, based on a pre-established mapping of bus address
ranges to specific memories) with a concept of segments and regions (regions dynamically
allocated from a heap which is a special segment). Therefore, PSOS does not fully address
the general allocation problem either. PSOS does not have a ``process’’-based model, but
more of a ``thread’’-only-based model of multi-tasking. So mapping to a process address
space is not an issue.

QNX uses the System V approach of opening specially named devices (shared memory
segments) and using mmap() to then gain access from the process. They do not address
allocation directly, but once typed shared memory can be mapped, an ``allocation
manager ’’ process could be written to handle requests for allocation.

The System V approach also included allocation, implemented by opening yet other
special ``devices’’ which allocate, rather than appearing as a whole memory object.

The Orkid realtime kernel interface definition has operations to manage memory ``regions’’
and ``pools’’, which are areas of memory that may reflect the differing physical nature of
the memory. Operations to allocate memory from these regions and pools are also
provided.

• Requirements

Existing practice in SVID-derived UNIX systems relies on functionality similar to mmap()
and its related interfaces to achieve mapping and allocation of typed memory. However,
the issue of sharing typed memory (allocated or mapped) and the complication of multiple
ports are not addressed in any consistent way by existing UNIX system practice. Part of
this functionality is existing practice in specialized realtime operating systems. In order to
solidify the capabilities implied by the model above, the following requirements are
imposed on the interface:

— Identification of Typed Memory Pools and Ports

All processes (running in all processors) in the system are able to identify a particular
(system configured) typed memory pool accessed through a particular (system
configured) port by a name. That name is a member of a name space common to all
these processes, but need not be the same name space as that containing ordinary
pathnames. The association between memory pools/ports and corresponding names
is typically established when the system is configured. The ``open’’ operation for
typed memory objects should be distinct from the open() function, for consistency
with other similar services, but implementable on top of open(). This implies that the
handle for a typed memory object will be a file descriptor.

— Allocation and Mapping of Typed Memory

Once a typed memory object has been identified by a process, it is possible to both
map user-selected subareas of that object into process address space and to map
system-selected (that is, dynamically allocated) subareas of that object, with user-
specified length, into process address space. It is also possible to determine the
maximum length of memory allocation that may be requested from a given typed

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3779

130215

130216

130217

130218

130219

130220

130221

130222

130223

130224

130225

130226

130227

130228

130229

130230

130231

130232

130233

130234

130235

130236

130237

130238

130239

130240

130241

130242

130243

130244

130245

130246

130247

130248

130249

130250

130251

130252

130253

130254

130255

130256

130257

130258

130259

130260

130261

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

memory object.

— Sharing Typed Memory

Two or more processes are able to share portions of typed memory, either user-
selected or dynamically allocated. This requirement applies also to dynamically
allocated regions of memory that are composed of several non-contiguous pieces.

— Contiguous Allocation

For dynamic allocation, it is the user’s option whether the system is required to
allocate a contiguous subarea within the typed memory object, or whether it is
permitted to allocate discontiguous fragments which appear contiguous in the
process mapping. Contiguous allocation simplifies the process of sharing allocated
typed memory, while discontiguous allocation allows for potentially better recovery
of deallocated typed memory.

— Accessing Typed Memory Through Different Ports

Once a subarea of a typed memory object has been mapped, it is possible to
determine the location and length corresponding to a user-selected portion of that
object within the memory pool. This location and length can then be used to remap
that portion of memory for access from another port. If the referenced portion of
typed memory was allocated discontiguously, the length thus determined may be
shorter than anticipated, and the user code must adapt to the value returned.

— Deallocation

When a previously mapped subarea of typed memory is no longer mapped by any
process in the system—as a result of a call or calls to munmap()—that subarea
becomes potentially reusable for dynamic allocation; actual reuse of the subarea is a
function of the dynamic typed memory allocation policy.

— Unallocated Mapping

It must be possible to map user-selected subareas of a typed memory object without
marking that subarea as unavailable for allocation. This option is not the default
behavior, and requires appropriate privileges.

• Scenario

The following scenario will serve to clarify the use of the typed memory interfaces.

Process A running on P
1

(see Figure B-1, on page 3777) wants to allocate some memory
from memory pool M

2
, and it wants to share this portion of memory with process B

running on P
2
. Since P

2
only has access to the lower part of M

2
, both processes will use the

memory pool named M
2b

which is the part of M
2

that is accessible both from P
1

and P
2
. The

operations that both processes need to perform are shown below:

— Allocating Typed Memory

Process A calls posix_typed_mem_open() with the name /typed.m2b-b1 and a tflag of
POSIX_TYPED_MEM_ALLOCATE to get a file descriptor usable for allocating from
pool M

2b
accessed through port B

1
. It then calls mmap() with this file descriptor

requesting a length of 4 096 bytes. The system allocates two discontiguous blocks of
sizes 1 024 and 3 072 bytes within M

2b
. The mmap() function returns a pointer to a

4 096-byte array in process A’s logical address space, mapping the allocated blocks
contiguously. Process A can then utilize the array, and store data in it.

3780 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130262

130263

130264

130265

130266

130267

130268

130269

130270

130271

130272

130273

130274

130275

130276

130277

130278

130279

130280

130281

130282

130283

130284

130285

130286

130287

130288

130289

130290

130291

130292

130293

130294

130295

130296

130297

130298

130299

130300

130301

130302

130303

130304

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

— Determining the Location of the Allocated Blocks

Process A can determine the lengths and offsets (relative to M
2b

) of the two blocks
allocated, by using the following procedure: First, process A calls posix_mem_offset()
with the address of the first element of the array and length 4 096. Upon return, the
offset and length (1 024 bytes) of the first block are returned. A second call to
posix_mem_offset() is then made using the address of the first element of the array
plus 1 024 (the length of the first block), and a new length of 4 096−1 024. If there were
more fragments allocated, this procedure could have been continued within a loop
until the offsets and lengths of all the blocks were obtained. Notice that this relatively
complex procedure can be avoided if contiguous allocation is requested (by opening
the typed memory object with the tflag
POSIX_TYPED_MEM_ALLOCATE_CONTIG).

— Sharing Data Across Processes

Process A passes the two offset values and lengths obtained from the
posix_mem_offset() calls to process B running on P

2
, via some form of interprocess

communication. Process B can gain access to process A’s data by calling
posix_typed_mem_open() with the name /typed.m2b-b2 and a tflag of zero, then using
two mmap() calls on the resulting file descriptor to map the two subareas of that
typed memory object to its own address space.

• Rationale for no mem_alloc() and mem_free()

The standard developers had originally proposed a pair of new flags to mmap() which,
when applied to a typed memory object descriptor, would cause mmap() to allocate
dynamically from an unallocated and unmapped area of the typed memory object.
Deallocation was similarly accomplished through the use of munmap(). This was rejected
by the ballot group because it excessively complicated the (already rather complex)
mmap() interface and introduced semantics useful only for typed memory, to a function
which must also map shared memory and files. They felt that a memory allocator should
be built on top of mmap() instead of being incorporated within the same interface, much as
the ISO C standard libraries build malloc() on top of the virtual memory mapping
functions brk() and sbrk(). This would eliminate the complicated semantics involved with
unmapping only part of an allocated block of typed memory.

To attempt to achieve ballot group consensus, typed memory allocation and deallocation
was first migrated from mmap() and munmap() to a pair of complementary functions
modeled on the ISO C standard malloc() and free(). The mem_alloc() function specified
explicitly the typed memory object (typed memory pool/access port) from which
allocation takes place, unlike malloc() where the memory pool and port are unspecified.
The mem_free() function handled deallocation. These new semantics still met all of the
requirements detailed above without modifying the behavior of mmap() except to allow it
to map specified areas of typed memory objects. An implementation would have been free
to implement mem_alloc() and mem_free() over mmap(), through mmap(), or independently
but cooperating with mmap().

The ballot group was queried to see if this was an acceptable alternative, and while there
was some agreement that it achieved the goal of removing the complicated semantics of
allocation from the mmap() interface, several balloters realized that it just created two
additional functions that behaved, in great part, like mmap(). These balloters proposed an
alternative which has been implemented here in place of a separate mem_alloc() and
mem_free(). This alternative is based on four specific suggestions:

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3781

130305

130306

130307

130308

130309

130310

130311

130312

130313

130314

130315

130316

130317

130318

130319

130320

130321

130322

130323

130324

130325

130326

130327

130328

130329

130330

130331

130332

130333

130334

130335

130336

130337

130338

130339

130340

130341

130342

130343

130344

130345

130346

130347

130348

130349

130350

130351

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

1. The posix_typed_mem_open() function should provide a flag which specifies
``allocate on mmap()’’ (otherwise, mmap() just maps the underlying object). This
allows things roughly similar to /dev/zero versus /dev/swap. Two such flags have
been implemented, one of which forces contiguous allocation.

2. The posix_mem_offset() function is acceptable because it can be applied usefully to
mapped objects in general. It should return the file descriptor of the underlying
object.

3. The mem_get_info() function in an earlier draft should be renamed
posix_typed_mem_get_info() because it is not generally applicable to memory objects.
It should probably return the file descriptor’s allocation attribute. The renaming of
the function has been implemented, but having it return a piece of information
which is readily known by an application without this function has been rejected.
Its whole purpose is to query the typed memory object for attributes that are not
user-specified, but determined by the implementation.

4. There should be no separate mem_alloc() or mem_free() functions. Instead, using
mmap() on a typed memory object opened with an ``allocate on mmap()’’ flag
should be used to force allocation. These are precisely the semantics defined in the
current draft.

• Rationale for no Typed Memory Access Management

The working group had originally defined an additional interface (and an additional kind
of object: typed memory manager) to establish and dissolve mappings to typed memory
on behalf of devices or processors which were independent of the operating system and
had no inherent capability to directly establish mappings on their own. This was to have
provided functionality similar to device driver interfaces such as physio() and their
underlying bus-specific interfaces (for example, mballoc()) which serve to set up and break
down DMA pathways, and derive mapped addresses for use by hardware devices and
processor cards.

The ballot group felt that this was beyond the scope of POSIX.1 and its amendments.
Furthermore, the removal of interrupt handling interfaces from a preceding amendment
(the IEEE Std 1003.1d-1999) during its balloting process renders these typed memory
access management interfaces an incomplete solution to portable device management from
a user process; it would be possible to initiate a device transfer to/from typed memory, but
impossible to handle the transfer-complete interrupt in a portable way.

To achieve ballot group consensus, all references to typed memory access management
capabilities were removed. The concept of portable interfaces from a device driver to both
operating system and hardware is being addressed by the Uniform Driver Interface (UDI)
industry forum, with formal standardization deferred until proof of concept and industry-
wide acceptance and implementation.

B.2.8.4 Process Scheduling

IEEE PASC Interpretation 1003.1 #96 has been applied, adding the pthread_setschedprio()
function. This was added since previously there was no way for a thread to lower its own
priority without going to the tail of the threads list for its new priority. This capability is
necessary to bound the duration of priority inversion encountered by a thread.

The following portion of the rationale presents models, requirements, and standardization
issues relevant to process and thread scheduling; see Section B.2.9.4 (on page 3824) for
additional rationale relevant to thread scheduling.

3782 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130352

130353

130354

130355

130356

130357

130358

130359

130360

130361

130362

130363

130364

130365

130366

130367

130368

130369

130370

130371

130372

130373

130374

130375

130376

130377

130378

130379

130380

130381

130382

130383

130384

130385

130386

130387

130388

130389

130390

130391

130392

130393

130394

130395

130396

130397

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

In an operating system supporting multiple concurrent processes or threads, the system
determines the order in which processes or threads execute to meet implementation-defined
goals. For time-sharing systems, the goal is to enhance system throughput and promote fairness;
the application is provided with little or no control over this sequencing function. While this is
acceptable and desirable behavior in a time-sharing system, it is inappropriate in a realtime
system; realtime applications must specifically control the execution sequence of their
concurrent processes or threads in order to meet externally defined response requirements.

In POSIX.1-2024, the control over process and thread sequencing is provided using a concept of
scheduling policies. These policies, described in detail in this section, define the behavior of the
system whenever processor resources are to be allocated to competing processes or threads.
Only the behavior of the policy is defined; conforming implementations are free to use any
mechanism desired to achieve the described behavior.

• Models

In an operating system supporting multiple concurrent processes or threads, the system
determines the order in which threads (including those that are the only thread in a single-
threaded process) execute and might force long-running threads to yield to other threads
at certain intervals. Typically, the scheduling code is executed whenever an event occurs
that might alter the thread to be executed next.

The simplest scheduling strategy is a ``first-in, first-out’’ (FIFO) dispatcher. Whenever a
thread becomes runnable, it is placed on the end of a ready list. When processing resources
become available, the thread at the front of the ready list starts or resumes execution and is
removed from the list. This thread is executed until it exits or becomes blocked, at which
point the processing resources used to execute it become available to execute another
runnable thread. This scheduling technique is also known as ``run-to-completion’’ or ``run-
to-block’’.

A natural extension to this scheduling technique is the assignment of a ``non-migrating
priority’’ to each thread. This policy differs from strict FIFO scheduling in only one respect:
whenever a thread becomes runnable, it is placed at the end of the list of threads runnable
at that priority level. When selecting a thread to run, the system always selects the first
thread from the highest priority queue with a runnable thread. Thus, when a thread
becomes unblocked, it will preempt a running thread of lower priority without otherwise
altering the ready list. Further, if a running or runnable thread’s priority is altered, it is
removed from the ready list for its old priority (if present in the list; that is, not running)
and is inserted into the ready list for its new priority, according to the policy above, except
that threads executing at a temporarily elevated priority as a consequence of owning a
mutex initialized with the PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT
protocol are exempted from this in order to ensure that a thread can lock and unlock such
as mutex without the implicit yield that any resulting priority changes would normally
cause.

While the above policy might be considered unfriendly in a time-sharing environment in
which multiple users require more balanced resource allocation, it could be ideal in a
realtime environment for several reasons. The most important of these is that it is
deterministic: the highest-priority thread is always run and, among threads of equal
priority, the thread that has been runnable for the longest time is executed first. Because of
this determinism, cooperating threads can implement more complex scheduling simply by
altering their priority. For instance, if threads at a single priority were to reschedule
themselves at fixed time intervals, a time-slice policy would result.

In a dedicated operating system in which all threads belong to well-behaved realtime
applications, non-migrating priority scheduling is sufficient. However, many existing

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3783

130398

130399

130400

130401

130402

130403

130404

130405

130406

130407

130408

130409

130410

130411

130412

130413

130414

130415

130416

130417

130418

130419

130420

130421

130422

130423

130424

130425

130426

130427

130428

130429

130430

130431

130432

130433

130434

130435

130436

130437

130438

130439

130440

130441

130442

130443

130444

130445

130446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

implementations provide for more complex scheduling policies.

For process scheduling, POSIX.1-2024 specifies a linear scheduling model. In this model,
every process in the system has a priority. The system scheduler always dispatches a
process that has the highest (generally the most time-critical) priority among all runnable
processes in the system. As long as there is only one such process, the dispatching policy is
trivial. When multiple processes of equal priority are eligible to run, they are ordered
according to a strict run-to-completion (FIFO) policy. Thread scheduling is similar, except
that the scheduling policy can be applied just to the threads within one process
(PTHREAD_SCOPE_PROCESS scheduling contention scope) or to all threads system-wide
(PTHREAD_SCOPE_SYSTEM scheduling contention scope). This and other considerations
specific to thread scheduling are the subject of Section B.2.9.4 (on page 3824); the
remainder of this section is described in terms of process scheduling but is also relevant to
thread scheduling when read in conjunction with Section B.2.9.4.

The priority is represented as a positive integer and is inherited from the parent process.
For processes running under a fixed priority scheduling policy, the priority is never altered
except by an explicit function call.

It was determined arbitrarily that larger integers correspond to ``higher priorities’’.

Certain implementations might impose restrictions on the priority ranges to which
processes can be assigned. There also can be restrictions on the set of policies to which
processes can be set.

• Requirements

Realtime processes require that scheduling be fast and deterministic, and that it guarantees
to preempt lower priority processes.

Thus, given the linear scheduling model, realtime processes require that they be run at a
priority that is higher than other processes. Within this framework, realtime processes are
free to yield execution resources to each other in a completely portable and
implementation-defined manner.

As there is a generally perceived requirement for processes at the same priority level to
share processor resources more equitably, provisions are made by providing a scheduling
policy (that is, SCHED_RR) intended to provide a timeslice-like facility.

Note: The following topics assume that low numeric priority implies low scheduling criticality
and vice versa.

• Rationale for New Interface

Realtime applications need to be able to determine when processes will run in relation to
each other. It must be possible to guarantee that a critical process will run whenever it is
runnable; that is, whenever it wants to for as long as it needs. SCHED_FIFO satisfies this
requirement. Additionally, SCHED_RR was defined to meet a realtime requirement for a
well-defined time-sharing policy for processes at the same priority.

It would be possible to use the BSD setpriority() and getpriority() functions by redefining
the meaning of the ``nice’’ parameter according to the scheduling policy currently in use by
the process. The System V nice() interface was felt to be undesirable for realtime because it
specifies an adjustment to the ``nice’’ value, rather than setting it to an explicit value.
Realtime applications will usually want to set priority to an explicit value. Also, System V
nice() does not allow for changing the priority of another process.

With the POSIX.1b interfaces, the traditional ``nice’’ value does not affect the SCHED_FIFO
or SCHED_RR scheduling policies. If a ``nice’’ value is supported, it is implementation-
defined whether it affects the SCHED_OTHER policy.

3784 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130447

130448

130449

130450

130451

130452

130453

130454

130455

130456

130457

130458

130459

130460

130461

130462

130463

130464

130465

130466

130467

130468

130469

130470

130471

130472

130473

130474

130475

130476

130477

130478

130479

130480

130481

130482

130483

130484

130485

130486

130487

130488

130489

130490

130491

130492

130493

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

An important aspect of POSIX.1-2024 is the explicit description of the queuing and
preemption rules. It is critical, to achieve deterministic scheduling, that such rules be
stated clearly in POSIX.1-2024.

POSIX.1-2024 does not address the interaction between priority and swapping. The issues
involved with swapping and virtual memory paging are extremely implementation-
defined and would be nearly impossible to standardize at this point. The proposed
scheduling paradigm, however, fully describes the scheduling behavior of runnable
processes, of which one criterion is that the working set be resident in memory. Assuming
the existence of a portable interface for locking portions of a process in memory, paging
behavior need not affect the scheduling of realtime processes.

POSIX.1-2024 also does not address the priorities of ``system’’ processes. In general, these
processes should always execute in low-priority ranges to avoid conflict with other
realtime processes. Implementations should document the priority ranges in which system
processes run.

The default scheduling policy is not defined. The effect of I/O interrupts and other system
processing activities is not defined. The temporary lending of priority from one process to
another (such as for the purposes of affecting freeing resources) by the system is not
addressed. Preemption of resources is not addressed. Restrictions on the ability of a
process to affect other processes beyond a certain level (influence levels) is not addressed.

The rationale used to justify the simple time-quantum scheduler is that it is common
practice to depend upon this type of scheduling to ensure ``fair ’’ distribution of processor
resources among portions of the application that must interoperate in a serial fashion. Note
that POSIX.1-2024 is silent with respect to the setting of this time quantum, or whether it is
a system-wide value or a per-process value, although it appears that the prevailing
realtime practice is for it to be a system-wide value.

In a system with N processes at a given priority, all processor-bound, in which the time
quantum is equal for all processes at a specific priority level, the following assumptions
are made of such a scheduling policy:

1. A time quantum Q exists and the current process will own control of the processor
for at least a duration of Q and will have the processor for a duration of Q.

2. The Nth process at that priority will control a processor within a duration of (N−1)
× Q.

These assumptions are necessary to provide equal access to the processor and bounded
response from the application.

The assumptions hold for the described scheduling policy only if no system overhead,
such as interrupt servicing, is present. If the interrupt servicing load is non-zero, then one
of the two assumptions becomes fallacious, based upon how Q is measured by the system.

If Q is measured by clock time, then the assumption that the process obtains a duration Q
processor time is false if interrupt overhead exists. Indeed, a scenario can be constructed
with N processes in which a single process undergoes complete processor starvation if a
peripheral device, such as an analog-to-digital converter, generates significant interrupt
activity periodically with a period of N × Q.

If Q is measured as actual processor time, then the assumption that the Nth process runs in
within the duration (N−1) × Q is false.

It should be noted that SCHED_FIFO suffers from interrupt-based delay as well. However,
for SCHED_FIFO, the implied response of the system is ``as soon as possible’’, so that the
interrupt load for this case is a vendor selection and not a compliance issue.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3785

130494

130495

130496

130497

130498

130499

130500

130501

130502

130503

130504

130505

130506

130507

130508

130509

130510

130511

130512

130513

130514

130515

130516

130517

130518

130519

130520

130521

130522

130523

130524

130525

130526

130527

130528

130529

130530

130531

130532

130533

130534

130535

130536

130537

130538

130539

130540

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

With this in mind, it is necessary either to complete the definition by including bounds on
the interrupt load, or to modify the assumptions that can be made about the scheduling
policy.

Since the motivation of inclusion of the policy is common usage, and since current
applications do not enjoy the luxury of bounded interrupt load, item (2) above is sufficient
to express existing application needs and is less restrictive in the standard definition. No
difference in interface is necessary.

In an implementation in which the time quantum is equal for all processes at a specific
priority, our assumptions can then be restated as:

— A time quantum Q exists, and a processor-bound process will be rescheduled after a
duration of, at most, Q. Time quantum Q may be defined in either wall clock time or
execution time.

— In general, the Nth process of a priority level should wait no longer than (N−1) × Q
time to execute, assuming no processes exist at higher priority levels.

— No process should wait indefinitely.

For implementations supporting per-process time quanta, these assumptions can be
readily extended.

Austin Group Defect 1302 is applied, making requirements on sched_yield() also apply to
thrd_yield().

Austin Group Defect 1610 is applied, clarifying the effects of PTHREAD_PRIO_INHERIT and
PTHREAD_PRIO_PROTECT on scheduling queues.

Sporadic Server Scheduling Policy

The sporadic server is a mechanism defined for scheduling aperiodic activities in time-critical
realtime systems. This mechanism reserves a certain bounded amount of execution capacity for
processing aperiodic events at a high priority level. Any aperiodic events that cannot be
processed within the bounded amount of execution capacity are executed in the background at a
low priority level. Thus, a certain amount of execution capacity can be guaranteed to be
available for processing periodic tasks, even under burst conditions in the arrival of aperiodic
processing requests (that is, a large number of requests in a short time interval). The sporadic
server also simplifies the schedulability analysis of the realtime system, because it allows
aperiodic processes or threads to be treated as if they were periodic. The sporadic server was
first described by Sprunt, et al.

The key concept of the sporadic server is to provide and limit a certain amount of computation
capacity for processing aperiodic events at their assigned normal priority, during a time interval
called the ``replenishment period’’. Once the entity controlled by the sporadic server mechanism
is initialized with its period and execution-time budget attributes, it preserves its execution
capacity until an aperiodic request arrives. The request will be serviced (if there are no higher
priority activities pending) as long as there is execution capacity left. If the request is completed,
the actual execution time used to service it is subtracted from the capacity, and a replenishment
of this amount of execution time is scheduled to happen one replenishment period after the
arrival of the aperiodic request. If the request is not completed, because there is no execution
capacity left, then the aperiodic process or thread is assigned a lower background priority. For
each portion of consumed execution capacity the execution time used is replenished after one
replenishment period. At the time of replenishment, if the sporadic server was executing at a
background priority level, its priority is elevated to the normal level. Other similar
replenishment policies have been defined, but the one presented here represents a compromise
between efficiency and implementation complexity.

3786 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130541

130542

130543

130544

130545

130546

130547

130548

130549

130550

130551

130552

130553

130554

130555

130556

130557

130558

130559

130560

130561

130562

130563

130564

130565

130566

130567

130568

130569

130570

130571

130572

130573

130574

130575

130576

130577

130578

130579

130580

130581

130582

130583

130584

130585

130586

130587

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

The interface that appears in this section defines a new scheduling policy for threads and
processes that behaves according to the rules of the sporadic server mechanism. Scheduling
attributes are defined and functions are provided to allow the user to set and get the parameters
that control the scheduling behavior of this mechanism, namely the normal and low priority, the
replenishment period, the maximum number of pending replenishment operations, and the
initial execution-time budget.

• Scheduling Aperiodic Activities

Virtually all realtime applications are required to process aperiodic activities. In many
cases, there are tight timing constraints that the response to the aperiodic events must
meet. Usual timing requirements imposed on the response to these events are:

— The effects of an aperiodic activity on the response time of lower priority activities
must be controllable and predictable.

— The system must provide the fastest possible response time to aperiodic events.

— It must be possible to take advantage of all the available processing bandwidth not
needed by time-critical activities to enhance average-case response times to aperiodic
events.

Traditional methods for scheduling aperiodic activities are background processing, polling
tasks, and direct event execution:

— Background processing consists of assigning a very low priority to the processing of
aperiodic events. It utilizes all the available bandwidth in the system that has not
been consumed by higher priority threads. However, it is very difficult, or
impossible, to meet requirements on average-case response time, because the
aperiodic entity has to wait for the execution of all other entities which have higher
priority.

— Polling consists of creating a periodic process or thread for servicing aperiodic
requests. At regular intervals, the polling entity is started and its services
accumulated pending aperiodic requests. If no aperiodic requests are pending, the
polling entity suspends itself until its next period. Polling allows the aperiodic
requests to be processed at a higher priority level. However, worst and average-case
response times of polling entities are a direct function of the polling period, and there
is execution overhead for each polling period, even if no event has arrived. If the
deadline of the aperiodic activity is short compared to the inter-arrival time, the
polling frequency must be increased to guarantee meeting the deadline. For this case,
the increase in frequency can dramatically reduce the efficiency of the system and,
therefore, its capacity to meet all deadlines. Yet, polling represents a good way to
handle a large class of practical problems because it preserves system predictability,
and because the amortized overhead drops as load increases.

— Direct event execution consists of executing the aperiodic events at a high fixed-
priority level. Typically, the aperiodic event is processed by an interrupt service
routine as soon as it arrives. This technique provides predictable response times for
aperiodic events, but makes the response times of all lower priority activities
completely unpredictable under burst arrival conditions. Therefore, if the density of
aperiodic event arrivals is unbounded, it may be a dangerous technique for time-
critical systems. Yet, for those cases in which the physics of the system imposes a
bound on the event arrival rate, it is probably the most efficient technique.

— The sporadic server scheduling algorithm combines the predictability of the polling
approach with the short response times of the direct event execution. Thus, it allows
systems to meet an important class of application requirements that cannot be met by

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3787

130588

130589

130590

130591

130592

130593

130594

130595

130596

130597

130598

130599

130600

130601

130602

130603

130604

130605

130606

130607

130608

130609

130610

130611

130612

130613

130614

130615

130616

130617

130618

130619

130620

130621

130622

130623

130624

130625

130626

130627

130628

130629

130630

130631

130632

130633

130634

130635

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

using the traditional approaches. Multiple sporadic servers with different attributes
can be applied to the scheduling of multiple classes of aperiodic events, each with
different kinds of timing requirements, such as individual deadlines, average
response times, and so on. It also has many other interesting applications for
realtime, such as scheduling producer/consumer tasks in time-critical systems,
limiting the effects of faults on the estimation of task execution-time requirements,
and so on.

• Existing Practice

The sporadic server has been used in different kinds of applications, including military
avionics, robot control systems, industrial automation systems, and so on. There are
examples of many systems that cannot be successfully scheduled using the classic
approaches, such as direct event execution, or polling, and are schedulable using a
sporadic server scheduler. The sporadic server algorithm itself can successfully schedule
all systems scheduled with direct event execution or polling.

The sporadic server scheduling policy has been implemented as a commercial product in
the run-time system of the Verdix Ada compiler. There are also many applications that
have used a much less efficient application-level sporadic server. These realtime
applications would benefit from a sporadic server scheduler implemented at the scheduler
level.

• Library-Level versus Kernel-Level Implementation

The sporadic server interface described in this section requires the sporadic server policy
to be implemented at the same level as the scheduler. This means that the process sporadic
server must be implemented at the kernel level and the thread sporadic server policy
implemented at the same level as the thread scheduler; that is, kernel or library level.

In an earlier interface for the sporadic server, this mechanism was implementable at a
different level than the scheduler. This feature allowed the implementor to choose between
an efficient scheduler-level implementation, or a simpler user or library-level
implementation. However, the working group considered that this interface made the use
of sporadic servers more complex, and that library-level implementations would lack some
of the important functionality of the sporadic server, namely the limitation of the actual
execution time of aperiodic activities. The working group also felt that the interface
described in this chapter does not preclude library-level implementations of threads
intended to provide efficient low-overhead scheduling for those threads that are not
scheduled under the sporadic server policy.

• Range of Scheduling Priorities

Each of the scheduling policies supported in POSIX.1-2024 has an associated range of
priorities. The priority ranges for each policy might or might not overlap with the priority
ranges of other policies. For time-critical realtime applications it is usual for periodic and
aperiodic activities to be scheduled together in the same processor. Periodic activities will
usually be scheduled using the SCHED_FIFO scheduling policy, while aperiodic activities
may be scheduled using SCHED_SPORADIC. Since the application developer will require
complete control over the relative priorities of these activities in order to meet his timing
requirements, it would be desirable for the priority ranges of SCHED_FIFO and
SCHED_SPORADIC to overlap completely. Therefore, although POSIX.1-2024 does not
require any particular relationship between the different priority ranges, it is
recommended that these two ranges should coincide.

3788 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130636

130637

130638

130639

130640

130641

130642

130643

130644

130645

130646

130647

130648

130649

130650

130651

130652

130653

130654

130655

130656

130657

130658

130659

130660

130661

130662

130663

130664

130665

130666

130667

130668

130669

130670

130671

130672

130673

130674

130675

130676

130677

130678

130679

130680

130681

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

• Dynamically Setting the Sporadic Server Policy

Several members of the working group requested that implementations should not be
required to support dynamically setting the sporadic server scheduling policy for a thread.
The reason is that this policy may have a high overhead for library-level implementations
of threads, and if threads are allowed to dynamically set this policy, this overhead can be
experienced even if the thread does not use that policy. By disallowing the dynamic setting
of the sporadic server scheduling policy, these implementations can accomplish efficient
scheduling for threads using other policies. If a strictly conforming application needs to
use the sporadic server policy, and is therefore willing to pay the overhead, it must set this
policy at the time of thread creation.

• Limitation of the Number of Pending Replenishments

The number of simultaneously pending replenishment operations must be limited for each
sporadic server for two reasons: an unlimited number of replenishment operations would
need an unlimited number of system resources to store all the pending replenishment
operations; on the other hand, in some implementations each replenishment operation will
represent a source of priority inversion (just for the duration of the replenishment
operation) and thus, the maximum amount of replenishments must be bounded to
guarantee bounded response times. The way in which the number of replenishments is
bounded is by lowering the priority of the sporadic server to sched_ss_low_priority when
the number of pending replenishments has reached its limit. In this way, no new
replenishments are scheduled until the number of pending replenishments decreases.

In the sporadic server scheduling policy defined in POSIX.1-2024, the application can
specify the maximum number of pending replenishment operations for a single sporadic
server, by setting the value of the sched_ss_max_repl scheduling parameter. This value must
be between one and {SS_REPL_MAX}, which is a maximum limit imposed by the
implementation. The limit {SS_REPL_MAX} must be greater than or equal to
{_POSIX_SS_REPL_MAX}, which is defined to be four in POSIX.1-2024. The minimum
limit of four was chosen so that an application can at least guarantee that four different
aperiodic events can be processed during each interval of length equal to the
replenishment period.

B.2.8.5 Clocks and Timers

• Clocks

POSIX.1-2024 and the ISO C standard both define functions for obtaining system time.
Implicit behind these functions is a mechanism for measuring passage of time. This
specification makes this mechanism explicit and calls it a clock. The CLOCK_REALTIME
clock required by POSIX.1-2024 is a higher resolution version of the clock that maintains
POSIX.1 system time. This is a ``system-wide’’ clock, in that it is visible to all processes
and, were it possible for multiple processes to all read the clock at the same time, they
would see the same value.

An extensible interface was defined, with the ability for implementations to define
additional clocks. This was done because of the observation that many realtime platforms
support multiple clocks, and it was desired to fit this model within the standard interface.
But implementation-defined clocks need not represent actual hardware devices, nor are
they necessarily system-wide.

• Timers

Two timer types are required for a system to support realtime applications:

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3789

130682

130683

130684

130685

130686

130687

130688

130689

130690

130691

130692

130693

130694

130695

130696

130697

130698

130699

130700

130701

130702

130703

130704

130705

130706

130707

130708

130709

130710

130711

130712

130713

130714

130715

130716

130717

130718

130719

130720

130721

130722

130723

130724

130725

130726

130727

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

1. One-shot

A one-shot timer is a timer that is armed with an initial expiration time, either
relative to the current time or at an absolute time (based on some timing base, such
as time in seconds and nanoseconds since the Epoch). The timer expires once and
then is disarmed. With the specified facilities, this is accomplished by setting the
it_value member of the value argument to the desired expiration time and the
it_interval member to zero.

2. Periodic

A periodic timer is a timer that is armed with an initial expiration time, again either
relative or absolute, and a repetition interval. When the initial expiration occurs,
the timer is reloaded with the repetition interval and continues counting. With the
specified facilities, this is accomplished by setting the it_value member of the value
argument to the desired initial expiration time and the it_interval member to the
desired repetition interval.

For both of these types of timers, the time of the initial timer expiration can be specified in
two ways:

1. Relative (to the current time)

2. Absolute

• Examples of Using Realtime Timers

In the diagrams below, S indicates a program schedule, R shows a schedule method
request, and E suggests an internal operating system event.

— Periodic Timer: Data Logging

During an experiment, it might be necessary to log realtime data periodically to an
internal buffer or to a mass storage device. With a periodic scheduling method, a
logging module can be started automatically at fixed time intervals to log the data.

Program schedule is requested every 10 seconds.

R S S S S S
----+----+----+----+----+----+----+----+----+----+----+--->

5 10 15 20 25 30 35 40 45 50 55

[Time (in Seconds)]

To achieve this type of scheduling using the specified facilities, one would allocate a
per-process timer based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with the TIMER_ABSTIME flag reset, and with an
initial expiration value and a repetition interval of 10 seconds.

— One-shot Timer (Relative Time): Device Initialization

In an emission test environment, large sample bags are used to capture the exhaust
from a vehicle. The exhaust is purged from these bags before each and every test.
With a one-shot timer, a module could initiate the purge function and then suspend
itself for a predetermined period of time while the sample bags are prepared.

Program schedule requested 20 seconds after call is issued.

R S
----+----+----+----+----+----+----+----+----+----+----+--->

5 10 15 20 25 30 35 40 45 50 55

3790 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130728

130729

130730

130731

130732

130733

130734

130735

130736

130737

130738

130739

130740

130741

130742

130743

130744

130745

130746

130747

130748

130749

130750

130751

130752

130753

130754

130755

130756

130757

130758

130759

130760

130761

130762

130763

130764

130765

130766

130767

130768

130769

130770

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

[Time (in Seconds)]

To achieve this type of scheduling using the specified facilities, one would allocate a
per-process timer based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with the TIMER_ABSTIME flag reset, and with an
initial expiration value of 20 seconds and a repetition interval of zero.

Note that if the program wishes merely to suspend itself for the specified interval, it
could more easily use nanosleep().

— One-shot Timer (Absolute Time): Data Transmission

The results from an experiment are often moved to a different system within a
network for post-processing or archiving. With an absolute one-shot timer, a module
that moves data from a test-cell computer to a host computer can be automatically
scheduled on a daily basis.

Program schedule requested for 2:30 a.m.

R S
-----+-----+-----+-----+-----+-----+-----+-----+-----+----->

23:00 23:30 24:00 00:30 01:00 01:30 02:00 02:30 03:00

[Time of Day]

To achieve this type of scheduling using the specified facilities, a per-process timer
would be allocated based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with the TIMER_ABSTIME flag set, and an initial
expiration value equal to 2:30 a.m. of the next day.

— Periodic Timer (Relative Time): Signal Stabilization

Some measurement devices, such as emission analyzers, do not respond
instantaneously to an introduced sample. With a periodic timer with a relative initial
expiration time, a module that introduces a sample and records the average response
could suspend itself for a predetermined period of time while the signal is stabilized
and then sample at a fixed rate.

Program schedule requested 15 seconds after call is issued and every 2 seconds
thereafter.

R S
----+----+----+----+----+----+----+----+----+----+----+--->

5 10 15 20 25 30 35 40 45 50 55

[Time (in Seconds)]

To achieve this type of scheduling using the specified facilities, one would allocate a
per-process timer based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with TIMER_ABSTIME flag reset, and with an
initial expiration value of 15 seconds and a repetition interval of 2 seconds.

— Periodic Timer (Absolute Time): Work Shift-related Processing

Resource utilization data is useful when time to perform experiments is being
scheduled at a facility. With a periodic timer with an absolute initial expiration time,
a module can be scheduled at the beginning of a work shift to gather resource
utilization data throughout the shift. This data can be used to allocate resources
effectively to minimize bottlenecks and delays and maximize facility throughput.

Program schedule requested for 2:00 a.m. and every 15 minutes thereafter.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3791

130771

130772

130773

130774

130775

130776

130777

130778

130779

130780

130781

130782

130783

130784

130785

130786

130787

130788

130789

130790

130791

130792

130793

130794

130795

130796

130797

130798

130799

130800

130801

130802

130803

130804

130805

130806

130807

130808

130809

130810

130811

130812

130813

130814

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

R S S S S S S
-----+-----+-----+-----+-----+-----+-----+-----+-----+----->

23:00 23:30 24:00 00:30 01:00 01:30 02:00 02:30 03:00

[Time of Day]

To achieve this type of scheduling using the specified facilities, one would allocate a
per-process timer based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with TIMER_ABSTIME flag set, and with an initial
expiration value equal to 2:00 a.m. and a repetition interval equal to 15 minutes.

• Relationship of Timers to Clocks

The relationship between clocks and timers armed with an absolute time is
straightforward: a timer expiration signal is requested when the associated clock reaches
or exceeds the specified time. The relationship between clocks and timers armed with a
relative time (an interval) is less obvious, but not unintuitive. In this case, a timer
expiration signal is requested when the specified interval, as measured by the associated clock,
has passed. For the required CLOCK_REALTIME clock, this allows timer expiration
signals to be requested at specified ``wall clock’’ times (absolute), or when a specified
interval of ``realtime’’ has passed (relative). For an implementation-defined clock—say, a
process virtual time clock—timer expirations could be requested when the process has
used a specified total amount of virtual time (absolute), or when it has used a specified
additional amount of virtual time (relative).

The interfaces also allow flexibility in the implementation of the functions. For example, an
implementation could convert all absolute times to intervals by subtracting the clock value
at the time of the call from the requested expiration time and ``counting down’’ at the
supported resolution. Or it could convert all relative times to absolute expiration time by
adding in the clock value at the time of the call and comparing the clock value to the
expiration time at the supported resolution. Or it might even choose to maintain absolute
times as absolute and compare them to the clock value at the supported resolution for
absolute timers, and maintain relative times as intervals and count them down at the
resolution supported for relative timers. The choice will be driven by efficiency
considerations and the underlying hardware or software clock implementation.

• Data Definitions for Clocks and Timers

POSIX.1-2024 uses a time representation capable of supporting nanosecond resolution
timers for the following reasons:

— To enable POSIX.1-2024 to represent those computer systems already using
nanosecond or submicrosecond resolution clocks.

— To accommodate those per-process timers that might need nanoseconds to specify an
absolute value of system-wide clocks, even though the resolution of the per-process
timer may only be milliseconds, or vice versa.

— Because the number of nanoseconds in a second can be represented in 32 bits.

Time values are represented in the timespec structure. The tv_sec member is of type time_t
so that this member is compatible with time values used by POSIX.1 functions and the
ISO C standard. The tv_nsec member is a signed long in order to simplify and clarify code
that decrements or finds differences of time values. Note that because 1 billion (number of
nanoseconds per second) is less than half of the value representable by a signed 32-bit
value, it is always possible to add two valid fractional seconds represented as integral
nanoseconds without overflowing the signed 32-bit value.

A maximum allowable resolution for the CLOCK_REALTIME clock of 20 ms (1/50

3792 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130815

130816

130817

130818

130819

130820

130821

130822

130823

130824

130825

130826

130827

130828

130829

130830

130831

130832

130833

130834

130835

130836

130837

130838

130839

130840

130841

130842

130843

130844

130845

130846

130847

130848

130849

130850

130851

130852

130853

130854

130855

130856

130857

130858

130859

130860

130861

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

seconds) was chosen to allow line frequency clocks in European countries to be
conforming. 60 Hz clocks in the US will also be conforming, as will finer granularity
clocks, although a Strictly Conforming Application cannot assume a granularity of less
than 20 ms (1/50 seconds).

The minimum allowable maximum time allowed for the CLOCK_REALTIME clock and
the function nanosleep(), and timers created with clock_id=CLOCK_REALTIME, is
determined by the fact that the tv_sec member is of type time_t.

POSIX.1-2024 specifies that timer expirations must not be delivered early, and nanosleep()
must not return early due to quantization error. POSIX.1-2024 discusses the various
implementations of alarm() in the rationale and states that implementations that do not
allow alarm signals to occur early are the most appropriate, but refrained from mandating
this behavior. Because of the importance of predictability to realtime applications,
POSIX.1-2024 takes a stronger stance.

The standard developers considered using a time representation that differs from
POSIX.1b in the second 32 bit of the 64-bit value. Whereas POSIX.1b defines this field as a
fractional second in nanoseconds, the other methodology defines this as a binary fraction
of one second, with the radix point assumed before the most significant bit.

POSIX.1b is a software, source-level standard and most of the benefits of the alternate
representation are enjoyed by hardware implementations of clocks and algorithms. It was
felt that mandating this format for POSIX.1b clocks and timers would unnecessarily
burden the application developer with writing, possibly non-portable, multiple precision
arithmetic packages to perform conversion between binary fractions and integral units
such as nanoseconds, milliseconds, and so on.

Rationale for the Monotonic Clock

For those applications that use time services to achieve realtime behavior, changing the value of
the clock on which these services rely may cause erroneous timing behavior. For these
applications, it is necessary to have a monotonic clock which cannot run backwards, and which
has a maximum clock jump that is required to be documented by the implementation.
Additionally, it is desirable (but not required by POSIX.1-2024) that the monotonic clock
increases its value uniformly. This clock should not be affected by changes to the system time;
for example, to synchronize the clock with an external source or to account for leap seconds.
Such changes would cause errors in the measurement of time intervals for those time services
that use the absolute value of the clock.

One could argue that by defining the behavior of time services when the value of a clock is
changed, deterministic realtime behavior can be achieved. For example, one could specify that
relative time services should be unaffected by changes in the value of a clock. However, there are
time services that are based upon an absolute time, but that are essentially intended as relative
time services. For example, pthread_cond_timedwait() uses an absolute time to allow it to wake
up after the required interval despite spurious wakeups. Although sometimes the
pthread_cond_timedwait() timeouts are absolute in nature, there are many occasions in which they
are relative, and their absolute value is determined from the current time plus a relative time
interval. In this latter case, if the clock changes while the thread is waiting, the wait interval will
not be the expected length. If a pthread_cond_timedwait() function were created that would take a
relative time, it would not solve the problem because to retain the intended ``deadline’’ a thread
would need to compensate for latency due to the spurious wakeup, and preemption between
wakeup and the next wait.

The solution is to create a new monotonic clock, whose value does not change except for the
regular ticking of the clock, and use this clock for implementing the various relative timeouts

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3793

130862

130863

130864

130865

130866

130867

130868

130869

130870

130871

130872

130873

130874

130875

130876

130877

130878

130879

130880

130881

130882

130883

130884

130885

130886

130887

130888

130889

130890

130891

130892

130893

130894

130895

130896

130897

130898

130899

130900

130901

130902

130903

130904

130905

130906

130907

130908

130909

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

that appear in the different POSIX interfaces, as well as allow pthread_cond_timedwait() to choose
this new clock for its timeout. A new clock_nanosleep() function is created to allow an application
to take advantage of this newly defined clock. Notice that the monotonic clock may be
implemented using the same hardware clock as the system clock.

Relative timeouts for sigtimedwait() and aio_suspend() have been redefined to use the monotonic
clock, if present. The alarm() function has not been redefined, because the same effect but with
better resolution can be achieved by creating a timer (for which the appropriate clock may be
chosen).

The pthread_cond_timedwait() function has been treated in a different way, compared to other
functions with absolute timeouts, because it is used to wait for an event, and thus it may have a
deadline, while the other timeouts are generally used as an error recovery mechanism, and for
them the use of the monotonic clock is not so important. Since the desired timeout for the
pthread_cond_timedwait() function may either be a relative interval or an absolute time of day
deadline, a new initialization attribute has been created for condition variables to specify the
clock that is used for measuring the timeout in a call to pthread_cond_timedwait(). In this way, if
a relative timeout is desired, the monotonic clock will be used; if an absolute deadline is
required instead, the CLOCK_REALTIME or another appropriate clock may be used. For
condition variables, this capability is also available by passing CLOCK_MONOTONIC to the
pthread_cond_clockwait() function. Similarly, CLOCK_MONOTONIC can be specified when
calling pthread_mutex_clocklock(), pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), and
sem_clockwait().

It was later found necessary to add variants of almost all interfaces that accept absolute timeouts
that allow the clock to be specified. This is because, despite the claim in the previous paragraph,
it is not possible to safely use a CLOCK_REALTIME absolute timeout even to prevent errors
when the system clock is warped by a potentially large amount. A ``safety timeout’’ of a minute
on a call to pthread_mutex_timedlock() could actually mean that the call would return
ETIMEDOUT early without acquiring the lock if the system clock is warped forwards
immediately prior to or during the call. On the other hand, a short timeout could end up being
arbitrarily long if the system clock is warped backwards immediately prior to or during the call.
These problems are solved by the new clockwait and clocklock variants of the existing timedwait
and timedlock functions. These variants accept an extra clockid_t parameter to indicate the clock
to be used for the wait. The clock ID is passed rather than using attributes as previously for
pthread_cond_timedwait() in order to allow the ISO/IEC 14882: 2011 standard (C++11) and later to
be implemented correctly. C++ requires that the clock to use for the wait is not known until the
time of the wait call, so it cannot be supplied during creation. The new functions are
pthread_cond_clockwait(), pthread_mutex_clocklock(), pthread_mutex_clockrdlock(),
pthread_mutex_clockwrlock(), and sem_clockwait(). It is expected that mq_clockreceive() and
mq_clocksend() functions will be added in a future version of this standard.

The nanosleep() function has not been modified with the introduction of the monotonic clock.
Instead, a new clock_nanosleep() function has been created, in which the desired clock may be
specified in the function call.

• History of Resolution Issues

Due to the shift from relative to absolute timeouts in IEEE Std 1003.1d-1999, the
amendments to the sem_timedwait(), pthread_mutex_timedlock(), mq_timedreceive(), and
mq_timedsend() functions of that standard have been removed. Those amendments
specified that CLOCK_MONOTONIC would be used for the (relative) timeouts if the
(optional at the time) Monotonic Clock was supported.

Having these functions continue to be tied solely to CLOCK_MONOTONIC would not
work. Since the absolute value of a time value obtained from CLOCK_MONOTONIC is

3794 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

130910

130911

130912

130913

130914

130915

130916

130917

130918

130919

130920

130921

130922

130923

130924

130925

130926

130927

130928

130929

130930

130931

130932

130933

130934

130935

130936

130937

130938

130939

130940

130941

130942

130943

130944

130945

130946

130947

130948

130949

130950

130951

130952

130953

130954

130955

130956

130957

130958

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

unspecified, under the absolute timeouts interface, applications would behave differently
depending on whether the Monotonic Clock was supported or not (because the absolute
value of the clock would have different meanings in either case).

Two options were considered:

1. Leave the current behavior unchanged, which specifies the CLOCK_REALTIME
clock for these (absolute) timeouts, to allow portability of applications between
implementations supporting or not the Monotonic Clock.

2. Modify these functions in the way that pthread_cond_timedwait() was modified to
allow a choice of clock, so that an application could use CLOCK_REALTIME when
it is trying to achieve an absolute timeout and CLOCK_MONOTONIC when it is
trying to achieve a relative timeout.

It was decided that the features of CLOCK_MONOTONIC are not as critical to these
functions as they are to pthread_cond_timedwait(). The pthread_cond_timedwait() function is
given an absolute timeout; the timeout may represent a deadline for an event. When other
functions are given relative timeouts, the timeouts are typically for error recovery
purposes and need not be so precise.

Therefore, it was decided that these functions should be tied to CLOCK_REALTIME and
not complicated by being given a choice of clock.

Austin Group Defect 1346 is applied, requiring support for Monotonic Clock.

Execution Time Monitoring

• Introduction

The main goals of the execution time monitoring facilities defined in this chapter are to
measure the execution time of processes and threads and to allow an application to
establish CPU time limits for these entities.

The analysis phase of time-critical realtime systems often relies on the measurement of
execution times of individual threads or processes to determine whether the timing
requirements will be met. Also, performance analysis techniques for soft deadline realtime
systems rely heavily on the determination of these execution times. The execution time
monitoring functions provide application developers with the ability to measure these
execution times online and open the possibility of dynamic execution-time analysis and
system reconfiguration, if required.

The second goal of allowing an application to establish execution time limits for individual
processes or threads and detecting when they overrun allows program robustness to be
increased by enabling online checking of the execution times.

If errors are detected—possibly because of erroneous program constructs, the existence of
errors in the analysis phase, or a burst of event arrivals—online detection and recovery is
possible in a portable way. This feature can be extremely important for many time-critical
applications. Other applications require trapping CPU-time errors as a normal way to exit
an algorithm; for instance, some realtime artificial intelligence applications trigger a
number of independent inference processes of varying accuracy and speed, limit how long
they can run, and pick the best answer available when time runs out. In many periodic
systems, overrun processes are simply restarted in the next resource period, after necessary
end-of-period actions have been taken. This allows algorithms that are inherently data-
dependent to be made predictable.

The interface that appears in this chapter defines a new type of clock, the CPU-time clock,
which measures execution time. Each process or thread can invoke the clock and timer

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3795

130959

130960

130961

130962

130963

130964

130965

130966

130967

130968

130969

130970

130971

130972

130973

130974

130975

130976

130977

130978

130979

130980

130981

130982

130983

130984

130985

130986

130987

130988

130989

130990

130991

130992

130993

130994

130995

130996

130997

130998

130999

131000

131001

131002

131003

131004

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

functions defined in POSIX.1 to use them. Functions are also provided to access the CPU-
time clock of other processes or threads to enable remote monitoring of these clocks.
Monitoring of threads of other processes is not supported, since these threads are not
visible from outside of their own process with the interfaces defined in POSIX.1.

• Execution Time Monitoring Interface

The clock and timer interface defined in POSIX.1 historically only defined one clock, which
measures wall-clock time. The requirements for measuring execution time of processes and
threads, and setting limits to their execution time by detecting when they overrun, can be
accomplished with that interface if a new kind of clock is defined. These new clocks
measure execution time, and one is associated with each process and with each thread. The
clock functions currently defined in POSIX.1 can be used to read and set these CPU-time
clocks, and timers can be created using these clocks as their timing base. These timers can
then be used to send a signal when some specified execution time has been exceeded. The
CPU-time clocks of each process or thread can be accessed by using the symbols
CLOCK_PROCESS_CPUTIME_ID or CLOCK_THREAD_CPUTIME_ID.

The clock and timer interface defined in POSIX.1 and extended with the new kind of CPU-
time clock would only allow processes or threads to access their own CPU-time clocks.
However, many realtime systems require the possibility of monitoring the execution time
of processes or threads from independent monitoring entities. In order to allow
applications to construct independent monitoring entities that do not require cooperation
from or modification of the monitored entities, two functions have been added:
clock_getcpuclockid(), for accessing CPU-time clocks of other processes, and
pthread_getcpuclockid(), for accessing CPU-time clocks of other threads. These functions
return the clock identifier associated with the process or thread specified in the call. These
clock IDs can then be used in the rest of the clock function calls.

The clocks accessed through these functions could also be used as a timing base for the
creation of timers, thereby allowing independent monitoring entities to limit the CPU time
consumed by other entities. However, this possibility would imply additional complexity
and overhead because of the need to maintain a timer queue for each process or thread, to
store the different expiration times associated with timers created by different processes or
threads. The working group decided this additional overhead was not justified by
application requirements. Therefore, creation of timers attached to the CPU-time clocks of
other processes or threads has been specified as implementation-defined.

• Overhead Considerations

The measurement of execution time may introduce additional overhead in the thread
scheduling, because of the need to keep track of the time consumed by each of these
entities. In library-level implementations of threads, the efficiency of scheduling could be
somehow compromised because of the need to make a kernel call, at each context switch,
to read the process CPU-time clock. Consequently, a thread creation attribute called cpu-
clock-requirement was defined, to allow threads to disconnect their respective CPU-time
clocks. However, the Ballot Group considered that this attribute itself introduced some
overhead, and that in current implementations it was not worth the effort. Therefore, the
attribute was deleted, and thus thread CPU-time clocks are required for all threads if the
Thread CPU-Time Clocks option is supported.

• Accuracy of CPU-Time Clocks

The mechanism used to measure the execution time of processes and threads is specified in
POSIX.1-2024 as implementation-defined. The reason for this is that both the underlying
hardware and the implementation architecture have a very strong influence on the
accuracy achievable for measuring CPU time. For some implementations, the specification

3796 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131005

131006

131007

131008

131009

131010

131011

131012

131013

131014

131015

131016

131017

131018

131019

131020

131021

131022

131023

131024

131025

131026

131027

131028

131029

131030

131031

131032

131033

131034

131035

131036

131037

131038

131039

131040

131041

131042

131043

131044

131045

131046

131047

131048

131049

131050

131051

131052

131053

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

of strict accuracy requirements would represent very large overheads, or even the
impossibility of being implemented.

Since the mechanism for measuring execution time is implementation-defined, realtime
applications will be able to take advantage of accurate implementations using a portable
interface. Of course, strictly conforming applications cannot rely on any particular degree
of accuracy, in the same way as they cannot rely on a very accurate measurement of wall
clock time. There will always exist applications whose accuracy or efficiency requirements
on the implementation are more rigid than the values defined in POSIX.1-2024 or any
other standard.

In any case, there is a minimum set of characteristics that realtime applications would
expect from most implementations. One such characteristic is that the sum of all the
execution times of all the threads in a process equals the process execution time, when no
CPU-time clocks are disabled. This need not always be the case because implementations
may differ in how they account for time during context switches. Another characteristic is
that the sum of the execution times of all processes in a system equals the number of
processors, multiplied by the elapsed time, assuming that no processor is idle during that
elapsed time. However, in some implementations it might not be possible to relate CPU
time to elapsed time. For example, in a heterogeneous multi-processor system in which
each processor runs at a different speed, an implementation may choose to define each
``second’’ of CPU time to be a certain number of ``cycles’’ that a CPU has executed.

• Existing Practice

Measuring and limiting the execution time of each concurrent activity are common
features of most industrial implementations of realtime systems. Almost all critical
realtime systems are currently built upon a cyclic executive. With this approach, a regular
timer interrupt kicks off the next sequence of computations. It also checks that the current
sequence has completed. If it has not, then some error recovery action can be undertaken
(or at least an overrun is avoided). Current software engineering principles and the
increasing complexity of software are driving application developers to implement these
systems on multi-threaded or multi-process operating systems. Therefore, if a POSIX
operating system is to be used for this type of application, then it must offer the same level
of protection.

Execution time clocks are also common in most UNIX implementations, although these
clocks usually have requirements different from those of realtime applications. The
POSIX.1 times() function supports the measurement of the execution time of the calling
process, and its terminated child processes. This execution time is measured in clock ticks
and is supplied as two different values with the user and system execution times,
respectively. BSD supports the function getrusage(), which allows the calling process to get
information about the resources used by itself and/or all of its terminated child processes.
The resource usage includes user and system CPU time. Some UNIX systems have options
to specify high resolution (up to one microsecond) CPU-time clocks using the times() or
the getrusage() functions.

The times() and getrusage() interfaces do not meet important realtime requirements, such
as the possibility of monitoring execution time from a different process or thread, or the
possibility of detecting an execution time overrun. The latter requirement is supported in
some UNIX implementations that are able to send a signal when the execution time of a
process has exceeded some specified value. For example, BSD defines the functions
getitimer() and setitimer(), which can operate either on a realtime clock (wall-clock), or on
virtual-time or profile-time clocks which measure CPU time in two different ways. These
functions do not support access to the execution time of other processes.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3797

131054

131055

131056

131057

131058

131059

131060

131061

131062

131063

131064

131065

131066

131067

131068

131069

131070

131071

131072

131073

131074

131075

131076

131077

131078

131079

131080

131081

131082

131083

131084

131085

131086

131087

131088

131089

131090

131091

131092

131093

131094

131095

131096

131097

131098

131099

131100

131101

131102

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

At least one operating system supports per-process and per-thread execution time clocks,
and also supports limiting the execution time of a given process.

Given all this existing practice, the working group considered that the POSIX.1 clocks and
timers interface was appropriate to meet most of the requirements that realtime
applications have for execution time clocks. Functions were added to get the CPU time
clock IDs, and to allow/disallow the thread CPU-time clocks (in order to preserve the
efficiency of some implementations of threads).

• Clock Constants

The definition of the manifest constants CLOCK_PROCESS_CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID allows processes or threads, respectively, to access their
own execution-time clocks. However, given a process or thread, access to its own
execution-time clock is also possible if the clock ID of this clock is obtained through a call
to clock_getcpuclockid() or pthread_getcpuclockid(). Therefore, these constants are not
necessary and could be deleted to make the interface simpler. Their existence saves one
system call in the first access to the CPU-time clock of each process or thread. The working
group considered this issue and decided to leave the constants in POSIX.1-2024 because
they are closer to the POSIX.1b use of clock identifiers.

• Library Implementations of Threads

In library implementations of threads, kernel entities and library threads can coexist. In
this case, if the CPU-time clocks are supported, most of the clock and timer functions will
need to have two implementations: one in the thread library, and one in the system calls
library. The main difference between these two implementations is that the thread library
implementation will have to deal with clocks and timers that reside in the thread space,
while the kernel implementation will operate on timers and clocks that reside in kernel
space. In the library implementation, if the clock ID refers to a clock that resides in the
kernel, a kernel call will have to be made. The correct version of the function can be chosen
by specifying the appropriate order for the libraries during the link process.

• History of Resolution Issues: Deletion of the enable Attribute

In early proposals, consideration was given to inclusion of an attribute called enable for
CPU-time clocks. This would allow implementations to avoid the overhead of measuring
execution time for those processes or threads for which this measurement was not
required. However, this is unnecessary since processes are already required to measure
execution time by the POSIX.1 times() function. Consequently, the enable attribute is not
present.

Rationale Relating to Timeouts

• Requirements for Timeouts

Realtime systems which must operate reliably over extended periods without human
intervention are characteristic in embedded applications such as avionics, machine control,
and space exploration, as well as more mundane applications such as cable TV, security
systems, and plant automation. A multi-tasking paradigm, in which many independent
and/or cooperating software functions relinquish the processor(s) while waiting for a
specific stimulus, resource, condition, or operation completion, is very useful in producing
well engineered programs for such systems. For such systems to be robust and fault-
tolerant, expected occurrences that are unduly delayed or that never occur must be
detected so that appropriate recovery actions may be taken. This is difficult if there is no
way for a task to regain control of a processor once it has relinquished control (blocked)
awaiting an occurrence which, perhaps because of corrupted code, hardware malfunction,

3798 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131103

131104

131105

131106

131107

131108

131109

131110

131111

131112

131113

131114

131115

131116

131117

131118

131119

131120

131121

131122

131123

131124

131125

131126

131127

131128

131129

131130

131131

131132

131133

131134

131135

131136

131137

131138

131139

131140

131141

131142

131143

131144

131145

131146

131147

131148

131149

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

or latent software bugs, will not happen when expected. Therefore, the common practice
in realtime operating systems is to provide a capability to time out such blocking services.
Although there are several methods to achieve this already defined by POSIX, none are as
reliable or efficient as initiating a timeout simultaneously with initiating a blocking service.
This is especially critical in hard-realtime embedded systems because the processors
typically have little time reserve, and allowed fault recovery times are measured in
milliseconds rather than seconds.

The working group largely agreed that such timeouts were necessary and ought to become
part of POSIX.1-2024, particularly vendors of realtime operating systems whose customers
had already expressed a strong need for timeouts. There was some resistance to inclusion
of timeouts in POSIX.1-2024 because the desired effect, fault tolerance, could, in theory, be
achieved using existing facilities and alternative software designs, but there was no
compelling evidence that realtime system designers would embrace such designs at the
sacrifice of performance and/or simplicity.

• Which Services should be Timed Out?

Originally, the working group considered the prospect of providing timeouts on all
blocking services, including those currently existing in POSIX.1, POSIX.1b, and POSIX.1c,
and future interfaces to be defined by other working groups, as sort of a general policy.
This was rather quickly rejected because of the scope of such a change, and the fact that
many of those services would not normally be used in a realtime context. More traditional
timesharing solutions to timeout would suffice for most of the POSIX.1 interfaces, while
others had asynchronous alternatives which, while more complex to utilize, would be
adequate for some realtime and all non-realtime applications.

The list of potential candidates for timeouts was narrowed to the following for further
consideration:

— POSIX.1b

— sem_wait()

— mq_receive()

— mq_send()

— lio_listio()

— aio_suspend()

— sigwait() (timeout already implemented by sigtimedwait())

— POSIX.1c

— pthread_mutex_lock()

— pthread_join()

— pthread_cond_wait()
(timeout already implemented by pthread_cond_timedwait())

— POSIX.1

— read()

— write()

After further review by the working group, the lio_listio(), read(), and write() functions (all
forms of blocking synchronous I/O) were eliminated from the list because of the
following:

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3799

131150

131151

131152

131153

131154

131155

131156

131157

131158

131159

131160

131161

131162

131163

131164

131165

131166

131167

131168

131169

131170

131171

131172

131173

131174

131175

131176

131177

131178

131179

131180

131181

131182

131183

131184

131185

131186

131187

131188

131189

131190

131191

131192

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

— Asynchronous alternatives exist

— Timeouts can be implemented, albeit non-portably, in device drivers

— A strong desire not to introduce modifications to POSIX.1 interfaces

The working group ultimately rejected pthread_join() since both that interface and a timed
variant of that interface are non-minimal and may be implemented as a function. See
below for a library implementation of pthread_join().

Thus, there was a consensus among the working group members to add timeouts to 4 of
the remaining 5 functions (the timeout for aio_suspend() was ultimately added directly to
POSIX.1b, while the others were added by POSIX.1d). However, pthread_mutex_lock()
remained contentious.

Many feel that pthread_mutex_lock() falls into the same class as the other functions; that is,
it is desirable to time out a mutex lock because a mutex may fail to be unlocked due to
errant or corrupted code in a critical section (looping or branching outside of the unlock
code), and therefore is equally in need of a reliable, simple, and efficient timeout. In fact,
since mutexes are intended to guard small critical sections, most pthread_mutex_lock() calls
would be expected to obtain the lock without blocking nor utilizing any kernel service,
even in implementations of threads with global contention scope; the timeout alternative
need only be considered after it is determined that the thread must block.

Those opposed to timing out mutexes feel that the very simplicity of the mutex is
compromised by adding a timeout semantic, and that to do so is senseless. They claim that
if a timed mutex is really deemed useful by a particular application, then it can be
constructed from the facilities already in POSIX.1b and POSIX.1c. The following two C-
language library implementations of mutex locking with timeout represent the solutions
offered (in both implementations, the timeout parameter is specified as absolute time, not
relative time as in the proposed POSIX.1c interfaces).

• Spinlock Implementation

#include <pthread.h>
#include <time.h>
#include <errno.h>

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
const struct timespec *timeout)

{
struct timespec timenow;

while (pthread_mutex_trylock(mutex) == EBUSY)
{

clock_gettime(CLOCK_REALTIME, &timenow);
if (timespec_cmp(&timenow,timeout) >= 0)
{

return ETIMEDOUT;
}
sched_yield();

}
return 0;

}

The Spinlock implementation is generally unsuitable for any application using priority-
based thread scheduling policies such as SCHED_FIFO or SCHED_RR, since the mutex
could currently be held by a thread of lower priority within the same allocation domain,

3800 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131193

131194

131195

131196

131197

131198

131199

131200

131201

131202

131203

131204

131205

131206

131207

131208

131209

131210

131211

131212

131213

131214

131215

131216

131217

131218

131219

131220

131221

131222

131223

131224

131225

131226

131227

131228

131229

131230

131231

131232

131233

131234

131235

131236

131237

131238

131239

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

but since the waiting thread never blocks, only threads of equal or higher priority will ever
run, and the mutex cannot be unlocked. Setting priority inheritance or priority ceiling
protocol on the mutex does not solve this problem, since the priority of a mutex owning
thread is only boosted if higher priority threads are blocked waiting for the mutex; clearly
not the case for this spinlock.

• Condition Wait Implementation

#include <pthread.h>
#include <time.h>
#include <errno.h>

struct timed_mutex {
int locked;
pthread_mutex_t mutex;
pthread_cond_t cond;

};
typedef struct timed_mutex timed_mutex_t;

int timed_mutex_lock(timed_mutex_t *tm,
const struct timespec *timeout)

{
int timedout=FALSE;
int error_status;

pthread_mutex_lock(&tm->mutex);

while (tm->locked && !timedout)
{

if ((error_status=pthread_cond_timedwait(&tm->cond,
&tm->mutex, timeout))!=0)

{
if (error_status==ETIMEDOUT) timedout = TRUE;

}
}

if(timedout)
{

pthread_mutex_unlock(&tm->mutex);
return ETIMEDOUT;

}
else
{

tm->locked = TRUE;
pthread_mutex_unlock(&tm->mutex);
return 0;

}
}

void timed_mutex_unlock(timed_mutex_t *tm)
{

pthread_mutex_lock(&tm->mutex); / for case assignment not atomic /
tm->locked = FALSE;
pthread_mutex_unlock(&tm->mutex);
pthread_cond_signal(&tm->cond);

}

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3801

131240

131241

131242

131243

131244

131245

131246

131247

131248

131249

131250

131251

131252

131253

131254

131255

131256

131257

131258

131259

131260

131261

131262

131263

131264

131265

131266

131267

131268

131269

131270

131271

131272

131273

131274

131275

131276

131277

131278

131279

131280

131281

131282

131283

131284

131285

131286

131287

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

The Condition Wait implementation effectively substitutes the pthread_cond_timedwait()
function (which is currently timed out) for the desired pthread_mutex_timedlock(). Since
waits on condition variables currently do not include protocols which avoid priority
inversion, this method is generally unsuitable for realtime applications because it does not
provide the same priority inversion protection as the untimed pthread_mutex_lock(). Also,
for any given implementations of the current mutex and condition variable primitives, this
library implementation has a performance cost at least 2.5 times that of the untimed
pthread_mutex_lock() even in the case where the timed mutex is readily locked without
blocking (the interfaces required for this case are shown in bold). Even in uniprocessors or
where assignment is atomic, at least an additional pthread_cond_signal() is required.
pthread_mutex_timedlock() could be implemented at effectively no performance penalty in
this case because the timeout parameters need only be considered after it is determined
that the mutex cannot be locked immediately.

Thus it has not yet been shown that the full semantics of mutex locking with timeout can
be efficiently and reliably achieved using existing interfaces. Even if the existence of an
acceptable library implementation were proven, it is difficult to justify why the interface
itself should not be made portable, especially considering approval for the other four
timeouts.

• Rationale for Library Implementation of pthread_timedjoin()

Library implementation of pthread_timedjoin():

/*
* Construct a thread variety entirely from existing functions
* with which a join can be done, allowing the join to time out.
*/
#include <pthread.h>
#include <time.h>

struct timed_thread {
pthread_t t;
pthread_mutex_t m;
int exiting;
pthread_cond_t exit_c;
void *(*start_routine)(void *arg);
void *arg;
void *status;

};

typedef struct timed_thread *timed_thread_t;
static pthread_key_t timed_thread_key;
static pthread_once_t timed_thread_once = PTHREAD_ONCE_INIT;

static void timed_thread_init()
{

pthread_key_create(&timed_thread_key, NULL);
}

static void *timed_thread_start_routine(void *args)

/*
* Routine to establish thread-specific data value and run the actual
* thread start routine which was supplied to timed_thread_create().
*/
{

3802 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131288

131289

131290

131291

131292

131293

131294

131295

131296

131297

131298

131299

131300

131301

131302

131303

131304

131305

131306

131307

131308

131309

131310

131311

131312

131313

131314

131315

131316

131317

131318

131319

131320

131321

131322

131323

131324

131325

131326

131327

131328

131329

131330

131331

131332

131333

131334

131335

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

timed_thread_t tt = (timed_thread_t) args;

pthread_once(&timed_thread_once, timed_thread_init);
pthread_setspecific(timed_thread_key, (void *)tt);
timed_thread_exit((tt->start_routine)(tt->arg));

}

int timed_thread_create(timed_thread_t ttp, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg)

/*
* Allocate a thread which can be used with timed_thread_join().
*/
{

timed_thread_t tt;
int result;

tt = (timed_thread_t) malloc(sizeof(struct timed_thread));
pthread_mutex_init(&tt->m,NULL);
tt->exiting = FALSE;
pthread_cond_init(&tt->exit_c,NULL);
tt->start_routine = start_routine;
tt->arg = arg;
tt->status = NULL;

if ((result = pthread_create(&tt->t, attr,
timed_thread_start_routine, (void *)tt)) != 0) {
free(tt);
return result;

}

pthread_detach(tt->t);
ttp = tt;
return 0;

}

int timed_thread_join(timed_thread_t tt,
struct timespec *timeout,
void **status)

{
int result;

pthread_mutex_lock(&tt->m);
result = 0;
/*
* Wait until the thread announces that it is exiting,
* or until timeout.
*/
while (result == 0 && ! tt->exiting) {

result = pthread_cond_timedwait(&tt->exit_c, &tt->m, timeout);
}
pthread_mutex_unlock(&tt->m);
if (result == 0 && tt->exiting) {

*status = tt->status;
free((void *)tt);
return result;

}

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3803

131336

131337

131338

131339

131340

131341

131342

131343

131344

131345

131346

131347

131348

131349

131350

131351

131352

131353

131354

131355

131356

131357

131358

131359

131360

131361

131362

131363

131364

131365

131366

131367

131368

131369

131370

131371

131372

131373

131374

131375

131376

131377

131378

131379

131380

131381

131382

131383

131384

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

return result;
}

void timed_thread_exit(void *status)
{

timed_thread_t tt;
void *specific;

if ((specific=pthread_getspecific(timed_thread_key)) == NULL){
/*
* Handle cases which will not happen with correct usage.
*/
pthread_exit(NULL);

}
tt = (timed_thread_t) specific;
pthread_mutex_lock(&tt->m);
/*
* Tell a joiner that we are exiting.
*/
tt->status = status;
tt->exiting = TRUE;
pthread_cond_signal(&tt->exit_c);
pthread_mutex_unlock(&tt->m);
/*
* Call pthread exit() to call destructors and really
* exit the thread.
*/
pthread_exit(NULL);

}

The pthread_join() C-language example shown above demonstrates that it is possible,
using existing pthread facilities, to construct a variety of thread which allows for joining
such a thread, but which allows the join operation to time out. It does this by using a
pthread_cond_timedwait() to wait for the thread to exit. A timed_thread_t descriptor
structure is used to pass parameters from the creating thread to the created thread, and
from the exiting thread to the joining thread. This implementation is roughly equivalent to
what a normal pthread_join() implementation would do, with the single change being that
pthread_cond_timedwait() is used in place of a simple pthread_cond_wait().

Since it is possible to implement such a facility entirely from existing pthread interfaces,
and with roughly equal efficiency and complexity to an implementation which would be
provided directly by a pthreads implementation, it was the consensus of the working
group members that any pthread_timedjoin() facility would be unnecessary, and should not
be provided.

• Form of the Timeout Interfaces

The working group considered a number of alternative ways to add timeouts to blocking
services. At first, a system interface which would specify a one-shot or persistent timeout
to be applied to subsequent blocking services invoked by the calling process or thread was
considered because it allowed all blocking services to be timed out in a uniform manner
with a single additional interface; this was rather quickly rejected because it could easily
result in the wrong services being timed out.

It was suggested that a timeout value might be specified as an attribute of the object
(semaphore, mutex, message queue, and so on), but there was no consensus on this, either

3804 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131385

131386

131387

131388

131389

131390

131391

131392

131393

131394

131395

131396

131397

131398

131399

131400

131401

131402

131403

131404

131405

131406

131407

131408

131409

131410

131411

131412

131413

131414

131415

131416

131417

131418

131419

131420

131421

131422

131423

131424

131425

131426

131427

131428

131429

131430

131431

131432

131433

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

on a case-by-case basis or for all timeouts.

Looking at the two existing timeouts for blocking services indicates that the working
group members favor a separate interface for the timed version of a function. However,
pthread_cond_timedwait() utilizes an absolute timeout value while sigtimedwait() uses a
relative timeout value. The working group members agreed that relative timeout values
are appropriate where the timeout mechanism’s primary use was to deal with an
unexpected or error situation, but they are inappropriate when the timeout must expire at
a particular time, or before a specific deadline. For the timeouts being introduced in
POSIX.1-2024, the working group considered allowing both relative and absolute timeouts
as is done with POSIX.1b timers, but ultimately favored the simpler absolute timeout form.

An absolute time measure can be easily implemented on top of an interface that specifies
relative time, by reading the clock, calculating the difference between the current time and
the desired wakeup time, and issuing a relative timeout call. But there is a race condition
with this approach because the thread could be preempted after reading the clock, but
before making the timed-out call; in this case, the thread would be awakened later than it
should and, thus, if the wakeup time represented a deadline, it would miss it.

There is also a race condition when trying to build a relative timeout on top of an interface
that specifies absolute timeouts. In this case, the clock would have to be read to calculate
the absolute wakeup time as the sum of the current time plus the relative timeout interval.
In this case, if the thread is preempted after reading the clock but before making the timed-
out call, the thread would be awakened earlier than desired.

But the race condition with the absolute timeouts interface is not as bad as the one that
happens with the relative timeout interface, because there are simple workarounds. For the
absolute timeouts interface, if the timing requirement is a deadline, the deadline can still
be met because the thread woke up earlier than the deadline. If the timeout is just used as
an error recovery mechanism, the precision of timing is not really important. If the timing
requirement is that between actions A and B a minimum interval of time must elapse, the
absolute timeout interface can be safely used by reading the clock after action A has been
started. It could be argued that, since the call with the absolute timeout is atomic from the
application point of view, it is not possible to read the clock after action A, if this action is
part of the timed-out call. But looking at the nature of the calls for which timeouts are
specified (locking a mutex, waiting for a semaphore, waiting for a message, or waiting
until there is space in a message queue), the timeouts that an application would build on
these actions would not be triggered by these actions themselves, but by some other
external action. For example, if waiting for a message to arrive to a message queue, and
waiting for at least 20 milliseconds, this time interval would start to be counted from some
event that would trigger both the action that produces the message, as well as the action
that waits for the message to arrive, and not by the wait-for-message operation itself. In
this case, the workaround proposed above could be used.

For these reasons, the absolute timeout is preferred over the relative timeout interface.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3805

131434

131435

131436

131437

131438

131439

131440

131441

131442

131443

131444

131445

131446

131447

131448

131449

131450

131451

131452

131453

131454

131455

131456

131457

131458

131459

131460

131461

131462

131463

131464

131465

131466

131467

131468

131469

131470

131471

131472

131473

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

B.2.9 Threads

Threads will normally be more expensive than subroutines (or functions, routines, and so on) if
specialized hardware support is not provided. Nevertheless, threads should be sufficiently
efficient to encourage their use as a medium to fine-grained structuring mechanism for
parallelism in an application. Structuring an application using threads then allows it to take
immediate advantage of any underlying parallelism available in the host environment. This
means implementors are encouraged to optimize for fast execution at the possible expense of
efficient utilization of storage. For example, a common thread creation technique is to cache
appropriate thread data structures. That is, rather than releasing system resources, the
implementation retains these resources and reuses them when the program next asks to create a
new thread. If this reuse of thread resources is to be possible, there has to be very little unique
state associated with each thread, because any such state has to be reset when the thread is
reused.

Thread Creation Attributes

Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to
support probable future standardization in these areas without requiring that the interface itself
be changed.

Attributes objects provide clean isolation of the configurable aspects of threads. For example,
``stack size’’ is an important attribute of a thread, but it cannot be expressed portably. When
porting a threaded program, stack sizes often need to be adjusted. The use of attributes objects
can help by allowing the changes to be isolated in a single place, rather than being spread across
every instance of thread creation.

Attributes objects can be used to set up classes of threads with similar attributes; for example,
``threads with large stacks and high priority’’ or ``threads with minimal stacks’’. These classes
can be defined in a single place and then referenced wherever threads need to be created.
Changes to ``class’’ decisions become straightforward, and detailed analysis of each
pthread_create() call is not required.

The attributes objects are defined as opaque types as an aid to extensibility. If these objects had
been specified as structures, adding new attributes would force recompilation of all multi-
threaded programs when the attributes objects are extended; this might not be possible if
different program components were supplied by different vendors.

Additionally, opaque attributes objects present opportunities for improving performance.
Argument validity can be checked once when attributes are set, rather than each time a thread is
created. Implementations will often need to cache kernel objects that are expensive to create.
Opaque attributes objects provide an efficient mechanism to detect when cached objects become
invalid due to attribute changes.

Because assignment is not necessarily defined on a given opaque type, implementation-defined
default values cannot be defined in a portable way. The solution to this problem is to allow
attribute objects to be initialized dynamically by attributes object initialization functions, so that
default values can be supplied automatically by the implementation.

The following proposal was provided as a suggested alternative to the supplied attributes:

1. Maintain the style of passing a parameter formed by the bitwise-inclusive OR of flags to
the initialization routines (pthread_create(), pthread_mutex_init(), pthread_cond_init()). The
parameter containing the flags should be an opaque type for extensibility. If no flags are
set in the parameter, then the objects are created with default characteristics. An
implementation may specify implementation-defined flag values and associated
behavior.

3806 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131474

131475

131476

131477

131478

131479

131480

131481

131482

131483

131484

131485

131486

131487

131488

131489

131490

131491

131492

131493

131494

131495

131496

131497

131498

131499

131500

131501

131502

131503

131504

131505

131506

131507

131508

131509

131510

131511

131512

131513

131514

131515

131516

131517

131518

131519

131520

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

2. If further specialization of mutexes and condition variables is necessary, implementations
may specify additional procedures that operate on the pthread_mutex_t and
pthread_cond_t objects (instead of on attributes objects).

The difficulties with this solution are:

1. A bitmask is not opaque if bits have to be set into bit-vector attributes objects using
explicitly-coded bitwise-inclusive OR operations. If the set of options exceeds an int,
application programmers need to know the location of each bit. If bits are set or read by
encapsulation (that is, get*() or set*() functions), then the bitmask is merely an
implementation of attributes objects as currently defined and should not be exposed to
the programmer.

2. Many attributes are not Boolean or very small integral values. For example, scheduling
policy may be placed in 3 bits or 4 bits, but priority requires 5 bits or more, thereby taking
up at least 8 bits out of a possible 16 bits on machines with 16-bit integers. Because of this,
the bitmask can only reasonably control whether particular attributes are set or not, and it
cannot serve as the repository of the value itself. The value needs to be specified as a
function parameter (which is non-extensible), or by setting a structure field (which is non-
opaque), or by get*() and set*() functions (making the bitmask a redundant addition to
the attributes objects).

Stack size is defined as an optional attribute because the very notion of a stack is inherently
machine-dependent. Some implementations may not be able to change the size of the stack, for
example, and others may not need to because stack pages may be discontiguous and can be
allocated and released on demand.

The attribute mechanism has been designed in large measure for extensibility. Future extensions
to the attribute mechanism or to any attributes object defined in POSIX.1-2024 have to be done
with care so as not to affect binary-compatibility.

Attribute objects, even if allocated by means of dynamic allocation functions such as malloc(),
may have their size fixed at compile time. This means, for example, a pthread_create() in an
implementation with extensions to the pthread_attr_t cannot look beyond the area that the
binary application assumes is valid. This suggests that implementations should maintain a size
field in the attributes object, as well as possibly version information, if extensions in different
directions (possibly by different vendors) are to be accommodated.

Thread Implementation Models

There are various thread implementation models. At one end of the spectrum is the ``library-
thread model’’. In such a model, the threads of a process are not visible to the operating system
kernel, and the threads are not kernel-scheduled entities. The process is the only kernel-
scheduled entity. The process is scheduled onto the processor by the kernel according to the
scheduling attributes of the process. The threads are scheduled onto the single kernel-scheduled
entity (the process) by the runtime library according to the scheduling attributes of the threads.
A problem with this model is that it constrains concurrency. Since there is only one kernel-
scheduled entity (namely, the process), only one thread per process can execute at a time. If the
thread that is executing blocks on I/O, then the whole process blocks.

At the other end of the spectrum is the ``kernel-thread model’’. In this model, all threads are
visible to the operating system kernel. Thus, all threads are kernel-scheduled entities, and all
threads can concurrently execute. The threads are scheduled onto processors by the kernel
according to the scheduling attributes of the threads. The drawback to this model is that the
creation and management of the threads entails operating system calls, as opposed to subroutine
calls, which makes kernel threads heavier weight than library threads.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3807

131521

131522

131523

131524

131525

131526

131527

131528

131529

131530

131531

131532

131533

131534

131535

131536

131537

131538

131539

131540

131541

131542

131543

131544

131545

131546

131547

131548

131549

131550

131551

131552

131553

131554

131555

131556

131557

131558

131559

131560

131561

131562

131563

131564

131565

131566

131567

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

Hybrids of these two models are common. A hybrid model offers the speed of library threads
and the concurrency of kernel threads. In hybrid models, a process has some (relatively small)
number of kernel scheduled entities associated with it. It also has a potentially much larger
number of library threads associated with it. Some library threads may be bound to kernel-
scheduled entities, while the other library threads are multiplexed onto the remaining kernel-
scheduled entities. There are two levels of thread scheduling:

1. The runtime library manages the scheduling of (unbound) library threads onto kernel-
scheduled entities.

2. The kernel manages the scheduling of kernel-scheduled entities onto processors.

For this reason, a hybrid model is referred to as a two-level threads scheduling model. In this
model, the process can have multiple concurrently executing threads; specifically, it can have as
many concurrently executing threads as it has kernel-scheduled entities.

Thread-Specific Data

Many applications require that a certain amount of context be maintained on a per-thread basis
across procedure calls. A common example is a multi-threaded library routine that allocates
resources from a common pool and maintains an active resource list for each thread. The thread-
specific data interface provided to meet these needs may be viewed as a two-dimensional array
of values with keys serving as the row index and thread IDs as the column index (although the
implementation need not work this way).

• Models

Three possible thread-specific data models were considered:

1. No Explicit Support

A standard thread-specific data interface is not strictly necessary to support
applications that require per-thread context. One could, for example, provide a hash
function that converted a pthread_t into an integer value that could then be used to
index into a global array of per-thread data pointers. This hash function, in
conjunction with pthread_self(), would be all the interface required to support a
mechanism of this sort. Unfortunately, this technique is cumbersome. It can lead to
duplicated code as each set of cooperating modules implements their own per-
thread data management schemes. This technique would also require that pthread_t
not be an opaque type.

2. Single (void *) Pointer

Another technique would be to provide a single word of per-thread storage and a
pair of functions to fetch and store the value of this word. The word could then hold
a pointer to a block of per-thread memory. The allocation, partitioning, and general
use of this memory would be entirely up to the application. Although this method
is not as problematic as technique 1, it suffers from interoperability problems. For
example, all modules using the per-thread pointer would have to agree on a
common usage protocol.

3. Key/Value Mechanism

This method associates an opaque key (for example, stored in a variable of type
pthread_key_t) with each per-thread datum. These keys play the role of identifiers
for per-thread data. This technique is the most generic and avoids the problems
noted above, albeit at the cost of some complexity.

The primary advantage of the third model is its information hiding properties. Modules

3808 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131568

131569

131570

131571

131572

131573

131574

131575

131576

131577

131578

131579

131580

131581

131582

131583

131584

131585

131586

131587

131588

131589

131590

131591

131592

131593

131594

131595

131596

131597

131598

131599

131600

131601

131602

131603

131604

131605

131606

131607

131608

131609

131610

131611

131612

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

using this model are free to create and use their own key(s) independent of all other such
usage, whereas the other models require that all modules that use thread-specific context
explicitly cooperate with all other such modules. The data-independence provided by the
third model is worth the additional interface. Therefore, the third model was chosen.

• Requirements

It is important that it be possible to implement the thread-specific data interface without
the use of thread private memory. To do otherwise would increase the weight of each
thread, thereby limiting the range of applications for which the threads interfaces provided
by POSIX.1-2024 is appropriate.

The values that one binds to the key via pthread_setspecific() may, in fact, be pointers to
shared storage locations available to all threads. It is only the key/value bindings that are
maintained on a per-thread basis, and these can be kept in any portion of the address space
that is reserved for use by the calling thread (for example, on the stack). Thus, no per-
thread MMU state is required to implement the interface. On the other hand, there is
nothing in the interface specification to preclude the use of a per-thread MMU state if it is
available (for example, the key values returned by pthread_key_create() could be thread
private memory addresses).

• Standardization Issues

Thread-specific data is a requirement for a usable thread interface. The binding described
in this section provides a portable thread-specific data mechanism for languages that do
not directly support a thread-specific storage class. A binding to POSIX.1-2024 for a
language that does include such a storage class need not provide this specific interface.

If a language were to include the notion of thread-specific storage, it would be desirable
(but not required) to provide an implementation of the pthreads thread-specific data
interface based on the language feature. For example, assume that a compiler for a C-like
language supports a private storage class that provides thread-specific storage. Something
similar to the following macros might be used to effect a compatible implementation:

#define pthread_key_t private void *
#define pthread_key_create(key) /* no-op */
#define pthread_setspecific(key,value) (key)=(value)
#define pthread_getspecific(key) (key)

Note: For the sake of clarity, this example ignores destructor functions. A correct
implementation would have to support them.

Barriers

• Background

Barriers are typically used in parallel DO/FOR loops to ensure that all threads have
reached a particular stage in a parallel computation before allowing any to proceed to the
next stage. Highly efficient implementation is possible on machines which support a
``Fetch and Add’’ operation as described in the referenced Almasi and Gottlieb (1989).

The use of return value PTHREAD_BARRIER_SERIAL_THREAD is shown in the
following example:

if ((status=pthread_barrier_wait(&barrier)) ==
PTHREAD_BARRIER_SERIAL_THREAD) {
...serial section

}
else if (status != 0) {

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3809

131613

131614

131615

131616

131617

131618

131619

131620

131621

131622

131623

131624

131625

131626

131627

131628

131629

131630

131631

131632

131633

131634

131635

131636

131637

131638

131639

131640

131641

131642

131643

131644

131645

131646

131647

131648

131649

131650

131651

131652

131653

131654

131655

131656

131657

131658

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

...error processing
}
status=pthread_barrier_wait(&barrier);
...

This behavior allows a serial section of code to be executed by one thread as soon as all
threads reach the first barrier. The second barrier prevents the other threads from
proceeding until the serial section being executed by the one thread has completed.

Although barriers can be implemented with mutexes and condition variables, the
referenced Almasi and Gottlieb (1989) provides ample illustration that such
implementations are significantly less efficient than is possible. While the relative
efficiency of barriers may well vary by implementation, it is important that they be
recognized in the POSIX.1-2024 to facilitate applications portability while providing the
necessary freedom to implementors.

• Lack of Timeout Feature

Alternate versions of most blocking routines have been provided to support watchdog
timeouts. No alternate interface of this sort has been provided for barrier waits for the
following reasons:

• Multiple threads may use different timeout values, some of which may be indefinite.
It is not clear which threads should break through the barrier with a timeout error if
and when these timeouts expire.

• The barrier may become unusable once a thread breaks out of a pthread_barrier_wait()
with a timeout error. There is, in general, no way to guarantee the consistency of a
barrier ’s internal data structures once a thread has timed out of a
pthread_barrier_wait(). Even the inclusion of a special barrier reinitialization function
would not help much since it is not clear how this function would affect the behavior
of threads that reach the barrier between the original timeout and the call to the
reinitialization function.

Spin Locks

• Background

Spin locks represent an extremely low-level synchronization mechanism suitable primarily
for use on shared memory multi-processors. It is typically an atomically modified Boolean
value that is set to one when the lock is held and to zero when the lock is freed.

When a caller requests a spin lock that is already held, it typically spins in a loop testing
whether the lock has become available. Such spinning wastes processor cycles so the lock
should only be held for short durations and not across sleep/block operations. Callers
should unlock spin locks before calling sleep operations.

Spin locks are available on a variety of systems. The functions included in POSIX.1-2024
are an attempt to standardize that existing practice.

• Lack of Timeout Feature

Alternate versions of most blocking routines have been provided to support watchdog
timeouts. No alternate interface of this sort has been provided for spin locks for the
following reasons:

• It is impossible to determine appropriate timeout intervals for spin locks in a
portable manner. The amount of time one can expect to spend spin-waiting is
inversely proportional to the degree of parallelism provided by the system.

3810 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131659

131660

131661

131662

131663

131664

131665

131666

131667

131668

131669

131670

131671

131672

131673

131674

131675

131676

131677

131678

131679

131680

131681

131682

131683

131684

131685

131686

131687

131688

131689

131690

131691

131692

131693

131694

131695

131696

131697

131698

131699

131700

131701

131702

131703

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

It can vary from a few cycles when each competing thread is running on its own
processor, to an indefinite amount of time when all threads are multiplexed on a
single processor (which is why spin locking is not advisable on uniprocessors).

• When used properly, the amount of time the calling thread spends waiting on a spin
lock should be considerably less than the time required to set up a corresponding
watchdog timer. Since the primary purpose of spin locks is to provide a low-
overhead synchronization mechanism for multi-processors, the overhead of a
timeout mechanism was deemed unacceptable.

It was also suggested that an additional count argument be provided (on the
pthread_spin_lock() call) in lieu of a true timeout so that a spin lock call could fail gracefully
if it was unable to apply the lock after count attempts. This idea was rejected because it is
not existing practice. Furthermore, the same effect can be obtained with
pthread_spin_trylock(), as illustrated below:

int n = MAX_SPIN;

while (--n >= 0)
{

if (!pthread_spin_try_lock(...))
break;

}
if (n >= 0)
{

/* Successfully acquired the lock */
}
else
{

/* Unable to acquire the lock */
}

• process-shared Attribute

The initialization functions associated with most POSIX synchronization objects (for
example, mutexes, barriers, and read-write locks) take an attributes object with a process-
shared attribute that specifies whether or not the object is to be shared across processes. In
the draft corresponding to the first balloting round, two separate initialization functions
are provided for spin locks, however: one for spin locks that were to be shared across
processes (spin_init()), and one for locks that were only used by multiple threads within a
single process (pthread_spin_init()). This was done so as to keep the overhead associated
with spin waiting to an absolute minimum. However, the balloting group requested that,
since the overhead associated to a bit check was small, spin locks should be consistent with
the rest of the synchronization primitives, and thus the process-shared attribute was
introduced for spin locks.

• Spin Locks versus Mutexes

It has been suggested that mutexes are an adequate synchronization mechanism and spin
locks are not necessary. Locking mechanisms typically must trade off the processor
resources consumed while setting up to block the thread and the processor resources
consumed by the thread while it is blocked. Spin locks require very little resources to set
up the blocking of a thread. Existing practice is to simply loop, repeating the atomic
locking operation until the lock is available. While the resources consumed to set up
blocking of the thread are low, the thread continues to consume processor resources while
it is waiting.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3811

131704

131705

131706

131707

131708

131709

131710

131711

131712

131713

131714

131715

131716

131717

131718

131719

131720

131721

131722

131723

131724

131725

131726

131727

131728

131729

131730

131731

131732

131733

131734

131735

131736

131737

131738

131739

131740

131741

131742

131743

131744

131745

131746

131747

131748

131749

131750

131751

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

On the other hand, mutexes may be implemented such that the processor resources
consumed to block the thread are large relative to a spin lock. After detecting that the
mutex lock is not available, the thread must alter its scheduling state, add itself to a set of
waiting threads, and, when the lock becomes available again, undo all of this before taking
over ownership of the mutex. However, while a thread is blocked by a mutex, no processor
resources are consumed.

Therefore, spin locks and mutexes may be implemented to have different characteristics.
Spin locks may have lower overall overhead for very short-term blocking, and mutexes
may have lower overall overhead when a thread will be blocked for longer periods of time.
The presence of both interfaces allows implementations with these two different
characteristics, both of which may be useful to a particular application.

It has also been suggested that applications can build their own spin locks from the
pthread_mutex_trylock() function:

while (pthread_mutex_trylock(&mutex));

The apparent simplicity of this construct is somewhat deceiving, however. While the actual
wait is quite efficient, various guarantees on the integrity of mutex objects (for example,
priority inheritance rules) may add overhead to the successful path of the trylock
operation that is not required of spin locks. One could, of course, add an attribute to the
mutex to bypass such overhead, but the very act of finding and testing this attribute
represents more overhead than is found in the typical spin lock.

The need to hold spin lock overhead to an absolute minimum also makes it impossible to
provide guarantees against starvation similar to those provided for mutexes or read-write
locks. The overhead required to implement such guarantees (for example, disabling
preemption before spinning) may well exceed the overhead of the spin wait itself by many
orders of magnitude. If a ``safe’’ spin wait seems desirable, it can always be provided
(albeit at some performance cost) via appropriate mutex attributes.

Robust Mutexes

Robust mutexes are intended to protect applications that use mutexes to protect data shared
between different processes. If a process is terminated by a signal while a thread is holding a
mutex, there is no chance for the process to clean up after it. Waiters for the locked mutex might
wait indefinitely.

With robust mutexes the problem can be solved: whenever a fatal signal terminates a process,
current or future waiters of the mutex are notified about this fact. The locking function provides
notification of this condition through the error condition [EOWNERDEAD]. A thread then has
the chance to clean up the state protected by the mutex and mark the state as consistent again by
a call to pthread_mutex_consistent().

Pre-existing implementations have used the semantics of robust mutexes for a variety of
situations, some of them not defined in the standard. Where a normally terminated process (i.e.,
when one thread calls exit()) causes notification of other waiters of robust mutexes if the mutex
is locked by any thread in the process. This behavior is defined in the standard and makes sense
because no thread other than the thread calling exit() has the chance to clean up its data.

If a thread is terminated by cancellation or if it calls pthread_exit(), the situation is different. In
both these situations the thread has the chance to clean up after itself by registering appropriate
cleanup handlers. There is no real reason to demand that other waiters for a robust mutex the
terminating thread owns are notified. The committee felt that this is actively encouraging bad
practice because programmers are tempted to rely on the robust mutex semantics instead of
correctly cleaning up after themselves.

3812 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131752

131753

131754

131755

131756

131757

131758

131759

131760

131761

131762

131763

131764

131765

131766

131767

131768

131769

131770

131771

131772

131773

131774

131775

131776

131777

131778

131779

131780

131781

131782

131783

131784

131785

131786

131787

131788

131789

131790

131791

131792

131793

131794

131795

131796

131797

131798

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

Therefore, the standard does not require notification of other waiters at the time a thread is
terminated while the process continues to run. The mutex is still recognized as being locked by
the process (with the thread gone it makes no sense to refer to the thread owning the mutex).
Therefore, a terminating process will cause notifications about the dead owner to be sent to all
waiters. This delay in the notification is not required, but programmers cannot rely on prompt
notification after a thread is terminated.

For the same reason is it not required that an implementation supports robust mutexes that are
not shared between processes. If a robust mutex is used only within one process, all the cleanup
can be performed by the threads themselves by registering appropriate cleanup handlers. Fatal
signals are of no importance in this case because after the signal is delivered there is no thread
remaining to use the mutex.

Some implementations might choose to support intra-process robust mutexes and they might
also send notification of a dead owner right after the previous owner died. But applications
must not rely on this. Applications should only use robust mutexes for the purpose of handling
fatal signals in situations where inter-process mutexes are in use.

Supported Threads Functions

On POSIX-conforming systems, the following symbolic constants are always conforming:

_POSIX_READER_WRITER_LOCKS
_POSIX_THREADS

Therefore, the following threads functions are always supported:

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3813

131799

131800

131801

131802

131803

131804

131805

131806

131807

131808

131809

131810

131811

131812

131813

131814

131815

131816

131817

131818

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

pthread_atfork()
pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getguardsize()
pthread_attr_getschedparam()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setschedparam()
pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()
pthread_cond_clockwait()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_getpshared()
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getspecific()
pthread_join()
pthread_key_create()
pthread_key_delete()

pthread_kill()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_getpshared()
pthread_mutexattr_gettype()
pthread_mutexattr_init()
pthread_mutexattr_setpshared()
pthread_mutexattr_settype()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()
pthread_self()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel()
sigwait()

3814 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131819

131820

131821

131822

131823

131824

131825

131826

131827

131828

131829

131830

131831

131832

131833

131834

131835

131836

131837

131838

131839

131840

131841

131842

131843

131844

131845

131846

131847

131848

131849

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

On POSIX-conforming systems, the symbolic constant _POSIX_THREAD_SAFE_FUNCTIONS is
always defined. Therefore, the following functions are always supported:

flockfile()
ftrylockfile()
funlockfile()
getc_unlocked()
getchar_unlocked()
getgrgid_r()
getgrnam_r()
getpwnam_r()

getpwuid_r()
gmtime_r()
localtime_r()
putc_unlocked()
putchar_unlocked()
readdir_r()
strerror_r()
strtok_r()

Threads Extensions

The following extensions to the IEEE P1003.1c draft standard are now supported in
POSIX.1-2024 as part of the alignment with the Single UNIX Specification:

• Extended mutex attribute types

• Read-write locks and attributes (also introduced by the IEEE Std 1003.1j-2000 amendment)

• Thread concurrency level

• Thread stack guard size

• Parallel I/O

• Robust mutexes

These extensions carefully follow the threads programming model specified in POSIX.1c. As
with POSIX.1c, all the new functions return zero if successful; otherwise, an error number is
returned to indicate the error.

The concept of attribute objects was introduced in POSIX.1c to allow implementations to extend
POSIX.1-2024 without changing the existing interfaces. Attribute objects were defined for
threads, mutexes, and condition variables. Attributes objects are defined as implementation-
defined opaque types to aid extensibility, and functions are defined to allow attributes to be set
or retrieved. This model has been followed when adding the new type attribute of
pthread_mutexattr_t or the new read-write lock attributes object pthread_rwlockattr_t.

• Extended Mutex Attributes

POSIX.1c defines a mutex attributes object as an implementation-defined opaque object of
type pthread_mutexattr_t, and specifies a number of attributes which this object must
have and a number of functions which manipulate these attributes. These attributes
include detachstate, inheritsched, schedparm, schedpolicy, contentionscope, stackaddr, and
stacksize.

The System Interfaces volume of POSIX.1-2024 specifies another mutex attribute called
type. The type attribute allows applications to specify the behavior of mutex locking
operations in situations where POSIX.1c behavior is undefined. The OSF DCE threads
implementation, based on Draft 4 of POSIX.1c, specified a similar attribute. Note that the
names of the attributes have changed somewhat from the OSF DCE threads
implementation.

The System Interfaces volume of POSIX.1-2024 also extends the specification of the
following POSIX.1c functions which manipulate mutexes:

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3815

131850

131851

131852

131853

131854

131855

131856

131857

131858

131859

131860

131861

131862

131863

131864

131865

131866

131867

131868

131869

131870

131871

131872

131873

131874

131875

131876

131877

131878

131879

131880

131881

131882

131883

131884

131885

131886

131887

131888

131889

131890

131891

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()

to take account of the new mutex attribute type and to specify behavior which was
declared as undefined in POSIX.1c. How a calling thread acquires or releases a mutex now
depends upon the mutex type attribute.

The type attribute can have the following values:

PTHREAD_MUTEX_NORMAL
Basic mutex with no specific error checking built in. Does not report a deadlock error.

PTHREAD_MUTEX_RECURSIVE
Allows any thread to recursively lock a mutex. The mutex must be unlocked an equal
number of times to release the mutex.

PTHREAD_MUTEX_ERRORCHECK
Detects and reports simple usage errors; that is, an attempt to unlock a mutex that is
not locked by the calling thread or that is not locked at all, or an attempt to relock a
mutex the thread already owns.

PTHREAD_MUTEX_DEFAULT
The default mutex type. May be mapped to any of the above mutex types or may be
an implementation-defined type.

Normal mutexes do not detect deadlock conditions; for example, a thread will hang if it
tries to relock a normal mutex that it already owns. Attempting to unlock a mutex locked
by another thread, or unlocking an unlocked mutex, results in undefined behavior. Normal
mutexes will usually be the fastest type of mutex available on a platform but provide the
least error checking.

Recursive mutexes are useful for converting old code where it is difficult to establish clear
boundaries of synchronization. A thread can relock a recursive mutex without first
unlocking it. The relocking deadlock which can occur with normal mutexes cannot occur
with this type of mutex. However, multiple locks of a recursive mutex require the same
number of unlocks to release the mutex before another thread can acquire the mutex.
Furthermore, this type of mutex maintains the concept of an owner. Thus, a thread
attempting to unlock a recursive mutex which another thread has locked returns with an
error. A thread attempting to unlock a recursive mutex that is not locked returns with an
error. Never use a recursive mutex with condition variables because the implicit unlock
performed by pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait()
will not actually release the mutex if it had been locked multiple times.

Errorcheck mutexes provide error checking and are useful primarily as a debugging aid. A
thread attempting to relock an errorcheck mutex without first unlocking it returns with an
error. Again, this type of mutex maintains the concept of an owner. Thus, a thread
attempting to unlock an errorcheck mutex which another thread has locked returns with
an error. A thread attempting to unlock an errorcheck mutex that is not locked also returns
with an error. It should be noted that errorcheck mutexes will almost always be much
slower than normal mutexes due to the extra state checks performed.

The default mutex type provides implementation-defined error checking. The default
mutex may be mapped to one of the other defined types or may be something entirely
different. This enables each vendor to provide the mutex semantics which the vendor feels
will be most useful to their target users. Most vendors will probably choose to make
normal mutexes the default so as to give applications the benefit of the fastest type of

3816 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131892

131893

131894

131895

131896

131897

131898

131899

131900

131901

131902

131903

131904

131905

131906

131907

131908

131909

131910

131911

131912

131913

131914

131915

131916

131917

131918

131919

131920

131921

131922

131923

131924

131925

131926

131927

131928

131929

131930

131931

131932

131933

131934

131935

131936

131937

131938

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

mutexes available on their platform. Check your implementation’s documentation.

An application developer can use any of the mutex types almost interchangeably as long
as the application does not depend upon the implementation detecting (or failing to
detect) any particular errors. Note that a recursive mutex can be used with condition
variable waits as long as the application never recursively locks the mutex.

Two functions are provided for manipulating the type attribute of a mutex attributes object.
This attribute is set or returned in the type parameter of these functions. The
pthread_mutexattr_settype() function is used to set a specific type value while
pthread_mutexattr_gettype() is used to return the type of the mutex. Setting the type
attribute of a mutex attributes object affects only mutexes initialized using that mutex
attributes object. Changing the type attribute does not affect mutexes previously initialized
using that mutex attributes object.

• Read-Write Locks and Attributes

The read-write locks introduced have been harmonized with those in IEEE Std
1003.1j-2000; see also Section B.2.9.6 (on page 3833).

Read-write locks (also known as reader-writer locks) allow a thread to exclusively lock
some shared data while updating that data, or allow any number of threads to have
simultaneous read-only access to the data.

Unlike a mutex, a read-write lock distinguishes between reading data and writing data. A
mutex excludes all other threads. A read-write lock allows other threads access to the data,
providing no thread is modifying the data. Thus, a read-write lock is less primitive than
either a mutex-condition variable pair or a semaphore.

Application developers should consider using a read-write lock rather than a mutex to
protect data that is frequently referenced but seldom modified. Most threads (readers) will
be able to read the data without waiting and will only have to block when some other
thread (a writer) is in the process of modifying the data. Conversely a thread that wants to
change the data is forced to wait until there are no readers. This type of lock is often used
to facilitate parallel access to data on multi-processor platforms or to avoid context
switches on single processor platforms where multiple threads access the same data.

If a read-write lock becomes unlocked and there are multiple threads waiting to acquire
the write lock, the implementation’s scheduling policy determines which thread acquires
the read-write lock for writing. If there are multiple threads blocked on a read-write lock
for both read locks and write locks, it is unspecified whether the readers or a writer
acquire the lock first. However, for performance reasons, implementations often favor
writers over readers to avoid potential writer starvation.

A read-write lock object is an implementation-defined opaque object of type
pthread_rwlock_t as defined in <pthread.h>. There are two different sorts of locks
associated with a read-write lock: a read lock and a write lock.

The pthread_rwlockattr_init() function initializes a read-write lock attributes object with the
default value for all the attributes defined in the implementation. After a read-write lock
attributes object has been used to initialize one or more read-write locks, changes to the
read-write lock attributes object, including destruction, do not affect previously initialized
read-write locks.

Implementations must provide at least the read-write lock attribute process-shared. This
attribute can have the following values:

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3817

131939

131940

131941

131942

131943

131944

131945

131946

131947

131948

131949

131950

131951

131952

131953

131954

131955

131956

131957

131958

131959

131960

131961

131962

131963

131964

131965

131966

131967

131968

131969

131970

131971

131972

131973

131974

131975

131976

131977

131978

131979

131980

131981

131982

131983

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

PTHREAD_PROCESS_SHARED
Any thread of any process that has access to the memory where the read-write lock
resides can manipulate the read-write lock.

PTHREAD_PROCESS_PRIVATE
Only threads created within the same process as the thread that initialized the read-
write lock can manipulate the read-write lock. This is the default value.

The pthread_rwlockattr_setpshared() function is used to set the process-shared attribute of an
initialized read-write lock attributes object while the function
pthread_rwlockattr_getpshared() obtains the current value of the process-shared attribute.

A read-write lock attributes object is destroyed using the pthread_rwlockattr_destroy()
function. The effect of subsequent use of the read-write lock attributes object is undefined.

A thread creates a read-write lock using the pthread_rwlock_init() function. The attributes
of the read-write lock can be specified by the application developer; otherwise, the default
implementation-defined read-write lock attributes are used if the pointer to the read-write
lock attributes object is NULL. In cases where the default attributes are appropriate, the
PTHREAD_RWLOCK_INITIALIZER macro can be used to initialize read-write locks.

A thread which wants to apply a read lock to the read-write lock can use either
pthread_rwlock_rdlock() or pthread_rwlock_tryrdlock(). If pthread_rwlock_rdlock() is used, the
thread acquires a read lock if a writer does not hold the write lock and there are no writers
blocked on the write lock. If a read lock is not acquired, the calling thread blocks until it
can acquire a lock. However, if pthread_rwlock_tryrdlock() is used, the function returns
immediately with the error [EBUSY] if any thread holds a write lock or there are blocked
writers waiting for the write lock.

A thread which wants to apply a write lock to the read-write lock can use either of two
functions: pthread_rwlock_wrlock() or pthread_rwlock_trywrlock(). If pthread_rwlock_wrlock()
is used, the thread acquires the write lock if no other reader or writer threads hold the
read-write lock. If the write lock is not acquired, the thread blocks until it can acquire the
write lock. However, if pthread_rwlock_trywrlock() is used, the function returns
immediately with the error [EBUSY] if any thread is holding either a read or a write lock.

The pthread_rwlock_unlock() function is used to unlock a read-write lock object held by the
calling thread. Results are undefined if the read-write lock is not held by the calling thread.
If there are other read locks currently held on the read-write lock object, the read-write
lock object remains in the read locked state but without the current thread as one of its
owners. If this function releases the last read lock for this read-write lock object, the read-
write lock object is put in the unlocked read state. If this function is called to release a write
lock for this read-write lock object, the read-write lock object is put in the unlocked state.

• Thread Concurrency Level

On threads implementations that multiplex user threads onto a smaller set of kernel
execution entities, the system attempts to create a reasonable number of kernel execution
entities for the application upon application startup.

On some implementations, these kernel entities are retained by user threads that block in
the kernel. Other implementations do not timeslice user threads so that multiple compute-
bound user threads can share a kernel thread. On such implementations, some
applications may use up all the available kernel execution entities before their user-space
threads are used up. The process may be left with user threads capable of doing work for
the application but with no way to schedule them.

3818 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

131984

131985

131986

131987

131988

131989

131990

131991

131992

131993

131994

131995

131996

131997

131998

131999

132000

132001

132002

132003

132004

132005

132006

132007

132008

132009

132010

132011

132012

132013

132014

132015

132016

132017

132018

132019

132020

132021

132022

132023

132024

132025

132026

132027

132028

132029

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

• Thread Stack Guard Size

DCE threads introduced the concept of a ``thread stack guard size’’. Most thread
implementations add a region of protected memory to a thread’s stack, commonly known
as a ``guard region’’, as a safety measure to prevent stack pointer overflow in one thread
from corrupting the contents of another thread’s stack. The default size of the guard
regions attribute is {PAGESIZE} bytes and is implementation-defined.

Some application developers may wish to change the stack guard size. When an
application creates a large number of threads, the extra page allocated for each stack may
strain system resources. In addition to the extra page of memory, the kernel’s memory
manager has to keep track of the different protections on adjoining pages. When this is a
problem, the application developer may request a guard size of 0 bytes to conserve system
resources by eliminating stack overflow protection.

Conversely an application that allocates large data structures such as arrays on the stack
may wish to increase the default guard size in order to detect stack overflow. If a thread
allocates two pages for a data array, a single guard page provides little protection against
thread stack overflows since the thread can corrupt adjoining memory beyond the guard
page.

The System Interfaces volume of POSIX.1-2024 defines a new attribute of a thread
attributes object; that is, the guardsize attribute which allows applications to specify the size
of the guard region of a thread’s stack.

Two functions are provided for manipulating a thread’s stack guard size. The
pthread_attr_setguardsize() function sets the thread guardsize attribute, and the
pthread_attr_getguardsize() function retrieves the current value.

An implementation may round up the requested guard size to a multiple of the
configurable system variable {PAGESIZE}. In this case, pthread_attr_getguardsize() returns
the guard size specified by the previous pthread_attr_setguardsize() function call and not
the rounded up value.

If an application is managing its own thread stacks using the stackaddr attribute, the
guardsize attribute is ignored and no stack overflow protection is provided. In this case, it is
the responsibility of the application to manage stack overflow along with stack allocation.

• Parallel I/O

Suppose two or more threads independently issue read requests on the same file. To read
specific data from a file, a thread must first call lseek() to seek to the proper offset in the
file, and then call read() to retrieve the required data. If more than one thread does this at
the same time, the first thread may complete its seek call, but before it gets a chance to
issue its read call a second thread may complete its seek call, resulting in the first thread
accessing incorrect data when it issues its read call. One workaround is to lock the file
descriptor while seeking and reading or writing, but this reduces parallelism and adds
overhead.

Instead, the System Interfaces volume of POSIX.1-2024 provides two functions to make
seek/read and seek/write operations atomic. The file descriptor’s current offset is
unchanged, thus allowing multiple read and write operations to proceed in parallel. This
improves the I/O performance of threaded applications. The pread() function is used to do
an atomic read of data from a file into a buffer. Conversely, the pwrite() function does an
atomic write of data from a buffer to a file.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3819

132030

132031

132032

132033

132034

132035

132036

132037

132038

132039

132040

132041

132042

132043

132044

132045

132046

132047

132048

132049

132050

132051

132052

132053

132054

132055

132056

132057

132058

132059

132060

132061

132062

132063

132064

132065

132066

132067

132068

132069

132070

132071

132072

132073

132074

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

B.2.9.1 Thread-Safety

All functions required by POSIX.1-2024 need to be thread-safe. Implementations have to
provide internal synchronization when necessary in order to achieve this goal. In certain cases—
for example, most floating-point implementations—context switch code may have to manage
the writable shared state.

While a read from a pipe of {PIPE_BUF}*2 bytes may not generate a single atomic and thread-
safe stream of bytes, it should generate ``several’’ (individually atomic) thread-safe streams of
bytes. Similarly, while reading from a terminal device may not generate a single atomic and
thread-safe stream of bytes, it should generate some finite number of (individually atomic) and
thread-safe streams of bytes. That is, concurrent calls to read for a pipe, FIFO, or terminal device
are not allowed to result in corrupting the stream of bytes or other internal data. However,
read(), in these cases, is not required to return a single contiguous and atomic stream of bytes.

It is not required that all functions provided by POSIX.1-2024 be either async-cancel-safe or
async-signal-safe.

As it turns out, some functions are inherently not thread-safe; that is, their interface
specifications preclude thread-safety. For example, some functions (such as asctime()) return a
pointer to a result stored in memory space allocated by the function on a per-process basis. Such
a function is not thread-safe, because its result can be overwritten by successive invocations.
Other functions, while not inherently non-thread-safe, may be implemented in ways that lead to
them not being thread-safe. For example, some functions (such as rand()) store state information
(such as a seed value, which survives multiple function invocations) in memory space allocated
by the function on a per-process basis. The implementation of such a function is not thread-safe
if the implementation fails to synchronize invocations of the function and thus fails to protect
the state information. The problem is that when the state information is not protected,
concurrent invocations can interfere with one another (for example, applications using rand()
may see the same seed value).

Thread-Safety and Locking of Existing Functions

Originally, POSIX.1 was not designed to work in a multi-threaded environment, and some
implementations of some existing functions will not work properly when executed concurrently.
To provide routines that will work correctly in an environment with threads (``thread-safe’’), two
problems need to be solved:

1. Routines that maintain or return pointers to static areas internal to the routine (which
may now be shared) need to be modified. The routines ttyname() and localtime() are
examples.

2. Routines that access data space shared by more than one thread need to be modified. The
malloc() function and the stdio family routines are examples.

There are a variety of constraints on these changes. The first is compatibility with the existing
versions of these functions—non-thread-safe functions will continue to be in use for some time,
as the original interfaces are used by existing code. Another is that the new thread-safe versions
of these functions represent as small a change as possible over the familiar interfaces provided
by the existing non-thread-safe versions. The new interfaces should be independent of any
particular threads implementation. In particular, they should be thread-safe without depending
on explicit thread-specific memory. Finally, there should be minimal performance penalty due to
the changes made to the functions.

It is intended that the list of functions from POSIX.1 that cannot be made thread-safe and for
which corrected versions are provided be complete.

Thread-Safety and Locking Solutions

3820 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132075

132076

132077

132078

132079

132080

132081

132082

132083

132084

132085

132086

132087

132088

132089

132090

132091

132092

132093

132094

132095

132096

132097

132098

132099

132100

132101

132102

132103

132104

132105

132106

132107

132108

132109

132110

132111

132112

132113

132114

132115

132116

132117

132118

132119

132120

132121

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

Many of the POSIX.1 functions were thread-safe and did not change at all. However, some
functions (for example, the math functions typically found in libm) are not thread-safe because
of writable shared global state. For instance, in IEEE Std 754-1985 floating-point
implementations, the computation modes and flags are global and shared.

Some functions are not thread-safe because a particular implementation is not reentrant,
typically because of a non-essential use of static storage. These require only a new
implementation.

Thread-safe libraries are useful in a wide range of parallel (and asynchronous) programming
environments, not just within pthreads. In order to be used outside the context of pthreads,
however, such libraries still have to use some synchronization method. These could either be
independent of the pthread synchronization operations, or they could be a subset of the pthread
interfaces. Either method results in thread-safe library implementations that can be used without
the rest of pthreads.

Some functions, such as the stdio family interface and dynamic memory allocation functions
such as malloc(), are inter-dependent routines that share resources (for example, buffers) across
related calls. These require synchronization to work correctly, but they do not require any
change to their external (user-visible) interfaces.

In some cases, such as getc() and putc(), adding synchronization is likely to create an
unacceptable performance impact. In this case, slower thread-safe synchronized functions are to
be provided, but the original, faster (but unsafe) functions (which may be implemented as
macros) are retained under new names. Some additional special-purpose synchronization
facilities are necessary for these macros to be usable in multi-threaded programs. This also
requires changes in <stdio.h>.

The other common reason that functions are unsafe is that they return a pointer to static storage,
making the functions non-thread-safe. This has to be changed, and there are three natural
choices:

1. Return a pointer to thread-specific storage

This could incur a severe performance penalty on those architectures with a costly
implementation of the thread-specific data interface.

A variation on this technique is to use malloc() to allocate storage for the function output
and return a pointer to this storage. This technique may also have an undesirable
performance impact, however, and a simplistic implementation requires that the user
program explicitly free the storage object when it is no longer needed. This technique is
used by some existing POSIX.1 functions. With careful implementation for infrequently
used functions, there may be little or no performance or storage penalty, and the
maintenance of already-standardized interfaces is a significant benefit.

2. Return the actual value computed by the function

This technique can only be used with functions that return pointers to structures—
routines that return character strings would have to wrap their output in an enclosing
structure in order to return the output on the stack. There is also a negative performance
impact inherent in this solution in that the output value has to be copied twice before it
can be used by the calling function: once from the called routine’s local buffers to the top
of the stack, then from the top of the stack to the assignment target. Finally, many older
compilers cannot support this technique due to a historical tendency to use internal static
buffers to deliver the results of structure-valued functions.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3821

132122

132123

132124

132125

132126

132127

132128

132129

132130

132131

132132

132133

132134

132135

132136

132137

132138

132139

132140

132141

132142

132143

132144

132145

132146

132147

132148

132149

132150

132151

132152

132153

132154

132155

132156

132157

132158

132159

132160

132161

132162

132163

132164

132165

132166

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

3. Have the caller pass the address of a buffer to contain the computed value

The only disadvantage of this approach is that extra arguments have to be provided by
the calling program. It represents the most efficient solution to the problem, however,
and, unlike the malloc() technique, it is semantically clear.

There are some routines (often groups of related routines) whose interfaces are inherently non-
thread-safe because they communicate across multiple function invocations by means of static
memory locations. The solution is to redesign the calls so that they are thread-safe, typically by
passing the needed data as extra parameters. Unfortunately, this may require major changes to
the interface as well.

A floating-point implementation using IEEE Std 754-1985 is a case in point. A less problematic
example is the rand48 family of pseudo-random number generators. The functions getgrgid(),
getgrnam(), getpwnam(), and getpwuid() are another such case.

The problems with errno are discussed in Alternative Solutions for Per-Thread errno (on page
3745).

Some functions can be thread-safe or not, depending on their arguments. These include the
tmpnam() and ctermid() functions. These functions have pointers to character strings as
arguments. If the pointers are not NULL, the functions store their results in the character string;
however, if the pointers are NULL, the functions store their results in an area that may be static
and thus subject to overwriting by successive calls. These should only be called by multi-thread
applications when their arguments are non-NULL.

Asynchronous Safety and Thread-Safety

A floating-point implementation has many modes that effect rounding and other aspects of
computation. Functions in some math library implementations may change the computation
modes for the duration of a function call. If such a function call is interrupted by a signal or
cancellation, the floating-point state is not required to be protected.

There is a significant cost to make floating-point operations async-cancel-safe or async-signal-
safe; accordingly, neither form of async safety is required.

Functions Returning Pointers to Static Storage

For those functions that are not thread-safe because they return values in fixed size statically
allocated structures, alternate ``_r ’’ forms are provided that pass a pointer to an explicit result
structure. Those that return pointers into library-allocated buffers have forms provided with
explicit buffer and length parameters.

For functions that return pointers to library-allocated buffers, it makes sense to provide ``_r ’’
versions that allow the application control over allocation of the storage in which results are
returned. This allows the state used by these functions to be managed on an application-specific
basis, supporting per-thread, per-process, or other application-specific sharing relationships.

Early proposals had provided ``_r ’’ versions for functions that returned pointers to variable-size
buffers without providing a means for determining the required buffer size. This would have
made using such functions exceedingly clumsy, potentially requiring iteratively calling them
with increasingly larger guesses for the amount of storage required. Hence, sysconf() variables
have been provided for such functions that return the maximum required buffer size.

Thus, the rule that has been followed by POSIX.1-2024 when adapting single-threaded non-
thread-safe functions is as follows: all functions returning pointers to library-allocated storage
should have ``_r ’’ versions provided, allowing the application control over the storage
allocation. Those with variable-sized return values accept both a buffer address and a length
parameter. The sysconf() variables are provided to supply the appropriate buffer sizes when

3822 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132167

132168

132169

132170

132171

132172

132173

132174

132175

132176

132177

132178

132179

132180

132181

132182

132183

132184

132185

132186

132187

132188

132189

132190

132191

132192

132193

132194

132195

132196

132197

132198

132199

132200

132201

132202

132203

132204

132205

132206

132207

132208

132209

132210

132211

132212

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

required. Implementors are encouraged to apply the same rule when adapting their own
existing functions to a pthreads environment.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0020 [631], XSH/TC2-2008/0021 [826],
and XSH/TC2-2008/0022 [631] are applied.

Austin Group Defect 188 is applied, removing getenv() from the list of functions that need not be
thread-safe.

Austin Group Defect 696 is applied, requiring readdir() to be thread-safe except when concurrent
calls are made for the same directory stream.

Austin Group Defect 922 is applied, adding the secure_getenv() function.

Austin Group Defect 1064 is applied, removing basename() and dirname() from the list of
functions that need not be thread-safe.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

B.2.9.2 Thread IDs

Separate applications should communicate through well-defined interfaces and should not
depend on each other’s implementation. For example, if a programmer decides to rewrite the
sort utility using multiple threads, it should be easy to do this so that the interface to the sort
utility does not change. Consider that if the user causes SIGINT to be generated while the sort
utility is running, keeping the same interface means that the entire sort utility is killed, not just
one of its threads. As another example, consider a realtime application that manages a reactor.
Such an application may wish to allow other applications to control the priority at which it
watches the control rods. One technique to accomplish this is to write the ID of the thread
watching the control rods into a file and allow other programs to change the priority of that
thread as they see fit. A simpler technique is to have the reactor process accept IPCs
(Interprocess Communication messages) from other processes, telling it at a semantic level what
priority the program should assign to watching the control rods. This allows the programmer
greater flexibility in the implementation. For example, the programmer can change the
implementation from having one thread per rod to having one thread watching all of the rods
without changing the interface. Having threads live inside the process means that the
implementation of a process is invisible to outside processes (excepting debuggers and system
management tools).

Threads do not provide a protection boundary. Every thread model allows threads to share
memory with other threads and encourages this sharing to be widespread. This means that one
thread can wipe out memory that is needed for the correct functioning of other threads that are
sharing its memory. Consequently, providing each thread with its own user and/or group IDs
would not provide a protection boundary between threads sharing memory.

Some applications make the assumption that the implementation can always detect invalid uses
of thread IDs of type pthread_t. This is an invalid assumption. Specifically, if pthread_t is
defined as a pointer type, no access check needs to be performed before using the ID.

As with other interfaces that take pointer parameters, the outcome of passing an invalid
parameter can result in an invalid memory reference or an attempt to access an undefined
portion of a memory object, cause signals to be sent (SIGSEGV or SIGBUS) and possible
termination of the process. This is a similar case to passing an invalid buffer pointer to read().
Some implementations might implement read() as a system call and set an [EFAULT] error
condition. Other implementations might contain parts of read() at user level and the first
attempt to access data at an invalid reference will cause a signal to be sent instead.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3823

132213

132214

132215

132216

132217

132218

132219

132220

132221

132222

132223

132224

132225

132226

132227

132228

132229

132230

132231

132232

132233

132234

132235

132236

132237

132238

132239

132240

132241

132242

132243

132244

132245

132246

132247

132248

132249

132250

132251

132252

132253

132254

132255

132256

132257

132258

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

that the function should fail and report an [ESRCH] error. This does not imply that
implementations are required to return in this case. It is legitimate behavior to send an ``invalid
memory reference’’ signal (SIGSEGV or SIGBUS). It is the application’s responsibility to use only
valid thread IDs and to keep track of the lifetime of the underlying threads.

Austin Group Defect 792 is applied, clarifying thread lifetime.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

B.2.9.3 Thread Mutexes

Austin Group Defect 1216 is applied, adding pthread_cond_clockwait() and
pthread_mutex_clocklock().

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

B.2.9.4 Thread Scheduling

• Scheduling Implementation Models

The following scheduling implementation models are presented in terms of threads and
``kernel entities’’. This is to simplify exposition of the models, and it does not imply that
an implementation actually has an identifiable ``kernel entity’’.

A kernel entity is not defined beyond the fact that it has scheduling attributes that are used
to resolve contention with other kernel entities for execution resources. A kernel entity
may be thought of as an envelope that holds a thread or a separate kernel thread. It is not a
conventional process, although it shares with the process the attribute that it has a single
thread of control; it does not necessarily imply an address space, open files, and so on. It is
better thought of as a primitive facility upon which conventional processes and threads
may be constructed.

— System Thread Scheduling Model

This model consists of one thread per kernel entity. The kernel entity is solely
responsible for scheduling thread execution on one or more processors. This model
schedules all threads against all other threads in the system using the scheduling
attributes of the thread.

— Process Scheduling Model

A generalized process scheduling model consists of two levels of scheduling. A
threads library creates a pool of kernel entities, as required, and schedules threads to
run on them using the scheduling attributes of the threads. Typically, the size of the
pool is a function of the simultaneously runnable threads, not the total number of
threads. The kernel then schedules the kernel entities onto processors according to
their scheduling attributes, which are managed by the threads library. This set model
potentially allows a wide range of mappings between threads and kernel entities.

• System and Process Scheduling Model Performance

There are a number of important implications on the performance of applications using
these scheduling models. The process scheduling model potentially provides lower
overhead for making scheduling decisions, since there is no need to access kernel-level
information or functions and the set of schedulable entities is smaller (only the threads
within the process).

On the other hand, since the kernel is also making scheduling decisions regarding the

3824 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132259

132260

132261

132262

132263

132264

132265

132266

132267

132268

132269

132270

132271

132272

132273

132274

132275

132276

132277

132278

132279

132280

132281

132282

132283

132284

132285

132286

132287

132288

132289

132290

132291

132292

132293

132294

132295

132296

132297

132298

132299

132300

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

system resources under its control (for example, CPU(s), I/O devices, memory), decisions
that do not take thread scheduling parameters into account can result in unspecified
delays for realtime application threads, causing them to miss maximum response time
limits.

• Rate Monotonic Scheduling

Rate monotonic scheduling was considered, but rejected for standardization in the context
of pthreads. A sporadic server policy is included.

• Scheduling Options

In POSIX.1-2024, the basic thread scheduling functions are defined under the threads
functionality, so that they are required of all threads implementations. However, there are
no specific scheduling policies required by this functionality to allow for conforming
thread implementations that are not targeted to realtime applications.

Specific standard scheduling policies are defined to be under the Thread Execution
Scheduling option, and they are specifically designed to support realtime applications by
providing predictable resource-sharing sequences. The name of this option was chosen to
emphasize that this functionality is defined as appropriate for realtime applications that
require simple priority-based scheduling.

It is recognized that these policies are not necessarily satisfactory for some multi-processor
implementations, and work is ongoing to address a wider range of scheduling behaviors.
The interfaces have been chosen to create abundant opportunity for future scheduling
policies to be implemented and standardized based on this interface. In order to
standardize a new scheduling policy, all that is required (from the standpoint of thread
scheduling attributes) is to define a new policy name, new members of the thread
attributes object, and functions to set these members when the scheduling policy is equal
to the new value.

Scheduling Contention Scope

In order to accommodate the requirement for realtime response, each thread has a scheduling
contention scope attribute. Threads with a system scheduling contention scope have to be
scheduled with respect to all other threads in the system. These threads are usually bound to a
single kernel entity that reflects their scheduling attributes and are directly scheduled by the
kernel.

Threads with a process scheduling contention scope need be scheduled only with respect to the
other threads in the process. These threads may be scheduled within the process onto a pool of
kernel entities. The implementation is also free to bind these threads directly to kernel entities
and let them be scheduled by the kernel. Process scheduling contention scope allows the
implementation the most flexibility and is the default if both contention scopes are supported
and none is specified.

Thus, the choice by implementors to provide one or the other (or both) of these scheduling
models is driven by the need of their supported application domains for worst-case (that is,
realtime) response, or average-case (non-realtime) response.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3825

132301

132302

132303

132304

132305

132306

132307

132308

132309

132310

132311

132312

132313

132314

132315

132316

132317

132318

132319

132320

132321

132322

132323

132324

132325

132326

132327

132328

132329

132330

132331

132332

132333

132334

132335

132336

132337

132338

132339

132340

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

Scheduling Allocation Domain

The SCHED_FIFO and SCHED_RR scheduling policies take on different characteristics on a
multi-processor. Other scheduling policies are also subject to changed behavior when executed
on a multi-processor. The concept of scheduling allocation domain determines the set of
processors on which the threads of an application may run. By considering the application’s
processor scheduling allocation domain for its threads, scheduling policies can be defined in
terms of their behavior for varying processor scheduling allocation domain values. It is
conceivable that not all scheduling allocation domain sizes make sense for all scheduling
policies on all implementations. The concept of scheduling allocation domain, however, is a
useful tool for the description of multi-processor scheduling policies.

The ``process control’’ approach to scheduling obtains significant performance advantages from
dynamic scheduling allocation domain sizes when it is applicable.

Non-Uniform Memory Access (NUMA) multi-processors may use a system scheduling structure
that involves reassignment of threads among scheduling allocation domains. In NUMA
machines, a natural model of scheduling is to match scheduling allocation domains to clusters of
processors. Load balancing in such an environment requires changing the scheduling allocation
domain to which a thread is assigned.

Scheduling Documentation

Implementation-provided scheduling policies need to be completely documented in order to be
useful. This documentation includes a description of the attributes required for the policy, the
scheduling interaction of threads running under this policy and all other supported policies, and
the effects of all possible values for processor scheduling allocation domain. Note that for the
implementor wishing to be minimally-compliant, it is (minimally) acceptable to define the
behavior as undefined.

Scheduling Contention Scope Attribute

The scheduling contention scope defines how threads compete for resources. Within
POSIX.1-2024, scheduling contention scope is used to describe only how threads are scheduled
in relation to one another in the system. That is, either they are scheduled against all other
threads in the system (``system scope’’) or only against those threads in the process (``process
scope’’). In fact, scheduling contention scope may apply to additional resources, including
virtual timers and profiling, which are not currently considered by POSIX.1-2024.

Mixed Scopes

If only one scheduling contention scope is supported, the scheduling decision is straightforward.
To perform the processor scheduling decision in a mixed scope environment, it is necessary to
map the scheduling attributes of the thread with process-wide contention scope to the same
attribute space as the thread with system-wide contention scope.

Since a conforming implementation has to support one and may support both scopes, it is useful
to discuss the effects of such choices with respect to example applications. If an implementation
supports both scopes, mixing scopes provides a means of better managing system-level (that is,
kernel-level) and library-level resources. In general, threads with system scope will require the
resources of a separate kernel entity in order to guarantee the scheduling semantics. On the
other hand, threads with process scope can share the resources of a kernel entity while
maintaining the scheduling semantics.

The application is free to create threads with dedicated kernel resources, and other threads that
multiplex kernel resources. Consider the example of a window server. The server allocates two
threads per widget: one thread manages the widget user interface (including drawing), while

3826 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132341

132342

132343

132344

132345

132346

132347

132348

132349

132350

132351

132352

132353

132354

132355

132356

132357

132358

132359

132360

132361

132362

132363

132364

132365

132366

132367

132368

132369

132370

132371

132372

132373

132374

132375

132376

132377

132378

132379

132380

132381

132382

132383

132384

132385

132386

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

the other thread takes any required application action. This allows the widget to be ``active’’
while the application is computing. A screen image may be built from thousands of widgets. If
each of these threads had been created with system scope, then most of the kernel-level
resources might be wasted, since only a few widgets are active at any one time. In addition,
mixed scope is particularly useful in a window server where one thread with high priority and
system scope handles the mouse so that it tracks well. As another example, consider a database
server. For each of the hundreds or thousands of clients supported by a large server, an
equivalent number of threads will have to be created. If each of these threads were system scope,
the consequences would be the same as for the window server example above. However, the
server could be constructed so that actual retrieval of data is done by several dedicated threads.
Dedicated threads that do work for all clients frequently justify the added expense of system
scope. If it were not permissible to mix system and process threads in the same process, this type
of solution would not be possible.

Dynamic Thread Scheduling Parameters Access

In many time-constrained applications, there is no need to change the scheduling attributes
dynamically during thread or process execution, since the general use of these attributes is to
reflect directly the time constraints of the application. Since these time constraints are generally
imposed to meet higher-level system requirements, such as accuracy or availability, they
frequently should remain unchanged during application execution.

However, there are important situations in which the scheduling attributes should be changed.
Generally, this will occur when external environmental conditions exist in which the time
constraints change. Consider, for example, a space vehicle major mode change, such as the
change from ascent to descent mode, or the change from the space environment to the
atmospheric environment. In such cases, the frequency with which many of the sensors or
actuators need to be read or written will change, which will necessitate a priority change. In
other cases, even the existence of a time constraint might be temporary, necessitating not just a
priority change, but also a policy change for ongoing threads or processes. For this reason, it is
critical that the interface should provide functions to change the scheduling parameters
dynamically, but, as with many of the other realtime functions, it is important that applications
use them properly to avoid the possibility of unnecessarily degrading performance.

In providing functions for dynamically changing the scheduling behavior of threads, there were
two options: provide functions to get and set the individual scheduling parameters of threads,
or provide a single interface to get and set all the scheduling parameters for a given thread
simultaneously. Both approaches have merit. Access functions for individual parameters allow
simpler control of thread scheduling for simple thread scheduling parameters. However, a single
function for setting all the parameters for a given scheduling policy is required when first setting
that scheduling policy. Since the single all-encompassing functions are required, it was decided
to leave the interface as minimal as possible. Note that simpler functions (such as
pthread_setprio() for threads running under the priority-based schedulers) can be easily defined
in terms of the all-encompassing functions.

If the pthread_setschedparam() function executes successfully, it will have set all of the scheduling
parameter values indicated in param; otherwise, none of the scheduling parameters will have
been modified. This is necessary to ensure that the scheduling of this and all other threads
continues to be consistent in the presence of an erroneous scheduling parameter.

The [EPERM] error value is included in the list of possible pthread_setschedparam() error returns
as a reflection of the fact that the ability to change scheduling parameters increases risks to the
implementation and application performance if the scheduling parameters are changed
improperly. For this reason, and based on some existing practice, it was felt that some
implementations would probably choose to define specific permissions for changing either a

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3827

132387

132388

132389

132390

132391

132392

132393

132394

132395

132396

132397

132398

132399

132400

132401

132402

132403

132404

132405

132406

132407

132408

132409

132410

132411

132412

132413

132414

132415

132416

132417

132418

132419

132420

132421

132422

132423

132424

132425

132426

132427

132428

132429

132430

132431

132432

132433

132434

132435

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

thread’s own or another thread’s scheduling parameters. POSIX.1-2024 does not include
portable methods for setting or retrieving permissions, so any such use of permissions is
completely unspecified.

Mutex Initialization Scheduling Attributes

In a priority-driven environment, a direct use of traditional primitives like mutexes and
condition variables can lead to unbounded priority inversion, where a higher priority thread can
be blocked by a lower priority thread, or set of threads, for an unbounded duration of time. As a
result, it becomes impossible to guarantee thread deadlines. Priority inversion can be bounded
and minimized by the use of priority inheritance protocols. This allows thread deadlines to be
guaranteed even in the presence of synchronization requirements.

Two useful but simple members of the family of priority inheritance protocols are the basic
priority inheritance protocol and the priority ceiling protocol emulation. Under the Basic
Priority Inheritance protocol (governed by the Non-Robust Mutex Priority Inheritance option), a
thread that is blocking higher priority threads executes at the priority of the highest priority
thread that it blocks. This simple mechanism allows priority inversion to be bounded by the
duration of critical sections and makes timing analysis possible.

Under the Priority Ceiling Protocol Emulation protocol (governed by the Thread Priority
Protection option), each mutex has a priority ceiling, usually defined as the priority of the
highest priority thread that can lock the mutex. When a thread is executing inside critical
sections, its priority is unconditionally increased to the highest of the priority ceilings of all the
mutexes owned by the thread. This protocol has two very desirable properties in uni-processor
systems. First, a thread can be blocked by a lower priority thread for at most the duration of one
single critical section. Furthermore, when the protocol is correctly used in a single processor, and
if threads do not become blocked while owning mutexes, mutual deadlocks are prevented.

The priority ceiling emulation can be extended to multiple processor environments, in which
case the values of the priority ceilings will be assigned depending on the kind of mutex that is
being used: local to only one processor, or global, shared by several processors. Local priority
ceilings will be assigned the usual way, equal to the priority of the highest priority thread that
may lock that mutex. Global priority ceilings will usually be assigned a priority level higher
than all the priorities assigned to any of the threads that reside in the involved processors to
avoid the effect called remote blocking.

Change the Priority Ceiling of a Mutex

In order for the priority protect protocol to exhibit its desired properties of bounding priority
inversion and avoidance of deadlock, it is critical that the ceiling priority of a mutex be the same
as the priority of the highest thread that can ever hold it, or higher. Thus, if the priorities of the
threads using such mutexes never change dynamically, there is no need ever to change the
priority ceiling of a mutex.

However, if a major system mode change results in an altered response time requirement for one
or more application threads, their priority has to change to reflect it. It will occasionally be the
case that the priority ceilings of mutexes held also need to change. While changing priority
ceilings should generally be avoided, it is important that POSIX.1-2024 provide these interfaces
for those cases in which it is necessary.

3828 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132436

132437

132438

132439

132440

132441

132442

132443

132444

132445

132446

132447

132448

132449

132450

132451

132452

132453

132454

132455

132456

132457

132458

132459

132460

132461

132462

132463

132464

132465

132466

132467

132468

132469

132470

132471

132472

132473

132474

132475

132476

132477

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

B.2.9.5 Thread Cancellation

Many existing threads packages have facilities for canceling an operation or canceling a thread.
These facilities are used for implementing user requests (such as the CANCEL button in a
window-based application), for implementing OR parallelism (for example, telling the other
threads to stop working once one thread has found a forced mate in a parallel chess program), or
for implementing the ABORT mechanism in Ada.

POSIX programs traditionally have used the signal mechanism combined with either longjmp()
or polling to cancel operations. Many POSIX programmers have trouble using these facilities to
solve their problems efficiently in a single-threaded process. With the introduction of threads,
these solutions become even more difficult to use.

The main issues with implementing a cancellation facility are specifying the operation to be
canceled, cleanly releasing any resources allocated to that operation, controlling when the target
notices that it has been canceled, and defining the interaction between asynchronous signals and
cancellation.

Specifying the Operation to Cancel

Consider a thread that calls through five distinct levels of program abstraction and then, inside
the lowest-level abstraction, calls a function that suspends the thread. (An abstraction boundary
is a layer at which the client of the abstraction sees only the service being provided and can
remain ignorant of the implementation. Abstractions are often layered, each level of abstraction
being a client of the lower-level abstraction and implementing a higher-level abstraction.)
Depending on the semantics of each abstraction, one could imagine wanting to cancel only the
call that causes suspension, only the bottom two levels, or the operation being done by the entire
thread. Canceling operations at a finer grain than the entire thread is difficult because threads
are active and they may be run in parallel on a multi-processor. By the time one thread can make
a request to cancel an operation, the thread performing the operation may have completed that
operation and gone on to start another operation whose cancellation is not desired. Thread IDs
are not reused until the thread has exited, and either it was created with the Attr detachstate
attribute set to PTHREAD_CREATE_DETACHED or the pthread_join() or pthread_detach()
function has been called for that thread. Consequently, a thread cancellation will never be
misdirected when the thread terminates. For these reasons, the canceling of operations is done at
the granularity of the thread. Threads are designed to be inexpensive enough so that a separate
thread may be created to perform each separately cancelable operation; for example, each
possibly long running user request.

For cancellation to be used in existing code, cancellation scopes and handlers will have to be
established for code that needs to release resources upon cancellation, so that it follows the
programming discipline described in the text.

A Special Signal Versus a Special Interface

Two different mechanisms were considered for providing the cancellation interfaces. The first
was to provide an interface to direct signals at a thread and then to define a special signal that
had the required semantics. The other alternative was to use a special interface that delivered the
correct semantics to the target thread.

The solution using signals produced a number of problems. It required the implementation to
provide cancellation in terms of signals whereas a perfectly valid (and possibly more efficient)
implementation could have both layered on a low-level set of primitives. There were so many
exceptions to the special signal (it cannot be used with kill(), no POSIX.1 interfaces can be used
with it) that it was clearly not a valid signal. Its semantics on delivery were also completely
different from any existing POSIX.1 signal. As such, a special interface that did not mandate the
implementation and did not confuse the semantics of signals and cancellation was felt to be the

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3829

132478

132479

132480

132481

132482

132483

132484

132485

132486

132487

132488

132489

132490

132491

132492

132493

132494

132495

132496

132497

132498

132499

132500

132501

132502

132503

132504

132505

132506

132507

132508

132509

132510

132511

132512

132513

132514

132515

132516

132517

132518

132519

132520

132521

132522

132523

132524

132525

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

better solution.

Races Between Cancellation and Resuming Execution

Due to the nature of cancellation, there is generally no synchronization between the thread
requesting the cancellation of a blocked thread and events that may cause that thread to resume
execution. For this reason, and because excess serialization hurts performance, when both an
event that a thread is waiting for has occurred and a cancellation request has been made and
cancellation is enabled, POSIX.1-2024 explicitly allows the implementation to choose between
returning from the blocking call or acting on the cancellation request.

Interaction of Cancellation with Asynchronous Signals

A typical use of cancellation is to acquire a lock on some resource and to establish a cancellation
cleanup handler for releasing the resource when and if the thread is canceled.

A correct and complete implementation of cancellation in the presence of asynchronous signals
requires considerable care. An implementation has to push a cancellation cleanup handler on the
cancellation cleanup stack while maintaining the integrity of the stack data structure. If an
asynchronously-generated signal is posted to the thread during a stack operation, the signal
handler cannot manipulate the cancellation cleanup stack. As a consequence, asynchronous
signal handlers may not cancel threads or otherwise manipulate the cancellation state of a
thread. Threads may, of course, be canceled by another thread that used a sigwait() function to
wait synchronously for an asynchronous signal.

In order for cancellation to function correctly, it is required that asynchronous signal handlers
not change the cancellation state. This requires that some elements of existing practice, such as
using longjmp() to exit from an asynchronous signal handler implicitly, be prohibited in cases
where the integrity of the cancellation state of the interrupt thread cannot be ensured.

Thread Cancellation Overview

• Cancelability States

The three possible cancelability states (disabled, deferred, and asynchronous) are encoded
into two separate bits ((disable, enable) and (deferred, asynchronous)) to allow them to be
changed and restored independently. For instance, short code sequences that will not block
sometimes disable cancelability on entry and restore the previous state upon exit.
Likewise, long or unbounded code sequences containing no convenient explicit
cancellation points will sometimes set the cancelability type to asynchronous on entry and
restore the previous value upon exit.

• Cancellation Points

Cancellation points are points inside of certain functions where a thread has to act on any
pending cancellation request when cancelability is enabled. For functions in the ``shall
occur ’’ list, a cancellation check must be performed on every call regardless of whether,
absent the cancellation, the call would have blocked. For functions in the ``may occur’’ list,
a cancellation check may be performed on some calls but not others; i.e., whether or not a
cancellation point occurs when one of these functions is being executed can depend on
current conditions.

The idea was considered of allowing implementations to define whether blocking calls
such as read() should be cancellation points. It was decided that it would adversely affect
the design of conforming applications if blocking calls were not cancellation points
because threads could be left blocked in an uncancelable state.

There are several important blocking routines that are specifically not made cancellation

3830 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132526

132527

132528

132529

132530

132531

132532

132533

132534

132535

132536

132537

132538

132539

132540

132541

132542

132543

132544

132545

132546

132547

132548

132549

132550

132551

132552

132553

132554

132555

132556

132557

132558

132559

132560

132561

132562

132563

132564

132565

132566

132567

132568

132569

132570

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

points:

— pthread_mutex_lock()

If pthread_mutex_lock() were a cancellation point, every routine that called it would
also become a cancellation point (that is, any routine that touched shared state would
automatically become a cancellation point). For example, malloc(), free(), and rand()
would become cancellation points under this scheme. Having too many cancellation
points makes programming very difficult, leading to either much disabling and
restoring of cancelability or much difficulty in trying to arrange for reliable cleanup
at every possible place.

Since pthread_mutex_lock() is not a cancellation point, threads could result in being
blocked uninterruptibly for long periods of time if mutexes were used as a general
synchronization mechanism. As this is normally not acceptable, mutexes should only
be used to protect resources that are held for small fixed lengths of time where not
being able to be canceled will not be a problem. Resources that need to be held
exclusively for long periods of time should be protected with condition variables.

— pthread_barrier_wait()

Canceling a barrier wait will render a barrier unusable. Similar to a barrier timeout
(which the standard developers rejected), there is no way to guarantee the
consistency of a barrier’s internal data structures if a barrier wait is canceled.

— pthread_spin_lock()

As with mutexes, spin locks should only be used to protect resources that are held for
small fixed lengths of time where not being cancelable will not be a problem.

Every library routine should specify whether or not it includes any cancellation points.
Typically, only those routines that may block or compute indefinitely need to include
cancellation points.

Correctly coded routines only reach cancellation points after having set up a cancellation
cleanup handler to restore invariants if the thread is canceled at that point. Being
cancelable only at specified cancellation points allows programmers to keep track of
actions needed in a cancellation cleanup handler more easily. A thread should only be
made asynchronously cancelable when it is not in the process of acquiring or releasing
resources or otherwise in a state from which it would be difficult or impossible to recover.

• Thread Cancellation Cleanup Handlers

The cancellation cleanup handlers provide a portable mechanism, easy to implement, for
releasing resources and restoring invariants. They are easier to use than signal handlers
because they provide a stack of cancellation cleanup handlers rather than a single handler,
and because they have an argument that can be used to pass context information to the
handler.

The alternative to providing these simple cancellation cleanup handlers (whose only use is
for cleaning up when a thread is canceled) is to define a general exception package that
could be used for handling and cleaning up after hardware traps and software-detected
errors. This was too far removed from the charter of providing threads to handle
asynchrony. However, it is an explicit goal of POSIX.1-2024 to be compatible with existing
exception facilities and languages having exceptions.

The interaction of this facility and other procedure-based or language-level exception
facilities is unspecified in this version of POSIX.1-2024. However, it is intended that it be
possible for an implementation to define the relationship between these cancellation

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3831

132571

132572

132573

132574

132575

132576

132577

132578

132579

132580

132581

132582

132583

132584

132585

132586

132587

132588

132589

132590

132591

132592

132593

132594

132595

132596

132597

132598

132599

132600

132601

132602

132603

132604

132605

132606

132607

132608

132609

132610

132611

132612

132613

132614

132615

132616

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

cleanup handlers and Ada, C++, or other language-level exception handling facilities.

It was suggested that the cancellation cleanup handlers should also be called when the
process exits or calls the exec function. This was rejected partly due to the performance
problem caused by having to call the cancellation cleanup handlers of every thread before
the operation could continue. The other reason was that the only state expected to be
cleaned up by the cancellation cleanup handlers would be the intraprocess state. Any
handlers that are to clean up the interprocess state would be registered with atexit(). There
is the orthogonal problem that the exec functions do not honor the atexit() handlers, but
resolving this is beyond the scope of POSIX.1-2024.

• Async-Cancel Safety

A function is said to be async-cancel-safe if it is written in such a way that entering the
function with asynchronous cancelability enabled will not cause any invariants to be
violated, even if a cancellation request is delivered at any arbitrary instruction. Functions
that are async-cancel-safe are often written in such a way that they need to acquire no
resources for their operation and the visible variables that they may write are strictly
limited.

Any routine that gets a resource as a side-effect cannot be made async-cancel-safe (for
example, malloc()). If such a routine were called with asynchronous cancelability enabled,
it might acquire the resource successfully, but as it was returning to the client, it could act
on a cancellation request. In such a case, the application would have no way of knowing
whether the resource was acquired or not.

Indeed, because many interesting routines cannot be made async-cancel-safe, most library
routines in general are not async-cancel-safe. Every library routine should specify whether
or not it is async-cancel safe so that programmers know which routines can be called from
code that is asynchronously cancelable.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/8 is applied, adding the pselect() function
to the list of functions with cancellation points.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/5 is applied, adding the fdatasync()
function into the table of functions that shall have cancellation points.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/6 is applied, adding the numerous
functions into the table of functions that may have cancellation points.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/7 is applied, clarifying the requirements
in Thread Cancellation Cleanup Handlers.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0023 [627], XSH/TC2-2008/0024
[627,632], XSH/TC2-2008/0025 [627], XSH/TC2-2008/0026 [632], and XSH/TC2-2008/0027
[622] are applied.

Austin Group Defect 411 is applied, adding accept4() to the table of functions that shall have
cancellation points.

Austin Group Defect 508 is applied, adding ptsname() and ptsname_r() to the table of functions
that may have cancellation points.

Austin Group Defect 614 is applied, adding posix_close() to the table of functions that shall have
cancellation points.

Austin Group Defect 697 is applied, adding posix_getdents() to the table of functions that may
have cancellation points.

Austin Group Defect 729 is applied, adding posix_devctl() to the table of functions that may have

3832 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132617

132618

132619

132620

132621

132622

132623

132624

132625

132626

132627

132628

132629

132630

132631

132632

132633

132634

132635

132636

132637

132638

132639

132640

132641

132642

132643

132644

132645

132646

132647

132648

132649

132650

132651

132652

132653

132654

132655

132656

132657

132658

132659

132660

132661

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

cancellation points.

Austin Group Defect 841 is applied, allowing pthread_setcancelstate() to be used to disable
cancellation in a signal catching function in order to avoid undefined behavior when the signal
is delivered during execution of a function that is not async-cancel-safe.

Austin Group Defect 1076 is applied, moving sem_wait() and sem_timedwait() from the table of
functions that are required to have cancellation points to the table of functions that may have
cancellation points.

Austin Group Defect 1122 is applied, adding bindtextdomain() and the gettext family of functions
to the table of functions that may have cancellation points.

Austin Group Defect 1143 is applied, clarifying the conditions under which it is unspecified
whether the cancellation request is acted upon or whether the cancellation request remains
pending.

Austin Group Defect 1216 is applied, adding pthread_cond_clockwait() to the table of functions
that are required to have cancellation points, and adding pthread_rwlock_clockwrlock(),
pthread_rwlock_clockrdlock(), and sem_clockwait() to the table of functions that may have
cancellation points.

Austin Group Defect 1263 is applied, adding ppoll() to the table of functions that are required to
have cancellation points.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

Austin Group Defect 1410 is applied, removing the asctime_r() and ctime_r() functions.

B.2.9.6 Thread Read-Write Locks

Background

Read-write locks are often used to allow parallel access to data on multi-processors, to avoid
context switches on uni-processors when multiple threads access the same data, and to protect
data structures that are frequently accessed (that is, read) but rarely updated (that is, written).
The in-core representation of a file system directory is a good example of such a data structure.
One would like to achieve as much concurrency as possible when searching directories, but limit
concurrent access when adding or deleting files.

Although read-write locks can be implemented with mutexes and condition variables, such
implementations are significantly less efficient than is possible. Therefore, this synchronization
primitive is included in POSIX.1-2024 for the purpose of allowing more efficient
implementations in multi-processor systems.

Queuing of Waiting Threads

The pthread_rwlock_unlock() function description states that one writer or one or more readers
must acquire the lock if it is no longer held by any thread as a result of the call. However, the
function does not specify which thread(s) acquire the lock, unless the Thread Execution
Scheduling option is supported.

The standard developers considered the issue of scheduling with respect to the queuing of
threads blocked on a read-write lock. The question turned out to be whether POSIX.1-2024
should require priority scheduling of read-write locks for threads whose execution scheduling
policy is priority-based (for example, SCHED_FIFO or SCHED_RR). There are tradeoffs
between priority scheduling, the amount of concurrency achievable among readers, and the
prevention of writer and/or reader starvation.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3833

132662

132663

132664

132665

132666

132667

132668

132669

132670

132671

132672

132673

132674

132675

132676

132677

132678

132679

132680

132681

132682

132683

132684

132685

132686

132687

132688

132689

132690

132691

132692

132693

132694

132695

132696

132697

132698

132699

132700

132701

132702

132703

132704

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

For example, suppose one or more readers hold a read-write lock and the following threads
request the lock in the listed order:

pthread_rwlock_wrlock() - Low priority thread writer_a
pthread_rwlock_rdlock() - High priority thread reader_a
pthread_rwlock_rdlock() - High priority thread reader_b
pthread_rwlock_rdlock() - High priority thread reader_c

When the lock becomes available, should writer_a block the high priority readers? Or, suppose a
read-write lock becomes available and the following are queued:

pthread_rwlock_rdlock() - Low priority thread reader_a
pthread_rwlock_rdlock() - Low priority thread reader_b
pthread_rwlock_rdlock() - Low priority thread reader_c
pthread_rwlock_wrlock() - Medium priority thread writer_a
pthread_rwlock_rdlock() - High priority thread reader_d

If priority scheduling is applied then reader_d would acquire the lock and writer_a would block
the remaining readers. But should the remaining readers also acquire the lock to increase
concurrency? The solution adopted takes into account that when the Thread Execution
Scheduling option is supported, high priority threads may in fact starve low priority threads
(the application developer is responsible in this case for designing the system in such a way that
this starvation is avoided). Therefore, POSIX.1-2024 specifies that high priority readers take
precedence over lower priority writers. However, to prevent writer starvation from threads of
the same or lower priority, writers take precedence over readers of the same or lower priority.

Priority inheritance mechanisms are non-trivial in the context of read-write locks. When a high
priority writer is forced to wait for multiple readers, for example, it is not clear which subset of
the readers should inherit the writer’s priority. Furthermore, the internal data structures that
record the inheritance must be accessible to all readers, and this implies some sort of
serialization that could negate any gain in parallelism achieved through the use of multiple
readers in the first place. Finally, existing practice does not support the use of priority
inheritance for read-write locks. Therefore, no specification of priority inheritance or priority
ceiling is attempted. If reliable priority-scheduled synchronization is absolutely required, it can
always be obtained through the use of mutexes.

Comparison to fcntl() Locks

The read-write locks and the fcntl() locks in POSIX.1-2024 share a common goal: increasing
concurrency among readers, thus increasing throughput and decreasing delay.

However, the read-write locks have two features not present in the fcntl() locks. First, under
priority scheduling, read-write locks are granted in priority order. Second, also under priority
scheduling, writer starvation is prevented by giving writers preference over readers of equal or
lower priority.

Also, read-write locks can be used in systems lacking a file system, such as those conforming to
the minimal realtime system profile of IEEE Std 1003.13-1998.

3834 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132705

132706

132707

132708

132709

132710

132711

132712

132713

132714

132715

132716

132717

132718

132719

132720

132721

132722

132723

132724

132725

132726

132727

132728

132729

132730

132731

132732

132733

132734

132735

132736

132737

132738

132739

132740

132741

132742

132743

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

History of Resolution Issues

Based upon some balloting objections, early drafts specified the behavior of threads waiting on a
read-write lock during the execution of a signal handler, as if the thread had not called the lock
operation. However, this specified behavior would require implementations to establish
internal signal handlers even though this situation would be rare, or never happen for many
programs. This would introduce an unacceptable performance hit in comparison to the little
additional functionality gained. Therefore, the behavior of read-write locks and signals was
reverted back to its previous mutex-like specification.

B.2.9.7 Thread Interactions with File Operations

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0028 [498] is applied.

Austin Group Defect 411 is applied, adding dup3().

Austin Group Defect 695 is applied, extending the requirements in this section to non-regular
files.

B.2.9.8 Use of Application-Managed Thread Stacks

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/8 is applied, adding this new section. It
was added to make it clear that the current standard does not allow an application to determine
when a stack can be reclaimed. This may be addressed in a future version.

B.2.9.9 Synchronization Object Copies and Alternative Mappings

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0029 [972] is applied.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

B.2.10 Sockets

The base document for the sockets interfaces in POSIX.1-2024 is the XNS, Issue 5.2 specification.
This was primarily chosen as it aligns with IPv6. Additional material has been added from
IEEE Std 1003.1g-2000, notably socket concepts, raw sockets, the pselect() function, the
sockatmark() function, and the <sys/select.h> header.

B.2.10.1 Address Families

There is no additional rationale provided for this section.

B.2.10.2 Addressing

There is no additional rationale provided for this section.

B.2.10.3 Protocols

There is no additional rationale provided for this section.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3835

132744

132745

132746

132747

132748

132749

132750

132751

132752

132753

132754

132755

132756

132757

132758

132759

132760

132761

132762

132763

132764

132765

132766

132767

132768

132769

132770

132771

132772

132773

132774

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

B.2.10.4 Routing

There is no additional rationale provided for this section.

B.2.10.5 Interfaces

There is no additional rationale provided for this section.

B.2.10.6 Socket Types

The type socklen_t was invented to cover the range of implementations seen in the field. The
intent of socklen_t is to be the type for all lengths that are naturally bounded in size; that is, that
they are the length of a buffer which cannot sensibly become of massive size: network addresses,
host names, string representations of these, ancillary data, control messages, and socket options
are examples. Truly boundless sizes are represented by size_t as in read(), write(), and so on.

All socklen_t types were originally (in BSD UNIX) of type int. During the development of
POSIX.1-2024, it was decided to change all buffer lengths to size_t, which appears at face value
to make sense. When dual mode 32/64-bit systems came along, this choice unnecessarily
complicated system interfaces because size_t (with long) was a different size under ILP32 and
LP64 models. Reverting to int would have happened except that some implementations had
already shipped 64-bit-only interfaces. The compromise was a type which could be defined to be
any size by the implementation: socklen_t.

B.2.10.7 Socket I/O Mode

There is no additional rationale provided for this section.

B.2.10.8 Socket Owner

There is no additional rationale provided for this section.

B.2.10.9 Socket Queue Limits

There is no additional rationale provided for this section.

B.2.10.10 Pending Error

There is no additional rationale provided for this section.

B.2.10.11 Socket Receive Queue

There is no additional rationale provided for this section.

B.2.10.12 Socket Out-of-Band Data State

There is no additional rationale provided for this section.

3836 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132775

132776

132777

132778

132779

132780

132781

132782

132783

132784

132785

132786

132787

132788

132789

132790

132791

132792

132793

132794

132795

132796

132797

132798

132799

132800

132801

132802

132803

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

B.2.10.13 Connection Indication Queue

There is no additional rationale provided for this section.

B.2.10.14 Signals

There is no additional rationale provided for this section.

B.2.10.15 Asynchronous Errors

Austin Group Defect 1010 is applied, removing [EHOSTDOWN] from the list of asynchronous
errors.

B.2.10.16 Use of Options

Austin Group Defect 840 is applied, adding SO_DOMAIN and SO_PROTOCOL.

Austin Group Defect 1337 is applied, clarifying socket option default values.

B.2.10.17 Use of Sockets for Local UNIX Connections

There is no additional rationale provided for this section.

B.2.10.18 Use of Sockets over Internet Protocols

A raw socket allows privileged users direct access to a protocol; for example, raw access to the
IP and ICMP protocols is possible through raw sockets. Raw sockets are intended for
knowledgeable applications that wish to take advantage of some protocol feature not directly
accessible through the other sockets interfaces.

B.2.10.19 Use of Sockets over Internet Protocols Based on IPv4

There is no additional rationale provided for this section.

B.2.10.20 Use of Sockets over Internet Protocols Based on IPv6

The Open Group Base Resolution bwg2001-012 is applied, clarifying that IPv6 implementations
are required to support use of AF_INET6 sockets over IPv4.

Austin Group Defect 411 is applied, adding accept4().

B.2.11 Data Types

B.2.11.1 Defined Types

The requirement that additional types defined in this section end in ``_t’’ was prompted by the
problem of name space pollution. It is difficult to define a type (where that type is not one
defined by POSIX.1-2024) in one header file and use it in another without adding symbols to the
name space of the program. To allow implementors to provide their own types, all conforming
applications are required to avoid symbols ending in ``_t’’, which permits the implementor to

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3837

132804

132805

132806

132807

132808

132809

132810

132811

132812

132813

132814

132815

132816

132817

132818

132819

132820

132821

132822

132823

132824

132825

132826

132827

132828

132829

132830

132831

132832

132833

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

provide additional types. Because a major use of types is in the definition of structure members,
which can (and in many cases must) be added to the structures defined in POSIX.1-2024, the
need for additional types is compelling.

The types, such as ushort and ulong, which are in common usage, are not defined in
POSIX.1-2024 (although ushort_t would be permitted as an extension). They can be added to
<sys/types.h> using a feature test macro (see Section B.2.2.1, on page 3737). A suggested symbol
for these is _SYSIII. Similarly, the types like u_short would probably be best controlled by _BSD.

Some of these symbols may appear in other headers; see Section B.2.2.2 (on page 3738).

dev_t This type may be made large enough to accommodate host-locality considerations
of networked systems.

This type must be arithmetic. Earlier proposals allowed this to be non-arithmetic
(such as a structure) and provided a samefile() function for comparison.

gid_t Some implementations had separated gid_t from uid_t before POSIX.1 was
completed. It would be difficult for them to coalesce them when it was
unnecessary. Additionally, it is quite possible that user IDs might be different from
group IDs because the user ID might wish to span a heterogeneous network,
where the group ID might not.

For current implementations, the cost of having a separate gid_t will be only
lexical.

mode_t This type was chosen so that implementations could choose the appropriate
integer type, and for compatibility with the ISO C standard. 4.3 BSD uses
unsigned short and the SVID uses ushort, which is the same. Historically, only the
low-order sixteen bits are significant.

nlink_t This type was introduced in place of short for st_nlink (see the <sys/stat.h> header)
in response to an objection that short was too small.

off_t This type is used to represent a file offset or file size. On systems supporting large
files, off_t is larger than 32 bits in at least one programming environment. Other
programming environments may use different sizes for off_t, for compatibility or
other reasons.

pid_t The inclusion of this symbol was controversial because it is tied to the issue of the
representation of a process ID as a number. From the point of view of a
conforming application, process IDs should be ``magic cookies’’9 that are produced
by calls such as fork(), used by calls such as waitpid() or kill(), and not otherwise
analyzed (except that the sign is used as a flag for certain operations).

The concept of a {PID_MAX} value interacted with this in early proposals. Treating
process IDs as an opaque type both removes the requirement for {PID_MAX} and
allows systems to be more flexible in providing process IDs that span a large range
of values, or a small one.

Since the values in uid_t, gid_t, and pid_t will be numbers generally, and
potentially both large in magnitude and sparse, applications that are based on
arrays of objects of this type are unlikely to be fully portable in any case. Solutions
that treat them as magic cookies will be portable.

9. An historical term meaning: `̀ An opaque object, or token, of determinate size, whose significance is known only to the entity which
created it. An entity receiving such a token from the generating entity may only make such use of the `cookie’ as is defined and permitted
by the supplying entity.’’

3838 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132834

132835

132836

132837

132838

132839

132840

132841

132842

132843

132844

132845

132846

132847

132848

132849

132850

132851

132852

132853

132854

132855

132856

132857

132858

132859

132860

132861

132862

132863

132864

132865

132866

132867

132868

132869

132870

132871

132872

132873

132874

132875

132876

132877

132878

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces General Information

{CHILD_MAX} precludes the possibility of a ``toy implementation’’, where there
would only be one process.

ssize_t This is intended to be a signed analog of size_t. The wording is such that an
implementation may either choose to use a longer type or simply to use the signed
version of the type that underlies size_t. All functions that return ssize_t (read()
and write()) describe as ``implementation-defined’’ the result of an input exceeding
{SSIZE_MAX}. It is recognized that some implementations might have ints that
are smaller than size_t. A conforming application would be constrained not to
perform I/O in pieces larger than {SSIZE_MAX}, but a conforming application
using extensions would be able to use the full range if the implementation
provided an extended range, while still having a single type-compatible interface.

The symbols size_t and ssize_t are also required in <unistd.h> to minimize the
changes needed for calls to read() and write(). Implementors are reminded that it
must be possible to include both <sys/types.h> and <unistd.h> in the same
program (in either order) without error.

uid_t Before the addition of this type, the data types used to represent these values
varied throughout early proposals. The <sys/stat.h> header defined these values
as type short, the <passwd.h> file (now <pwd.h> and <grp.h>) used an int, and
getuid() returned an int. In response to a strong objection to the inconsistent
definitions, all the types were switched to uid_t.

In practice, those historical implementations that use varying types of this sort can
typedef uid_t to short with no serious consequences.

The problem associated with this change concerns object compatibility after
structure size changes. Since most implementations will define uid_t as a short, the
only substantive change will be a reduction in the size of the passwd structure.
Consequently, implementations with an overriding concern for object
compatibility can pad the structure back to its current size. For that reason, this
problem was not considered critical enough to warrant the addition of a separate
type to POSIX.1.

The types uid_t and gid_t are magic cookies. There is no {UID_MAX} defined by
POSIX.1, and no structure imposed on uid_t and gid_t other than that they be
positive arithmetic types. (In fact, they could be unsigned char.) There is no
maximum or minimum specified for the number of distinct user or group IDs.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0030 [733] is applied.

Austin Group Defect 697 is applied, adding reclen_t.

Austin Group Defect 1302 is applied, aligning this section with the ISO/IEC 9899: 2018 standard.

B.2.11.2 The char Type

POSIX.1-2024 explicitly requires that a char type is exactly one byte (8 bits).

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3839

132879

132880

132881

132882

132883

132884

132885

132886

132887

132888

132889

132890

132891

132892

132893

132894

132895

132896

132897

132898

132899

132900

132901

132902

132903

132904

132905

132906

132907

132908

132909

132910

132911

132912

132913

132914

132915

132916

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

General Information Rationale for System Interfaces

B.2.12 Status Information

POSIX.1-2024 does not require all matching WNOWAIT threads (threads in a matching call to
waitid() with the WNOWAIT flag set) to obtain a child’s status information because the status
information might be discarded (consumed or replaced) before one of the matching WNOWAIT
threads is scheduled. If the status information is not discarded, it will remain available, so all of
the matching WNOWAIT threads will (eventually) obtain the status information.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0031 [690] is applied.

B.3 System Interfaces
See the RATIONALE sections on the individual reference pages.

B.3.1 System Interfaces Removed in this Version

This section contains a list of options and interfaces removed in POSIX.1-2024, together with
advice for application developers on the alternative interfaces that should be used.

B.3.1.1 STREAMS Option

Applications are recommended to use UNIX domain sockets as an alternative for much of the
functionality provided by this option. For example, file descriptor passing can be performed
using sendmsg() and recvmsg() with SCM_RIGHTS on a UNIX domain socket instead of using
ioctl() with I_SENDFD and I_RECVFD on a STREAM.

B.3.1.2 Tracing Option

Applications are recommended to use implementation-provided extension interfaces instead of
the functionality provided by this option. (Such interfaces were in widespread use before the
Tracing option was added to POSIX.1 and continued to be used in preference to the Tracing
option interfaces.)

B.3.1.3 _longjmp() and _setjmp()

Applications are recommended to use siglongjmp() and sigsetjmp() instead of these functions.

B.3.1.4 _tolower() and _toupper()

Applications are recommended to use tolower() and toupper() instead of these functions.

B.3.1.5 ftw()

Applications are recommended to use nftw() instead of this function.

3840 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132917

132918

132919

132920

132921

132922

132923

132924

132925

132926

132927

132928

132929

132930

132931

132932

132933

132934

132935

132936

132937

132938

132939

132940

132941

132942

132943

132944

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces System Interfaces

B.3.1.6 getitimer() and setitimer()

Applications are recommended to use timer_gettime() and timer_settime() instead of these
functions.

B.3.1.7 gets()

Applications are recommended to use fgets() instead of this function.

B.3.1.8 gettimeofday()

Applications are recommended to use clock_gettime() instead of this function.

B.3.1.9 isascii() and toascii()

Applications are recommended to use macros equivalent to the following instead of these
functions:

#define isascii(c) (((c) & ~0177) == 0)
#define toascii(c) ((c) & 0177)

An alternative replacement for isascii(), depending on the intended outcome if the code is
ported to implementations with different character encodings, might be:

#define isascii(c) (isprint((c)) || iscntrl((c)))

(In the C or POSIX locale, this determines whether c is a character in the portable character set.)

B.3.1.10 pthread_getconcurrency() and pthread_setconcurrency()

Applications are recommended to use thread scheduling (on implementations that support the
Thread Execution Scheduling option) instead of these functions; see XSH Section 2.9.4 (on page
540).

B.3.1.11 rand_r()

Applications are recommended to use nrand48() or random() instead of this function.

B.3.1.12 setpgrp()

Applications are recommended to use setpgid() or setsid() instead of this function.

B.3.1.13 sighold(), sigpause(), and sigrelse()

Applications are recommended to use pthread_sigmask() or sigprocmask() instead of these
functions.

B.3.1.14 sigignore(), siginterrupt(), and sigset()

Applications are recommended to use sigaction() instead of these functions.

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3841

132945

132946

132947

132948

132949

132950

132951

132952

132953

132954

132955

132956

132957

132958

132959

132960

132961

132962

132963

132964

132965

132966

132967

132968

132969

132970

132971

132972

132973

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces Rationale for System Interfaces

B.3.1.15 tempnam()

Applications are recommended to use mkdtemp(), mkstemp(), or tmpfile() instead of this
function.

B.3.1.16 ulimit()

Applications are recommended to use getrlimit() or setrlimit() instead of this function.

B.3.1.17 utime()

Applications are recommended to use futimens() if a file descriptor for the file is open, otherwise
utimensat(), instead of this function.

B.3.2 System Interfaces Removed in the Previous Version

The functions and symbols removed in Issue 7 (from the Issue 6 base document) were as
follows:

Removed Functions and Symbols in Issue 7
bcmp()
bcopy()
bsd_signal()
bzero()
ecvt()
fcvt()
ftime()
gcvt()
getcontext()

gethostbyaddr()
gethostbyname()
getwd()
h_errno
index()
makecontext()
mktemp()
pthread_attr_getstackaddr()
pthread_attr_setstackaddr()

rindex()
scalb()
setcontext()
swapcontext()
ualarm()
usleep()
vfork()
wcswcs()

B.3.3 Examples for Spawn

The following long examples are provided in the Rationale (Informative) volume of
POSIX.1-2024 as a supplement to the reference page for posix_spawn().

Example Library Implementation of Spawn

The posix_spawn() or posix_spawnp() functions provide the following:

• Simply start a process executing a process image. This is the simplest application for
process creation, and it may cover most executions of fork().

• Support I/O redirection, including pipes.

• Run the child under a user and group ID in the domain of the parent.

• Run the child at any priority in the domain of the parent.

The posix_spawn() or posix_spawnp() functions do not cover every possible use of the fork()
function, but they do span the common applications: typical use by a shell and a login utility.

The price for an application is that before it calls posix_spawn() or posix_spawnp(), the parent
must adjust to a state that posix_spawn() or posix_spawnp() can map to the desired state for the
child. Environment changes require the parent to save some of its state and restore it afterwards.
The example below demonstrates an initial approach to implementing posix_spawn() using other

3842 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

132974

132975

132976

132977

132978

132979

132980

132981

132982

132983

132984

132985

132986

132987

132988

132989

132990

132991

132992

132993

132994

132995

132996

132997

132998

132999

133000

133001

133002

133003

133004

133005

133006

133007

133008

133009

133010

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces System Interfaces

POSIX operations, although an actual implementation will need to be more robust at handling
all possible filenames.

#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sched.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include <string.h>
#include <signal.h>

/* #include <spawn.h> */
/***/
/* Things that could be defined in spawn.h */
/***/
typedef struct
{

short posix_attr_flags;
#define POSIX_SPAWN_SETPGROUP 0x1
#define POSIX_SPAWN_SETSIGMASK 0x2
#define POSIX_SPAWN_SETSIGDEF 0x4
#define POSIX_SPAWN_SETSCHEDULER 0x8
#define POSIX_SPAWN_SETSCHEDPARAM 0x10
#define POSIX_SPAWN_RESETIDS 0x20
#define POSIX_SPAWN_SETSID 0x40

pid_t posix_attr_pgroup;
sigset_t posix_attr_sigmask;
sigset_t posix_attr_sigdefault;
int posix_attr_schedpolicy;
struct sched_param posix_attr_schedparam;

} posix_spawnattr_t;

typedef char *posix_spawn_file_actions_t;

int posix_spawn_file_actions_init(
posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_destroy(
posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_addchdir(
posix_spawn_file_actions_t *restrict file_actions,
const char *restrict path);

int posix_spawn_file_actions_addclose(
posix_spawn_file_actions_t *file_actions, int fildes);

int posix_spawn_file_actions_adddup2(
posix_spawn_file_actions_t *file_actions, int fildes,
int newfildes);

int posix_spawn_file_actions_addfchdir(
posix_spawn_file_actions_t *file_actions, int fildes);

int posix_spawn_file_actions_addopen(
posix_spawn_file_actions_t *file_actions, int fildes,
const char *path, int oflag, mode_t mode);

int posix_spawnattr_init(posix_spawnattr_t *attr);

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3843

133011

133012

133013

133014

133015

133016

133017

133018

133019

133020

133021

133022

133023

133024

133025

133026

133027

133028

133029

133030

133031

133032

133033

133034

133035

133036

133037

133038

133039

133040

133041

133042

133043

133044

133045

133046

133047

133048

133049

133050

133051

133052

133053

133054

133055

133056

133057

133058

133059

133060

133061

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces Rationale for System Interfaces

int posix_spawnattr_destroy(posix_spawnattr_t *attr);
int posix_spawnattr_getflags(const posix_spawnattr_t *attr,

short *lags);
int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);
int posix_spawnattr_getpgroup(const posix_spawnattr_t *attr,

pid_t *pgroup);
int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);
int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *attr,

int *schedpolicy);
int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,

int schedpolicy);
int posix_spawnattr_getschedparam(const posix_spawnattr_t *attr,

struct sched_param *schedparam);
int posix_spawnattr_setschedparam(posix_spawnattr_t *attr,

const struct sched_param *schedparam);
int posix_spawnattr_getsigmask(const posix_spawnattr_t *attr,

sigset_t *sigmask);
int posix_spawnattr_setsigmask(posix_spawnattr_t *attr,

const sigset_t *sigmask);
int posix_spawnattr_getdefault(const posix_spawnattr_t *attr,

sigset_t *sigdefault);
int posix_spawnattr_setsigdefault(posix_spawnattr_t *attr,

const sigset_t *sigdefault);
int posix_spawn(pid_t *pid, const char *path,

const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *attrp, char *const argv[],
char *const envp[]);

int posix_spawnp(pid_t *pid, const char *file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *attrp, char *const argv[],
char *const envp[]);

/***/
/* Example posix_spawn() library routine */
/***/
int posix_spawn(pid_t *pid,

const char *path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *attrp,
char *const argv[],
char *const envp[])

{
/* Create process */
if ((*pid = fork()) == (pid_t) 0)
{

/* This is the child process */
/* Handle creating a new session */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSID)
{

/* Create a new session */
if (setsid() == -1)
{

/* Failed */

3844 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

133062

133063

133064

133065

133066

133067

133068

133069

133070

133071

133072

133073

133074

133075

133076

133077

133078

133079

133080

133081

133082

133083

133084

133085

133086

133087

133088

133089

133090

133091

133092

133093

133094

133095

133096

133097

133098

133099

133100

133101

133102

133103

133104

133105

133106

133107

133108

133109

133110

133111

133112

133113

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces System Interfaces

_exit(127);
}

}

/* Handle process group */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETPGROUP)
{

/* Override inherited process group */
if (setpgid(0, attrp->posix_attr_pgroup) != 0)
{

/* Failed */
_exit(127);

}
}

/* Handle thread signal mask */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSIGMASK)
{

/* Set the signal mask (cannot fail) */
sigprocmask(SIG_SETMASK, &attrp->posix_attr_sigmask, NULL);

}

/* Handle resetting effective user and group IDs */
if (attrp->posix_attr_flags & POSIX_SPAWN_RESETIDS)
{

/* None of these can fail for this case. */
setuid(getuid());
setgid(getgid());

}

/* Handle defaulted signals */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSIGDEF)
{

struct sigaction deflt;
sigset_t all_signals;

int s;

/* Construct default signal action */
deflt.sa_handler = SIG_DFL;
deflt.sa_flags = 0;

/* Construct the set of all signals */
sigfillset(&all_signals);

/* Loop for all signals */
for (s = 0; sigismember(&all_signals, s); s++)
{

/* Signal to be defaulted? */
if (sigismember(&attrp->posix_attr_sigdefault, s))
{

/* Yes; default this signal */
if (sigaction(s, &deflt, NULL) == -1)
{

/* Failed */
_exit(127);

}

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3845

133114

133115

133116

133117

133118

133119

133120

133121

133122

133123

133124

133125

133126

133127

133128

133129

133130

133131

133132

133133

133134

133135

133136

133137

133138

133139

133140

133141

133142

133143

133144

133145

133146

133147

133148

133149

133150

133151

133152

133153

133154

133155

133156

133157

133158

133159

133160

133161

133162

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces Rationale for System Interfaces

}
}

}

/* Handle the fds if they are to be mapped */
if (file_actions != NULL)
{

/* Loop for all actions in object file_actions */
/* (implementation dives beneath abstraction) */
char *p = *file_actions;

while (*p != '\0')
{

if (strncmp(p, "close(", 6) == 0)
{

int fd;

if (sscanf(p + 6, "%d)", &fd) != 1)
{

_exit(127);
}
if (close(fd) == -1 && errno != EBADF)

_exit(127);
}
else if (strncmp(p, "dup2(", 5) == 0)
{

int fd, newfd;

if (sscanf(p + 5, "%d,%d)", &fd, &newfd) != 2)
{

_exit(127);
}
if (fd == newfd)
{

int flags = fcntl(fd, F_GETFD);
if (flags == -1)

_exit(127);
flags &= ~FD_CLOEXEC;
if (fcntl(fd, F_SETFD, flags) == -1)

_exit(127);
}
else if (dup2(fd, newfd) == -1)

_exit(127);
}
else if (strncmp(p, "open(", 5) == 0)
{

int fd, oflag;
mode_t mode;
int tempfd;
char path[1000]; /* Should be dynamic */
char *q;

if (sscanf(p + 5, "%d,", &fd) != 1)
{

_exit(127);

3846 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

133163

133164

133165

133166

133167

133168

133169

133170

133171

133172

133173

133174

133175

133176

133177

133178

133179

133180

133181

133182

133183

133184

133185

133186

133187

133188

133189

133190

133191

133192

133193

133194

133195

133196

133197

133198

133199

133200

133201

133202

133203

133204

133205

133206

133207

133208

133209

133210

133211

133212

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces System Interfaces

}
p = strchr(p, ',') + 1;
q = strchr(p, '*');
if (q == NULL)

_exit(127);
strncpy(path, p, q - p);
path[q - p] = '\0';
if (sscanf(q + 1, "%o,%o)", &oflag, &mode) != 2)
{

_exit(127);
}
if (close(fd) == -1)
{

if (errno != EBADF)
_exit(127);

}
tempfd = open(path, oflag, mode);
if (tempfd == -1)

_exit(127);
if (tempfd != fd)
{

if (dup2(tempfd, fd) == -1)
{

_exit(127);
}
if (close(tempfd) == -1)
{

_exit(127);
}

}
}
else if (strncmp(p, "chdir(", 6) == 0)
{

char path[1000]; /* Should be dynamic */
char *q;

p += 6
q = strchr(p, '*');
if (q == NULL)

_exit(127);
strncpy(path, p, q - p);
path[q - p] = '\0';
if (chdir(path) == -1)

_exit(127);
}
else if (strncmp(p, "fchdir(", 7) == 0)
{

int fd;

if (sscanf(p + 7, "%d)", &fd) != 1)
_exit(127);

if (fchdir(fd) == -1)
_exit(127);

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3847

133213

133214

133215

133216

133217

133218

133219

133220

133221

133222

133223

133224

133225

133226

133227

133228

133229

133230

133231

133232

133233

133234

133235

133236

133237

133238

133239

133240

133241

133242

133243

133244

133245

133246

133247

133248

133249

133250

133251

133252

133253

133254

133255

133256

133257

133258

133259

133260

133261

133262

133263

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces Rationale for System Interfaces

}
else
{

_exit(127);
}
p = strchr(p, ')') + 1;

}
}

/* Handle setting new scheduling policy and parameters */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSCHEDULER)
{

if (sched_setscheduler(0, attrp->posix_attr_schedpolicy,
&attrp->posix_attr_schedparam) == -1)

{
_exit(127);

}
}

/* Handle setting only new scheduling parameters */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSCHEDPARAM)
{

if (sched_setparam(0, &attrp->posix_attr_schedparam) == -1)
{

_exit(127);
}

}

/* Now execute the program at path */
/* Any fd that still has FD_CLOEXEC set will be closed */
execve(path, argv, envp);
_exit(127); /* exec failed */

}
else
{

/* This is the parent (calling) process */
if (*pid == (pid_t) - 1)

return errno;
return 0;

}
}

/***/
/* Here is a crude but effective implementation of the */
/* file action object operators which store actions as */
/* concatenated token-separated strings. */
/***/
/* Create object with no actions. */
int posix_spawn_file_actions_init(

posix_spawn_file_actions_t *file_actions)
{

*file_actions = malloc(sizeof(char));
if (*file_actions == NULL)

return ENOMEM;
strcpy(*file_actions, "");

3848 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

133264

133265

133266

133267

133268

133269

133270

133271

133272

133273

133274

133275

133276

133277

133278

133279

133280

133281

133282

133283

133284

133285

133286

133287

133288

133289

133290

133291

133292

133293

133294

133295

133296

133297

133298

133299

133300

133301

133302

133303

133304

133305

133306

133307

133308

133309

133310

133311

133312

133313

133314

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces System Interfaces

return 0;
}

/* Free object storage and make invalid. */
int posix_spawn_file_actions_destroy(

posix_spawn_file_actions_t *file_actions)
{

free(*file_actions);
*file_actions = NULL;
return 0;

}

/* Add a new action string to object. */
static int add_to_file_actions(

posix_spawn_file_actions_t *file_actions, char *new_action)
{

*file_actions = realloc
(*file_actions, strlen(*file_actions) + strlen(new_action) + 1);
if (*file_actions == NULL)

return ENOMEM;
strcat(*file_actions, new_action);
return 0;

}

/* Add a chdir action to object. */
int posix_spawn_file_actions_addchdir(

posix_spawn_file_actions_t *restrict file_actions,
const char *restrict path)

{
char temp[100];

sprintf(temp, "chdir(%s*)", path);
return add_to_file_actions(file_actions, temp);

}

/* Add a close action to object. */
int posix_spawn_file_actions_addclose(

posix_spawn_file_actions_t *file_actions, int fildes)
{

char temp[100];

sprintf(temp, "close(%d)", fildes);
return add_to_file_actions(file_actions, temp);

}

/* Add a dup2 action to object. */
int posix_spawn_file_actions_adddup2(

posix_spawn_file_actions_t *file_actions, int fildes,
int newfildes)

{
char temp[100];

sprintf(temp, "dup2(%d,%d)", fildes, newfildes);
return add_to_file_actions(file_actions, temp);

}

/* Add a fchdir action to object. */

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3849

133315

133316

133317

133318

133319

133320

133321

133322

133323

133324

133325

133326

133327

133328

133329

133330

133331

133332

133333

133334

133335

133336

133337

133338

133339

133340

133341

133342

133343

133344

133345

133346

133347

133348

133349

133350

133351

133352

133353

133354

133355

133356

133357

133358

133359

133360

133361

133362

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces Rationale for System Interfaces

int posix_spawn_file_actions_addfchdir(
posix_spawn_file_actions_t *file_actions, int fildes)

{
char temp[100];

sprintf(temp, "fchdir(%d)", fildes);
return add_to_file_actions(file_actions, temp);

}

/* Add an open action to object. */
int posix_spawn_file_actions_addopen(

posix_spawn_file_actions_t *file_actions, int fildes,
const char *path, int oflag, mode_t mode)

{
char temp[100];

sprintf(temp, "open(%d,%s*%o,%o)", fildes, path, oflag, mode);
return add_to_file_actions(file_actions, temp);

}

/***/
/* Here is a crude but effective implementation of the */
/* spawn attributes object functions which manipulate */
/* the individual attributes. */
/***/
/* Initialize object with default values. */
int posix_spawnattr_init(posix_spawnattr_t *attr)
{

attr->posix_attr_flags = 0;
attr->posix_attr_pgroup = 0;
/* Default value of signal mask is the parent's signal mask; */
/* other values are also allowed */
sigprocmask(0, NULL, &attr->posix_attr_sigmask);
sigemptyset(&attr->posix_attr_sigdefault);
/* Default values of scheduling attr inherited from the parent; */
/* other values are also allowed */
attr->posix_attr_schedpolicy = sched_getscheduler(0);
sched_getparam(0, &attr->posix_attr_schedparam);
return 0;

}

int posix_spawnattr_destroy(posix_spawnattr_t *attr)
{

/* No action needed */
return 0;

}

int posix_spawnattr_getflags(const posix_spawnattr_t *attr,
short *flags)

{
*flags = attr->posix_attr_flags;
return 0;

}

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags)
{

3850 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

133363

133364

133365

133366

133367

133368

133369

133370

133371

133372

133373

133374

133375

133376

133377

133378

133379

133380

133381

133382

133383

133384

133385

133386

133387

133388

133389

133390

133391

133392

133393

133394

133395

133396

133397

133398

133399

133400

133401

133402

133403

133404

133405

133406

133407

133408

133409

133410

133411

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for System Interfaces System Interfaces

attr->posix_attr_flags = flags;
return 0;

}

int posix_spawnattr_getpgroup(const posix_spawnattr_t *attr,
pid_t *pgroup)

{
*pgroup = attr->posix_attr_pgroup;
return 0;

}

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup)
{

attr->posix_attr_pgroup = pgroup;
return 0;

}

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *attr,
int *schedpolicy)

{
*schedpolicy = attr->posix_attr_schedpolicy;
return 0;

}

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy)

{
attr->posix_attr_schedpolicy = schedpolicy;
return 0;

}

int posix_spawnattr_getschedparam(const posix_spawnattr_t *attr,
struct sched_param *schedparam)

{
*schedparam = attr->posix_attr_schedparam;
return 0;

}

int posix_spawnattr_setschedparam(posix_spawnattr_t *attr,
const struct sched_param *schedparam)

{
attr->posix_attr_schedparam = *schedparam;
return 0;

}

int posix_spawnattr_getsigmask(const posix_spawnattr_t *attr,
sigset_t *sigmask)

{
*sigmask = attr->posix_attr_sigmask;
return 0;

}

int posix_spawnattr_setsigmask(posix_spawnattr_t *attr,
const sigset_t *sigmask)

{
attr->posix_attr_sigmask = *sigmask;
return 0;

Part B: System Interfaces Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3851

133412

133413

133414

133415

133416

133417

133418

133419

133420

133421

133422

133423

133424

133425

133426

133427

133428

133429

133430

133431

133432

133433

133434

133435

133436

133437

133438

133439

133440

133441

133442

133443

133444

133445

133446

133447

133448

133449

133450

133451

133452

133453

133454

133455

133456

133457

133458

133459

133460

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

System Interfaces Rationale for System Interfaces

}

int posix_spawnattr_getsigdefault(const posix_spawnattr_t *attr,
sigset_t *sigdefault)

{
*sigdefault = attr->posix_attr_sigdefault;
return 0;

}

int posix_spawnattr_setsigdefault(posix_spawnattr_t *attr,
const sigset_t *sigdefault)

{
attr->posix_attr_sigdefault = *sigdefault;
return 0;

}

I/O Redirection with Spawn

I/O redirection with posix_spawn() or posix_spawnp() is accomplished by crafting a file_actions
argument to effect the desired redirection. Such a redirection follows the general outline of the
following example:

/* To redirect new standard output (fd 1) to a file, */
/* and redirect new standard input (fd 0) from my fd socket_pair[1], */
/* and close my fd socket_pair[0] in the new process. */
posix_spawn_file_actions_t file_actions;
posix_spawn_file_actions_init(&file_actions);
posix_spawn_file_actions_addopen(&file_actions, 1, "newout", ...);
posix_spawn_file_actions_dup2(&file_actions, socket_pair[1], 0);
posix_spawn_file_actions_close(&file_actions, socket_pair[0]);
posix_spawn_file_actions_close(&file_actions, socket_pair[1]);
posix_spawn(..., &file_actions, ...);
posix_spawn_file_actions_destroy(&file_actions);

Spawning a Process Under a New User ID

Spawning a process under a new user ID follows the outline shown in the following example:

Save = getuid();
setuid(newid);
posix_spawn(...);
setuid(Save);

3852 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

133461

133462

133463

133464

133465

133466

133467

133468

133469

133470

133471

133472

133473

133474

133475

133476

133477

133478

133479

133480

133481

133482

133483

133484

133485

133486

133487

133488

133489

133490

133491

133492

133493

133494

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale (Informative)

Part C:

Shell and Utilities

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3853

133495

133496

133497

133498

133499

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

3854 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Appendix C

Rationale for Shell and Utilities

C.1 Introduction

C.1.1 Change History

The change history is provided as an informative section, to track changes from earlier versions
of this standard.

The following sections describe changes made to the Shell and Utilities volume of POSIX.1-2024
since Issue 7 of the base document. The CHANGE HISTORY section for each utility describes
technical changes made to that utility in Issue 5 and later. Changes made before Issue 5 are not
included.

Changes from Issue 7 to Issue 8 (POSIX.1-2024)

The following list summarizes the major changes that were made in the Shell and Utilities
volume of POSIX.1-2024 from Issue 7 to Issue 8:

• The Open Group Standard, 2022, Additional APIs for the Base Specifications Issue 8, Part 2
is incorporated.

• Austin Group defect reports and IEEE Interpretations against IEEE Std 1003.1 are applied.

• The Open Group corrigenda and resolutions are applied.

• Features, marked obsolescent in the base document, have been considered for removal in
this version.

New Features in Issue 8

The utilities first introduced in Issue 8 (over the Issue 7 base document) are as follows:

New Utilities in Issue 8
gettext
msgfmt
ngettext

readlink
realpath
timeout

xgettext

Removed Utilities in Issue 8

The utilities removed in Issue 8 (from the Issue 7 base document) are as follows:

Removed Utilities in Issue 8
fort77
qalter
qdel
qhold

qmove
qmsg
qrerun
qrls

qselect
qsig
qstat
qsub

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3855

133500

133501

133502

133503

133504

133505

133506

133507

133508

133509

133510

133511

133512

133513

133514

133515

133516

133517

133518

133519

133520

133521

133522

133523

133524

133525

133526

133527

133528

133529

133530

133531

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for Shell and Utilities

C.1.2 Relationship to Other Documents

C.1.2.1 System Interfaces

It has been pointed out that the Shell and Utilities volume of POSIX.1-2024 assumes that a great
deal of functionality from the System Interfaces volume of POSIX.1-2024 is present, but never
states exactly how much (and strictly does not need to since both are mandated on a conforming
system). This section is an attempt to clarify the assumptions.

File Read, Write, and Creation

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/2 is applied, updating Table 1-1.

File Removal

This is intended to be a summary of the unlink() and rmdir() requirements. Note that it is
possible using the unlink() function for item 4. to occur.

C.1.2.2 Concepts Derived from the ISO C Standard

This section was introduced to address the issue that there was insufficient detail presented by
such utilities as awk or sh about their procedural control statements and their methods of
performing arithmetic functions.

The ISO C standard was selected as a model because most historical implementations of the
standard utilities were written in C. Thus, it was more likely that they would act in the desired
manner without modification.

Using the ISO C standard is primarily a notational convenience so that the many procedural
languages in the Shell and Utilities volume of POSIX.1-2024 would not have to be rigorously
described in every aspect. Its selection does not require that the standard utilities be written in
Standard C; they could be written in Common Usage C, Ada, Pascal, assembler language, or
anything else.

The sizes of the various numeric values refer to C-language data types that are allowed to be
different sizes by the ISO C standard. Thus, like a C-language application, a shell application
cannot rely on their exact size. However, it can rely on their minimum sizes expressed in the
ISO C standard, such as {LONG_MAX} for a long type.

The behavior on overflow is undefined for ISO C standard arithmetic. Therefore, the standard
utilities can use ``bignum’’ representation for integers so that there is no fixed maximum unless
otherwise stated in the utility description. Similarly, standard utilities can use infinite-precision
representations for floating-point arithmetic, as long as these representations exceed the ISO C
standard requirements.

This section addresses only the issue of semantics; it is not intended to specify syntax. For
example, the ISO C standard requires that 0L be recognized as an integer constant equal to zero,
but utilities such as awk and sh are not required to recognize 0L (though they are allowed to, as
an extension).

The ISO C standard requires that a C compiler must issue a diagnostic for constants that are too
large to represent. Most standard utilities are not required to issue these diagnostics; for
example, the command:

diff -C 2147483648 file1 file2

3856 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

133532

133533

133534

133535

133536

133537

133538

133539

133540

133541

133542

133543

133544

133545

133546

133547

133548

133549

133550

133551

133552

133553

133554

133555

133556

133557

133558

133559

133560

133561

133562

133563

133564

133565

133566

133567

133568

133569

133570

133571

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Introduction

has undefined behavior, and the diff utility is not required to issue a diagnostic even if the
number 2 147 483 648 cannot be represented.

Austin Group Defect 1128 is applied, adding a note about the comma operator.

C.1.3 Utility Limits

This section grew out of an idea that originated with the original POSIX.1, in the tables of system
limits for the sysconf() and pathconf() functions. The idea being that a conforming application
can be written to use the most restrictive values that a minimal system can provide, but it should
not have to. The values provided represent compromises so that some vendors can use
historically limited versions of UNIX system utilities. They are the highest values that a strictly
conforming application can assume, given no other information.

However, by using the getconf utility or the sysconf() function, the elegant application can be
tailored to more liberal values on some of the specific instances of specific implementations.

There is no explicitly stated requirement that an implementation provide finite limits for any of
these numeric values; the implementation is free to provide essentially unbounded capabilities
(where it makes sense), stopping only at reasonable points such as {ULONG_MAX} (from the
ISO C standard). Therefore, applications desiring to tailor themselves to the values on a
particular implementation need to be ready for possibly huge values; it may not be a good idea
to allocate blindly a buffer for an input line based on the value of {LINE_MAX}, for instance.
However, unlike the System Interfaces volume of POSIX.1-2024, there is no set of limits that
return a special indication meaning ``unbounded’’. The implementation should always return an
actual number, even if the number is very large.

The statement:

``It is not guaranteed that the application ...’’

is an indication that many of these limits are designed to ensure that implementors design their
utilities without arbitrary constraints related to unimaginative programming. There are certainly
conditions under which combinations of options can cause failures that would not render an
implementation non-conforming. For example, {EXPR_NEST_MAX} and {ARG_MAX} could
collide when expressions are large; combinations of {BC_SCALE_MAX} and {BC_DIM_MAX}
could exceed virtual memory.

In the Shell and Utilities volume of POSIX.1-2024, the notion of a limit being guaranteed for the
process lifetime, as it is in the System Interfaces volume of POSIX.1-2024, is not as useful to a
shell script. The getconf utility is probably a process itself, so the guarantee would be without
value. Therefore, the Shell and Utilities volume of POSIX.1-2024 requires the guarantee to be for
the session lifetime. This will mean that many vendors will either return very conservative
values or possibly implement getconf as a built-in.

It may seem confusing to have limits that apply only to a single utility grouped into one global
section. However, the alternative, which would be to disperse them out into their utility
description sections, would cause great difficulty when sysconf() and getconf were described.
Therefore, the standard developers chose the global approach.

Each language binding could provide symbol names that are slightly different from those shown
here. For example, the C-Language Binding option adds a leading <underscore> to the symbols
as a prefix.

The following comments describe selection criteria for the symbols and their values:

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3857

133572

133573

133574

133575

133576

133577

133578

133579

133580

133581

133582

133583

133584

133585

133586

133587

133588

133589

133590

133591

133592

133593

133594

133595

133596

133597

133598

133599

133600

133601

133602

133603

133604

133605

133606

133607

133608

133609

133610

133611

133612

133613

133614

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for Shell and Utilities

{ARG_MAX}
This is defined by the System Interfaces volume of POSIX.1-2024. Unfortunately, it is very
difficult for a conforming application to deal with this value, as it does not know how much
of its argument space is being consumed by the environment variables of the user.

{BC_BASE_MAX}
{BC_DIM_MAX}
{BC_SCALE_MAX}

These were originally one value, {BC_SCALE_MAX}, but it was unreasonable to link all
three concepts into one limit.

{CHILD_MAX}
This is defined by the System Interfaces volume of POSIX.1-2024.

{COLL_WEIGHTS_MAX}
The weights assigned to order can be considered as ``passes’’ through the collation
algorithm.

{EXPR_NEST_MAX}
The value for expression nesting was borrowed from the ISO C standard.

{LINE_MAX}
This is a global limit that affects all utilities, unless otherwise noted. The {MAX_CANON}
value from the System Interfaces volume of POSIX.1-2024 may further limit input lines from
terminals. The {LINE_MAX} value was the subject of much debate and is a compromise
between those who wished to have unlimited lines and those who understood that many
historical utilities were written with fixed buffers. Frequently, utility writers selected the
UNIX system constant BUFSIZ to allocate these buffers; therefore, some utilities were
limited to 512 bytes for I/O lines, while others achieved 4 096 bytes or greater.

It should be noted that {LINE_MAX} applies only to input line length; there is no
requirement in POSIX.1-2024 that limits the length of output lines. Utilities such as awk, sed,
and paste could theoretically construct lines longer than any of the input lines they received,
depending on the options used or the instructions from the application. They are not
required to truncate their output to {LINE_MAX}. It is the responsibility of the application
to deal with this. If the output of one of those utilities is to be piped into another of the
standard utilities, line length restrictions will have to be considered; the fold utility, among
others, could be used to ensure that only reasonable line lengths reach utilities or
applications.

{LINK_MAX}
This is defined by the System Interfaces volume of POSIX.1-2024.

{MAX_CANON}
{MAX_INPUT}
{NAME_MAX}
{NGROUPS_MAX}
{OPEN_MAX}
{PATH_MAX}
{PIPE_BUF}

These limits are defined by the System Interfaces volume of POSIX.1-2024. Note that the
byte lengths described by some of these values continue to represent bytes, even if the
applicable character set uses a multi-byte encoding.

{RE_DUP_MAX}
The value selected is consistent with historical practice. Although the name implies that it
applies to all REs, only BREs use the interval notation \{m,n\} addressed by this limit.

3858 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

133615

133616

133617

133618

133619

133620

133621

133622

133623

133624

133625

133626

133627

133628

133629

133630

133631

133632

133633

133634

133635

133636

133637

133638

133639

133640

133641

133642

133643

133644

133645

133646

133647

133648

133649

133650

133651

133652

133653

133654

133655

133656

133657

133658

133659

133660

133661

133662

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Introduction

{POSIX2_SYMLINKS}
The {POSIX2_SYMLINKS} variable indicates that the underlying operating system supports
the creation of symbolic links in specific directories. Many of the utilities defined in
POSIX.1-2024 that deal with symbolic links do not depend on this value. For example, a
utility that follows symbolic links (or does not, as the case may be) will only be affected by a
symbolic link if it encounters one. Presumably, a file system that does not support symbolic
links will not contain any. This variable does affect such utilities as ln −s and pax that
attempt to create symbolic links.

There are different limits associated with command lines and input to utilities, depending on the
method of invocation. In the case of a C program exec-ing a utility, {ARG_MAX} is the
underlying limit. In the case of the shell reading a script and exec-ing a utility, {LINE_MAX}
limits the length of lines the shell is required to process, and {ARG_MAX} will still be a limit. If a
user is entering a command on a terminal to the shell, requesting that it invoke the utility,
{MAX_INPUT} may restrict the length of the line that can be given to the shell to a value below
{LINE_MAX}.

When an option is supported, getconf returns a value of 1. For example, when C development is
supported:

if ["$(getconf POSIX2_C_DEV)" -eq 1]; then
echo C supported

fi

The sysconf() function in the C-Language Binding option would return 1.

The following comments describe selection criteria for the symbols and their values:

POSIX2_C_BIND
POSIX2_C_DEV
POSIX2_FORT_RUN
POSIX2_SW_DEV
POSIX2_UPE

It is possible for some (usually privileged) operations to remove utilities that support these
options or otherwise to render these options unsupported. The header files, the sysconf()
function, or the getconf utility will not necessarily detect such actions, in which case they
should not be considered as rendering the implementation non-conforming. A test suite
should not attempt tests such as:

rm /usr/bin/c17
getconf POSIX2_C_DEV

POSIX2_LOCALEDEF
This symbol was introduced to allow implementations to restrict supported locales to only
those supplied by the implementation.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/2 is applied, deleting the entry for
{POSIX2_VERSION} since it is not a utility limit minimum value.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/3 is applied, changing the text in Utility
Limits from: ``utility (see getconf) through the sysconf() function defined in the System Interfaces
volume of POSIX.1-2024. The literal names shown in Table 1-3 apply only to the getconf utility;
the high-level language binding describes the exact form of each name to be used by the
interfaces in that binding.’’ to: ``utility (see getconf).’’.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0001 [666] is applied.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3859

133663

133664

133665

133666

133667

133668

133669

133670

133671

133672

133673

133674

133675

133676

133677

133678

133679

133680

133681

133682

133683

133684

133685

133686

133687

133688

133689

133690

133691

133692

133693

133694

133695

133696

133697

133698

133699

133700

133701

133702

133703

133704

133705

133706

133707

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for Shell and Utilities

C.1.4 Grammar Conventions

There is no additional rationale provided for this section.

C.1.5 Utility Description Defaults

This section is arranged with headings in the same order as all the utility descriptions. It is a
collection of related and unrelated information concerning:

1. The default actions of utilities

2. The meanings of notations used in POSIX.1-2024 that are specific to individual utility
sections

Although this material may seem out of place here, it is important that this information appear
before any of the utilities to be described later.

NAME

There is no additional rationale provided for this section.

SYNOPSIS

There is no additional rationale provided for this section.

DESCRIPTION

Austin Group Defect 351 is applied, adding a requirement relating to declaration utilities.

OPTIONS

Although it has not always been possible, the standard developers tried to avoid repeating
information to reduce the risk that duplicate explanations could each be modified differently.

The need to recognize − − is required because conforming applications need to shield their
operands from any arbitrary options that the implementation may provide as an extension. For
example, if the standard utility foo is listed as taking no options, and the application needed to
give it a pathname with a leading <hyphen-minus>, it could safely do it as:

foo -- -myfile

and avoid any problems with −m used as an extension.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0002 [584] is applied.

OPERANDS

The usage of − is never shown in the SYNOPSIS. Similarly, the usage of − − is never shown.

The requirement for processing operands in command-line order is to avoid a ``WeirdNIX’’
utility that might choose to sort the input files alphabetically, by size, or by directory order.
Although this might be acceptable for some utilities, in general the programmer has a right to
know exactly what order will be chosen.

Some of the standard utilities take multiple file operands and act as if they were processing the
concatenation of those files. For example:

asa file1 file2

and:

3860 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

133708

133709

133710

133711

133712

133713

133714

133715

133716

133717

133718

133719

133720

133721

133722

133723

133724

133725

133726

133727

133728

133729

133730

133731

133732

133733

133734

133735

133736

133737

133738

133739

133740

133741

133742

133743

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Introduction

cat file1 file2 | asa

have similar results when questions of file access, errors, and performance are ignored. Other
utilities such as grep or wc have completely different results in these two cases. This latter type of
utility is always identified in its DESCRIPTION or OPERANDS sections, whereas the former is
not. Although it might be possible to create a general assertion about the former case, the
following points must be addressed:

• Access times for the files might be different in the operand case versus the cat case.

• The utility may have error messages that are cognizant of the input filename, and this
added value should not be suppressed. (As an example, awk sets a variable with the
filename at each file boundary.)

STDIN

There is no additional rationale provided for this section.

INPUT FILES

A conforming application cannot assume the following three commands are equivalent:

tail -n +2 file
(sed -n 1q; cat) < file
cat file | (sed -n 1q; cat)

The second command is equivalent to the first only when the file is seekable. In the third
command, if the file offset in the open file description were not unspecified, sed would have to
be implemented so that it read from the pipe 1 byte at a time or it would have to employ some
method to seek backwards on the pipe. Such functionality is not defined currently in POSIX.1
and does not exist on all historical systems. Other utilities, such as head, read, and sh, have similar
properties, so the restriction is described globally in this section.

The definition of ``text file’’ is strictly enforced for input to the standard utilities; very few of
them list exceptions to the undefined results called for here. (Of course, ``undefined’’ here does
not mean that historical implementations necessarily have to change to start indicating error
conditions. Conforming applications cannot rely on implementations succeeding or failing when
non-text files are used.)

The utilities that allow line continuation are generally those that accept input languages, rather
than pure data. It would be unusual for an input line of this type to exceed {LINE_MAX} bytes
and unreasonable to require that the implementation allow unlimited accumulation of multiple
lines, each of which could reach {LINE_MAX}. Thus, for a conforming application the total of all
the continued lines in a set cannot exceed {LINE_MAX}.

The format description is intended to be sufficiently rigorous to allow other applications to
generate these input files. However, since <blank> characters can legitimately be included in
some of the fields described by the standard utilities, particularly in locales other than the POSIX
locale, this intent is not always realized.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3861

133744

133745

133746

133747

133748

133749

133750

133751

133752

133753

133754

133755

133756

133757

133758

133759

133760

133761

133762

133763

133764

133765

133766

133767

133768

133769

133770

133771

133772

133773

133774

133775

133776

133777

133778

133779

133780

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for Shell and Utilities

ENVIRONMENT VARIABLES

There is no additional rationale provided for this section.

ASYNCHRONOUS EVENTS

Because there is no language prohibiting it, a utility is permitted to catch a signal, perform some
additional processing (such as deleting temporary files), restore the default signal action, and
resignal itself.

Austin Group Defects 1648 and 1772 are applied, clarifying the default behavior for signal
handling.

STDOUT

The format description is intended to be sufficiently rigorous to allow post-processing of output
by other programs, particularly by an awk or lex parser.

STDERR

This section does not describe error messages that refer to incorrect operation of the utility.
Consider a utility that processes program source code as its input. This section is used to
describe messages produced by a correctly operating utility that encounters an error in the
program source code on which it is processing. However, a message indicating that the utility
had insufficient memory in which to operate would not be described.

Some utilities have traditionally produced warning messages without returning a non-zero exit
status; these are specifically noted in their sections. Other utilities shall not write to standard
error if they complete successfully, unless the implementation provides some sort of extension to
increase the verbosity or debugging level.

The format descriptions are intended to be sufficiently rigorous to allow post-processing of
output by other programs.

OUTPUT FILES

The format description is intended to be sufficiently rigorous to allow post-processing of output
by other programs, particularly by an awk or lex parser.

Receipt of the SIGQUIT signal should generally cause termination (unless in some debugging
mode) that would bypass any attempted recovery actions.

EXTENDED DESCRIPTION

There is no additional rationale provided for this section.

EXIT STATUS

Note the additional discussion of exit values in Exit Status for Commands in the sh utility. It
describes requirements for returning exit values greater than 125.

A utility may list zero as a successful return, 1 as a failure for a specific reason, and greater than
1 as ``an error occurred’’. In this case, unspecified conditions may cause a 2 or 3, or other value,
to be returned. A strictly conforming application should be written so that it tests for successful
exit status values (zero in this case), rather than relying upon the single specific error value listed
in POSIX.1-2024. In that way, it will have maximum portability, even on implementations with
extensions.

The standard developers are aware that the general non-enumeration of errors makes it difficult

3862 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

133781

133782

133783

133784

133785

133786

133787

133788

133789

133790

133791

133792

133793

133794

133795

133796

133797

133798

133799

133800

133801

133802

133803

133804

133805

133806

133807

133808

133809

133810

133811

133812

133813

133814

133815

133816

133817

133818

133819

133820

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Introduction

to write test suites that test the incorrect operation of utilities. There are some historical
implementations that have expended effort to provide detailed status messages and a helpful
environment to bypass or explain errors, such as prompting, retrying, or ignoring unimportant
syntax errors; other implementations have not. Since there is no realistic way to mandate system
behavior in cases of undefined application actions or system problems—in a manner acceptable
to all cultures and environments—attention has been limited to the correct operation of utilities
by the conforming application. Furthermore, the conforming application does not need detailed
information concerning errors that it caused through incorrect usage or that it cannot correct.

Austin Group Defect 1492 is applied, adding the Default Behavior paragraph.

CONSEQUENCES OF ERRORS

Several actions are possible when a utility encounters an error condition, depending on the
severity of the error and the state of the utility. Included in the possible actions of various
utilities are: deletion of temporary or intermediate work files; deletion of incomplete files; and
validity checking of the file system or directory.

The text about recursive traversing is meant to ensure that utilities such as find process as many
files in the hierarchy as they can. They should not abandon all of the hierarchy at the first error
and resume with the next command-line operand, but should attempt to keep going.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0001 [150] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0003 [913] is applied.

Austin Group Defect 251 is applied, adding a note about the treatment of pathnames containing
any bytes that have the encoded value of a <newline> character.

Austin Group Defect 1499 is applied, requiring utilities to exit with an exit status that indicates
an error occurred, instead of any non-zero exit status.

APPLICATION USAGE

This section provides additional caveats, issues, and recommendations to the developer.

EXAMPLES

This section provides sample usage.

RATIONALE

There is no additional rationale provided for this section.

FUTURE DIRECTIONS

FUTURE DIRECTIONS sections act as pointers to related work that may impact the interface in
the future, and often cautions the developer to architect the code to account for a change in this
area. Note that a future directions statement should not be taken as a commitment to adopt a
feature or interface in the future.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3863

133821

133822

133823

133824

133825

133826

133827

133828

133829

133830

133831

133832

133833

133834

133835

133836

133837

133838

133839

133840

133841

133842

133843

133844

133845

133846

133847

133848

133849

133850

133851

133852

133853

133854

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for Shell and Utilities

SEE ALSO

There is no additional rationale provided for this section.

CHANGE HISTORY

There is no additional rationale provided for this section.

C.1.6 Considerations for Utilities in Support of Files of Arbitrary Size

This section is intended to clarify the requirements for utilities in support of large files.

The utilities listed in this section are utilities which are used to perform administrative tasks
such as to create, move, copy, remove, change the permissions, or measure the resources of a file.
They are useful both as end-user tools and as utilities invoked by applications during software
installation and operation.

The chgrp, chmod, chown, ln, and rm utilities probably require use of large file-capable versions of
stat(), lstat(), nftw(), and the stat structure.

The cat, cksum, cmp, cp, dd, mv, and touch utilities probably require use of large file-capable
versions of creat(), open(), and fopen().

The cat, cksum, cmp, dd, df, du, and ls utilities may require writing large integer values. For
example:

• The cat utility might have a −n option which counts <newline> characters.

• The cksum and ls utilities report file sizes.

• The cmp utility reports the line number at which the first difference occurs, and also has a
−l option which reports file offsets.

• The dd, df, du, and ls utilities report block counts.

The dd, find, and test utilities may need to interpret command arguments that contain 64-bit
values. For dd, the arguments include skip=n, seek=n, and count=n. For find, the arguments
include −sizen. For test, the arguments are those associated with algebraic comparisons.

The df utility might need to access large file systems with statvfs().

The ulimit utility will need to use large file-capable versions of getrlimit() and setrlimit() and be
able to read and write large integer values.

Austin Group Defect 1568 is applied, removing references to the sum utility.

C.1.7 Built-In Utilities

Other than the special built-in utilities, there is no requirement to build utilities into the shell
itself. However, many shells implement certain utilities as regular built-ins for the following
reasons:

• To improve performance, especially for frequently used lightweight utilities (such as test,
true, and false).

• To eliminate the need for some sort of interprocess communication between the shell and
those utilities that read or modify the shell’s execution environment (such as cd).

3864 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

133855

133856

133857

133858

133859

133860

133861

133862

133863

133864

133865

133866

133867

133868

133869

133870

133871

133872

133873

133874

133875

133876

133877

133878

133879

133880

133881

133882

133883

133884

133885

133886

133887

133888

133889

133890

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Introduction

• To make it easier to satisfy the command search and execution requirements in XCU
Section 2.9.1.4 (on page 2502) for intrinsic utilities. Intrinsic utilities must be found prior to
the PA TH search. The shell could satisfy this requirement by keeping a list of the intrinsic
utility pathnames and directly accessing the file-system versions regardless of PA TH, but
these utilities usually need to read or modify the shell’s execution environment anyway.

With the exception of the intrinsic utilities, all regular built-in utilities are subject to the PA TH
search and can be overridden by a specially crafted PA TH environment variable.

Earlier versions of this standard required that all of the regular built-in utilities, including
intrinsic utilities, could be exec-ed. This was always a contentious requirement, and with the
introduction of intrinsic utilities the standard developers decided to exempt the utilities that this
standard requires to be intrinsic, with the exception of kill. The kill utility is still genuinely
useful when exec-ed, only lacking support for the % job ID notation, whereas examples given of
uses for the other utilities that are now exempted were considered contrived (such as using cd to
test accessibility of a directory, which can be done using test −x). If an application needs exec-
able versions of some of the exempted intrinsic utilities, it can easily provide them itself, on
systems that support the (non-standard but ubiquitous) "#!" mechanism to make scripts
executable by the exec family of functions, as links to a two-line shell script:

#! /path/to/sh
${0##*/} "$@"

Austin Group Defect 854 is applied, replacing the table of Regular Built-In Utilities with a
reference to the new Intrinsic Utilities section.

Austin Group Defect 1600 is applied, exempting the intrinsic utilities other than kill from the
requirement that they can be exec-ed.

C.1.8 Intrinsic Utilities

There were varying reasons for including utilities in the table of intrinsic utilities:

alias, fc, unalias
The functionality of these utilities is performed more simply within the shell itself and that
is the model most historical implementations have used.

bg, fg, jobs
All of the job control-related utilities are eligible for built-in status because that is the model
most historical implementations have used.

cd, getopts, hash, read, type, ulimit, umask, wait
The functionality of these utilities is performed more simply within the context of the
current process. An example can be taken from the usage of the cd utility. The purpose of
the cd utility is to change the working directory for subsequent operations. The actions of cd
affect the process in which cd is executed and all subsequent child processes of that process.
Based on the POSIX standard process model, changes in the process environment of a child
process have no effect on the parent process. If the cd utility were executed from a child
process, the working directory change would be effective only in the child process. Child
processes initiated subsequent to the child process that executed the cd utility would not
have a changed working directory relative to the parent process.

command
This utility was placed in the table primarily to protect scripts that are concerned about
their PA TH being manipulated. The ``secure’’ shell script example in the command utility in
the Shell and Utilities volume of POSIX.1-2024 would not be possible if a PA TH change
retrieved an alien version of command. (An alternative would have been to implement

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3865

133891

133892

133893

133894

133895

133896

133897

133898

133899

133900

133901

133902

133903

133904

133905

133906

133907

133908

133909

133910

133911

133912

133913

133914

133915

133916

133917

133918

133919

133920

133921

133922

133923

133924

133925

133926

133927

133928

133929

133930

133931

133932

133933

133934

133935

133936

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Introduction Rationale for Shell and Utilities

getconf as a built-in, but the standard developers considered that it carried too many
changing configuration strings to require in the shell.)

kill Since kill provides optional job control functionality using shell notation (%1, %2, and so on),
some implementations would find it extremely difficult to provide this outside the shell.

The following utilities are frequently implemented as intrinsic (and built-in) utilities. Future
versions of this standard might not allow these utilities, or any other standard utility not in
Table 1-5 (on page 2470), to be intrinsic; implementations are encouraged to implement these as
non-intrinsic utilities instead (but still built-in if they were previously built-in).

[, echo, false, newgrp, printf, pwd, test, true

All utilities, including those in the table, are accessible via the system() and popen() functions in
the System Interfaces volume of POSIX.1-2024. There are situations where the return
functionality of system() and popen() is not desirable. Applications that require the exit status of
the invoked utility will not be able to use system() or popen(), since the exit status returned is
that of the command language interpreter rather than that of the invoked utility. The alternative
for such applications is the use of the exec family.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0004 [705] is applied.

Austin Group Defect 854 is applied, adding intrinsic utilities.

C.2 Shell Command Language

C.2.1 Shell Introduction

The System V shell was selected as the starting point for the Shell and Utilities volume of
POSIX.1-2024. The BSD C shell was excluded from consideration for the following reasons:

• Most historically portable shell scripts assume the Version 7 Bourne shell, from which the
System V shell is derived.

• The majority of tutorial materials on shell programming assume the System V shell.

The construct "#!" is reserved for implementations wishing to provide that extension. If it were
not reserved, the Shell and Utilities volume of POSIX.1-2024 would disallow it by forcing it to be
a comment. As it stands, a strictly conforming application must not use "#!" as the first two
characters of the file.

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

Austin Group Defect 1514 is applied, correcting a misuse of the term ``positional parameter’’.

C.2.2 Quoting

Although this section contains a note indicating that a future version of this standard may
extend the conditions under which some characters are special, there are no plans to do so. The
note is there to encourage application writers to future-proof their shell code. In some cases
existing widespread use of the characters unquoted would preclude them being given a special
meaning in those use cases. For example, commas are in widespread use in filenames (notably
by RCS and CVS) and it is common to pass the token "{}" as an argument to find and xargs
unquoted.

3866 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

133937

133938

133939

133940

133941

133942

133943

133944

133945

133946

133947

133948

133949

133950

133951

133952

133953

133954

133955

133956

133957

133958

133959

133960

133961

133962

133963

133964

133965

133966

133967

133968

133969

133970

133971

133972

133973

133974

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

Austin Group Defects 1191 and 1193 are applied, adding:

] ^ - ! { , }

to the list of characters that might need to be quoted under certain circumstances.

C.2.2.1 Escape Character (Backslash)

Austin Group Defect 500 is applied, changing ``follows’’ to ``immediately follows’’.

C.2.2.2 Single-Quotes

A <backslash> cannot be used to escape a single-quote in a single-quoted string. An embedded
quote can be created by writing, for example: "'a'\''b'", which yields "a'b". (See XCU
Section 2.6.5 (on page 2491) for a better understanding of how portions of words are either split
into fields or remain concatenated.) A single token can be made up of concatenated partial
strings containing all three kinds of quoting or escaping, thus permitting any combination of
characters.

C.2.2.3 Double-Quotes

The escaped <newline> used for line continuation is removed entirely from the input and is not
replaced by any white space. Therefore, it cannot serve as a token separator.

In double-quoting, if a <backslash> is immediately followed by a character that would be
interpreted as having a special meaning, the <backslash> is deleted and the subsequent
character is taken literally. If a <backslash> does not precede a character that would have a
special meaning, it is left in place unmodified and the character immediately following it is also
left unmodified. Thus, for example:

"\$" -> $

"\a" -> \a

It would be desirable to include the statement ``The characters from an enclosed "${" to the
matching '}' shall not be affected by the double-quotes’’, similar to the one for "$()".
However, historical practice in the System V shell prevents this.

Shell implementations differ widely in their handling of unescaped double-quote characters
inside "${...}" (except for the four substring-processing variants). Hence this standard leaves
the behavior unspecified. Single-quotes are ordinary characters in this context, and so cannot be
used to quote a '}' within "${...}". However, <backslash> can be used to escape a '}'. For
example, the value of foo assigned by the following commands is '}':

unset bar
foo="${bar-\}}"

When <backslash> is used in this way it is a special character and is therefore removed during
quote removal, even though it would not be removed in:

foo="\}"

Differences in processing the "${...}" form led to inconsistencies between the historical
System V shell, BSD, and KornShells, and the text in the Shell and Utilities volume of
POSIX.1-2024 is an attempt to converge them without breaking too many applications. The only
alternative to this compromise between shells would be to make the behavior unspecified not

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3867

133975

133976

133977

133978

133979

133980

133981

133982

133983

133984

133985

133986

133987

133988

133989

133990

133991

133992

133993

133994

133995

133996

133997

133998

133999

134000

134001

134002

134003

134004

134005

134006

134007

134008

134009

134010

134011

134012

134013

134014

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

just for unescaped double-quote but also for unescaped single-quote, '{', or '}'. The chosen
requirements provide the maximum consistency between normal double-quote behavior and
parameter expansion within double-quotes; the only real difference being the ability to escape a
'}' with <backslash>.

Some implementations have allowed the end of the word to terminate the backquoted command
substitution, such as in:

"`echo hello"

This usage is undefined; the matching backquote is required by the Shell and Utilities volume of
POSIX.1-2024. The other undefined usage can be illustrated by the example:

sh -c '` echo "foo`'

The description of the recursive actions involving command substitution can be illustrated with
an example. Upon recognizing the introduction of command substitution, the shell parses input
(in a new context), gathering the source for the command substitution until an unbalanced ')'
or '`' is located. For example, in the following:

echo "$(date; echo "
one")"

the double-quote following the echo does not terminate the first double-quote; it is part of the
command substitution script. Similarly, in:

echo "$(echo *)"

the <asterisk> is not quoted since it is inside command substitution; however:

echo "$(echo "*")"

is quoted (and represents the <asterisk> character itself).

The $'...' construct does not retain its special meaning inside double quotes. This was
discussed by the standard developers and rejected. Note that $'...' is a quoting mechanism
and not an expansion. Losing the special meaning inside double-quotes is consistent with other
quoting mechanisms losing their special meaning when quoted.

Austin Group Defect 221 is applied, clarifying the behavior of double-quotes within the string of
characters from "${" to the matching '}' in parameter expansions using that form.

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

Austin Group Defect 500 is applied, clarifying the behavior of <backslash> within double-
quotes.

Austin Group Defect 1268 is applied, clarifying the effect of double-quotes on the results of
parameter expansion, command substitution, or arithmetic expansion.

Austin Group Defect 1342 is applied, clarifying the requirements for alias substitutions inside
command substitutions.

C.2.2.4 Dollar-Single-Quotes

The $'...' quoting construct has been implemented in several recent shells. It is similar to
character string literals ("...") in the ISO C standard with the following exceptions:

• The \x escape sequence in C can be followed by an arbitrary number of hexadecimal
digits. The ksh93 implementation of $'...' also consumes an arbitrary number of
hexadecimal digits; bash consumes at most two hexadecimal digits in this case. This
standard leaves the result unspecified if more than two hexadecimal digits follow \x.

3868 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134015

134016

134017

134018

134019

134020

134021

134022

134023

134024

134025

134026

134027

134028

134029

134030

134031

134032

134033

134034

134035

134036

134037

134038

134039

134040

134041

134042

134043

134044

134045

134046

134047

134048

134049

134050

134051

134052

134053

134054

134055

134056

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

(Note that a hexadecimal escape followed by a literal hexadecimal character can always be
represented as $'\xXX'X.)

• The \c escape sequence is not included in the ISO C standard. There was also some
disagreement in shells that historically supported \c escape sequences in $'...'. These
include:

— Whether \cA through \cZ produced the byte values 1 through 26, respectively or
supported the codeset independent control character as specified by the stty utility.
This standard requires codeset independence.

— Whether \c[, \c\\, \c], \c^, \c_, and \c? could be used to yield the <ESC>,
<FS>, <GS>, <RS>, <US>, and control characters, respectively. This standard
requires support for all of the control characters except NULL (matching what is
done in the stty utility).

— Whether \c\\ or \c\ was used to represent <FS>. This standard requires \c\\ to
make <backslash>-escape processing consistent.

The implementors of the most common shells that implement $'\cX' agreed to convert to
the behavior specified in this standard.

Some shells also allow \c<arbitrary_control_character> to act as an inverse function to
\cX (that is, \cm and \cM yield <CR> and \c<CR> yields m or M. This standard leaves this
behavior implementation-defined.

• The \e escape sequence is not included in the ISO C standard, but was provided by all
historical shells that supported $'...'. Some also supported \E as a synonym. One
member of the group objected to adding \e because the <ESC> control character is not
required to be in the portable character set. The \e sequence is included because many
historical users of $'...' expect it to be there. The \E sequence is not included in this
standard because <backslash>-escape sequences that start with <backslash> followed by
an uppercase letter (except \U) are reserved by the ISO C standard for implementation use.

• The \ddd octal escape sequence and the \xXX hexadecimal escape sequence can be used to
insert a null byte into a C character string literal and into a $'...' quoted word in this
standard. In C, any characters specified after that null byte (including escape sequences)
continue to be processed and added to the character string literal. In $'...' in the shell
this standard allows the equivalent behavior but also allows the null byte and all
remaining characters up to the terminating unescaped single-quote to be evaluated and
discarded. The latter (which was historic practice in bash, but not in ksh93) allows an
escape sequence producing a null byte to terminate the dollar-single-quoted expansion,
but not terminate the token in which it appears if there are characters remaining in the
token. For example:

printf a$'b\0c\''d

is required by this standard to produce:

abd

while historic versions of ksh93 produced:

ab

• The ISO C standard specifies \uXXXX and \UXXXXXXXX escape sequences. These need not
be supported by $'...' in the shell. They were omitted because current shell
implementations that support them differ in behavior. In particular, some shells always
convert them to the UTF-8 encoding for the named character, even if the current locale’s
character set does not have UTF-8 encoding.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3869

134057

134058

134059

134060

134061

134062

134063

134064

134065

134066

134067

134068

134069

134070

134071

134072

134073

134074

134075

134076

134077

134078

134079

134080

134081

134082

134083

134084

134085

134086

134087

134088

134089

134090

134091

134092

134093

134094

134095

134096

134097

134098

134099

134100

134101

134102

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

• The double-quote character can be used literally, while the single-quote character must be
represented as an escape sequence. In C, single-quote can be used literally, while double-
quote requires an escape sequence.

• A <backslash> immediately followed by a <newline> has unspecified behavior. In C, this
sequence is used for line continuations, where both the <backslash> and <newline> are
deleted and a diagnostic is required if a closing quote is not encountered before a
<newline> that is not preceded by <backslash>. In current shell implementations, three
different behaviors have been observed.

• The use of <backslash>-escape sequences not described in this standard results in
unspecified behavior. In C, the result is not a token and a diagnostic is required. This
allows shells to recognize other <backslash>-escape sequences in other ways as extensions
to this standard. Furthermore, existing implementations already had different behaviors
for some <backslash>-escape sequences when $'...' processing was added to this
standard.

This standard makes the results implementation-defined if \e or \cX specifies a character that is
not present in the current locale. Application authors should note that implementations are
permitted to have a wide range of behaviors when encountering an unsupported character. For
example:

• The shell might produce an error, possibly causing the shell to terminate.

• The unsupported character might be silently discarded.

• The unsupported character might be replaced with another character of a different
character class.

• The unsupported character might be replaced with a shell-special character (e.g., '?').

• The unsupported character might be replaced with multiple characters, shell-special or
regular (e.g. if <ESC> is not supported, $'\e' may be replaced by "???", "XXX", or
"<ESC>").

However, implementations must document their behavior, and they are prohibited from
replacing an unsupported character with bytes that do not form valid characters in the current
locale’s character set (e.g., encoding in UTF-8 when the locale has a 7-bit character set). This
standard does not specify a way for script authors to determine beforehand whether a particular
\cX sequence specifies a character that exists in the current locale. At the time this feature was
standardized, no known implementations provided such a capability.

Note that the escape sequences recognized by $'...', file format notation (see Table 5-1, on
page 113), XSI-conforming implementations of the echo utility (see the utility’s OPERANDS
section in echo), and the printf utility’s format operand (see the utility’s EXTENDED
DESCRIPTION in printf) are not the same. Some escape sequences are not recognized by all of
the above, the \c escape sequence in echo is not at all like the \c escape sequence in $'...',
octal escape sequences in some of the above accept one to four octal digits and require a leading
zero while others accept one to three octal digits and do not require a leading zero.

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

3870 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134103

134104

134105

134106

134107

134108

134109

134110

134111

134112

134113

134114

134115

134116

134117

134118

134119

134120

134121

134122

134123

134124

134125

134126

134127

134128

134129

134130

134131

134132

134133

134134

134135

134136

134137

134138

134139

134140

134141

134142

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

C.2.3 Token Recognition

The "((" and "))" symbols are control operators in the KornShell, used for an alternative
syntax of an arithmetic expression command. A conforming application cannot use "((" as a
single token (with the exception of the "$((" form for shell arithmetic).

On some implementations, the symbol "((" is a control operator; its use produces unspecified
results. Applications that wish to have nested subshells, such as:

((echo Hello);(echo World))

must separate the "((" characters into two tokens by including white space between them.
Some systems may treat these as invalid arithmetic expressions instead of subshells.

Certain combinations of characters are invalid in portable scripts, as shown in the grammar.
Implementations may use these combinations (such as "|&") as valid control operators. Portable
scripts cannot rely on receiving errors in all cases where this volume of POSIX.1-2024 indicates
that a syntax is invalid.

The (3) rule about combining characters to form operators is not meant to preclude systems from
extending the shell language when characters are combined in otherwise invalid ways.
Conforming applications cannot use invalid combinations, and test suites should not penalize
systems that take advantage of this fact. For example, the unquoted combination "|&" is not
valid in a POSIX script, but has a specific KornShell meaning.

The (10) rule about '#' as the current character is the first in the sequence in which a new token
is being assembled. The '#' starts a comment only when it is at the beginning of a token. This
rule is also written to indicate that the search for the end-of-comment does not consider escaped
<newline> specially, so that a comment cannot be continued to the next line.

Because a complete_command encountered during a program is executed before the next
complete_command is tokenized and parsed, syntax errors are not discovered by the shell until
just before the code would be executed. While in some cases it might be desirable to detect and
react to syntax errors before anything is executed (possible with sh −n), deferring the discovery
of syntax errors has several benefits:

• It makes it possible for script authors to test for the availability of a nonstandard extension
and react appropriately before the use of the extension would trigger a syntax error.

• It makes it possible to create self-extracting tarballs (a shell script concatenated with a
payload archive that extracts the archive when executed).

• The shell does not have to read and parse the complete script before execution, which
reduces memory usage when executing extremely long scripts.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0005 [718], XCU/TC2-2008/0006
[647], XCU/TC2-2008/0007 [568], and XCU/TC2-2008/0008 [648] are applied.

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

Austin Group Defect 1036 is applied, clarifying how here-documents are parsed.

Austin Group Defect 1055 is applied, clarifying how much of a program is parsed before the
parsed commands are executed.

Austin Group Defect 1083 is applied, changing ``the next character’’ to ``each character in turn’’.

Austin Group Defect 1085 is applied, clarifying requirements for the start and end of tokens.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3871

134143

134144

134145

134146

134147

134148

134149

134150

134151

134152

134153

134154

134155

134156

134157

134158

134159

134160

134161

134162

134163

134164

134165

134166

134167

134168

134169

134170

134171

134172

134173

134174

134175

134176

134177

134178

134179

134180

134181

134182

134183

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

C.2.3.1 Alias Substitution

The alias capability was added because it is widely used in historical implementations by
interactive users.

The definition of ``alias name’’ precludes an alias name containing a <slash> character. Since the
text applies to the command words of simple commands, reserved words (in their proper
places) cannot be confused with aliases.

The placement of alias substitution in token recognition makes it clear that it precedes all of the
word expansion steps.

An example concerning trailing <blank> characters and reserved words follows. If the user
types:

$ alias foo="/bin/ls "
$ alias while="/"

The effect of executing:

$ while true
> do
> echo "Hello, World"
> done

is a never-ending sequence of "Hello, World" strings to the screen. However, if the user
types:

$ foo while

the result is an ls listing of /. Since the alias substitution for foo ends in a <space>, the next word
is checked for alias substitution. The next word, while, has also been aliased, so it is substituted
as well. Since it is not in the proper position as a command word, it is not recognized as a
reserved word.

If the user types:

$ foo; while

while retains its normal reserved-word properties.

Some implementations add a <space> after the alias value when performing alias substitution in
order to prevent the last character of the alias value and the first character after the alias name in
the input from combining to form an operator. However, the extra <space> can have side-effects
in other situations, such as if the alias value ends with an unquoted <backslash>.
Implementations which do this are encouraged to change to an alternative method of delimiting
a partial operator token at the end of an alias value.

Some, but not all, shell implementations do not process changes to alias definitions until the
current compound_list (see XCU Section 2.10, on page 2512) has completed. In these shells, alias
changes do not take effect until the end of the dot script, eval command, function invocation, if
statement, case statement, for statement, while statement, or until statement containing the alias
change.

Many shell implementations execute the contents of a file, typically ~/.profile, when invoked as
a login shell. The standard developers are unaware of any such implementations that process
the contents of ~/.profile (and similar startup files) as a single compound_list, so alias changes in
~/.profile typically do take effect before the end of ~/.profile.

Austin Group Defects 953 and 1630 are applied, providing additional detail on how alias
substitution is performed.

3872 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134184

134185

134186

134187

134188

134189

134190

134191

134192

134193

134194

134195

134196

134197

134198

134199

134200

134201

134202

134203

134204

134205

134206

134207

134208

134209

134210

134211

134212

134213

134214

134215

134216

134217

134218

134219

134220

134221

134222

134223

134224

134225

134226

134227

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

C.2.4 Reserved Words
All reserved words are recognized syntactically as such in the contexts described. However, note
that in is the only meaningful reserved word after a case or for; similarly, in is not meaningful as
the first word of a simple command.

Reserved words are recognized only when they are delimited (that is, meet the definition of XBD
Section 3.420, on page 93), whereas operators are themselves delimiters. For instance, '(' and
')' are control operators, so that no <space> is needed in (list). However, '{' and '}' are
reserved words in { list;}, so that in this case the leading <space> and <semicolon> are required.

The list of unspecified reserved words is from the KornShell, so conforming applications cannot
use them in places a reserved word would be recognized. Earlier versions of this standard
omitted time from this list, so that the time utility could be included without requiring
applications to quote all or part of its name (or use other measures) in order to avoid it being
treated as a reserved word. However, although the intent was to allow the reserved word
implementation (as evidenced by use of time in pipelines being unspecified, and explicit
mention in the rationale of the time utility), the conditions under which the behavior was
unspecified were insufficient to allow this. In particular, redirection in KornShell does not work
in the normal way when time is a reserved word:

time utility 2> time.out

only writes the standard error from utility to time.out; the timing information is written to the
shell’s standard error, but these versions of the standard required the timing information to be
written to time.out. Another issue was that if time is a reserved word, an application cannot
define a function with that name, but these versions of the standard required that applications
could do so. Hence time has now been added to the list of unspecified reserved words, but with
its use as a reserved word limited in order to be compatible with its use as a utility in the cases
where the two have traditionally had the same effect (other than possible output format
differences).

There was a strong argument for promoting braces to operators (instead of reserved words), so
they would be syntactically equivalent to subshell operators. Concerns about compatibility
outweighed the advantages of this approach. Nevertheless, conforming applications should
consider quoting '{' and '}' when they represent themselves.

When used in circumstances where reserved words are recognized, all words whose final
character is a <colon> (':') are reserved. The case of a name suffixed with a colon is reserved to
allow implementations to support named labels for flow control; see the RATIONALE for the
break special built-in utility. Other words ending in <colon> are reserved to provide
implementations with a way to add new reserved words while still conforming to this standard.

It is possible that a future version of the Shell and Utilities volume of POSIX.1-2024 may require
that '{' and '}' be treated individually as control operators, although the token "{ }" will
probably be a special-case exemption from this because of the often-used find{ } construct.

Austin Group Defect 267 is applied, adding time to the list of words that may be recognized as
reserved words while specifying its behavior if it is recognized as a reserved word, and
extending the reservation of words whose final character is <colon> from those that are a name
followed by a <colon> to all such words.

Austin Group Defect 465 is applied, adding namespace to the list of words that may be
recognized as reserved words.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3873

134228

134229

134230

134231

134232

134233

134234

134235

134236

134237

134238

134239

134240

134241

134242

134243

134244

134245

134246

134247

134248

134249

134250

134251

134252

134253

134254

134255

134256

134257

134258

134259

134260

134261

134262

134263

134264

134265

134266

134267

134268

134269

134270

134271

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

C.2.5 Parameters and Variables
Austin Group Defect 1561 is applied, clarifying that parameters can contain byte sequences that
do not form valid characters and that the shell processes their values as characters only when
performing operations that are described in this standard in terms of characters.

C.2.5.1 Positional Parameters

Austin Group Defect 1491 is applied, clarifying the handling of leading zeros in positional
parameter identifiers.

C.2.5.2 Special Parameters

Most historical implementations implement subshells by forking; thus, the special parameter
'$' does not necessarily represent the process ID of the shell process executing the commands
since the subshell execution environment preserves the value of '$'.

If a subshell were to execute a background command, the value of "$!" for the parent would
not change. For example:

(
date &
echo $!
)
echo $!

would echo two different values for "$!".

The "$-" special parameter can be used to save and restore set options:

Save=$(echo $- | sed 's/[ics]//g')
...
set +aCefnuvx
if [-n "$Save"]; then

set -$Save
fi

The three options are removed using sed in the example because they may appear in the value of
"$-" (from the sh command line), but are not valid options to set.

The descriptions of parameters '*' and '@' assume the reader is familiar with the field
splitting discussion in XCU Section 2.6.5 (on page 2491) and understands that portions of the
word remain concatenated unless there is some reason to split them into separate fields.

The following examples illustrate some of the ways in which '*' and '@' can be expanded:

set "abc" "def ghi" "jkl"
unset novar
IFS=' ' # a space
printf '%s\n' $*
abc
def
ghi
jkl
printf '%s\n' "$*"
abc def ghi jkl
printf '%s\n' xx$*yy
xxabc

3874 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134272

134273

134274

134275

134276

134277

134278

134279

134280

134281

134282

134283

134284

134285

134286

134287

134288

134289

134290

134291

134292

134293

134294

134295

134296

134297

134298

134299

134300

134301

134302

134303

134304

134305

134306

134307

134308

134309

134310

134311

134312

134313

134314

134315

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

def
ghi
jklyy
printf '%s\n' "xx$*yy"
xxabc def ghi jklyy
printf '%s\n' $@
abc
def
ghi
jkl
printf '%s\n' "$@"
abc
def ghi
jkl
printf '%s\n' ${1+"$@"}
abc
def ghi
jkl
printf '%s\n' ${novar-"$@"}
abc
def ghi
jkl
printf '%s\n' xx$@yy
xxabc
def
ghi
jklyy
printf '%s\n' "xx$@yy"
xxabc
def ghi
jklyy
printf '%s\n' $@$@
abc
def
ghi
jklabc
def
ghi
jkl
printf '%s\n' "$@$@"
abc
def ghi
jklabc
def ghi
jkl
IFS=':'
printf '%s\n' "$*"
abc:def ghi:jkl
var=$*; printf '%s\n' "$var"
abc:def ghi:jkl
var="$*"; printf '%s\n' "$var"
abc:def ghi:jkl
unset var

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3875

134316

134317

134318

134319

134320

134321

134322

134323

134324

134325

134326

134327

134328

134329

134330

134331

134332

134333

134334

134335

134336

134337

134338

134339

134340

134341

134342

134343

134344

134345

134346

134347

134348

134349

134350

134351

134352

134353

134354

134355

134356

134357

134358

134359

134360

134361

134362

134363

134364

134365

134366

134367

134368

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

printf '%s\n' ${var-$*}
abc
def ghi
jkl
printf '%s\n' "${var-$*}"
abc:def ghi:jkl
printf '%s\n' ${var-"$*"}
abc:def ghi:jkl
printf '%s\n' ${var=$*}
abc
def ghi
jkl
printf 'var=%s\n' "$var"
var=abc:def ghi:jkl
unset var
printf '%s\n' "${var=$*}"
abc:def ghi:jkl
printf 'var=%s\n' "$var"
var=abc:def ghi:jkl

IFS='' # null
printf '%s\n' "$*"
abcdef ghijkl
var=$*; printf '%s\n' "$var"
abcdef ghijkl
var="$*"; printf '%s\n' "$var"
abcdef ghijkl
unset var
printf '%s\n' ${var-$*}
abc
def ghi
jkl
printf '%s\n' "${var-$*}"
abcdef ghijkl
printf '%s\n' ${var-"$*"}
abcdef ghijkl
printf '%s\n' ${var=$*}
abcdef ghijkl
printf 'var=%s\n' "$var"
var=abcdef ghijkl
unset var
printf '%s\n' "${var=$*}"
abcdef ghijkl
printf 'var=%s\n' "$var"
var=abcdef ghijkl
printf '%s\n' "$@"
abc
def ghi
jkl

unset IFS
printf '%s\n' "$*"
abc def ghi jkl
var=$*; printf '%s\n' "$var"

3876 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134369

134370

134371

134372

134373

134374

134375

134376

134377

134378

134379

134380

134381

134382

134383

134384

134385

134386

134387

134388

134389

134390

134391

134392

134393

134394

134395

134396

134397

134398

134399

134400

134401

134402

134403

134404

134405

134406

134407

134408

134409

134410

134411

134412

134413

134414

134415

134416

134417

134418

134419

134420

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

abc def ghi jkl
var="$*"; printf '%s\n' "$var"
abc def ghi jkl
unset var
printf '%s\n' ${var-$*}
abc
def
ghi
jkl
printf '%s\n' "${var-$*}"
abc def ghi jkl
printf '%s\n' ${var-"$*"}
abc def ghi jkl
printf '%s\n' ${var=$*}
abc
def
ghi
jkl
printf 'var=%s\n' "$var"
var=abc def ghi jkl
unset var
printf '%s\n' "${var=$*}"
abc def ghi jkl
printf 'var=%s\n' "$var"
var=abc def ghi jkl
printf '%s\n' "$@"
abc
def ghi
jkl

set one "" three
printf '[%s]\n' $*
[one]
[] (this line of output is optional)
[three]
printf '[%s]\n' $@
[one]
[] (this line of output is optional)
[three]

set --
printf '[%s]\n' foo "$*"
[foo]
[]
printf '[%s]\n' foo "$novar$*$(echo)"
[foo]
[]
printf '[%s]\n' foo $@
[foo]
printf '[%s]\n' foo "$@"
[foo]
printf '[%s]\n' foo ''$@
[foo]
[]

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3877

134421

134422

134423

134424

134425

134426

134427

134428

134429

134430

134431

134432

134433

134434

134435

134436

134437

134438

134439

134440

134441

134442

134443

134444

134445

134446

134447

134448

134449

134450

134451

134452

134453

134454

134455

134456

134457

134458

134459

134460

134461

134462

134463

134464

134465

134466

134467

134468

134469

134470

134471

134472

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

printf '[%s]\n' foo ''"$@"
[foo]
[]
printf '[%s]\n' foo "$novar$@$(echo)"
[foo]
[] (this line of output is optional)
printf '[%s]\n' foo ''"$novar$@$(echo)"
[foo]
[]

In all of the following commands the results of the expansion of '@' (if performed) are
unspecified:

var=$@
var="$@"
printf '%s\n' ${var=$@}
printf '%s\n' "${var=$@}"
printf '%s\n' ${var="$@"}
printf '%s\n' ${var?$@}
printf '%s\n' "${var?$@}"
printf '%s\n' ${var?"$@"}
printf '%s\n' ${#@}
printf '%s\n' "${#@}"
printf '%s\n' ${@%foo}
printf '%s\n' "${@%foo}"
printf '%s\n' ${@#foo}
printf '%s\n' "${@#foo}"
printf '%s\n' ${var%$@}
printf '%s\n' "${var%$@}"
printf '%s\n' ${var%"$@"}
printf '%s\n' ${var%%$@}
printf '%s\n' "${var%%$@}"
printf '%s\n' ${var%%"$@"}
printf '%s\n' ${var#$@}
printf '%s\n' "${var#$@}"
printf '%s\n' ${var#"$@"}
printf '%s\n' ${var##$@}
printf '%s\n' "${var##$@}"
printf '%s\n' ${var##"$@"}

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0009 [888] is applied.

Austin Group Defect 1039 is applied, clarifying the description of the '-' special parameter.

Austin Group Defect 1052 is applied, clarifying that decimal valued special parameters expand
to the shortest representation.

Austin Group Defects 1150 and 1309 are applied, clarifying the description of the '?' special
parameter.

Austin Group Defect 1254 is applied, clarifying how the '?' and '!' special parameters are
affected by job control.

3878 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134473

134474

134475

134476

134477

134478

134479

134480

134481

134482

134483

134484

134485

134486

134487

134488

134489

134490

134491

134492

134493

134494

134495

134496

134497

134498

134499

134500

134501

134502

134503

134504

134505

134506

134507

134508

134509

134510

134511

134512

134513

134514

134515

134516

134517

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

C.2.5.3 Shell Variables

Since shell variables are parameters denoted by a name, the shell cannot initialize shell variables
from environment variables that do not have a valid name. However, the shell may initialize
parameters that do not have valid names from such environment variables.

See the discussion of IFS in Section C.2.6.5 (on page 3889) and the RATIONALE for the sh utility.

The prohibition on LC_CTYPE changes affecting lexical processing protects the shell
implementor (and the shell programmer) from the ill effects of changing the definition of
<blank> or the set of alphabetic characters in the current environment. It would probably not be
feasible to write a compiled version of a shell script without this rule. The rule applies only to
the current invocation of the shell and its subshells—invoking a shell script or performing exec
sh would subject the new shell to the changes in LC_CTYPE.

Other common environment variables used by historical shells are not specified by the Shell and
Utilities volume of POSIX.1-2024, but they should be reserved for the historical uses.

Tilde expansion for components of PA TH in an assignment such as:

PATH=~hlj/bin:~dwc/bin:$PATH

is a feature of some historical shells and is allowed by the wording of XCU Section 2.6.1 (on page
2485). Note that the <tilde> characters are expanded during the assignment to PA TH, not when
PA TH is accessed during command search.

The following entries represent additional information about variables included in the Shell and
Utilities volume of POSIX.1-2024, or rationale for common variables in use by shells that have
been excluded:

_ (Underscore.) While <underscore> is historical practice, its overloaded usage
in the KornShell is confusing, and it has been omitted from the Shell and
Utilities volume of POSIX.1-2024.

ENV This variable can be used to set aliases and other items local to the invocation
of a shell. The file referred to by ENV differs from $HOME/.profile in that
.profile is typically executed at session start-up, whereas the ENV file is
executed at the beginning of each shell invocation. The ENV value is
interpreted in a manner similar to a dot script, in that the commands are
executed in the current environment and the file needs to be readable, but not
executable. However, unlike dot scripts, no PA TH searching is performed. This
is used as a guard against Trojan Horse security breaches.

ERRNO This variable was omitted from the Shell and Utilities volume of POSIX.1-2024
because the values of error numbers are not defined in POSIX.1-2024 in a
portable manner.

FCEDIT Since this variable affects only the fc utility, it has been omitted from this more
global place. The value of FCEDIT does not affect the command-line editing
mode in the shell; see the description of set −o vi in the set built-in utility.

PS1 This variable is used for interactive prompts. Historically, the ``superuser ’’
has had a prompt of '#'. Since privileges are not required to be monolithic, it
is difficult to define which privileges should cause the alternate prompt.
However, a sufficiently powerful user should be reminded of that power by
having an alternate prompt.

PS3 This variable is used by the KornShell for the select command. Since the POSIX
shell does not include select, PS3 was omitted.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3879

134518

134519

134520

134521

134522

134523

134524

134525

134526

134527

134528

134529

134530

134531

134532

134533

134534

134535

134536

134537

134538

134539

134540

134541

134542

134543

134544

134545

134546

134547

134548

134549

134550

134551

134552

134553

134554

134555

134556

134557

134558

134559

134560

134561

134562

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

PS4 This variable is used for shell debugging. For example, the following script:

PS4='[${LINENO}]+ '
set -x
echo Hello

writes the following to standard error:

[3]+ echo Hello

RANDOM This pseudo-random number generator was not seen as being useful to
interactive users.

SECONDS Although this variable is sometimes used with PS1 to allow the display of the
current time in the prompt of the user, it is not one that would be manipulated
frequently enough by an interactive user to include in the Shell and Utilities
volume of POSIX.1-2024.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0002 [152] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0010 [888], XCU/TC2-2008/0011
[884], and XCU/TC2-2008/0012 [494] are applied.

Austin Group Defect 953 is applied, clarifying how the ENV file is parsed.

Austin Group Defect 1006 is applied, clarifying how the values of the PS1, PS2, and PS4
variables are expanded.

Austin Group Defect 1441 is applied, requiring PS4 to be used in non-interactive shells.

Austin Group Defect 1511 is applied, making the description of LINENO consistent with other
variables as regards how they relate to the User Portability Utilities option.

Austin Group Defect 1561 is applied, clarifying that shell variables are initialized only from
environment variables that have valid names.

C.2.6 Word Expansions

Some shells implement brace expansion which expands, for example, file{A,B,C}.c into the
fields fileA.c, fileB.c, and fileC.c or file{1..3}.c into the fields file1.c, file2.c,
and file3.c. This form of expansion is allowed but not required by this standard, but if
supported must be performed before all of the standard word expansions. A variant which some
shells implement whereby brace expansion is performed following field splitting was
considered by the standard developers and rejected because it causes surprising behavior if the
results of parameter expansion and command substitution happen to produce a valid brace
expansion. For example, if the shell variable patt contains an arbitrary pathname, glob pattern
applications cannot rely on some_command -- $patt passing a list of pathnames that match
the pattern to some_command. Note that quoting the braces or commas prevents this form of
expansion, but quoting the periods need not prevent it.

Step (2) refers to the ``portions of fields generated by step (1)’’. For example, if the word being
expanded were "$x+$y" and IFS=+, the word would be split only if "$x" or "$y" contained
'+'; the '+' in the original word was not generated by step (1).

IFS is used for performing field splitting on the results of parameter and command substitution;
it is not used for splitting all fields. Earlier versions of the shell used it for splitting all fields
during field splitting, but this has severe problems because the shell can no longer parse its own
script. There are also important security implications caused by this behavior. All useful
applications of IFS use it for parsing input of the read utility and for splitting the results of

3880 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134563

134564

134565

134566

134567

134568

134569

134570

134571

134572

134573

134574

134575

134576

134577

134578

134579

134580

134581

134582

134583

134584

134585

134586

134587

134588

134589

134590

134591

134592

134593

134594

134595

134596

134597

134598

134599

134600

134601

134602

134603

134604

134605

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

parameter and command substitution.

The rule concerning expansion to a single field requires that if foo=abc and bar=def, that:

"$foo""$bar"

expands to the single field:

abcdef

The rule concerning empty fields can be illustrated by:

$ unset foo
$ set $foo bar '' xyz "$foo" abc
$ for i
> do
> echo "-$i-"
> done
-bar-
--
-xyz-
--
-abc-

Step (1) indicates that parameter expansion, command substitution, and arithmetic expansion
are all processed simultaneously as they are scanned. For example, the following is valid
arithmetic:

x=1
echo $(($(echo 3)+$x))

An early proposal stated that tilde expansion preceded the other steps, but this is not the case in
known historical implementations; if it were, and if a referenced home directory contained a '$'
character, expansions would result within the directory name.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0003 [49,430] is applied.

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

Austin Group Defect 985 is applied, clarifying that quote removal is not always performed.

Austin Group Defect 1038 is applied, clarifying that a '$' that is followed by a <space>, <tab>,
or a <newline>, or is not followed by any character, is treated as a literal character.

Austin Group Defect 1123 is applied, clarifying the environment in which expansions are
performed and requirements relating to empty fields.

Austin Group Defect 1193 is applied, adding optional brace expansion.

C.2.6.1 Tilde Expansion

Tilde expansion generally occurs only at the beginning of words, but an exception based on
historical practice has been included:

PATH=/posix/bin:~dgk/bin

This is eligible for tilde expansion because <tilde> follows a <colon> and none of the relevant
characters is quoted. Consideration was given to prohibiting this behavior because any of the
following are reasonable substitutes:

PATH=$(printf %s ~karels/bin : ~bostic/bin)

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3881

134606

134607

134608

134609

134610

134611

134612

134613

134614

134615

134616

134617

134618

134619

134620

134621

134622

134623

134624

134625

134626

134627

134628

134629

134630

134631

134632

134633

134634

134635

134636

134637

134638

134639

134640

134641

134642

134643

134644

134645

134646

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

for Dir in ~maart/bin ~srb/bin ...
do

PATH=${PATH:+$PATH:}$Dir
done

In the first command, explicit <colon> characters are used for each directory. In all cases, the
shell performs tilde expansion on each directory because all are separate words to the shell.

Note that expressions in operands such as:

make -k mumble LIBDIR=~chet/lib

do not qualify as shell variable assignments, and tilde expansion is not performed (unless the
command does so itself, which make does not).

Because of the requirement that the word is not quoted, the following are not equivalent; only
the last causes tilde expansion:

\~hlj/ ~h\lj/ ~"hlj"/ ~hlj\/ ~hlj/

In an early proposal, tilde expansion occurred following any unquoted <equals-sign> or
<colon>, but this was removed because of its complexity and to avoid breaking commands such
as:

rcp hostname:~marc/.profile .

System administrators on systems where // has an implementation-defined meaning which is
different to /, should not create users with a home directory of / or //, since this may lead to
unexpected filename resolution on those systems.

A suggestion was made that the special sequence "$~" should be allowed to force tilde
expansion anywhere. Since this is not historical practice, it has been left for future
implementations to evaluate. (The description in XCU Section 2.2 (on page 2472) requires that a
<dollar-sign> be quoted to represent itself, so the "$~" combination is already unspecified.)

The results of giving <tilde> with an unknown login name are undefined because the KornShell
"~+" and "~-" constructs make use of this condition, but in general it is an error to give an
incorrect login name with <tilde>. The results of having HOME unset are unspecified because
some historical shells treat this as an error.

Historically, the Korn shell performed field splitting and pathname expansion on the results of
tilde expansion, and earlier versions of this standard reflected this. However, tilde expansion
results in a pathname, and performing field splitting and pathname expansion on something
that is already a pathname is at best redundant and at worst will change the value from the
correct pathname to one or more incorrect ones. Later versions of the Korn shell do not perform
these expansions and POSIX.1-2024 has been updated to match. Note that although pathname
expansion is not performed on the results of tilde expansion, this does not prevent other parts of
the same word from being expanded. For example, ˜/a* expands to all files in $HOME
beginning with 'a'.

Austin Group Defect 1172 is applied, clarifying how quoting affects tilde expansion.

Austin Group Defect 1632 is applied, clarifying the treatment of <slash> characters in tilde
expansion.

3882 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134647

134648

134649

134650

134651

134652

134653

134654

134655

134656

134657

134658

134659

134660

134661

134662

134663

134664

134665

134666

134667

134668

134669

134670

134671

134672

134673

134674

134675

134676

134677

134678

134679

134680

134681

134682

134683

134684

134685

134686

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

C.2.6.2 Parameter Expansion

The rule for finding the closing '}' in "${...}" is the one used in the KornShell and is
upwardly-compatible with the Bourne shell, which does not determine the closing '}' until the
word is expanded. The advantage of this is that incomplete expansions, such as:

${foo

can be determined during tokenization, rather than during expansion.

Quote removal is performed when assigning the value in the ${parameter :=[word]} form of
expansion in order that a subsequent expansion of the same parameter produces the same value
as the original expansion. That is, the commands:

unset parameter
foo=${parameter:=word}
bar=${parameter}

assign the same value to foo and bar. A consequence of this is that the expansions
${parameter :=[word]} and ${parameter :-[word]} can produce different results for the same word.
For example, with parameter unset or empty:

${parameter:-a\ b}

expands to a single field "a b", whereas:

${parameter:=a\ b}

expands to two fields 'a' and 'b' (because parameter is assigned the value "a b" before its
value is substituted).

For rationale regarding expansion of "${...}" within double-quotes, see Section C.2.2.3 (on
page 3867).

The string length and substring capabilities were included because of the demonstrated need for
them, based on their usage in other shells, such as C shell and KornShell.

Historical versions of the KornShell have not performed tilde expansion on the word part of
parameter expansion; however, it is more consistent to do so.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0004 [458], XCU/TC1-2008/0005
[458], XCU/TC1-2008/0006 [457], XCU/TC1-2008/0007 [457], XCU/TC1-2008/0008 [417],
XCU/TC1-2008/0009 [457], XCU/TC1-2008/0010 [457], XCU/TC1-2008/0011 [457],
XCU/TC1-2008/0012 [457], XCU/TC1-2008/0013 [457], XCU/TC1-2008/0014 [457],
XCU/TC1-2008/0015 [457], XCU/TC1-2008/0016 [457], XCU/TC1-2008/0017 [457], and
XCU/TC1-2008/0018 [458] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0013 [888] and XCU/TC2-2008/0014
[867] are applied.

Austin Group Defect 221 is applied, removing a statement about counting brace levels and
clarifying that quote removal is performed when expanding word in ${parameter :=[word]}.

Austin Group Defect 985 is applied, clarifying when quote removal is performed.

Austin Group Defect 1052 is applied, clarifying the description of string length expansion.

Austin Group Defect 1268 is applied, removing text relating to parameter expansion inside
double-quotes.

Austin Group Defect 1478 is applied, making explicitly unspecified the results of parameter
expansions that test whether the parameter '*' or '@' is unset or null.

Austin Group Defect 1491 is applied, restructuring a paragraph that used ``Otherwise’’ after two

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3883

134687

134688

134689

134690

134691

134692

134693

134694

134695

134696

134697

134698

134699

134700

134701

134702

134703

134704

134705

134706

134707

134708

134709

134710

134711

134712

134713

134714

134715

134716

134717

134718

134719

134720

134721

134722

134723

134724

134725

134726

134727

134728

134729

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

conditions.

Austin Group Defect 1561 is applied, clarifying that the varieties of parameter expansion that
provide for substring processing process parameter values as characters.

C.2.6.3 Command Substitution

The "$()" form of command substitution solves a problem of inconsistent behavior when using
backquotes. For example:

Command Output
echo '\$x' \$x
echo `echo '\$x'` $x
echo $(echo '\$x') \$x

Additionally, the backquoted syntax has historical restrictions on the contents of the embedded
command. While the newer "$()" form can process any kind of valid embedded script (with a
few caveats; see below), the backquoted form cannot handle some valid scripts that include
backquotes. For example, these otherwise valid embedded scripts do not work in the left
column, but do work on the right:

echo ` echo $(
cat <<\eof cat <<\eof
a here-doc with ` a here-doc with)
eof eof
`)

echo ` echo $(
echo abc # a comment with ` echo abc # a comment with)
`)

echo ` echo $(
echo '`' echo ')'
`)

Because of these inconsistent behaviors, the backquoted variety of command substitution is not
recommended for new applications that nest command substitutions or attempt to embed
complex scripts.

The KornShell feature:

If the commands string is of the form <word, word is expanded to generate a pathname, and
the value of the command substitution is the contents of this file with any trailing
<newline> characters deleted.

was omitted from the Shell and Utilities volume of POSIX.1-2024 because $(cat word) is an
appropriate substitute. However, to prevent breaking numerous scripts relying on this feature, it
is unspecified to have a script within "$()" that has only redirections.

In IEEE Std 1003.2-1992 the $(commands) form of command substitution only had unspecified
behavior for a commands string consisting solely of redirections. However, two additional
unspecified cases have since been added with relation to aliases:

1. Implementations are permitted to parse the entire commands string before executing any
of it, and in this case alias and unalias commands in commands have no effect during
parsing. For example, the following commands:

alias foo=’echo "hello globe"’

3884 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134730

134731

134732

134733

134734

134735

134736

134737

134738

134739

134740

134741

134742

134743

134744

134745

134746

134747

134748

134749

134750

134751

134752

134753

134754

134755

134756

134757

134758

134759

134760

134761

134762

134763

134764

134765

134766

134767

134768

134769

134770

134771

134772

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

echo $(alias foo=’echo "Hello World"’;foo)

produce the output "hello globe" if the commands string is executed as an entire
command and produce the output "Hello World" if the commands string is executed
incrementally.

2. Although existing aliases are required to be expanded when the shell parses the input
that follows the "$(" in order to find the terminating ')' (see Section 2.3, on page 2475),
it is unspecified whether the terminating ')' can result from alias substitution. For
example, with this script:

alias foo="echo foo)"
echo $(foo ; echo bar

some shells output lines containing "foo" and "bar" whereas other shells report a
syntax error because they do not find a terminating ')' for the command substitution.

Arithmetic expansions have precedence over command substitutions. That is, if the shell can
parse an expansion beginning with "$((" as an arithmetic expansion then it will do so. It will
only parse the expansion as a command substitution (that starts with a subshell) if it determines
that it cannot parse the expansion as an arithmetic expansion. If the syntax is valid for neither
type of expansion, then it is unspecified what kind of syntax error the shell reports.

How well the shell performs this determination is a quality of implementation issue. Current
shell implementations use heuristics. In particular, the shell need not evaluate nested expansions
when determining whether it can parse an expansion beginning with "$((" as an arithmetic
expansion. For example:

$((a $op b))

is always an arithmetic expansion if "$op" expands to, say, '+', but if "$op" expands to '('
then the shell might still parse the expansion as an arithmetic expansion (resulting in a syntax
error due to unbalanced parentheses) or it might perform a command substitution.

This standard requires that conforming applications always separate the "$(" and '(' with
white space when a command substitution starts with a subshell. This is because
implementations may support extensions in arithmetic expressions which could result in the
shell parsing the input as an arithmetic expansion even though a minimally conforming shell
would not. For example, many shells support arrays with the array index (which can be an
expression) in square brackets. Therefore, the presence of "myfile[0-9]" within an expansion
beginning "$((" is no guarantee that it will be parsed as a command substitution.

The ambiguity is not restricted to the simple case of a single subshell. More complicated
ambiguous cases are possible (even with just the standard shell syntax), such as:

$((cat <<EOH
+ ((
EOH
) && (cat <<EOH
)) + 1 +
EOH
))

This can be parsed as an arithmetic expansion, with cat and EOH as the names of shell variables.
Ambiguous cases also exist where the end of the expansion is at a different location for the
arithmetic expansion and the command substitution:

$((cat <<EOF
+((((

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3885

134773

134774

134775

134776

134777

134778

134779

134780

134781

134782

134783

134784

134785

134786

134787

134788

134789

134790

134791

134792

134793

134794

134795

134796

134797

134798

134799

134800

134801

134802

134803

134804

134805

134806

134807

134808

134809

134810

134811

134812

134813

134814

134815

134816

134817

134818

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

EOF
) && (
cat <<EOF
+
EOF
))

This is an incomplete arithmetic expansion, but would have been a (complete) command
substitution if it could not have been parsed as an arithmetic expansion. If this expansion occurs
at the end of input then the shell reports a syntax error; it does not parse it as a command
substitution.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/4 is applied, changing the text from: ``If a
command substitution occurs inside double-quotes, it shall not be performed on the results of
the substitution.’’ to: ``If a command substitution occurs inside double-quotes, field splitting and
pathname expansion shall not be performed on the results of the substitution.’’. The
replacement text taken from the ISO POSIX-2: 1993 standard is clearer about the items that are
not performed.

SD5-XCU-ERN-84 is applied, clarifying how the search for the matching backquote is satisfied.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0019 [217] is applied.

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

Austin Group Defect 953 is applied, clarifying how the commands in command substitutions are
parsed.

Austin Group Defect 1015 is applied, clarifying the handling of <backslash> when a backquoted
command substitution is within double-quotes.

Austin Group Defect 1268 is applied, removing text relating to command substitution inside
double-quotes.

Austin Group Defect 1342 is applied, clarifying the requirements for alias substitutions inside
command substitutions.

Austin Group Defect 1560 is applied, clarifying that the standard output of the command(s) in a
command substitution is treated as a sequence of bytes.

C.2.6.4 Arithmetic Expansion

The standard developers agreed that there was a strong desire for some kind of arithmetic
evaluator to provide functionality similar to expr, that relating it to '$' makes it work well with
the standard shell language and provides access to arithmetic evaluation in places where
accessing a utility would be inconvenient.

The syntax and semantics for arithmetic were revised for the ISO/IEC 9945-2: 1993 standard.
The language represents a simple subset of the previous arithmetic language (which was
derived from the KornShell "(())" construct). The syntax was changed from that of a
command denoted by ((expression)) to an expansion denoted by $((expression)). The new form is
a dollar expansion ('$') that evaluates the expression and substitutes the resulting value.
Objections to the previous style of arithmetic included that it was too complicated, did not fit in
well with the use of variables in the shell, and its syntax conflicted with subshells. The
justification for the new syntax is that the shell is traditionally a macro language, and if a new
feature is to be added, it should be accomplished by extending the capabilities presented by the
current model of the shell, rather than by inventing a new one outside the model; adding a new
dollar expansion was perceived to be the most intuitive and least destructive way to add such a

3886 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134819

134820

134821

134822

134823

134824

134825

134826

134827

134828

134829

134830

134831

134832

134833

134834

134835

134836

134837

134838

134839

134840

134841

134842

134843

134844

134845

134846

134847

134848

134849

134850

134851

134852

134853

134854

134855

134856

134857

134858

134859

134860

134861

134862

134863

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

new capability.

The standard requires assignment operators to be supported (as listed in XCU Section 1.1.2, on
page 2457), and since arithmetic expansions are not specified to be evaluated in a subshell
environment, changes to variables there have to be in effect after the arithmetic expansion, just
as in the parameter expansion "${x=value}".

Note, however, that "$((x=5))" need not be equivalent to "$(($x=5))". If the value of
the environment variable x is the string "y=", the expansion of "$((x=5))" would set x to 5
and output 5, but "$(($x=5))" would output 0 if the value of the environment variable y is
not 5 and would output 1 if the environment variable y is 5. Similarly, if the value of the
environment variable is 4, the expansion of "$((x=5))" would still set x to 5 and output 5,
but "$(($x=5))" (which would be equivalent to "$((4=5))") would yield a syntax
error.

In early proposals, a form $[expression] was used. It was functionally equivalent to the "$(())"
of the current text, but objections were lodged that the 1988 KornShell had already implemented
"$(())" and there was no compelling reason to invent yet another syntax. Furthermore, the
"$[]" syntax had a minor incompatibility involving the patterns in case statements.

The portion of the ISO C standard arithmetic operations selected corresponds to the operations
historically supported in the KornShell. In addition to the exceptions listed in XCU Section 2.6.4
(on page 2490), the use of the following are explicitly outside the scope of the rules defined in
XCU Section 1.1.2.1 (on page 2457):

• The prefix operator '&' and the "[]", "->", and '.' operators.

• Casts

It was concluded that the test command ([) was sufficient for the majority of relational arithmetic
tests, and that tests involving complicated relational expressions within the shell are rare, yet
could still be accommodated by testing the value of "$(())" itself. For example:

a complicated relational expression
while [$(((($x + $y)/($a * $b)) < ($foo*$bar))) -ne 0]

or better yet, the rare script that has many complex relational expressions could define a
function like this:

val() {
return $((!$1))

}

and complicated tests would be less intimidating:

while val $(((($x + $y)/($a * $b)) < ($foo*$bar)))
do

some calculations
done

A suggestion that was not adopted was to modify true and false to take an optional argument,
and true would exit true only if the argument was non-zero, and false would exit false only if the
argument was non-zero:

while true $(($x > 5 && $y <= 25))

There is a minor portability concern with the new syntax. The example "$((2+2))" could have
been intended to mean a command substitution of a utility named "2+2" in a subshell. The
standard developers considered this to be obscure and isolated to some KornShell scripts
(because "$()" command substitution existed previously only in the KornShell). The text on

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3887

134864

134865

134866

134867

134868

134869

134870

134871

134872

134873

134874

134875

134876

134877

134878

134879

134880

134881

134882

134883

134884

134885

134886

134887

134888

134889

134890

134891

134892

134893

134894

134895

134896

134897

134898

134899

134900

134901

134902

134903

134904

134905

134906

134907

134908

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

command substitution requires that the "$(" and '(' be separate tokens if this usage is
needed.

An example such as:

echo $((echo hi);(echo there))

should not be misinterpreted by the shell as arithmetic because attempts to balance the
parentheses pairs would indicate that they are subshells. However, as indicated by XBD Section
3.85 (on page 44), a conforming application must separate two adjacent parentheses with white
space to indicate nested subshells.

The standard is intentionally silent about how a variable’s numeric value in an expression is
determined from its normal ``sequence of bytes’’ value. It could be done as a text substitution, as
a conversion like that performed by strtol(), or even recursive evaluation. Therefore, the only
cases for which the standard is clear are those for which both conversions produce the same
result. The cases where they give the same result are those where the sequence of bytes form a
valid integer constant. Therefore, if a variable does not contain a valid integer constant, the
behavior is unspecified.

For the commands:

x=010; echo $((x += 1))

the output must be 9.

For the commands:

x=' 1'; echo $((x += 1))

the results are unspecified.

For the commands:

x=1+1; echo $((x += 1))

the results are unspecified.

Although the ISO C standard requires support for long long and allows extended integer types
with higher ranks, POSIX.1-2024 only requires arithmetic expansions to support signed long
integer arithmetic. Implementations are encouraged to support signed integer values at least as
large as the size of the largest file allowed on the implementation.

Implementations are also allowed to perform floating-point evaluations as long as an
application won’t see different results for expressions that would not overflow signed long
integer expression evaluation. (This includes appropriate truncation of results to integer values.)

Changes made in response to IEEE PASC Interpretation 1003.2 #208 removed the requirement
that the integer constant suffixes l and L had to be recognized. The ISO POSIX-2: 1993 standard
did not require the u, ul, uL, U, Ul, UL, lu, lU, Lu, and LU suffixes since only signed integer
arithmetic was required. Since all arithmetic expressions were treated as handling signed long
integer types anyway, the l and L suffixes were redundant. No known scripts used them and
some historic shells did not support them. When the ISO/IEC 9899: 1999 standard was used as
the basis for the description of arithmetic processing, the ll and LL suffixes and combinations
were also not required. Implementations are still free to accept any or all of these suffixes, but
are not required to do so.

There was also some confusion as to whether the shell was required to recognize character
constants. Syntactically, character constants were required to be recognized, but the
requirements for the handling of <backslash> and single-quote characters (needed to specify
character constants) within an arithmetic expansion were ambiguous. Furthermore, no known

3888 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134909

134910

134911

134912

134913

134914

134915

134916

134917

134918

134919

134920

134921

134922

134923

134924

134925

134926

134927

134928

134929

134930

134931

134932

134933

134934

134935

134936

134937

134938

134939

134940

134941

134942

134943

134944

134945

134946

134947

134948

134949

134950

134951

134952

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

shells supported them. Changes made in response to IEEE PASC Interpretation 1003.2 #208
removed the requirement to support them (if they were indeed required before). POSIX.1-2024
clearly does not require support for character constants.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/3 is applied, clarifying arithmetic
expressions.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0020 [50] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0015 [584] is applied.

C.2.6.5 Field Splitting

The operation of field splitting using IFS, as described in early proposals, was based on the way
the KornShell splits words, but it is incompatible with other common versions of the shell.
However, each has merit, and so a decision was made to allow both. If the IFS variable is unset
or is <space><tab><newline>, the operation is equivalent to the way the System V shell splits
words. Using characters outside the <space><tab><newline> set yields the KornShell behavior,
where each of the non-<space><tab><newline>s is significant. This behavior, which affords the
most flexibility, was taken from the way the original awk handled field splitting.

The different handling of white space and non-white-space characters in IFS can be summarized
as a pseudo-ERE:

(s*ns*|s+)

where s is an IFS white-space character and n is a character in the IFS that is not white space.
Any string matching that ERE delimits a field, except that the s+ form does not delimit fields at
the beginning or the end of a line. For example, if IFS is <space>/<comma>/<tab>, the string:

<space><space>red<space><space>,<space>white<space>blue

yields the three colors as the delimited fields.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0016 [832] is applied.

Austin Group Defect 1123 is applied, clarifying the requirements if no fields are delimited.

Austin Group Defect 1560 is applied, clarifying that the results of word expansions are treated as
a sequences of bytes when searching for (bytes that form) IFS characters.

Austin Group Defect 1649 is applied, clarifying how field splitting is performed.

C.2.6.6 Pathname Expansion

There is no additional rationale provided for this section.

C.2.6.7 Quote Removal

The golden rule in quote removal is that if a quote character was treated as special in the original
word, it is removed; if it was treated as a literal character, it is not removed.

Austin Group Defect 221 is applied, clarifying the conditions under which quote characters are,
or are not, removed.

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3889

134953

134954

134955

134956

134957

134958

134959

134960

134961

134962

134963

134964

134965

134966

134967

134968

134969

134970

134971

134972

134973

134974

134975

134976

134977

134978

134979

134980

134981

134982

134983

134984

134985

134986

134987

134988

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

C.2.7 Redirection

In the System Interfaces volume of POSIX.1-2024, file descriptors are integers in the range
0−({OPEN_MAX}−1). The file descriptors discussed in XCU Section 2.7 (on page 2493) are that
same set of small integers.

Having multi-digit file descriptor numbers for I/O redirection can cause some obscure
compatibility problems. Specifically, scripts that depend on an example command:

echo 22>/dev/null

echoing "2" to standard error or "22" to standard output are no longer portable. However, the
file descriptor number must still be delimited from the preceding text. For example:

cat file2>foo

writes the contents of file2, not the contents of file.

The limitation to 9 file descriptors is overcome in some shells via a form of redirection whereby a
shell variable stores the file descriptor number. For example:

exec {fdvar}> foo

opens the file foo on a file descriptor greater than 9 and stores the file descriptor number in
shell variable fdvar. (This can later be closed using exec {fdvar}>&-.) This form of
redirection is allowed but not required by this standard.

The ">|" format of output redirection was adopted from the KornShell. Along with the
noclobber option, set −C, it provides a safety feature to prevent inadvertent overwriting of
existing files. (See the RATIONALE for the pathchk utility for why this step was taken.) The
restriction on regular files is historical practice.

The System V shell and the KornShell have differed historically on pathname expansion of word;
the former never performed it, the latter only when the result was a single field (file). As a
compromise, it was decided that the KornShell functionality was useful, but only as a shorthand
device for interactive users. No reasonable shell script would be written with a command such
as:

cat foo > a*

Thus, shell scripts are prohibited from doing it, while interactive users can select the shell with
which they are most comfortable.

The construct "2>&1" is often used to redirect standard error to the same file as standard
output. Since the redirections take place beginning to end, the order of redirections is significant.
For example:

ls > foo 2>&1

directs both standard output and standard error to file foo. However:

ls 2>&1 > foo

only directs standard output to file foo because standard error was duplicated as standard
output before standard output was directed to file foo.

Applications should not use the [n]<&- or [n]>&- operators to execute a utility or application
with file descriptor 0 not open for reading or with file descriptor 1 or 2 not open for writing, as
this might cause the executed program (or shell built-in) to misbehave. In order not to pass on
these file descriptors to an executed utility or application, applications should not just close
them but should reopen them on, for example, /dev/null. Some implementations may reopen
them automatically, but applications should not rely on this being done.

3890 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

134989

134990

134991

134992

134993

134994

134995

134996

134997

134998

134999

135000

135001

135002

135003

135004

135005

135006

135007

135008

135009

135010

135011

135012

135013

135014

135015

135016

135017

135018

135019

135020

135021

135022

135023

135024

135025

135026

135027

135028

135029

135030

135031

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

The "<>" operator could be useful in writing an application that worked with several terminals,
and occasionally wanted to start up a shell. That shell would in turn be unable to run
applications that run from an ordinary controlling terminal unless it could make use of "<>"
redirection. The specific example is a historical version of the pager more, which reads from
standard error to get its commands, so standard input and standard output are both available
for their usual usage. There is no way of saying the following in the shell without "<>":

cat food | more - >/dev/tty03 2<>/dev/tty03

Another example of "<>" is one that opens /dev/tty on file descriptor 3 for reading and writing:

exec 3<> /dev/tty

An example of creating a lock file for a critical code region:

set -C
until 2> /dev/null > lockfile
do sleep 30
done
set +C
perform critical function
rm lockfile

Since /dev/null is not a regular file, no error is generated by redirecting to it in noclobber mode.

Tilde expansion is not performed on a here-document because the data is treated as if it were
enclosed in double-quotes.

Austin Group Defect 1193 is applied, adding the optional redirection form {location}redir-
op word.

Austin Group Defect 1232 is applied, clarifying the allowed behaviors in an interactive shell
when pathname expansion on the word following a redirection operator would result in more
than one word.

Austin Group Defect 1493 is applied, moving some information from this section to the
definition of ``file descriptor’’ in XBD Section 3.141 (on page 51).

C.2.7.1 Redirecting Input

There is no additional rationale provided for this section.

C.2.7.2 Redirecting Output

Earlier versions of this standard did not require redirection using '>' when noclobber is set to
perform the file creation step as an atomic operation. Historical shells just called stat() to check
if a regular file existed and then called creat(). The operation thus involved a race condition
which meant that it could not be used for reliable creation of lock files. Many shell
implementations improved on this by using open() with the O_CREAT and O_EXCL flags set as
one step in a multi-step process which still meant that an existing non-regular file (for example
/dev/null, /dev/tty, or a FIFO) was opened successfully. However, the methods employed still
involved a race condition and could produce misleading diagnostics if there is concurrent
creation or removal of files.

An ideal solution would be an O_NOCLOBBER flag for open() which the shell could use in
order to perform the entire operation atomically, and implementations are encouraged to adopt
this solution, adding the flag as described in the FUTURE DIRECTIONS section of open() (on
page 1515), and using it in the implementation’s POSIX shell and in other shells. Authors of

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3891

135032

135033

135034

135035

135036

135037

135038

135039

135040

135041

135042

135043

135044

135045

135046

135047

135048

135049

135050

135051

135052

135053

135054

135055

135056

135057

135058

135059

135060

135061

135062

135063

135064

135065

135066

135067

135068

135069

135070

135071

135072

135073

135074

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

portable shells should make use of #ifdef O_NOCLOBBER so that it is used on
implementations that provide it.

If O_NOCLOBBER is not used, shells can use one of the following methods:

1. The ``stat first’’ method.

a. Call stat() and if the file exists and is a regular file, the redirection fails. Otherwise:

b. Call open() without O_CREAT or O_TRUNC to open an existing file. If the open
succeeds, use fstat() to check whether the opened file is a regular file. If it is, close
it and fail the redirection. If it is a non-regular file, the redirection succeeds.
Otherwise:

c. Call open() with O_CREAT|O_EXCL. The redirection succeeds or fails depending
on whether the open succeeds or fails.

2. The ``exclusive create first’’ method.

a. Call open() with O_CREAT|O_EXCL. If the open succeeds, the redirection
succeeds. If the open fails with [EMFILE] or [ENFILE], use stat() to check whether
a regular file exists; if it does, fail the redirection. Otherwise:

b. Call open() without O_CREAT or O_TRUNC to open an existing file. If the open
succeeds, use fstat() to check whether the opened file is a regular file. If it is, close
it and fail the redirection. If it is a non-regular file, the redirection succeeds. If the
second open fails, the redirection fails with a diagnostic based on the errno value
set by the first open.

(A minor variation of this method could also be used whereby step 2.b is only done if the
open() in step 2.a fails with [EEXIST].)

Method 1 is in widespread use. Method 2 has not been observed exactly as described, although
an implementation which omits the stat() in step 2.a has been observed. Without the stat(), this
method has a problem in that if a regular file exists but the open() fails with [EMFILE] or
[ENFILE] instead of [EEXIST] (which is to be expected if those conditions exist, because
detecting [EEXIST] is more expensive), then the shell will give an incorrect diagnostic.
(Reporting that no file descriptors are available implies that a non-regular file exists, because the
shell tried to open the file and it is not supposed to open an existing regular file.)

A variant of method 1 which omits the initial stat() call has also been observed; this has the
same problem with [EMFILE] and [ENFILE]. With the stat(), this misleading diagnostic can also
happen, but only if a regular file is created in the timing window between steps 1.a and 1.b,
which makes it an allowed case. (The standard allows a misleading diagnostic when there is
concurrent creation or removal of files.)

Both methods have cases where a misleading diagnostic is given when a non-regular file is
concurrently created or removed. With method 1 it occurs if no file exists at steps 1.a and 1.b,
and a non-regular file is created before step 1.c. With method 2 it occurs if a non-regular file
exists at step 2.a and is removed before step 2.b. (In both cases, the diagnostic misleadingly
implies that a regular file exists).

Both methods differ from historical shell behavior in that the redirection fails if there is an
existing symbolic link whose target does not exist, instead of the link’s target being created as a
regular file. The standard developers consider reliable lock file creation to be more important
than the creation of symbolic link targets.

Creation of lock files and unique (often temporary) files with noclobber set is only reliable
provided neither non-regular files nor symbolic links to non-regular files exist or are created in
the same directory with the same names, and no other processes delete the files while still in use.

3892 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135075

135076

135077

135078

135079

135080

135081

135082

135083

135084

135085

135086

135087

135088

135089

135090

135091

135092

135093

135094

135095

135096

135097

135098

135099

135100

135101

135102

135103

135104

135105

135106

135107

135108

135109

135110

135111

135112

135113

135114

135115

135116

135117

135118

135119

135120

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

If a directory such as /tmp is used for lock files, then another process could accidentally or
maliciously create a FIFO (or a special file, given sufficient privilege) with the same name,
causing multiple processes to simultaneously open the same lock file instead of one succeeding
and the others failing.

Austin Group Defects 1016 and 1364 are applied, changing the requirements when the noclobber
option is set.

C.2.7.3 Appending Redirected Output

Note that when a file is opened (even with the O_APPEND flag set), the initial file offset for that
file is set to the beginning of the file. Some historic shells set the file offset to the current end-of-
file when append mode shell redirection was used, but this is not allowed by POSIX.1-2024.

Austin Group Defect 1016 is applied, changing ``with the O_APPEND flag’’ to ``with the
O_APPEND flag set’’.

C.2.7.4 Here-Document

Historical shell behavior was to treat the end of input as being equivalent to the delimiter of a
here-document, terminating the here-document, usually without any indication, and continuing
as if the delimiter had been recognized. This can cause problems where the delimiter had been
intended to occur much earlier in the script, but was incorrectly entered—a mistake which for
many other errors would have resulted in a syntax error, and an aborted script, instead simply
generates incorrect results. Because of this some shell implementations have changed to
reporting an undelimited here-document as a syntax error. Other implementations are
encouraged to do the same.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0017 [890], XCU/TC2-2008/0018
[583], and XCU/TC2-2008/0019 [580] are applied.

Austin Group Defect 1036 is applied, clarifying how here-documents are parsed.

Austin Group Defect 1411 is applied, adding a paragraph break.

C.2.7.5 Duplicating an Input File Descriptor

The file descriptor duplication redirection operators, [n]<&word and [n]>&word, make a copy
of one file descriptor as another. If the operation is successful, the new file descriptor has the
same access mode as the source (old) file descriptor, because the access mode is determined by
the open file description to which both file descriptors point. To avoid a redirection error,
applications need to ensure that they use the appropriate redirection operator for the access
mode of the file descriptor being duplicated.

Austin Group Defect 1536 is applied, making it optional whether attempting to duplicate an
open file descriptor that is not open for input results in a redirection error.

C.2.7.6 Duplicating an Output File Descriptor

See Section C.2.7.5.

Austin Group Defect 1536 is applied, making it optional whether attempting to duplicate an
open file descriptor that is not open for output results in a redirection error.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3893

135121

135122

135123

135124

135125

135126

135127

135128

135129

135130

135131

135132

135133

135134

135135

135136

135137

135138

135139

135140

135141

135142

135143

135144

135145

135146

135147

135148

135149

135150

135151

135152

135153

135154

135155

135156

135157

135158

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

C.2.7.7 Open File Descriptors for Reading and Writing

There is no additional rationale provided for this section.

C.2.8 Exit Status and Errors

There is no additional rationale provided for this section.

C.2.8.1 Consequences of Shell Errors

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0020 [882] and XCU/TC2-2008/0021
[717,882] are applied.

Austin Group Defect 914 is applied, requiring that the shell does not exit when a redirection
error occurs with compound commands or with function execution.

Austin Group Defect 1427 is applied, changing this section to account for the effect of the
command utility when it is used to execute a special built-in utility.

Austin Group Defect 1629 is applied, requiring that the shell exits if an unrecoverable read error
occurs when reading commands.

C.2.8.2 Exit Status for Commands

There is a historical difference in sh and ksh non-interactive error behavior. When a command
named in a script is not found, some implementations of sh exit immediately, but ksh continues
with the next command. Thus, the Shell and Utilities volume of POSIX.1-2024 says that the shell
``may’’ exit in this case. This puts a small burden on the programmer, who has to test for
successful completion following a command if it is important that the next command not be
executed if the previous command was not found. If it is important for the command to have
been found, it was probably also important for it to complete successfully. The test for successful
completion would not need to change.

Historically, shells have returned an exit status of 128+n, where n represents the signal number.
Since signal numbers are not standardized, there is no portable way to determine which signal
caused the termination. Also, it is possible for a command to exit with a status in the same range
of numbers that the shell would use to report that the command was terminated by a signal.
Implementations are encouraged to choose exit values greater than 256 to indicate programs that
terminate by a signal so that the exit status cannot be confused with an exit status generated by a
normal termination. However, the use of exit values greater than 256 poses a problem for the
shell’s own exit status. Historically this was the exit status of the last command invoked by the
shell, but if the last command was terminated by a signal and was assigned an exit status greater
than 256 by the shell, this value would be truncated to eight bits in the shell’s exit status.
Likewise truncation would occur with use of

exit $?

or

ret=$?
....
exit $ret

in shell scripts. To avoid this truncation, shells which assign exit statuses greater than 256 are
required to propagate the wait status of the last command to the shell’s own wait status (by
sending itself the same signal), and to handle exit values greater than 256 passed to the exit

3894 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135159

135160

135161

135162

135163

135164

135165

135166

135167

135168

135169

135170

135171

135172

135173

135174

135175

135176

135177

135178

135179

135180

135181

135182

135183

135184

135185

135186

135187

135188

135189

135190

135191

135192

135193

135194

135195

135196

135197

135198

135199

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

builtin by mimicking the wait status that would give rise to assignment of that exit status in the
shell. Note that this requirement does not apply to signals that do not cause termination, such as
SIGCHLD, since the shell can never actually assign a corresponding exit status greater than 256,
and the requirement is worded in terms of this assignment.

Historical shells make the distinction between ``utility not found’’ and ``utility found but cannot
execute’’ in their error messages. By specifying two seldomly used exit status values for these
cases, 127 and 126 respectively, this gives an application the opportunity to make use of this
distinction without having to parse an error message that would probably change from locale to
locale. The command, env, nohup, and xargs utilities in the Shell and Utilities volume of
POSIX.1-2024 have also been specified to use this convention.

When a command fails during word expansion or redirection, most historical implementations
exit with a status of 1. However, there was some sentiment that this value should probably be
much higher so that an application could distinguish this case from the more normal exit status
values. Thus, the language ``greater than zero’’ was selected to allow either method to be
implemented.

If a C application calls exit(256), the command’s exit status in the shell becomes zero due to
the modulo 256 operation. Since zero is interpreted as ``true’’ or ``success’’ for if statements,
AND and OR lists, set -e, and so on, applications should be careful to avoid exiting with a
value that is a multiple of 256 unless the value is intended to be interpreted as true or success.

To avoid ambiguity caused by the modulo 256 operation, applications are encouraged to avoid
using a count or the result of a computation as the exit value unless the value is guaranteed to be
non-negative and less than 256.

The ambiguity caused by the modulo 256 operation is unfortunate, but required due to historical
implementation behavior. A future version of this standard may change the definition of exit
status to remove the modulo 256 requirement and use all bits of the value passed to exit() (or
equivalent), and may introduce a way to select whether the special parameter '?' contains the
exit status modulo 256 or the full exit status.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0022 [717] is applied.

Austin Group Defect 51 is applied, clarifying the exit status when a command is terminated due
to the receipt of a signal.

Austin Group Defect 947 is applied, clarifying the exit status of commands.

C.2.9 Shell Commands

A description of an ``empty command’’ was removed from an early proposal because it is only
relevant in the cases of sh −c "", system(""), or an empty shell-script file (such as the
implementation of true on some historical systems). Since it is no longer mentioned in the Shell
and Utilities volume of POSIX.1-2024, it falls into the silently unspecified category of behavior
where implementations can continue to operate as they have historically, but conforming
applications do not construct empty commands. (However, note that sh does explicitly state an
exit status for an empty string or file.) In an interactive session or a script with other commands,
extra <newline> or <semicolon> characters, such as:

$ false
$
$ echo $?
1

would not qualify as the empty command described here because they would be consumed by

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3895

135200

135201

135202

135203

135204

135205

135206

135207

135208

135209

135210

135211

135212

135213

135214

135215

135216

135217

135218

135219

135220

135221

135222

135223

135224

135225

135226

135227

135228

135229

135230

135231

135232

135233

135234

135235

135236

135237

135238

135239

135240

135241

135242

135243

135244

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

other parts of the grammar.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0023 [473] is applied.

C.2.9.1 Simple Commands

Austin Group Defect 1224 is applied, correcting a mismatch between the description of simple
commands and the formal simple_command grammar.

Austin Group Defect 1227 is applied, inserting additional subsection headings.

Order of Processing

The enumerated list is used only when the command is actually going to be executed. For
example, in:

true || $foo *

no expansions are performed.

Expansion of words in an assignment context following the command name can only occur for
declaration utilities, and only when the word can be used as a variable assignment in isolation.

For example, this code sequence exports the single variable a with the value "1 b=2", but
invokes make with the macro a set to '1' and b set to '2', since make is not a declaration utility:

set ’1 b=2’
export a=$1
make a=$1

Conversely, this code sequence exports two variables, a set to '1' and b set to '2', because the
use of quoting means that the word could not be recognized as a variable assignment, and
regular expansion rules require that field splitting occurs on the unquoted expansion of $1:

set ’1 b=2’
export \a=$1

Likewise, this code sequence will not be parsed in assignment context, but is still required to
export the variable named foo with the value '1':

var=foo
export $var=1

Implementations are permitted to provide extensions that serve as declaration utilities, such as
typeset or local, or even a way to define a function that can behave as a declaration utility.

Declaration utilities are only required to be recognized via lexical analysis; if any expansions are
required before the command name is known, or before the first argument to the command utility
is known, then it is unspecified whether subsequent arguments will be treated with an
assignment context during expansion. For example, it is unspecified whether

var=export; $var a=~

sets the variable a to a literal <tilde> or to the value of $HOME, since lexical analysis sees "$var"
rather than "export" as the command name.

Austin Group Defects 351 and 1535 are applied, adding requirements relating to declaration
utilities.

3896 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135245

135246

135247

135248

135249

135250

135251

135252

135253

135254

135255

135256

135257

135258

135259

135260

135261

135262

135263

135264

135265

135266

135267

135268

135269

135270

135271

135272

135273

135274

135275

135276

135277

135278

135279

135280

135281

135282

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

Variable Assignments

The following example illustrates both how a variable assignment without a command name
affects the current execution environment, and how an assignment with a command name only
affects the execution environment of the command:

$ x=red
$ echo $x
red
$ export x
$ sh -c 'echo $x'
red
$ x=blue sh -c 'echo $x'
blue
$ echo $x
red

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0021 [255] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0024 [654] is applied.

Austin Group Defect 1009 is applied, clarifying the behavior when a special built-in utility is
executed with a variable assignment.

Commands with no Command Name

This next example illustrates that redirections without a command name are still performed:

$ ls foo
ls: foo: no such file or directory
$ > foo
$ ls foo
foo

A command without a command name, but one that includes a command substitution, has an
exit status of the last command substitution that the shell performed. For example:

if x=$(command)
then ...
fi

An example of redirections without a command name being performed in a subshell shows that
the here-document does not disrupt the standard input of the while loop:

IFS=:
while read a b
do echo $a

<<-eof
Hello
eof

done </etc/passwd

Following are examples of commands without command names in AND-OR lists:

> foo || {
echo "error: foo cannot be created" >&2
exit 1

}

set saved if /vmunix.save exists

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3897

135283

135284

135285

135286

135287

135288

135289

135290

135291

135292

135293

135294

135295

135296

135297

135298

135299

135300

135301

135302

135303

135304

135305

135306

135307

135308

135309

135310

135311

135312

135313

135314

135315

135316

135317

135318

135319

135320

135321

135322

135323

135324

135325

135326

135327

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

test -f /vmunix.save && saved=1

Command substitution and redirections without command names both occur in subshells, but
they are not necessarily the same ones. For example, in:

exec 3> file
var=$(echo foo >&3) 3>&1

it is unspecified whether foo is echoed to the file or to standard output.

Austin Group Defect 1150 is applied, clarifying the exit status of a command that has no
command name and has more than one command substitution.

Command Search and Execution

This description requires that the shell can execute shell scripts directly, even if the underlying
system does not support the common "#!" interpreter convention. That is, if file foo contains
shell commands and is executable, the following executes foo:

./foo

The command search shown here does not match all historical implementations. A more typical
sequence has been:

• Any built-in (special or regular)

• Functions

• Path search for executable files

But there are problems with this sequence. Since the programmer has no idea in advance which
utilities might have been built into the shell, a function cannot be used to override portably a
utility of the same name. (For example, a function named cd cannot be written for many
historical systems.) Furthermore, the PA TH variable is partially ineffective in this case, and only
a pathname with a <slash> can be used to ensure a specific executable file is invoked.

After the execve() failure described, the shell normally executes the file as a shell script. Some
implementations, however, attempt to detect whether the file is actually a script and not an
executable from some other architecture. The method used by the KornShell is allowed by the
text that indicates non-text files may be bypassed.

The sequence selected for the Shell and Utilities volume of POSIX.1-2024 acknowledges that
special built-ins cannot be overridden, but gives the programmer full control over which
versions of other utilities are executed (with some exceptions). It provides a means of
suppressing function lookup (via the command utility) for the user’s own functions and, with the
exception of the intrinsic utilities (see XCU Section 1.7, on page 2470), ensures that any regular
built-ins or functions provided by the implementation are under the control of the path search.
The mechanisms for associating non-intrinsic built-ins or functions with executable files in the
path are not specified by the Shell and Utilities volume of POSIX.1-2024, but the wording
requires that if either is implemented, the application is not able to distinguish a function or
built-in from an executable (other than in terms of performance, presumably). The
implementation ensures that all effects specified by the Shell and Utilities volume of
POSIX.1-2024 resulting from the invocation of the regular built-in or function (interaction with
the environment, variables, traps, and so on) are identical to those resulting from the invocation
of an executable file.

Various historical implementations have used the names in item 1.b. as built-ins or reserved
words. This standard does not specify their behavior, but their existence means that it is
important for portable applications to avoid giving functions (or utilities in PA TH) those names
because the function (or utility in PA TH) might not be executed as expected.

3898 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135328

135329

135330

135331

135332

135333

135334

135335

135336

135337

135338

135339

135340

135341

135342

135343

135344

135345

135346

135347

135348

135349

135350

135351

135352

135353

135354

135355

135356

135357

135358

135359

135360

135361

135362

135363

135364

135365

135366

135367

135368

135369

135370

135371

135372

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/4 is applied, updating the case where
execve() fails due to an error equivalent to the [ENOEXEC] error.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0022 [168], XCU/TC1-2008/0023
[168], XCU/TC1-2008/0024 [168], XCU/TC1-2008/0025 [168], XCU/TC1-2008/0026 [168,430],
XCU/TC1-2008/0027 [168,430], and XCU/TC1-2008/0028 [173] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0025 [935] and XCU/TC2-2008/0026
[705] are applied.

Austin Group Defect 465 is applied, adding compound, enum, float, integer, and nameref to the
table of command names for which the results are unspecified.

Austin Group Defect 854 is applied, adding intrinsic utilities.

Austin Group Defect 1391 is applied, clarifying the execution of a standard utility provided by
the implementation in the form of a function.

Standard File Descriptors

There is no additional rationale provided for this section.

Non-built-in Utility Execution

Austin Group Defect 1157 is applied, clarifying the execution of non-built-in utilities.

Austin Group Defects 1226 and 1435 are applied, clarifying the circumstances under which the
shell may bypass execution of a non-built-in utility as a shell script.

Examples

Consider three versions of the ls utility:

1. The application includes a shell function named ls.

2. The user writes a utility named ls and puts it in /fred/bin.

3. The example implementation provides ls as a regular shell built-in that is invoked (either
by the shell or directly by exec) when the path search reaches the directory /posix/bin.

If PA TH=/posix/bin, various invocations yield different versions of ls:

Invocation Version of ls
ls (from within application script) (1) function
command ls (from within application script) (3) built-in
ls (from within makefile called by application) (3) built-in
system("ls") (3) built-in
PA TH="/fred/bin:$PA TH" ls (2) user’s version

C.2.9.2 Pipelines

Because pipeline assignment of standard input or standard output or both takes place before
redirection, it can be modified by redirection. For example:

$ command1 2>&1 | command2

sends both the standard output and standard error of command1 to the standard input of
command2.

The reserved word ! allows more flexible testing using AND and OR lists. The behavior of !(is

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3899

135373

135374

135375

135376

135377

135378

135379

135380

135381

135382

135383

135384

135385

135386

135387

135388

135389

135390

135391

135392

135393

135394

135395

135396

135397

135398

135399

135400

135401

135402

135403

135404

135405

135406

135407

135408

135409

135410

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

unspecified because in the Korn Shell this introduces a negated pathname expansion. Portable
applications need to separate the ! and (to ensure the command is treated as a negated subshell.

It was suggested that it would be better to return a non-zero value if any command in the
pipeline terminates with non-zero status (perhaps the bitwise-inclusive OR of all return values).
However, the choice of the last-specified command semantics are historical practice and would
cause applications to break if changed. An example of historical behavior:

$ sleep 5 | (exit 4)
$ echo $?
4
$ (exit 4) | sleep 5
$ echo $?
0

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0029 [205] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0027 [521] is applied.

Exit Status

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0030 [52] is applied.

Austin Group Defect 789 is applied, adding the pipefail option.

C.2.9.3 Lists

The equal precedence of "&&" and "||" is historical practice. The standard developers
evaluated the model used more frequently in high-level programming languages, such as C, to
allow the shell logical operators to be used for complex expressions in an unambiguous way, but
they could not allow historical scripts to break in the subtle way unequal precedence might
cause. Some arguments were posed concerning the "{}" or "()" groupings that are required
historically. There are some disadvantages to these groupings:

• The "()" can be expensive, as they spawn other processes on some implementations. This
performance concern is primarily an implementation issue.

• The "{ }" braces are not operators (they are reserved words) and require a trailing
<space> after each '{', and a <semicolon> before each '}'. Most programmers (and
certainly interactive users) have avoided braces as grouping constructs because of the
problematic syntax required. Braces were not changed to operators because that would
generate compatibility issues even greater than the precedence question; braces appear
outside the context of a keyword in many shell scripts.

IEEE PASC Interpretation 1003.2 #204 is applied, clarifying that the operators "&&" and "||"
are evaluated with left associativity.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0031 [45] and XCU/TC1-2008/0032
[45] are applied.

3900 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135411

135412

135413

135414

135415

135416

135417

135418

135419

135420

135421

135422

135423

135424

135425

135426

135427

135428

135429

135430

135431

135432

135433

135434

135435

135436

135437

135438

135439

135440

135441

135442

135443

135444

135445

135446

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

Asynchronous AND-OR Lists

Unless the implementation has an internal limit, such as {CHILD_MAX}, on the retained process
IDs, it would require unbounded memory for the following example:

while true
do foo & echo $!
done

The treatment of the signals SIGINT and SIGQUIT with asynchronous AND-OR lists is
described in XCU Section 2.12 (on page 2521).

Since the connection of the input to the equivalent of /dev/null is considered to occur before
redirections, the following script would produce no output:

exec < /etc/passwd
cat <&0 &
wait

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0028 [760] is applied.

Austin Group Defect 1254 is applied, replacing the Asynchronous Lists section with an
Asynchronous AND-OR Lists section.

Sequential AND-OR Lists

Austin Group Defect 1254 is applied, replacing the Sequential Lists section with a Sequential AND-
OR Lists section.

AND Lists

There is no additional rationale provided for this section.

OR Lists

There is no additional rationale provided for this section.

C.2.9.4 Compound Commands

Austin Group Defect 1309 is applied, clarifying the exit status of the for, case, if, while, and
until compound commands.

Grouping Commands

The semicolon shown in {compound-list;} is an example of a control operator delimiting the }
reserved word. Other delimiters are possible, as shown in XCU Section 2.10 (on page 2512);
<newline> is frequently used.

A proposal was made to use the <do-done> construct in all cases where command grouping in
the current process environment is performed, identifying it as a construct for the grouping
commands, as well as for shell functions. This was not included because the shell already has a
grouping construct for this purpose ("{}"), and changing it would have been counter-
productive.

The requirement for conforming applications to separate two leading '(' characters with white
space if a grouping command would be parsed as an arithmetic expansion if preceded by a '$'
is to allow shells which implement the "((arithmetic expression))" extension to
apply the same disambiguation rules consistently to $((...)) and ((...)). See Section
C.2.6.3 (on page 3884).

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3901

135447

135448

135449

135450

135451

135452

135453

135454

135455

135456

135457

135458

135459

135460

135461

135462

135463

135464

135465

135466

135467

135468

135469

135470

135471

135472

135473

135474

135475

135476

135477

135478

135479

135480

135481

135482

135483

135484

135485

135486

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0033 [217] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0029 [473] is applied.

For Loop

The format is shown with generous usage of <newline> characters. See the grammar in XCU
Section 2.10 (on page 2512) for a precise description of where <newline> and <semicolon>
characters can be interchanged.

Some historical implementations support '{' and '}' as substitutes for do and done. The
standard developers chose to omit them, even as an obsolescent feature. (Note that these
substitutes were only for the for command; the while and until commands could not use them
historically because they are followed by compound-lists that may contain "{...}" grouping
commands themselves.)

The reserved word pair do . . . done was selected rather than do . . . od (which would have
matched the spirit of if . . . fi and case . . . esac) because od is already the name of a standard
utility.

PASC Interpretation 1003.2 #169 has been applied changing the grammar.

Case Conditional Construct

An optional <left-parenthesis> before pattern was added to allow numerous historical KornShell
scripts to conform. At one time, using the leading parenthesis was required if the case statement
was to be embedded within a "$()" command substitution; this is no longer the case with the
POSIX shell. Nevertheless, many historical scripts use the <left-parenthesis>, if only because it
makes matching-parenthesis searching easier in vi and other editors. This is a relatively simple
implementation change that is upwards-compatible for all scripts.

Consideration was given to requiring break inside the compound-list to prevent falling through to
the next pattern action list. This was rejected as being nonexisting practice. Instead, the standard
now requires a feature first added in KornShell that using ";&" instead of ";;" as a terminator
causes the exact opposite behavior—the flow of control continues with the next compound-list.

Although the standard is explicit that the order of side-effects due to pattern expansion within a
single clause is unspecified, it is clear that patterns are expanded in clause order, and that no
further pattern expansions are attempted after the first match. That is, the following example is
required to output "1.0":

x=0 y=1
case 1 in
$((y=0))) ;;
$((x=1))) ;&
$((x=2))) echo $x.$y ;;

esac

Some implementations of the shell also allow ";;&" as a terminator which falls through to the
next matching pattern (regardless of the choice of terminator in any intermediate non-matching
clauses), in contrast to ";&" falling through to the next clause (regardless of the pattern
guarding that clause). This is an allowed extension, but is not required by the standard at this
time.

The pattern '*', given as the last pattern in a case construct, is equivalent to the default case in
a C-language switch statement.

The grammar shows that reserved words can be used as patterns, even if one is the first word on
a line. Obviously, the reserved word esac cannot be used in this manner.

3902 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135487

135488

135489

135490

135491

135492

135493

135494

135495

135496

135497

135498

135499

135500

135501

135502

135503

135504

135505

135506

135507

135508

135509

135510

135511

135512

135513

135514

135515

135516

135517

135518

135519

135520

135521

135522

135523

135524

135525

135526

135527

135528

135529

135530

135531

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

Some historical shells would fall back to doing a byte to byte comparison with each pattern if the
pattern matching rules did not produce a match. That behavior is not allowed by this standard
because it allows user input to bypass input validations like:

case $1 in
[0123456789]) : OK;;
*) echo >&2 not a decimal digit; exit 1;;

esac

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0029 [473] is applied.

Austin Group Defect 449 is applied, adding ;& as a case clause terminator.

Austin Group Defect 1454 is applied, clarifying that a case statement with no patterns is valid
syntax.

If Conditional Construct

The precise format for the command syntax is described in XCU Section 2.10 (on page 2512).

While Loop

The precise format for the command syntax is described in XCU Section 2.10 (on page 2512).

Until Loop

The precise format for the command syntax is described in XCU Section 2.10 (on page 2512).

C.2.9.5 Function Definition Command

The description of functions in an early proposal was based on the notion that functions should
behave like miniature shell scripts; that is, except for sharing variables, most elements of an
execution environment should behave as if they were a new execution environment, and
changes to these should be local to the function. For example, traps and options should be reset
on entry to the function, and any changes to them do not affect the traps or options of the caller.
There were numerous objections to this basic idea, and the opponents asserted that functions
were intended to be a convenient mechanism for grouping common commands that were to be
executed in the current execution environment, similar to the execution of the dot special
built−in.

It was also pointed out that the functions described in that early proposal did not provide a local
scope for everything a new shell script would, such as the current working directory, or umask,
but instead provided a local scope for only a few select properties. The basic argument was that
if a local scope is needed for the execution environment, the mechanism already existed: the
application can put the commands in a new shell script and call that script. All historical shells
that implemented functions, other than the KornShell, have implemented functions that operate
in the current execution environment. Because of this, traps and options have a global scope
within a shell script. Local variables within a function were considered and included in another
early proposal (controlled by the special built-in local), but were removed because they do not fit
the simple model developed for functions and because there was some opposition to adding yet
another new special built-in that was not part of historical practice. Implementations should
reserve the identifier local (as well as typeset, as used in the KornShell) in case this local variable
mechanism is adopted in a future version of this standard.

A separate issue from the execution environment of a function is the availability of that function
to child shells. A few objectors maintained that just as a variable can be shared with child shells
by exporting it, so should a function. In early proposals, the export command therefore had a −f

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3903

135532

135533

135534

135535

135536

135537

135538

135539

135540

135541

135542

135543

135544

135545

135546

135547

135548

135549

135550

135551

135552

135553

135554

135555

135556

135557

135558

135559

135560

135561

135562

135563

135564

135565

135566

135567

135568

135569

135570

135571

135572

135573

135574

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

flag for exporting functions. Functions that were exported were to be put into the environment
as name()=value pairs, and upon invocation, the shell would scan the environment for these and
automatically define these functions. This facility was strongly opposed and was omitted. Some
of the arguments against exportable functions were as follows:

• There was little historical practice. The Ninth Edition shell provided them, but there was
controversy over how well it worked.

• There are numerous security problems associated with functions appearing in the
environment of a user and overriding standard utilities or the utilities owned by the
application.

• There was controversy over requiring make to import functions, where it has historically
used an exec function for many of its command line executions.

• Functions can be big and the environment is of a limited size. (The counter-argument was
that functions are no different from variables in terms of size: there can be big ones, and
there can be small ones—and just as one does not export huge variables, one does not
export huge functions. However, this might not apply to the average shell-function writer,
who typically writes much larger functions than variables.)

As far as can be determined, the functions in the Shell and Utilities volume of POSIX.1-2024
match those in System V. Earlier versions of the KornShell had two methods of defining
functions:

function fname { compound-list }

and:

fname() { compound-list }

The latter used the same definition as the Shell and Utilities volume of POSIX.1-2024, but
differed in semantics, as described previously. The current edition of the KornShell aligns the
latter syntax with the Shell and Utilities volume of POSIX.1-2024 and keeps the former as is.

Some shells accept simple commands (see XCU Section 2.9.1, on page 2500) after fname() in
addition to compound commands (see XCU Section 2.9.4, on page 2508); however this standard
only requires support for compound commands.

The name space for functions is limited to that of a name because of historical practice.
Complications in defining the syntactic rules for the function definition command and in
dealing with known extensions such as the "@()" usage in the KornShell prevented the name
space from being widened to a word. Using functions to support synonyms such as the "!!"
and '%' usage in the C shell is thus disallowed to conforming applications, but acceptable as an
extension. For interactive users, the aliasing facilities in the Shell and Utilities volume of
POSIX.1-2024 should be adequate for this purpose. It is recognized that the name space for
utilities in the file system is wider than that currently supported for functions, if the portable
filename character set guidelines are ignored, but it did not seem useful to mandate extensions
in systems for so little benefit to conforming applications.

The "()" in the function definition command consists of two operators. Therefore, intermixing
<blank> characters with the fname, '(', and ')' is allowed, but unnecessary.

An example of how a function definition can be used wherever a simple command is allowed:

If variable i is equal to "yes",
define function foo to be ls -l
#
["$i" = yes] && foo() {

ls -l

3904 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135575

135576

135577

135578

135579

135580

135581

135582

135583

135584

135585

135586

135587

135588

135589

135590

135591

135592

135593

135594

135595

135596

135597

135598

135599

135600

135601

135602

135603

135604

135605

135606

135607

135608

135609

135610

135611

135612

135613

135614

135615

135616

135617

135618

135619

135620

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

}

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0034 [383] and XCU/TC1-2008/0035
[214] are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0029 [473] and XCU/TC2-2008/0030
[654] are applied.

C.2.10 Shell Grammar

There are several subtle aspects of this grammar where conventional usage implies rules about
the grammar that in fact are not true.

For compound_list, only the forms that end in a separator allow a reserved word to be recognized,
so usually only a separator can be used where a compound list precedes a reserved word (such as
Then, Else, Do, and Rbrace). Explicitly requiring a separator would disallow such valid (if rare)
statements as:

if (false) then (echo x) else (echo y) fi

See the Note under special grammar rule (1).

Concerning the third sentence of rule (1) (``Also, if the parser ...’’):

• This sentence applies rather narrowly: when a compound list is terminated by some clear
delimiter (such as the closing fi of an inner if_clause) then it would apply; where the
compound list might continue (as in after a ';'), rule (7a) (and consequently the first
sentence of rule (1)) would apply. In many instances the two conditions are identical, but
this part of rule (1) does not give license to treating a WORD as a reserved word unless it
is in a place where a reserved word has to appear.

• The statement is equivalent to requiring that when the LR(1) lookahead set contains
exactly one reserved word, it must be recognized if it is present. (Here ``LR(1)’’ refers to the
theoretical concepts, not to any real parser generator.)

For example, in the construct below, and when the parser is at the point marked with '^',
the only next legal token is then (this follows directly from the grammar rules):

if if...fi then ... fi
^

At that point, the then must be recognized as a reserved word.

(Depending on the parser generator actually used, ``extra’’ reserved words may be in some
lookahead sets. It does not really matter if they are recognized, or even if any possible
reserved word is recognized in that state, because if it is recognized and is not in the
(theoretical) LR(1) lookahead set, an error is ultimately detected. In the example above, if
some other reserved word (for example, while) is also recognized, an error occurs later.

This is approximately equivalent to saying that reserved words are recognized after other
reserved words (because it is after a reserved word that this condition occurs), but avoids
the ``except for . . .’’ list that would be required for case, for, and so on. (Reserved words
are of course recognized anywhere a simple_command can appear, as well. Other rules take
care of the special cases of non-recognition, such as rule (4) for case statements.)

Note that the body of here-documents are handled by token recognition (see XCU Section 2.3, on
page 2475) and do not appear in the grammar directly. (However, the here-document I/O
redirection operator is handled as part of the grammar.)

The optional redirection syntax:

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3905

135621

135622

135623

135624

135625

135626

135627

135628

135629

135630

135631

135632

135633

135634

135635

135636

135637

135638

135639

135640

135641

135642

135643

135644

135645

135646

135647

135648

135649

135650

135651

135652

135653

135654

135655

135656

135657

135658

135659

135660

135661

135662

135663

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

{location}redir-op word

(see XCU Section 2.7, on page 2493) is accommodated in the grammar rules by the optional
IO_LOCATION token identifier and two correspondingly optional elements in io_redirect.
Without these, the grammar would not permit this form of redirection because it would require
that, for example, echo {var}> foo is parsed such that {var} is a WORD to be expanded
and passed to echo. The grammar does not restrict the location given between the '{' and '}'
in these forms (other than requiring it to be non-empty) since shells may parse an invalid
location as part of an io_redirect and later treat the invalid location as an error.

C.2.10.1 Shell Grammar Lexical Conventions

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0031 [648] and XCU/TC2-2008/0032
[574,646] are applied.

Austin Group Defect 1193 is applied, adding the optional IO_LOCATION token identifier.

Austin Group Defect 1454 is applied, clarifying how to convert the token identifier type of the
TOKEN when rule 1 applies.

C.2.10.2 Shell Grammar Rules

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0036 [44] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0033 [643,839], XCU/TC2-2008/0034
[643], XCU/TC2-2008/0035 [648], XCU/TC2-2008/0036 [736], XCU/TC2-2008/0037 [737],
XCU/TC2-2008/0038 [581], and XCU/TC2-2008/0039 [735] are applied.

Austin Group Defect 249 is applied, adding the dollar-single-quotes quoting mechanism.

Austin Group Defect 449 is applied, adding ;& as a case clause terminator.

Austin Group Defect 1193 is applied, adding the optional IO_LOCATION token identifier.

Austin Group Defects 1276 and 1279 are applied, clarifying rule 7.

Austin Group Defect 1454 is applied, clarifying how rule 4 applies.

C.2.11 Job Control

See also Job Control (on page 3656).

Shell implementations differ regarding how much of a foreground job is retained when it is
converted to a suspended job. For example, given this foreground job:

sleep 10; echo foo; echo bar &

if this is suspended during execution of the sleep, ksh93 retains all of the commands in the
suspended job and executes them when fg is used:

ˆZ[1] + Stopped sleep 10; echo foo; echo bar &
$ jobs
[1] + Stopped sleep 10; echo foo; echo bar &
$ fg
sleep 10; echo foo; echo bar
foo
[1] 30686
bar

3906 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135664

135665

135666

135667

135668

135669

135670

135671

135672

135673

135674

135675

135676

135677

135678

135679

135680

135681

135682

135683

135684

135685

135686

135687

135688

135689

135690

135691

135692

135693

135694

135695

135696

135697

135698

135699

135700

135701

135702

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

$

However, some other shells create a suspended job containing only the sleep 10 command.

Some historical shells did not handle suspending a foreground AND-OR list well. They would
treat the wait status of a process that indicated it had stopped as if it was a non-zero exit status
and (if the next operator in the AND-OR list was ||) would execute the remainder of the AND-
OR list at that point. This behavior is not allowed by the standard for two reasons:

1. It does not meet the fundamental requirement of an AND-OR list that the decision on
whether to execute each part (except the first) is made based on the exit status of the
previous part when it completes.

2. It can lead to data loss. For example, consider a user who often runs this command:

generate_report > report.out || rm report.out

with the intention that the incomplete results from a failed generate_report run are never
retained in order that they cannot be mistaken for a complete set of results. If one day the
user decides to check on the progress of the command by stopping it and examining what
has been written so far, they will find that the report.out file has already been removed.

Austin Group Defects 1254 and 1675 are applied, adding this section.

C.2.12 Signals and Error Handling

Historically, some shell implementations silently ignored attempts to use trap to set SIGINT or
SIGQUIT to the default action or to set a trap for them after they have been set to be ignored by
the shell when it executes an asynchronous subshell (and job control is disabled). This behavior
is not conforming. For example, if a shell script containing the following line is run in the
foreground at a terminal:

(trap - INT; exec sleep 10) & wait

and is then terminated by typing the interrupt character, this standard requires that the sleep
command is terminated by the SIGINT signal.

SD5-XCU-ERN-93 is applied, updating the first paragraph of XCU Section 2.12 (on page 2521).

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0040 [750] is applied.

C.2.13 Shell Execution Environment

Some implementations have implemented the last stage of a pipeline in the current environment
so that commands such as:

command | read foo

set variable foo in the current environment. This extension is allowed, but not required;
therefore, a shell programmer should consider a pipeline to be in a subshell environment, but
not depend on it.

In early proposals, the description of execution environment failed to mention that each
command in a multiple command pipeline could be in a subshell execution environment. For
compatibility with some historical shells, the wording was phrased to allow an implementation
to place any or all commands of a pipeline in the current environment. However, this means that
a POSIX application must assume each command is in a subshell environment, but not depend
on it.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3907

135703

135704

135705

135706

135707

135708

135709

135710

135711

135712

135713

135714

135715

135716

135717

135718

135719

135720

135721

135722

135723

135724

135725

135726

135727

135728

135729

135730

135731

135732

135733

135734

135735

135736

135737

135738

135739

135740

135741

135742

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

The wording about shell scripts is meant to convey the fact that describing ``trap actions’’ can
only be understood in the context of the shell command language. Outside of this context, such
as in a C-language program, signals are the operative condition, not traps.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0037 [238] is applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0041 [706] is applied.

Austin Group Defect 1247 is applied, changing ``signal traps’’ to ``traps’’ and changing ``All other
commands’’ to ``Except where otherwise stated, all other commands’’.

Austin Group Defect 1254 is applied, changing the list item relating to process IDs ``known to
this shell environment’’.

Austin Group Defect 1384 is applied, changing the requirements for subshells of interactive
shells.

Austin Group Defect 1580 is applied, adding a list item about environment variables with
invalid names.

C.2.14 Pattern Matching Notation

Pattern matching is a simpler concept and has a simpler syntax than REs, as the former is
generally used for the manipulation of filenames, which are relatively simple collections of
characters, while the latter is generally used to manipulate arbitrary text strings of potentially
greater complexity. However, some of the basic concepts are the same, so this section points
liberally to the detailed descriptions in XBD Chapter 9 (on page 179).

Austin Group Defect 1443 is applied, adding non-shell uses to the description of what shell
pattern matching notation is used for.

Austin Group Defect 1564 is applied, clarifying that pattern matching notation is used for
matching character strings (not arbitrary byte strings), and that if an attempt is made to use
pattern matching notation to match a string that contains one or more bytes that do not form
part of a valid character, the behavior is unspecified.

C.2.14.1 Patterns Matching a Single Character

Both quoting and escaping are described here because pattern matching must work in three
separate circumstances:

1. Calling directly upon the shell, such as in pathname expansion or in a case statement. All
of the following match the string or file abc:

abc "abc" a"b"c a\bc a[b]c a["b"]c a[\b]c a["\b"]c a?c a*c

The following do not:

"a?c" a*c a\[b]c

2. Calling a utility or function without going through a shell, as described for find and the
fnmatch() and glob() functions defined in the System Interfaces volume of POSIX.1-2024,
or pattern matching in the shell in situations where the pattern is specified indirectly
instead of directly to the shell, such as:

ls -ld -- $pattern

or

case $var in ($pattern) ...

3908 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135743

135744

135745

135746

135747

135748

135749

135750

135751

135752

135753

135754

135755

135756

135757

135758

135759

135760

135761

135762

135763

135764

135765

135766

135767

135768

135769

135770

135771

135772

135773

135774

135775

135776

135777

135778

135779

135780

135781

135782

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

3. Calling utilities such as find, cpio, tar, or pax through the shell command line. In this case,
shell quote removal is performed before the utility sees the argument. For example, in:

find /bin -name "e\c[\h]o" -print

after quote removal, the <backslash> characters are presented to find and it treats them as
escape characters. Both precede ordinary characters, so the c and h represent themselves
and echo would be found on many historical systems (that have it in /bin). To find a
filename that contained shell special characters or pattern characters, both quoting and
escaping are required, such as:

pax -r ... "*a(\?"

to extract a filename ending with "a(?".

The wording ``In a pattern, or part of one, where a shell-quoting <backslash> cannot be used to
preserve the literal value of a character that would otherwise be treated as special’’ has been
carefully crafted so that for the shell it only applies to certain contexts. In particular:

• The use of ``or part of one’’ is needed because a single pattern can be produced partly from
characters directly included in a word and partly from characters that result from one or
more of the word expansions. For example, in the following command the <backslash>
escapes the '?' character:

dir='abc\?'
ls -l -- $dir/*.c

• The reference to ``a shell-quoting <backslash>’’ rather than just using ``where shell quoting
cannot be used’’ is because there are ways that other types of shell quoting can be used
where a shell-quoting <backslash> cannot, such as placing an expansion within double-
quotes as in this example:

dir='abc?'
ls -l -- "$dir"/*.c

• The use of ``that would otherwise be treated as special’’ is needed because otherwise the
condition would apply to <backslash> in single-quotes. For example, in the following
command the <backslash> is not treated as escaping the '?' because the '?' would not
be treated as special anyway:

ls -l 'abc\?'/*.c

In patterns specified indirectly to the shell, it is unspecified whether or not <backslash> is
special inside bracket expressions. This is because there are two mutually exclusive consistency
aims and neither is considered more important than the other. One is consistency with direct
patterns, where <backslash> is special inside bracket expressions (which is, in turn, for
consistency with the way single-quotes and double-quotes preserve the literal value of
characters inside bracket expressions); the other is consistency with regular expressions, find,
pax, fnmatch(), and glob(), where <backslash> is not special inside bracket expressions (not
counting the extra C-string escaping in EREs in awk).

Earlier versions of this standard allowed two behaviors when a pattern ends with an unescaped
<backslash>: it could match nothing or be treated as an invalid pattern. However, a third
behavior has since been observed, where the ending <backslash> is treated as a literal
<backslash>, and therefore this standard now simply states that the behavior is unspecified.

Earlier versions of this standard included the statement ``The shell special characters always
require quoting’’ in XCU Section 2.14.1 (on page 2523). It is unclear what was intended by this,
since there are pattern matching contexts in which it is not possible to quote those characters,
such as:

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3909

135783

135784

135785

135786

135787

135788

135789

135790

135791

135792

135793

135794

135795

135796

135797

135798

135799

135800

135801

135802

135803

135804

135805

135806

135807

135808

135809

135810

135811

135812

135813

135814

135815

135816

135817

135818

135819

135820

135821

135822

135823

135824

135825

135826

135827

135828

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

execlp("find", "find", ".", "-name", "*[()]*", (char *)0);

where the parentheses cannot be escaped with a <backslash> because <backslash> is not special
in bracket expressions in that context. The statement is thought to have been a warning to
application writers and interactive shell users that shell special characters (sometimes called
metacharacters) always need quoting in patterns that appear directly in shell code; for example,
this code:

case $char in
[()]) ... ;;
esac

is incorrect because the parentheses are parsed as operators—they need to be quoted in order to
be treated as part of the pattern. This standard now simply requires instead that applications
quote or escape any character that would otherwise be treated as special, in order for it to be
matched as an ordinary character. If shell special characters are used without this protection in
contexts where they are treated as special, syntax errors can result or implementation extensions
can be triggered. Some shells support a series of extensions based on parentheses in patterns
that are valid extensions in these contexts because they would otherwise cause syntax errors.
However, this means that they are not allowed by this standard to be recognized in contexts
where those syntax errors would not occur anyway, such as in:

pattern='a*(b)'; ls -- $pattern

which this standard requires to list files with names beginning 'a' and ending "(b)". It is
recommended that implementations do not extend pattern matching in the shell in ways that are
only valid extensions because they would otherwise be syntax errors, in order to avoid
inconsistency between different pattern matching contexts. One way to provide an extension
that is consistent between different pattern matching contexts in the shell (although still not
consistent with find −name, fnmatch(), etc.) is to enable the extension only when a non-standard
shell option is set, or when the shell is executed using a command name other than sh.
Consistency with non-shell contexts can then be achieved by enabling equivalent extensions in
those other contexts by use of non-standard utility options or non-standard FNM_* and GLOB_*
flags.

The restriction on a <circumflex> in a bracket expression is to allow implementations that
support pattern matching using the <circumflex> as the negation character in addition to the
<exclamation-mark>. A conforming application must use something like "[\^!]" to match
either character.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0042 [806] is applied.

Austin Group Defect 985 is applied, changing the description of the '[' special character.

Austin Group Defect 1234 is applied, clarifying how <backslash> is handled in patterns.

C.2.14.2 Patterns Matching Multiple Characters

Since each <asterisk> matches zero or more occurrences, the patterns "a*b" and "a**b" have
identical functionality.

3910 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135829

135830

135831

135832

135833

135834

135835

135836

135837

135838

135839

135840

135841

135842

135843

135844

135845

135846

135847

135848

135849

135850

135851

135852

135853

135854

135855

135856

135857

135858

135859

135860

135861

135862

135863

135864

135865

135866

135867

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Shell Command Language

Examples

a[bc] Matches the strings "ab" and "ac".

a*d Matches the strings "ad", "abd", and "abcd", but not the string "abc".

a*d* Matches the strings "ad", "abcd", "abcdef", "aaaad", and "adddd".

*a*d Matches the strings "ad", "abcd", "efabcd", "aaaad", and "adddd".

C.2.14.3 Patterns Used for Filename Expansion

The caveat about a <slash> within a bracket expression is derived from historical practice. The
pattern "a[b/c]d" does not match such pathnames as abd or a/d. On some implementations
(including those conforming to the Single UNIX Specification), it matched a pathname of
literally "a[b/c]d". On other systems, it produced an undefined condition (an unescaped '['
used outside a bracket expression). In this version, the XSI behavior is now required.

Filenames beginning with a <period> historically have been specially protected from view on
UNIX systems. A proposal to allow an explicit <period> in a bracket expression to match a
leading <period> was considered; it is allowed as an implementation extension, but a
conforming application cannot make use of it. If this extension becomes popular in the future, it
will be considered for a future version of the Shell and Utilities volume of POSIX.1-2024.

Patterns are matched against existing filenames and pathnames only when the pattern contains
a '*', '?' or '[' character that will be treated as special. This prevents accidental removal of
<backslash> characters in variable expansions where generating a list of matching files is not
intended and a (usually oddly named) file with a matching name happens to exist. For example,
a shell script that tries to be portable to systems that predate the introduction of functions and
printf might use this on POSIX systems:

myecho='printf %s\n'

to be used as:

$myecho args...

If %s\n were to be matched against existing files, this would not work if a file called %sn
happened to exist.

Historical systems have varied in their permissions requirements. To match f*/bar has required
read permissions on the f* directories in the System V shell, but the Shell and Utilities volume of
POSIX.1-2024, the C shell, and KornShell require only search permissions. If read or search
permission is denied, shells do not report an error but treat this as a successful ``no match’’
condition. Error conditions that are related to file system contents and occur when attempting to
read or search a directory are also required to be treated the same way because they imply that
there are no matches (that are accessible to the process). For example, if the pattern is foo/*bar
and attempting to open the directory foo fails because it does not exist or is not a directory, then
there can be no matching pathnames. The error conditions listed in XSH Section 2.3 (on page
507) that are related to file system contents and could occur when attempting to open or search a
directory are [EACCES], [ELOOP], [ENAMETOOLONG], [ENOENT], and [ENOTDIR]. Error
conditions that are not related to file system contents or which occur when reading a directory,
notably [EMFILE] and [ENFILE] but also things like [EIO], [ENOMEM], and [EOVERFLOW],
can either be treated as errors or be treated the same way as when permission is denied. Treating
them as errors is seen as desirable, because to do otherwise would mean the shell could execute
a command with an unchanged pattern when pathnames matching the pattern exist, but it is not
historical practice. Implementations that handle the two categories of error differently should
also handle non-standard error conditions appropriately, if encountered, depending on which

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3911

135868

135869

135870

135871

135872

135873

135874

135875

135876

135877

135878

135879

135880

135881

135882

135883

135884

135885

135886

135887

135888

135889

135890

135891

135892

135893

135894

135895

135896

135897

135898

135899

135900

135901

135902

135903

135904

135905

135906

135907

135908

135909

135910

135911

135912

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Shell Command Language Rationale for Shell and Utilities

category they fit into.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0043 [963] is applied.

Austin Group Defect 1070 is applied, requiring that when the matching filenames or pathnames
are sorted, any that collate equally are further compared byte-by-byte using the collating
sequence for the POSIX locale.

Austin Group Defect 1228 is applied, allowing directory entries for dot and dot-dot to be
ignored when matching patterns against existing filenames.

Austin Group Defect 1234 is applied, changing the behavior of patterns used for filename
expansion such that a pattern is matched against existing filenames and pathnames only when it
contains a '*', '?' or '[' character that will be treated as special.

Austin Group Defects 1273 and 1275 are applied, clarifying how errors are treated when
attempting to open or search a pathname as a directory or attempting to read an opened
directory.

C.2.15 Special Built-In Utilities

See the RATIONALE sections on the individual reference pages.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0044 [882] and XCU/TC2-2008/0045
[654] are applied.

Austin Group Defect 1009 is applied, clarifying the behavior when a special built-in utility is
executed with a variable assignment.

Austin Group Defect 1445 is applied, changing text relating to the term ``built-in’’.

C.3 Utilities
For the utilities included in POSIX.1-2024, see the RATIONALE sections on the individual
reference pages.

C.3.1 Utilities Removed in this Version

The following utilities were removed in this version of this standard:

qalter
qdel
qhold

qmove
qmsg
qrerun

qrls
qselect
qsig

qstat
qsub

C.3.2 Utilities Removed in the Previous Version

None.

3912 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135913

135914

135915

135916

135917

135918

135919

135920

135921

135922

135923

135924

135925

135926

135927

135928

135929

135930

135931

135932

135933

135934

135935

135936

135937

135938

135939

135940

135941

135942

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Utilities

C.3.3 Exclusion of Utilities

The set of utilities contained in POSIX.1-2024 is drawn from the base documents for IEEE Std
1003.2-1992, with one addition: the c17 utility. This section contains rationale for some of the
deliberations that led to this set of utilities, and why certain utilities were excluded.

Many utilities were evaluated by the standard developers; more historical utilities were
excluded from the base documents for IEEE Std 1003.2-1992 than included. The following list
contains many common UNIX system utilities that were not included as mandatory utilities, in
the User Portability Utilities option, in the XSI option, or in one of the software development
groups. It is logistically difficult for this rationale to distribute correctly the reasons for not
including a utility among the various utility options. Therefore, this section covers the reasons
for all utilities not included in POSIX.1-2024.

This rationale is limited to a discussion of only those utilities actively or indirectly evaluated by
the IEEE Std 1003.2-1992 standard developers, rather than the list of all known UNIX utilities
from all its variants.

adb The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool. Furthermore, many useful aspects of adb
are very hardware-specific.

as Assemblers are hardware-specific and are included implicitly as part of the
compilers in POSIX.1-2024.

banner The only known use of this command is as part of the lp printer header pages. It
was decided that the format of the header is implementation-defined, so this utility
is superfluous to application portability.

calendar This reminder service program is not useful to conforming applications.

cancel The lp (line printer spooling) system specified is the most basic possible and did
not need this level of application control.

chroot This is primarily of administrative use, requiring superuser privileges.

col No utilities defined in POSIX.1-2024 produce output requiring such a filter. The
nroff text formatter is present on many historical systems and will continue to
remain as an extension; col is expected to be shipped by all the systems that ship
nroff .

cpio This has been replaced by pax, for reasons explained in the rationale for that utility.

cpp This is subsumed by c17.

cu This utility is terminal-oriented and is not useful from shell scripts or typical
application programs.

dc The functionality of this utility can be provided by the bc utility; bc was selected
because it was easier to use and had superior functionality. Although the historical
versions of bc are implemented using dc as a base, POSIX.1-2024 prescribes the
interface and not the underlying mechanism used to implement it.

dircmp Although a useful concept, the historical output of this directory comparison
program is not suitable for processing in application programs. Also, the diff −r
command gives equivalent functionality.

dis Disassemblers are hardware-specific.

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3913

135943

135944

135945

135946

135947

135948

135949

135950

135951

135952

135953

135954

135955

135956

135957

135958

135959

135960

135961

135962

135963

135964

135965

135966

135967

135968

135969

135970

135971

135972

135973

135974

135975

135976

135977

135978

135979

135980

135981

135982

135983

135984

135985

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities Rationale for Shell and Utilities

emacs The community of emacs editing enthusiasts was adamant that the full emacs editor
not be included in IEEE Std 1003.2-1992 because they were concerned that an
attempt to standardize this very powerful environment would encourage vendors
to ship versions conforming strictly to the standard, but lacking the extensibility
required by the community. The author of the original emacs program also
expressed his desire to omit the program. Furthermore, there were a number of
historical UNIX systems that did not include emacs, or included it without
supporting it, but there were very few that did not include and support vi.

ld This is subsumed by c17.

line The functionality of line can be provided with read.

lint This technology is partially subsumed by c17. It is also hard to specify the degree
of checking for possible error conditions in programs in any compiler, and
specifying what lint would do in these cases is equally difficult.

It is fairly easy to specify what a compiler does. It requires specifying the language,
what it does with that language, and stating that the interpretation of any incorrect
program is unspecified. Unfortunately, any description of lint is required to
specify what to do with erroneous programs. Since the number of possible errors
and questionable programming practices is infinite, one cannot require lint to
detect all errors of any given class.

Additionally, some vendors complained that since many compilers are distributed
in a binary form without a lint facility (because the ISO C standard does not
require one), implementing the standard as a stand-alone product will be much
harder. Rather than being able to build upon a standard compiler component
(simply by providing c17 as an interface), source to that compiler would most
likely need to be modified to provide the lint functionality. This was considered a
major burden on system providers for a very small gain to developers (users).

login This utility is terminal-oriented and is not useful from shell scripts or typical
application programs.

lorder This utility is an aid in creating an implementation-defined detail of object libraries
that the standard developers did not feel required standardization.

lpstat The lp system specified is the most basic possible and did not need this level of
application control.

mail This utility was omitted in favor of mailx because there was a considerable
functionality overlap between the two.

mknod This was omitted in favor of mkfifo, as mknod has too many implementation-
defined functions.

news This utility is terminal-oriented and is not useful from shell scripts or typical
application programs.

pack This compression program was considered inferior to compress.

passwd This utility was proposed in an early draft of the IEEE Std 1003.2-1992 UPE but
met with too many objections to be included. There were various reasons:

• Changing a password should not be viewed as a command, but as part of the
login sequence. Changing a password should only be done while a trusted
path is in effect.

3914 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

135986

135987

135988

135989

135990

135991

135992

135993

135994

135995

135996

135997

135998

135999

136000

136001

136002

136003

136004

136005

136006

136007

136008

136009

136010

136011

136012

136013

136014

136015

136016

136017

136018

136019

136020

136021

136022

136023

136024

136025

136026

136027

136028

136029

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale for Shell and Utilities Utilities

• Even though the text in early drafts was intended to allow a variety of
implementations to conform, the security policy for one site may differ from
another site running with identical hardware and software. One site might
use password authentication while the other did not. Vendors could not
supply a passwd utility that would conform to POSIX.1-2024 for all sites using
their system.

• This is really a subject for a system administration working group or a
security working group.

pcat This compression program was considered inferior to zcat.

pg This duplicated many of the features of the more pager, which was preferred by the
standard developers.

prof The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool.

RCS RCS was originally considered as part of a version control utilities portion of the
scope. However, this aspect was abandoned by the standard developers. SCCS is
now included as an optional part of the XSI option.

red Restricted editor. This was not considered by the standard developers because it
never provided the level of security restriction required.

rsh Restricted shell. This was not considered by the standard developers because it
does not provide the level of security restriction that is implied by historical
documentation.

sdb The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool. Furthermore, some useful aspects of sdb
are very hardware-specific.

sdiff The ``side-by-side diff ’’ utility from System V was omitted because it is used
infrequently, and even less so by conforming applications. Despite being in
System V, it is not in the SVID or XPG.

shar Any of the numerous ``shell archivers’’ were excluded because they did not meet
the requirement of existing practice.

shl This utility is terminal-oriented and is not useful from shell scripts or typical
application programs. The job control aspects of the shell command language are
generally more useful.

size The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool.

spell This utility is not useful from shell scripts or typical application programs. The
spell utility was considered, but was omitted because there is no known technology
that can be used to make it recognize general language for user-specified input
without providing a complete dictionary along with the input file.

su This utility is not useful from shell scripts or typical application programs. (There
was also sentiment to avoid security-related utilities.)

Part C: Shell and Utilities Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3915

136030

136031

136032

136033

136034

136035

136036

136037

136038

136039

136040

136041

136042

136043

136044

136045

136046

136047

136048

136049

136050

136051

136052

136053

136054

136055

136056

136057

136058

136059

136060

136061

136062

136063

136064

136065

136066

136067

136068

136069

136070

136071

136072

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Utilities Rationale for Shell and Utilities

sum This utility was renamed cksum.

tar This has been replaced by pax, for reasons explained in the rationale for that utility.

unpack This compression program was considered inferior to uncompress.

wall This utility is terminal-oriented and is not useful in shell scripts or typical
applications. It is generally used only by system administrators.

3916 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

136073

136074

136075

136076

136077

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale (Informative)

Part D:

Portability Considerations

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3917

136078

136079

136080

136081

136082

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

3918 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Appendix D

Portability Considerations (Informative)

This section contains information to satisfy various international requirements:

• Section D.1 describes perceived user requirements.

• Section D.2 (on page 3923) indicates how the facilities of POSIX.1-2024 satisfy those
requirements.

• Section D.3 (on page 3931) offers guidance to writers of profiles on how the configurable
options, limits, and optional behavior of POSIX.1-2024 should be cited in profiles.

D.1 User Requirements
This section describes the user requirements that were perceived by the standard developers.
The primary source for these requirements was an analysis of historical practice in widespread
use, as typified by the base documents for the ISO POSIX-1: 1996 standard.

POSIX.1-2024 addresses the needs of users requiring open systems solutions for source code
portability of applications. It currently addresses users requiring open systems solutions for
source-code portability of applications involving multi-programming and process management
(creating processes, signaling, and so on); access to files and directories in a hierarchy of file
systems (opening, reading, writing, deleting files, and so on); access to asynchronous
communications ports and other special devices; access to information about other users of the
system; facilities supporting applications requiring bounded (realtime) response.

The following users are identified for POSIX.1-2024:

• Those employing applications written in high-level languages, such as C, Ada, or
FORTRAN.

• Users who desire conforming applications that do not necessarily require the
characteristics of high-level languages (for example, the speed of execution of compiled
languages or the relative security of source code intellectual property inherent in the
compilation process).

• Users who desire conforming applications that can be developed quickly and can be
modified readily without the use of compilers and other system components that may be
unavailable on small systems or those without special application development
capabilities.

• Users who interact with a system to achieve general-purpose time-sharing capabilities
common to most business or government offices or academic environments: editing, filing,
inter-user communications, printing, and so on.

• Users who develop applications for POSIX-conformant systems.

• Users who develop applications for UNIX systems.

An acknowledged restriction on applicable users is that they are limited to the group of
individuals who are familiar with the style of interaction characteristic of historically-derived
systems based on one of the UNIX operating systems (as opposed to other historical systems
with different models, such as MS/DOS, Macintosh, VMS, MVS, and so on). Typical users

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3919

136083

136084

136085

136086

136087

136088

136089

136090

136091

136092

136093

136094

136095

136096

136097

136098

136099

136100

136101

136102

136103

136104

136105

136106

136107

136108

136109

136110

136111

136112

136113

136114

136115

136116

136117

136118

136119

136120

136121

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

User Requirements Portability Considerations (Informative)

would include program developers, engineers, or general-purpose time-sharing users.

The requirements of users of POSIX.1-2024 can be summarized as a single goal: application source
portability. The requirements of the user are stated in terms of the requirements of portability of
applications. This in turn becomes a requirement for a standardized set of syntax and semantics
for operations commonly found on many operating systems.

The following sections list the perceived requirements for application portability.

D.1.1 Configuration Interrogation

An application must be able to determine whether and how certain optional features are
provided and to identify the system upon which it is running, so that it may appropriately adapt
to its environment.

Applications must have sufficient information to adapt to varying behaviors of the system.

D.1.2 Process Management

An application must be able to manage itself, either as a single process or as multiple processes.
Applications must be able to manage other processes when appropriate.

Applications must be able to identify, control, create, and delete processes, and there must be
communication of information between processes and to and from the system.

Applications must be able to use multiple flows of control with a process (threads) and
synchronize operations between these flows of control.

D.1.3 Access to Data

Applications must be able to operate on the data stored on the system, access it, and transmit it
to other applications. Information must have protection from unauthorized or accidental access
or modification.

D.1.4 Access to the Environment

Applications must be able to access the external environment to communicate their input and
results.

D.1.5 Access to Determinism and Performance Enhancements

Applications must have sufficient control of resource allocation to ensure the timeliness of
interactions with external objects.

3920 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136122

136123

136124

136125

136126

136127

136128

136129

136130

136131

136132

136133

136134

136135

136136

136137

136138

136139

136140

136141

136142

136143

136144

136145

136146

136147

136148

136149

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) User Requirements

D.1.6 Operating System-Dependent Profile

The capabilities of the operating system may make certain optional characteristics of the base
language in effect no longer optional, and this should be specified.

D.1.7 I/O Interaction

The interaction between the C language I/O subsystem (stdio) and the I/O subsystem of
POSIX.1-2024 must be specified.

D.1.8 Internationalization Interaction

The effects of the environment of POSIX.1-2024 on the internationalization facilities of the C
language must be specified.

D.1.9 C-Language Extensions

Certain functions in the C language must be extended to support the additional capabilities
provided by POSIX.1-2024.

D.1.10 Command Language

Users should be able to define procedures that combine simple tools and/or applications into
higher-level components that perform to the specific needs of the user. The user should be able
to store, recall, use, and modify these procedures. These procedures should employ a powerful
command language that is used for recurring tasks in conforming applications (scripts) in the
same way that it is used interactively to accomplish one-time tasks. The language and the
utilities that it uses must be consistent between systems to reduce errors and retraining.

D.1.11 Interactive Facilities

Use the system to accomplish individual tasks at an interactive terminal. The interface should be
consistent, intuitive, and offer usability enhancements to increase the productivity of terminal
users, reduce errors, and minimize retraining costs. Online documentation or usage assistance
should be available.

D.1.12 Accomplish Multiple Tasks Simultaneously

Access applications and interactive facilities from a single terminal without requiring serial
execution: switch between multiple interactive tasks; schedule one-time or periodic background
work; display the status of all work in progress or scheduled; influence the priority scheduling
of work, when authorized.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3921

136150

136151

136152

136153

136154

136155

136156

136157

136158

136159

136160

136161

136162

136163

136164

136165

136166

136167

136168

136169

136170

136171

136172

136173

136174

136175

136176

136177

136178

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

User Requirements Portability Considerations (Informative)

D.1.13 Complex Data Manipulation

Manipulate data in files in complex ways: sort, merge, compare, translate, edit, format, pattern
match, select subsets (strings, columns, fields, rows, and so on). These facilities should be
available to both conforming applications and interactive users.

D.1.14 File Hierarchy Manipulation

Create, delete, move/rename, copy, backup/archive, and display files and directories. These
facilities should be available to both conforming applications and interactive users.

D.1.15 Locale Configuration

Customize applications and interactive sessions for the cultural and language conventions of the
user. Employ a wide variety of standard character encodings. These facilities should be available
to both conforming applications and interactive users.

D.1.16 Inter-User Communication

Send messages or transfer files to other users on the same system or other systems on a network.
These facilities should be available to both conforming applications and interactive users.

D.1.17 System Environment

Display information about the status of the system (activities of users and their interactive and
background work, file system utilization, system time, configuration, and presence of optional
facilities) and the environment of the user (terminal characteristics, and so on). Inform the
system operator/administrator of problems. Control access to user files and other resources.

D.1.18 Printing

Output files on a variety of output device classes, accessing devices on local or network-
connected systems. Control (or influence) the formatting, priority scheduling, and output
distribution of work. These facilities should be available to both conforming applications and
interactive users.

D.1.19 Software Development

Develop (create and manage source files, compile/interpret, debug) portable open systems
applications and package them for distribution to, and updating of, other systems.

3922 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136179

136180

136181

136182

136183

136184

136185

136186

136187

136188

136189

136190

136191

136192

136193

136194

136195

136196

136197

136198

136199

136200

136201

136202

136203

136204

136205

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Portability Capabilities

D.2 Portability Capabilities
This section describes the significant portability capabilities of POSIX.1-2024 and indicates how
the user requirements listed in Section D.1 (on page 3919) are addressed. The capabilities are
listed in the same format as the preceding user requirements; they are summarized below:

• Configuration Interrogation

• Process Management

• Access to Data

• Access to the Environment

• Access to Determinism and Performance Enhancements

• Operating System-Dependent Profile

• I/O Interaction

• Internationalization Interaction

• C-Language Extensions

• Command Language

• Interactive Facilities

• Accomplish Multiple Tasks Simultaneously

• Complex Data Manipulation

• File Hierarchy Manipulation

• Locale Configuration

• Inter-User Communication

• System Environment

• Printing

• Software Development

D.2.1 Configuration Interrogation

The uname() operation provides basic identification of the system. The sysconf(), pathconf(), and
fpathconf() functions and the getconf utility provide means to interrogate the implementation to
determine how to adapt to the environment in which it is running. These values can be either
static (indicating that all instances of the implementation have the same value) or dynamic
(indicating that different instances of the implementation have the different values, or that the
value may vary for other reasons, such as reconfiguration).

Unsatisfied Requirements

None directly. However, as new areas are added, there will be a need for additional capability in
this area.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3923

136206

136207

136208

136209

136210

136211

136212

136213

136214

136215

136216

136217

136218

136219

136220

136221

136222

136223

136224

136225

136226

136227

136228

136229

136230

136231

136232

136233

136234

136235

136236

136237

136238

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Capabilities Portability Considerations (Informative)

D.2.2 Process Management

The fork(), exec family, posix_spawn(), and posix_spawnp() functions provide for the creation of
new processes or the insertion of new applications into existing processes. The _Exit(), _exit(),
exit(), and abort() functions allow for the termination of a process by itself. The wait(), waitid(),
and waitpid() functions allow one process to deal with the termination of another.

The times() function allows for basic measurement of times used by a process. Various
functions, including fstat(), getegid(), geteuid(), getgid(), getgrgid(), getgrnam(), getlogin(),
getpid(), getppid(), getpwnam(), getpwuid(), getuid(), lstat(), and stat(), provide for access to the
identifiers of processes and the identifiers and names of owners of processes (and files).

The various functions operating on environment variables provide for communication of
information (primarily user-configurable defaults) from a parent to child processes.

The operations on the current working directory control and interrogate the directory from
which relative pathname searches start. The umask() function controls the default protections
applied to files created by the process.

The alarm(), pause(), sleep(), ualarm(), and usleep() operations allow the process to suspend until
a timer has expired or to be notified when a period of time has elapsed. The time() operation
interrogates the current time and date.

The signal mechanism provides for communication of events either from other processes or
from the environment to the application, and the means for the application to control the effect
of these events. The mechanism provides for external termination of a process and for a process
to suspend until an event occurs. The mechanism also provides for a value to be associated with
an event.

Job control provides a means to group processes and control them as groups, and to control their
access to the function between the user and the system (the ``controlling terminal’’). It also
provides the means to suspend and resume processes.

The Process Scheduling option provides control of the scheduling and priority of a process.

The Message Passing option provides a means for interprocess communication involving small
amounts of data.

The Memory Management facilities provide control of memory resources and for the sharing of
memory. This functionality is mandatory on POSIX-conforming systems.

The Threads facilities provide multiple flows of control with a process (threads),
synchronization between threads (including mutexes, barriers, and spin locks), association of
data with threads, and controlled cancellation of threads.

The XSI interprocess communications functionality provide an alternate set of facilities to
manipulate semaphores, message queues, and shared memory. These are provided on XSI-
conformant systems to support conforming applications developed to run on UNIX systems.

D.2.3 Access to Data

The open(), close(), fclose(), fopen(), freopen(), pipe(), and pipe2() functions provide for access to
files and data. Such files may be regular files, interprocess data channels (pipes), or devices.
Additional types of objects in the file system are permitted and are being contemplated for
standardization.

The access(), chmod(), chown(), dup(), dup2(), dup3(), fchmod(), fcntl(), fstat(), ftruncate(),
futimens(), lstat(), readlink(), realpath(), stat(), and utimensat() functions allow for control and

3924 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136239

136240

136241

136242

136243

136244

136245

136246

136247

136248

136249

136250

136251

136252

136253

136254

136255

136256

136257

136258

136259

136260

136261

136262

136263

136264

136265

136266

136267

136268

136269

136270

136271

136272

136273

136274

136275

136276

136277

136278

136279

136280

136281

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Portability Capabilities

interrogation of file and file-related objects (including symbolic links), and their ownership,
protections, and timestamps.

The fgetc(), fputc(), fread(), fseek(), fsetpos(), fwrite(), getc(), getchar(), lseek(), putchar(), putc(),
read(), and write() functions provide for data transfer from the application to files (in all their
forms).

The closedir(), link(), mkdir(), opendir(), readdir(), rename(), rmdir(), rewinddir(), and unlink()
functions provide for a complete set of operations on directories. Directories can arbitrarily
contain other directories, and a single file can be mentioned in more than one directory.

The faccessat(), openat(), fchmodat(), fchownat(), fstatat(), linkat() renameat(), readlinkat(),
sylimkat(), and unlinkat() functions allow for race-free and thread-safe file access. The
motivation for the introduction of these functions was as follows:

• Interfaces taking a pathname may be limited by the maximum length of a pathname
({PATH_MAX}). The absolute path of files can far exceed this length. The alternative
solution of changing the working directory and using relative pathnames is not thread-
safe.

• A second motivation is that files accessed outside the current working directory are subject
to attacks caused by the race condition created by changing any of the elements of the
pathnames used.

• A third motivation is to allow application code which makes use of a virtual current
working directory for each individual thread. In the alternative model there is only one
current working directory for all threads.

The file-locking mechanisms provide for advisory locking (protection during transactions) of
ranges of bytes (in effect, records) in a file.

The confstr(), fpathconf(), pathconf(), and sysconf() functions provide for enquiry as to the
behavior of the system where variability is permitted.

The asynchronous input and output functions aio_cancel(), aio_error(), aio_fsync(), aio_read(),
aio_return(), aio_suspend(), aio_write(), and lio_listio() provide for initiation and control of
asynchronous data transfers.

The Synchronized Input and Output option provides for assured commitment of data to media.

D.2.4 Access to the Environment

The operations and types in XBD are provided for access to asynchronous serial devices. The
primary intended use for these is the controlling terminal for the application (the interaction
point between the user and the system). They are general enough to be used to control any
asynchronous serial device. The functions are also general enough to be used with many other
device types as a user interface when some emulation is provided.

Less detailed access is provided for other device types, but in many instances an application
need not know whether an object in the file system is a device or a regular file to operate
correctly.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3925

136282

136283

136284

136285

136286

136287

136288

136289

136290

136291

136292

136293

136294

136295

136296

136297

136298

136299

136300

136301

136302

136303

136304

136305

136306

136307

136308

136309

136310

136311

136312

136313

136314

136315

136316

136317

136318

136319

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Capabilities Portability Considerations (Informative)

Unsatisfied Requirements

Detailed control of common device classes, specifically magnetic tape, is not provided.

D.2.5 Bounded (Realtime) Response

The realtime signal functions sigqueue(), sigtimedwait(), and sigwaitinfo() provide queued signals
and the prioritization of the handling of signals.

The SCHED_FIFO, SCHED_SPORADIC, and SCHED_RR scheduling policies provide control
over processor allocation.

The semaphore functions sem_clockwait(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(),
sem_open(), sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(), and sem_wait() provide
high-performance synchronization.

The memory management functions provide memory locking for control of memory allocation,
file mapping for high performance, and shared memory for high-performance interprocess
communication. The Message Passing option provides for interprocess communication without
being dependent on shared memory.

The timers functions clock_getres(), clock_gettime(), clock_settime(), nanosleep(), timer_create(),
timer_delete(), timer_getoverrun(), timer_gettime(), and timer_settime() provide functionality to
manipulate clocks and timers and include a high resolution function called nanosleep() with a
finer resolution than the sleep() function.

The timeout functions — pthread_mutex_clocklock(), pthread_mutex_timedlock(),
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), sem_clockwait(), and sem_timedwait() — the Typed Memory
Objects option and the Monotonic Clock facility provide further facilities for applications to use
to obtain predictable bounded response.

D.2.6 Operating System-Dependent Profile

POSIX.1-2024 makes no distinction between text and binary files. The values of EXIT_SUCCESS
and EXIT_FAILURE are further defined.

Unsatisfied Requirements

None known, but the ISO C standard may contain some additional options that could be
specified.

D.2.7 I/O Interaction

POSIX.1-2024 defines how each of the ISO C standard stdio functions interact with the POSIX.1
operations, typically specifying the behavior in terms of POSIX.1 operations.

3926 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136320

136321

136322

136323

136324

136325

136326

136327

136328

136329

136330

136331

136332

136333

136334

136335

136336

136337

136338

136339

136340

136341

136342

136343

136344

136345

136346

136347

136348

136349

136350

136351

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Portability Capabilities

Unsatisfied Requirements

None.

D.2.8 Internationalization Interaction

The POSIX.1-2024 environment operations provide a means to define the environment for
setlocale() and time functions such as ctime(). The tzset() function is provided to set time
conversion information.

The nl_langinfo() function is provided to query locale-specific cultural settings.

The multiple concurrent locale functions duplocale(), freelocale(), is*_l(), newlocale(),
strcasecmp_l(), strcoll_l(), strfmon_l(), strncasecmp_l(), strxfrm_l(), tolower_l(), toupper_l(),
towctrans_l(), towlower(), towupper(), uselocale(), wcscasecmp_l(), wcscoll_l(), wcsncasecmp_l(),
wcsxfrm_l(), wctrans_l(), and wctype_l() are provide to support per-thread locale information.

Unsatisfied Requirements

None.

D.2.9 C-Language Extensions

The setjmp() and longjmp() functions are not defined to be cognizant of the signal masks defined
for POSIX.1. The sigsetjmp() and siglongjmp() functions are provided to fill this gap.

Unsatisfied Requirements

None.

D.2.10 Command Language

The shell command language, as described in XCU Chapter 2 (on page 2472), is a common
language useful in batch scripts, through an API to high-level languages (for the C-Language
Binding option, system() and popen()) and through an interactive terminal (see the sh utility).
The shell language has many of the characteristics of a high-level language, but it has been
designed to be more suitable for user terminal entry and includes interactive debugging
facilities. Through the use of pipelining, many complex commands can be constructed from
combinations of data filters and other common components. Shell scripts can be created, stored,
recalled, and modified by the user with simple editors.

In addition to the basic shell language, the following utilities offer features that simplify and
enhance programmatic access to the utilities and provide features normally found only in high-
level languages: basename, bc, command, dirname, echo, env, expr, false, printf, read, sleep, tee, test,
time*,10 true, wait, xargs, and all of the special built-in utilities in XCU Section 2.15 (on page 2526).

10. The utilities listed with an asterisk here and later in this section are present only on systems which support the User Portability Utilities
option. There may be further restrictions on the utilities offered with various configuration option combinations; see the individual utility
descriptions.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3927

136352

136353

136354

136355

136356

136357

136358

136359

136360

136361

136362

136363

136364

136365

136366

136367

136368

136369

136370

136371

136372

136373

136374

136375

136376

136377

136378

136379

136380

136381

136382

136383

136384

136385

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Capabilities Portability Considerations (Informative)

Unsatisfied Requirements

None.

D.2.11 Interactive Facilities

The utilities offer a common style of command-line interface through conformance to the Utility
Syntax Guidelines (see XBD Section 12.2, on page 215) and the common utility defaults (see XCU
Section 1.4, on page 2462). The sh utility offers an interactive command-line history and editing
facility.

The following utilities can be used interactively as well as by scripts; alias, fc, mailx, unalias, and
write.

The following utilities in the User Portability Utilities option provide for interactive use: ex, more,
and vi; the man utility offers online access to system documentation.

Unsatisfied Requirements

The command line interface to individual utilities is as intuitive and consistent as historical
practice allows. Work underway based on graphical user interfaces may be more suitable for
novice or occasional users of the system.

D.2.12 Accomplish Multiple Tasks Simultaneously

The shell command language offers background processing through the asynchronous list
command form; see XCU Section 2.9 (on page 2499).

The nohup utility makes background processing more robust and usable.

The kill utility can terminate background jobs.

The following utilities support periodic job scheduling, control, and display: at, batch, crontab,
nice, ps, and renice.

When the User Portability Utilities option is supported, the following utilities allow
manipulation of jobs: bg, fg, and jobs.

Unsatisfied Requirements

Terminals with multiple windows may be more suitable for some multi-tasking interactive uses
than the job control approach in POSIX.1-2024. See the comments on graphical user interfaces in
Section D.2.11. The nice and renice utilities do not necessarily take advantage of complex system
scheduling algorithms that are supported by the realtime options within POSIX.1-2024.

D.2.13 Complex Data Manipulation

The following utilities address user requirements in this area: asa, awk, bc, cmp, comm, csplit, cut,
dd, diff, ed, ex*, expand, expr, find, fold, grep, head, join, od, paste, pr, printf, sed, sort, split, tabs, tail, tr,
unexpand, uniq, uudecode, uuencode, and wc.

3928 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136386

136387

136388

136389

136390

136391

136392

136393

136394

136395

136396

136397

136398

136399

136400

136401

136402

136403

136404

136405

136406

136407

136408

136409

136410

136411

136412

136413

136414

136415

136416

136417

136418

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Portability Capabilities

Unsatisfied Requirements

Sophisticated text formatting utilities, such as troff or TeX, are not included. Standards work in
the area of SGML may satisfy this.

D.2.14 File Hierarchy Manipulation

The following utilities address user requirements in this area: basename, cd, chgrp, chmod, chown,
cksum, cp, dd, df, diff, dirname, du, find, ls, ln, mkdir, mkfifo, mv, patch, pathchk, pax, pwd, rm, rmdir,
test, and touch.

Unsatisfied Requirements

Some graphical user interfaces offer more intuitive file manager components that allow file
manipulation through the use of icons for novice users.

D.2.15 Locale Configuration

The standard utilities are affected by the various LC_ variables to achieve locale-dependent
operation: character classification, collation sequences, regular expressions and shell pattern
matching, date and time formats, numeric formatting, and monetary formatting. When the
POSIX2_LOCALEDEF option is supported, applications can provide their own locale definition
files.

The following utilities address user requirements in this area: date, ed, ex*, find, grep, locale,
localedef, more*, sed, sh, sort, tr, uniq, and vi*.

The iconv(), iconv_close(), and iconv_open() functions are available to allow an application to
convert character data between supported character sets.

The gencat utility and the catopen(), catclose(), and catgets() functions provide for message
catalog manipulation.

Unsatisfied Requirements

Some aspects of multi-byte character and state-encoded character encodings have not yet been
addressed. The C-language functions, such as getopt(), are generally limited to single-byte
characters. The effect of the LC_MESSAGES variable on message formats is only suggested at
this time.

D.2.16 Inter-User Communication

The following utilities address user requirements in this area: cksum, mailx, mesg, patch, pax, talk,
uudecode, uuencode, who, and write.

The historical UUCP utilities are included as a separate UUCP Utilities option.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3929

136419

136420

136421

136422

136423

136424

136425

136426

136427

136428

136429

136430

136431

136432

136433

136434

136435

136436

136437

136438

136439

136440

136441

136442

136443

136444

136445

136446

136447

136448

136449

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Capabilities Portability Considerations (Informative)

Unsatisfied Requirements

None.

D.2.17 System Environment

The following utilities address user requirements in this area: chgrp, chmod, chown, df, du, env,
getconf, id, logger, logname, mesg, newgrp, ps, stty, tput, tty, umask, uname, and who.

The closelog(), openlog(), setlogmask(), and syslog() functions provide system logging facilities on
XSI-conformant systems; these are analogous to the logger utility.

Unsatisfied Requirements

None.

D.2.18 Printing

The following utilities address user requirements in this area: pr and lp.

Unsatisfied Requirements

There are no features to control the formatting or scheduling of the print jobs.

D.2.19 Software Development

The following utilities address user requirements in this area: ar, asa, awk, c17, ctags, getconf,
getopts, lex, localedef, make, nm, od, patch, pax, strings, strip, time, and yacc.

The system(), popen(), pclose(), regcomp(), regexec(), regerror(), regfree(), fnmatch(), getopt(),
glob(), globfree(), wordexp(), and wordfree() functions allow C-language programmers to access
some of the interfaces used by the utilities, such as argument processing, regular expressions,
and pattern matching.

The SCCS source-code control system utilities are available on systems supporting the XSI
Development option.

Unsatisfied Requirements

There are no language-specific development tools related to languages other than C. There is no
data dictionary or other CASE-like development tools.

D.2.20 Future Growth

It is arguable whether or not all functionality to support applications is potentially within the
scope of POSIX.1-2024. As a simple matter of practicality, it cannot be. Areas such as graphics,
application domain-specific functionality, windowing, and so on, should be in unique standards.
As such, they are properly ``Unsatisfied Requirements’’ in terms of providing fully conforming
applications, but ones which are outside the scope of POSIX.1-2024.

However, as the standards evolve, certain functionality once considered ``exotic’’ enough to be
part of a separate standard become common enough to be included in a core standard such as
this. Realtime and networking, for example, have both moved from separate standards (with
much difficult cross-referencing) into this standard over time, and although no specific areas

3930 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136450

136451

136452

136453

136454

136455

136456

136457

136458

136459

136460

136461

136462

136463

136464

136465

136466

136467

136468

136469

136470

136471

136472

136473

136474

136475

136476

136477

136478

136479

136480

136481

136482

136483

136484

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Portability Capabilities

have been identified for inclusion in a future version, such inclusions seem likely.

D.3 Profiling Considerations
This section offers guidance to writers of profiles on how the configurable options, limits, and
optional behavior of POSIX.1-2024 should be cited in profiles. Profile writers should consult the
general guidance in POSIX.0 when writing POSIX Standardized Profiles.

The information in this section is an inclusive list of features that should be considered by profile
writers. Subsetting of POSIX.1-2024 should follow XBD Section 2.1.5.1 (on page 20). A set of
profiling options is described in Appendix E (on page 3943).

D.3.1 Configuration Options

There are two set of options suggested by POSIX.1-2024: those for POSIX-conforming systems
and those for X/Open System Interface (XSI) conformance. The requirements for XSI
conformance are documented in the Base Definitions volume of POSIX.1-2024 and not discussed
further here, as they superset the POSIX conformance requirements.

D.3.2 Configuration Options (Shell and Utilities)

There are three broad optional configurations for the Shell and Utilities volume of POSIX.1-2024:
basic execution system, development system, and user portability interactive system. The
options to support these, and other minor configuration options, are listed in XBD Chapter 2 (on
page 15). Profile writers should consult the following list and the comments concerning user
requirements addressed by various components in Section D.2 (on page 3923).

POSIX2_UPE
The system supports the User Portability Utilities option.

This option is a requirement for a user portability interactive system. It is required
frequently except for those systems, such as embedded realtime or dedicated application
systems, that support little or no interactive time-sharing work by users or operators. XSI-
conformant systems support this option.

POSIX2_SW_DEV
The system supports the Software Development Utilities option.

This option is required by many systems, even those in which actual software development
does not occur. The make utility, in particular, is required by many application software
packages as they are installed onto the system. If POSIX2_C_DEV is supported,
POSIX2_SW_DEV is almost a mandatory requirement because of ar and make.

POSIX2_C_BIND
The system supports the C-Language Bindings option.

This option is required on some implementations developing complex C applications or on
any system installing C applications in source form that require the functions in this option.
The system() and popen() functions, in particular, are widely used by applications; the
others are rather more specialized.

POSIX2_C_DEV
The system supports the C-Language Development Utilities option.

This option is required by many systems, even those in which actual C-language software

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3931

136485

136486

136487

136488

136489

136490

136491

136492

136493

136494

136495

136496

136497

136498

136499

136500

136501

136502

136503

136504

136505

136506

136507

136508

136509

136510

136511

136512

136513

136514

136515

136516

136517

136518

136519

136520

136521

136522

136523

136524

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Profiling Considerations Portability Considerations (Informative)

development does not occur. The c17 utility, in particular, is required by many application
software packages as they are installed onto the system. The lex and yacc utilities are used
less frequently.

POSIX2_FORT_RUN
The system supports the FORTRAN Runtime Utilities option.

This option is required for some FORTRAN applications that need the asa utility to convert
Hollerith printing statement output. It is unknown how frequently this occurs.

POSIX2_LOCALEDEF
The system supports the creation of locales.

This option is needed if applications require their own customized locale definitions to
operate. It is presently unknown whether many applications are dependent on this.
However, the option is virtually mandatory for systems in which internationalized
applications are developed.

XSI-conformant systems support this option.

POSIX2_CHAR_TERM
The system supports at least one terminal type capable of all operations described in
POSIX.1-2024.

On systems with POSIX2_UPE, this option is almost always required. It was developed
solely to allow certain specialized vendors and user applications to bypass the requirement
for general-purpose asynchronous terminal support. For example, an application and
system that was suitable for block-mode terminals would not need this option.

XSI-conformant systems support this option.

D.3.3 Configurable Limits

Very few of the limits need to be increased for profiles. No profile can cite lower values.

{POSIX2_BC_BASE_MAX}
{POSIX2_BC_DIM_MAX}
{POSIX2_BC_SCALE_MAX}
{POSIX2_BC_STRING_MAX}

No increase is anticipated for any of these bc values, except for very specialized applications
involving huge numbers.

{POSIX2_COLL_WEIGHTS_MAX}
Some natural languages with complex collation requirements require an increase from the
default 2 to 4; no higher numbers are anticipated.

{POSIX2_EXPR_NEST_MAX}
No increase is anticipated.

{POSIX2_LINE_MAX}
This number is much larger than most historical applications have been able to use. At some
future time, applications may be rewritten to take advantage of even larger values.

{POSIX2_RE_DUP_MAX}
No increase is anticipated.

{POSIX2_VERSION}
This is actually not a limit, but a standard version stamp. Generally, a profile should specify
XCU Chapter 2 (on page 2472) by name in the normative references section, not this value.

3932 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136525

136526

136527

136528

136529

136530

136531

136532

136533

136534

136535

136536

136537

136538

136539

136540

136541

136542

136543

136544

136545

136546

136547

136548

136549

136550

136551

136552

136553

136554

136555

136556

136557

136558

136559

136560

136561

136562

136563

136564

136565

136566

136567

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Profiling Considerations

D.3.4 Configuration Options (System Interfaces)

{NGROUPS_MAX}
A non-zero value indicates that the implementation supports supplementary groups.

This option is needed where there is a large amount of shared use of files, but where a
certain amount of protection is needed. Many profiles11 are known to require this option; it
should only be required if needed, but it should never be prohibited.

_POSIX_ADVISORY_INFO
The system provides advisory information for file management.

This option allows the application to specify advisory information that can be used to
achieve better or even deterministic response time in file manager or input and output
operations.

_POSIX_ASYNCHRONOUS_IO
Support for asynchronous input and output is mandatory in POSIX.1-2024.

_POSIX_BARRIERS
Support for barrier synchronization is mandatory in POSIX.1-2024.

This facility allows efficient synchronization of multiple parallel threads in multi-processor
systems in which the operation is supported in part by the hardware architecture.

_POSIX_CHOWN_RESTRICTED
The system restricts the right to ``give away’’ files to other users. It is mandatory that an
implementation be able to support this facility in POSIX.1-2024; however, it is recognized
that implementations need not enable the functionality by default.

Some applications expect that they can change the ownership of files in this way. It is
provided where either security or system account requirements cause this ability to be a
problem. It is also known to be specified in many profiles.

_POSIX_CLOCK_SELECTION
Support for clock selection is mandatory in POSIX.1-2024.

This facility allows applications to request a high resolution sleep in order to suspend a
thread during a relative time interval, or until an absolute time value, using the desired
clock. It also allows the application to select the clock used in a pthread_cond_timedwait()
function call.

_POSIX_CPUTIME
The system supports the Process CPU-Time Clocks option.

This option allows applications to use a new clock that measures the execution times of
processes or threads, and the possibility to create timers based upon these clocks, for
runtime detection (and treatment) of execution time overruns.

_POSIX_FSYNC
The system supports file synchronization requests.

This option was created to support historical systems that did not provide the feature.
Applications that are expecting guaranteed completion of their input and output operations
should require the _POSIX_SYNC_IO option. This option should never be prohibited.

XSI-conformant systems support this option.

11. There are no formally approved profiles of POSIX.1-2024 at the time of publication; the reference here is to various profiles generated by
private bodies or governments.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3933

136568

136569

136570

136571

136572

136573

136574

136575

136576

136577

136578

136579

136580

136581

136582

136583

136584

136585

136586

136587

136588

136589

136590

136591

136592

136593

136594

136595

136596

136597

136598

136599

136600

136601

136602

136603

136604

136605

136606

136607

136608

136609

136610

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Profiling Considerations Portability Considerations (Informative)

_POSIX_IPV6
The system supports facilities related to Internet Protocol Version 6 (IPv6).

This option was created to allow systems to transition to IPv6.

_POSIX_JOB_CONTROL
Support for job control is mandatory in POSIX.1-2024.

Most applications that use it can run when it is not present, although with a degraded level
of user convenience.

_POSIX_MAPPED_FILES
Support for memory mapped files is mandatory in POSIX.1-2024.

This facility provides for the mapping of regular files into the process address space.

Both this facility and the Shared Memory Objects option provide shared access to memory
objects in the process address space. The mmap() and munmap() functions provide the
functionality of existing practice for mapping regular files. This functionality was deemed
unnecessary, if not inappropriate, for embedded systems applications and is expected to be
optional in subprofiles.

_POSIX_MEMLOCK
The system supports the locking of the address space.

This option was created to support historical systems that did not provide the feature. It
should only be required if needed, but it should never be prohibited.

_POSIX_MEMLOCK_RANGE
The system supports the locking of specific ranges of the address space.

For applications that have well-defined sections that need to be locked and others that do
not, POSIX.1-2024 supports an optional set of functions to lock or unlock a range of process
addresses. The following are two reasons for having a means to lock down a specific range:

1. An asynchronous event handler function that must respond to external events in a
deterministic manner such that page faults cannot be tolerated

2. An input/output ``buffer ’’ area that is the target for direct-to-process I/O, and the
overhead of implicit locking and unlocking for each I/O call cannot be tolerated

It should only be required if needed, but it should never be prohibited.

_POSIX_MEMORY_PROTECTION
Support for memory protection is mandatory in POSIX.1-2024.

The provision of this facility typically imposes additional hardware requirements.

_POSIX_PRIORITIZED_IO
The system provides prioritization for input and output operations.

The use of this option may interfere with the ability of the system to optimize input and
output throughput. It should only be required if needed, but it should never be prohibited.

_POSIX_MESSAGE_PASSING
The system supports the passing of messages between processes.

This option was created to support historical systems that did not provide the feature. The
functionality adds a high-performance XSI interprocess communication facility for local
communication. It should only be required if needed, but it should never be prohibited.

3934 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136611

136612

136613

136614

136615

136616

136617

136618

136619

136620

136621

136622

136623

136624

136625

136626

136627

136628

136629

136630

136631

136632

136633

136634

136635

136636

136637

136638

136639

136640

136641

136642

136643

136644

136645

136646

136647

136648

136649

136650

136651

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Profiling Considerations

_POSIX_MONOTONIC_CLOCK
Support for a monotonic clock is mandatory in POSIX.1-2024.

This facility allows realtime applications to rely on a monotonically increasing clock that
does not jump backwards, and whose value does not change except for the regular ticking
of the clock.

_POSIX_PRIORITY_SCHEDULING
The system provides priority-based process scheduling.

Support of this option provides predictable scheduling behavior, allowing applications to
determine the order in which processes that are ready to run are granted access to a
processor. It should only be required if needed, but it should never be prohibited.

_POSIX_REALTIME_SIGNALS
Support for realtime signals is mandatory in POSIX.1-2024.

This facility provides prioritized, queued signals with associated data values.

_POSIX_REGEXP
Support for regular expression facilities is mandatory in POSIX.1-2024.

_POSIX_SAVED_IDS
Support for this feature is mandatory in POSIX.1-2024.

Certain classes of applications rely on it for proper operation, and there is no alternative
short of giving the application root privileges on most implementations that did not provide
_POSIX_SAVED_IDS.

_POSIX_SEMAPHORES
Support for counting semaphores is mandatory in POSIX.1-2024.

_POSIX_SHARED_MEMORY_OBJECTS
The system supports the mapping of shared memory objects into the process address space.

Both this option and the Memory Mapped Files option provide shared access to memory
objects in the process address space. The functions defined under this option provide the
functionality of existing practice for shared memory objects. This functionality was deemed
appropriate for embedded systems applications and, hence, is provided under this option.
It should only be required if needed, but it should never be prohibited.

_POSIX_SHELL
Support for the sh utility command line interpreter is mandatory in POSIX.1-2024.

_POSIX_SPAWN
The system supports the spawn option.

This option provides applications with an efficient mechanism to spawn execution of a new
process.

_POSIX_SPINLOCKS
Support for spin locks is mandatory in POSIX.1-2024.

This facility provides a simple and efficient synchronization mechanism for threads
executing in multi-processor systems.

_POSIX_SPORADIC_SERVER
The system supports the sporadic server scheduling policy.

This option provides applications with a new scheduling policy for scheduling aperiodic
processes or threads in hard realtime applications.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3935

136652

136653

136654

136655

136656

136657

136658

136659

136660

136661

136662

136663

136664

136665

136666

136667

136668

136669

136670

136671

136672

136673

136674

136675

136676

136677

136678

136679

136680

136681

136682

136683

136684

136685

136686

136687

136688

136689

136690

136691

136692

136693

136694

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Profiling Considerations Portability Considerations (Informative)

_POSIX_SYNCHRONIZED_IO
The system supports guaranteed file synchronization.

This option was created to support historical systems that did not provide the feature.
Applications that are expecting guaranteed completion of their input and output operations
should require this option, rather than the File Synchronization option. It should only be
required if needed, but it should never be prohibited.

_POSIX_THREADS
Support for multiple threads of control within a single process is mandatory in
POSIX.1-2024.

_POSIX_THREAD_ATTR_STACKADDR
The system supports specification of the stack address for a created thread.

Applications may take advantage of support of this option for performance benefits, but
dependence on this feature should be minimized. This option should never be prohibited.

XSI-conformant systems support this option.

_POSIX_THREAD_ATTR_STACKSIZE
The system supports specification of the stack size for a created thread.

Applications may require this option in order to ensure proper execution, but such usage
limits portability and dependence on this feature should be minimized. It should only be
required if needed, but it should never be prohibited.

XSI-conformant systems support this option.

_POSIX_THREAD_PRIORITY_SCHEDULING
The system provides priority-based thread scheduling.

Support of this option provides predictable scheduling behavior, allowing applications to
determine the order in which threads that are ready to run are granted access to a processor.
It should only be required if needed, but it should never be prohibited.

_POSIX_THREAD_PRIO_INHERIT
The system provides mutual-exclusion operations with priority inheritance.

Support of this option provides predictable scheduling behavior, allowing applications to
determine the order in which threads that are ready to run are granted access to a processor.
It should only be required if needed, but it should never be prohibited.

_POSIX_THREAD_PRIO_PROTECT
The system supports a priority ceiling emulation protocol for mutual-exclusion operations.

Support of this option provides predictable scheduling behavior, allowing applications to
determine the order in which threads that are ready to run are granted access to a processor.
It should only be required if needed, but it should never be prohibited.

_POSIX_THREAD_PROCESS_SHARED
The system provides shared access among multiple processes to synchronization objects.

This option was created to support historical systems that did not provide the feature. It
should only be required if needed, but it should never be prohibited.

XSI-conformant systems support this option.

_POSIX_THREAD_SAFE_FUNCTIONS
Support for thread-safe functions is mandatory in POSIX.1-2024.

3936 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136695

136696

136697

136698

136699

136700

136701

136702

136703

136704

136705

136706

136707

136708

136709

136710

136711

136712

136713

136714

136715

136716

136717

136718

136719

136720

136721

136722

136723

136724

136725

136726

136727

136728

136729

136730

136731

136732

136733

136734

136735

136736

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Profiling Considerations

_POSIX_THREAD_SPORADIC_SERVER
The system supports the thread sporadic server scheduling policy.

Support for this option provides applications with a new scheduling policy for scheduling
aperiodic threads in hard realtime applications.

_POSIX_TIMEOUTS
Support for timeouts for some blocking services is mandatory in POSIX.1-2024.

_POSIX_TIMERS
Support for higher resolution clocks with multiple timers per process is mandatory in
POSIX.1-2024.

This facility is appropriate for applications requiring higher resolution timestamps or
needing to control the timing of multiple activities.

_POSIX_TYPED_MEMORY_OBJECTS
The system supports the Typed Memory Objects option.

This option was created to allow realtime applications to access different kinds of physical
memory, and allow processes in these applications to share portions of this memory.

D.3.5 Configurable Limits

In general, the configurable limits in the <limits.h> header defined in the Base Definitions
volume of POSIX.1-2024 have been set to minimal values; many applications or implementations
may require larger values. No profile can cite lower values.

{AIO_LISTIO_MAX}
The current minimum is likely to be inadequate for most applications. It is expected that
this value will be increased by profiles requiring support for list input and output
operations.

{AIO_MAX}
The current minimum is likely to be inadequate for most applications. It is expected that
this value will be increased by profiles requiring support for asynchronous input and
output operations.

{AIO_PRIO_DELTA_MAX}
The functionality associated with this limit is needed only by sophisticated applications. It
is not expected that this limit would need to be increased under a general-purpose profile.

{ARG_MAX}
The current minimum is likely to need to be increased for profiles, particularly as larger
amounts of information are passed through the environment. Many implementations are
believed to support larger values.

{CHILD_MAX}
The current minimum is suitable only for systems where a single user is not running
applications in parallel. It is significantly too low for any system also requiring windows,
and if _POSIX_JOB_CONTROL is specified, it should be raised.

{CLOCKRES_MIN}
It is expected that profiles will require a finer granularity clock, perhaps as fine as 1 μs,
represented by a value of 1 000 for this limit.

{DELAYTIMER_MAX}
It is believed that most implementations will provide larger values.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3937

136737

136738

136739

136740

136741

136742

136743

136744

136745

136746

136747

136748

136749

136750

136751

136752

136753

136754

136755

136756

136757

136758

136759

136760

136761

136762

136763

136764

136765

136766

136767

136768

136769

136770

136771

136772

136773

136774

136775

136776

136777

136778

136779

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Profiling Considerations Portability Considerations (Informative)

{LINK_MAX}
For most applications and usage, the current minimum is adequate. Many implementations
have a much larger value, but this should not be used as a basis for raising the value unless
the applications to be used require it.

{LOGIN_NAME_MAX}
This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{MAX_CANON}
For most purposes, the current minimum is adequate. Unless high-speed burst serial
devices are used, it should be left as is.

{MAX_INPUT}
See {MAX_CANON}.

{MQ_OPEN_MAX}
The current minimum should be adequate for most profiles.

{MQ_PRIO_MAX}
The current minimum corresponds to the required number of process scheduling priorities.
Many realtime practitioners believe that the number of message priority levels ought to be
the same as the number of execution scheduling priorities.

{NAME_MAX}
Many implementations now support larger values, and many applications and users
assume that larger names can be used. Many existing profiles also specify a larger value.
Specifying this value will reduce the number of conforming implementations, although this
might not be a significant consideration over time. Values greater than 255 should not be
required.

{NGROUPS_MAX}
The value selected will typically be 8 or larger.

{OPEN_MAX}
The historically common value for this has been 20. Many implementations support larger
values. If applications that use larger values are anticipated, an appropriate value should be
specified.

{PAGESIZE}
This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{PATH_MAX}
Historically, the minimum has been either 1 024 or indefinite, depending on the
implementation. Few applications actually require values larger than 256, but some users
may create file hierarchies that must be accessed with longer paths. This value should only
be changed if there is a clear requirement.

{PIPE_BUF}
The current minimum is adequate for most applications. Historically, it has been larger. If
applications that write single transactions larger than this are anticipated, it should be
increased. Applications that write lines of text larger than this probably do not need it
increased, as the text line is delimited by a <newline>.

{POSIX_VERSION}
This is actually not a limit, but a standard version stamp. Generally, a profile should specify
POSIX.1-2024 by a name in the normative references section, not this value.

3938 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136780

136781

136782

136783

136784

136785

136786

136787

136788

136789

136790

136791

136792

136793

136794

136795

136796

136797

136798

136799

136800

136801

136802

136803

136804

136805

136806

136807

136808

136809

136810

136811

136812

136813

136814

136815

136816

136817

136818

136819

136820

136821

136822

136823

136824

136825

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Portability Considerations (Informative) Profiling Considerations

{PTHREAD_DESTRUCTOR_ITERATIONS}
It is unlikely that applications will need larger values to avoid loss of memory resources.

{PTHREAD_KEYS_MAX}
The current value should be adequate for most profiles.

{PTHREAD_STACK_MIN}
This should not be treated as an actual limit, but as an implementation parameter. No
profile should impose a requirement on this value.

{PTHREAD_THREADS_MAX}
It is believed that most implementations will provide larger values.

{RTSIG_MAX}
The current limit was chosen so that the set of POSIX.1 signal numbers can fit within a
32-bit field. It is recognized that most existing implementations define many more signals
than are specified in POSIX.1 and, in fact, many implementations have already exceeded 32
signals (including the ``null signal’’). Support of {_POSIX_RTSIG_MAX} additional signals
may push some implementations over the single 32-bit word line, but is unlikely to push
any implementations that are already over that line beyond the 64 signal line.

{SEM_NSEMS_MAX}
The current value should be adequate for most profiles.

{SEM_VALUE_MAX}
The current value should be adequate for most profiles.

{SSIZE_MAX}
This limit reflects fundamental hardware characteristics (the size of an integer), and should
not be specified unless it is clearly required. Extreme care should be taken to assure that
any value that might be specified does not unnecessarily eliminate implementations
because of accidents of hardware design.

{STREAM_MAX}
This limit is very closely related to {OPEN_MAX}. It should never be larger than
{OPEN_MAX}, but could reasonably be smaller for application areas where most files are
not accessed through stdio. Some implementations may limit {STREAM_MAX} to 20 but
allow {OPEN_MAX} to be considerably larger. Such implementations should be allowed for
if the applications permit.

{TIMER_MAX}
The current limit should be adequate for most profiles, but it may need to be larger for
applications with a large number of asynchronous operations.

{TTY_NAME_MAX}
This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{TZNAME_MAX}
The minimum has been historically adequate, but if longer timezone names are anticipated
(particularly such values as UTC−1), this should be increased.

Part D: Portability Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3939

136826

136827

136828

136829

136830

136831

136832

136833

136834

136835

136836

136837

136838

136839

136840

136841

136842

136843

136844

136845

136846

136847

136848

136849

136850

136851

136852

136853

136854

136855

136856

136857

136858

136859

136860

136861

136862

136863

136864

136865

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Profiling Considerations Portability Considerations (Informative)

D.3.6 Optional Behavior

In POSIX.1-2024, there are no instances of the terms unspecified, undefined, implementation-
defined, or with the verbs ``may’’ or ``need not’’, that the standard developers anticipate or
sanction as suitable for profile or test method citation. All of these are merely warnings to
conforming applications to avoid certain areas that can vary from system to system, and even
over time on the same system. In many cases, these terms are used explicitly to support
extensions, but profiles should not anticipate and require such extensions; future versions of this
standard may do so.

3940 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

136866

136867

136868

136869

136870

136871

136872

136873

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Rationale (Informative)

Part E:

Subprofiling Considerations

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part E: Subprofiling Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3941

136874

136875

136876

136877

136878

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

3942 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Appendix E

Subprofiling Considerations (Informative)

This section contains further information to satisfy the requirement that the project scope enable
subprofiling of POSIX.1-2024. The approach taken is to include a general requirement in
normative text regarding subprofiling and to include an informative section (here) containing a
proposed set of subprofiling options.

E.1 Subprofiling Option Groups
The following Option Groups12 are defined to support profiling. Systems claiming support to
POSIX.1-2024 need not implement these options apart from the requirements stated in XBD
Section 2.1.3 (on page 17). These Option Groups allow profiles to subset the System Interfaces
volume of POSIX.1-2024 by collecting sets of related functions and generic functions.

POSIX_ASYNCHRONOUS_IO: Asynchronous Input and Output Functions
aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_return(), aio_suspend(), aio_write(),
lio_listio()

POSIX_BARRIERS: Barriers
pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(),
pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), pthread_barrierattr_init(),
pthread_barrierattr_setpshared()

POSIX_C_LANG_ATOMICS: ISO C Atomic Operations
atomic_compare_exchange_strong(), atomic_compare_exchange_strong_explicit(),
atomic_compare_exchange_weak(), atomic_compare_exchange_weak_explicit(), atomic_exchange(),
atomic_exchange_explicit(), atomic_fetch_add(), atomic_fetch_add_explicit(), atomic_fetch_and(),
atomic_fetch_and_explicit(), atomic_fetch_or(), atomic_fetch_or_explicit(), atomic_fetch_sub(),
atomic_fetch_sub_explicit(), atomic_fetch_xor(), atomic_fetch_xor_explicit(), atomic_flag_clear(),
atomic_flag_clear_explicit(), atomic_flag_test_and_set(), atomic_flag_test_and_set_explicit(),
atomic_init(), atomic_is_lock_free(), atomic_load(), atomic_load_explicit(), atomic_signal_fence(),
atomic_thread_fence(), atomic_store(), atomic_store_explicit(), kill_dependency()

POSIX_C_LANG_JUMP: Jump Functions
longjmp(), setjmp()

POSIX_C_LANG_MATH: Maths Library
CMPLX(), CMPLXF(), CMPLXL(), acos(), acosf(), acosh(), acoshf(), acoshl(), acosl(), asin(),
asinf(), asinh(), asinhf(), asinhl(), asinl(), atan(), atan2(), atan2f(), atan2l(), atanf(), atanh(),
atanhf(), atanhl(), atanl(), cabs(), cabsf(), cabsl(), cacos(), cacosf(), cacosh(), cacoshf(),
cacoshl(), cacosl(), carg(), cargf(), cargl(), casin(), casinf(), casinh(), casinhf(), casinhl(),
casinl(), catan(), catanf(), catanh(), catanhf(), catanhl(), catanl(), cbrt(), cbrtf(), cbrtl(), ccos(),
ccosf(), ccosh(), ccoshf(), ccoshl(), ccosl(), ceil(), ceilf(), ceill(), cexp(), cexpf(), cexpl(), cimag(),
cimagf(), cimagl(), clog(), clogf(), clogl(), conj(), conjf(), conjl(), copysign(), copysignf(),
copysignl(), cos(), cosf(), cosh(), coshf(), coshl(), cosl(), cpow(), cpowf(), cpowl(), cproj(),
cprojf(), cprojl(), creal(), crealf(), creall(), csin(), csinf(), csinh(), csinhf(), csinhl(), csinl(),
csqrt(), csqrtf(), csqrtl(), ctan(), ctanf(), ctanh(), ctanhf(), ctanhl(), ctanl(), erf(), erfc(), erfcf(),

12. These are modeled on the Units of Functionality from IEEE Std 1003.13-1998.

Part E: Subprofiling Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3943

136879

136880

136881

136882

136883

136884

136885

136886

136887

136888

136889

136890

136891

136892

136893

136894

136895

136896

136897

136898

136899

136900

136901

136902

136903

136904

136905

136906

136907

136908

136909

136910

136911

136912

136913

136914

136915

136916

136917

136918

136919

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Subprofiling Option Groups Subprofiling Considerations (Informative)

erfcl(), erff(), erfl(), exp(), exp2(), exp2f(), exp2l(), expf(), expl(), expm1(), expm1f(), expm1l(),
fabs(), fabsf(), fabsl(), fdim(), fdimf(), fdiml(), floor(), floorf(), floorl(), fma(), fmaf(), fmal(),
fmax(), fmaxf(), fmaxl(), fmin(), fminf(), fminl(), fmod(), fmodf(), fmodl(), fpclassify(), frexp(),
frexpf(), frexpl(), hypot(), hypotf(), hypotl(), ilogb(), ilogbf(), ilogbl(), isfinite(), isgreater(),
isgreaterequal(), isinf(), isless(), islessequal(), islessgreater(), isnan(), isnormal(), isunordered(),
ldexp(), ldexpf(), ldexpl(), lgamma(), lgammaf(), lgammal(), llrint(), llrintf(), llrintl(),
llround(), llroundf(), llroundl(), log(), log10(), log10f(), log10l(), log1p(), log1pf(), log1pl(),
log2(), log2f(), log2l(), logb(), logbf(), logbl(), logf(), logl(), lrint(), lrintf(), lrintl(), lround(),
lroundf(), lroundl(), modf(), modff(), modfl(), nan(), nanf(), nanl(), nearbyint(), nearbyintf(),
nearbyintl(), nextafter(), nextafterf(), nextafterl(), nexttoward(), nexttowardf(), nexttowardl(),
pow(), powf(), powl(), remainder(), remainderf(), remainderl(), remquo(), remquof(), remquol(),
rint(), rintf(), rintl(), round(), roundf(), roundl(), scalbln(), scalblnf(), scalblnl(), scalbn(),
scalbnf(), scalbnl(), signbit(), sin(), sinf(), sinh(), sinhf(), sinhl(), sinl(), sqrt(), sqrtf(), sqrtl(),
tan(), tanf(), tanh(), tanhf(), tanhl(), tanl(), tgamma(), tgammaf(), tgammal(), trunc(),
truncf(), truncl()

POSIX_C_LANG_SUPPORT: General ISO C Library
abs(), aligned_alloc(), asctime(), atof(), atoi(), atol(), atoll(), bsearch(), calloc(), ctime(),
difftime(), div(), feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(), feholdexcept(),
feraiseexcept(), fesetenv(), fesetexceptflag(), fesetround(), fetestexcept(), feupdateenv(), free(),
gmtime(), imaxabs(), imaxdiv(), isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),
islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit(), labs(), ldiv(), llabs(), lldiv(),
localeconv(), localtime(), malloc(), memchr(), memcmp(), memcpy(), memmove(), memset(),
mktime(), qsort(), rand(), realloc(), setlocale(), snprintf(), sprintf(), srand(), sscanf(), strcat(),
strchr(), strcmp(), strcoll(), strcpy(), strcspn(), strerror(), strftime(), strlen(), strncat(),
strncmp(), strncpy(), strpbrk(), strrchr(), strspn(), strstr(), strtod(), strtof(), strtoimax(),
strtok(), strtol(), strtold(), strtoll(), strtoul(), strtoull(), strtoumax(), strxfrm(), time(),
timespec_get(), tolower(), toupper(), tzname, tzset(), va_arg(), va_copy(), va_end(), va_start(),
vsnprintf(), vsprintf(), vsscanf()

POSIX_C_LANG_SUPPORT_R: Thread-Safe General ISO C Library
gmtime_r(), localtime_r(), qsort_r(), strerror_r(), strtok_r()

POSIX_C_LANG_THREADS: ISO C Threads
call_once(), cnd_broadcast(), cnd_signal(), cnd_destroy(), cnd_init(), cnd_timedwait(),
cnd_wait(), mtx_destroy(), mtx_init(), mtx_lock(), mtx_timedlock(), mtx_trylock(),
mtx_unlock(), thrd_create(), thrd_current(), thrd_detach(), thrd_equal(), thrd_exit(),
thrd_join(), thrd_sleep(), thrd_yield(), tss_create(), tss_delete(), tss_get(), tss_set()

POSIX_C_LANG_UCHAR: ISO C Unicode Utilities
c16rtomb(), c32rtomb(), mbrtoc16(), mbrtoc32()

POSIX_C_LANG_WIDE_CHAR: Wide-Character ISO C Library
btowc(), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswctype(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(), mblen(), mbrlen(),
mbrtowc(), mbsinit(), mbsrtowcs(), mbstowcs(), mbtowc(), swprintf(), swscanf(), towctrans(),
towlower(), towupper(), vswprintf(), vswscanf(), wcrtomb(), wcscat(), wcschr(), wcscmp(),
wcscoll(), wcscpy(), wcscspn(), wcsftime(), wcslen(), wcsncat(), wcsncmp(), wcsncpy(),
wcspbrk(), wcsrchr(), wcsrtombs(), wcsspn(), wcsstr(), wcstod(), wcstof(), wcstoimax(),
wcstok(), wcstol(), wcstold(), wcstoll(), wcstombs(), wcstoul(), wcstoull(), wcstoumax(),
wcsxfrm(), wctob(), wctomb(), wctrans(), wctype(), wmemchr(), wmemcmp(), wmemcpy(),
wmemmove(), wmemset()

POSIX_C_LANG_WIDE_CHAR_EXT: Extended Wide-Character ISO C Library
mbsnrtowcs(), wcpcpy(), wcpncpy(), wcscasecmp(), wcsdup(), wcslcat(), wcslcpy(),
wcsncasecmp(), wcsnlen(), wcsnrtombs()

3944 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

136920

136921

136922

136923

136924

136925

136926

136927

136928

136929

136930

136931

136932

136933

136934

136935

136936

136937

136938

136939

136940

136941

136942

136943

136944

136945

136946

136947

136948

136949

136950

136951

136952

136953

136954

136955

136956

136957

136958

136959

136960

136961

136962

136963

136964

136965

136966

136967

136968

136969

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Subprofiling Considerations (Informative) Subprofiling Option Groups

POSIX_C_LIB_EXT: General C Library Extension
fnmatch(), getentropy(), getopt(), getsubopt(), memmem(), optarg, opterr, optind, optopt,
reallocarray(), stpcpy(), stpncpy(), strcasecmp(), strdup(), strfmon(), strlcat(), strlcpy(),
strncasecmp(), strndup(), strnlen()

POSIX_CLOCK_SELECTION: Clock Selection
clock_nanosleep(), pthread_condattr_getclock(), pthread_condattr_setclock()

POSIX_DEVICE_IO: Device Input and Output
FD_CLR(), FD_ISSET(), FD_SET(), FD_ZERO(), clearerr(), close(), fclose(), fdopen(), feof(),
ferror(), fflush(), fgetc(), fgets(), fileno(), fopen(), fprintf(), fputc(), fputs(), fread(), freopen(),
fscanf(), fwrite(), getc(), getchar(), open(), perror(), poll(), posix_close(), ppoll(), printf(),
pread(), pselect(), putc(), putchar(), puts(), pwrite(), read(), scanf(), select(), setbuf(),
setvbuf(), stderr, stdin, stdout, ungetc(), vfprintf(), vfscanf(), vprintf(), vscanf(), write()

POSIX_DEVICE_IO_EXT: Extended Device Input and Output
asprintf(), dprintf(), fmemopen(), open_memstream(), vasprintf(), vdprintf()

POSIX_DEVICE_SPECIFIC: General Terminal
cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), ctermid(), isatty(), tcdrain(), tcflow(),
tcflush(), tcgetattr(), tcgetwinsize(), tcsendbreak(), tcsetattr(), tcsetwinsize(), ttyname()

POSIX_DEVICE_SPECIFIC_R: Thread-Safe General Terminal
ttyname_r()

POSIX_DYNAMIC_LINKING: Dynamic Linking
dladdr(), dlclose(), dlerror(), dlopen(), dlsym()

POSIX_FD_MGMT: File Descriptor Management
dup(), dup2(), dup3(), fcntl(), fgetpos(), fseek(), fseeko(), fsetpos(), ftell(), ftello(), ftruncate(),
lseek(), rewind()

POSIX_FIFO: FIFO
mkfifo()

POSIX_FIFO_FD: FIFO File Descriptor Routines
mkfifoat(), mknodat()

POSIX_FILE_ATTRIBUTES: File Attributes
chmod(), chown(), fchmod(), fchown(), umask()

POSIX_FILE_ATTRIBUTES_FD: File Attributes File Descriptor Routines
fchmodat(), fchownat()

POSIX_FILE_LOCKING: Thread-Safe Stdio Locking
flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(), getchar_unlocked(), putc_unlocked(),
putchar_unlocked()

POSIX_FILE_SYSTEM: File System
access(), chdir(), closedir(), creat(), fchdir(), fpathconf(), fstat(), fstatvfs(), futimens(), getcwd(),
link(), mkdir(), mkostemp(), mkstemp(), opendir(), pathconf(), posix_getdents(), readdir(),
remove(), rename(), rewinddir(), rmdir(), stat(), statvfs(), tmpfile(), tmpnam(), truncate(),
unlink()

POSIX_FILE_SYSTEM_EXT: File System Extensions
alphasort(), dirfd(), getdelim(), getline(), mkdtemp(), scandir()

POSIX_FILE_SYSTEM_FD: File System File Descriptor Routines
faccessat(), fdopendir(), fstatat(), linkat(), mkdirat(), openat(), renameat(), unlinkat(),
utimensat()

Part E: Subprofiling Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3945

136970

136971

136972

136973

136974

136975

136976

136977

136978

136979

136980

136981

136982

136983

136984

136985

136986

136987

136988

136989

136990

136991

136992

136993

136994

136995

136996

136997

136998

136999

137000

137001

137002

137003

137004

137005

137006

137007

137008

137009

137010

137011

137012

137013

137014

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Subprofiling Option Groups Subprofiling Considerations (Informative)

POSIX_FILE_SYSTEM_GLOB: File System Glob Expansion
glob(), globfree()

POSIX_FILE_SYSTEM_R: Thread-Safe File System
readdir_r()

POSIX_I18N: Internationalization
bind_textdomain_codeset(), bindtextdomain(), catclose(), catgets(), catopen(), dcgettext(),
dcgettext_l(), dcngettext(), dcngettext_l(), dgettext(), dgettext_l(), dngettext(), dngettext_l(),
gettext(), gettext_l(), iconv(), iconv_close(), iconv_open(), ngettext(), ngettext_l(),
nl_langinfo(), nl_langinfo_l(), textdomain()

POSIX_JOB_CONTROL: Job Control
setpgid(), tcgetpgrp(), tcsetpgrp(), tcgetsid()

POSIX_MAPPED_FILES: Memory Mapped Files
mmap(), munmap()

POSIX_MEMORY_PROTECTION: Memory Protection
mprotect()

POSIX_MULTI_CONCURRENT_LOCALES: Multiple Concurrent Locales
duplocale(), freelocale(), getlocalename_l(), isalnum_l(), isalpha_l(), isblank_l(), iscntrl_l(),
isdigit_l(), isgraph_l(), islower_l(), isprint_l(), ispunct_l(), isspace_l(), isupper_l(),
iswalnum_l(), iswalpha_l(), iswblank_l(), iswcntrl_l(), iswctype_l(), iswdigit_l(), iswgraph_l(),
iswlower_l(), iswprint_l(), iswpunct_l(), iswspace_l(), iswupper_l(), iswxdigit_l(), isxdigit_l(),
newlocale(), strcasecmp_l(), strcoll_l(), strerror_l(), strfmon_l(), strftime_l(), strncasecmp_l(),
strxfrm_l(), tolower_l(), toupper_l(), towctrans_l(), towlower_l(), towupper_l(), uselocale(),
wcscasecmp_l(), wcscoll_l(), wcsncasecmp_l(), wcsxfrm_l(), wctrans_l(), wctype_l()

POSIX_MULTI_PROCESS: Multiple Processes
_Exit(), _Fork(), _exit(), assert(), at_quick_exit(), atexit(), clock(), execl(), execle(), execlp(),
execv(), execve(), execvp(), exit(), fork(), getpgrp(), getpgid(), getpid(), getppid(), getrlimit(),
getsid(), quick_exit(), setrlimit(), setsid(), sleep(), times(), wait(), waitid(), waitpid()

POSIX_MULTI_PROCESS_FD: Multiple Processes File Descriptor Routines
fexecve()

POSIX_NETWORKING: Networking
accept(), accept4(), be16toh(), be32toh(), be64toh(), bind(), connect(), endhostent(), endnetent(),
endprotoent(), endservent(), freeaddrinfo(), gai_strerror(), getaddrinfo(), gethostent(),
gethostname(), getnameinfo(), getnetbyaddr(), getnetbyname(), getnetent(), getpeername(),
getprotobyname(), getprotobynumber(), getprotoent(), getservbyname(), getservbyport(),
getservent(), getsockname(), getsockopt(), htobe16(), htobe32(), htobe64(), htole16(), htole32(),
htole64(), htonl(), htons(), if_freenameindex(), if_indextoname(), if_nameindex(),
if_nametoindex(), inet_addr(), inet_ntoa(), inet_ntop(), inet_pton(), le16toh(), le32toh(),
le64toh(), listen(), ntohl(), ntohs(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), sendto(),
sethostent(), setnetent(), setprotoent(), setservent(), setsockopt(), shutdown(), socket(),
sockatmark(), socketpair()

POSIX_PIPE: Pipe
pipe(), pipe2()

POSIX_ROBUST_MUTEXES: Robust Mutexes
pthread_mutex_consistent(), pthread_mutexattr_getrobust(), pthread_mutexattr_setrobust()

POSIX_REALTIME_SIGNALS: Realtime Signals
sigqueue(), sigtimedwait(), sigwaitinfo()

3946 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

137015

137016

137017

137018

137019

137020

137021

137022

137023

137024

137025

137026

137027

137028

137029

137030

137031

137032

137033

137034

137035

137036

137037

137038

137039

137040

137041

137042

137043

137044

137045

137046

137047

137048

137049

137050

137051

137052

137053

137054

137055

137056

137057

137058

137059

137060

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Subprofiling Considerations (Informative) Subprofiling Option Groups

POSIX_REGEXP: Regular Expressions
regcomp(), regerror(), regexec(), regfree()

POSIX_RW_LOCKS: Reader Writer Locks
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), pthread_rwlock_destroy(),
pthread_rwlock_init(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(),
pthread_rwlock_unlock(), pthread_rwlock_wrlock(), pthread_rwlockattr_destroy(),
pthread_rwlockattr_init(), pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared()

POSIX_SEMAPHORES: Semaphores
sem_clockwait(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(),
sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(), sem_wait()

POSIX_SHELL_FUNC: Shell and Utilities
pclose(), popen(), system(), wordexp(), wordfree()

POSIX_SIGNAL_JUMP: Signal Jump Functions
siglongjmp(), sigsetjmp()

POSIX_SIGNALS: Signals
abort(), alarm(), kill(), pause(), raise(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigfillset(), sigismember(), signal(), sigpending(), sigprocmask(), sigsuspend(), sigwait()

POSIX_SIGNALS_EXT: Extended Signals
psignal(), psiginfo(), sig2str(), str2sig(), strsignal()

POSIX_SINGLE_PROCESS: Single Process
confstr(), environ, errno, getenv(), secure_getenv(), setenv(), sysconf(), uname(), unsetenv()

POSIX_SPIN_LOCKS: Spin Locks
pthread_spin_destroy(), pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(),
pthread_spin_unlock()

POSIX_SYMBOLIC_LINKS: Symbolic Links
lchown(),13 lstat(), readlink(), realpath(), symlink()

POSIX_SYMBOLIC_LINKS_FD: Symbolic Links File Descriptor Routines
readlinkat(), symlinkat()

POSIX_SYSTEM_DATABASE: System Database
getgrgid(), getgrnam(), getpwnam(), getpwuid()

POSIX_SYSTEM_DATABASE_R: Thread-Safe System Database
getgrgid_r(), getgrnam_r(), getpwnam_r(), getpwuid_r()

POSIX_THREADS_BASE: Base Threads
pthread_atfork(), pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getschedparam(), pthread_attr_init(), pthread_attr_setdetachstate(),
pthread_attr_setschedparam(), pthread_cancel(), pthread_cleanup_pop(), pthread_cleanup_push(),
pthread_cond_broadcast(), pthread_cond_clockwait(), pthread_cond_destroy(),
pthread_cond_init(), pthread_cond_signal(), pthread_cond_timedwait(), pthread_cond_wait(),
pthread_condattr_destroy(), pthread_condattr_init(), pthread_create(), pthread_detach(),
pthread_equal(), pthread_exit(), pthread_getspecific(), pthread_join(), pthread_key_create(),
pthread_key_delete(), pthread_kill(), pthread_mutex_clocklock(), pthread_mutex_destroy(),
pthread_mutex_init(), pthread_mutex_lock(), pthread_mutex_timedlock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_destroy(),

13. The lchown() function also depends on POSIX_FILE_ATTRIBUTES.

Part E: Subprofiling Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3947

137061

137062

137063

137064

137065

137066

137067

137068

137069

137070

137071

137072

137073

137074

137075

137076

137077

137078

137079

137080

137081

137082

137083

137084

137085

137086

137087

137088

137089

137090

137091

137092

137093

137094

137095

137096

137097

137098

137099

137100

137101

137102

137103

137104

137105

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Subprofiling Option Groups Subprofiling Considerations (Informative)

pthread_mutexattr_init(), pthread_once(), pthread_self(), pthread_setcancelstate(),
pthread_setcanceltype(), pthread_setspecific(), pthread_sigmask(), pthread_testcancel(),
sched_yield()

POSIX_THREADS_EXT: Extended Threads
pthread_attr_getguardsize(), pthread_attr_setguardsize(), pthread_mutexattr_gettype(),
pthread_mutexattr_settype()

POSIX_TIMERS: Timers
clock_getres(), clock_gettime(), clock_settime(), nanosleep(), timer_create(), timer_delete(),
timer_getoverrun(), timer_gettime(), timer_settime()

POSIX_USER_GROUPS: User and Group
getegid(), geteuid(), getgid(), getgroups(), getlogin(), getuid(), setegid(), seteuid(), setgid(),
setuid()

POSIX_USER_GROUPS_R: Thread-Safe User and Group
getlogin_r()

POSIX_WIDE_CHAR_DEVICE_IO: Device Input and Output
fgetwc(), fgetws(), fputwc(), fputws(), fwide(), fwprintf(), fwscanf(), getwc(), getwchar(),
open_wmemstream(), putwc(), putwchar(), ungetwc(), vfwprintf(), vfwscanf(), vwprintf(),
vwscanf(), wprintf(), wscanf()

XSI_C_LANG_SUPPORT: XSI General C Library
a64l(), daylight, drand48(), erand48(), ffs(), ffsl(), ffsll(), getdate(), hcreate(), hdestroy(),
hsearch(), initstate(), insque(), jrand48(), l64a(), lcong48(), lfind(), lrand48(), lsearch(),
memccpy(), mrand48(), nrand48(), random(), remque(), seed48(), setstate(), signgam,
srand48(), srandom(), strptime(), swab(), tdelete(), tfind(), timezone, tsearch(), twalk()

XSI_DBM: XSI Database Management
dbm_clearerr(), dbm_close(), dbm_delete(), dbm_error(), dbm_fetch(), dbm_firstkey(),
dbm_nextkey(), dbm_open(), dbm_store()

XSI_DEVICE_IO: XSI Device Input and Output
fmtmsg(), readv(), writev()

XSI_DEVICE_SPECIFIC: XSI General Terminal
grantpt(), posix_openpt(), ptsname(), unlockpt()

XSI_FILE_SYSTEM: XSI File System
basename(), dirname(), lockf(), mknod(), nftw(), seekdir(), sync(), telldir(), utimes()

XSI_GENERAL_TERMINAL_R: XSI Thread-Safe General Terminal
ptsname_r()

XSI_IPC: XSI Interprocess Communication
ftok(), msgctl(), msgget(), msgrcv(), msgsnd(), semctl(), semget(), semop(), shmat(), shmctl(),
shmdt(), shmget()

XSI_MATH: XSI Maths Library
j0(), j1(), jn(), y0(), y1(), yn()

XSI_MULTI_PROCESS: XSI Multiple Process
getpriority(), getrusage(), nice(), setpriority()

XSI_SIGNALS: XSI Signal
killpg(), sigaltstack()

3948 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

137106

137107

137108

137109

137110

137111

137112

137113

137114

137115

137116

137117

137118

137119

137120

137121

137122

137123

137124

137125

137126

137127

137128

137129

137130

137131

137132

137133

137134

137135

137136

137137

137138

137139

137140

137141

137142

137143

137144

137145

137146

137147

137148

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Subprofiling Considerations (Informative) Subprofiling Option Groups

XSI_SINGLE_PROCESS: XSI Single Process
gethostid(), putenv()

XSI_SYSTEM_DATABASE: XSI System Database
endgrent(), endpwent(), getgrent(), getpwent(), setgrent(), setpwent()

XSI_SYSTEM_LOGGING: XSI System Logging
closelog(), openlog(), setlogmask(), syslog()

XSI_USER_GROUPS: XSI User and Group
endutxent(), getresgid(), getresuid(), getutxent(), getutxid(), getutxline(), pututxline(),
setregid(), setresgid(), setresuid(), setreuid(), setutxent()

XSI_WIDE_CHAR: XSI Wide-Character Library
wcswidth(), wcwidth()

Part E: Subprofiling Considerations Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3949

137149

137150

137151

137152

137153

137154

137155

137156

137157

137158

137159

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Subprofiling Considerations (Informative)

3950 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

(time) resolution ..77
/ ...197
/dev ...197
/dev/console ...197
/dev/null ...197
/dev/tty ...197, 3659
/etc/passwd ..3678
/tmp ..197
<aio.h> ..222
<alert> ...32
<apostrophe> ...33
<arpa/inet.h> ..224
<assert.h> ...226
<backspace> ...37
<blank> ...37
<carriage-return> ..39
<circumflex> ..40
<complex.h> ..227
<control>-V ..2852
<control>-W ...2852
<cpio.h> ..230
<ctype.h> ..232
<devctl.h> ...234
<dirent.h> ...235-236
<dlfcn.h> ..238
<dollar-sign> ..46
<endian.h> ...240
<errno.h> ..242
<fcntl.h> ...246
<fenv.h> ..252
<float.h> ...256
<fmtmsg.h> ..261
<fnmatch.h> ...263
<form-feed> ...54
<ftw.h> ..264
<glob.h> ..266
<grp.h> ...268
<iconv.h> ..270
<inttypes.h> ...271
<iso646.h> ..274
<langinfo.h> ...275
<libgen.h> ..279
<libintl.h> ...280
<limits.h> ...282
<locale.h> ...297
<math.h> ..300
<monetary.h> ...308

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3951

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

<mqueue.h> ...309
<ndbm.h> ...311
<net/if.h> ...313
<netdb.h> ...314
<netinet/in.h> ...318
<netinet/tcp.h> ...323
<newline> ...64
<nl_types.h> ..324
<number-sign> ..65
<period> ...69
<poll.h> ..325
<pthread.h> ...327, 3817
<pwd.h> ...334
<regex.h> ..336
<sched.h> ...339
<search.h> ..341
<semaphore.h> ..343
<setjmp.h> ..345
<signal.h> ...346
<slash> ..81
<space> ...82
<spawn.h> ..356
<stdalign.h> ...359
<stdarg.h> ..364
<stdatomic.h> ..360
<stdbool.h> ..366
<stddef.h> ..367
<stdint.h> ...369
<stdio.h> ...376
<stdlib.h> ...381
<stdnoreturn.h> ..386
<string.h> ...387
<strings.h> ...389
<sys/dir.h> ..236
<sys/ipc.h> ..390
<sys/mman.h> ..392
<sys/msg.h> ..396
<sys/resource.h> ..398
<sys/select.h> ..400
<sys/sem.h> ..402
<sys/shm.h> ..404
<sys/socket.h> ..406
<sys/stat.h> ...414
<sys/statvfs.h> ..420
<sys/time.h> ...422
<sys/times.h> ..424
<sys/types.h> ..425
<sys/uio.h> ..429
<sys/un.h> ...430
<sys/utsname.h> ..432
<sys/wait.h> ..433
<syslog.h> ..435

3952 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

<tab> ...87
<tar.h> ...437
<termios.h> ..439
<tgmath.h> ...445
<threads.h> ..449
<tilde> ...90
<time.h> ...452
<uchar.h> ..457
<unistd.h> ..458
<utmpx.h> ..480
<vertical-tab> ...92
<wchar.h> ...482
<wctype.h> ..486
<wordexp.h> ..488
±0 ...94
_asm_builtin_atoi()...3736
_BSD ..3838
_CFLAGS ..2676
_Complex_I ..227
_CS_PATH..465
_CS_POSIX_V7_ILP32_OFF32_CFLAGS ...466
_CS_POSIX_V7_ILP32_OFF32_LDFLAGS ..466
_CS_POSIX_V7_ILP32_OFF32_LIBS ..466
_CS_POSIX_V7_ILP32_OFFBIG_CFLAGS ..466
_CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS ...466
_CS_POSIX_V7_ILP32_OFFBIG_LIBS ...466
_CS_POSIX_V7_LP64_OFF64_CFLAGS ..466
_CS_POSIX_V7_LP64_OFF64_LDFLAGS ...466
_CS_POSIX_V7_LP64_OFF64_LIBS ...466
_CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS ..466
_CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS ...466
_CS_POSIX_V7_LPBIG_OFFBIG_LIBS ..467
_CS_POSIX_V7_THREADS_CFLAGS ...467
_CS_POSIX_V7_THREADS_LDFLAGS ..467
_CS_POSIX_V7_WIDTH_RESTRICTED_ENVS ...467
_CS_POSIX_V8_ILP32_OFF32_CFLAGS ...465
_CS_POSIX_V8_ILP32_OFF32_LDFLAGS ..465
_CS_POSIX_V8_ILP32_OFF32_LIBS ..465
_CS_POSIX_V8_ILP32_OFFBIG_CFLAGS ..465
_CS_POSIX_V8_ILP32_OFFBIG_LDFLAGS ...465
_CS_POSIX_V8_ILP32_OFFBIG_LIBS ...465
_CS_POSIX_V8_LP64_OFF64_CFLAGS ..465
_CS_POSIX_V8_LP64_OFF64_LDFLAGS ...465
_CS_POSIX_V8_LP64_OFF64_LIBS ...465
_CS_POSIX_V8_LPBIG_OFFBIG_CFLAGS ..466
_CS_POSIX_V8_LPBIG_OFFBIG_LDFLAGS ...466
_CS_POSIX_V8_LPBIG_OFFBIG_LIBS ..466
_CS_POSIX_V8_THREADS_CFLAGS ...466
_CS_POSIX_V8_WIDTH_RESTRICTED_ENVS ...466
_CS_V7_ENV ...467
_CS_V8_ENV ...466
_ENDIAN ...501

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3953

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

_Exit() ...568
_exit()..568, 2354, 3754, 3773
_Exit() ...3924
_exit()..3924
FILE ...626
_Fork() ..574
_Imaginary_I ..227
_IOFBF ..376, 1976, 2021
_IOLBF ..376, 958, 2021
_IONBF ...376, 1976, 2021
_LDFLAGS ...2676
_LIBS ...2676
LINE ..626
_longjmp() ...3840
_LVL ..500
_MAX ..499
_MIN ...282, 499
_PC constants

defined in <unistd.h> ...467
used in pathconf ..988

_PC_2_SYMLINKS ..988
_PC_ALLOC_SIZE_MIN ...988
_PC_ASYNC_IO ..988
_PC_CHOWN_RESTRICTED ...988
_PC_FALLOC ..988
_PC_FILESIZEBITS ...988
_PC_LINK_MAX ...988
_PC_MAX_CANON ...988
_PC_MAX_INPUT ..988
_PC_NAME_MAX ..988
_PC_NO_TRUNC ...988
_PC_PATH_MAX ..988
_PC_PIPE_BUF ..988
_PC_PRIO_IO ..988
_PC_REC_INCR_XFER_SIZE ..988
_PC_REC_MAX_XFER_SIZE ..988
_PC_REC_MIN_XFER_SIZE ...988
_PC_REC_XFER_ALIGN ...988
_PC_SYMLINK_MAX ..988
_PC_SYNC_IO ...988
_PC_TEXTDOMAIN_MAX ...988
_PC_TIMESTAMP_RESOLUTION ...988
_PC_VDISABLE ..988
_POSIX ..282
_POSIX maximum values

in <limits.h>...287
_POSIX minimum values

in <limits.h>...287
_POSIX2 constants

in sysconf..2199
_POSIX2_BC_BASE_MAX ...286, 290
_POSIX2_BC_DIM_MAX ...286, 290

3954 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

_POSIX2_BC_SCALE_MAX ..286, 290
_POSIX2_BC_STRING_MAX ..287, 290
_POSIX2_CHARCLASS_NAME_MAX ...287, 290
_POSIX2_CHAR_TERM ...463, 2201
_POSIX2_COLL_WEIGHTS_MAX ...287, 290
_POSIX2_C_BIND ...17, 463, 2201
_POSIX2_C_DEV ...463, 2201
_POSIX2_EXPR_NEST_MAX ..287, 290
_POSIX2_FORT_RUN ..463, 2201
_POSIX2_LINE_MAX ...287, 290, 293
_POSIX2_LOCALEDEF ..463, 2201
_POSIX2_RE_DUP_MAX ...291
_POSIX2_SW_DEV ...463, 2201
_POSIX2_SYMLINKS ...464
_POSIX2_UPE ..463, 2201
_POSIX2_VERSION ..458, 2201
POSIX ..498
_POSIX_ADVISORY_INFO ...18, 23, 458, 991, 2200, 3933
_POSIX_AIO_LISTIO_MAX ..283, 287
_POSIX_AIO_MAX ...283, 288
_POSIX_ARG_MAX ..283, 288
_POSIX_ASYNCHRONOUS_IO ...17, 459, 2200, 3645, 3933
_POSIX_ASYNC_IO ...464, 988
_POSIX_BARRIERS ..17, 459, 2200, 3645, 3933
_POSIX_CHILD_MAX ...283, 288
_POSIX_CHOWN_RESTRICTED ...17, 459, 726, 988, 991, 3638, 3933
_POSIX_CLOCKRES_MIN ..287
_POSIX_CLOCK_SELECTION ...17, 459, 2200, 3645, 3933
_POSIX_CPUTIME ..18, 23, 459, 2200, 3933
_POSIX_C_SOURCE ...496-497, 3737, 3741
_POSIX_DELAYTIMER_MAX ..283, 288
_POSIX_DEVICE_CONTROL ...18, 459, 2200
_POSIX_FALLOC ..464, 988
_POSIX_FSYNC ..18-19, 22-23, 459, 2200, 3933
_POSIX_HOST_NAME_MAX ...283, 288
_POSIX_IPV6 ...18, 459, 2200, 3934
_POSIX_JOB_CONTROL ...17, 459, 2200, 3638, 3934, 3937
_POSIX_LINK_MAX ..285, 288
_POSIX_LOGIN_NAME_MAX ..283, 288
_POSIX_MAPPED_FILES ..17, 459, 2200, 3645, 3934
_POSIX_MAX_CANON ...285, 288
_POSIX_MAX_INPUT ..285, 288
_POSIX_MEMLOCK ...18, 22-23, 459, 2200, 3934
_POSIX_MEMLOCK_RANGE ...18, 22-23, 459, 2200, 3934
_POSIX_MEMORY_PROTECTION ...17, 459, 2200, 3645, 3934
_POSIX_MESSAGE_PASSING ..18, 22-23, 460, 2200, 3934
_POSIX_MONOTONIC_CLOCK ...17, 460, 2200, 3645, 3935
_POSIX_MQ_OPEN_MAX ..283, 288
_POSIX_MQ_PRIO_MAX ..283, 288
_POSIX_NAME_MAX ..285-286, 288, 1457, 1468, 1628, 1944, 1952, 2028
_POSIX_NGROUPS_MAX ...287-288
_POSIX_NO_TRUNC ...17, 105, 460, 988, 3638

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3955

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

_POSIX_OPEN_MAX ...283, 288, 1178
_POSIX_PATH_MAX ..285, 289, 430, 1457, 1468, 1944, 1952, 2028
_POSIX_PIPE_BUF ...286, 289
_POSIX_PRIORITIZED_IO ...18, 22-23, 460, 528-529, 2200, 3934
_POSIX_PRIORITY_SCHEDULING ...18, 22-23, 460, 528, 2200, 3935
_POSIX_PRIO_IO ..464, 988
_POSIX_RAW_SOCKETS ..18, 460, 2200
_POSIX_READER_WRITER_LOCKS ..17, 460, 2200, 3645
_POSIX_REALTIME_SIGNALS ..17, 460, 2200, 3645, 3935
_POSIX_REGEXP ..17, 460, 2200, 3935
_POSIX_RE_DUP_MAX ...287, 289
_POSIX_RTSIG_MAX ...284, 289, 3748, 3939
_POSIX_SAVED_IDS ..17, 460, 2200, 3638, 3935
_POSIX_SEMAPHORES ..17, 460, 2200, 3645, 3935
_POSIX_SEM_NSEMS_MAX ..284, 289
_POSIX_SEM_VALUE_MAX ..284, 289
_POSIX_SHARED_MEMORY_OBJECTS ...18, 22-23, 460, 2200, 3935
_POSIX_SHELL ...17, 460, 2200, 3935
_POSIX_SIGQUEUE_MAX ..284, 289
_POSIX_SOURCE ..497, 3737
_POSIX_SPAWN..18, 23, 461, 2200, 3935
_POSIX_SPINLOCKS ...3935
_POSIX_SPIN_LOCKS ...17, 461, 2200, 3645
_POSIX_SPORADIC_SERVER ..18, 23, 461, 2200, 3935
_POSIX_SSIZE_MAX ..289, 292
_POSIX_SS_REPL_MAX ..284, 289, 2200, 3789
_POSIX_STREAM_MAX ..284, 289
_POSIX_SYMLINK_MAX ..286, 289
_POSIX_SYMLOOP_MAX ...284, 289
_POSIX_SYNCHRONIZED_IO ...18, 22-23, 461, 2200, 3936
_POSIX_SYNC_IO ..464, 988, 3933
_POSIX_THREADS ...17, 462, 2201, 3645, 3936
_POSIX_THREAD_ATTR_STACKADDR ..18-19, 461, 2200, 3936
_POSIX_THREAD_ATTR_STACKSIZE ...18-19, 461, 2200, 3936
_POSIX_THREAD_CPUTIME ..18, 24, 461, 2200
_POSIX_THREAD_DESTRUCTOR_ITERATIONS ..284, 289
_POSIX_THREAD_KEYS_MAX ...284, 290
_POSIX_THREAD_PRIORITY_SCHEDULING ...18, 24, 461, 2200, 3936
_POSIX_THREAD_PRIO_INHERIT ..18, 24, 461, 2200, 3936
_POSIX_THREAD_PRIO_PROTECT ...18, 24, 461, 2200, 3936
_POSIX_THREAD_PROCESS_SHARED ...18-19, 461, 1764, 2200, 3936
_POSIX_THREAD_ROBUST_PRIO_INHERIT ..24, 461, 2201
_POSIX_THREAD_ROBUST_PRIO_PROTECT ...24, 462, 2201
_POSIX_THREAD_SAFE_FUNCTIONS ...17, 462, 2201, 3645, 3936
_POSIX_THREAD_SPORADIC_SERVER ...18, 24, 462, 2201, 3937
_POSIX_THREAD_THREADS_MAX ..284, 290
_POSIX_TIMEOUTS ...17, 462, 2201, 3645, 3937
_POSIX_TIMERS ...17, 462, 2201, 3645, 3937
_POSIX_TIMER_MAX ..285, 290
_POSIX_TIMESTAMP_RESOLUTION ..464, 988
_POSIX_TTY_NAME_MAX ..285, 290
_POSIX_TYPED_MEMORY_OBJECTS ..18, 23, 462, 2201, 3937

3956 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

_POSIX_TZNAME_MAX ...285, 290, 3708
_POSIX_V7_ILP32_OFF32 ...462, 2201
_POSIX_V7_ILP32_OFFBIG ..462, 2201
_POSIX_V7_LP64_OFF64 ...462, 2201
_POSIX_V7_LPBIG_OFFBIG ...462, 2201
_POSIX_V8_ILP32_OFF32 ...462, 2201
_POSIX_V8_ILP32_OFFBIG ..462, 2201
_POSIX_V8_LP64_OFF64 ...462, 2201
_POSIX_V8_LPBIG_OFFBIG ...463, 2201
_POSIX_VDISABLE ..18, 470, 988, 3413, 3638
_POSIX_VERSION ..17, 458, 2201, 2314
_PROCESS ..500
_PTHREAD_THREADS_MAX ...1731
_SC constants

defined in <unistd.h> ...468
in sysconf..2199

_SC_2_CHAR_TERM ...2201
_SC_2_C_BIND ..2201
_SC_2_C_DEV ...2201
_SC_2_FORT_RUN ...2201
_SC_2_LOCALEDEF ..2201
_SC_2_SW_DEV ..2201
_SC_2_UPE ...2201
_SC_2_VERSION ...1549, 2201
_SC_ADVISORY_INFO ..2200
_SC_AIO_LISTIO_MAX ...2199
_SC_AIO_MAX ...2199
_SC_AIO_PRIO_DELTA_MAX ...2199
_SC_ARG_MAX ..2199
_SC_ASYNCHRONOUS_IO ...2200
_SC_ATEXIT_MAX ...2199
_SC_BARRIERS ...2200
_SC_BC_BASE_MAX ..2199
_SC_BC_DIM_MAX ..2199
_SC_BC_SCALE_MAX ...2199
_SC_BC_STRING_MAX ...2199
_SC_CHILD_MAX ..2199
_SC_CLK_TCK ..2199, 2276
_SC_CLOCK_SELECTION ..2200
_SC_COLL_WEIGHTS_MAX ...2199
_SC_CPUTIME ..2200
_SC_DELAYTIMER_MAX ...2199
_SC_DEVICE_CONTROL ..2200
_SC_EXPR_NEST_MAX ...2199
_SC_FSYNC ...2200
_SC_GETGR_R_SIZE_MAX ..1128, 2199
_SC_GETPW_R_SIZE_MAX ...2199
_SC_IOV_MAX ..2199
_SC_IPV6 ..2200
_SC_JOB_CONTROL ..2200
_SC_LINE_MAX ..2199
_SC_LOGIN_NAME_MAX ...2199

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3957

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

_SC_MEMLOCK ...2200
_SC_MEMLOCK_RANGE ...2200
_SC_MEMORY_PROTECTION ..2200
_SC_MESSAGE_PASSING ...2200
_SC_MONOTONIC_CLOCK ..2200
_SC_MQ_OPEN_MAX ...2199
_SC_MQ_PRIO_MAX ...2199
_SC_NGROUPS_MAX ...2199
_SC_NPROCESSORS_CONF ..2199
_SC_NPROCESSORS_ONLN ...2199
_SC_NSIG ...2199
_SC_OPEN_MAX ..2199
_SC_PAGESIZE ..1572, 2199, 3773-3774
_SC_PAGE_SIZE ...2199
_SC_PRIORITIZED_IO ...2200
_SC_PRIORITY_SCHEDULING ...2200
_SC_RAW_SOCKETS ...2200
_SC_READER_WRITER_LOCKS ...2200
_SC_REALTIME_SIGNALS ...2200
_SC_REGEXP ...2200
_SC_RE_DUP_MAX ...2200
_SC_RTSIG_MAX ..2200
_SC_SAVED_IDS ...2200
_SC_SEMAPHORES ...2200
_SC_SEM_NSEMS_MAX ...2200
_SC_SEM_VALUE_MAX ...2200
_SC_SHARED_MEMORY_OBJECTS ...2200
_SC_SHELL ..2200
_SC_SIGQUEUE_MAX ..2200
_SC_SPAWN ..2200
_SC_SPIN_LOCKS ..2200
_SC_SPORADIC_SERVER ...2200
_SC_SS_REPL_MAX ...2200
_SC_STREAM_MAX ...2200
_SC_SYMLOOP_MAX ...2200
_SC_SYNCHRONIZED_IO ...2200
_SC_THREADS ...2201
_SC_THREAD_ATTR_STACKADDR ..2200
_SC_THREAD_ATTR_STACKSIZE ...2200
_SC_THREAD_CPUTIME ...2200
_SC_THREAD_DESTRUCTOR_ITERATIONS ...2199
_SC_THREAD_KEYS_MAX ..2200
_SC_THREAD_PRIORITY_SCHEDULING ..2200
_SC_THREAD_PRIO_INHERIT ...2200
_SC_THREAD_PRIO_PROTECT ..2200
_SC_THREAD_PROCESS_SHARED ...2200
_SC_THREAD_ROBUST_PRIO_INHERIT ...2201
_SC_THREAD_ROBUST_PRIO_PROTECT ..2201
_SC_THREAD_SAFE_FUNCTIONS ..2201
_SC_THREAD_SPORADIC_SERVER ..2201
_SC_THREAD_STACK_MIN ..2200
_SC_THREAD_THREADS_MAX ...2200

3958 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

_SC_TIMEOUTS ..2201
_SC_TIMERS ..2201
_SC_TIMER_MAX ..2200
_SC_TTY_NAME_MAX ...2200
_SC_TYPED_MEMORY_OBJECTS ..2201
_SC_TZNAME_MAX ...2200
_SC_V7_ILP32_OFF32 ..2201
_SC_V7_ILP32_OFFBIG ...2201
_SC_V7_LP64_OFF64 ...2201
_SC_V7_LPBIG_OFFBIG ..2201
_SC_V8_ILP32_OFF32 ..2201
_SC_V8_ILP32_OFFBIG ...2201
_SC_V8_LP64_OFF64 ...2201
_SC_V8_LPBIG_OFFBIG ..2201
_SC_VERSION ...2201
_SC_XOPEN_CRYPT ..2201
_SC_XOPEN_ENH_I18N ...2201
_SC_XOPEN_REALTIME ..2201
_SC_XOPEN_REALTIME_THREADS ...2201
_SC_XOPEN_SHM ...2201
_SC_XOPEN_UNIX ..2201
_SC_XOPEN_UUCP ...2201
_SC_XOPEN_VERSION ...2201
_setjmp() ..3840
_t...500
_TIME ..500
_tolower()...3840
_toupper() ..3840
_XOPEN_CRYPT ...18, 22, 463, 2201
_XOPEN_ENH_I18N ..463, 2201
_XOPEN_IOV_MAX ...283, 291
_XOPEN_NAME_MAX ..285-286, 291, 1457, 1468, 1628, 1944, 1952, 2028
_XOPEN_PATH_MAX ...286, 291, 1457, 1468, 1628, 1944, 1952, 2028
_XOPEN_REALTIME ...18, 22, 463, 913, 2201
_XOPEN_REALTIME_THREADS ..18, 24, 463, 2201
_XOPEN_SHM ..463, 2201
_XOPEN_SOURCE ..497-498, 3738
_XOPEN_UNIX ..18-19, 463, 2201
_XOPEN_UUCP ..464, 2201
_XOPEN_VERSION ..19, 458, 2201
__alignas_is_defined ...359
__alignof_is_defined ...359
__errno()...3745
__STDC_WANT_LIB_EXT1__ ...497, 3738
a64l() ...575
ABDAY_ ..277
ABDAY_1 ..1510
ABMON_ ..277
abort() ...577, 3924
abortive release ..31
abort_handler_s ...502
abs() ..579

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3959

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

absolute pathname..31, 105
accept() ...580
accept4() ...580
access mode..31
access() ...584, 3677, 3924
acos()...588
acosf() ...588
acosh() ..590
acoshf() ...590
acoshl() ...590
acosl() ...588, 592
ACTION ...1215
actions equivalent to functions ...2457
adb

rationale for omission...3913
additional file access control mechanism ..31
address families ...3835
address information..1022
address space ...31
address string...1022
addressing ..3835
addrinfo ..315, 1022
admin ..2574
ADV ..7
advanced realtime ...23
ADVANCED REALTIME356, 734, 1563, 1565, 1572, 1574, 1576, 1581, 1590, 1592, 1596, 1600

..1602, 1604, 1606, 1608, 1610, 1612, 1614, 1624, 1626
advanced realtime threads ...24
ADVANCED REALTIME THREADS...1725
advisory information..31, 3759
affirmative response ...32
AF_ ..500
AF_INET ...410
AF_INET6 ...410
AF_UNIX ..410
AF_UNSPEC ..410, 768
AIO_ ..499
aio_ ..499
AIO_ALLDONE ..222, 593
aio_cancel() ..593, 3768
AIO_CANCELED ...222, 593
aio_error() ..595
aio_fsync()..597, 3751, 3767
AIO_LISTIO_MAX ..283, 1338, 2199, 3937
AIO_MAX ..283, 1338, 2199, 3937
AIO_NOTCANCELED ...222, 593
AIO_PRIO_DELTA_MAX ..283, 528, 2199, 3937
aio_read() ...600, 3768
aio_return() ..603
aio_suspend() ..605, 3767, 3794
aio_write()..607, 3768
ai_ ..499

3960 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

AI_ADDRCONFIG ...315, 1023
AI_ALL ...315, 1023
AI_CANONNAME ...315, 1023
AI_INET6 ..1023
AI_NUMERICHOST ...315, 1023
AI_NUMERICSERV..315, 1023
AI_PASSIVE ...315, 1023
AI_V4MAPPED ...315, 1023
alarm() ..610, 3757, 3793, 3924
alert ..32
alert character ..32
alias ..2470, 2580, 3865, 3928
alias name...32
alias substitution ...2477, 3872
alignas ...359
aligned_alloc()...612
alignment ..32
alignof ...359
alphasort()..614
alternate file access control mechanism...32
alternate signal stack ..33
ALT_DIGITS ..277
AM_STR ...277
anchoring ..186
ancillary data ...33
AND list..2507, 3901
AND-OR list...2505
angle brackets ..33
anycast ..559
API ...33
apostrophe character ..33
appending redirected output ..2495
application ..33
application address ...33
application conformance..27
application program interface ...33
application-managed thread stack ...548, 3835
appropriate privileges ..34, 586, 989, 3649
ar. ..2584, 3930-3931
arbitrary file size..3864
archives

ar command ...2584
AREGTYPE ..437
argc ..874
argument ..34
ARG_MAX ...283, 507, 867, 871, 876, 2199, 3605, 3661, 3858, 3937
arithmetic expansion ..2490, 3886
arithmetic language

bc ..2651
arithmetic precision and operations...2457
arm (a timer) ..34
array identifiers ...2656

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3961

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

as
rationale for omission...3913

asa ..2592, 3928, 3930, 3932
ASCII ...3663
asctime() ...617
asctime_s ..502
asin() ...620
asinf()..620
asinh()...622
asinhf() ...622
asinhl()..622
asinl() ..620, 624
asprintf() ..625, 995
assert() ..626
asterisk ..34
async-cancel safety..3832
async-cancel-safe function ...34
async-signal-safe ...1643, 3754
async-signal-safe function..35
asynchronous AND-OR list ...2519
asynchronous AND-OR lists ...2506, 3901
asynchronous error ...3837
asynchronous events ..34
asynchronous I/O...3767, 3925

completion ..35
operation ...35

asynchronous input and output..34
asynchronously-generated signal ...35
at...2595, 3928
at-job ..2595
atan()...629
atan2()...631
atan2f() ...631
atan2l() ...631
atanf() ...629, 634
atanh() ..635
atanhf() ...635
atanhl() ...635
atanl() ...629, 637
atexit() ..638, 3832
ATEXIT_MAX ..283, 627, 638, 2199
atof() ...640
atoi() ..641, 3735-3736
atol()..643
atoll() ..643
atomic operation..35
atomic_bool ..647
AT OMIC_BOOL_LOCK_FREE ...361
AT OMIC_CHAR16_T_LOCK_FREE ..362
AT OMIC_CHAR32_T_LOCK_FREE ..362
AT OMIC_CHAR_LOCK_FREE ..361
atomic_compare_exchange_strong() ...644

3962 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

atomic_compare_exchange_strong_explicit() ..644
atomic_compare_exchange_weak() ...644
atomic_compare_exchange_weak_explicit

() ..644
atomic_exchange()..646
atomic_exchange_explicit()...646
atomic_fetch_add()...647
atomic_fetch_add_explicit()..647
atomic_fetch_and() ...647
atomic_fetch_and_explicit() ..647
atomic_fetch_or() ..647
atomic_fetch_or_explicit() ...647
atomic_fetch_sub() ...647
atomic_fetch_sub_explicit() ..647
atomic_fetch_xor()..647
atomic_fetch_xor_explicit() ...647
atomic_flag ...360
atomic_flag_clear() ...649
atomic_flag_clear_explicit() ..649
atomic_flag_test_and_set()..650
atomic_flag_test_and_set_explicit()...650
atomic_init() ..651
AT OMIC_INT_LOCK_FREE ...362
atomic_is_lock_free() ...652
AT OMIC_LLONG_LOCK_FREE ..362
atomic_load() ..653
atomic_load_explicit()..653
AT OMIC_LONG_LOCK_FREE ..362
AT OMIC_POINTER_LOCK_FREE ..362
AT OMIC_SHORT_LOCK_FREE ...362
atomic_signal_fence() ..654
atomic_store()..656
atomic_store_explicit()...656
atomic_thread_fence()..654
AT OMIC_WCHAR_T_LOCK_FREE ..362
AT_EACCESS ..248
AT_FDCWD248, 584, 721, 727, 1056, 1075, 1332, 1410, 1417, 1422, 1518, 1864, 1900, 2194

..3450
at_quick_exit()...627
AT_REMOVEDIR ..249, 2320
AT_SYMLINK_FOLLOW ..248, 1332
AT_SYMLINK_NOFOLLOW ..248, 721, 727, 1056, 1076
authentication ..35
authorization ..36
automatic storage class...2660
awk ..2605, 3928, 3930

actions ...2618
arithmetic functions ..2621
escape sequences ...2616
expression patterns ...2618
expressions ...2608
functions ...2620

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3963

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

grammar ...2624
input/output and general functions ..2623
lexical conventions..2631
output statements..2619
overall program structure ..2608
pattern ranges ..2618
patterns ...2617
regular expressions ...2615
special patterns..2617
string functions..2621
user-defined functions..2624
variables and special variables..2612

background ..1997, 2518, 3656-3659, 3720-3721
background job..36, 2519
background process ..36, 2236
background process group ..36
background work

at ..2595
batch ..2647
bg ...2666
crontab ..2749
fg ..2928
jobs ...3021
nice ..3209
nohup ..3222
renice ...3330

backquote ...36
BACKREF ...191
backslash ..36, 3867
backspace character ..37
banner

rationale for omission...3913
barrier ..37, 3809
basename ..37, 2644, 3927, 3929
basename()...657
basic regular expression ...37, 181, 3711
batch ..2647, 3928
baud rate functions ...714
bc...2651, 3927-3928, 3932

grammar ...2652
lexical conventions..2654
operations ...2656
operators ...2656

bcc (mailer blind carbon copy)..3126
BC_ constants

in sysconf..2199
BC_BASE_MAX ...286, 2199, 2460, 3858
BC_DIM_MAX ...286, 2199, 2460, 3858
BC_SCALE_MAX ..286, 2199, 2460, 3858
BC_STRING_MAX ..287, 2199, 2460, 2654
be16toh() ..660
be32toh() ..660

3964 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

be64toh() ..660
bg ...2470, 2666, 3865, 3928
BIG_ENDIAN ..240
binary primaries ..3433
bind ...37
bind() ..662
bindtextdomain() ..666
bind_textdomain_codeset()...666
blank character ..37
blank line ..37
blkcnt_t ...425
blksize_t ..425
BLKTYPE ..437
block special file ..38
block-mode terminal...38
blocked process (or thread) ..37
blocking ..38
BOOT_TIME ...480, 853-854
bounded response ...3926
braces ..38
bracket expression

grammar ...3717
brackets ...38
BRE

expression anchoring..3714
grammar lexical conventions ..3716
matching a collating element...3711
matching a single character ...3711
matching multiple characters ..3713
ordinary character ...3711
periods ..3711
precedence ..3714
special character ..3711

BRE (ERE) matching a single character ...180
BRE (ERE) matching multiple characters ..180
break ..2527
BRKINT ..440
broadcast ..38
BSD ..3652, 3720, 3746
BSDLY ...441
bsearch()...670
bsearch_s ..502
BSn ...441
btowc() ...673
buffer cache ..1064
BUFSIZ ..376, 1976
built-in ..39
built-in utilities ..39, 2470, 3864
builtin ..2732
BUS_ ..499
BUS_ADRALN ..351
BUS_ADRERR ...351

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3965

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

BUS_OBJERR ...351
byte ..39
byte input/output functions ...39
byte-oriented stream ...524
BYTE_ORDER ..240
C Shell ..3656-3657
C-language extensions..3921, 3927
c16rtomb()..674
c17 ..2669, 3930

external symbols..2675
standard libraries ..2674

c32rtomb()..674
cabs()...676
cabsf() ...676
cabsl() ...676
cacos()...677
cacosf() ...677
cacosh() ..679
cacoshf() ...679
cacoshl() ...679
cacosl()..677, 681
cal ...2683
calendar

rationale for omission...3913
calloc() ..684
call_once() ..682
can ...5
cancel

rationale for omission...3913
cancel-safe ..1813
cancelability state ..542, 1732, 1813
cancelability type...1732, 1813
canceling execution of a thread ...1686
cancellation cleanup handler ...1691, 1699, 1723, 1735, 3830-3831
cancellation cleanup stack ...3830
cancellation points ..543
canonical mode input processing ...202, 3721
canonical name ..1023
carg()...686
cargf() ...686
cargl()..686
carriage-control characters...2592
carriage-return character..39
case ..3902
case conditional construct ..2509
case folding ...3678-3679
case insensitive comparisons...95, 3676
casin() ...688
casinf() ..688
casinh() ...690
casinhf()..690
casinhl()..690

3966 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

casinl() ..688, 692
cat ..2686, 3864
catan()...693
catanf()..693
catanh()...695
catanhf() ...695
catanhl() ...695
catanl()..693, 697
catclose() ..698, 3929
catgets() ..699, 3929
catopen() ..701, 3929
CBAUD ...501
cbrt() ...704
cbrtf() ..704
cbrtl() ..704
cc (mailer carbon copy) ..3126
ccos()...705
ccosf() ...705
ccosh() ..707
ccoshf() ...707
ccoshl() ...707
ccosl()..705, 709
CD ..7
cd ...2470, 2690, 3865, 3929
ceil() ..710
ceilf() ...710
ceill() ...710
CEO ...3712
cexp() ..712
cexpf()...712
cexpl() ...712
cfgetispeed() ..714
cfgetospeed() ...716
cflow ..2697
cfsetispeed()...717
cfsetospeed()..718
change current working directory ..720, 2457
change file modes..724
change history..3639, 3731, 3855
change owner and group of file ..728
char ..563, 3839
char16_t ...457
char32_t ...457
character ...39, 3650

rationale ..3650
character array...40
character class ..40
character counting...3586
character encoding..120, 3689

state-dependent ...125
character set ...40, 3688

description file ...3690

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3967

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

portable filename...3663
character special file..40
character string ..40
CHARCLASS_NAME_MAX ...287, 3695
charmap

description ..121
with localedef...3062
writing names with locale..3056

charmap file ...3060, 3413
CHAR_BIT ...291
CHAR_MAX ..291, 1349, 1351, 3697
CHAR_MIN ...291
chdir() ...719
chgrp ..2701, 3864, 3929-3930
child process ...40, 3650
CHILD_MAX ...283, 984, 2199, 3639, 3839, 3858, 3901, 3937
chmod ..2704, 3864, 3929-3930

grammar ...2707
chmod() ..721, 3924
chown ..2711, 3864, 3929-3930
chown() ..726, 3924
chroot

rationale for omission...3913
chroot() ...3665
CHRTYPE ...437
cimag()..730
cimagf() ..730
cimagl() ..730
circumflex ...40
cksum ..2715, 3864, 3929
CLD_ ...499
CLD_CONTINUED ..351
CLD_DUMPED ...351
CLD_EXITED ...351
CLD_KILLED ...351
CLD_STOPPED ...351
CLD_TRAPPED ...351
clearerr()...731
CLOCAL ...442
clock ..41, 3789
clock jump ..41
clock tick ...41, 610, 2202, 2276, 3650

per second ..2199
rationale ..3650

clock() ...732
clockid_t ..425
CLOCKRES_MIN ..3937
clocks ...3789
CLOCKS_PER_SEC ..425, 453, 732
CLOCK_ ...500
clock_ ..500
clock_getcpuclockid() ..734, 3796, 3798

3968 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

clock_getres()...735
clock_gettime()..735
CLOCK_MONOTONIC ...287, 453, 536, 740, 2268, 3794
clock_nanosleep() ...739, 3794
CLOCK_PROCESS_CPUTIME_ID ...453, 537, 3796, 3798
CLOCK_REALTIME ..287, 453, 536, 735, 740, 1494, 1741, 2268, 3789-3794
clock_settime() ..735, 742
clock_t ...425
CLOCK_THREAD_CPUTIME_ID ...453, 537, 3796, 3798
clog() ...743
clogf()..743
clogl()..743
close a file ...747
close()..745, 3773, 3924
closedir() ..751, 3925
closelog() ..753, 3930
cmp ..2720, 3864, 3928
CMPLX() ..566
CMPLXF() ..566
CMPLXL()..566
cmsg_ ..500
CMSG_ ..501
CMSG_DATA ...407
CMSG_FIRSTHDR ..407
CMSG_LEN ..408
CMSG_NXTHDR ..407
CMSG_SPACE ...408
cnd_broadcast()...757
cnd_destroy() ..759
cnd_init()..759
cnd_signal() ...757
cnd_timedwait()..761
cnd_wait() ..761
code block...41
coded character set..41
codes ..3642
codeset ..41
CODESET ...277
codeset conversion..3003

tr ...3459
col

rationale for omission...3913
collating element ...41
collating element order ...3712
collation ..42
collation sequence ...42
COLL_ELEM_MULTI ...191
COLL_ELEM_SINGLE ...191
COLL_WEIGHTS_MAX ..287, 2199, 2460, 3858
colon ..2530
column position...42, 3651
COLUMNS ...174, 3706

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3969

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

comm ...2724, 3928
command ..42, 2470, 2728, 3650, 3865, 3927
command execution..2502, 3898
command interpreter

portable ...2353
command language...3921, 3927
command language interpreter ...42
command mode...2815
command search ..2502, 3898
command substitution..2489, 3884
commands with no command name..2501, 3897
communications commands

mailx ..3102
talk ...3424
uucp ...3504
uudecode ..3508
uuencode ..3511
uustat ..3516
uux ...3519
write ..3597

compare thread IDs...1722
compilation environment ...496, 3737
compilers

c17 ..2669
yacc ..3613

complex ...227
complex data manipulation...3922, 3928
composite graphic symbol ...43
compound commands..2508, 3901
compound-list ..2505
compress ...2735
compression

compress ...2735
uncompress ..2735
zcat ..2735

compression algorithms ...2737
concepts ..3642
concurrent execution ..95, 3676

of processes ..2453
condition variable ...43
conditional construct

case ..3902
if ...3903

configurable limits ..3932, 3937
configuration interrogation ...3920, 3923
configuration options ...3931

shell and utilities ...3931
system interfaces ...3933

configuration values ...2973
conformance ...15, 27, 3639, 3643, 3647, 3649, 3680, 3837

POSIX ..15
POSIX system interfaces...17

3970 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

XSI ...15
XSI system interfaces ..19

conformance document..16, 3639
rationale ..3639

conforming application ..16, 2086, 2589, 3647, 3747, 3861, 3863
conforming application, strictly..610, 874, 3643, 3647, 3753
conforming implementation options ...20
confstr() ..763, 3925
conj() ...767
conjf()..767
conjl() ..767
connect()...768
connected socket..43
connection ..43
connection indication queue..3837
connection mode ...43
connectionless mode...43
consequences of shell errors ..2497
continue ..2532
control character..43, 3409
control mode ..3724
control operator ...44, 3651
controlling process ..44, 2518
controlling terminal ..44, 200, 2453, 2518, 3651, 3720, 3924
CONTTYPE ..437
conversion descriptor ..44, 868, 873, 1222-1223, 1225-1226
conversion specification ...995, 1037, 1081, 1091, 2129

modified ...2137
conversion specifier

modified ...2160
Coordinated Universal Time (UTC) ...2773
copy ...147
copy files commands

cp ...2741
dd ...2776
ln ..3051
mv ..3198
pax ...3250

copysign() ..772
copysignf() ...772
copysignl() ...772
core ..3678
core file ..570
core image ..44, 3651
cos()...773
cosf() ...773
cosh() ..775
coshf() ...775
coshl() ...775
cosl() ...773, 777
covert channel..1313, 3680
cp ...2741, 3864, 3929

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3971

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

cpio
rationale for omission...3913

cpio format ...3271
cpow()...778
cpowf() ...778
cpowl() ...778
cpp

rationale for omission...3913
cproj() ...779
cprojf() ..779
cprojl() ..779
CPT ..7
CPU ...424
CPU time ..44, 3443, 3652

clock ..44
timer ..45

CRDLY ..440
CREAD ...442
creal() ..780
crealf()...780
creall()...780
creat()..781, 3773, 3864
create a per-process timer ..2269
create an interprocess channel...1540
create session and set process group ID ..2012
CRn ..440
CRNCYSTR ..277
cron daemon ..2752
crontab ..2749, 3928
CRYPT ...783, 838, 1988
crypt() ...783
csin() ...785
csinf() ..785
csinh() ...787
csinhf()..787
csinhl()..787
csinl() ..785, 789
CSIZE ..442, 3724
CSn ..442
csplit ..2753, 3928
csqrt()..790
csqrtf() ..790
csqrtl() ..790
CSTOPB ..442
CS_POSIX_V8_THREADS_LDFLAGS ..466
ctags ...2757, 3930
ctan()...792
ctanf()..792
ctanh()...794
ctanhf() ...794
ctanhl() ...794
ctanl()..792, 796

3972 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

ctermid()...797
ctime()...799, 3927
ctime_s ..502
cu

rationale for omission...3913
currency_symbol ...148
current job ..45
current working directory ..45, 93, 2453
cursor position...45
cut ..2762, 3928
CX ..7
cxref ...2767
c_...500
C_ constants in <cpio.h>..230
C_IRGRP ...230
C_IROTH ..230
C_IRUSR ...230
C_ISBLK ..230
C_ISCHR ..230
C_ISCTG ...230
C_ISDIR ..230
C_ISFIFO ..230
C_ISGID ..230
C_ISLNK ...230
C_ISREG ...230
C_ISSOCK ..230
C_ISUID ..230
C_ISVTX ...230
C_IWGRP ...230
C_IWOTH ..230
C_IWUSR ..230
C_IXGRP ...230
C_IXOTH ..230
C_IXUSR ...230
data access ..3920, 3924
data key creation ...1736
data keywords ...3305
data race..45, 100
data segment..45
data structure

dirent ...235
entry ..341
group ...268
lconv ..297
msqid_ds ..396
posix_dent ..235
stat ...414

data type ...561, 3837
ACTION ...341
cc_t ...439
DIR ..235
div_t ..381

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3973

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

ENTRY ..341
FILE ...376
fpos_t ...376
glob_t ..266
ldiv_t ...381
lldiv_t ..381
max_align_t ..367
mbstate_t ..482
msglen_t ...396
msgqnum_t ..396
nl_catd ...324
nl_item ..324
pid_t ..346
ptrdiff_t ...367
regex_t ...336
regmatch_t ..336
regoff_t ..336
shmatt_t ..404
sigset_t ..346
sig_atomic_t ...346
size_t ...367
speed_t ..439
tcflag_t ...439
VISIT ...341
wchar_t ...367
wctrans_t ..486
wint_t ..482

data types
defined in <fenv.h> ...252
defined in <sys/types.h>...425

date ..2770, 3929
DATEMSK ..174, 1109
datum ..311
daylight ...801, 2310
DAY_ ...277
DBL_ constants

defined in <float.h>...257
DBL_DECIMAL_DIG ...258
DBL_DIG ..258
DBL_EPSILON ..259
DBL_MANT_DIG ...257
DBL_MAX ..259
DBL_MAX_10_EXP ...259
DBL_MAX_EXP ...259
DBL_MIN ...260, 620, 622, 629, 631, 635, 858, 882, 884, 886, 915, 969
DBL_MIN_10_EXP ..259
DBL_MIN_EXP ..258
DBL_TRUE_MIN ..260
DBM ..311, 802, 804
DBM_ ..499
dbm_ ...499
dbm_clearerr()...802

3974 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

dbm_close() ...802
dbm_delete() ...802
dbm_error() ...802
dbm_fetch() ...802
dbm_firstkey()...802
DBM_INSERT ..311, 804
dbm_nextkey() ..802
dbm_open() ...802
DBM_REPLACE ..311, 804
dbm_store() ...802
DC ..8
dc

rationale for omission...3913
dcgettext() ..807, 1192
dcgettext_l() ...1192
dcngettext() ..1192
dcngettext_l()...1192
dd ...2776, 3864, 3928-3929
DEAD_PROCESS ...480, 853-854
decimal-point character..45, 74
DECIMAL_DIG ...258
declaration utility ..45
default initialization..95
DEFECHO ..501
deferred cancelability ...1732
defined types..562, 3837
definitions ...3642
delay process execution..2085
DELAYTIMER_MAX ..283, 2199, 2273, 3937
delta ...2787
dependency order ...822
descriptive name ...1022
destroying a mutex ...1747
destructor functions..1735
detaching a thread ...1720
determinism ...3920
device ..46

output ..197
device ID...46
device number ...3652
device, logical ..3660
DEV_BSIZE ..417
dev_t ..425
df. ..2791, 3864, 3929-3930
dgettext() ..1192
dgettext_l()...1192
diff ..2795, 3928-3929

binary output format ..2797
default output format ...2797
directory comparison format...2796
−c or −C output format...2798
−e output format..2798

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3975

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

−f output format ..2798
−u or −U output format ..2799

difftime() ..808
DIR ..235, 562, 751, 1858, 1861, 1906, 1928, 2247
dircmp

rationale for omission...3913
direct I/O..3652
directive ..995, 1037, 1081, 1091
directory ...46, 3652

device ..3717
entry ..46, 3652
files ..3717
list ..3078
operations ...96, 922, 3677
protection ..96, 3677
root ..3665
stream ..46
structure..3717

directory commands
cd ...2690
pwd ...3317

dirent ...236, 922
dirfd() ...809
dirname ...2804, 3927, 3929
dirname() ...811
DIRTYPE ...437
dis

rationale for omission...3913
disarm (a timer) ...46
disk space commands

df ..2791
du ...2807
ulimit ...3476

display ..46, 3652
display line...46
div() ..814
dladdr() ..815
dlclose() ..817
dlerror() ..819
dli_ ...499
dlopen()..821
dlsym() ...824
Dl_info_t ...238
dngettext()..827, 1192
dngettext_l()...1192
documentation ...16, 3164
dollar-sign ..46
dollar-single-quotes ..2474, 3868
domain error ..109
dot ..47, 922, 1902, 2534, 3653
dot-dot ..47, 922, 1902, 3653, 3663, 3684
dot-po file ...47

3976 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

double-quote ..47, 2473, 3867
downshifting ..47
dprintf()..828, 995
drand48() ...829
driver ...47
DT_ ..499
du ...2807, 3864, 3929-3930
dup() ...833, 3773, 3924
dup2() ...833, 3773, 3924
dup3() ...833, 3773, 3924
duplicating an input file descriptor..2497
duplicating an output file descriptor ...2497
duplocale()...836
DUP_COUNT ..191
dynamic package initialization ...1785
d_ ...499
D_FMT ..277
D_T_FMT ..277
E2BIG ..242, 507
EACCES ..242, 508
EADDRINUSE ...242, 508
EADDRNOTAVAIL ...242, 508
EAFNOSUPPORT ...242, 508
EAGAIN ...242, 508, 513
EAI_AGAIN ...316, 1099
EAI_BADFLAGS ...316, 1099
EAI_FAIL ..316, 1099
EAI_FAMILY..316, 1099
EAI_MEMORY ..316, 1099
EAI_NONAME ..316, 1099
EAI_OVERFLOW ..316, 1099
EAI_SERVICE ..316, 1099
EAI_SOCKTYPE ..316, 1099
EAI_SYSTEM ...316, 1099
EALREADY ..242, 508
EBADF ..242, 508
EBADMSG ..242, 508
EBUSY ...242, 508, 3745, 3818
ECANCELED ...242, 508, 3743
ECHILD ..242, 508
ECHO ..442
echo ..2811, 3927
ECHOCTL ..501
ECHOE ...442, 3724
ECHOK ...442, 3724
ECHOKE ..501
ECHONL ..442, 3724
ECHOPRT ..501
ECONNABORTED ...242, 508
ECONNREFUSED ..242, 508
ECONNRESET ..242, 508
ed ..2815, 3928-3929

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3977

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

addresses ..2817
append command ...2820
change command ..2820
commands ..2819
copy command ..2826
delete command ..2821
edit command..2821
edit without checking command ..2821
filename command..2821
global command..2822
global non-matched command ...2826
help command...2822
help-mode command..2823
insert command...2823
interactive global command ..2822
interactive global not-matched command...2826
join command ..2823
line number command ...2827
list command ...2823
mark command ...2823
move command...2824
null command..2827
number command...2824
print command ..2824
prompt command ...2824
quit command..2824
quit without checking command..2824
read command...2825
regular expressions ...2817
shell escape command..2827
substitute command ...2825
undo command ...2826
write command ...2827

EDEADLK ..242, 508
EDESTADDRREQ ...242, 509
edit buffer ...2838, 3526
edit line ...3371
editors

ed ...2815
ex ..2838
sed ..3354
vi ..3526

EDOM ...242, 509, 3745
EDQUOT ..242, 509
ED_FILE_MAX ..2829
ED_LINE_MAX ...2829
EEXIST ..242, 509
EFAULT ..243, 509, 3743
EFBIG ..243, 509
effective group ID..47, 728, 875, 1135, 2453
effective user ID...47, 586, 875, 1313, 2453, 3677
EFTYPE ...3743

3978 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

EHOSTUNREACH ...243, 509
EIDRM ..243, 509
eight-bit transparency ...48
Eighth Edition UNIX ..2441, 2732
EILSEQ ..243, 509, 525, 3745
EINPROGRESS ..243, 509, 529, 3767
EINTR ..243, 509, 545, 3743, 3746, 3756-3757
EINVAL ..243, 509, 3743
EIO ...243, 509
EISCONN ...243, 510
EISDIR ...243, 510
ELOOP ..243, 510, 3743
ELSIZE ..1379
emacs

rationale for omission...3914
EMFILE ...243, 510
EMLINK ...243, 510
EMPTY ..480, 854
empty directory ...48, 3653
empty line...48
empty string (or null string) ..48
empty wide-character string ...48
EMSGSIZE ..243, 510
EMULTIHOP ...243, 510
ENAMETOOLONG ..243, 510, 3744
encoding

character ...120
encoding rule ...48
encrypt()...838
encryption ..22
endgrent() ..840, 3675
endhostent()...842
endnetent() ..844
endprotoent() ..846
endpwent() ..848, 3675
endservent()...851
endutxent() ..853
ENETDOWN ...243, 510
ENETRESET ...243, 510
ENETUNREACH ..243, 510
ENFILE ...243, 510
ENOBUFS ...243, 510
ENODEV ..243, 511
ENOENT ...243, 511
ENOEXEC ..243, 511
ENOLCK ...243, 511
ENOLINK ...243, 511
ENOMEM ...243, 511, 3744
ENOMSG ..243, 511
ENOPROTOOPT ...243, 511
ENOSPC ..243, 511
ENOSYS ..243, 511, 3744, 3770

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3979

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

ENOTCONN ..243, 511
ENOTDIR ...244, 511
ENOTEMPTY ...244, 511
ENOTRECOVERABLE ...244, 511
ENOTSOCK ...244, 511
ENOTSUP ...244, 512, 3744
ENOTTY ..244, 512, 3718, 3743-3744
entire regular expression ..48, 179
ENTRY ..1215
env ...2834, 3927, 3930
environ ..856, 875
environment access ...3920, 3925
environment variable..3704

definition ..3704
internationalization ...169

envp ...875
ENXIO ...244, 512
EOF ..377
EOPNOTSUPP ...244, 512
EOVERFLOW ..244, 512, 3744
EOWNERDEAD ..244, 512
EPERM ..244, 512, 2746, 3827
EPIPE ...244, 512, 3745
Epoch ..48, 3653, 3685, 3790
EPROTO ...244, 512
EPROTONOSUPPORT...244, 512
EPROTOTYPE ...244, 512
equivalence class ...49
era ..49
ERA ...277
erand48() ..829, 857
ERANGE ...244, 512, 3745
ERASE ...3721
ERA_D_FMT ..277
ERA_D_T_FMT ...277
ERA_T_FMT ..277
ERE ..3715

alternation ..3716
bracket expression ...3715
expression anchoring..3716
grammar ...3717
grammar lexical conventions ..3716
matching a collating element...3715
matching a single character ...3715
matching multiple characters ..3716
ordinary character...3715
periods ..3715
precedence ..3716
special character ..3715

erf() ...858
erfc()..861
erfcf() ..861

3980 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

erfcl() ..861
erff() ..858, 863
erfl() ..858, 863
EROFS ...244, 512, 3745
errno ..864, 3742

per-thread ...3745
error conditions ...3687, 3894

mathematical functions ..109
error descriptions ..1099
error handling..3907
error numbers ..507, 3742, 3746

additional ...513
escape character...3867
escape character (backslash)..2473
escape sequence...179
escape sequences

awk ..2616
gencat ..2961
lex ..3042

ESOCKTNOSUPPORT ...244, 512
ESPIPE ..244, 512
ESRCH ..244, 513
EST5EDT ...2310
establish cancellation handlers..1691
establish the locale ..2457
ESTALE ...244, 513
ETIMEDOUT ...244, 513
ETXTBSY ..244, 513
eval ..2536
event management..49
EWOULDBLOCK ..244, 513
ex...2838, 3928-3929

<backslash> ..2851
<control>-D command ...2875
<newline> ...2851
abbreviate command ..2854
addressing ..2845
adjust window command ..2872
append command ...2855
args command ...2855
autoindent option..2877
autoprint option ..2877
autowrite option..2878
beautify option ..2878
change command ..2855
chdir command ...2856
command descriptions ...2852
copy command ..2856
delete command ..2856
directory option...2878
edcompatible option ...2878
edit command..2856

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3981

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

edit options ..2877
errorbells option ..2878
escape command ...2873
execute command ...2875
exrc option ..2878
file command ...2857
global command..2858
ignorecase option ..2879
initialization ...2842
input editing ..2850
insert command...2859
join command ..2859
list command ...2860
list option..2879
magic option ..2879
map command...2860
mark command ...2861
mesg option..2879
move command...2862
next command ...2862
number command...2863
number option ...2879
open command..2863
paragraphs option...2880
preserve command..2838, 2864
print command ..2864
prompt option..2880
put command...2864
quit command..2865
read command...2865
readonly option ...2880
recover command..2865
redraw option ..2880
regular expressions ...2875
remap option..2880
replacement strings...2876
report option ..2881
rewind command ..2866
scroll command ...2850
scroll option..2881
sections option...2881
set command..2866
shell command...2867
shell option...2881
shift left command ..2874
shift right command ...2874
shiftwidth option...2882
showmatch option...2882
showmode option ...2882
slowopen option..2882
source command ...2867
substitute command ...2867

3982 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

suspend command..2868
tabstop option..2882
tag command ...2868
taglength option ..2882
tags option..2883
term option...2883
terse option...2883
unabbrev command..2869
undo command ...2869
unmap command ..2870
version command..2870
visual command ..2870
warn option..2883
window option ..2883
wrapmargin option...2884
wrapscan option..2884
write command ...2871
write line number command...2875
writeany option ...2884
xit command ..2872
yank command ..2872

examine and change blocked signals ...1820
examine and change signal action ..2046
EXDEV ..244, 513
exec ..866, 2538, 3223

of shell scripts ..874
exec family586, 747, 910, 956, 986, 1643, 1998, 2353, 2470, 2733, 3206, 3605, 3657

..3771, 3859, 3904, 3924
execl() ...866
execle() ...866
execlp() ...866
executable file ..49
execute ..49
execute a file...874
execution time..44, 49, 3652

measurement ..99, 3681
monitoring ..49, 536, 3795

execution unit ..2201
execv() ..866
execve() ..866
execvp() ..866
EXINIT ..2838
exit ...2541
exit status..3894

and errors ...2497
for commands ..2499

exit()..880, 3754, 3924
EXIT_FAILURE ..381, 568, 880, 3926
EXIT_SUCCESS ...381, 568, 880, 3926
exp() ..882
exp2() ..884
exp2f()...884

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3983

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

exp2l()...884
expand ..50, 2912, 3928
expf()...882
expl()...882
expm1() ..886
expm1f() ...886
expm1l() ...886
export ..2544
expr ..2915, 3927-3928

matching expression ...2917
expression argument ..2619
expression list ..2619
EXPR_NEST_MAX ...287, 2199, 2460, 3858
EXTA ...501
EXTB ..501
extended regular expression50, 187, 2615, 2745, 2944, 2991, 3041, 3200, 3335, 3602

..3715
extended security controls ...50, 96, 3677
extension

CX ..7
OH ...9
XSI ...12

F-LOCK ...467
fabs() ...888
fabsf()..888
fabsl() ..888
faccessat()...584, 890
false ...2920, 3927
fc...2470, 2922, 3865, 3928
fchdir()..891
fchmod()...892, 3924
fchmodat() ...721, 894
fchown() ...895
fchownat()..726, 897
fclose() ..898, 3924
fcntl() ..901, 3718, 3743, 3774, 3924
fcntl() locks ..3834
fdatasync() ...913
fdim()..915
fdimf() ..915
fdiml()...915
fdopen()..917, 3773
fdopendir() ..920
fds_ ..499
FD_ ..499
fd_ ..499
FD_CLOEXEC247, 409, 523, 701, 754, 833-834, 842, 844, 846, 851, 867, 901, 917, 920

..1226, 1503, 1515, 1547, 1582, 1592, 1627, 2023
FD_CLOFORK ..247, 409, 523, 833-834, 901, 1515, 1547, 1582, 1627
FD_CLR ..1635
FD_CLR() ...567
FD_ISSET ..567, 1635

3984 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

fd_set ...400, 422
FD_SET ...567, 1635
FD_SETSIZE ...400
FD_ZERO ...567, 1635
feature test macro...50, 496, 1103, 3737-3738, 3838

_POSIX_C_SOURCE ...496
_XOPEN_SOURCE ...497
__STDC_WANT_LIB_EXT1__ ...497

feclearexcept() ...924
fegetenv() ...925
fegetexceptflag()..926
fegetround()...927
feholdexcept()..929
fenv_t ..252
feof() ...930
feraiseexcept() ...931
ferror() ..932
fesetenv()..925, 933
fesetexceptflag() ..926, 934
fesetround() ...927, 935
fetestexcept() ...936
feupdateenv() ..938
fexcept_t ..252
fexecve ..940
fexecve() ...866
FE_ ...501
FE_ constants

defined in <fenv.h> ...252
FE_ALL_EXCEPT ..252
FE_DFL_ENV ..253
FE_DIVBYZERO ..252
FE_DOWNWARD ...252
FE_INEXACT ...252
FE_INVALID ..252
FE_OVERFLOW ..252
FE_TONEAREST ...252
FE_TOWARDZERO ..252
FE_UNDERFLOW ..252
FE_UPWARD ...252
FFDLY ...441
fflush() ..941
FFn ...441
ffs() ..945
fg...2470, 2928, 3865, 3928
fgetc()..946, 3925
fgetpos() ...948
fgets()..950
fgetwc() ..952
fgetws() ..954
field ..50
field splitting..2491, 3889
FIFO ...51, 1417, 1419, 1521, 2439, 3653, 3663, 3783

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3985

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

FIFO special file ...51, 3175, 3653
FIFOTYPE ...437
file ..51
FILE ...377, 482, 562
file ..2931, 3653

locking ...910
file access permissions..97, 2454, 3677
file accessibility..586
file characteristics

data structure ...417
header ...417

file classes ...3653
file comparisons

cmp ..2720
comm ...2724
diff ...2795
uniq ...3497

file contents ..2456
file control ...910
file conversion

cut ..2762
dd ...2776
expand ..2912
fold ..2952
head ...3000
join ...3026
od ...3226
paste ..3234
patch ..3238
sort ...3388
strings ..3400
tail ..3419
tr ...3459
tsort ..3468
unexpand ..3491
uniq ...3497
uudecode ..3508
uuencode ..3511

file creation ...2454, 3856
file description ...51
file descriptor..51, 2453, 2494, 2503, 3757-3758, 3890
file format notation ...3688
file group class ...51
file hierarchy ..97, 3678
file hierarchy manipulation ...3922, 3929
file lock..51
file mode ...52
file mode bits..52
file mode creation mask ...2453
FILE object..521
file offset ...52
file other class ..52

3986 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

file owner class ..52
file permission bits ..53, 586
file permission commands

chgrp ...2701
chmod ...2704
chown ..2711
umask ..3480

file permissions..586, 991, 1058, 3677, 3720
file position indicator..521
file read ...2454, 3856
file removal ...2456, 3856
file searching

grep ..2991
file serial number...53
file size, arbitrary...3864
file system...53, 3654
file system cache..98, 3680
file system, mounted...3660
file system, root ..3665
file time values...2456
file times update ..98, 3680
file tree commands

diff ...2795
find ..2940
ls ...3078
mkdir ...3171
rmdir ...3343

file type ...53
file write..2454, 3856
file, passwd...3663
filename ..52, 97, 3654, 3678
filename portability...98, 3679
filename string ...52
FILENAME_MAX ...376
fileno() ..956, 3662
FILESIZEBITS ..285, 988
filter ...53
filters

asa ..2592
awk ..2605
compress ...2735
dd ...2776
expand ..2912
fold ..2952
head ...3000
iconv ..3003
more ..3178
nl ..3213
paste ..3234
pax ...3250
pr ..3290
read ..3320

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3987

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

sed ..3354
tail ..3419
tee ..3428
tr ...3459
uncompress ..2735
unexpand ..3491
zcat ..2735

FIND ..1215
find ...2940, 3928-3929
find string token ..2178
FIPS ...17
FIPS requirements ...3638
first open (of a file) ..53
flockfile() ..957, 3746
floor() ..959
floorf()...959
floorl()...959
flow control ..53
FLT_ constants

defined in <float.h>...257
FLT_DECIMAL_DIG ..258
FLT_DIG ...258
FLT_EPSILON ..259
FLT_EVAL_METHOD ..256
FLT_MANT_DIG ...257
FLT_MAX ...259
FLT_MAX_10_EXP ..259
FLT_MAX_EXP ..259
FLT_MIN ..260, 620, 622, 629, 631, 635, 858, 882, 884, 886, 915, 969
FLT_MIN_10_EXP ...259
FLT_MIN_EXP ...258
FLT_RADIX ..257, 1369
FLT_ROUNDS ...256, 961
FLT_TRUE_MIN ..260
FLUSHO ...501
fma() ...961
fmaf() ..961
fmal() ..961
fmax() ...963
fmaxf() ..963
fmaxl() ..963
fmemopen() ...964
fmin() ..968
fminf()...968
fminl()...968
fmod()...969
fmodf() ...969
fmodl()..969
fmtmsg()...971
fnmatch()..974, 3930
FNM_ ..499

3988 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

FNM_ constants
in <fnmatch.h> ..263

FNM_CASEFOLD ...263
FNM_IGNORECASE ..263
FNM_NOESCAPE ..263, 974
FNM_NOMATCH ...263, 974
FNM_PATHNAME ...263, 974
FNM_PERIOD ...263, 974
fold ..2952, 3928
fopen() ..976, 3655, 3864, 3924
FOPEN_MAX ..284, 376, 918, 965, 979, 2280
fopen_s ..502
for loop..2508, 3902
foreground ...1997, 2518, 3656-3659, 3719-3721
foreground job ...54, 2519
foreground process ...54

group ...54
group ID ...54

fork() ...983, 3657, 3720, 3763, 3771, 3773, 3838, 3842, 3924
forkall ..986
form-feed character...54
format of entries ..221, 493
fpathconf() ...988, 3923, 3925
fpclassify() ...994
FPE_ ..499
FPE_FLTDIV ..351
FPE_FLTINV ..351
FPE_FLTOVF ...351
FPE_FLTRES ..351
FPE_FLTSUB ..351
FPE_FLTUND ..351
FPE_INTDIV ..351
FPE_INTOVF ...351
fprintf()...995
fprintf_s ..502
fputc() ...1009, 3925
fputs() ...1011
fputwc()..1013
fputws()..1016
FP_ILOGB0 ...1232
FP_ILOGBNAN ...1232
FQDN ..1146
FR ...8
frac_digits ...148
fread() ...1018, 3925
free()..1020, 3754, 3831
freeaddrinfo() ..1022
freelocale() ...1028
freopen()...1030, 3924
freopen_s ..502
frexp() ...1035
frexpf()..1035

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3989

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

frexpl() ..1035
fsblkcnt_t ..425
FSC ..8
fscanf()..1037
fscanf_s ...502
fseek() ...1045, 3925
fseeko() ...1045
fsetpos()..1049, 3925
fsfilcnt_t ..425
fstat()...1052, 3924
fstatat() ...1055
fstatvfs() ...1061
fsync() ...1064, 3767
ftell() ...1066
ftello(0...1066
ftok() ...1068
ftruncate() ..1070, 3773, 3775, 3924
ftrylockfile() ...957, 1073
FTW ..264, 499, 1502-1503
ftw() ..3840
FTW_ constants

in <ftw.h> ...264
FTW_CHDIR ..264, 1502
FTW_D ..264, 1502
FTW_DEPTH ...264, 1502
FTW_DNR ..264, 1502-1503
FTW_DP ...264, 1502
FTW_F ...264, 1503
FTW_MOUNT ...264, 1502
FTW_NS ...264, 1503
FTW_PHYS ..264, 1502
FTW_SL ..264, 1503
FTW_SLN ...264, 1503
FTW_XDEV ..264, 1502
fully-qualified domain name...1146
function definition command..2511, 3903
function identifiers..2656
functions ...495

implementation ...495, 3735
use ..495, 3735

funlockfile() ...957, 1074
fuser ...2956
futimens()...1075, 3924
fwide() ..1079
fwprintf() ...1081
fwprintf_s ...502
fwrite()..1089, 3925
fwscanf() ..1091
fwscanf_s ..502
f_...500
F_ ...501
F_DUPFD ...246, 901, 906

3990 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

F_DUPFD_CLOEXEC ...246, 901, 906
F_DUPFD_CLOFORK ..246, 901, 906
F_GETFD ..246, 901, 906
F_GETFL ...246, 901, 906
F_GETLK ..246, 903, 906
F_GETOWN ...246, 902, 906
F_GETOWN_EX ..247, 902, 906
F_LOCK ..543, 1358
F_OFD_GETLK ..246, 903, 906
F_OFD_SETLK ...246, 903, 906
F_OFD_SETLKW ...246, 543, 903, 906
F_OK ...464
F_OWNER_PGRP ...247
F_OWNER_PID ...247
F_RDLCK ...247, 906
F_SETFD ...246, 901, 906
F_SETFL ..246, 901, 906
F_SETLK ...246, 903, 906
F_SETLKW ...246, 543, 903, 906
F_SETOWN ..247, 902, 906
F_SETOWN_EX ...247, 902, 906
F_TEST ..467, 1358
F_TLOCK ..467, 1358
F_ULOCK ...467, 1358
F_UNLCK ...247, 903, 905
F_WRLCK ..247
g-file ...2787
gai_strerror()..1099
gencat ..2960, 3929

escape sequences ...2961
general terminal interface ..3718
generated file ...2787
get ..2964
get configurable pathname variables ...991
get configurable system variables...2202
get file status ..1058
get process times ...2276
get supplementary group IDs..1135
get system time..2266
get thread ID ..1811
get user name...1144
getaddrinfo()..1022, 1100
GETALL ..402, 1955
getc() ...1101, 3821, 3925
getch()...3925
getchar() ...1104
getchar_unlocked() ...1102, 1105
getconf ...2973, 3857, 3923, 3930
getcwd() ...1106
getc_unlocked()...1102
getdate() ...1109
getdate_err ..1109

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3991

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

getdelim() ...1114
getegid() ...1117, 3924
getentropy() ...1119
GETENTROPY_MAX ...293
getenv()...875, 1120
getenv_s ..502
geteuid() ...1123, 3924
getgid() ...1125, 3924
getgrent()..840, 1127, 3675
getgrgid() ...1128, 3675, 3822, 3924
getgrgid_r() ..1128
getgrnam() ...1132, 3675, 3680, 3822, 3924
getgrnam_r()..1132
getgroups()...1135, 3666
gethostent() ..842, 1137
gethostid()..1138
gethostname()..1139
getitimer() ..3841
getline() ...1114, 1140
getlocalename_l()..1141
getlogin() ..1143, 3924
getlogin_r() ..1143
getnameinfo() ..1146
GETNCNT ..402, 1955-1956
getnetbyaddr()...844, 1149
getnetbyname() ...844, 1149
getnetent() ..844, 1149
getopt()..1150, 3726, 3929-3930
getopts ...2470, 2979, 3865, 3930
getpeername() ...1155
getpgid()...1157
getpgrp() ..1158, 3658
GETPID ...402, 1955-1956
getpid() ...1159, 3757, 3924
getppid()...1160, 3924
getpriority() ...1161, 3784
getprotent() ..1164
getprotobyname() ...846, 1164
getprotobynumber() ...846, 1164
getprotoent()..846
getpwent()..848, 1165, 3675
getpwnam() ...1166, 3675, 3680, 3822, 3924
getpwnam_r()..1166
getpwuid() ...1170, 3675, 3822, 3924
getpwuid_r()..1170
getresgid() ..1174
getresuid()..1175
getrlimit() ...1176, 3864
getrusage() ...1180, 3797
gets() ...3841
getservbyname() ...851, 1182
getservbyport()..851, 1182

3992 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

getservent() ..851, 1182
getsid()..1183
getsockname() ...1184
getsockopt() ...1186
getsubopt()...1188
gets_s ...502
gettext ..1192, 2985
gettext_l() ...1192
gettimeofday()...3841
getty ...3720
getuid()...1200, 3757, 3839, 3924
getutxent() ...853, 1202
getutxid() ...853, 1202
getutxline() ..853, 1202
GETVAL ..402, 1955-1956
getwc()..1203
getwchar()..1204
GETZCNT ...402, 1955-1956
gid_t ..425, 3675
glob() ..1205, 3930
global storage class ...2660
globfree()..1205, 3930
GLOB_ ..499
GLOB_ constants

defined in <glob.h>...266
error returns of glob..1207
used in glob..1205

GLOB_ABORTED ...266, 1207
GLOB_APPEND ..266, 1205-1206
GLOB_DOOFFS ...266, 1205-1206
GLOB_ERR ...266, 1205, 1207
GLOB_MARK ..266, 1206
GLOB_NOCHECK ..266, 1206-1207
GLOB_NOESCAPE ...266, 1206
GLOB_NOMATCH ...266, 1207
GLOB_NOSORT..266, 1206
GLOB_NOSPACE ...266, 1207
gl_ ..499
GMT0 ..2310
gmtime()...1211, 3685
gmtime_r() ...1211
gmtime_s ..502
GNU make ...3155
grammar

conventions ..3860
locale ...160
regular expression ...191

grantpt() ...1213
graphic character...54
grep ..2991, 3928-3929
group database ..55, 3654
group database access ..3675

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3993

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

group file ..3654
group ID ...55
group name ..55
grouping commands...2508, 3901
HALT...972
hard limit ..55
hard link ..46, 55, 58, 1332, 3051, 3652-3653, 3655
hash ...2470, 2997, 3865
hcreate()..1215
hdestroy()...1215
head ...3000, 3928
headers ..221, 3728
here-document ...2495, 3893
high resolution sleep...1494
historical implementations ..3655
history command

fc ..2922
hole ..55
HOME ...174, 2856, 3639
home directory ...56
host byte order ...56, 99, 3681
host name ...1022
hosted implementation ..3655
hostent ...314
HOST_NAME_MAX ..283
hsearch()...1215
htobe16() ..660, 1218
htobe32() ..660, 1218
htobe64() ..660, 1218
htole16() ...660, 1218
htole32() ...660, 1218
htole64() ...660, 1218
htonl() ...1219
htons() ..1219
HUGE_VAL ..301, 2396
HUGE_VALF ...301
HUGE_VALL ...301
hunk ..3240
HUPCL ...442
hypot()..1220
hypotf() ..1220
hypotl()...1220
h_ ...499
I ..227
IANA timezone database...178, 3708
ICANON ..442, 3721, 3724
iconv ..3003
iconv()...1222, 3929
iconv_close()..1225, 3929
iconv_open()..1226, 3929
ICRNL ...440
id...3007, 3930

3994 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

idtype_t ...433
id_t ...425
IEEE Std 754-1985..493
IEEE Std 854-1987..493
IEXTEN ...442
if ...3903
if conditional construct ...2510
ifc_ ...500
ifra_ ..500
ifru_ ...500
IF_ ..499
if_ ..499-500
if_freenameindex() ...1228
if_indextoname()...1229
if_nameindex ...313
if_nameindex() ..1230
IF_NAMESIZE ...313
if_nametoindex()...1231
IGNBRK ..440
IGNCR ..440
ignore_handler_s ...502
IGNPAR ..440
ILL_ ...499
ILL_BADSTK ...351
ILL_COPROC ..351
ILL_ILLADR ..351
ILL_ILLOPC ...351
ILL_ILLOPN ..351
ILL_ILLTRP ..351
ILL_PRVOPC ...351
ILL_PRVREG ...351
ilogb() ...1232
ilogbf() ..1232
ilogbl() ..1232
imaginary ...227
imaxabs()..1235
imaxdiv()..1236
implementation ...3655

historical ...3655
hosted ..3655
native ...3661
specific ..3655

implementation-defined ...5, 3639-3641
rationale ..3639

IMPLINK_ ..501
in6addr_ ..499
in6addr_any ...1237
in6addr_loopback ...1237
in6_ ..499
IN6_ ...501
IN6_IS_ADDR_LINKLOCAL ...321
IN6_IS_ADDR_LOOPBACK ...320

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3995

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

IN6_IS_ADDR_MC_GLOBAL ..321
IN6_IS_ADDR_MC_LINKLOCAL ...321
IN6_IS_ADDR_MC_NODELOCAL ...321
IN6_IS_ADDR_MC_ORGLOCAL ..321
IN6_IS_ADDR_MC_SITELOCAL ...321
IN6_IS_ADDR_MULTICAST ..321
IN6_IS_ADDR_SITELOCAL ...321
IN6_IS_ADDR_UNSPECIFIED ...320
IN6_IS_ADDR_V4COMPAT ..321
IN6_IS_ADDR_V4MAPPED ...321
INADDR_ ...499
include line...3135
incomplete line ..56
incomplete pathname ...3655
INET6_ADDRSTRLEN ...320
inet_ ...499
inet_addr() ...1238
INET_ADDRSTRLEN ...320
inet_ntoa()..1238
inet_ntop() ...1240
inet_pton() ...1240
Inf ...56, 620, 622, 629, 635, 886
INF ...999, 1084
Inf ...1365, 2080, 2082, 2212, 2215
inference rule ...3130
INFINITY ..301, 999, 1084
INFO ..972
infu_ ..500
init ..571, 1313
initialization ...3677
initialize a named semaphore..1945
initializing a mutex ...1747
initstate() ..1242
INIT_PROCESS ..480, 853-854
INLCR ...440
ino_t ...425
INPCK ...440
input and output rationale...1854
input file descriptor

duplication ...3893
input mode...2815, 3723
input processing ..3721

canonical mode..3721
non-canonical mode..3722

insque() ..1245
INT ..501
inter-user communication..3922, 3929
interactive device ..56, 3655
interactive facilities ...3921, 3928
interactive shell..56
interface ..3836

characteristics ...3719

3996 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

international environment ...1991
internationalization ...56
internationalization variable ...3705
Internet Protocols ..558
interprocess communication ...56, 3758
INTMAX_MAX ...373
INTMAX_MIN ..373
INTN_MAX ..372
INTN_MIN ...372
INTPTR_MAX ...373
INTPTR_MIN ..373
intrinsic utilities...2470, 3656, 3865
intrinsic utility ...57
int_curr_symbol ..148
INT_FASTN_MAX ..373
INT_FASTN_MIN ...372
int_frac_digits ..148
INT_LEASTN_MAX ...372
INT_LEASTN_MIN ..372
INT_MAX ...291, 1232
INT_MIN ..291, 579
int_n_cs_precedes ...149
int_n_sep_by_space ..149
int_n_sign_posn ..149
int_p_cs_precedes ...149
int_p_sep_by_space ..149
int_p_sign_posn ..149
invalid ...180

use in RE ...3711
invariant values ...293
invoke ..57
in_ ..499
IN_ ...501
in_addr ..318
ioctl()...3718, 3744
iovec ..429
iov_ ..500
IOV_ ..501
IOV_MAX ...283, 429, 1867, 2199, 2444
IP6 ..8
IPC ...390, 526, 1472, 1474, 1477, 1479, 1959, 1964, 2034, 2037, 3758
ipcrm ...3011
ipcs ...3014
IPC_ ...499
ipc_ ..499
IPC_ constants

defined in <sys/ipc.h> ...390
used in semctl ..1956
used in shmctl..2032

IPC_CREAT..390, 1473, 1958, 2036
IPC_EXCL ...390, 1473, 1958
IPC_NOWAIT ...390, 1475-1476, 1478-1479, 1960

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3997

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

IPC_PRIVATE ..390, 1473, 1958, 2036
IPC_RMID ..390, 1471, 1956, 2032
IPC_SET ..390, 1471, 1956, 2032
IPC_STAT ...390, 1471, 1956, 2032
IPPORT_ ...501
IPPROTO_ ..499
IPPROTO_ICMP ..319
IPPROTO_IP ..319
IPPROTO_IPV6 ...319
IPPROTO_RAW...320
IPPROTO_TCP ..320
IPPROTO_UDP ...320
IPv4 ..558
IPv4-compatible address ..559
IPv4-mapped address ...559
IPv6 ..558

compatibility with IPv4..559
interface identification..560
options ..560

IPv6 address
anycast ..559
loopback ...559
multicast ...559
unicast ...559
unspecified ...559

IPV6_ ...499
IPV6_JOIN_GROUP ...320, 560
IPV6_LEAVE_GROUP ..320, 560
ipv6_mreq ...319
IPV6_MULTICAST_HOPS ...320, 560
IPV6_MULTICAST_IF ..320, 560
IPV6_MULTICAST_LOOP ..320, 561
IPV6_UNICAST_HOPS ..320, 561
IPV6_V6ONLY...320, 561
ip_ ..499
IP_ ..501
isalnum() ..1248
isalnum_l()...1248
isalpha() ...1250
isalpha_l() ..1250
isascii()..3841
isatty()...1252
isblank() ...1253
isblank_l() ..1253
iscntrl() ...1255
iscntrl_l() ..1255
isdigit() ...1257
isdigit_l() ..1257
isfinite() ..1259
isgraph()...1260
isgraph_l()..1260
isgreater() ...1262

3998 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

isgreaterequal ...1262
ISIG ..442
isinf()...1264
isless ..1262
isless() ...1265
islessequal ...1262, 1265
islessgreater ..1262, 1265
islower() ...1266
islower_l() ..1266
isnan()...1269
isnormal()...1270
ISO/IEC 646: 1991 standard...3663
ISO C standard.........................227, 493, 610, 874, 910, 1103, 1382, 1849, 1902, 1991, 2047, 2060, 2069

..2266, 3647, 3650, 3685, 3718, 3735
isprint()...1271
isprint_l() ...1271
ispunct() ...1273
ispunct_l() ..1273
isspace()..1275
isspace_l() ..1275
ISTRIP ...440, 3723
isunordered()...1277
isupper()...1278
isupper_l()..1278
iswalnum()...1280
iswalnum_l() ...1280
iswalpha() ..1282
iswalpha_l() ...1282
iswblank() ..1284
iswblank_l() ...1284
iswcntrl() ..1286
iswcntrl_l()...1286
iswctype() ..1288
iswctype_l() ...1288
iswdigit()..1291
iswdigit_l()...1291
iswgraph()..1293
iswgraph_l() ..1293
iswlower() ..1295
iswlower_l()...1295
iswprint() ...1297
iswprint_l() ..1297
iswpunct()..1299
iswpunct_l()...1299
iswspace() ..1301
iswspace_l() ...1301
iswupper() ...1303
iswupper_l() ..1303
iswxdigit()..1305
iswxdigit_l()...1305
isxdigit() ...1307
isxdigit_l() ..1307

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 3999

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

itimerspec ...452
it_ ...500
IXANY ..440
IXOFF ..440
IXON ...440
I_ISVTX ...2706
j0() ...1309
j1() ...1309
jn() ...1309
job ..57
job control ..57, 571, 1158, 1313, 1997, 2012, 2202, 2353, 2518, 3656-3659, 3662

..3719-3721, 3747, 3753, 3924
implementing applications ..3658
implementing shells..3656
implementing systems..3659

job ID...57
jobs ...2470, 3021, 3865, 3928
join ...3026, 3928
joinable thread ...58
jrand48() ...829, 1311
JST-9 ...2310
kernel ..3659
kernel entity ...3824
key_t ..425
kill ..2470, 3031, 3866, 3928
kill() ..1312, 3747-3748, 3751, 3753-3754, 3838
killpg() ..1316
kill_dependency()...1315
l64a() ...575, 1318
labs() ...1319
LANG ..169, 701
LANGUAGE ..169
last close..2028, 3774
last close (of a file) ...58
lchown() ...1320
lcong48()...829, 1323
LC_ALL ..170, 297, 868, 1351, 1510, 1990, 1992
LC_COLLATE170, 287, 297, 1205-1206, 1990, 1992, 2117, 2189, 2370, 2415, 3695

description ..139
LC_CTYPE170, 277, 297, 486, 1288, 1387, 1399, 1401, 1990, 1992, 2285, 2291, 3694

description ..131
LC_GLOBAL_LOCALE ...836, 1028
LC_MESSAGES ..170, 277, 297, 324, 701, 1192, 1990-1992, 2125, 3700

description ..159
LC_MONETARY ...170, 277, 297, 1351, 1990, 1992, 2131, 3697

description ..147
LC_NUMERIC170, 277, 297, 996, 1037, 1082, 1091, 1351, 1990, 1992, 2131, 2172

..2396, 3699, 3726
description ..151

LC_TIME ...171, 277, 297, 1110, 1511, 1990, 1992, 3699
description ..152

4000 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

ld
rationale for omission...3914

LDBL_ constants
defined in <float.h>...257

LDBL_DECIMAL_DIG ...258
LDBL_DIG ..258
LDBL_EPSILON ..259
LDBL_MANT_DIG ...257
LDBL_MAX ..259
LDBL_MAX_10_EXP ..259
LDBL_MAX_EXP ..259
LDBL_MIN ...260, 620, 622, 629, 631, 635, 858, 882, 884, 886, 915, 969
LDBL_MIN_10_EXP ...259
LDBL_MIN_EXP ...258
LDBL_TRUE_MIN ..260
ldexp() ..1324
ldexpf() ...1324
ldexpl() ...1324
ldiv() ...1326
le16toh() ...660, 1327
le32toh() ...660, 1327
le64toh() ...660, 1327
leftmost ...179
legacy ..5, 3640

rationale ..3640
lex ..3037, 3930, 3932

actions ...3043
definitions ...3039
escape sequences ...3042
regular expressions ...3041
rules ...3040
table sizes..3040
translation table ...3047
user subroutines ..3041

lfind() ..1328, 1379
lgamma()..1329
lgammaf() ..1329
lgammal()...1329
libraries

ar command ...2584
library routine ..3659
LIMIT ..2459
limit

numerical ..291
limits ..3857
line ...58

rationale for omission...3914
line counting ..3586
LINES ..174, 3706
LINE_MAX287, 2199, 2460, 2606, 2829, 2839, 3125, 3364, 3500, 3661, 3673, 3858
linger ...58
link ...58, 3049, 3659

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4001

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

link count..58
link to a file...1335
link() ...1332, 3925
linkat() ..1332
LINK_MAX ..285, 510, 988, 1333, 1900, 3858, 3938
lint

rationale for omission...3914
LIO_ ...499
lio_ ...499
lio_listio() ...1337, 3751, 3768
LIO_NOP ..222, 1337
LIO_NOWAIT ..222, 1337
LIO_READ ...222, 1337
LIO_WAIT ..222, 1337
LIO_WRITE ..222, 1337
list directed I/O...1339
listen()...1341
lists ...2505, 2519, 3900

AND-OR ...2505
compound-list ..2505

LITTLE_ENDIAN ...240
live process ...59
live thread ...59
llabs() ..1319, 1343
lldiv() ..1326, 1344
LLONG_MAX ..291, 2181, 2403
LLONG_MIN ...292, 2181, 2403
llrint()..1345
llrintf() ..1345
llrintl() ..1345
llround() ...1347
llroundf()..1347
llroundl() ..1347
ln...3051, 3864, 3929
LNKTYPE ...437
load order ...822
LOBLK ..501
local customs..59
local IPC..59
local mode ..3724
locale ...59, 127, 3056, 3692, 3929

configuration ..3922, 3929
definition ..128, 3693
definition example ..3701
definition grammar...3701
grammar ...160, 3701
lexical conventions..3701
POSIX ..128

localeconv() ...1349
localedef ..3062, 3929-3930
localization ...59
localtime() ..1354, 3685, 3820

4002 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

localtime_r() ..1354
localtime_s ..502
lock-free operation ..59
lockf()..1358
locking ...910

advisory ..910
mandatory ..910

locking and unlocking a mutex...1758
locking file ..2708
log()...1361
log10()...1363
log10f() ...1363
log10l()..1363
log1p() ..1365
log1pf() ...1365
log1pl() ...1365
log2()...1367
log2f() ...1367
log2l()..1367
logb() ..1369
logbf() ...1369
logbl() ...1369
logf() ...1361, 1371
logger ..3067, 3930
logical device ...3660
login ...60

rationale for omission...3914
login name..60
login shell ...874
LOGIN_NAME_MAX ..283, 1143, 2199, 3938
LOGIN_PROCESS ...480, 853-854
logl()..1361, 1371
LOGNAME ..175
logname ..3071
LOGNAME ..3639, 3706
logname ..3930
LOG_ ...500
LOG_ constants in syslog...753
LOG_ALERT..436, 753
LOG_AUTH ...435
LOG_CONS ..435, 754
LOG_CRIT ..436, 753
LOG_CRON ...435
LOG_DAEMON ..435
LOG_DEBUG ...436, 753
LOG_EMERG ...436, 753
LOG_ERR ...436, 753
LOG_INFO ...436, 753
LOG_KERN ..435
LOG_LOCAL ...435, 753
LOG_LPR ...435
LOG_MAIL ..435

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4003

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

LOG_MASK ...435
LOG_NDELAY ..435, 754
LOG_NEWS ...435
LOG_NOTICE ...436, 753
LOG_NOWAIT ..435, 754
LOG_ODELAY ..435, 754
LOG_PID ..435, 754
LOG_UPTO..436
LOG_USER ...435, 753-754
LOG_UUCP ...435
LOG_WARNING ..436, 753
longjmp() ..1372, 3743, 3754, 3829-3830, 3927
LONG_BIT ..291-292
LONG_MAX ..292, 2181, 2403, 3725
LONG_MIN ...292, 2181, 2403, 3725
lorder

rationale for omission...3914
lp...3073, 3930
lpstat

rationale for omission...3914
LR(1) grammars...3627
lrand48()...829, 1374
lrint()...1375
lrintf() ...1375
lrintl()..1375
lround() ..1377
lroundf() ...1377
lroundl() ...1377
ls ...3078, 3864, 3929
lsearch() ..1379
lseek() ..1381, 3767-3768, 3773, 3819, 3925
lstat()...1055, 1384, 3864, 3924
l_. ..499-500
L_ANCHOR ...191
L_ctermid ...376, 797
l_sysid ...910
L_tmpnam ..376
L_tmpnam_s ..502
m4 ..3090
macro...3641
macro processor ...3090
macros

implementation ...496, 3737
use ..496, 3737

MAGIC ...230
magic file ..2936
mail

rationale for omission...3914
mailx ..3102, 3928-3929

change current directory ..3113
change folder..3115
command escapes ...3122

4004 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

commands ..3112
copy messages..3113
declare aliases ..3113
declare alternatives ...3113
delete aliases ..3120
delete messages ...3114
delete messages and display..3114
direct messages to mbox...3117
discard header fields ...3114
display beginning of messages ...3120
display current message number..3122
display header summaries ...3116
display header summary..3116
display list of folders...3115
display message..3117-3118
display message size...3120
echo a string ...3114
edit message ...3114, 3121
execute commands conditionally..3116
exit ...3115
follow up specified messages ..3115
help ..3116
hold messages ..3116
internal variables...3109
invoke a shell ...3120
invoke shell command ...3121
list available commands ...3116
mail a message ...3117
null command..3122
pipe message..3117
process next specified message ...3117
quit ...3118
read mailx commands from a file ...3120
receive mode ..3102
reply to a message ...3118
reply to a message list...3118
retain header fields..3119
save messages ..3119
scroll header display...3121
send mode ..3102
set variables..3120
start-up ..3109
touch messages..3120
undelete messages...3121
unset variables ...3121
write messages to a file...3121

main() ...3754
make ...3130, 3930-3931

default rules ...3146
inference rules ..3143
internal macros ..3144
libraries ...3144

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4005

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

macros ...3139
makefile execution ..3136
makefile syntax..3135
target rules ..3137

make, GNU version ..3155
malloc() ..1385, 3754, 3777-3778, 3807, 3820-3821, 3831-3832
man ..3164, 3928
manipulate signal sets ..2055
map ..60, 3660
mapped ...3660
mappings ..1442
MAP_ ..499
MAP_ANON ...392, 1438
MAP_ANONYMOUS ...392, 1438
MAP_FAILED ..1443
MAP_FIXED ..392, 1438
MAP_PRIVATE..392, 983, 1438, 1442, 1447, 1481
MAP_SHARED ..392, 986, 1438-1439
margin code..3642

notation ...12, 3643
matched ..60, 179
mathematical functions ..2459

domain error ..109
error conditions ...109, 3687
NaN arguments ...110, 3687
pole error ..109
range error ..110

MAXARGS ...365
maximum values...287
MAX_CANON ..285, 988, 3721, 3858, 3938
MAX_INPUT ...285, 988, 3858, 3938
may ..6, 3640

rationale ..3640
mblen() ...1387
mbrlen()..1389
mbrtoc16()..1391
mbrtoc32()..1391
mbrtowc() ..1393
mbsinit() ...1395
mbsnrtowcs()...1396
mbsrtowcs() ...1396
mbsrtowcs_s ...502
mbstate_t ..457
mbstowcs()...1399
mbstowcs_s ..502
mbtowc() ..1401
MB_CUR_MAX ..381, 1387, 1389, 1392-1393, 1401, 2363, 2417
MB_LEN_MAX ..291-292
MC1 ...8
MCL_ ...499
MCL_CURRENT ...392, 1435
MCL_FUTURE ..392, 1435, 1443, 3771

4006 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

MCL_INHERIT ..3772
mcontext_t ..349
memccpy() ...1403
memchr()..1404
memcmp()..1405
memcpy() ...1406
memmem() ..1407
memmove() ...1408
memory consistency ...102
memory locking...3769
memory management...529, 3769, 3924
memory management unit ..3770
memory mapped files...60
memory object ...60, 3660
memory ordering ..100, 102, 3681
memory synchronization ...104, 3681
memory-resident ...60, 3660
memory_order ...361
memory_order_acquire ..361, 649, 654, 656
memory_order_acq_rel ...361, 644, 649, 653-654, 656
memory_order_consume ...361, 654, 656
memory_order_relaxed ..361, 654
memory_order_release ..361, 644, 653-654
memory_order_seq_cst ..361, 644, 646-647, 649-650, 653-654, 656
memset() ..1409
mesg ...3168, 3929-3930
message ...61
message catalog...61

descriptor ..61, 568, 868, 873
generation ...2960

message passing ..3760, 3924, 3926
message queue...61, 3760
messages object..61
MET-1MEST ...2310
META_CHAR ..191
minimum values ...287
MINSIGSTKSZ ..349, 2051
mkdir ...3171, 3929
mkdir() ...1410, 3925
mkdirat() ..1410
mkdtemp() ...1414
mkfifo ..3175, 3929
mkfifo()...1417, 3655
mkfifoat() ...1417
mknod

rationale for omission...3914
mknod()..1421, 3655
mknodat() ..1421
mkostemp() ...1414, 1425
mkstemp()..1414, 1426
mktime()...1427, 3685
ML ...8

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4007

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

mlock() ...1433
mlockall() ...1435, 3771
MLR ...8
mmap() ...1437, 3773-3777
MMU ...3770
MM_ ..499
MM_ macros ..261
MM_APPL ..261, 971
MM_CONSOLE ...261, 971
MM_ERROR ...261, 972-973
MM_FIRM ..261
mm_FIRM ..971
MM_HALT...261, 972
MM_HARD ..261, 971
MM_INFO ..261, 972
MM_NOCON ..262, 972
MM_NOMSG ...261, 972
MM_NOSEV ..261, 972
MM_NOTOK ...261, 972
MM_NRECOV ...261, 971
MM_NULLACT ..261
MM_NULLLBL ...261
MM_NULLMC ..261, 971
MM_NULLSEV ...261
MM_NULLTAG...261
MM_NULLTXT ...261
MM_OK ..261, 972
MM_OPSYS ..261, 971
MM_PRINT ..261, 971, 973
MM_RECOVER ...261, 971
MM_SOFT ..261, 971
MM_UTIL ...261, 971
MM_WARNING ..261, 972
mode ..61
modem disconnect ..3722
mode_t ..425
modf()...1445
modff() ...1445
modfl()..1445
monotonic clock ..61, 3793
MON_ ...277
mon_decimal_point ..148
mon_grouping ...148
mon_thousands_sep ...148
more ...3178, 3928-3929

discard and refresh ..3185
display position ...3187
examine new file..3186
examine next file..3186
examine previous file..3186
go to beginning of file...3184
go to end-of-file ...3184

4008 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

go to tag ..3186
help ..3183
invoke editor ..3187
mark position...3185
quit ..3187
refresh the screen ...3185
repeat search ..3186
repeat search in reverse ..3186
return to mark..3185
return to previous position ..3185
scroll backward one half screenful ...3184
scroll backward one line...3184
scroll backward one screenful ...3183
scroll forward one half screenful ..3184
scroll forward one line..3184
scroll forward one screenful ..3183
search backward for pattern..3185
search forward for pattern ...3185
skip forward one line..3184

motion command ..3372
mount point ...62, 3665
mounted file system..3660
mprotect() ..1447, 3773
MQ_ ...499
mq_ ..499
mq_close()..1449
mq_getattr() ...1450
mq_notify() ..1452
mq_open()..1455, 3761
MQ_OPEN_MAX ..283, 2199, 3938
MQ_PRIO_MAX ..283, 1462-1463, 2199, 3938
mq_receive() ..1459, 3762
mq_send() ..1462, 3762
mq_setattr() ...1464
mq_timedreceive()..1459, 1466, 3794
mq_timedsend()..1462, 1467, 3794
mq_unlink() ...1468
mrand48() ..829, 1470
MSG ...9
msg ..499
msg*() ...3758
msgctl()...1471, 3759
msgfmt ..3191
msgget() ...1473, 3759
msgrcv() ...1475, 3759
msgsnd() ..1478, 3759
MSGVERB ...175, 972-973
MSG_ ...499-500
msg_ ..500
MSG_CMSG_CLOEXEC ..409, 1881
MSG_CMSG_CLOFORK ..409, 1881
MSG_CTRUNC ...409

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4009

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

MSG_DONTROUTE ...409
MSG_EOR ..409, 1965, 1968, 1972, 2091, 2094
MSG_NOERROR ...396, 1475-1476
MSG_NOSIGNAL ...409, 1965, 1968, 1972
MSG_OOB ..409, 1881, 1965, 1968, 1972
MSG_PEEK ..410, 1881
msg_perm ...526
MSG_TRUNC ..410
MSG_WAITALL ..410, 1881
msqid ...526
MST7MDT ..2310
msync()...1481, 3773
MS_ ..499
MS_ASYNC ..392, 1439, 1481
MS_INVALIDATE ..392, 1481-1482
MS_SYNC ...392, 1439, 1481
mtx_destroy() ..1484
mtx_init() ...1484
mtx_lock() ..1486
mtx_plain ..1484
mtx_recursive ..1484
mtx_timed ..1484
mtx_timedlock()..1486
mtx_trylock() ...1486
mtx_unlock() ...1486
multi-byte character..3721, 3723
multi-character collating element ...62
multi-threaded library..62
multi-threaded process ...62
multi-threaded program ..62
multicast ...559
multiple tasks...3921, 3928
munlock()...1433, 1488
munlockall() ..1435, 1489
munmap() ..1490, 3773, 3775, 3777, 3780
mutex ...62, 3811

attributes ...1764
extended attributes ...3815
initialization ...3828
initialization attributes ...1763
performance ...1764

mv ..3198, 3864, 3929
MX ...9
MXC ..9
MXX ..9
M_1_PI ..301
M_1_PIl ...301
M_1_SQRTPI ..301
M_1_SQRTPIl ...301
M_2_PI ..301
M_2_PIl ...301
M_2_SQRTPI ..301

4010 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

M_2_SQRTPIl ...301
M_E ...301
M_EGAMMA ...301
M_EGAMMAl ...301
M_El ..301
M_LN ..301
M_LN10 ..301
M_LN10l ...301
M_LNl ...301
M_LOG10E ...301
M_LOG10El ..301
M_LOG2E ...301
M_LOG2El ..301
M_PHI ...301
M_PHIl ..301
M_PI ..301
M_PIl ...301
M_PI_2 ..301
M_PI_2l ...301
M_PI_4 ..301
M_PI_4l ...301
M_SQRT1_2 ..301
M_SQRT1_2l ..301
M_SQRT1_3 ..301
M_SQRT1_3l ..301
M_SQRT2 ..301
M_SQRT2l ..301
M_SQRT3 ..301
M_SQRT3l ..301
name ..63
name information..1146
name space ...498, 3738
name space pollution ..3737-3738
namespace ..3728
NAME_MAX ..105, 235-236, 285, 510, 988, 2589, 3280, 3858, 3938
NaN ...63, 256
NAN ..301
NaN ...620, 622, 629, 635, 886
NAN ..999
NaN ...999
NAN ..1084
NaN ...1084, 1365, 2080, 2082, 2212, 2215
NaN arguments ...3687

mathematical functions ..110
nan()..1492
nanf() ..1492
nanl() ..1492
nanosleep() ...1494, 3791, 3793-3794, 3926
native implementation ...3661
native language ...63
NCCS ..439
NDEBUG ..226, 506, 626

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4011

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

nearbyint() ...1496
nearbyintf() ..1496
nearbyintl() ..1496
negative ..63
negative response ..63
negative_sign ...148
netent ..314
network ...63
network address ..63
network byte order ...64, 99, 3681
network interfaces...550
newgrp ..3204, 3930
newline character ..64
newlocale() ..1497
news

rationale for omission...3914
NEW_TIME ..480, 853-854
nextafter()...1500
nextafterf() ...1500
nextafterl() ...1500
nexttoward() ..1500
nexttowardf()...1500
nexttowardl()...1500
nftw() ..1502, 3864
ngettext ...3208
ngettext() ..1192, 1507
ngettext_l() ...1192
NGROUPS_MAX ..287, 1136, 2199, 3207, 3638, 3666, 3858, 3933, 3938
nice ..3209, 3928
nice value..64, 3661
nice() ...1508, 3784
Ninth Edition UNIX..2663, 3302
NI_DGRAM ...315
NI_NAMEREQD ...315
NI_NOFQDN ...315
NI_NUMERICHOST ..315
NI_NUMERICSCOPE ..315
NI_NUMERICSERV..315
nl...3213
NLDLY..440
nlink_t ...425
NLn ...440
NLSPATH ...171, 701
NL_ ..499
NL_ARGMAX ...293, 995, 1037, 1081, 1091, 3297
NL_CAT_LOCALE ...324, 701
nl_langinfo() ..1510, 3927
nl_langinfo_l() ...1510
NL_LANGMAX ..293
NL_MSGMAX ...293
NL_SETD ..324
NL_SETMAX ...293

4012 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

NL_TEXTMAX ..293
nm ..3217, 3930
noclobber option ...3248, 3890
NOEXPR ...277
NOFLSH ...442
nohup ..875, 3222, 3928
non-blocking ..64
non-built-in utility execution...2503, 3899
non-canonical mode input processing ...202, 3722
non-local jumps ...2069
non-printable ...2829, 3362, 3427, 3673
non-spacing characters...64
non-volatile storage ..1064
normative references ..3639
NOSTR ..277
nrand48()..829, 1513
NSIG_MAX ...293-294
ntohl() ...1219, 1514
ntohs() ..1219, 1514
NUL ...64
NULL ..367, 453, 764, 805, 819, 1442, 1860
null byte..65
null pointer...65, 3661
null string ...65
null terminator...65
null wide-character code..65
number-sign ...65
numerical limits...291
NUM_EMPL ..1216
NZERO ..293, 1161, 1508
n_ ...499
n_cs_precedes ..149
n_sep_by_space ...149
n_sign_posn ...149
OB ..9
object file...65, 3217
obsolescent ...3640

rationale ..3640
OCRNL ...440
octet ...65
od ...3226, 3928, 3930
OF ..9
OFD-owned file lock...66
OFDEL ..440
offset maximum...66
off_t ...425
OFILL ..440
OH ...9
OLD_TIME ..480, 853-854
ONCE_FLAG_INIT ...449, 682
ONLCR ...440
ONLRET ...440

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4013

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

ONOCR ..440
opaque address ..66
open a file ...1521
open a named semaphore ..1945
open a shared memory object..2025
open file ..66
open file description ...66, 3662
open file descriptors..3894

for reading and writing ..2497
open mode..2838
open() ..1515, 3655, 3720, 3773, 3775-3776, 3864, 3924
openat() ..1515, 1529
opendir() ..920, 1530, 3925
openlog()..753, 1531, 3930
OPEN_MAX283, 343, 849, 907, 920, 1455, 1592, 1596, 2199, 2281, 3639, 3858, 3938-3939
open_memstream() ..1526
open_wmemstream() ...1526
operand ...66
operator ..66
OPOST ..440
optarg ..1150, 1532
opterr ...1150, 1532
optind ..1150, 1532
option ..67

ADV ..7
CD ..7
CPT ..7
DC ..8
FR ...8
FSC ..8
IP6 ..8
MC1 ...8
ML ...8
MLR ...8
MSG ...9
MX ...9
MXC ..9
MXX ..9
PIO ...9
PS ...9
RPI ...10
RPP ..10
RS ...10
SD ..10
SHM ..10
SIO ...10
SPN ..10
SS ...10
TCT ..11
TPI ..11
TPP ...11
TPS ...11

4014 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

TSA ..11
TSH ..11
TSP ...11
TSS ...12
TYM ...12
UP ..12
UU ...12

option-argument ...67, 3662
optional behavior ..3940
options ..3837

shell and utilities ...26
system interfaces ...25

optopt ..1150, 1153, 1532
optstring ..1153
OR lists..2507, 3901
ordinary identifiers ...2656
ORD_CHAR ...191
orientation ..67
orphaned process group ..67, 571, 3662, 3753
output device ...197, 3717
output file descriptor

duplication ...3893
output mode ..3723
output processing ..3722
O_ ..501
O_ constants

defined in <fcntl.h> ...247-248
used in dbm_open() ...802
used in open() ...1515
used in posix_openpt() ..1578

O_ACCMODE ...248, 901
O_APPEND ..248, 381, 528, 607, 917, 1414, 1515, 2436
O_CLOEXEC ..247, 381, 393, 802, 833, 920, 1414, 1515, 1539, 1578, 1627, 3776
O_CLOFORK ...247, 382, 393, 833, 1414, 1515, 1539, 1578, 1627
O_CREAT...........................247, 309, 343, 393, 781, 802, 1455-1456, 1515, 1935, 1943, 2023-2024, 2026
O_DIRECTORY ...247, 920, 1516
O_DSYNC ...248, 382, 597, 803, 1414, 1516-1517, 1853, 2437
O_EXCL ...247, 309, 343, 393, 803, 1456, 1516, 1943, 2023-2024
O_EXEC ..248, 1515
O_NDELAY..2441
O_NOCTTY ..247, 382, 1516, 1578
O_NOFOLLOW ...247, 1516
O_NONBLOCK ...248, 309, 509, 902, 1456, 1516, 1539
O_RDONLY ...248, 309, 393, 802, 812, 1455, 1515, 2023, 2026
O_RDWR ..248, 309, 382, 393, 802, 891, 1358, 1455, 1515, 1578, 2023, 2026
O_RSYNC ...248, 382, 803, 1414, 1517, 1853
O_SEARCH ..248, 1332, 1410, 1417, 1422, 1515, 1518, 1864, 1900, 2194, 2320
O_SYNC ..248, 597, 803, 1414, 1517, 1853, 2437
O_TRUNC ..247, 393, 781, 803, 1517, 2024, 2026
O_TTY_INIT ..199, 247, 1517
O_WRONLY...248, 309, 393, 781, 802, 891, 1358, 1455, 1515

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4015

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

pack
rationale for omission...3914

page ...67, 3662, 3773, 3776
page size ...67
PAGESIZE ..284, 529, 1433, 1651, 2199, 3773, 3819, 3938
PAGE_SIZE ..284, 2199
paginators

more ..3178
parallel I/O ..3819
parameter ...68, 3723, 3874

expansion ...2485, 3883
positional ..3874
special ...3874

parameters and variables...2478
PARENB ..442
parent directory ...68, 3663
parent process ..68
parent process ID ..68
PARMRK ..440
PARODD ..442
passwd

rationale for omission...3914
passwd file..3663
paste ..3234, 3928
patch ..3238, 3929-3930

application ..3241
file format ...3240
filename determination ..3241

PA TH...175, 764, 876, 3706
path prefix ..69
pathchk ...3245, 3929
pathconf()...988, 1533, 3655, 3857, 3923, 3925
pathname ..68, 3663

component ..69
expansion ...2493, 3889
incomplete ..3655
resolution ..105, 2457, 3683
variable values...285

pathname manipulation
basename ..2644
dirname ...2804
pathchk ...3245

PA TH_MAX ...285, 294, 510, 988, 2460, 3285, 3338, 3858, 3938
pattern ...69

filename expansion ...3911
for filename expansion ...2525
scanning and processing language...2605

pattern matching ...2941, 3260, 3505, 3521
definition ..2523
in case statements..2509
in shell variables..2487
multiple character ...3910

4016 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

multiple characters..2524
notation ...2523, 3278, 3908
single character..2523, 3908

pause()..1534, 3752, 3757, 3924
pax ..3250, 3929-3930

archive character set encoding/decoding ...3284
cpio file data...3274
cpio filename..3274
cpio header...3272
cpio interchange format ...3271
cpio special entries ..3274
extended header ..3264
extended header file times ...3267
extended header keyword precedence ..3267
list mode format specifications ...3258
ustar format..3268
ustar interchange format..3268

pcat
rationale for omission...3915

pclose() ...1535, 3930
pd_ ...499
PENDIN ..501
pending error ...3836
per-thread errno ..3745
performance enhancements...3920
period ..69
permissions ..69
perror() ...1537
persistence ..69
PF_ ...500
pg

rationale for omission...3915
physical write...1064
ph_ ...499
PID_MAX ...3838
pid_t ..425
PIO ...9
pipe ..70, 985, 1521, 2439, 3656, 3663
pipe() ..1539, 3753, 3758, 3924
pipe2 ..1539
pipe2() ..3924
pipeline ...2519
pipelines ...2504, 3899
PIPE_BUF ...286, 988, 2437, 2440, 3858, 3938
PIPE_MAX ...2441
plain characters..2129
PM_STR ..277
pointer to a function ...517
pole error ..109
POLL ...499
poll() ...1542
POLLERR ...325, 1542

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4017

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

pollfd ...325
POLLHUP ..325, 1542
POLLIN ..325, 1542
polling ...70
POLLNVAL ..325, 1543
POLLOUT ..325, 1542
POLLPRI ...325, 1542
POLLRDBAND ...325, 1542
POLLRDNORM ..325, 1542
POLLWRBAND ...325, 1542
POLLWRNORM ..325, 1542
popen()..1547, 3927, 3930-3931
portability ...3642
portability codes..3642
portable character set..70, 117, 3688
portable filename...70
portable filename character set ...70, 3663
portable messages object source file...70
positional parameter...71, 2479, 3874
positive ...71
positive_sign ..148
POSIX conformance ..15
POSIX locale...128, 3693
POSIX shell and utilities...18
POSIX system interfaces

conformance ...17
POSIX.1 symbols ...496, 3737
POSIX.13 ...3777
POSIX2_BC_BASE_MAX ..2459-2460, 3932
POSIX2_BC_DIM_MAX ...2459-2460, 3932
POSIX2_BC_SCALE_MAX ...2459-2460, 3932
POSIX2_BC_STRING_MAX ...2459-2460, 3932
POSIX2_CHAR_TERM ...19, 26, 3932
POSIX2_COLL_WEIGHTS_MAX ...2459-2460, 3932
POSIX2_C_BIND ...3859, 3931
POSIX2_C_DEV ...19, 26, 3859, 3931
POSIX2_EXPR_NEST_MAX ..2459-2460, 3932
POSIX2_FORT_RUN ..19, 26, 3859, 3932
POSIX2_LINE_MAX ...2459, 2461, 3932
POSIX2_LOCALEDEF ..19, 26, 3859, 3929, 3932
POSIX2_RE_DUP_MAX ...3932
POSIX2_SW_DEV ...19, 26, 3859, 3931
POSIX2_SYMLINKS ...988, 2461, 3859
POSIX2_UPE ...19, 27, 3859, 3931-3932
POSIX2_VERSION ..3932
POSIX_ ..498
posix_ ..498
POSIX_ALLOC_SIZE_MIN ...286, 988, 3760
POSIX_ASYNCHRONOUS_IO ...3943
POSIX_BARRIERS ..3943
POSIX_CLOCK_SELECTION ...3945
posix_close() ..1556

4018 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

POSIX_CLOSE_RESTART ...470
POSIX_C_LANG_ATOMICS ...3943
POSIX_C_LANG_JUMP ..3943
POSIX_C_LANG_MATH ...3943
POSIX_C_LANG_SUPPORT...3944
POSIX_C_LANG_SUPPORT_R ..3944
POSIX_C_LANG_THREADS ..3944
POSIX_C_LANG_UCHAR ..3944
POSIX_C_LANG_WIDE_CHAR ..3944
POSIX_C_LANG_WIDE_CHAR_EXT ...3944
POSIX_C_LIB_EXT ...3945
posix_devctl() ..1557
POSIX_DEVICE_IO ..3945
POSIX_DEVICE_IO_EXT ...3945
POSIX_DEVICE_SPECIFIC ...3945
POSIX_DEVICE_SPECIFIC_R ...3945
POSIX_DYNAMIC_LINKING ..3945
posix_fadvise() ..1563, 3759
POSIX_FADV_DONTNEED ..249, 1563, 3759
POSIX_FADV_NOREUSE ..249, 1563, 3759
POSIX_FADV_NORMAL ..249, 1563
POSIX_FADV_RANDOM ..249, 1563, 3759
POSIX_FADV_SEQUENTIAL ...249, 1563, 3759
POSIX_FADV_WILLNEED ...249, 1563, 3759
posix_fallocate() ..1565
POSIX_FD_MGMT ..3945
POSIX_FIFO ...3945
POSIX_FIFO_FD ..3945
POSIX_FILE_ATTRIBUTES ...3945
POSIX_FILE_ATTRIBUTES_FD ..3945
POSIX_FILE_LOCKING ..3945
POSIX_FILE_SYSTEM ..3945
POSIX_FILE_SYSTEM_EXT ..3945
POSIX_FILE_SYSTEM_FD ...3945
POSIX_FILE_SYSTEM_GLOB ...3946
POSIX_FILE_SYSTEM_R ...3946
posix_getdents()..1567
POSIX_I18N ...3946
POSIX_JOB_CONTROL ...3946
posix_madvise()..1572, 3759
POSIX_MADV_DONTNEED ..392, 1572, 3759
POSIX_MADV_NORMAL ...392, 1572
POSIX_MADV_RANDOM ..393, 1572, 3759
POSIX_MADV_SEQUENTIAL ...393, 1572, 3759
POSIX_MADV_WILLNEED ...393, 1572, 3759
POSIX_MAPPED_FILES ..3946
posix_memalign() ...1576
POSIX_MEMORY_PROTECTION ...3946
posix_mem_offset()...1574, 3777-3778
POSIX_MULTI_CONCURRENT_LOCALES ..3946
POSIX_MULTI_PROCESS ...3946
POSIX_MULTI_PROCESS_FD ..3946

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4019

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

POSIX_NETWORKING ...3946
posix_openpt() ..1578
POSIX_PIPE ...3946
POSIX_REALTIME_SIGNALS ..3946
POSIX_REC_INCR_XFER_SIZE ...286, 988, 3760
POSIX_REC_MAX_XFER_SIZE ..286, 988, 3760
POSIX_REC_MIN_XFER_SIZE ...286, 988, 3760
POSIX_REC_XFER_ALIGN ...286, 988, 3759
POSIX_REGEXP ..3947
POSIX_RE_DUP_MAX ...2459, 2461
POSIX_ROBUST_MUTEXES ...3946
POSIX_RW_LOCKS ..3947
POSIX_SEMAPHORES ..3947
POSIX_SHELL_FUNC ..3947
POSIX_SIGNALS ..3947
POSIX_SIGNALS_EXT ...3947
POSIX_SIGNAL_JUMP ..3947
POSIX_SINGLE_PROCESS ...3947
posix_spawn() ...1581, 3842, 3924
posix_spawnattr_destroy()..1602
posix_spawnattr_getflags() ...1604
posix_spawnattr_getpgroup() ..1606
posix_spawnattr_getschedparam()..1608
posix_spawnattr_getschedpolicy() ..1610
posix_spawnattr_getsigdefault()..1612
posix_spawnattr_getsigmask()...1614
posix_spawnattr_init()...1602, 1616
posix_spawnattr_setflags()..1604, 1617
posix_spawnattr_setpgroup()...1606, 1618
posix_spawnattr_setschedparam() ..1608, 1619
posix_spawnattr_setschedpolicy()...1610, 1620
posix_spawnattr_setsigdefault() ..1612, 1621
posix_spawnattr_setsigmask() ...1614, 1622
posix_spawnp()...1581, 1623, 3842, 3924
posix_spawn_file_actions_addchdir()...1590
posix_spawn_file_actions_addclose() ...1592
posix_spawn_file_actions_adddup2() ...1596
posix_spawn_file_actions_addfchdir()..1590, 1598
posix_spawn_file_actions_addopen() ...1592, 1599
posix_spawn_file_actions_destroy()..1600
posix_spawn_file_actions_init() ...1600
POSIX_SPAWN_RESETIDS ...356, 1583, 1604
POSIX_SPAWN_SETPGROUP ..356, 1582, 1604, 1606
POSIX_SPAWN_SETSCHEDPARAM ..356, 1604, 1608
POSIX_SPAWN_SETSCHEDULER ..356, 1583, 1604, 1608, 1610
POSIX_SPAWN_SETSID ..356, 1582, 1604
POSIX_SPAWN_SETSIGDEF ..356, 1583, 1604, 1612
POSIX_SPAWN_SETSIGMASK ..356, 1604, 1614
POSIX_SPIN_LOCKS ...3947
POSIX_SYMBOLIC_LINKS ...3947
POSIX_SYMBOLIC_LINKS_FD ..3947
POSIX_SYSTEM_DATABASE ...3947

4020 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

POSIX_SYSTEM_DATABASE_R ..3947
POSIX_THREADS_BASE ...3947
POSIX_THREADS_EXT ...3948
POSIX_TIMERS ...3948
POSIX_TYPED_MEM_ALLOCATE ..393, 1437-1438, 1574, 1624, 1626
POSIX_TYPED_MEM_ALLOCATE_CONTIG393, 1437-1438, 1574, 1624, 1626
posix_typed_mem_get_info() ...1624, 3777
posix_typed_mem_info ..393
POSIX_TYPED_MEM_MAP_ALLOCATABLE ..393, 1490, 1626
posix_typed_mem_open()...1626, 3777
POSIX_USER_GROUPS ...3948
POSIX_USER_GROUPS_R ..3948
POSIX_VERSION ..3938
POSIX_WIDE_CHAR_DEVICE_IO ..3948
pow() ..1629
powf() ...1629
powl() ...1629
ppoll() ...1542, 1632
pr...3290, 3928, 3930
pread() ..1633, 1852, 3819
preallocation ..71
predefined stream

standard error ..524
standard input ...524
standard output ...524

preempted process (or thread) ..71
preempted thread ..1699
previous job..71
PRI ...501
print-related commands

fold ..2952
lp ..3073
pr ..3290

printable character ..71
printable file ...71
printf ..3296, 3927-3928
printf() ..995, 1634
printf_s ..502
printing ...3922
priority ..72

inversion ...72
scheduling ..72

priority-based scheduling..72
PRIO_ ..499
PRIO_ constants

defined in <sys/resource.h> ...398
PRIO_INHERIT ...1741
PRIO_PGRP ..398, 1161
PRIO_PROCESS ...398, 1161
PRIO_USER ..398, 1161
privilege ..72, 3169, 3211, 3677
process ..72

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4021

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

attributes ...2453
concurrent execution ..985
ID ...73, 2453
ID reuse ...106, 3685
ID, 1 ...571
ID, rationale ...3838
lifetime ..73, 3664
memory locking...73
scheduling ..531, 3782, 3924
setting real and effective user IDs...2008
single-threaded ..985
termination ...73, 3664
virtual time...74

process creation ...985
process group ...72, 3719

concepts in job control ..3656
ID ..72, 2453, 3657, 3719-3720
leader ...72
lifetime ..73, 3720
orphaned ..571, 3662, 3753
termios ..199

process group ID ...1158, 1998, 2012, 2518
process lifetime..1314
process management ..3920, 3924
process shared memory..1764
process status report ...3310
process synchronization ...1764
process termination...570
process-owned file lock ..74
process-to-process communication ..74
prof

rationale for omission...3915
profiling ..3931
program ..74
prompting ...3879-3880
protocol ...74, 3835
protoent ..314
PROT_ ...499
PROT_EXEC ...392, 1438, 1447
PROT_NONE ...392, 530, 1437-1438, 1447
PROT_READ ..392, 1438, 1447
PROT_READ constants

in <sys/mman.h> ...392
PROT_WRITE ...392, 1438-1439, 1442, 1447
prs ..3304
PS ...9
ps ...3310, 3928, 3930
pselect() ..1635
pseudo-random sequence generation functions ..1849
pseudo-terminal ..74, 3664
psiginfo()..1641
psignal() ...1641

4022 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

PST8PDT ...2310
ps_ ...499
PTHREAD_ ..499
pthread_ ..499
pthread_atfork()..1643
pthread_attr_destroy() ...1646
pthread_attr_getdetachstate()...1649
pthread_attr_getguardsize() ...1651, 3819
pthread_attr_getinheritsched()...1654
pthread_attr_getschedparam() ...1656
pthread_attr_getschedpolicy()..1658
pthread_attr_getscope()...1660
pthread_attr_getstack()..1662
pthread_attr_getstacksize() ...1665
pthread_attr_init() ..1646, 1667
pthread_attr_setdetachstate() ...1649, 1668
pthread_attr_setguardsize() ..1651, 1669, 3819
pthread_attr_setinheritsched() ...1654, 1670
pthread_attr_setschedparam()..1656, 1671
pthread_attr_setschedpolicy() ..1658, 1672
pthread_attr_setscope() ...1660, 1673
pthread_attr_setstack() ..1662, 1674
pthread_attr_setstacksize() ...1665, 1675
pthread_barrierattr_destroy()...1680
pthread_barrierattr_getpshared() ..1682
pthread_barrierattr_init() ..1680, 1684
pthread_barrierattr_setpshared() ...1682, 1685
pthread_barrier_destroy() ...1676
pthread_barrier_init() ..1676
PTHREAD_BARRIER_SERIAL_THREAD ...327, 1678, 3809
pthread_barrier_wait()...1678, 3810, 3831
pthread_cancel() ...1686
PTHREAD_CANCELED ..327, 546, 1724
PTHREAD_CANCEL_ASYNCHRONOUS ..327, 542, 1812
PTHREAD_CANCEL_DEFERRED ..327, 543, 546, 869, 1696, 1812
PTHREAD_CANCEL_DISABLE ..327, 542, 546, 1812
PTHREAD_CANCEL_ENABLE ...327, 542, 546, 1812
PTHREAD_CANCEL_ENABLED ..869
pthread_cleanup_pop() ...1688
pthread_cleanup_push()..1688
pthread_condattr_destroy() ..1708
pthread_condattr_getclock() ...1710
pthread_condattr_getpshared()..1712
pthread_condattr_init() ...1708, 1714
pthread_condattr_setclock() ...1710, 1715
pthread_condattr_setpshared() ..1712, 1716
pthread_cond_broadcast() ..1693
pthread_cond_clockwait()...1696, 3794, 3816
pthread_cond_destroy() ..1703
pthread_cond_init()..1703, 3806
PTHREAD_COND_INITIALIZER ...327, 1703
pthread_cond_signal() ...1693, 1706

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4023

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

pthread_cond_timedwait() ...1696, 1707, 3746, 3793, 3816, 3933
pthread_cond_wait()..1696, 1707, 3746, 3764, 3816
pthread_create()...1717, 3806-3807
PTHREAD_CREATE_DETACHED ..327, 516, 1649, 3829
PTHREAD_CREATE_JOINABLE ...327, 516, 869, 1649, 1732
PTHREAD_DESTRUCTOR_ITERATIONS284, 1729, 1734, 2199, 2305, 3939
pthread_detach()...1720, 3829
pthread_equal()...1722
pthread_exit() ..1723
PTHREAD_EXPLICIT_SCHED ..327, 1654
pthread_getconcurrency() ...3841
pthread_getcpuclockid()..1725, 3796, 3798
pthread_getschedparam() ...1726
pthread_getspecific()..1729
PTHREAD_INHERIT_SCHED ...327, 1654
pthread_join()..1731, 3746, 3829
PTHREAD_KEYS_MAX ..284, 1734, 2200, 3939
pthread_key_create()..1734, 3809
pthread_key_delete() ...1737
pthread_kill()...1739
pthread_mutexattr_destroy()..1763
pthread_mutexattr_getprioceiling() ..1768
pthread_mutexattr_getprotocol()...1770
pthread_mutexattr_getpshared() ...1773
pthread_mutexattr_getrobust() ..1775
pthread_mutexattr_gettype()..1777, 3817
pthread_mutexattr_init() ...1763, 1779
pthread_mutexattr_setprioceiling() ...1768, 1780
pthread_mutexattr_setprotocol() ...1770, 1781
pthread_mutexattr_setpshared()..1773, 1782
pthread_mutexattr_setrobust()...1775, 1783
pthread_mutexattr_settype() ..1777, 1784, 3817
pthread_mutex_clocklock()...1741, 3794
pthread_mutex_clockrdlock()...3794
pthread_mutex_clockwrlock()..3794
pthread_mutex_consistent() ...1744
PTHREAD_MUTEX_DEFAULT ...327, 1756, 1777, 3816
pthread_mutex_destroy()..1746
PTHREAD_MUTEX_ERRORCHECK ..327, 1752, 1756, 1777, 3816
pthread_mutex_getprioceiling()...1752
pthread_mutex_init() ...1746, 1755, 3806
PTHREAD_MUTEX_INITIALIZER ...327, 1746
pthread_mutex_lock()..1756, 3746, 3816, 3831
PTHREAD_MUTEX_NORMAL ...327, 1756, 1777, 3816
PTHREAD_MUTEX_RECURSIVE ...104, 327, 1756, 1777, 3816
PTHREAD_MUTEX_ROBUST ..1775
pthread_mutex_setprioceiling() ...1752, 1760
PTHREAD_MUTEX_STALLED ..1775
pthread_mutex_timedlock() ...1741, 1761, 3794
pthread_mutex_trylock()...1756, 1762, 3816
pthread_mutex_unlock() ...1756, 1762, 3816
PTHREAD_NULL ...327, 1722

4024 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

pthread_once() ..1785
PTHREAD_ONCE_INIT ..327, 1785
PTHREAD_PRIO_INHERIT ..327, 1770
PTHREAD_PRIO_NONE ..327, 1752, 1770
PTHREAD_PRIO_PROTECT ..327, 1757, 1770
PTHREAD_PROCESS_PRIVATE..327, 1764, 3818
PTHREAD_PROCESS_SHARED327, 1682, 1712, 1764, 1773, 1807, 1822, 3818
pthread_rwlockattr_destroy()...1805, 3818
pthread_rwlockattr_getpshared() ..1807, 3818
pthread_rwlockattr_init() ..1805, 1809, 3817
pthread_rwlockattr_setpshared()...1807, 1810, 3818
pthread_rwlock_clockrdlock()..1787
pthread_rwlock_clockwrlock()...1789
pthread_rwlock_destroy()...1791
pthread_rwlock_init() ..1791, 3818
PTHREAD_RWLOCK_INITIALIZER ..327, 3818
pthread_rwlock_rdlock()...1794, 3818
pthread_rwlock_t ..3817
pthread_rwlock_timedrdlock() ..1787, 1797
pthread_rwlock_timedwrlock() ...1789, 1798
pthread_rwlock_tryrdlock()..1794, 1799, 3818
pthread_rwlock_trywrlock()...1800, 3818
pthread_rwlock_unlock() ..1802, 3818, 3833
pthread_rwlock_wrlock()..1800, 1804, 3818
PTHREAD_SCOPE_PROCESS ..327, 540-541, 1660
PTHREAD_SCOPE_SYSTEM ..327, 540-541, 1660
pthread_self() ..1811, 3808
pthread_setcancelstate() ..1812
pthread_setcanceltype()...1812
pthread_setconcurrency()..3841
pthread_setprio() ..3827
pthread_setschedparam()..1726, 1814, 3827
pthread_setschedprio() ..1815
pthread_setspecific() ..1729, 1817, 3809
pthread_sigmask()..1818
pthread_spin_destroy() ...1822
pthread_spin_init()...1822
pthread_spin_lock()..1824, 3811, 3831
pthread_spin_trylock()...1824, 3811
pthread_spin_unlock()...1826
PTHREAD_STACK_MIN ..284, 1662, 1665, 2200, 3939
pthread_testcancel() ...1812, 1828
PTHREAD_THREADS_MAX ...284, 1717, 2200, 3939
PTRDIFF_MAX ..373
PTRDIFF_MIN ...373
ptsname() ...1829
ptsname_r() ...1829
public locale ...3056
putc() ..1831, 3821, 3925
putchar() ..1833, 3925
putchar_unlocked() ..1102, 1834
putc_unlocked() ..1102, 1832

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4025

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

putenv()..1835
puts() ..1837
pututxline()..853, 1839
putwc() ...1840
putwchar() ...1841
PWD ..175
pwd ...3317, 3929
pwrite()...1842, 2436, 3819
pw_ ..499
p_ ...499
P_ ...500
P_ALL ...433, 2357
p_cs_precedes ..148
P_PGID ...433, 2357
P_PID ..433, 2357
p_sep_by_space ...148
p_sign_posn ...149
qsort() ...1843
qsort_r()..1843
qsort_s ...502
queue a signal to a process ..2068
queuing of waiting threads ..3833
quick_exit() ..1845
quiet NaN...256
quote removal ..2493, 3889
QUOTED_CHAR ..191
quoting ..2472, 3866
radix character ...74
RADIXCHAR ...277
raise() ..1846
rand() ..1848, 3831
random() ..1242, 1851
RAND_MAX ..381, 1848
rand_r() ..3841
range error ..110

result overflows ...110
result underflows ..110

RCS
rationale for omission...3915

RE
bracket expression ...3711
grammar ...3717

read ..2470, 3320, 3865, 3927
read lock ...3817
read()1852, 3656, 3720-3721, 3743, 3752-3753, 3756, 3767-3768, 3772-3773, 3819

..3830, 3839, 3925
read-only file system...75
read-write attribute...3817
read-write lock...75, 3817
readdir() ...1858, 3925
readdir_r()..1858
reading data ...3721

4026 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

readlink ...3325
readlink()..1864, 3924
readlinkat() ..1864
readonly ..2548
readv() ..1867
real group ID..75, 2453
real time ..75
real user ID...75, 586, 1313, 2453
realloc()...1869
reallocarray() ...1869
realpath ...3327
realpath()..1872, 3924
realtime ...22
REALTIME309, 913, 1433, 1435, 1449-1450, 1452, 1455, 1459, 1462, 1464, 1468, 1917-1921

..1923, 2023, 2028
realtime ...3759
realtime signal delivery..3749
realtime signal extension..75
realtime signal generation..3749
realtime signals..3765
REALTIME THREADS...24
realtime threads ...24
REALTIME THREADS...1654, 1658, 1660, 1726, 1752, 1768, 1770, 1815
record ..75
record lock ..76
recv()...1875
recvfrom() ..1878
recvmsg() ...1881
red

rationale for omission...3915
redirect input ...2494, 3891
redirect output ...2494, 3891
redirection ..76, 2493, 3890
redirection operator ..76
referenced shared memory object...76
references ..3639
refresh ...76
regcomp()...1884, 3930
regerror()..1884, 3930
regexec() ...1884, 3930
regfree() ..1884, 3930
region ..76
register fork handlers ...1643
REGTYPE ...437
regular built-in...76, 3665
regular built-in utilities ..76, 3665
regular expressions76, 2615, 2745, 2817, 2875, 2917, 2944, 2991, 3041, 3183, 3200

..3213, 3257, 3335, 3356, 3543, 3602, 3709
basic ...181
definitions ...3709
extended ...187
general requirements ..3710

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4027

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

grammar ...191, 3716
related to shell patterns ..2523

regular file ..77, 3665
REG_ ...499
REG_ constants

defined in <regex.h> ...336
error return values of regcomp ...1886
used in regcomp ...1884-1885

REG_BADBR ..337, 1886
REG_BADPAT ...336, 1886
REG_BADRPT ...337, 1886
REG_EBRACE ...337, 1886
REG_EBRACK ...337, 1886
REG_ECOLLATE ..336, 1886
REG_ECTYPE ..336, 1886
REG_EESCAPE ..336, 1886
REG_EPAREN ...337, 1886
REG_ERANGE ..337, 1886
REG_ESPACE ..337, 1886
REG_ESUBREG ...337, 1886
REG_EXTENDED ...336, 1884
REG_ICASE ..336, 1884
REG_MINIMAL ..336, 1884
REG_NEWLINE ..336, 1884
REG_NOMATCH ..336, 1886
REG_NOSUB ...336, 1884
REG_NOTBOL ..336, 1885
REG_NOTEOL ..336, 1885
rejected utilities..3913
relational database operator ..3026
relative pathname..77, 105
relocatable file ..77
relocation ..77
remainder() ..1892
remainderf()...1892
remainderl()...1892
remove a directory ..1910, 3343
remove a directory entry..2324
remove a file...3334
remove() ...1894
remque()...1245, 1896
remquo() ..1897
remquof() ...1897
remquol() ...1897
rename a file...1902
rename() ...1899, 3925
renameat()..1899
renice ...3330, 3928
replenishment period ...3786
requirements ..15
reserved words ..2478, 3873
result overflows ...110

4028 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

result underflows ..110
return ...2551
rewind()..1905
rewinddir() ..1906, 3925
re_ ..499
RE_DUP_MAX ..287, 2200, 2460, 3858
rint() ..1907
rintf()...1907
rintl()...1907
rlimit ..398
RLIMIT_ ..499
RLIMIT_AS ...399, 1177
RLIMIT_CORE ...398, 1176
RLIMIT_CPU ...398, 1176
RLIMIT_DATA ...399, 1176
RLIMIT_FSIZE ...399, 1176
RLIMIT_NOFILE ...399, 1176, 1178
RLIMIT_STACK ...399, 1177
rlim_ ..499
RLIM_ ...501
RLIM_INFINITY ..398, 1176-1177
RLIM_SAVED_CUR ..398, 1177
RLIM_SAVED_MAX ...398, 1177
rm ..3334, 3864, 3929
rmdel ...3340
rmdir ...3343, 3929
rmdir() ..1909, 3745, 3925
robust mutex ..77, 539, 1750, 3812
root directory ...77, 2453, 3665, 3684
root file system...3665
root of a file system ...3665
round robin ..533
round() ...1912
roundf() ..1912
roundl() ..1912
routing ..550, 3836
RPI ...10
RPP ..10
RS ...10
rsh

rationale for omission...3915
RSIZE_MAX ...502
RTLD_ ...499
RTLD_DEFAULT...824
RTLD_GLOBAL ..238, 822
RTLD_LAZY ..238, 821
RTLD_LOCAL ...238, 822
RTLD_NEXT ..824
RTLD_NOW ...238, 822
RTSIG_MAX ...284, 347, 2200, 3939
runnable process (or thread) ..77
running process (or thread) ...77

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4029

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

runtime values
increasable ..286
invariant ...282

rusage ..398
RUSAGE_ ...499
RUSAGE_CHILDREN ..398, 1180
RUSAGE_SELF ..398, 1180
ru_..499
R_ANCHOR ..192
R_OK ...464
s6_ ..499
sact ...3346
samefile()..3838
saved resource limits ..78
saved set-group-ID ..78, 2453
saved set-user-ID ...78, 2453
SA_ ..499
sa_ ...499-500
SA_ macros

declared in <signal.h> ..349
SA_NOCLDSTOP ...349, 516, 2042, 2047, 3657
SA_NOCLDWAIT ...349, 1180, 2044
SA_NODEFER ...349, 2044
SA_ONSTACK ...349, 868, 2043
SA_RESETHAND ..349, 2043-2044
SA_RESTART...349, 1638, 2043
SA_SIGINFO ..349, 2042-2043, 2046, 2067, 3751
scalbln() ..1913
scalblnf()...1913
scalblnl()...1913
scalbn() ...1913
scalbnf()..1913
scalbnl() ..1913
scandir() ...614, 1915
scanf() ...1037, 1916
scanf_s ...502
sccs ...3349
SCCS commands

admin ..2574
delta ...2787
get ..2964
prs ..3304
rmdel ...3340
sact ...3346
sccs ...3349
unget ...3494
val ..3523
what ...3590

SCHAR_MAX ...291-292
SCHAR_MIN ..291-292
schedule alarm...610
scheduling ..78

4030 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

scheduling allocation domain ...78, 3826
scheduling contention scope ..78, 3825-3826
scheduling documentation ..542, 3826
scheduling policy ..79, 107, 3685

round robin ..533
SCHED_ ..499
sched_ ...499
SCHED_FIFO339, 528, 532, 541, 869, 983, 1161, 1508, 1656, 1658, 1726, 1768, 1794, 1947

..3926
sched_getparam() ...1918
sched_getscheduler() ...1919
sched_get_priority_max() ...1917
sched_get_priority_min() ..1917
SCHED_OTHER ..339, 532, 535, 1161, 1658, 1726
SCHED_RR339, 528, 532-533, 541, 869, 983, 1161, 1508, 1656, 1658, 1726, 1794, 1947

..3926
sched_rr_get_interval()..1920
sched_setparam()..1921
sched_setscheduler() ..1923
SCHED_SPORADIC ..339, 528, 532-533, 869, 1794, 1947, 3926
sched_yield() ...1925
SCM_ ...500
SCM_RIGHTS ..407
SCN ...501
scope ..3637
screen ..79
scroll ..79
SD ..10
sdb

rationale for omission...3915
sdiff

rationale for omission...3915
search pattern...2757
seconds since the Epoch ...107, 3685
secure_getenv() ...1926
security considerations.........................570, 728, 1058, 1313, 1997, 3649, 3653, 3659, 3675, 3677, 3720
security, monolithic privileges ..3649
sed ..3354, 3928-3929

addresses ..3356
editing commands...3357
regular expressions ...3356

seed48() ..829, 1927
seekdir() ...1928
SEEK_ ..501
SEEK_CUR ...247, 376, 467, 904, 1045, 1381
SEEK_DATA ...1381
SEEK_END ...247, 376, 467, 904, 964, 1045, 1381
SEEK_GET ..1905
SEEK_HOLE ..1381
SEEK_SET ...247, 376, 467, 528, 600, 607, 904, 1045, 1381
SEGV_ ...499
SEGV_ACCERR ...351

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4031

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

SEGV_MAPERR ..351
select() ..1635, 1930
sem ..500
sem*()..3758
semaphore ..79, 108, 3686, 3763, 3926

lock operation ..108
unlock operation ...108

semctl() ...1955, 3758
semget()..1958, 3758
semid ...526
semop()...1960, 3758
SEM_ ...499
sem_ ..499
SEM_ ...500
sem_clockwait() ..1931, 3794
sem_close() ..1935
sem_destroy()..1937
SEM_FAILED ..343, 1944-1945
sem_getvalue() ..1939
sem_init() ...1941, 3763
SEM_NSEMS_MAX ..284, 1941, 2200, 3939
sem_open() ..1943, 3763
sem_perm ...526
sem_post()..1947
sem_timedwait() ...1931, 1949, 3794
sem_trywait() ..1950, 3746, 3764
SEM_UNDO ...402, 1960
sem_unlink() ...1952
SEM_VALUE_MAX ..284, 1941, 1943, 2200, 3939
sem_wait() ...1950, 1954, 3746, 3764
send() ..1965
sendmsg() ..1968
sendto() ..1972
sequential AND-OR list ...2519
sequential AND-OR lists..2507, 3901
servent ...314
service name ..1022
session ...79, 571, 1313, 1998, 2012, 2518, 3657, 3662, 3720
session leader...79
session lifetime ..79
session membership..2453
set ...2553, 3879
set cancelability state ..1813
set file creation mask...2312
set process group ID for job control ...1997
set-group-ID ...570, 724, 875, 911, 2453, 2747
set-user-ID ..570, 875, 1108, 1313, 2453, 2709, 2747
set-user-ID scripts ...3381
SETALL ...402, 1955
setbuf() ...1976
setegid()..1978
setenv()...1979

4032 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

seteuid() ...1981
setgid()..1982, 3666
setgrent() ..840, 1984, 3675
sethostent() ..842, 1985
setitimer()...3841
setjmp() ..1986, 3927
setkey() ...1988
setlocale() ...1990, 3927

extensions to ..1991
setlogmask() ..753, 1995, 3930
setnetent() ..844, 1996
setpgid() ..1997, 3656-3658, 3719-3720
setpgrp()...3841
setpriority() ..1161, 2000, 3784
setprotoent() ..846, 2001
setpwent() ..848, 2002, 3675
setregid() ..2003
setresgid() ..2005
setresuid() ..2007
setreuid() ..2008
setrlimit()..1176, 2010, 3864
setservent()...851, 2011
setsid() ..2012, 3719
setsockopt()..2014
setstate() ...1242, 2016
setuid() ...2017, 3666
setutxent() ..853, 2020
SETVAL ...402, 1955
setvbuf() ...2021
set_constraint_handler_s ..502
sh ..3366, 3929, 3935

command history list ..3370
command line editing...3370
vi line editing command mode ...3372
vi line editing insert mode ...3371
vi-mode command line editing...3371

shall ...6, 3640
rationale ..3640

shar
rationale for omission...3915

shared memory..3774
shared memory object ..80
shell ...80
SHELL ...175
shell ..571, 874, 1144, 1158, 1313, 1998, 2353, 2518, 3656-3659
SHELL ...3708
shell ...3719, 3721, 3747, 3753

commands ..2499, 3895
errors ...3894
execution environment ...2522, 2582, 3323, 3482, 3874, 3907
grammar ...2512, 3905
grammar rules ...2513, 3906

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4033

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

grammar, lexical conventions..2512, 3906
introduction ...2472
job control ...1313, 3656, 3747, 3753
login ...874, 1144
variables ..2481, 3879

shell command language ...2472
alias substitution ...2477
appending redirected output ..2495
arithmetic expansion ..2490
command substitution..2489
compound commands..2508
consequences of shell errors ..2497
dollar-single-quotes ..2474
double-quote ..2473
duplicating an input file descriptor..2497
duplicating an output file descriptor ...2497
escape character (backslash)..2473
exit status and errors ..2497
exit status for commands ...2499
field splitting..2491
function definition command..2511
grammar ...2512
here-document ...2495
introduction ...2472
lists ...2505
open file descriptors for reading and writing...2497
parameter expansion ..2485
parameters and variables...2478
pathname expansion...2493
pattern matching notation ...2523
patterns matching a single character..2523
patterns matching multiple characters ..2524
patterns used for filename expansion ..2525
pipelines ...2504
positional parameters ...2479
quote removal ..2493
quoting ..2472
redirecting input..2494
redirecting output ...2494
redirection ..2493
reserved words ..2478
shell commands...2499
shell execution environment ...2522
shell grammar lexical conventions ...2512
shell grammar rules ..2513
shell variables ..2481
signals and error handling...2521
simple commands ...2500
single-quote ..2473
special built-in utilities ...2526
special parameter ..2479
tilde expansion...2485

4034 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

token recognition ...2475
word expansions ...2483

shell script ..80
exec ..874

shell, the..80
shift ..2561
shl

rationale for omission...3915
SHM ..10, 500
shm ..500
shm*() ...3758
shmat() ...2030
shmctl() ..2032, 3759
shmdt() ...2034, 3759
shmget() ...2036
shmid ..526
SHMLBA ..404, 2030
shm_ ..499
SHM_ ..500
shm_open()...2023, 3773, 3775-3776
shm_perm ...526
SHM_RDONLY ...404, 2030
SHM_RND ...404, 2030
shm_unlink()..2028, 3775-3776
should ...6, 3640

rationale ..3640
SHRT_MAX ..236, 292
SHRT_MIN ...292
shutdown() ..2038
SHUT_ ...500
SHUT_RD ...410
SHUT_RDWR ..410
SHUT_WR ..410
sig2str()...2040
SIG2STR_MAX ..347
SIGABRT...347, 577, 3672, 3747
sigaction() ..2042, 3749, 3751
sigaddset() ...2050
SIGALRM ...347, 610, 2085
sigaltstack()..2051
SIGBUS ...347, 351, 530, 1439, 1443, 1818, 3672, 3747
SIGCANCEL ..1686
SIGCHLD347, 351, 754, 1180, 1213, 2042, 2047, 2207, 2358, 3657, 3749, 3752-3753
SIGCLD ...2047, 3752-3753
SIGCONT ...347, 520, 569, 571, 1312-1313, 2841, 3180, 3657, 3749, 3752-3753
sigdelset()...2054
sigemptyset() ...2055
SIGEMT ..3747
SIGEV_ ..499
sigev_ ..499
SIGEV_NONE ..346, 515, 529, 3749
SIGEV_SIGNAL ...346, 515, 2268, 3749-3750

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4035

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

SIGEV_THREAD ...346, 515-516, 1338, 3750
sigfillset()..2057
SIGFPE ..347, 351, 1818, 2060, 3672, 3747, 3749
sighold() ...3841
SIGHUP ..347, 569, 571, 745, 2816, 2841, 3526, 3567, 3753
sigignore()..3841
SIGILL ...347, 351, 1818, 2060, 3672, 3747
siginfo_t ..350
SIGINT ..347, 985, 2207, 2521, 2789, 2816, 2840, 3579, 3658, 3823, 3907
siginterrupt() ...3841
SIGIOT ..3747
sigismember()..2058
SIGKILL ...347, 1313, 2042, 2046-2047, 3747, 3749, 3753
siglongjmp() ..2059, 3743, 3754, 3927
signal ...80, 513, 3665, 3837, 3907

acceptance ..3748
actions ...3752
concepts ..3746
delivery ...513, 3748
error handling..2521
generation ...513, 3748
names ..3746
realtime delivery ...515
realtime generation ...515
stack ...80

signal handler ..2060
signal processes ...3031
signal()..2060, 3746, 3749
signaling NaN..256
signbit() ..2063
signgam ..1329
signgam() ...2064
sigpause()...3841
sigpending() ..2065
SIGPIPE ..347, 899, 942, 1010, 1014, 1046, 1050, 2439, 3672, 3745
sigprocmask()..1818, 2066, 3748
sigqueue() ..2067
SIGQUEUE_MAX ...284, 2067, 2200
SIGQUIT ...347, 2207, 2521, 2816, 3907
sigrelse() ...3841
SIGRTMAX ...347, 514, 516, 2045, 2067, 2073, 2077, 3751
SIGRTMIN ..347, 514, 516, 2045, 2067, 2073, 2077, 3751
SIGSEGV ...347, 351, 530, 1177, 1490, 1651, 1818, 2060, 3672, 3747
sigset() ..3841
sigsetjmp() ...2069, 3927
sigset_t ..3746
SIGSTKSZ ...349, 2051
SIGSTOP ...347, 514, 2042, 2047, 3753
sigsuspend() ..2071, 3752, 3757
SIGSYS ..347, 3747
SIGTERM ..347, 2841, 3747
sigtimedwait() ...2073, 3746, 3767, 3794

4036 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

SIGTRAP ..347, 351, 3747
SIGTSTP ..347, 514, 2887, 3658, 3753
SIGTTIN ..347, 514, 946, 952, 1853, 3658, 3721, 3753
SIGTTOU347, 514, 898, 941, 1009, 1013, 1046, 1050, 2218, 2220, 2222, 2233, 2235-2236

..2238, 2240, 2438, 3657, 3721, 3753
SIGURG ..347
SIGUSR1 ...347, 3747
SIGUSR2 ...347, 3747
SIGVTALRM ..347
sigwait() ...2077, 3746, 3830
sigwaitinfo() ..2073, 2079, 3746, 3767
sigwait_multiple() ..3748
SIGWINCH ..347, 2841, 3180
SIGXCPU ..347, 1176
SIGXFSZ ..347, 1176, 2296
SIG_ ...501
SIG_ATOMIC_MAX ...373
SIG_ATOMIC_MIN ..373
SIG_BLOCK ...349, 1818
SIG_DFL ...346, 516, 868, 1177, 2042, 2044, 2060-2061, 3748-3749, 3752
SIG_ERR ...346, 2061
SIG_IGN346, 517, 868, 875, 1180, 2042, 2060-2061, 2521, 3657, 3748-3749, 3752, 3755
SIG_SETMASK ..349, 1818
SIG_UNBLOCK ...349, 1818
simple commands ...2500, 3896

command search and execution..2502, 3898
commands with no command name..2501, 3897
order of processing ..2500, 3896
standard file descriptors...2503, 3899
variable assignments ..2500, 3897

sin() ...2080
sin6_ ..499
sinf()..2080
single-quote ..80, 2473, 3867
single-threaded process ..80
single-threaded program ...81
sinh()...2082
sinhf() ...2082
sinhl()..2082
sinl() ..2080, 2084
sin_ ..499
SIO ...10
SIOCATMARK ..2089
sival_ ...499
size

rationale for omission...3915
SIZE_MAX ...373
size_t ...425
SI_ ..499
si_ ...499
SI_ASYNCIO ..351, 518
SI_MESGQ ..351, 518

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4037

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

SI_QUEUE ..351, 518
SI_TIMER ...351, 518
SI_USER ..351, 518, 3751
slash ...81
sleep ..3385, 3927
sleep()..2085, 3754, 3756-3757, 3924, 3926
SLR(1) grammars...3627
SNDTIMEO ..555
snprintf() ..995, 2088
snprintf_s ..502
snwprintf_s ..502
SO ..500
sockaddr_in ..318
sockaddr_in6 ..318
sockatmark()..2089
socket ..81, 549, 3835

address ..81
address families ...549
addressing ..549
asynchronous errors ...553
connection indication queue..553
I/O mode..551, 3836
Internet Protocols ..558, 3837
IPv4 ..558, 3837
IPv6 ..558, 3837
local UNIX connection..3837
local UNIX connections..557
options ..554
out-of-band data..552
out-of-band data state...3836
owner ..551, 3836
pending error ...551
protocols ...549
queue limit ...3836
queue limits..551
receive queue ...552, 3836
signals ...553
types ..550, 3836

socket() ...2091
socketpair() ..2094, 3758
SOCK_ ...501
SOCK_CLOEXEC ..408, 581, 2091, 2094
SOCK_CLOFORK ...408, 581, 2091, 2094
SOCK_DGRAM ...408, 558, 2091, 2094
SOCK_NONBLOCK ...408, 581, 2091, 2094
SOCK_RAW ...408, 558
SOCK_SEQPACKET ...408, 558, 2091, 2094
SOCK_STREAM ..408, 558, 2091, 2094
soft limit..81
software development ..3922, 3930
SOL_SOCKET ..408
SOMAXCONN ..409

4038 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

sort ...3388, 3928-3929
source code...81
SO_ACCEPTCONN ..409, 555, 2014
SO_BROADCAST ...409, 555
SO_DEBUG ..409, 555
SO_DOMAIN ...409, 555
SO_DONTROUTE ..409, 555
SO_ERROR ...409, 555, 2014
SO_KEEPALIVE ..409, 555
SO_LINGER ...409, 555
SO_OOBINLINE ...409, 555
SO_PROTOCOL ..409, 555
SO_RCVBUF ..409, 555
SO_RCVLOWAT ...409, 555
SO_RCVTIMEO ...409, 555, 2014
SO_REUSEADDR ..409, 555
SO_SNDBUF ..409, 555
SO_SNDLOWAT ...409, 555
SO_SNDTIMEO ...409, 2014
SO_TYPE ..409, 555, 2014
space character...82
sparse file..82
spawn ..82
spawn example..3842
special built-in..82, 2732, 3211, 3224, 3318, 3380, 3443, 3903
special built-in utilities ...2526, 3912

break ..2527, 2532
characteristics ...2526
colon ..2530
dot ..2534
eval ..2536
exec ..2538
exit ...2541
export ..2544
readonly ..2548
return ...2551
set ...2553
shift ..2561
times ..2563
trap ..2565
unset ..2571

special characters...3722
special control character...3724
special device drivers ...108, 3686
special parameter ..82, 2479, 3874
special targets ...3137
specific implementation ...3655
SPEC_CHAR ..192
spell

rationale for omission...3915
spin lock...82, 3810-3811
split ..3396, 3928

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4039

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

split files
csplit ..2753
split ..3396

SPN ..10
spoofing ..2549
sporadic server ..82
sporadic server policy

execution capacity...533
replenishment period ...533
scheduling ..3786

sprintf() ..995, 2097
sprintf_s ..502
spurious wakeup...1694
sqrt() ...2098
sqrtf() ..2098
sqrtl() ..2098
srand() ..1848, 2100
srand48() ..829, 2101
srandom() ..1242, 2102
SS ...10
sscanf() ...1037, 2103
sscanf_s ...502
SSIZE_MAX ...292, 426, 1459, 1475, 1852, 1864, 2131, 2436, 3839, 3939
ssize_t ..425
SS_ ...499
ss_ ...499-500
SS_DISABLE ...349, 2051-2052
SS_ONSTACK ..349, 2051
SS_REPL_MAX ..284, 3789
stack size...1646
stack_t ...349
standard error ..82
standard file descriptors...2503, 3899
standard I/O stream ...521, 3757
standard input ...83
standard output ...83
standard utilities ..83
START ...2220
stat ...3864
stat data structure..414
stat() ..1055, 2104, 3652, 3773, 3864, 3924
state-dependent character encoding ..3690
status information ...3840
statvfs()...1061, 2105, 3864
stderr ...82, 377, 2106, 3757
STDERR_FILENO ...470, 2106
stdin ...83, 377, 2106, 3757
STDIN_FILENO ..470, 1547, 2106
stdio

locking functions ...957
with explicit client locking ...1102

stdout ..83, 377, 2106, 3757

4040 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

STDOUT_FILENO ..470, 1547, 2106
STOP ..2220
stpcpy()...2108, 2119
stpncpy() ..2109, 2152
str2sig()...2040, 2110
strcasecmp() ...2111
strcasecmp_l() ..2111
strcat()...2113
strchr() ..2114
strcmp() ..2115
strcoll()..2117
strcoll_l()...2117
strcpy() ...2119
strcspn()..2122
strdup() ..2123
stream ..83

byte-oriented ..524
interaction with file descriptors ..522
stream orientation ...524
wide-oriented ...524

STREAMS ...3840
STREAM_MAX ...284, 917, 978, 1548, 2200, 2280, 3939
strerror() ...2125
strerror_l()..2125
strerror_r() ...2125
strfmon() ..2129
strfmon_l() ...2129
strftime() ..2134
strftime_l() ...2134
string ...83
strings ..3400, 3930
strip ...3403, 3930
strlcat() ...2145
strlcpy() ..2145
strlen() ..2147
strncasecmp()...2111, 2149
strncasecmp_l()..2111, 2149
strncat() ..2150
strncmp()..2151
strncpy() ...2152
strndup() ..2123, 2154
strnlen() ..2155
strpbrk() ...2156
strptime() ...2157
strrchr() ..2165
strsignal() ...2167
strspn() ...2169
strstr() ...2170
strtod()..2171
strtof() ...2171
strtoimax() ...2175
strtok() ..2177

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4041

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

strtok_r() ..2177
strtol() ...2180
strtold()...2171, 2183
strtoll() ..2180, 2184
strtoul()...2185
strtoull() ...2185
strtoumax() ..2175, 2188
structures, additions to...3738
strxfrm() ...2189
strxfrm_l() ..2189
stty ...3405, 3930

combination modes...3410
control modes ..3405
informational queries..3411
input modes ...3406
local modes...3408
output modes...3407
special control character assignments..3409
terminal window size ...3411

ST_ ...500
st_ ...500
st_gid ...2589
st_mode ...2589
st_mtime ...2589
ST_NOSUID ...420, 868, 1061
ST_RDONLY ..420, 1061
st_size ..2589
st_uid ...2589
su

rationale for omission...3915
subprofiling ..20, 3645
subprofiling option groups ..3943
subshell ...84, 2519, 3658
successfully completed...3673
successfully transferred ..84
sum

rationale for omission...3916
sun_ ...500
superuser586, 728, 1335, 2324, 2926, 3086, 3277, 3649, 3666, 3677, 3879, 3913
supplementary group ID..84, 2453, 3666
supplementary groups ...728, 1135, 3677
supported threads functions..3813
suseconds_t ..425
suspended job ..84, 2519
SVID ..2069
SVR4 ..1441, 1494
sv_ ..499
SV_ ...501
swab() ...2191
swprintf() ...1081, 2192
swprintf_s ...502
swscanf() ..1091, 2193

4042 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

swscanf_s ..502
SWTCH ...501
symbolic constant..84, 3641, 3667
symbolic link..58, 85, 1332, 3051, 3668
symbolic name...3641
symbols ...3737

POSIX.1 ...496
symlink() ..2194
symlinkat()...2194
SYMLINK_MAX ...286, 294, 988, 2195
SYMLOOP_MAX ..284, 2200, 3743
SYMTYPE ...437
sync() ..2198
synchronization operation ...85
synchronized I/O..3767, 3925

completion ..85
data integrity completion...85, 3673, 3767
file integrity completion...85, 3673, 3767

synchronized I/O data integrity completion..3672
synchronized I/O operation..86
synchronized input and output ..85
synchronous I/O operation...86
synchronously accept a signal...2074
synchronously-generated signal ...86, 3672
sysconf()..2199, 3655, 3770, 3773-3774, 3822, 3857, 3923, 3925
syslog() ...753, 2206, 3930
system ...86

boot ..86
call ...3673
clock ..86
configuration values ...2973
console ..86, 3673
crash ..86, 1064
database ..3673
databases ..87
documentation ...87
name ..2314, 3487
process ..87, 3673
reboot ..87, 3673

system documentation ...3640
system environment ...3922, 3930
System III..728, 2314, 3663, 3838
system interfaces ...565, 3840
System V571, 610, 728, 876, 910, 991, 1158, 1313, 1412, 1910, 2012, 2047, 2069, 2224

..2314, 3652, 3659, 3747
system()...2207, 3927, 3930-3931
system-wide ...87
s_...499
S_ ...501
S_ constants

defined in <sys/stat.h> ..415

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4043

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

S_ macros
defined in <sys/stat.h> ..415

S_IFBLK ..415, 1421
S_IFCHR ...415, 1421
S_IFDIR ...415, 1421
S_IFIFO ...415, 1421
S_IFLNK ...415
S_IFMT ..415
S_IFREG ..415, 1421
S_IFSOCK ...415
S_IRGRP ...892, 1052, 1055, 1421
S_IROTH ...892, 1052, 1055, 1421
S_IRUSR ..892, 1052, 1055, 1421
S_IRWXG ..1421
S_IRWXO ..1421
S_IRWXU ..1421
S_ISBLK ..415
S_ISCHR ...416
S_ISDIR ...416
S_ISFIFO ...416
S_ISGID ...417, 721, 724, 1421, 2296, 2437
S_ISLNK ...416
S_ISREG ..416
S_ISSOCK ...416
S_ISUID ..417, 721, 724, 1421, 2296, 2437
S_ISVTX ..721, 1421
S_IWGRP ..892, 1052, 1055, 1421
S_IWOTH ...892, 1052, 1055, 1421
S_IWUSR ..892, 1052, 1055, 1421
S_IXGRP ...1421
S_IXOTH ...1421
S_IXUSR ..1421
S_TYPEISMQ ...416
S_TYPEISSEM ..416
S_TYPEISSHM ...416
S_TYPEISTMO ...416
tab character...87
TABDLY ..441
TABn ..441
tabs ..3415, 3928
TABSIZE ...670, 1379
tag file creation ..2757
tail ..3419, 3928
talk ...3424, 3929
tan()...2212
tanf() ...2212
tanh() ..2215
tanhf() ...2215
tanhl() ...2215
tanl() ...2212, 2217
tar

rationale for omission...3916

4044 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

tar format..3268
target rule ...3130
tcdrain()..2218
tcflow() ...2220
tcflush() ..2222
tcgetattr()..2224, 3658
tcgetpgrp()..2226, 3658, 3719-3720
tcgetsid() ..2228
tcgetwinsize() ..2229
TCIFLUSH ..443, 2222
TCIOFF ...443, 2220
TCIOFLUSH ...443, 2222
TCION ..443, 2220
TCOFLUSH ..2222
TCOOFF ..443, 2220
TCOON ...443, 2220
TCP_ ..499
TCP_NODELAY ..323
TCSADRAIN ..443, 2235
TCSAFLUSH ..443, 2235
TCSANOW ...443, 2235
tcsendbreak() ...2233
tcsetattr() ..2235, 3658, 3718
tcsetpgrp() ..2238, 3657-3658
tcsetwinsize()...2240
TCT ..11
tdelete() ..2242
tee ..3428, 3927
telldir()..2247
tempnam() ...3842
TERM ..175
terminal ...87

access control ...2224, 2236, 3720
controlling ..200
device file..3719
device file, closing ...3722
device name ...2307
type ..197, 3717

terminal characteristics
stty ...3405
tabs ..3415
tput ..3456
tty ...3471

terminal device ..87
terminate a process ...570, 3031
terminology ..3639
termios ..199

canonical mode input processing ...202
control modes ..209
controlling terminal ..200
input modes ...206
local modes...210

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4045

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

non-canonical mode input processing ...202
output modes...207
process group ...199
special control characters ...212

termios structure ...2224, 3723
test ...3431, 3927, 3929
TeX...3929
text column...87
text domain ..88
text file ..88, 3673
TEXTDOMAIN ..173
textdomain() ..666, 2248
TEXTDOMAINDIR ...173
TEXTDOMAINMAX ..499
TEXTDOMAIN_MAX ..286, 988
tfind()..2242, 2249
tgamma()..2250
tgammaf() ..2250
tgammal() ..2250
TGEXEC ..437
TGREAD ...437
TGWRITE ...437
THOUSEP ...277
thrd_busy ...1487
thrd_create() ..2253
thrd_current()..2255
thrd_detach() ...2256
thrd_equal() ...2257
thrd_error ...757, 759, 762, 1484, 1487, 2253, 2256, 2260, 2301, 2305
thrd_exit() ..2258
thrd_join() ..2260
thrd_nomem ...759, 2253
thrd_sleep()..2262
thrd_success ...757, 759, 762, 1484, 1487, 2253, 2256, 2260, 2301, 2305
thrd_timedout ..762, 1487
thrd_yield()..2264
thread ..88, 3674
thread cancelability

states ..3830
type ..3830

thread cancellation...3829-3830
cleanup handlers ...546

thread cancellation points..3830
thread concurrency level..3818
thread creation ...1718
thread creation attributes ...1646, 3806
thread ID...88, 538, 1722, 3674, 3823
thread interactions ..3835
Thread Lifetime ...89
thread list..89
thread mutex..539, 3824
thread read-write lock ..3833

4046 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

thread scheduling..540, 3824
thread stack guard size ...3819
thread termination ..89, 1723
thread-safe ..3674
thread-safety ..89, 108, 537, 957, 3687, 3820

rationale ..3687
thread-specific data...3808
thread-specific data key ...89

creation ...1735
deletion ...1737

thread-specific data management...1729
threads ..537, 3806

extensions ...3815
file operations ..547
implementation models ...3807

thread_local ..449
tilde ..90
tilde expansion...2485, 3881
time ..3440, 3927, 3930
time() ..2265, 3743
timeout ..3445
timeouts ..90, 3798
timer ..90

ID ...2270
overrun ...90

timers ..3789
TIMER_ ...500
timer_ ..500
TIMER_ABSTIME ..453, 536, 739, 2272, 3790-3792
timer_create() ..2268
timer_delete() ..2271
timer_getoverrun() ...2272
timer_gettime() ...2272
TIMER_MAX ...285, 2200, 3939
timer_settime()...2272, 3790-3792
timer_t ...425
times ..2563
times()...2275, 3743, 3797, 3924
timespec ..452, 3686
timespec_get() ...2278
timeval ..400, 422
timezone() ..2279
time_t ..425, 3685
TIME_UTC ...453
tm ...452
TMAGIC ...437
TMAGLEN ...437
TMPDIR ..175, 3254
tmpfile()..2280
tmpfile_s ...502
tmpnam() ...2283
tmpnam_s ...502

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4047

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

TMP_MAX ...377, 2281, 2283
TMP_MAX_S ...502
tms ...424
tms_ ...500
tm_ ...500
toascii() ...3841
TOEXEC ..437
token ..90
token recognition ...2475, 3871
tolower()...2285
tolower_l() ...2285
TOREAD ...437
TOSTOP ..442, 898, 941, 1009, 1013, 1046, 1050, 2438, 3657
touch ..3450, 3864, 3929
toupper() ..2287
toupper_l() ...2287
towctrans()...2289
towctrans_l()..2289
towlower() ...2291
towlower_l() ..2291
TOWRITE ...437
towupper()...2293
towupper_l()..2293
TPI ..11
TPP ..11
TPS ...11
tput ..3456, 3930
tr . ..3459, 3928-3929
Tracing ..3840
trap ..2565, 3907
TRAP_ ...499
TRAP_BRKPT ..351
TRAP_TRACE ...351
troff ..3929
trojan horse...3086, 3649
true ..3466, 3927
trunc() ...2295
truncate()..2296
truncf()..2295, 2299
truncl()..2295, 2299
TSA ..11
tsearch()..2242, 2300
TSGID ..437
TSH ..11
tsort ..3468
TSP ...11
TSS ...12
tss_create() ...2301
tss_delete() ...2303
TSS_DTOR_ITERATIONS ..449
tss_get() ..2305
tss_set()...2305

4048 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

TSUID ...437
TSVTX ...437
tty ...3471, 3930
ttyname()..2307, 3820
ttyname_r() ..2307
TTY_NAME_MAX ..285, 2200, 2307, 3939
TUEXEC ..437
TUREAD ...437
TUWRITE ...437
TVERSION ...437
TVERSLEN ...437
tv_ ..500
twalk() ..2242, 2309
TYM ...12
type ..2470, 3473, 3865
typed memory ...3777

name space ...90
object ...90
pool ..90
port ..91

TZ ..175, 3708
tzname ..2310
TZNAME_MAX ..285, 2200, 3939
tzset ...2310
tzset() ..2310, 3927
T_FMT ...277
T_FMT_AMPM ..277
ualarm()..3924
UCHAR_MAX ..291-292
ucontext_t ...349
uc_ ...499
UID_MAX ..3839
uid_t ..425, 3675
UINT ...501
UINTMAX_MAX ..373
UINTN_MAX ..372
UINTPTR_MAX ..373
UINT_FASTN_MAX ...373
UINT_LEASTN_MAX ..372
UINT_MAX ..292, 610, 2086
UIO_MAXIOV ...500
ulimit ...2470, 3476, 3865
ulimit()..3842
ULLONG_MAX ..292, 2186
ULONG_MAX ...292, 2186, 2410, 3857
umask ..2470, 3480, 3865, 3930
umask() ..2312, 3924
unalias ...2470, 3484, 3865, 3928
uname ...3487, 3930
uname() ..2314, 3923
unary primaries ...3433
unbind ...91

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4049

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

unbounded priority inversion...3828
uncompress ..2735, 3490
undefined ...6, 3640

rationale ..3640
underlying function ..524
unexpand ..3491, 3928
unget ...3494
ungetc() ..2316
ungetwc() ...2318
unicast ...559
uniq ..3497, 3928-3929
unlink ..3502
unlink() ...2320, 3745, 3773, 3775-3776, 3925
unlinkat() ...2320
unlockpt() ..2326
unpack

rationale for omission...3916
unsafe functions ..3754
unset ..2571
unsetenv() ..2327
unspecified ...6, 3640

rationale ..3640
until loop ..2511, 3903
UP ..12
upshifting ...91
uselocale() ..2328
user database ...91, 3675

access ...3675
user ID...91, 3007

logname ..3071
newgrp ..3204
real and effective ...2008
setting real and effective ..2008
who ..3593

user name ...91
user requirements ..3919
USER_PROCESS ..480, 853-854
USHRT_MAX ..292
usleep()...3924
ustar format..3268
UTC ...2310
utility ...92, 111, 3687

argument syntax..3724
conventions ..3724
description defaults ..3860
limits ..3857
option parsing..2979
syntax guidelines...215, 3725

utime() ..3842
utimensat()...1075, 2330, 3924
utimes() ..1075, 2330
UTIME_NOW ..416, 1075

4050 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

UTIME_OMIT ..416, 1075
utmpx ..480
uts_ ..500
ut_ ..500
UU ...12
uucp ...3504, 3929
uudecode ...3508, 3928-3929
uuencode ...3511, 3928-3929
uustat ..3516
uux ...3519
val ..3523
variable ...92, 3874
variable assignment...111, 3687
variable assignments ..2500, 3897
vasprintf() ...2332-2333
va_arg() ..2331
va_copy() ...2331
va_end() ...2331
va_start() ..2331
VDISCARD ..501
vdprintf() ...2333
VDSUSP ..501
VEOF ...439, 3724
VEOL ...439, 3724
VERASE ..439
Version 7 ...610, 1313, 2314, 3684, 3866
vertical-tab character ..92
vfprintf()...2333
vfprintf_s ..502
VFS ..420
vfscanf()..2335
vfscanf_s ...502
vfwprintf() ...2336
vfwprintf_s ...502
vfwscanf() ..2338
vfwscanf_s ..502
vhangup() ..3659
vi. ..3526, 3928-3929

<ESC> ...3566
append ..3547
change ...3548
change to end-of-line ..3549
clear and redisplay ..3534
command descriptions ...3527
control-D ...3563
control-H ..3563
control-T ...3565
control-U ...3565
control-V ...3565
current and line above..3541
delete ...3549
delete character..3559

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4051

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

delete to end-of-line ..3550
display information ..3533
edit the alternate file ...3535
enter ex mode ..3555
execute ..3546
execute an ex command ...3545
exit ...3561
find character..3550-3551
find regular expression ...3543
Initialization ...3527
input mode commands ..3561
insert ..3552
insert empty line..3554
join ...3552
mark position...3553
move back..3541-3542, 3547-3548
move cursor...3533, 3536-3537, 3556-3557
move down ..3534
move forward...3541-3542
move to bigword ...3550, 3558
move to bottom of screen ...3552
move to first character in line..3545
move to first non-<blank> ...3541
move to line..3551
move to matching character ..3538
move to middle of screen ...3553
move to next section ...3540
move to specific column...3542
move to top of screen ..3551
move to word...3550, 3558
move up..3534
newline ...3564
nul ..3563, 3566
page backwards ...3532
page forward..3533
put from buffer ...3554-3555
redraw screen ...3535
redraw window ...3560
regular expression ...3546
repeat ...3543
repeat find ..3545, 3553
repeat substitution ..3539
replace character ..3555-3556
replace text with command ...3537
return to previous context..3539
return to previous section ..3540
reverse case ..3547
reverse find character ...3542
scroll backward..3535
scroll backward by line ...3535
scroll forward...3532
scroll forward by line ..3532

4052 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

search for tagstring ...3536
shift left ...3545
shift right ..3546
substitute character...3556
substitute lines...3556
terminate command or input mode ...3536
undo ..3557
undo current line...3558
yank ...3559
yank current line ...3560

VINTR ...439
virtual processor ..3675
VISIT ...2242, 2309
visual mode..2838
VKILL ..439
VLNEXT ...501
VMIN ..3724
vprintf() ..2333, 2339
vprintf_s ..502
VQUIT ...439
VREPRINT ...501
vscanf() ...2335, 2340
vscanf_s ..502
vsnprintf() ..2333, 2341
vsnprintf_s ...502
vsnwprintf_s ..502
vsprintf() ..2333, 2341
vsprintf_s ..502
vsscanf() ...2335, 2342
vsscanf_s ...502
VSTART ..439
VSTATUS ..501
VSTOP ...439
VSUSP ...439
vswprintf() ...2336, 2343
vswprintf_s ..502
vswscanf()..2338, 2344
vswscanf_s ...502
VTDLY ..441
VTIME ...3724
VTn ..441
VWERASE ..501
vwprintf()...2336, 2345
vwprintf_s ..502
vwscanf()..2338, 2346
vwscanf_s ...502
wait ..2470, 3581, 3865, 3927

for process termination ..2353
for thread termination ..1732

wait() ..2347, 3743, 3747, 3752, 3754, 3757, 3924
waitid()...2357, 3754, 3840, 3924
waiting on a condition..1698

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4053

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

waitpid() ..2347, 2360, 3657, 3662, 3754, 3838, 3924
wall

rationale for omission...3916
WARNING ...972
warning

OB ..9
OF ..9

wc ..3586, 3928
WCHAR_MAX ..374, 482
WCHAR_MIN ...373, 482
WCONTINUED ..433, 2347, 2357
WCOREDUMP ..381, 433, 2348
wcpcpy() ..2361, 2372
wcpncpy() ..2362, 2385
wcrtomb() ..2363
wcrtomb_s ..502
wcscasecmp() ..2365
wcscasecmp_l() ...2365
wcscat() ..2367
wcschr()..2368
wcscmp()..2369
wcscoll() ...2370
wcscoll_l() ..2370
wcscpy() ...2372
wcscspn() ...2374
wcsdup() ..2375
wcsftime() ..2376
wcslcat() ...2378
wcslcpy() ..2378
wcslen() ..2380
wcsncasecmp() ..2365, 2382
wcsncasecmp_l() ...2365, 2382
wcsncat() ..2383
wcsncmp() ...2384
wcsncpy()...2385
wcsnlen()..2380, 2387
wcsnrtombs()...2388, 2391
wcspbrk() ...2389
wcsrchr() ..2390
wcsrtombs() ...2391
wcsspn() ...2393
wcsstr() ...2394
wcstod()..2395
wcstof()...2395
wcstoimax() ...2399
wcstok()..2400
wcstol()...2402
wcstold() ..2395, 2405
wcstoll()..2402, 2406
wcstombs()...2407
wcstombs_s ..502
wcstoul() ..2409

4054 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

wcstoull() ...2409
wcstoumax() ..2399, 2412
wcswidth() ...2413
wcsxfrm() ...2414
wcsxfrm_l()..2414
wctob() ...2416
wctomb() ..2417
wctomb_s ..502
wctrans() ..2419
wctrans_l() ...2419
wctype() ...2421
wctype_l() ..2421
wcwidth()...2423
WEOF482, 486, 563, 1280, 1282, 1286, 1288, 1291, 1293, 1295, 1297, 1299, 1301, 1303

..1305, 2291, 2293, 2318
WERASE ...3721
WEXITED ...433, 2357
WEXITSTATUS ..381, 433, 2348
we_ ..500
what ...3590
while loop...2510, 3903
white space...92, 3676
white-space byte..92
white-space character ...92
white-space wide character ...92
who ..3593, 3929-3930
wide characters..120
wide-character code..3689
wide-character code (C language) ..93
wide-character input/output functions...93
wide-character string..93
wide-oriented stream ..524
WIFCONTINUED ...433, 2348
WIFEXITED ..381, 433, 2348
WIFSIGNALED ...381, 433, 2348
WIFSTOPPED ..381, 433, 2348, 2354
WINT_MAX ...374
WINT_MIN ..374
wmemchr() ..2424
wmemcmp() ..2425
wmemcpy()..2426
wmemcpy_s ...502
wmemmove() ..2427
wmemmove_s ..502
wmemset() ...2429
WNOHANG ..381, 433, 2047, 2347, 2357
WNOWAIT ...433, 2357, 3840
word ..93
word counting ...3586
word expansions ...2483, 3880
wordexp() ..2430, 3930
wordfree() ..2430, 3930

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4055

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

WORD_BIT ..291, 293
working directory ...93
worldwide portability interface ..93
wprintf()...1081, 2435
wprintf_s ..502
WRDE_ ...500
WRDE_APPEND ...488, 2431
WRDE_BADCHAR ...488, 2432
WRDE_BADVAL ...488, 2432
WRDE_CMDSUB ..488, 2432
WRDE_DOOFFS ...488, 2431
WRDE_NOCMD ...488, 2431
WRDE_NOSPACE ..488, 2432
WRDE_REUSE ...488, 2431
WRDE_SHOWERR ...488, 2431
WRDE_SYNTAX ...488, 2432
WRDE_UNDEF ...488, 2431
write ...93, 3597, 3928-3929
write lock..3817
write to a file ..2439
write()2436, 3656-3657, 3720-3721, 3743, 3752-3753, 3756, 3767-3768, 3772-3773

..3839, 3925
writev()...2444
writing data..3722
wscanf()..1091, 2446
wscanf_s ...502
WSTOPPED ..433, 2357
WSTOPSIG ...381, 433, 2348
ws_ ...500
WTERMSIG ..381, 433, 2348
WUNTRACED ...381, 433, 2348, 2353, 3657
W_OK ..464
xargs ..3600, 3927
xgettext ...3608
XOPEN_UNIX ...19, 27
XOPEN_UUCP ..19, 27
XSI ...12, 93, 3676

conformance ...15, 19, 94
XSI interprocess communication ..526
XSI IPC..3758
XSI option groups ...22, 3646
XSI system interfaces

conformance ...19
XSI_C_LANG_SUPPORT...3948
XSI_DBM ..3948
XSI_DEVICE_IO ..3948
XSI_DEVICE_SPECIFIC ...3948
XSI_FILE_SYSTEM ...3948
XSI_GENERAL_TERMINAL_R ..3948
XSI_IPC ...3948
XSI_MATH ...3948
XSI_MULTI_PROCESS ...3948

4056 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

XSI_SIGNALS ..3948
XSI_SINGLE_PROCESS ...3949
XSI_SYSTEM_DATABASE ...3949
XSI_SYSTEM_LOGGING ..3949
XSI_USER_GROUPS ...3949
XSI_WIDE_CHAR ...3949
X_OK ...464, 587
y0() ..2447
y1() ..2447
yacc ..3613, 3930, 3932

algorithms ..3625
code file...3615
completing the program ...3624
conflicts ...3622
debugging the parser..3625
declarations section...3616
description file ...3615
error handling..3623
grammar rules ...3618
header file...3615
input grammar...3620
input language...3616
interface to the lexical analyzer...3624
lexical structure of the grammar...3616
library ..3624
limits ..3625
programs section ...3620

YESEXPR ..277
yn()..2447
zcat ..2735, 3631
zombie process ..94
zombie thread ..94

Base Specifications, Issue 8 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. 4057

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

Index

4058 Copyright © 2001-2024, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 8

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

RAISING THE
WORLD’S
STANDARDS
Connect with us on:

Facebook: facebook.com/ieeesa

LinkedIn: linkedin.com/groups/1791118

Beyond Standards blog: beyondstandards.ieee.org

YouTube: youtube.com/ieeesa

standards.ieee.org
Phone: +1 732 981 0060

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 15,2024 at 04:16:29 UTC from IEEE Xplore. Restrictions apply.

https://twitter.com/ieeesa
https://www.facebook.com/ieeesa/
https://www.linkedin.com/groups/1791118/
https://beyondstandards.ieee.org/
https://www.youtube.com/ieeesa

	IEEE Std 1003.1™-2024 Front Cover
	Title Page
	Important Notices and Disclaimers Concerning IEEE Standards Documents
	Participants
	Introduction
	Contents
	Trademarks
	Acknowledgements
	Referenced Documents
	XBD
	1 Introduction
	1.1 Scope
	1.2 Word Usage
	1.3 Conformance
	1.4 Normative References
	1.5 Change History
	1.6 Terminology
	1.7 Definitions and Concepts
	1.8 Portability
	1.8.1 Codes
	1.8.2 Margin Code Notation

	2 Conformance
	2.1 Implementation Conformance
	2.1.1 Requirements
	2.1.2 Documentation
	2.1.3 POSIX Conformance
	2.1.4 XSI Conformance
	2.1.5 Option Groups
	2.1.6 Options

	2.2 Application Conformance
	2.2.1 Strictly Conforming POSIX Application
	2.2.2 Conforming POSIX Application
	2.2.3 Conforming POSIX Application Using Extensions
	2.2.4 Strictly Conforming XSI Application
	2.2.5 Conforming XSI Application Using Extensions

	2.3 Language-Dependent Services for the C Programming Language
	2.4 Other Language-Related Specifications

	3 Definitions
	3.1 Abortive Release
	3.2 Absolute Pathname
	3.3 Access Mode
	3.4 Additional File Access Control Mechanism
	3.5 Address Space
	3.6 Advisory Information
	3.7 Affirmative Response
	3.8 Alert
	3.9 Alert Character (<alert>)
	3.10 Alias Name
	3.11 Alignment
	3.12 Alternate File Access Control Mechanism
	3.13 Alternate Signal Stack
	3.14 Ancillary Data
	3.15 Angle Brackets
	3.16 Anonymous Memory Object
	3.17 Apostrophe Character (<apostrophe>)
	3.18 Application
	3.19 Application Address
	3.20 Application Program Interface (API)
	3.21 Appropriate Privileges
	3.22 Argument
	3.23 Arm (a Timer)
	3.24 Asterisk Character (<asterisk>)
	3.25 Async-Cancel-Safe Function
	3.26 Asynchronous Events
	3.27 Asynchronous Input and Output
	3.28 Async-Signal-Safe Function
	3.29 Asynchronously-Generated Signal
	3.30 Asynchronous I/O Completion
	3.31 Asynchronous I/O Operation
	3.32 Atomic Operation
	3.33 Authentication
	3.34 Authorization
	3.35 Background Job
	3.36 Background Process
	3.37 Background Process Group
	3.38 Backquote Character
	3.39 Backslash Character (<backslash>)
	3.40 Backspace Character (<backspace>)
	3.41 Barrier
	3.42 Basename
	3.43 Basic Regular Expression (BRE)
	3.44 Bind
	3.45 Blank Character (<blank>)
	3.46 Blank Line
	3.47 Blocked Process (or Thread)
	3.48 Blocking
	3.49 Block-Mode Terminal
	3.50 Block Special File
	3.51 Braces
	3.52 Brackets
	3.53 Broadcast
	3.54 Built-In Utility (or Built-In)
	3.55 Byte
	3.56 Byte Input/Output Functions
	3.57 Carriage-Return Character (<carriage-return>)
	3.58 Character
	3.59 Character Array
	3.60 Character Class
	3.61 Character Set
	3.62 Character Special File
	3.63 Character String
	3.64 Child Process
	3.65 Circumflex Character (<circumflex>)
	3.66 Clock
	3.67 Clock Jump
	3.68 Clock Tick
	3.69 Code Block
	3.70 Coded Character Set
	3.71 Codeset
	3.72 Collating Element
	3.73 Collation
	3.74 Collation Sequence
	3.75 Column Position
	3.76 Command
	3.77 Command Language Interpreter
	3.78 Composite Graphic Symbol
	3.79 Condition Variable
	3.80 Connected Socket
	3.81 Connection
	3.82 Connection Mode
	3.83 Connectionless Mode
	3.84 Control Character
	3.85 Control Operator
	3.86 Controlling Process
	3.87 Controlling Terminal
	3.88 Conversion Descriptor
	3.89 Core Image
	3.90 CPU Time (Execution Time)
	3.91 CPU-Time Clock
	3.92 CPU-Time Timer
	3.93 Current Job
	3.94 Current Working Directory
	3.95 Cursor Position
	3.96 Datagram
	3.97 Data Race
	3.98 Data Segment
	3.99 Decimal-Point Character
	3.100 Declaration Utility
	3.101 Device
	3.102 Device ID
	3.103 Directory
	3.104 Directory Entry (or Hard Link)
	3.105 Directory Stream
	3.106 Disarm (a Timer)
	3.107 Display
	3.108 Display Line
	3.109 Dollar-Sign Character (<dollar-sign>)
	3.110 Dot
	3.111 Dot-Dot
	3.112 Dot-Po File
	3.113 Double-Quote Character
	3.114 Downshifting
	3.115 Driver
	3.116 Effective Group ID
	3.117 Effective User ID
	3.118 Eight-Bit Transparency
	3.119 Empty Directory
	3.120 Empty Line
	3.121 Empty String (or Null String)
	3.122 Empty Wide-Character String
	3.123 Encoding Rule
	3.124 Entire Regular Expression
	3.125 Epoch
	3.126 Equivalence Class
	3.127 Era
	3.128 Event Management
	3.129 Executable File
	3.130 Execute
	3.131 Execution Time
	3.132 Execution Time Monitoring
	3.133 Expand
	3.134 Extended Regular Expression (ERE)
	3.135 Extended Security Controls
	3.136 Feature Test Macro
	3.137 Field
	3.138 FIFO Special File (or FIFO)
	3.139 File
	3.140 File Description
	3.141 File Descriptor
	3.142 File Group Class
	3.143 File Lock
	3.144 File Mode
	3.145 File Mode Bits
	3.146 Filename
	3.147 Filename String
	3.148 File Offset
	3.149 File Other Class
	3.150 File Owner Class
	3.151 File Permission Bits
	3.152 File Serial Number
	3.153 File System
	3.154 File Type
	3.155 Filter
	3.156 First Open (of a File)
	3.157 Flow Control
	3.158 Foreground Job
	3.159 Foreground Process
	3.160 Foreground Process Group
	3.161 Foreground Process Group ID
	3.162 Form-Feed Character (<form-feed>)
	3.163 Graphic Character
	3.164 Group Database
	3.165 Group ID
	3.166 Group Name
	3.167 Hard Limit
	3.168 Hard Link
	3.169 Hole
	3.170 Home Directory
	3.171 Host Byte Order
	3.172 Incomplete Line
	3.173 Inf
	3.174 Interactive Device
	3.175 Interactive Shell
	3.176 Internationalization
	3.177 Interprocess Communication
	3.178 Intrinsic Utility
	3.179 Invoke
	3.180 Job
	3.181 Job Control
	3.182 Job ID
	3.183 Joinable Thread
	3.184 Last Close (of a File)
	3.185 Line
	3.186 Linger
	3.187 Link
	3.188 Link Count
	3.189 Live Process
	3.190 Live Thread
	3.191 Local Customs
	3.192 Local Interprocess Communication (Local IPC)
	3.193 Locale
	3.194 Localization
	3.195 Lock-Free Operation
	3.196 Login
	3.197 Login Name
	3.198 Map
	3.199 Matched
	3.200 Memory Mapped Files
	3.201 Memory Object
	3.202 Memory-Resident
	3.203 Message
	3.204 Message Catalog
	3.205 Message Catalog Descriptor
	3.206 Message Queue
	3.207 Messages Object
	3.208 Mode
	3.209 Monotonic Clock
	3.210 Mount Point
	3.211 Multi-Character Collating Element
	3.212 Multi-Threaded Library
	3.213 Multi-Threaded Process
	3.214 Multi-Threaded Program
	3.215 Mutex
	3.216 Name
	3.217 NaN (Not a Number)
	3.218 Native Language
	3.219 Negative
	3.220 Negative Response
	3.221 Network
	3.222 Network Address
	3.223 Network Byte Order
	3.224 Newline Character (<newline>)
	3.225 Nice Value
	3.226 Non-Blocking
	3.227 Non-Spacing Characters
	3.228 NUL
	3.229 Null Byte
	3.230 Null Pointer
	3.231 Null String
	3.232 Null Terminator
	3.233 Null Wide-Character Code
	3.234 Number-Sign Character (<number-sign>)
	3.235 Object File
	3.236 Octet
	3.237 OFD-Owned File Lock
	3.238 Offset Maximum
	3.239 Opaque Address
	3.240 Open File
	3.241 Open File Description
	3.242 Operand
	3.243 Operator
	3.244 Option
	3.245 Option-Argument
	3.246 Orientation
	3.247 Orphaned Process Group
	3.248 Page
	3.249 Page Size
	3.250 Parameter
	3.251 Parent Directory
	3.252 Parent Process
	3.253 Parent Process ID
	3.254 Pathname
	3.255 Pathname Component
	3.256 Path Prefix
	3.257 Pattern
	3.258 Period Character (<period>)
	3.259 Permissions
	3.260 Persistence
	3.261 Pipe
	3.262 Polling
	3.263 Portable Character Set
	3.264 Portable Filename
	3.265 Portable Filename Character Set
	3.266 Portable Messages Object Source File (or Dot-Po File)
	3.267 Positional Parameter
	3.268 Positive
	3.269 Preallocation
	3.270 Preempted Process (or Thread)
	3.271 Previous Job
	3.272 Printable Character
	3.273 Printable File
	3.274 Priority
	3.275 Priority Inversion
	3.276 Priority Scheduling
	3.277 Priority-Based Scheduling
	3.278 Privilege
	3.279 Process
	3.280 Process Group
	3.281 Process Group ID
	3.282 Process Group Leader
	3.283 Process Group Lifetime
	3.284 Process ID
	3.285 Process Lifetime
	3.286 Process Memory Locking
	3.287 Process Termination
	3.288 Process Virtual Time
	3.289 Process-Owned File Lock
	3.290 Process-To-Process Communication
	3.291 Program
	3.292 Protocol
	3.293 Pseudo-Terminal
	3.294 Radix Character (or Decimal-Point Character)
	3.295 Read-Only File System
	3.296 Read-Write Lock
	3.297 Real Group ID
	3.298 Real Time
	3.299 Realtime Signal Extension
	3.300 Real User ID
	3.301 Record
	3.302 Record Lock
	3.303 Redirection
	3.304 Redirection Operator
	3.305 Referenced Shared Memory Object
	3.306 Refresh
	3.307 Regular Built-In Utility (or Regular Built-In)
	3.308 Regular Expression
	3.309 Region
	3.310 Regular File
	3.311 Relative Pathname
	3.312 Relocatable File
	3.313 Relocation
	3.314 (Time) Resolution
	3.315 Robust Mutex
	3.316 Root Directory
	3.317 Runnable Process (or Thread)
	3.318 Running Process (or Thread)
	3.319 Saved Resource Limits
	3.320 Saved Set-Group-ID
	3.321 Saved Set-User-ID
	3.322 Scheduling
	3.323 Scheduling Allocation Domain
	3.324 Scheduling Contention Scope
	3.325 Scheduling Policy
	3.326 Screen
	3.327 Scroll
	3.328 Semaphore
	3.329 Session
	3.330 Session Leader
	3.331 Session Lifetime
	3.332 Shared Memory Object
	3.333 Shell
	3.334 Shell, the
	3.335 Shell Script
	3.336 Signal
	3.337 Signal Stack
	3.338 Single-Quote Character
	3.339 Single-Threaded Process
	3.340 Single-Threaded Program
	3.341 Slash Character (<slash>)
	3.342 Socket
	3.343 Socket Address
	3.344 Soft Limit
	3.345 Source Code
	3.346 Space Character (<space>)
	3.347 Sparse File
	3.348 Spawn
	3.349 Special Built-In Utility (or Special Built-In)
	3.350 Special Parameter
	3.351 Spin Lock
	3.352 Sporadic Server
	3.353 Standard Error
	3.354 Standard Input
	3.355 Standard Output
	3.356 Standard Utilities
	3.357 Stream
	3.358 String
	3.359 Subshell
	3.360 Successfully Transferred
	3.361 Supplementary Group ID
	3.362 Suspended Job
	3.363 Symbolic Constant
	3.364 Symbolic Link
	3.365 Synchronization Operation
	3.366 Synchronized Input and Output
	3.367 Synchronized I/O Completion
	3.368 Synchronized I/O Data Integrity Completion
	3.369 Synchronized I/O File Integrity Completion
	3.370 Synchronized I/O Operation
	3.371 Synchronous I/O Operation
	3.372 Synchronously-Generated Signal
	3.373 System
	3.374 System Boot
	3.375 System Clock
	3.376 System Console
	3.377 System Crash
	3.378 System Databases
	3.379 System Documentation
	3.380 System Process
	3.381 System Reboot
	3.382 System-Wide
	3.383 Tab Character (<tab>)
	3.384 Terminal (or Terminal Device)
	3.385 Text Column
	3.386 Text Domain
	3.387 Text File
	3.388 Thread
	3.389 Thread ID
	3.390 Thread Lifetime
	3.391 Thread List
	3.392 Thread Termination
	3.393 Thread-Safe
	3.394 Thread-Specific Data Key
	3.395 Tilde Character (<tilde>)
	3.396 Timeouts
	3.397 Timer
	3.398 Timer Overrun
	3.399 Token
	3.400 Typed Memory Name Space
	3.401 Typed Memory Object
	3.402 Typed Memory Pool
	3.403 Typed Memory Port
	3.404 Unbind
	3.405 Unit Data
	3.406 Upshifting
	3.407 User Database
	3.408 User ID
	3.409 User Name
	3.410 Utility
	3.411 Variable
	3.412 Vertical-Tab Character (<vertical-tab>)
	3.413 White Space
	3.414 White-Space Byte
	3.415 White-Space Character
	3.416 White-Space Wide Character
	3.417 Wide-Character Code (C Language)
	3.418 Wide-Character Input/Output Functions
	3.419 Wide-Character String
	3.420 Word
	3.421 Working Directory (or Current Working Directory)
	3.422 Worldwide Portability Interface
	3.423 Write
	3.424 XSI
	3.425 XSI-Conformant
	3.426 Zombie Process
	3.427 Zombie Thread
	3.428 Plus or Minus Zero

	4 General Concepts
	4.1 Case Insensitive Comparisons
	4.2 Concurrent Execution
	4.3 Default Initialization
	4.4 Directory Operations
	4.5 Directory Protection
	4.6 Extended Security Controls
	4.7 File Access Permissions
	4.8 File Hierarchy
	4.9 Filenames
	4.10 Filename Portability
	4.11 File System Cache
	4.12 File Times Update
	4.13 Host and Network Byte Orders
	4.14 Measurement of Execution Time
	4.15 Memory Ordering and Synchronization
	4.15.1 Memory Ordering
	4.15.2 Memory Synchronization

	4.16 Pathname Resolution
	4.17 Process ID Reuse
	4.18 Scheduling Policy
	4.19 Seconds Since the Epoch
	4.20 Semaphore
	4.21 Special Device Drivers
	4.22 Thread-Safety
	4.23 Treatment of Error Conditions for Mathematical Functions
	4.23.1 Domain Error
	4.23.2 Pole Error
	4.23.3 Range Error

	4.24 Treatment of NaN Arguments for the Mathematical Functions
	4.25 Utility
	4.26 Variable Assignment

	5 File Format Notation
	6 Character Set
	6.1 Portable Character Set
	6.2 Character Encoding
	6.3 C Language Wide-Character Codes
	6.4 Character Set Description File
	6.4.1 State-Dependent Character Encodings

	7 Locale
	7.1 General
	7.2 POSIX Locale
	7.3 Locale Definition
	7.3.1 LC_CTYPE
	7.3.2 LC_COLLATE
	7.3.3 LC_MONETARY
	7.3.4 LC_NUMERIC
	7.3.5 LC_TIME
	7.3.6 LC_MESSAGES

	7.4 Locale Definition Grammar
	7.4.1 Locale Lexical Conventions
	7.4.2 Locale Grammar

	8 Environment Variables
	8.1 Environment Variable Definition
	8.2 Internationalization Variables
	8.3 Other Environment Variables

	9 Regular Expressions
	9.1 Regular Expression Definitions
	9.2 Regular Expression General Requirements
	9.3 Basic Regular Expressions
	9.3.1 BREs Matching a Single Character or Collating Element
	9.3.2 BRE Ordinary Characters
	9.3.3 BRE Special Characters
	9.3.4 Periods in BREs
	9.3.5 RE Bracket Expression
	9.3.6 BREs Matching Multiple Characters
	9.3.7 BRE Precedence
	9.3.8 BRE Expression Anchoring

	9.4 Extended Regular Expressions
	9.4.1 EREs Matching a Single Character or Collating Element
	9.4.2 ERE Ordinary Characters
	9.4.3 ERE Special Characters
	9.4.4 Periods in EREs
	9.4.5 ERE Bracket Expression
	9.4.6 EREs Matching Multiple Characters
	9.4.7 ERE Alternation
	9.4.8 ERE Precedence
	9.4.9 ERE Expression Anchoring

	9.5 Regular Expression Grammar
	9.5.1 BRE/ERE Grammar Lexical Conventions
	9.5.2 RE and Bracket Expression Grammar
	9.5.3 ERE Grammar

	10 Directory Structure and Devices
	10.1 Directory Structure and Files
	10.2 Output Devices and Terminal Types

	11 General Terminal Interface
	11.1 Interface Characteristics
	11.1.1 Opening a Terminal Device File
	11.1.2 Process Groups
	11.1.3 The Controlling Terminal
	11.1.4 Terminal Access Control
	11.1.5 Input Processing and Reading Data
	11.1.6 Canonical Mode Input Processing
	11.1.7 Non-Canonical Mode Input Processing
	11.1.8 Writing Data and Output Processing
	11.1.9 Special Characters
	11.1.10 Modem Disconnect
	11.1.11 Closing a Terminal Device File

	11.2 Parameters that Can be Set
	11.2.1 The termios Structure
	11.2.2 Input Modes
	11.2.3 Output Modes
	11.2.4 Control Modes
	11.2.5 Local Modes
	11.2.6 Special Control Characters

	12 Utility Conventions
	12.1 Utility Argument Syntax
	12.2 Utility Syntax Guidelines

	13 Namespace and Future Directions
	14 Headers
	<aio.h>
	<arpa/inet.h>
	<assert.h>
	<complex.h>
	<cpio.h>
	<ctype.h>
	<devctl.h>
	<dirent.h>
	<dlfcn.h>
	<endian.h>
	<errno.h>
	<fcntl.h>
	<fenv.h>
	<float.h>
	<fmtmsg.h>
	<fnmatch.h>
	<ftw.h>
	<glob.h>
	<grp.h>
	<iconv.h>
	<inttypes.h>
	<iso646.h>
	<langinfo.h>
	<libgen.h>
	<libintl.h>
	<limits.h>
	<locale.h>
	<math.h>
	<monetary.h>
	<mqueue.h>
	<ndbm.h>
	<net/if.h>
	<netdb.h>
	<netinet/in.h>
	<netinet/tcp.h>
	<nl_types.h>
	<poll.h>
	<pthread.h>
	<pwd.h>
	<regex.h>
	<sched.h>
	<search.h>
	<semaphore.h>
	<setjmp.h>
	<signal.h>
	<spawn.h>
	<stdalign.h>
	<stdatomic.h>
	<stdarg.h>
	<stdbool.h>
	<stddef.h>
	<stdint.h>
	<stdio.h>
	<stdlib.h>
	<stdnoreturn.h>
	<string.h>
	<strings.h>
	<sys/ipc.h>
	<sys/mman.h>
	<sys/msg.h>
	<sys/resource.h>
	<sys/select.h>
	<sys/sem.h>
	<sys/shm.h>
	<sys/socket.h>
	<sys/stat.h>
	<sys/statvfs.h>
	<sys/time.h>
	<sys/times.h>
	<sys/types.h>
	<sys/uio.h>
	<sys/un.h>
	<sys/utsname.h>
	<sys/wait.h>
	<syslog.h>
	<tar.h>
	<termios.h>
	<tgmath.h>
	<threads.h>
	<time.h>
	<uchar.h>
	<unistd.h>
	<utmpx.h>
	<wchar.h>
	<wctype.h>
	<wordexp.h>

	XSH
	1 Introduction
	1.1 Relationship to Other Formal Standards
	1.2 Format of Entries

	2 General Information
	2.1 Use and Implementation of Interfaces
	2.1.1 Use and Implementation of Functions
	2.1.2 Use and Implementation of Macros

	2.2 The Compilation Environment
	2.2.1 POSIX.1 Symbols
	2.2.2 The Name Space

	2.3 Error Numbers
	2.3.1 Additional Error Numbers

	2.4 Signal Concepts
	2.4.1 Signal Generation and Delivery
	2.4.2 Realtime Signal Generation and Delivery
	2.4.3 Signal Actions
	2.4.4 Signal Effects on Other Functions

	2.5 Standard I/O Streams
	2.5.1 Interaction of File Descriptors and Standard I/O Streams
	2.5.2 Stream Orientation and Encoding Rules

	2.6 File Descriptor Allocation
	2.7 XSI Interprocess Communication
	2.7.1 IPC General Description

	2.8 Realtime
	2.8.1 Realtime Signals
	2.8.2 Asynchronous I/O
	2.8.3 Memory Management
	2.8.4 Process Scheduling
	2.8.5 Clocks and Timers

	2.9 Threads
	2.9.1 Thread-Safety
	2.9.2 Thread IDs
	2.9.3 Thread Mutexes
	2.9.4 Thread Scheduling
	2.9.5 Thread Cancellation
	2.9.6 Thread Read-Write Locks
	2.9.7 Thread Interactions with File Operations
	2.9.8 Use of Application-Managed Thread Stacks
	2.9.9 Synchronization Object Copies and Alternative Mappings

	2.10 Sockets
	2.10.1 Address Families
	2.10.2 Addressing
	2.10.3 Protocols
	2.10.4 Routing
	2.10.5 Interfaces
	2.10.6 Socket Types
	2.10.7 Socket I/O Mode
	2.10.8 Socket Owner
	2.10.9 Socket Queue Limits
	2.10.10 Pending Error
	2.10.11 Socket Receive Queue
	2.10.12 Socket Out-of-Band Data State
	2.10.13 Connection Indication Queue
	2.10.14 Signals
	2.10.15 Asynchronous Errors
	2.10.16 Use of Options
	2.10.17 Use of Sockets for Local UNIX Connections
	2.10.18 Use of Sockets over Internet Protocols
	2.10.19 Use of Sockets over Internet Protocols Based on IPv4
	2.10.20 Use of Sockets over Internet Protocols Based on IPv6

	2.11 Data Types
	2.11.1 Defined Types
	2.11.2 The char Type

	2.12 Status Information

	3 System Interfaces
	CMPLX
	FD_CLR
	_Exit
	_Fork
	a64l
	abort
	abs
	accept
	access
	acos
	acosh
	acosl
	aio_cancel
	aio_error
	aio_fsync
	aio_read
	aio_return
	aio_suspend
	aio_write
	alarm
	aligned_alloc
	alphasort
	asctime
	asin
	asinh
	asinl
	asprintf
	assert
	at_quick_exit
	atan
	atan2
	atanf
	atanh
	atanl
	atexit
	atof
	atoi
	atol
	atomic_compare_exchange_strong
	atomic_exchange
	atomic_fetch_add
	atomic_flag_clear
	atomic_flag_test_and_set
	atomic_init
	atomic_is_lock_free
	atomic_load
	atomic_signal_fence
	atomic_store
	basename
	be16toh
	bind
	bindtextdomain
	bsearch
	btowc
	c16rtomb
	cabs
	cacos
	cacosh
	cacosl
	call_once
	calloc
	carg
	casin
	casinh
	casinl
	catan
	catanh
	catanl
	catclose
	catgets
	catopen
	cbrt
	ccos
	ccosh
	ccosl
	ceil
	cexp
	cfgetispeed
	cfgetospeed
	cfsetispeed
	cfsetospeed
	chdir
	chmod
	chown
	cimag
	clearerr
	clock
	clock_getcpuclockid
	clock_getres
	clock_nanosleep
	clock_settime
	clog
	close
	closedir
	closelog
	cnd_broadcast
	cnd_destroy
	cnd_timedwait
	confstr
	conj
	connect
	copysign
	cos
	cosh
	cosl
	cpow
	cproj
	creal
	creat
	crypt
	csin
	csinh
	csinl
	csqrt
	ctan
	ctanh
	ctanl
	ctermid
	ctime
	daylight
	dbm_clearerr
	dcgettext
	difftime
	dirfd
	dirname
	div
	dladdr
	dlclose
	dlerror
	dlopen
	dlsym
	dngettext
	dprintf
	drand48
	dup
	duplocale
	encrypt
	endgrent
	endhostent
	endnetent
	endprotoent
	endpwent
	endservent
	endutxent
	environ
	erand48
	erf
	erfc
	erff
	errno
	exec
	exit
	exp
	exp2
	expm1
	fabs
	faccessat
	fchdir
	fchmod
	fchmodat
	fchown
	fchownat
	fclose
	fcntl
	fdatasync
	fdim
	fdopen
	fdopendir
	feclearexcept
	fegetenv
	fegetexceptflag
	fegetround
	feholdexcept
	feof
	feraiseexcept
	ferror
	fesetenv
	fesetexceptflag
	fesetround
	fetestexcept
	feupdateenv
	fexecve
	fflush
	ffs
	fgetc
	fgetpos
	fgets
	fgetwc
	fgetws
	fileno
	flockfile
	floor
	fma
	fmax
	fmemopen
	fmin
	fmod
	fmtmsg
	fnmatch
	fopen
	fork
	fpathconf
	fpclassify
	fprintf
	fputc
	fputs
	fputwc
	fputws
	fread
	free
	freeaddrinfo
	freelocale
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	fstatat
	fstatvfs
	fsync
	ftell
	ftok
	ftruncate
	ftrylockfile
	funlockfile
	futimens
	fwide
	fwprintf
	fwrite
	fwscanf
	gai_strerror
	getaddrinfo
	getc
	getc_unlocked
	getchar
	getchar_unlocked
	getcwd
	getdate
	getdelim
	getegid
	getentropy
	getenv
	geteuid
	getgid
	getgrent
	getgrgid
	getgrnam
	getgroups
	gethostent
	gethostid
	gethostname
	getline
	getlocalename_l
	getlogin
	getnameinfo
	getnetbyaddr
	getopt
	getpeername
	getpgid
	getpgrp
	getpid
	getppid
	getpriority
	getprotobyname
	getpwent
	getpwnam
	getpwuid
	getresgid
	getresuid
	getrlimit
	getrusage
	getservbyname
	getsid
	getsockname
	getsockopt
	getsubopt
	gettext
	getuid
	getutxent
	getwc
	getwchar
	glob
	gmtime
	grantpt
	hcreate
	htobe16
	htonl
	hypot
	iconv
	iconv_close
	iconv_open
	if_freenameindex
	if_indextoname
	if_nameindex
	if_nametoindex
	ilogb
	imaxabs
	imaxdiv
	in6addr_any
	inet_addr
	inet_ntop
	initstate
	insque
	isalnum
	isalpha
	isatty
	isblank
	iscntrl
	isdigit
	isfinite
	isgraph
	isgreater
	isinf
	isless
	islower
	isnan
	isnormal
	isprint
	ispunct
	isspace
	isunordered
	isupper
	iswalnum
	iswalpha
	iswblank
	iswcntrl
	iswctype
	iswdigit
	iswgraph
	iswlower
	iswprint
	iswpunct
	iswspace
	iswupper
	iswxdigit
	isxdigit
	j0
	jrand48
	kill
	kill_dependency
	killpg
	l64a
	labs
	lchown
	lcong48
	ldexp
	ldiv
	le16toh
	lfind
	lgamma
	link
	lio_listio
	listen
	llabs
	lldiv
	llrint
	llround
	localeconv
	localtime
	lockf
	log
	log10
	log1p
	log2
	logb
	logf
	longjmp
	lrand48
	lrint
	lround
	lsearch
	lseek
	lstat
	malloc
	mblen
	mbrlen
	mbrtoc16
	mbrtowc
	mbsinit
	mbsrtowcs
	mbstowcs
	mbtowc
	memccpy
	memchr
	memcmp
	memcpy
	memmem
	memmove
	memset
	mkdir
	mkdtemp
	mkfifo
	mknod
	mkostemp
	mkstemp
	mktime
	mlock
	mlockall
	mmap
	modf
	mprotect
	mq_close
	mq_getattr
	mq_notify
	mq_open
	mq_receive
	mq_send
	mq_setattr
	mq_timedreceive
	mq_timedsend
	mq_unlink
	mrand48
	msgctl
	msgget
	msgrcv
	msgsnd
	msync
	mtx_destroy
	mtx_lock
	munlock
	munlockall
	munmap
	nan
	nanosleep
	nearbyint
	newlocale
	nextafter
	nftw
	ngettext
	nice
	nl_langinfo
	nrand48
	ntohl
	open
	open_memstream
	openat
	opendir
	openlog
	optarg
	pathconf
	pause
	pclose
	perror
	pipe
	poll
	popen
	posix_close
	posix_devctl
	posix_fadvise
	posix_fallocate
	posix_getdents
	posix_madvise
	posix_mem_offset
	posix_memalign
	posix_openpt
	posix_spawn
	posix_spawn_file_actions_addchdir
	posix_spawn_file_actions_addclose
	posix_spawn_file_actions_adddup2
	posix_spawn_file_actions_addfchdir
	posix_spawn_file_actions_addopen
	posix_spawn_file_actions_destroy
	posix_spawnattr_destroy
	posix_spawnattr_getflags
	posix_spawnattr_getpgroup
	posix_spawnattr_getschedparam
	posix_spawnattr_getschedpolicy
	posix_spawnattr_getsigdefault
	posix_spawnattr_getsigmask
	posix_spawnattr_init
	posix_spawnattr_setflags
	posix_spawnattr_setpgroup
	posix_spawnattr_setschedparam
	posix_spawnattr_setschedpolicy
	posix_spawnattr_setsigdefault
	posix_spawnattr_setsigmask
	posix_spawnp
	posix_typed_mem_get_info
	posix_typed_mem_open
	pow
	ppoll
	pread
	printf
	pselect
	psiginfo
	pthread_atfork
	pthread_attr_destroy
	pthread_attr_getdetachstate
	pthread_attr_getguardsize
	pthread_attr_getinheritsched
	pthread_attr_getschedparam
	pthread_attr_getschedpolicy
	pthread_attr_getscope
	pthread_attr_getstack
	pthread_attr_getstacksize
	pthread_attr_init
	pthread_attr_setdetachstate
	pthread_attr_setguardsize
	pthread_attr_setinheritsched
	pthread_attr_setschedparam
	pthread_attr_setschedpolicy
	pthread_attr_setscope
	pthread_attr_setstack
	pthread_attr_setstacksize
	pthread_barrier_destroy
	pthread_barrier_wait
	pthread_barrierattr_destroy
	pthread_barrierattr_getpshared
	pthread_barrierattr_init
	pthread_barrierattr_setpshared
	pthread_cancel
	pthread_cleanup_pop
	pthread_cond_broadcast
	pthread_cond_clockwait
	pthread_cond_destroy
	pthread_cond_signal
	pthread_cond_timedwait
	pthread_condattr_destroy
	pthread_condattr_getclock
	pthread_condattr_getpshared
	pthread_condattr_init
	pthread_condattr_setclock
	pthread_condattr_setpshared
	pthread_create
	pthread_detach
	pthread_equal
	pthread_exit
	pthread_getcpuclockid
	pthread_getschedparam
	pthread_getspecific
	pthread_join
	pthread_key_create
	pthread_key_delete
	pthread_kill
	pthread_mutex_clocklock
	pthread_mutex_consistent
	pthread_mutex_destroy
	pthread_mutex_getprioceiling
	pthread_mutex_init
	pthread_mutex_lock
	pthread_mutex_setprioceiling
	pthread_mutex_timedlock
	pthread_mutex_trylock
	pthread_mutexattr_destroy
	pthread_mutexattr_getprioceiling
	pthread_mutexattr_getprotocol
	pthread_mutexattr_getpshared
	pthread_mutexattr_getrobust
	pthread_mutexattr_gettype
	pthread_mutexattr_init
	pthread_mutexattr_setprioceiling
	pthread_mutexattr_setprotocol
	pthread_mutexattr_setpshared
	pthread_mutexattr_setrobust
	pthread_mutexattr_settype
	pthread_once
	pthread_rwlock_clockrdlock
	pthread_rwlock_clockwrlock
	pthread_rwlock_destroy
	pthread_rwlock_rdlock
	pthread_rwlock_timedrdlock
	pthread_rwlock_timedwrlock
	pthread_rwlock_tryrdlock
	pthread_rwlock_trywrlock
	pthread_rwlock_unlock
	pthread_rwlock_wrlock
	pthread_rwlockattr_destroy
	pthread_rwlockattr_getpshared
	pthread_rwlockattr_init
	pthread_rwlockattr_setpshared
	pthread_self
	pthread_setcancelstate
	pthread_setschedparam
	pthread_setschedprio
	pthread_setspecific
	pthread_sigmask
	pthread_spin_destroy
	pthread_spin_lock
	pthread_spin_unlock
	pthread_testcancel
	ptsname
	putc
	putc_unlocked
	putchar
	putchar_unlocked
	putenv
	puts
	pututxline
	putwc
	putwchar
	pwrite
	qsort
	quick_exit
	raise
	rand
	random
	read
	readdir
	readlink
	readv
	realloc
	realpath
	recv
	recvfrom
	recvmsg
	regcomp
	remainder
	remove
	remque
	remquo
	rename
	rewind
	rewinddir
	rint
	rmdir
	round
	scalbln
	scandir
	scanf
	sched_get_priority_max
	sched_getparam
	sched_getscheduler
	sched_rr_get_interval
	sched_setparam
	sched_setscheduler
	sched_yield
	secure_getenv
	seed48
	seekdir
	select
	sem_clockwait
	sem_close
	sem_destroy
	sem_getvalue
	sem_init
	sem_open
	sem_post
	sem_timedwait
	sem_trywait
	sem_unlink
	sem_wait
	semctl
	semget
	semop
	send
	sendmsg
	sendto
	setbuf
	setegid
	setenv
	seteuid
	setgid
	setgrent
	sethostent
	setjmp
	setkey
	setlocale
	setlogmask
	setnetent
	setpgid
	setpriority
	setprotoent
	setpwent
	setregid
	setresgid
	setresuid
	setreuid
	setrlimit
	setservent
	setsid
	setsockopt
	setstate
	setuid
	setutxent
	setvbuf
	shm_open
	shm_unlink
	shmat
	shmctl
	shmdt
	shmget
	shutdown
	sig2str
	sigaction
	sigaddset
	sigaltstack
	sigdelset
	sigemptyset
	sigfillset
	sigismember
	siglongjmp
	signal
	signbit
	signgam
	sigpending
	sigprocmask
	sigqueue
	sigsetjmp
	sigsuspend
	sigtimedwait
	sigwait
	sigwaitinfo
	sin
	sinh
	sinl
	sleep
	snprintf
	sockatmark
	socket
	socketpair
	sprintf
	sqrt
	srand
	srand48
	srandom
	sscanf
	stat
	statvfs
	stdin
	stpcpy
	stpncpy
	str2sig
	strcasecmp
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strfmon
	strftime
	strlcat
	strlen
	strncasecmp
	strncat
	strncmp
	strncpy
	strndup
	strnlen
	strpbrk
	strptime
	strrchr
	strsignal
	strspn
	strstr
	strtod
	strtoimax
	strtok
	strtol
	strtold
	strtoll
	strtoul
	strtoumax
	strxfrm
	swab
	swprintf
	swscanf
	symlink
	sync
	sysconf
	syslog
	system
	tan
	tanh
	tanl
	tcdrain
	tcflow
	tcflush
	tcgetattr
	tcgetpgrp
	tcgetsid
	tcgetwinsize
	tcsendbreak
	tcsetattr
	tcsetpgrp
	tcsetwinsize
	tdelete
	telldir
	textdomain
	tfind
	tgamma
	thrd_create
	thrd_current
	thrd_detach
	thrd_equal
	thrd_exit
	thrd_join
	thrd_sleep
	thrd_yield
	time
	timer_create
	timer_delete
	timer_getoverrun
	times
	timespec_get
	timezone
	tmpfile
	tmpnam
	tolower
	toupper
	towctrans
	towlower
	towupper
	trunc
	truncate
	truncf
	tsearch
	tss_create
	tss_delete
	tss_get
	ttyname
	twalk
	tzset
	umask
	uname
	ungetc
	ungetwc
	unlink
	unlockpt
	unsetenv
	uselocale
	utimensat
	va_arg
	vasprintf
	vfprintf
	vfscanf
	vfwprintf
	vfwscanf
	vprintf
	vscanf
	vsnprintf
	vsscanf
	vswprintf
	vswscanf
	vwprintf
	vwscanf
	wait
	waitid
	waitpid
	wcpcpy
	wcpncpy
	wcrtomb
	wcscasecmp
	wcscat
	wcschr
	wcscmp
	wcscoll
	wcscpy
	wcscspn
	wcsdup
	wcsftime
	wcslcat
	wcslen
	wcsncasecmp
	wcsncat
	wcsncmp
	wcsncpy
	wcsnlen
	wcsnrtombs
	wcspbrk
	wcsrchr
	wcsrtombs
	wcsspn
	wcsstr
	wcstod
	wcstoimax
	wcstok
	wcstol
	wcstold
	wcstoll
	wcstombs
	wcstoul
	wcstoumax
	wcswidth
	wcsxfrm
	wctob
	wctomb
	wctrans
	wctype
	wcwidth
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmemset
	wordexp
	wprintf
	write
	writev
	wscanf
	y0

	XCU
	1 Introduction
	1.1 Relationship to Other Documents
	1.1.1 System Interfaces
	1.1.2 Concepts Derived from the ISO C Standard

	1.2 Utility Limits
	1.3 Grammar Conventions
	1.4 Utility Description Defaults
	1.5 Considerations for Utilities in Support of Files of Arbitrary Size
	1.6 Built-In Utilities
	1.7 Intrinsic Utilities

	2 Shell Command Language
	2.1 Shell Introduction
	2.2 Quoting
	2.2.1 Escape Character (Backslash)
	2.2.2 Single-Quotes
	2.2.3 Double-Quotes
	2.2.4 Dollar-Single-Quotes

	2.3 Token Recognition
	2.3.1 Alias Substitution

	2.4 Reserved Words
	2.5 Parameters and Variables
	2.5.1 Positional Parameters
	2.5.2 Special Parameters
	2.5.3 Shell Variables

	2.6 Word Expansions
	2.6.1 Tilde Expansion
	2.6.2 Parameter Expansion
	2.6.3 Command Substitution
	2.6.4 Arithmetic Expansion
	2.6.5 Field Splitting
	2.6.6 Pathname Expansion
	2.6.7 Quote Removal

	2.7 Redirection
	2.7.1 Redirecting Input
	2.7.2 Redirecting Output
	2.7.3 Appending Redirected Output
	2.7.4 Here-Document
	2.7.5 Duplicating an Input File Descriptor
	2.7.6 Duplicating an Output File Descriptor
	2.7.7 Open File Descriptors for Reading and Writing

	2.8 Exit Status and Errors
	2.8.1 Consequences of Shell Errors
	2.8.2 Exit Status for Commands

	2.9 Shell Commands
	2.9.1 Simple Commands
	2.9.2 Pipelines
	2.9.3 Lists
	2.9.4 Compound Commands
	2.9.5 Function Definition Command

	2.10 Shell Grammar
	2.10.1 Shell Grammar Lexical Conventions
	2.10.2 Shell Grammar Rules

	2.11 Job Control
	2.12 Signals and Error Handling
	2.13 Shell Execution Environment
	2.14 Pattern Matching Notation
	2.14.1 Patterns Matching a Single Character
	2.14.2 Patterns Matching Multiple Characters
	2.14.3 Patterns Used for Filename Expansion

	2.15 Special Built-In Utilities
	break
	colon
	continue
	dot
	eval
	exec
	exit
	export
	readonly
	return
	set
	shift
	times
	trap
	unset

	3 Utilities
	admin
	alias
	ar
	asa
	at
	awk
	basename
	batch
	bc
	bg
	c17
	cal
	cat
	cd
	cflow
	chgrp
	chmod
	chown
	cksum
	cmp
	comm
	command
	compress
	cp
	crontab
	csplit
	ctags
	cut
	cxref
	date
	dd
	delta
	df
	diff
	dirname
	du
	echo
	ed
	env
	ex
	expand
	expr
	false
	fc
	fg
	file
	find
	fold
	fuser
	gencat
	get
	getconf
	getopts
	gettext
	grep
	hash
	head
	iconv
	id
	ipcrm
	ipcs
	jobs
	join
	kill
	lex
	link
	ln
	locale
	localedef
	logger
	logname
	lp
	ls
	m4
	mailx
	make
	man
	mesg
	mkdir
	mkfifo
	more
	msgfmt
	mv
	newgrp
	ngettext
	nice
	nl
	nm
	nohup
	od
	paste
	patch
	pathchk
	pax
	pr
	printf
	prs
	ps
	pwd
	read
	readlink
	realpath
	renice
	rm
	rmdel
	rmdir
	sact
	sccs
	sed
	sh
	sleep
	sort
	split
	strings
	strip
	stty
	tabs
	tail
	talk
	tee
	test
	time
	timeout
	touch
	tput
	tr
	true
	tsort
	tty
	type
	ulimit
	umask
	unalias
	uname
	uncompress
	unexpand
	unget
	uniq
	unlink
	uucp
	uudecode
	uuencode
	uustat
	uux
	val
	vi
	wait
	wc
	what
	who
	write
	xargs
	xgettext
	yacc
	zcat

	XRAT
	A Rationale for Base Definitions
	A.1 Introduction
	A.1.1 Scope
	A.1.2 Word Usage
	A.1.3 Conformance
	A.1.4 Normative References
	A.1.5 Change History
	A.1.6 Terminology
	A.1.7 Definitions and Concepts
	A.1.8 Portability

	A.2 Conformance
	A.2.1 Implementation Conformance
	A.2.2 Application Conformance
	A.2.3 Language-Dependent Services for the C Programming Language
	A.2.4 Other Language-Related Specifications

	A.3 Definitions
	A.4 General Concepts
	A.4.1 Case Insensitive Comparisons
	A.4.2 Concurrent Execution
	A.4.3 Default Initialization
	A.4.4 Directory Operations
	A.4.5 Directory Protection
	A.4.6 Extended Security Controls
	A.4.7 File Access Permissions
	A.4.8 File Hierarchy
	A.4.9 Filenames
	A.4.10 Filename Portability
	A.4.11 File System Cache
	A.4.12 File Times Update
	A.4.13 Host and Network Byte Order
	A.4.14 Measurement of Execution Time
	A.4.15 Memory Ordering and Synchronization
	A.4.16 Pathname Resolution
	A.4.17 Process ID Reuse
	A.4.18 Scheduling Policy
	A.4.19 Seconds Since the Epoch
	A.4.20 Semaphore
	A.4.21 Special Device Drivers
	A.4.22 Thread-Safety
	A.4.23 Treatment of Error Conditions for Mathematical Functions
	A.4.24 Treatment of NaN Arguments for Mathematical Functions
	A.4.25 Utility
	A.4.26 Variable Assignment

	A.5 File Format Notation
	A.6 Character Set
	A.6.1 Portable Character Set
	A.6.2 Character Encoding
	A.6.3 C Language Wide-Character Codes
	A.6.4 Character Set Description File

	A.7 Locale
	A.7.1 General
	A.7.2 POSIX Locale
	A.7.3 Locale Definition
	A.7.4 Locale Definition Grammar
	A.7.5 Locale Definition Example

	A.8 Environment Variables
	A.8.1 Environment Variable Definition
	A.8.2 Internationalization Variables
	A.8.3 Other Environment Variables

	A.9 Regular Expressions
	A.9.1 Regular Expression Definitions
	A.9.2 Regular Expression General Requirements
	A.9.3 Basic Regular Expressions
	A.9.4 Extended Regular Expressions
	A.9.5 Regular Expression Grammar

	A.10 Directory Structure and Devices
	A.10.1 Directory Structure and Files
	A.10.2 Output Devices and Terminal Types

	A.11 General Terminal Interface
	A.11.1 Interface Characteristics
	A.11.2 Parameters that Can be Set

	A.12 Utility Conventions
	A.12.1 Utility Argument Syntax
	A.12.2 Utility Syntax Guidelines

	A.13 Namespace and Future Directions
	A.14 Headers
	A.14.1 Format of Entries
	A.14.2 Removed Headers in Issue 8

	B Rationale for System Interfaces
	B.1 Introduction
	B.1.1 Change History
	B.1.2 Relationship to Other Formal Standards
	B.1.3 Format of Entries

	B.2 General Information
	B.2.1 Use and Implementation of Interfaces
	B.2.2 The Compilation Environment
	B.2.3 Error Numbers
	B.2.4 Signal Concepts
	B.2.5 Standard I/O Streams
	B.2.6 File Descriptor Allocation
	B.2.7 XSI Interprocess Communication
	B.2.8 Realtime
	B.2.9 Threads
	B.2.10 Sockets
	B.2.11 Data Types
	B.2.12 Status Information

	B.3 System Interfaces
	B.3.1 System Interfaces Removed in this Version
	B.3.2 System Interfaces Removed in the Previous Version
	B.3.3 Examples for Spawn

	C Rationale for Shell and Utilities
	C.1 Introduction
	C.1.1 Change History
	C.1.2 Relationship to Other Documents
	C.1.3 Utility Limits
	C.1.4 Grammar Conventions
	C.1.5 Utility Description Defaults
	C.1.6 Considerations for Utilities in Support of Files of Arbitrary Size
	C.1.7 Built-In Utilities
	C.1.8 Intrinsic Utilities

	C.2 Shell Command Language
	C.2.1 Shell Introduction
	C.2.2 Quoting
	C.2.3 Token Recognition
	C.2.4 Reserved Words
	C.2.5 Parameters and Variables
	C.2.6 Word Expansions
	C.2.7 Redirection
	C.2.8 Exit Status and Errors
	C.2.9 Shell Commands
	C.2.10 Shell Grammar
	C.2.11 Job Control
	C.2.12 Signals and Error Handling
	C.2.13 Shell Execution Environment
	C.2.14 Pattern Matching Notation
	C.2.15 Special Built-In Utilities

	C.3 Utilities
	C.3.1 Utilities Removed in this Version
	C.3.2 Utilities Removed in the Previous Version
	C.3.3 Exclusion of Utilities

	D Portability Considerations (Informative)
	D.1 User Requirements
	D.1.1 Configuration Interrogation
	D.1.2 Process Management
	D.1.3 Access to Data
	D.1.4 Access to the Environment
	D.1.5 Access to Determinism and Performance Enhancements
	D.1.6 Operating System-Dependent Profile
	D.1.7 I/O Interaction
	D.1.8 Internationalization Interaction
	D.1.9 C-Language Extensions
	D.1.10 Command Language
	D.1.11 Interactive Facilities
	D.1.12 Accomplish Multiple Tasks Simultaneously
	D.1.13 Complex Data Manipulation
	D.1.14 File Hierarchy Manipulation
	D.1.15 Locale Configuration
	D.1.16 Inter-User Communication
	D.1.17 System Environment
	D.1.18 Printing
	D.1.19 Software Development

	D.2 Portability Capabilities
	D.2.1 Configuration Interrogation
	D.2.2 Process Management
	D.2.3 Access to Data
	D.2.4 Access to the Environment
	D.2.5 Bounded (Realtime) Response
	D.2.6 Operating System-Dependent Profile
	D.2.7 I/O Interaction
	D.2.8 Internationalization Interaction
	D.2.9 C-Language Extensions
	D.2.10 Command Language
	D.2.11 Interactive Facilities
	D.2.12 Accomplish Multiple Tasks Simultaneously
	D.2.13 Complex Data Manipulation
	D.2.14 File Hierarchy Manipulation
	D.2.15 Locale Configuration
	D.2.16 Inter-User Communication
	D.2.17 System Environment
	D.2.18 Printing
	D.2.19 Software Development
	D.2.20 Future Growth

	D.3 Profiling Considerations
	D.3.1 Configuration Options
	D.3.2 Configuration Options (Shell and Utilities)
	D.3.3 Configurable Limits
	D.3.4 Configuration Options (System Interfaces)
	D.3.5 Configurable Limits
	D.3.6 Optional Behavior

	E Subprofiling Considerations (Informative)
	E.1 Subprofiling Option Groups

	Index
	Back Cover

